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Abstract

In modern societies, electricity is ubiquitous and its availability and reliability are often

taken for granted. However, the reality is that these properties rely on the proper operation

of one of man’s most complex creations: electric power grids. These systems transport

electric energy across wide geographical regions from places where it is produced to places

where it is consumed. They do so in many cases with virtually no storage. To ensure

an efficient and reliable operation of these complex machines, numerical optimization al-

gorithms are applied at almost every level of the operations and planning spectrum. For

example, they are used for planning network expansions, scheduling generators, adjust-

ing control devices, determining system state, computing security margins, and for many

other crucial tasks. However, many of the algorithms currently used by system operators

and planners are based on heuristics and have severe limitations. For example, common

power flow algorithms, which are used for scenario analysis, typically fail to provide useful

system information in the absence of accurate estimates of system state. Optimal power

flow algorithms, which are used for planning system adjustments, typically use inadequate

techniques for handling discrete variables and identifying key control actions. Security as-

sessment algorithms typically require expensive system simulations that prevent frequent

security analyses. These deficiencies may compromise system performance as grids become

more complex, variable and unpredictable, and are operated closer to their limits. In this

work, modeling and numerical optimization techniques are explored for overcoming many

of the limitations associated with the algorithms used for scenario analysis, planning and

control, and online security assessment. The proposed techniques have been tested on mid

to large-scale real power networks obtained from South American, North American, and

European electric institutions. The results demonstrate the potential benefits of the pro-

posed techniques for improving the tools used by operators and planners for maintaining

system reliability and efficiency.
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Chapter 1

Introduction

1.1 Electric Power Networks

Electricity is a key commodity in modern societies. It not only powers our laptops and

televisions, but it also provides us many of the basic items needed for living comfortably,

e.g., heating, cooling and lighting, and facilitates economic growth. In fact, it is so ingrained

in our way of life that many of us take it for granted. The reality is that the wide-spread

availability of this commodity and its accessible cost are the result of the workings of one of

man’s most complex creations: electric power grids. These systems, which are also known

as electric power networks, are collections of power generating sources and power consuming

elements, or loads, interconnected through transmission lines, transformers and ancillary

equipment [1] [84]. They can cover wide geographical regions and include tens of thousands

of components [72]. Electrically, they are typically balanced three-phase voltage systems.

That is, each section of the network has three conductors, and each one carries a voltage

sinusoid of equal magnitude and frequency, but having a phase difference of 120◦ [28]. These

systems are expected to work around the clock transporting electricity from the various

locations where it is generated, e.g., power plants, to the locations where it is consumed,

e.g., houses, factories, and shopping malls. They must be both efficient and reliable. When

a failure occurs, the consequences can be catastrophic. For example, the 31-hour blackout

that occurred in North America in 2003 was estimated to have affected around 50 million

people and cost between 4 to 6 billion dollars [72] [86]. Consequently, significant resources

are invested by governments and other organizations in order to improve the hardware and

software used by these complex systems as well as the technical skills of its workforce.

1
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1.2 Role of Numerical Optimization

Numerical optimization plays a key role in almost every aspect of the operation and plan-

ning of electric power networks. Its applications cover times frames ranging from seconds

to years. For example, optimal power flow problems are solved every few minutes or hours

in order to determine how to adjust the system to minimize cost while maintaining security

[26]. Unit commitment problems are solved many times a day in order to clear day-ahead

power markets and determine generator schedules [82]. Power flow problems, which are

also known as load flow problems, are solved regularly during operations planning in order

to determine system performance under different loading conditions and network topology

configurations [1]. Voltage stability margins are also obtained through numerical optimiza-

tion for determining how far a system is from a possible collapse [8]. Network expansion

problems are solved annually to determine how to upgrade a power network to meet future

demands [10]. Similarly, optimal capacitor placement problems are solved to determine

where capacitors should be located in order to improve system performance [7]. Improve-

ments in the algorithms used for solving all of these different problems are highly desirable

since the benefits can be substantial. For example, the probability of a blackout can be

significantly reduced by improving the speed and robustness of algorithms that determine

system security violations and provide corrective actions. Also, millions of dollars can be

saved annually by improving the solution quality obtained from algorithms that clear power

markets [16] [69].

1.3 Challenges

In general, optimization problems associated with electric power networks are challenging

to solve. The reasons are numerous: First, power networks are characterized by non-

convex equality constraints known as the “power flow equations” [4]. These constraints

make it impossible for practical algorithms that consider these constraints to have global

optimality or even feasibility guarantees. Second, many of the control devices used in power

networks, such as switched shunt capacitors and tap-changing transformers, have a finite set

of possible configurations, and hence accurate models require discrete variables [81]. Third,

most electric power networks have no fast energy storage. Energy that is consumed is

essentially produced at the same time by some generator. When a contingency occurs, e.g.

a generator or transmission line outage, a power imbalance can cause cascading failures and
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even a system-wide blackout in a matter of seconds. This is even more challenging when the

economic forces are pushing systems to operate closer to their security limits [90]. Therefore,

optimization algorithms used during operations need to be timely in detecting problems

and suggesting corrective actions. Lastly, uncertainty is becoming an important factor to

consider due to the planned increase of variable and distributed generation, in particular

solar and wind [32]. Unfortunately, modeling this uncertainty within optimization problems

significantly increases their size and complexity.

1.4 Contributions

This work focuses on developing and applying modeling and numerical optimization tech-

niques for improving the way some of the most fundamental problems associated with power

network operations and planning are solved. The ultimate goal is to provide system op-

erators and planners with better tools to analyze and control their systems. With better

tools, system reliability and efficiency can be improved, which is particularly crucial for

the new more challenging scenario characterized by economic pressures, increased system

complexity, and large-scale renewable energy penetration. More specifically, contributions

are made in the following related areas:

• Scenario Analysis: During operations planning, scenario analysis needs to be per-

formed regularly in order to determine whether an electric power network is adequately

designed and configured to operate under various potential scenarios. Performing such

an analysis requires solving power flow problems. Unfortunately, widely-used methods

for solving such problems have serious robustness deficiencies, which complicate and

possibly compromise system analysis. In this work, these deficiencies are addressed

and alternatives that are more robust are described. The proposed techniques have

theoretical guarantees and allow operators to obtain information about the state of

power systems more reliably. Early ideas and results of this work have been included

in technical reports published by the Electric Power Research Institute [36] [37], and

published in the proceeding of the 2013 North American Power Symposium [62]. A

more complete manuscript has been submitted for publication to the Journal of Com-

putational Optimization and Applications [63].

• Planning and Control: Generator dispatch and other control device adjustments

need to be planned regularly in operations planning to ensure that an electric power
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network maintains system security and efficiency under expected operating conditions

or potential scenarios. These system adjustments are obtained by solving optimal

power flow problems, and require taking into consideration the discrete nature of cer-

tain system controls and identifying a practical set of control actions. However, current

methods for solving these problems typically use inadequate rounding techniques for

handling discrete variables, and utilize a number of control actions that is not prac-

tical for operations. In this work, techniques for handling discrete variables and for

obtaining a practical number of control actions in optimal power flow problems are

described. The proposed techniques are based on using a smooth sparsity-inducing

penalty to obtain sparse controls and distributed exploration for finding promising

discrete variable configurations. Early ideas and results of this work were presented

at the 2015 Innovative Smart Grid Technologies Conference and will be published in

the conference proceedings [64]. More recent results have been included in a technical

report published by the Electric Power Research Institute [39].

• Online Security Assessment: System operators currently rely on offline simulation

studies and experience for assessing system security in real time. However, as electric

power networks become more variable and unpredictable and operate closer to their

limits, security problems may arise much more suddenly and frequently, and may

involve issues that have not been experienced before. In this work, the critical oper-

ating boundaries problem is defined, and an efficient method for performing security

assessment in real time is described. The proposed techniques are based on a linear

system model, allow finding the nearest thermal and voltage security boundaries in

terms of changes in the loading conditions, and suggest actions for restoring security

margins. Early ideas and results of this work were presented at the 2015 Innovative

Smart Grid Technologies Conference and will be published in the conference proceed-

ings [31]. More recent results have been included in a technical report published by

the Electric Power Research Institute [38].

1.5 Thesis Outline

The contents are organized as follows: Chapter 2 introduces notation and describes the

mathematical model used for representing an electric power network. Chapter 3 provides

an overview of scenario analysis in operations planning and the power flow problem, and
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describes the robustness issues of current methods as well as the proposed improvements.

Chapter 4 provides an overview of system planning and control and the optimal power

flow problem, and describes the deficiencies associated with current methods as well as

the proposed techniques for overcoming them. Chapter 5 provides and overview of online

security assessment and the issues associated with current practices, introduces the critical

operating boundaries problem, and describes the proposed solution techniques. Lastly,

Chapter 6 summarizes the work and suggests future research directions.



Chapter 2

Power Network Model

In this chapter, the mathematical model used for representing an electric power network

is introduced. The model follows the common and simple way to represent one such a

network, which assumes that perfect symmetry exists between all the three phases of the

system, treats the system as single-phase, and represents each transmission element as a

lumped-circuit line model (π-model) [4] [28].

2.1 Components

A power network is modeled by a graph of n ∈ N nodes, which are commonly referred to as

buses, connected through a set of B ⊂ [n]×[n] branches, where [n] := {1, . . . , n}. Generators,

loads, and shunt devices are connected to these buses. To keep the presentation simple, it

is assumed that each bus has exactly one of each of these components connected to it.

2.1.1 Buses

Each bus k ∈ [n] carries a voltage sinusoid of magnitude vk ∈ R and phase angle θk ∈ R.

Typically, one of the buses with a generator connected to it, say bus s ∈ [n], is chosen as

a “slack bus”. The function of this bus is to provide sufficient power to account for any

load or losses not known in advance as well as to provide a reference angle from which

all other phase angles are measured [1] [4]. The rest of the buses are partitioned into the

set R ⊂ [n] of voltage regulated buses and the set U ⊂ [n] of voltage unregulated buses.

Regulated buses have generators connected to them that have the capability of adjusting

6
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their reactive power to maintain their voltage magnitude fixed, or regulated, at some set

point. For each k ∈ R, vtk ∈ R denotes the set point for the voltage magnitude at bus k.

Typically, buses have desirable voltage magnitude ranges that prevent equipment dam-

age [87]. For bus k ∈ [n], this range is given by

vmin
k ≤ vk ≤ vmax

k , (2.1)

where vmin
k , vmax

k ∈ R++. Typical ranges are from 0.9 to 1.1 per unit bus nominal voltage.

2.1.2 Branches

Each branch (k,m) ∈ B corresponds to a transmission line or transformer, including phase

shifters, and is represented by the model given in Figure 2.1. A branch’s series and shunt

admittances are given by

ykm := gkm + jbkm ∈ C (2.2)

yshkm := gshkm + jbshkm ∈ C (2.3)

yshmk := gshmk + jbshmk ∈ C, (2.4)

where gkm and bkm ∈ R denote the series conductance and susceptance, respectively, gshkm

and bshkm ∈ R denote the shunt conductance and susceptance, respectively, and j denotes the

imaginary unit. Transformer turns ratios, which for non-transformer branches are unity,

are given by

tkm := akme
jϑkm ∈ C (2.5)

tmk := amke
jϑmk ∈ C, (2.6)

where akm, amk ∈ R++ and ϑkm, ϑmk ∈ R. These turns ratios imply the voltage relations

vpe
jθp = tkmvke

jθk = akmvke
j(θk+ϑkm) (2.7)

vqe
jθq = tmkvme

jθm = amkvme
j(θm+ϑmk), (2.8)

where p and q denote the internal points of the branch element shown in Figure 2.1 [4]. For

(k,m) /∈ B, i.e., for buses k and m that are not connected by a branch, the conventions

ykm = yshkm = yshmk = 0 and tkm = tmk = 1 are used.
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v k e
jθ k ykm vme

jθm

1: t km tmk :1

ykm
sh ymk

sh

p q
k m

Figure 2.1: Model for branch element of power network [4].

The branch current ikm ∈ C leaving bus k towards bus m is given by the expression

ikm : = t∗km
(
yshkmvpe

jθp + ykm(vpe
jθp − vqejθq)

)
(2.9)

= a2
km(yshkm + ykm)vke

jθk − t∗kmtmkykmvmejθm , (2.10)

where ∗ denotes complex conjugate. The branch current imk ∈ C leaving bus m towards

bus m is given by a similar expression that is obtained by interchanging k and m in (2.10).

The branch apparent power flow Skm ∈ C from bus k to bus m is given by

Skm : = vke
jθki∗km (2.11)

= Pkm + jQkm, (2.12)

where Pkm, Qkm ∈ R denote the branch active and reactive power flows, respectively, which

are given by

Pkm := a2
km(gshkm + gkm)v2

k − akmamkvkvm(gkm cos θkm + bkm sin θkm) (2.13)

Qkm := −a2
km(bshkm + bkm)v2

k − akmamkvkvm(gkm sin θkm − bkm cos θkm). (2.14)

The quantity θkm ∈ R represents the phase angle difference across the branch and is given

by

θkm := θk − θm − φkm, (2.15)

where

φkm :=

 0, if k = m

−ϑkm + ϑmk, otherwise.
(2.16)
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The quantity φkm ∈ R represents the phase shift of a phase-shifting transformer, and is zero

for other branch types. Again, analogous expressions for Smk, Pmk, Qmk, θmk and φmk are

obtained by interchanging k and m.

Transmission lines and transformers have thermal ratings. To prevent damage, thermal

constraints are typically imposed on the magnitude of the current or apparent power flow

through a branch. In terms of the quantities defined above, for a branch (k,m) ∈ B, these

constraints are given by

|ikm| ≤ imax
km and |imk| ≤ imax

km , (2.17)

or

|Skm| ≤ Smax
km and |Smk| ≤ Smax

km , (2.18)

where imax
km , Smax

km ∈ R++, and | · | gives the magnitude of a complex number [16].

Phase-shifting transformers allow adjusting the phase angle φkm for controlling the active

power flow through the branch [34] [50]. Load Tap-Changing (LTC) transformers allow

adjusting the turns ratio magnitude akm for improving voltage profiles and reducing active

power transmission losses [34] [50]. Possible values for akm form a discrete set that typically

consists of many, say 30, evenly spaced positions between 0.9 to 1.1 per unit [50] [70] [81].

Limits for these controls are given by the constraints

amin
km ≤ akm ≤ amax

km (2.19)

φmin
km ≤ φkm ≤ φmax

km , (2.20)

where amin
km , a

max
km ∈ R++, and φmin

km , φ
max
km ∈ R.

2.1.3 Shunt Devices

Shunt devices are reactive power compensation devices such as capacitor and reactor banks

[81] that are typically used for improving the voltage profile of a power network [30]. They

are modeled by an admittance between a given bus and ground. More specifically, the

admittance of the shunt device connected at bus k ∈ [n] is given by

yshk := gshk + jbshk , (2.21)

where gshk , b
sh
k ∈ R are the conductance and susceptance, respectively.
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The current ishk ∈ C leaving bus k through the shunt device connected at that bus is

given by

ishk := yshk vke
jθk . (2.22)

Hence, the apparent power flow Sshk from bus k to ground is given by

Sshk : = vke
jθk
(
ishk
)∗

(2.23)

= P shk + jQshk , (2.24)

where P shk , Qshk ∈ R denote the shunt active and reactive power flows, respectively, which

are given by

P shk := gshk v
2
k (2.25)

Qshk := −bshk v2
k. (2.26)

Switched shunt devices allow adjusting the susceptance bshk by closing or opening switches

that connect or remove capacitors or reactors in parallel. Possible values for bshk form a dis-

crete set that typically consists of values that are not necessarily closely nor evenly spaced

[50] [81]. Limits for these controls are given by

bmin
k ≤ bshk ≤ bmax

k , (2.27)

where bmin
k , bmax

k ∈ R.

2.1.4 Generators and Loads

A generator connected to bus k ∈ [n] injects active power P gk ∈ R and reactive power

Qgk ∈ R at that bus. Similarly, a load connected to bus k ∈ [n] consumes active power

P lk ∈ R and reactive power Qlk ∈ R.

A generator has limits on its active and reactive powers. These limits define a region

where the generator can operate safely [6] [53]. For the generator connected to bus k ∈ [n],

these limits are given by

Pmin
k ≤ P gk ≤ P

max
k (2.28)

Qmin
k ≤ Qgk ≤ Q

max
k , (2.29)
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where Pmin
k , Pmax

k , Qmin
k , Qmax

k ∈ R.

Typically, a generator adjusts its reactive power Qgk inside the range [Qmin
k , Qmax

k ] in

order to regulate the voltage magnitude of the bus to which it is connected. When reactive

power outside this range is needed to keep the bus voltage magnitude at its set point, this

voltage magnitude may drift away, effectively turning the bus into an unregulated bus. It

may be the case that a generator is configured to regulate the voltage magnitude of a remote

bus, i.e., a neighboring bus that is different from the one to which the generator is connected.

Typically, only a few generators are configured in this way in a power network. Although

the algorithms implemented in this work can handle this configuration, it is assumed here

that all generators regulate the bus to which they are connected in order the keep the

presentation simple.

2.2 Nodal Admittance Matrix

From (2.10) and (2.22), the total current ik ∈ C leaving bus k through the branches and

shunt device connected at that bus is given by

ik := ishk +
∑
m 6=k

ikm (2.30)

=
(
yshk +

∑
m 6=k

a2
km(yshkm + ykm)

)
vke

jθk −
∑
m6=k

t∗kmtmkykmvme
jθm . (2.31)

Defining the matrix Y ∈ Cn×n by

Ykm :=

 yshk +
∑

j 6=k a
2
kj(y

sh
kj + ykj), if k = m

−akmamkykm, otherwise,
(2.32)

and using φkm as defined in (2.16), a more compact expression for ik is obtained:

ik =
∑
m∈[n]

Ykme
jφkmvme

jθm . (2.33)

The real and imaginary parts of Y are denoted by G and B, respectively. These matrices

are symmetric. The matrix Ỹ defined by

Ỹkm := Ykme
jφkm , (2.34)
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for each k, m ∈ [n] is known as the nodal admittance matrix, and is commonly used in the

literature for characterizing power networks [4]. Two useful matrices that are obtained in

a similar way but from G and B are G̃ and B̃. Their elements are given by

G̃km := Gkme
jφkm (2.35)

B̃km := Bkme
jφkm , (2.36)

for each k, m ∈ [n]. Since G and B are symmetric and φkm = −φmk, G̃ and B̃ are

Hermitian.

2.3 Power Flow Constraints

Electric power networks obey the law of conservation of power: at every bus, the net sum

of powers injected is zero. Using the notation introduced above, these constraints can be

expressed as

(P gk + jQgk)− (P lk + jQlk)− Sshk −
∑
m∈[n]

Skm = 0, (2.37)

for each k ∈ [n]. In terms of the matrix Y , these equations can be expressed as

(P gk + jQgk)− (P lk + jQlk)−
∑
m∈[n]

vkvmY
∗
kme

j(θk−θm−φkm) = 0, (2.38)

for each k ∈ [n]. Equivalently, by separating real and imaginary components, they can be

expressed as

P gk − P
l
k −

∑
m∈[n]

vkvm(Gkm cos θkm +Bkm sin θkm) = 0 (2.39)

Qgk −Q
l
k −

∑
m∈[n]

vkvm(Gkm sin θkm −Bkm cos θkm) = 0, (2.40)

for each k ∈ [n], where θkm is as defined in (2.15) [1] [4]. The left-hand sides of equations

(2.39) and (2.40) are commonly referred to as the active and reactive power mismatches at

bus k, respectively.
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2.4 Voltage Regulation Constraints

As already noted, a generator may adjust its reactive power in order to keep its bus voltage

magnitude fixed at a given set point. When its reactive power reaches one of its limits,

the voltage magnitude at the bus regulated by that generator may move away from its set

point. When this occurs, the bus essentially behaves as one without voltage regulation.

The constraints that capture this behavior are given by

vk = vtk + yk − zk (2.41)

0 ≤
(
Qgk −Q

min
k

)
⊥ yk ≥ 0 (2.42)

0 ≤
(
Qmax
k −Qgk

)
⊥ zk ≥ 0, (2.43)

for each k ∈ R, where yk, zk ∈ R represent positive and negative deviations, respectively,

of regulated voltage magnitudes from their set points [74]. These constraints restrict the

bus voltage magnitude to be at its set point unless the generator’s reactive power reaches

one of its limits. When the reactive power reaches its upper limit, the voltage magnitude

may be lower than the set point. On the other hand, when the reactive power reaches its

lower limit, the voltage magnitude may be higher than the set point. The symbol ⊥ denotes

complementarity and is defined by a ⊥ b ⇐⇒ ab = 0, for all a, b ∈ R. Constraints of the

form of (2.42) and (2.43) are known as complementarity constraints [47] [71] [73] [74].

2.5 Units

Unless otherwise stated, the following units are assumed throughout for the main power

network quantities: MW for active power, MVAr for reactive power, MVA for apparent

power, radians for phase angles, and per unit bus nominal voltage for voltage magnitudes.

For normalizing power quantities, the system base power is used, which typically equals 100

MVA.



Chapter 3

Scenario Analysis

3.1 Background and Overview

During operations planning, scenario analysis is performed regularly in order to determine

whether an electric power network is adequately designed and configured to operate under

various potential scenarios. These scenarios may consider load changes, planned equipment

outages, network topology changes, or contingencies. Security criteria for assessing adequate

system operation may consider voltage limit violations, thermal overloading of transmission

lines or transformers, and voltage stability margins. To analyze each scenario, the power

flow problem must be solved. This problem, which is also known as the load flow problem,

consists of determining the steady-state operating point of an electric power network. That

is, to determine the steady-state voltage magnitudes and phase angles at every bus of the

network and any unknown generator powers [1] [4]. The various security quantities, e.g.,

thermal violations, can be easily obtained from the system state. Unfortunately, current

power flow solvers have questionable robustness [36] [37]. In particular, they may fail to find

a solution when one exists, or may fail to provide useful information about the potential

physical causes of infeasibility, due to purely algorithmic issues [36] [37]. When a failure

of this type occurs, system operators and planners are left with the difficult and time-

consuming task of trying to obtain information about the system by other means, such

as trying multiple methods and making system modifications. When this also fails, they

are left with limited or incorrect knowledge about the system, which may jeopardize its

reliability and efficiency.

This lack of robustness of current power flow solvers comes from the solution method

14
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used, which typically consists of the Newton-Raphson (NR) method for solving systems

of nonlinear equations combined with switching heuristics for enforcing generator reactive

power limits and voltage regulation. This method is simple to implement, is fast, and can

exhibit a quadratic rate of convergence, but it suffers from serious robustness issues. Its

convergence, for example, is only local. That is, it requires a starting point sufficiently

close to the solution, otherwise, the method may diverge or cycle [60]. Also, the quality

of the search directions computed by this method depends on the condition number of the

Jacobian of the power flow equations. In many cases this matrix may be singular or nearly

singular, especially in large and heavily loaded networks, leading to convergence issues.

Finally, the switching heuristics, often called “PV-PQ switching”, may also conflict with

the NR process causing jumps or cycles that affect its convergence [37].

A reader may wonder why, given the limitations, this method is still the most widely

used method for solving power flow problems. The reason is that under normal operations,

a good estimate of the solution is often known, and hence the method is usually very fast. In

operations, power flow problems are solved repetitively as conditions of the system change.

Typically, the solution of a recent problem is used as an initial point for a new problem.

When the change is small, this solution is a very good estimate. However, under other

circumstances such as during expansion planning, contingency analysis, or when merging

adjacent systems, a good initial solution estimate may not be known and the limitations of

the method become more apparent. Moreover, with current deregulated practices and the

large-scale integration of renewable energy projected for the near future, systems are likely

to operate closer to their limits, and be more unpredictable and variable. In this scenario,

the limitations of the method are likely to become a major obstacle towards more efficient

and reliable electric grids.

Many techniques have been proposed for improving the robustness of this widely-used

NR-based power flow method. Among them are the use of an “optimal multiplier” and the

use of integration or gradient flow techniques for improving convergence [12] [15] [35] [40]

[59] [76]. These techniques, although very helpful for solving more ill-conditioned problems

and preventing divergence, do not resolve the issue of requiring a good initial point, still

have issues with near rank-deficient Jacobians, and require switching heuristics for handling

reactive power limits and voltage regulation.

The issue of robustness to poor initial points has been addressed by several authors in

the power flow literature. For example, some authors have suggested using the solution of
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a linear approximation of the power flow problem as an initial point, and have tested this

approach on power networks of a few hundred buses [79] [46]. A more elaborate idea based

on homotopy has been proposed in [27], which consists of first solving the Direct Current

(DC) power flow [91] and then gradually transforming this problem into the Alternating

Current (AC) power flow. The authors test this idea on small cases that include the IEEE

test problems, which have at most 300 buses, and one mid-size case of 2383 buses. They

compare the number of function evaluations required by this method with those required

by the NR method, but do not provide robustness results as all cases considered are solved

by both methods. In [62], the authors also explore a homotopy approach for improving the

robustness of NR-based power flow methods to poor initial point. The approach consists

of formulating the power flow problem as a constrained optimization problem in which the

objective function encourages desirable properties of bus voltage magnitudes. This approach

can be interpreted as using maximum a posteriori estimation [13] [58] for determining the

power flow solution given the network topology, configuration, and loading conditions. From

this statistical perspective, the particular voltage properties encouraged in the objective

function can be translated into a particular assumption about the prior distribution of a

power flow solution before knowing the exact loading conditions.

The issues associated with the use of switching heuristics for enforcing generator reactive

power limits and voltage regulation have received relatively less attention. In [89], the au-

thors describe some of these issues, analyze several supplementary heuristics for overcoming

them, but conclude that the original heuristics should be used as they correctly simulate the

interactions between voltage regulation and generator reactive power limits. In our view,

the weakness of this approach comes from trying to simulate these interactions during the

NR process with infeasible points, since feasibility is generally achieved only in the limit.

The authors also recommend using switching heuristics instead of optimization techniques

for handling the complementarity constraints that model generator reactive power limits

and voltage regulation. They argue that handling these constraints using such techniques

may be problematic. Examples of optimization techniques for handling these constraints

have been explored in [73] [74] [83] in the context of maximum loadability of power net-

works and the optimal power flow problem. In [83], the authors propose handling these

constraints by means of an exact penalty function, but do not test this approach. On the

other hand, the authors from [73] [74] use the interior point method described in [9] and

test this approach on IEEE test cases.
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In this chapter, a new power flow method referred to as voltage-controlled Power Flow

(vPF) is presented that overcomes the limitations of the widely-used method consisting

of NR and switching heuristics. The method formulates the power flow problem as a

constrained optimization problem in which the objective function includes prior information

about power flow solutions. The inclusion of prior information allows convexity to be added

to the problem to favor physically meaningful iterates. It also makes the algorithm less

sensitive to poor initial points and near rank-deficient Jacobians. It is shown that under

reasonable assumptions, the proposed method is globally convergent [33] in the sense of

always finding at least a stationary point of the sum of the squares of the infeasibilities.

This work extends the work of [62], in which the benefits of including prior information about

power flow solutions are explored, by including generator reactive power limits and voltage

regulation, and by applying a more efficient optimization algorithm based on the augmented

Lagrangian method [33] [67]. The interactions between generator reactive power limits

and voltage regulation are modeled with complementarity constraints, and handled using

smooth approximations of the Fischer-Burmeister function, as described in [71]. To improve

the performance of the optimization algorithm, second-derivative information is exploited

for computing primal search directions and updating Lagrange multiplier estimates. The

performance of the proposed method on several power flow cases is presented. The test

cases collected for this study come from real power networks obtained from several North

American, South American, and European system operators. Some of the cases are large-

scale cases having 45k and 58k buses. This contrasts to the common practice found in the

power flow literature, which consists of testing algorithms only on IEEE test problems.

3.2 The Power Flow Problem

As mentioned before, the power flow or PF problem consists of determining all bus voltage

magnitudes and angles as well as any unknown generator powers for specific loading con-

ditions. The values obtained for these unknowns must make physical sense, i.e., they must

satisfy the power flow constraints described in Section 2.3 as well as the voltage regulation
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constraints described in 2.4. Mathematically, this problem can be formulated as

find x (3.1)

subject to f(x) = 0

vk = vtk + yk − zk, k ∈ R

0 ≤
(
Qgk −Q

min
k

)
⊥ yk ≥ 0, k ∈ R

0 ≤
(
Qmax
k −Qgk

)
⊥ zk ≥ 0, k ∈ R.

Here, f is the vector-valued function whose scalar function entries are the active and reac-

tive power mismatches for each k ∈ [n] \ {s}, i.e., the left-hand sides of equations (2.39)

and (2.40). The vector x is composed of voltage angles {θi}i∈[n]\{s}, voltage magnitudes

{vi}i∈[n]\{s}, generator reactive powers {Qgi }i∈R, and regulated voltage magnitude devia-

tions {yi}i∈R and {zi}i∈R. The unknown active and reactive powers of the slack generator

(bus s) are not included in the formulation of the problem. The reason is that they appear

linearly in the power flow constraints and values for them can be obtained easily after val-

ues for the other variables are known. Additionally, for the slack bus, the known voltage

magnitude and phase angle are treated as constants of the problem.

3.3 Newton-Raphson Power Flow

As already noted, the most widely used method for solving power flow problems is based on

the NR method combined with switching heuristics for handling reactive power limits and

voltage regulation. The NR method is a well known iterative algorithm for solving nonlinear

systems of equations of the form f(x) = 0, where f : Rm → Rm is continuously differentiable

and m ∈ N. The method starts with an initial solution estimate x0 and proceeds iteratively

as follows: During iteration k ∈ Z+, it computes the next solution estimate xk+1 by finding

the root of the linearization of f at xk, i.e., by solving

fk + Jk(xk+1 − xk) = 0, (3.2)

where Jk is the Jacobian of f at xk and fk = f(xk). This gives the update formula

xk+1 = xk + pk, (3.3)
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where pk satisfies the “Newton system” Jkpk = −fk. This procedure is repeated until xk

satisfies ‖f(xk)‖∞ < ε for some k and some predefined ε > 0.

This method is applied to the power flow problem by first assuming that generators do

not reach their reactive power limits, and hence that voltage magnitudes at regulated buses

are fixed at their set points. Under this assumption, the complementarity constraints of

the power flow problem always hold and the power flow constraints have an equal number

of equations and unknowns [1] [4] [75], which makes the NR method applicable. Table

3.1 shows what the known and unknown quantities are for each of the different bus types

assuming that generators do not reach their reactive power limits. The nonlinear system

of power flow equations is expressed as f(x) = 0, where f consists of the active power

mismatches at each bus k ∈ [n]\{s}, and the reactive power mismatches at each bus k ∈ U .

The vector x is composed of voltage angles {θi}i∈[n]\{s} and voltage magnitudes {vi}i∈U .

Reactive power mismatches at regulated buses k ∈ R, as defined in Section 2.3, and reactive

powers {Qgi }i∈R of regulating generators need not be included in the NR process. The reason

is that, since {Qgi }i∈R appear linearly in the power flow equations, values for them are easily

obtained from the values of the other variables such that the reactive power mismatches at

their corresponding buses are kept at zero.

Table 3.1: Power flow known and unknown quantities.

bus type known quantities unknown quantities

k = s slack θk and vk P gk and Qgk
k ∈ U unregulated P gk and Qgk θk and vk
k ∈ R regulated P gk and vk θk and Qgk

An improvement to the NR method is to include a line search procedure. This procedure

consists of performing a one dimensional search along the computed search direction pk to

determine a step length αk such that the next iterate

xk+1 = xk + αkpk (3.4)

is a “better” solution estimate. To define “better”, a line search uses a merit function [33]

[67], which for the NR method typically consists of fT f . In the power flow context, this

merit function is the sum of the squares of the bus power mismatches. The inclusion of a line

search procedure has little or no negative impact on efficiency, but can improve robustness

significantly. The line search procedure used here is based on bracketing and bisection and
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enforces the strong Wolfe conditions

h(xk + αkpk) ≤ h(xk) + c1αk∇h(xk)
T pk (3.5)

|∇h(xk + αkpk)
T pk| ≤ −c2∇h(xk)

T pk, (3.6)

where 0 < c1 < c2 < 1 and h is the merit function fT f [67].

Unfortunately, a line search procedure alone is not enough to ensure convergence of the

NR method. This is because the search directions may be poor in the sense of pointing

along directions where the merit function decreases very little, leading to the method getting

“stuck”. This may happen when the search directions are not sufficient descent directions,

which means that they get arbitrarily close to being orthogonal to the gradient, due to the

Jacobian being nearly singular [60].

In power flow problems, near-singular Jacobians do arise. For example, it is known that

the Jacobian of the power flow constraints is typically ill-conditioned for heavily loaded

systems that are near their loadability limit [2] [17] [23] [24]. From our experience, the

Jacobian is also ill-conditioned in regions where the voltage magnitudes have little physical

meaning, e.g., where some are much larger than the bus nominal voltage or close to zero.

This latter case is closely related to poor initial points, since it has been observed that

from poor initial points, the NR method may be attracted to points with such undesirable

properties [36] [37] [62].

When the reactive power of a generator reaches its limit, voltage regulation may be lost.

Switching heuristics, often called “PV-PQ switching”, are commonly included in the NR

method for simulating the inability of generators to keep their bus voltage magnitudes at

their set points. These heuristics work by checking whether generator reactive power limit

violations exist after each iteration of the NR method. If one exists, the reactive power

of the corresponding generator is set to the violated limit and the corresponding bus is

treated as an unregulated bus, allowing its voltage magnitude to deviate from its set point.

Changes in bus types are done by modifying the sets U and R. These heuristics essentially

guess from a reactive power violation at iteration k that the corresponding bus behaves as

an unregulated bus at the solution. These guesses may be wrong and hence the heuristics

also include other more complicated rules for reverting a bus that was previously changed to

unregulated back to being regulated [89]. In practice, these heuristics are typically applied

after the first or second iteration of the NR method in order to avoid making too many
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poor initial guesses [1].

Algorithm 1 shows pseudocode for the widely-used NR-based power flow method equipped

with the line search procedure and switching heuristics. This method is used as a bench-

mark method for evaluating the performance of the proposed power flow method described

in the next section.

Algorithm 1 NR power flow method

1: Given x0 and feasibility tolerance εf > 0
2: k ← 0
3: while True do
4: if k > 0 then
5: Perform PV-PQ switching heuristics
6: end if
7: if ‖f(xk)‖∞ < εf then
8: return xk
9: end if

10: Compute search direction pk by solving Jkpk = −fk
11: Perform line search with merit function fT f to obtain step length αk
12: Update solution estimate xk+1 ← xk + αkpk
13: k ← k + 1
14: end while

3.4 Modeling Approach

As noted in Section 3.1, the NR power flow method suffers from many limitations, two of

which are its lack of robustness to poor initial points and to near rank-deficient Jacobians of

the power flow constraints. In [62], it was found that by formulating the power flow problem

as a constrained optimization problem in which the objective function encourages voltage

magnitudes to remain near unity, robustness to poor initial points can be greatly improved.

This idea can be extended to also encourage typical or desirable properties for all the other

variables of the problem in such a way that the objective function is strongly convex and

quadratic. With this, the dependency of the quality of the search directions on the rank

of the Jacobian of the power flow constraints can be reduced, and global convergence to at

least a stationary point of the sum of the squares of the infeasibilities can be obtained.

To eliminate the use of switching heuristics, the complementarity constraints that model
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the interplay between voltage regulation and generator reactive power limits are approx-

imated with “nice” smooth constraints that can be handled by a conventional nonlinear

optimization algorithm. This is done by following the approach described and analyzed in

detail in [71]. More specifically, a complementarity constraint

0 ≤ a ⊥ b ≥ 0, (3.7)

where a and b are scalars, is first replaced by an equivalent constraint

a+ b−
√
a2 + b2 = 0. (3.8)

Since the left-hand side of this constraint, which is called the Fischer-Burmeister (FB)

function, is not differentiable at (a, b) = (0, 0), the constraint is approximated with

a+ b−
√
a2 + b2 + 2ς = 0, (3.9)

where ς is a small positive scalar. The resulting constraint is smooth and is equivalent to

a ≥ 0, b ≥ 0, ab = ς. (3.10)

Its feasible set is illustrated in Figure 3.1.

Figure 3.1: Smooth approximation of complementarity constraint.
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The following lemma characterizes the error in (3.8) due to an error in (3.9).

Lemma 3.4.1. For any positive ε and ς,∣∣∣a+ b−
√
a2 + b2 + 2ς

∣∣∣ ≤ ε =⇒
∣∣∣a+ b−

√
a2 + b2

∣∣∣ ≤ ε+
√

2ς. (3.11)

Proof. Let ε and ς be positive scalars and suppose that∣∣∣a+ b−
√
a2 + b2 + 2ς

∣∣∣ ≤ ε. (3.12)

Then, it follows that∣∣∣a+ b−
√
a2 + b2

∣∣∣ ≤ ∣∣∣a+ b−
√
a2 + b2 + 2ς

∣∣∣+
∣∣∣√a2 + b2 + 2ς −

√
a2 + b2

∣∣∣ (3.13)

≤ ε+
∣∣∣√a2 + b2 + 2ς −

√
a2 + b2

∣∣∣ (3.14)

= ε+
√
a2 + b2 + 2ς −

√
a2 + b2 (3.15)

= ε+ h(a, b), (3.16)

where

h(a, b) :=
√
a2 + b2 + 2ς −

√
a2 + b2. (3.17)

Let (ā, b̄) 6= (0, 0) and suppose, without loss of generality, that ā 6= 0. Then, at (ā, b̄), h is

differentiable and

δh

δa
(ā, b̄) = ā

(
1√

ā2 + b̄2 + 2ς
− 1√

ā2 + b̄2

)
6= 0. (3.18)

Hence, for all n ∈ N,

h(ā, b̄) ≤ h(ā/n, b̄). (3.19)

By continuity, h(ā, b̄) ≤ h(0, b̄). It follows that h(a, b) ≤ h(0, 0) for all (a, b) and hence that∣∣∣a+ b−
√
a2 + b2

∣∣∣ ≤ ε+ h(0, 0) (3.20)

= ε+
√

2ς (3.21)

Combining the use of an objective function that includes prior knowledge about power
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flow solutions, and smooth equality constraints that enforce power balance and the “switch-

ing” behavior of generators’ voltage controllers, the power flow problem can be formulated

as

minimize
x

ϕ(x) (3.22)

subject to f(x) = 0

Φ(x) = 0

Ax = b,

where x is a vector composed of voltage magnitudes {vi}i∈[n]\{s}, voltage angles {θi}i∈[n]\{s},

reactive powers of generators {Qgi }i∈R, and positive and negative regulated voltage mag-

nitude deviations {yi}i∈R and {zi}i∈R, respectively. The function Φ is the smooth vector-

valued function whose scalar function entries are the functions

(
Qgk −Q

min
k

)
+ yk(1 + ε)−

√(
Qgk −Qmin

k

)2
+ y2

k + 2ς (3.23)(
Qmax
k −Qgk

)
+ zk(1 + ε)−

√(
Qmax
k −Qgk

)2
+ z2

k + 2ς, (3.24)

for each k ∈ R, where ε and ς are small positive scalars. The scaling factor 1 + ε is only

needed for guaranteeing that the variables y and z remain bounded and proving convergence

of the applied algorithm, and may be omitted in practice. The function ϕ is a strongly

convex non-negative quadratic function, which is defined below, and f is the vector-valued

function of active and reactive power mismatches for each bus k ∈ [n] \ {s}. Lastly, the

linear constraints Ax = b represent the voltage regulation constraints (2.41).

The strongly convex non-negative quadratic function ϕ is given by

ϕ := αqϕq + αrϕr + αuϕu + αθϕθ + αdϕd + αyϕy + αzϕz, (3.25)



CHAPTER 3. SCENARIO ANALYSIS 25

where

ϕq(x) :=
n

|R|
∑
i∈R

(
2Qgi −Qmax

i −Qmin
i

Qmax
i −Qmin

i

)2

(3.26)

ϕr(x) :=
n

|R|
∑
i∈R

(
vi − vti

∆v

)2

(3.27)

ϕu(x) :=
n

|U|
∑
i∈U

(
vi − 1

∆v

)2

(3.28)

ϕθ(x) :=
n

n− 1

∑
i∈[n]\{s}

(
θi
π

)2

(3.29)

ϕd(x) :=
n

|B|
∑

(i,j)∈B

(
θij − φij

π

)2

(3.30)

ϕy(x) :=
n

|R|
∑
i∈R

(
yi
∆v

)2

(3.31)

ϕz(x) :=
n

|R|
∑
i∈R

(
zi

∆v

)2

, (3.32)

∆v is a positive scalar, and the weights satisfy

αr ≈ αu � αθ ≈ αd ≈ αy ≈ αz > αq > 0. (3.33)

The penalty ϕu has the effect of encouraging the algorithm applied to (3.22) to find feasible

points that have unregulated voltage magnitudes near unity. The penalties ϕr, ϕy and

ϕz encourage regulated voltage magnitudes to be near their set points. The penalty ϕθ

encourages bus voltage angles to be small, which is justified since they can be naturally

bounded between −π and π. The penalty ϕd encourages voltage angle differences between

adjacent buses to be small, which is a common property of power networks under typical

loading conditions that is often exploited by methods such as the Fast Decoupled Newton-

Raphson method [1] to simplify the power flow equations. Lastly, the penalty ϕq encourages

generator reactive powers to be within their limits.

All the penalties that form the objective function ϕ encourage desirable properties that

are typical in well-designed systems that operate under manageable loading conditions. The
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penalties ϕr and ϕu play the role of helping prevent the exploration of solutions in physically

meaningless regions, which has been observed to be crucial for obtaining robustness to poor

initial points [62]. The rest of the penalties serve mainly a regularization purpose and are

assigned small weights relative to the those for ϕr and ϕu. Hence, they do not necessarily

affect the type of feasible points found by the algorithm, but help increase the robustness of

the algorithm by allowing the linear algebra operations performed inside the algorithm to

be stable. Lastly, it is noted that although the property of having generator reactive powers

within limits is crucial for a solution to be meaningful, the weight of ϕq need not be large

since this property is already strongly encouraged by the approximate complementarity

constraints Φ(x) = 0.

To simplify the presentation, the new function c is used to represent both the left-hand

sides of the power flow constraints as well as the left-hand sides of the smooth approxima-

tions of the complementarity constraints. That is, c is defined by

c(x) :=

 f(x)

Φ(x)

 . (3.34)

Hence, the problem formulation considered is given by

minimize
x

ϕ(x) (3.35)

subject to c(x) = 0

Ax = b.

3.5 Solution Algorithm

The algorithm for solving (3.35) consists of approximately solving a sequence of linear

equality constrained subproblems

minimize
x

Lµk(x, λk) := µkϕ(x)− µkλTk c(x) +
1

2
‖c(x)‖22 (3.36)

subject to Ax = b,

indexed by k ∈ Z+, where {µk}k∈Z+ and {λk}k∈Z+ are sequences of positive penalty pa-

rameters and Lagrange multiplier estimates, respectively. Hence, the algorithm presents a
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two-level structure: in the outer level, the sequences of penalty parameters and Lagrange

multiplier estimates are constructed, while in the inner level, a reduced-space Newton’s

method is used to solve (3.36) with increasing accuracy.

The algorithm uses only first-order information of the nonlinear equality constraints to

update the primal and dual variables, i.e., x and λ, respectively, during the early subprob-

lems. A set of heuristics is used to determine when to incorporate second-order information

in order to improve the convergence of the algorithm.

Table 3.2: Parameters of the vPF algorithm.

name default value description

αq ∈ R++ 1× 10−4 weight for penalty function ϕq
αr ∈ R++ 1× 10−1 weight for penalty function ϕr
αu ∈ R++ 1× 10−1 weight for penalty function ϕu
αθ ∈ R++ 1× 10−3 weight for penalty function ϕθ
αd ∈ R++ 1× 10−3 weight for penalty function ϕd
αy ∈ R++ 1× 10−3 weight for penalty function ϕy
αz ∈ R++ 1× 10−3 weight for penalty function ϕz
κ ∈ R++ 1× 10−1 coefficient for computing initial µ

βs ∈ (0, 1) 1× 10−1 factor for decreasing µ significantly

βl ∈ (0, 1) 9× 10−1 factor for decreasing µ slightly

τs ∈ (0, 1) 1× 10−1 factor that defines required reductions in ‖ZT∇Lµ‖∞
τf ∈ (0, 1) 1× 10−1 factor that defines desirable reductions in ‖c‖∞
εf ∈ (0, 1) 1× 10−4 feasibility tolerance for c(x) = 0 in per unit base power

ζs ∈ R++ 1× 10−2 threshold for using second-order power flow information

ρ1 ∈ R++ 1× 10−4 coefficient for regularization in first-order λ update

ρ2 ∈ R++ 1× 100 coefficient for regularization in second-order λ update

∆v ∈ R++ 2× 10−1 factor for normalizing voltage magnitude deviations

ς ∈ R++ 1× 10−8 parameter for smooth approximation of FB function

3.5.1 Outer Level

During each outer iteration k ∈ Z+, the algorithm first checks whether the current outer

iterate xk, which always satisfies Axk = b, is feasible with respect to the nonlinear equality

constraints c(x) = 0 according to the specified tolerance. That is, it checks whether xk

satisfies ‖c(xk)‖∞ < εf , where εf is a parameter of the algorithm (Table 3.2). If so, it

terminates. Otherwise, it approximately solves subproblem (3.36) by keeping λk and the
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current penalty parameter µk fixed, as described in Section 3.5.2. Then, it performs either

a regularized first-order or a regularized second-order dual variable update, depending on

whether the exact Hessian of Lµk(·, λk) is being used for updating the primal variables, as

described in Section 3.5.4. Lastly, it updates the penalty parameter based on whether the

primal infeasibilities are sufficiently reduced after approximately solving the last subprob-

lem. Algorithm 2 shows pseudocode of this procedure.

The termination condition used by the algorithm consists only of feasibility and not of

the first-order optimality conditions for (3.35), which if assuming some form of constraint

qualification [33] [67] would include

ZT
(
∇ϕ(x)− J(x)Tλ

)
= 0, (3.37)

where J is the Jacobian of c, and Z is a matrix whose columns span the null space of A. The

reason for not considering first-order optimality conditions is that the objective function is

an artificial element added to the problem for helping the algorithm achieve feasibility.

Algorithm 2 Outer level of vPF

1: Given (x0, λ0) such that Ax0 = b and parameters from Table 3.2
2: k ← 0
3: Set initial penalty parameter µ0 ← max{0.5κ‖c(x0)‖22/ϕ(x0), µ̂}, where µ̂ > 0
4: Set initial subproblem tolerance δ0 ← max{τs‖ZT∇Lµ0(x0, λ0)‖∞, δ̂}, where δ̂ > 0
5: while True do
6: if ‖c(xk)‖∞ < εf then
7: return (xk, λk)
8: end if
9: Find xk+1 such that ‖ZT∇Lµk(xk+1, λk)‖∞ ≤ δk (Section 3.5.2)

10: Update subproblem tolerance δk+1 ← τsδk
11: Obtain new Lagrange multiplier estimates λk+1 (Section 3.5.4)
12: if ‖c(xk+1)‖∞ ≤ τf‖c(xk)‖∞ then
13: Slightly decrease penalty parameter µk+1 ← βlµk
14: else
15: Significantly decrease penalty parameter µk+1 ← βsµk
16: end if
17: k ← k + 1
18: end while
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3.5.2 Inner Level

During each inner iteration j ∈ Z+, the algorithm first checks whether the current inner

iterate xj satisfies the first-order optimality condition of subproblem (3.36), which is

ZT∇Lµk(x, λk) = 0, (3.38)

according to the specified tolerance. That is, it checks whether xj satisfies

‖ZT∇Lµk(xj , λk)‖∞ ≤ δk, (3.39)

where δk is some positive scalar determined in the outer level. If so, it terminates. Oth-

erwise, it computes a search direction using either the exact Hessian of Lµk(·, λk) or an

approximation of it, as described in Section 3.5.3. Then, a line search based on the strong

Wolfe conditions (3.5) and (3.6) is performed with Lµk(·, λk) as the merit function and xj

is updated. Algorithm 3 shows pseudocode of this procedure.

Algorithm 3 Inner level of vPF

1: Given (xk, λk, µk, δk) and parameters from Table 3.2
2: j ← 0
3: xj ← xk
4: while True do
5: if ‖ZT∇Lµk(xj , λk)‖∞ ≤ δk then
6: return xj
7: end if
8: Compute search direction pj such that Apj = 0 (Section 3.5.3)
9: Perform line search with merit function Lµk(·, λk) to obtain step length αj

10: Update solution estimate xj+1 ← xj + αjpj
11: j ← j + 1
12: end while

3.5.3 Computation of Search Directions

Let Hµ(x, λ) be the Hessian of Lµ(·, λ) at x. That is,

Hµ(x, λ) = µ∇2ϕ(x)− Γ(x, λ, µ) + J(x)TJ(x), (3.40)
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where

Γ(x, λ, µ) :=
m∑
i=1

(µλi − ci(x))∇2ci(x) (3.41)

and m ∈ N is the number of nonlinear constraints. By ignoring Γ(x, λ, µ), a positive definite

approximation of Hµ(x, λ) is obtained, which is denoted by H̃µ(x, λ). That is,

H̃µ(x, λ) := µ∇2ϕ(x) + J(x)TJ(x). (3.42)

This approximation is sometimes called the “Gauss-Newton” Hessian approximation in

the literature [22] [43]. However, the matrix Γ(x, λ, µ) contains valuable second-order or

“curvature” information of the nonlinear equality constraints that should not be ignored.

This information is especially useful near the solution for improving the convergence rate

of the algorithm.

The search directions used at every inner iteration of the algorithm are of the form

p = Zq, where q solves the system

ZTGµ(x, λ)Zq = −ZT∇Lµ(x, λ), (3.43)

and Gµ(x, λ) is either the exact Hessian Hµ(x, λ) or the positive-definite approximation

H̃µ(x, λ).

To avoid the expensive operation of forming J(x)TJ(x), the potential loss of sparsity

and possible numerical problems due to the likelihood of large elements, a common property

observed in the power flow cases tested, q is obtained by solving the equivalent augmented

system  1
µZ

T Ĥµ(x, λ)Z ZTJ(x)T

J(x)Z −µI

 q

y

 = −

 1
µZ

T∇Lµ(x, λ)

0

 , (3.44)

where

Ĥµ(x, λ) :=

 µ∇2ϕ(x)− Γ(x, λ, µ), if Gµ(x, λ) = Hµ(x, λ)

µ∇2ϕ(x), otherwise.
(3.45)

The decision of whether to use the exact Hessian Hµ(x, λ) or the Hessian approximation

H̃µ(x, λ) for computing the search direction depends on a set of heuristics. These heuristics

are based on the observation that, for power flow problems, the size of Γ(x, λ, µ) (in the

norm sense) relative to that of J(x) typically decreases several orders of magnitudes as the
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number of iterations increases. The main idea is to check whether

ω(x, λ, µ) ≤ ζs, (3.46)

where

ω(x, λ, µ) :=

max
i,j
{|Γij(x, λ, µ)|}

max
i,j
{|Jij(x)|}

, (3.47)

and ζs is a parameter of the algorithm (Table 3.2). If so, the exact Hessian Hµ(x, λ) is used.

Otherwise, the Hessian approximation H̃µ(x, λ) is used for solving (3.44).

Using the exact Hessian Hµ(x, λ) may result in problems during the solution of the

linear system (3.44) or in the search direction p = Zq not satisfying the sufficient descent

condition

− ∇Lµ(x, λ)T p

‖ZT∇Lµ(x, λ)‖2‖q‖2
> ξ, (3.48)

where ξ is any predefined small positive scalar. If this happens, the threshold ζs is reduced

and the process of computing the search direction is repeated.

Lastly, to ensure that the algorithm always tries to use the exact Hessian near the

solution and takes Newton directions, the exact Hessian Hµ(x, λ) is tried periodically, say

every 10 inner iterations, even if (3.46) does not hold. If after doing this a valid search

direction is obtained, the threshold is updated by setting ζs = ω(x, λ, µ) + δ, for some small

δ > 0.

3.5.4 Regularized Dual Variable Update

When second derivatives are available, a known dual variable update that exploits this

information consists of [11] [80]

∆λ = −B−1 c(x)

µ
, (3.49)

where

B := J(x)Z
(
ZT∇2Lµ(x, λ)Z

)−1
ZTJ(x)T . (3.50)

When subproblem (3.36) is solved exactly, i.e., when ZT∇Lµ(x, λ) = 0, this update is

equivalent to taking a Newton step for solving the augmented system

Fµ(x, λ) = 0, (3.51)
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where

Fµ(x, λ) :=


1
µZ

T∇Lµ(x, λ)

Ax− b

c(x)

 , (3.52)

and to applying the NR method for maximizing the dual functional associated with Lµ [11]

[80]. Properly taking into account ZT∇Lµ(x, λ) 6= 0 is achieved by working with system

(3.51), but obtaining the Newton step for this system requires solving the system
1
µZ

THµ(x, λ) ZTJ(x)T

A 0

J(x) 0


 ∆x

−∆λ

 = −


1
µZ

T∇Lµ(x, λ)

0

c(x)

 , (3.53)

which is ill-conditioned when J(x) is near rank-deficient. For this reason, the modified

augmented system

(1− t)


0

0

∆λ

+ tFµ(x+ ∆x, λ+ ∆λ) = 0 (3.54)

is used by the vPF algorithm when the exact Hessian is being used for computing primal

search directions, where t ∈ (0, 1) is close to 1. Computing a Newton step for this modified

augmented system requires solving the linear system
1
µZ

THµ(x, λ) ZTJ(x)T

A 0

J(x) −ηI


 ∆x

−∆λ

 = −


1
µZ

T∇Lµ(x, λ)

0

c(x)

 , (3.55)

where η = (1 − t)/t. The term −ηI helps avoid numerical problems when J(x) is near

rank-deficient, which is common in power flow problems. This term comes from the first

term of the left-hand side of (3.54), and hence explains the motivation behind the form of

such expression.

The above system can be simplified by noticing that the condition A∆x = 0 is equivalent

to ∆x = Z∆xz for some ∆xz. Hence, system (3.55) can be written in terms of ∆xz and
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∆λ as  1
µZ

THµ(x, λ)Z ZTJ(x)T

J(x)Z −ηI

 ∆xz

−∆λ

 = −

 1
µZ

T∇Lµ(x, λ)

c(x)

 . (3.56)

Again, to avoid forming J(x)TJ(x) and Hµ(x, λ), the equivalent system 1
ςZ

T Ĥµ(x, λ)Z ZTJ(x)T

J(x)Z −ηI

 ∆xz

−∆λ

 = −

 1
ςZ

T (µ∇ϕ(x)− µJ(x)Tλ)

c(x)

 (3.57)

is solved using η = ρ2µ, where

Ĥµ(x, λ) = µ∇2ϕ(x)− Γ(x, λ, µ), (3.58)

ς = µ+ η, and ρ2 is a positive parameter (Table 3.2).

An alternative to the above dual variable update that does not use second deriva-

tives consists of ∆λ = −c(x)/µ. When subproblem (3.36) is solved exactly, i.e., when

ZT∇Lµ(x, λ) = 0, this step can be shown to solve the least-squares problem

minimize
∆λ

‖ZTJ(x)T∆λ− ZT (∇ϕ(x)− J(x)Tλ)‖22, (3.59)

and be equivalent to applying steepest ascent for maximizing the dual functional associated

with Lµ [11] [80]. Properly taking into account ZT∇Lµ(x, λ) 6= 0 is achieved by working

with (3.59), but solving this problem requires solving the system

J(x)ZZTJ(x)T∆λ = J(x)ZZT
(
∇ϕ(x)− J(x)Tλ

)
, (3.60)

which is ill-conditioned when J(x) is near rank-deficient. For this reason, the regularized

least-squares problem

minimize
∆λ

‖ZTJ(x)T∆λ− ZT (∇ϕ(x)− J(x)Tλ)‖22 + η‖∆λ‖22 (3.61)

is used by the vPF algorithm when the exact Hessian is not being used for computing primal

search directions, where η = ρ1µ, and ρ1 is a positive parameter (Table 3.2). Solving (3.61)
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requires solving the normal equations

(
J(x)ZZTJ(x)T + ηI

)
∆λ = J(x)ZZT

(
∇ϕ(x)− J(x)Tλ

)
. (3.62)

Again, to avoid forming J(x)ZZTJ(x)T , the augmented system −I ZTJ(x)T

J(x)Z ηI

 y

∆λ

 =

 0

J(x)ZZT
(
∇ϕ(x)− J(x)Tλ

)
 (3.63)

is solved. This system also has the term ηI, which helps avoid problems with rank-deficient

or near rank-deficient Jacobians. In this case, this term is a consequence of the regularization

included in the least-squares formulation.

Once the dual step ∆λ is obtained, the new vector λ̄ of Lagrange multiplier estimates

is set to λ + ∆λ. To ensure that λ̄ remains bounded, entries larger than some predefined

M̃ > 0 in magnitude are set to M̃ , ensuring that ‖λ̄‖∞ ≤ M̃ always holds.

3.5.5 Convergence Properties

It can be shown that, under the assumption that the power network has the property that

bounded power mismatches implies bounded bus voltage magnitudes, the sequence of outer

iterates {xk} produced by the vPF algorithm has a feasible point or a limit point that is

a stationary point of the function cT c (restricted to the set of x such that Ax = b). This

result can be obtained without assuming that the Jacobian of the power flow equations is

full rank. The proof is presented in Appendix A.

An important observation is that the only property needed of the Lagrange multiplier es-

timates for the convergence proof is that they remain bounded. In an augmented Lagrangian

algorithm, Lagrange multiplier estimates help encourage convergence of the algorithm to an

optimal point without having to rely solely on adjusting the penalty parameter. However,

when feasibility is not obtained, the penalty parameter needs to be driven to zero (or driven

to infinity, depending on the implementation) in order to approach a stationary point of

the sum of the squares of the infeasibilities. In this case, the method behaves essentially

like a penalty function method [33], and multipliers do not play a role.

The property that bounded power mismatches implies bounded bus voltage magnitudes

is needed to ensure that the voltage magnitudes of the outer iterates stay inside a compact

set. Boundedness of the other variables, except the angles, is obtained from the boundedness
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of the nonlinear constraint violations without additional assumptions. For the angles, this is

not an issue since they appear inside (bounded) periodic functions and hence an equivalent

sequence of outer iterates with bounded angles can be constructed easily. Power networks

that have this property are referred here as lossy networks. For these networks, the total

active power losses are positive for any set of complex bus voltages that are not all zero. A

mathematical characterization for these networks is that the Hermitian matrix G̃ defined

in (2.35) is positive definite. Proofs of this characterization of lossy networks and of other

related properties are presented in Appendix B.

3.5.6 Sensitivity Information

It is well known that Lagrange multipliers provide sensitivity information about how the

optimal objective value changes when the constraints are perturbed [33]. The objective value

in (3.22) penalizes deviations from desirable properties that are typical in well-designed

systems that operate under manageable conditions. Hence, it provides a measure of how

well a system can handle particular loading conditions. Sensitivity information can be used

for identifying key modifications to the system that are likely to result in positive and

negative effects on the system in terms of handling particular loading conditions.

More specifically, let x∗ be the solution of (3.22), and λ and π be the Lagrange multipliers

associated with the power flow and approximate complementarity constraints, respectively.

Then, if the right-hand sides of the nonlinear constraints are perturbed by ε and δ, and if

x̄ denotes the solution of

minimize
x

ϕ(x) (3.64)

subject to f(x) = ε

Φ(x) = δ (3.65)

Ax = b,

it can be shown that, to first order,

ϕ(x̄) ≈ ϕ(x∗) + λT ε+ πT δ. (3.66)
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This suggest that small perturbations ε and δ such that

sgn(εi) 6= sgn(λi) (3.67)

sgn(δi) 6= sgn(πi), (3.68)

are likely to have positive effects on the system.

From the specific form of the nonlinear constraints, perturbations of the form f(x) = ε

and Φ(x) = δ have specific physical interpretations in terms of operator actions or system

design. In particular, a nonzero εi represents a small extra injection or consumption of

active or reactive power at a specific bus. For example, this may represent the addition of a

reactive power compensation device at a particular bus. Similarly, a nonzero δi represents

a modification of either the reactive power limit of a generator or a change of its voltage

magnitude set point. Figure 3.2 shows an example of the normalized sensitivities obtained

for a power flow case after the reactive power consumption of loads in a region is increased.

Positive sensitivities suggest that additional small reactive power sources are beneficial for

the system under the given loading conditions.

Figure 3.2: Sensitivity information provided by multiplier estimates.

The Lagrange multiplier estimates produced by the vPF algorithm can therefore be

used for determining whether alterations such as adding small powers sinks or sources at
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specific locations or changing generator voltage set points are likely to have positive effects

on the system. The Lagrange multiplier estimates of largest magnitudes may be used

for determining the most effective alterations. These can provide system operators and

planners useful guidance for making system alterations, and in particular, can help them

avoid making alterations that are locally beneficial but have an overall negative system

effect.

3.6 Implementation

To assess the benefits and computational requirements of the techniques presented in this

chapter, the NR and vPF methods were implemented and their performance compared

through various experiments. The Python programming language was used for implement-

ing a parsing tool, the testing environment, and the high-level parts of each of the power

flow methods. The parsing tool allowed extracting power flow cases from PSS R©E raw files,

which was the key for testing the methods on real power flow networks. The linear algebra

operations as well as the handling of sparse matrices was done through Python’s scientific

computing libraries Numpy and Scipy. For solving linear systems, the sequential version

of the multifrontal sparse direct solver MUMPS [3] was used through the Python wrapper

pymumps. The routines for performing function evaluations, e.g., evaluation of objective

function, constraint functions and their first and second derivatives, if done in Python, are

typically the most time consuming tasks for a nonlinear programming solver. Hence, these

routines were implemented in the C programming language and wrapped using Python’s C

API. Lastly, for manipulating, analyzing and visualizing power network graphs, the Python

library NetworkX was used together with the powerful and open source graph visualization

software Graphviz [29].

The implementations of the NR and vPF power flow methods include the following

termination conditions, the first of which indicates that the method successfully solved a

given case, while the rest indicate various forms of failure:

• The largest infeasibility of the nonlinear equality constraints becomes lower than 10−4

per unit system base MVA.

• A bus voltage magnitude becomes lower than 0.1 per unit bus nominal voltage.

• The line search procedure fails due to getting a search direction that is not a descent
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direction, or due to not being able to find a suitable step length in a maximum of

40 iterations. For the vPF method, this termination condition is applied only if the

positive definite Hessian approximation was used for computing the search direction.

• The penalty parameter µ becomes lower than 10−12. This is only applicable to the

vPF method.

• The number of iterations exceeds 300. For the vPF method, the number of iterations

is the combined number of inner iterations.

Instead of choosing a small positive parameter ξ and testing condition (3.48), the vPF

implementation checks whether the search direction results in a successful line search. This

is done because, in practice, for ξ small enough the line search typically fails when the

search direction is too close to being orthogonal to the gradient, even when (3.48) holds.

Lastly, initial Lagrange multiplier estimates equal to zero are used for the vPF method.

3.7 Experiments

The results of various numerical experiments performed to assess the benefits and com-

putational requirements of the vPF method are presented here. The computer used for

performing all the experiments was as a PC with Intel R© CoreTM i7 CPU, 2.80 GHz, 8 GB

of RAM, and running the operating system Ubuntu 12.04. The properties of the power

flow test cases collected are shown in Table 3.3. Missing information for Case A is due to

a non-disclosure agreement.

Table 3.3: Properties of PF test cases.

name buses branches generation (MW) load (MW) region

Case A — — — — South America

Case B 2454 2781 7.5× 103 7.3× 103 North America

Case C 2468 3215 4.0× 104 3.9× 104 North America

Case D 3012 3572 2.8× 104 2.7× 104 Eastern Europe

Case E 45286 58994 7.1× 105 6.9× 105 North America

Case F 58513 73388 6.8× 105 6.6× 105 North America
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3.7.1 Model Validation

In order to validate the power network model implemented, the solution of the power flow

problem obtained with the implemented NR method was compared with that obtained with

the commercial power flow software PSS R©E and the open-source package MATPOWER 4.1

[92]. The test cases used for this validation were cases whose original format corresponded

to the ones used by PSS R©E and MATPOWER, and that were solvable by the NR method.

Figures 3.3-3.5 show the results obtained. The left plots show the voltage magnitude errors

while the right plots show the voltage angle errors for each bus at the computed operating

point.

Figure 3.3: Power network model accuracy for PF Case B.

Figure 3.4: Power network model accuracy for PF Case C.
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Figure 3.5: Power network model accuracy for PF Case D.

As the figures show, the model implemented for this study is accurate for Cases B and

D, but slightly inaccurate for Case C. It was determined that the relatively large voltage

magnitude errors obtained for a few buses for Case C are due to a limitation associated with

the modeling of voltage regulation. Case C has a few groups of generators that regulate

the same remote bus. However, in the model used for this study, only one generator was

allowed to regulate a remote bus.

3.7.2 Performance of Methods on Test Cases

Tables 3.4-3.9 show the performance of the NR and vPF methods on each of the test cases

of Table 3.3. The labels k and t denote the number of iterations and time in seconds,

respectively, that a method took to find a feasible point or to terminate with an error. The

label ‖f‖∞ denotes the maximum power (active and reactive) mismatch in units of MVA.

The label ‖h‖∞ denotes the maximum violation of the (exact) complementarity constraints

in units of MVA, where h is the vector-valued function whose scalar function entries are

given by the expressions

(
Qgk −Q

min
k

)
+ αyk −

√(
Qgk −Qmin

k

)2
+ α2y2

k (3.69)(
Qmax
k −Qgk

)
+ αzk −

√(
Qmax
k −Qgk

)2
+ α2z2

k, (3.70)

for k ∈ R, and α is the system base power, i.e., 100 MVA. The labels vmax and vmin

denote the maximum and minimum bus voltage magnitudes, respectively. The label max ∆v
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denotes the maximum deviation of regulated voltage magnitudes from their set points.

Lastly, the label Q+ denotes the total absolute generator reactive power limit violations in

units of MVAr associated with the last point found by the method before terminating.

Table 3.4: Performance of methods on PF Case A.

method k t ‖f‖∞ ‖h‖∞ vmax vmin max ∆v Q+

NR 2 0.05 5.3× 10−4 0 1.11 0.86 0.00 0

vPF 21 0.97 4.8× 10−3 7.2× 10−3 1.11 0.86 0.00 0

Table 3.5: Performance of methods on PF Case B.

method k t ‖f‖∞ ‖h‖∞ vmax vmin max ∆v Q+

NR 3 0.10 8.3× 10−7 0 1.11 0.95 0.05 0

vPF 23 1.55 1.0× 10−3 5.0× 10−3 1.11 0.95 0.05 2.7× 10−3

Table 3.6: Performance of methods on PF Case C.

method k t ‖f‖∞ ‖h‖∞ vmax vmin max ∆v Q+

NR 3 0.11 6.7× 10−9 0 1.44 0.92 0.01 0

vPF 95 5.33 1.9× 10−3 9.9× 10−3 1.44 0.92 0.01 0

Table 3.7: Performance of methods on PF Case D.

method k t ‖f‖∞ ‖h‖∞ vmax vmin max ∆v Q+

NR 3 0.15 1.1× 10−3 0 1.12 0.94 0.00 0

vPF 45 3.56 2.4× 10−3 7.4× 10−3 1.12 0.94 0.00 0

Table 3.8: Performance of methods on PF Case E.

method k t ‖f‖∞ ‖h‖∞ vmax vmin max ∆v Q+

NR 6 4.54 5.4× 10−6 0 1.27 0.81 0.00 0

vPF 10 14.18 2.8× 10−3 7.7× 10−3 1.27 0.81 0.00 0

Table 3.9: Performance of methods on PF Case F.

method k t ‖f‖∞ ‖h‖∞ vmax vmin max ∆v Q+

NR 6 7.44 2.5× 103 4.9× 103 1.45 0.10 0.25 3.23× 103

vPF 241 403.77 7.8× 10−3 8.1× 10−3 1.45 0.82 0.25 0
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The results show that for the cases that are solved by both methods, these methods

find similar solutions in terms of vmax, vmin and max ∆v. For these cases, the NR method

takes much fewer iterations and time than the vPF method. In addition, it obtains exactly

zero violations of the complementarity constraints (‖h‖∞) and generator reactive power

limits (Q+) due to the switching heuristics working successfully. The results obtained with

the vPF method have small violations of the complementarity constraints (‖h‖∞), and

these are all smaller than the theoretical bound of Lemma 3.4.1, which equals 2.4 × 10−2

MVA using ε = 10−4, ς = 10−8, and 100 MVA for system base power. The small total

absolute generator reactive power limit violations (Q+) obtained with the vPF method on

Case B are also the result of approximating the complementarity constraints and using the

stated feasibility tolerance. For Case F, which is a hard case, the NR method also fails in

a small number of iterations, and obtains large violations of complementarity constraints

and generator reactive power limits. On the other hand, the vPF method succeeds in

solving this hard case and requires a number of iterations and time that, due to the lack of

performance reference, may or may not be considered large. By dividing the time required

by the number of iterations, it can be concluded that the vPF method takes on average

only about 1.7 times longer per iteration than the NR method. This is a small factor and

suggest that the main focus for improving the speed competitiveness of the vPF method,

on problems solved by both methods, should be to reduce the number of iterations.

In the next subsections, results of experiments that compare the performance of the NR

and vPF methods in terms of handling poor initial points and heavily loaded and infeasible

cases are shown. Case F was not used for these experiments since it is already a hard case

that the NR method is not able to solve, and the perturbations done in the experiments

only make it harder.

3.7.3 Handling of Poor Initial Points

To assess the robustness of the vPF method in handling poor initial points, the following

experiment was performed: For each power flow case and for increasing values of standard

deviation σ, 30 initial points were constructed by perturbing the initial point given in

the power flow case data. The perturbations were done by adding Gaussian noise of zero

mean and standard deviation σ to the bus voltage magnitudes and phase angles in p.u. and

radians, respectively. The NR and vPF methods were then executed with each of the points

constructed and the percentage of the 30 cases that were solved as well as the average time
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needed to solve them were recorded. Figures 3.6-3.10 show the results obtained.
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Figure 3.6: Perturbing initial point of PF Case A.
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Figure 3.7: Perturbing initial point of PF Case B.
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Figure 3.8: Perturbing initial point of PF Case C.
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Figure 3.9: Perturbing initial point of PF Case D.
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Figure 3.10: Perturbing initial point of PF Case E.

These results show that the vPF method is able to solve many more cases than the NR

method for much larger perturbations of the initial point, and hence that it is much more

robust in handling poor initial points. These results are similar to the ones obtained in our

previous work [62]. Again, it can be seen that for cases that are solved by both methods,

the NR method takes much shorter times than the vPF method.

3.7.4 Handling of Heavily Loaded and Infeasible Cases

To assess the performance of the vPF method in handling heavily loaded and infeasible

cases, the following experiment was performed: For each power flow case and for increasing

values of a scaling factor γ, the loads of the power flow case were scaled by γ and the NR

and vPF methods were executed. The minimum bus voltage magnitude vmin and a measure

of the error associated with the last point found by the method before terminating were
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recorded. This measure is given by max{‖f‖∞, ‖h‖∞}, where f and h are as defined in

Section 3.7.2. In other words, the maximum of the violations of the power flow and (exact)

complementarity constraints was used as a measure of error. Figures 3.11-3.15 show the

results obtained. It is noted that in order to maintain the power factor of the loads unaltered,

the same scaling factor was applied to both active and reactive power components.

In the left graph of the figures, the horizontal green line corresponds to the feasibility

tolerance of 10−4 per unit system base MVA, which is equivalent to 10−2 MVA since the

system base power for all test cases is 100 MVA. Any data point below this line implies

that the method was able to solve the case to the required accuracy.

1 1.05 1.1 1.15 1.2 1.25 1.3
1E-8

1E-6

1E-4

1E-2

1E+0

1E+2

1E+4

Case A - Increasing Load

NR vPF feasibility

scaling factor

m
a

xi
m

u
m

 e
rr

o
r 

(M
V

A
)

1 1.05 1.1 1.15 1.2 1.25 1.3
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Case A - Increasing Load

NR vPF

scaling factor

m
in

im
u

m
 v

o
lta

g
e

 (
p

.u
.)

Figure 3.11: Increasing load of PF Case A.
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Figure 3.12: Increasing load of PF Case B.
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Figure 3.13: Increasing load of PF Case C.
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Figure 3.14: Increasing load of PF Case D.
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Figure 3.15: Increasing load of PF Case E.

The results show that the vPF method always finds a feasible point for cases for which

the NR method finds a feasible point. As the load is increased beyond a certain point, both
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methods fail to solve the case but the maximum error of the vPF method grows much less

rapidly than the error of the NR method. For Case E, the vPF method finds feasible points

for scaling factors for which the NR method fails with a large error. For this case, the vPF

method had problems solving the linear systems but these were overcome by using a larger

regularization factor ρ1 (10−2 instead of the default 10−4) during the first-order multiplier

update (Section 3.5.4). The fact that the infeasible points found by the vPF method are

better than those obtained by the NR method is likely due to the theoretical properties of

the vPF method, which guarantee that it finds stationary points of the sum of the squares

of the infeasibilities. In practice, stationary points are often local minimizers for problems

for which negative curvature is not a significant property.

The behavior of the root mean square error of the NR and vPF methods as γ increases

was also analyzed in addition to the maximum error. The plots obtained had similar

properties as those of Figures 3.11-3.15, and hence were not include here.

3.8 Conclusions

In this chapter, the limitations of the most widely used method for scenario analysis have

been addressed. This method, which consists of a combination of Newton-Raphson and

switching heuristics, lacks robustness to poor initial solution estimates and near rank-

deficient Jacobian matrices, and its switching heuristics may negatively affect its conver-

gence. To address all of these, prior knowledge about power flow solutions was incorporated

to the problem via an objective function, complementarity constraints were used to model

generator reactive power limits and voltage regulation, and a robust optimization algorithm

that exploits second derivatives was applied. The proposed method was tested on several

real power flow networks obtained from various North American, South American, and Eu-

ropean electric power institutions, and the results were compared against those obtained

with the traditional NR-based method. The experiments performed compared the proper-

ties of the solution, number of iterations, solution time, robustness to poor initial points,

and handling of heavily loaded and infeasible cases. The results showed that the method

equipped with the proposed techniques, which is referred to as voltage-controlled Power

Flow (vPF), was much more robust to poor initial points. Also, it had a superior perfor-

mance when handling heavily loaded and infeasible cases, since its error was observed to

grow less rapidly than that of the traditional method after the loadability limit. However,



CHAPTER 3. SCENARIO ANALYSIS 48

for cases that were solved by both methods, the vPF method was observed to be slower than

the NR method, which was mainly due to requiring more iterations to solve a problem to

the required accuracy. Hence, the vPF method may not be used as a complete replacement

of the NR method, since the latter works well for simple cases. Instead, the vPF method

should be used when the NR method fails to find a solution quickly or when it is known a

priori that sensitivity information is needed for determining potential system problems and

making alterations.



Chapter 4

Planning and Control

4.1 Background and Overview

During operations planning, adjustments to generator dispatches and control devices need

to be determined to ensure that an electric power network operates securely and efficiently

under expected or potential scenarios. To obtain these adjustments, the optimal power

flow problem must be solved. This problem is similar to the power flow problem discussed

in Chapter 3 in the sense that it enforces the power flow equations. However, instead of

merely providing the system state, it allows changing generator dispatches and other sys-

tem controls in order to improve specific system properties. More specifically, the optimal

power flow or OPF problem consists of determining the “best” set of generator dispatches

and control device settings that result in the system supplying the load without violating

any security or device limits. The notion of “best” may be based on cost of generation,

total system losses, market surplus, or other measures [16]. Security constraints may in-

clude voltage magnitude and branch thermal overload limits [16], while control devices may

include tap changing transformers, phase shifters, and switched shunts [18].

Two important challenges of solving OPF problems in operations planning are that

certain control devices have discrete settings, and that the number of control adjustments

obtained must be practical for system operators to execute. Since the late 80s, deficiencies

of OPF software have been identified with regards to these two important problem aspects

[81]. The first deficiency is that the common two-stage rounding technique for handling dis-

crete variables, in particular switched shunt admittances, typically results in sub-optimal

49
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solutions and has been reported in the literature to even cause feasibility issues. This tech-

nique consists of first solving the problem by treating all variables as continuous, rounding

discrete variables to their nearest discrete values, and then solving the problem again with

all discrete variables fixed [81] [50] [70]. The second deficiency is that OPF methods typically

utilize a number of control device adjustments that are difficult for operators to execute in

practice. One difficulty associated with overcoming this deficiency comes from having to

specify costs of making control adjustments, or hard limits for the number of these that are

practical to adjust [81].

Several authors have proposed alternative approaches to the common two-stage round-

ing approach for handling discrete variables in order to obtain better solutions and avoid

potential feasibility issues. These may be roughly categorized as being based on penalty

functions, sequential linearization, sensitivities, and more elaborate rounding techniques.

Penalty function approaches treat all variables as continuous and gradually drive the dis-

crete ones to valid discrete values with penalty functions added to the objective. This

approach is explored in [50] and [49]. However, it is known that this technique in general

is likely to introduce many undesirable stationary points and local minimizers [5] [61]. Ap-

proaches based on sequential linearization typically involve handling the discrete variables

within a linear subproblem using a Mixed-Integer Linear Programming (MILP) solver [5].

The authors in [48] explore this technique and use an Interior Point Cutting-Plane Method

(IPCPM) for solving the MILP subproblems. Sensitivity-based approaches use sensitivities

of the objective function and constraints with respect to the discrete variables as a heuristic

for determining how the discrete variables should be modified. The authors in [21] explore

two approaches based on this idea, the first of which involves solving a MILP problem while

the other involves the use of a merit function. Lastly, more elaborate rounding techniques

typically consist of performing more gradual or selective rounding of the discrete variables

compared to the two-stage approach. The authors in [52] explore two approaches of this

type based on probabilistic and thresholding ideas. In particular, it is shown that the prob-

abilistic technique performs much better on average than the two-stage rounding technique

in terms of solution quality.

Similarly, several authors have proposed techniques for obtaining solutions of OPF prob-

lems that utilize a practical number of control device adjustments. For example, the authors

in [20] and [78] explore using sensitivities of the objective function and constraints with re-

spect to controls to select a small subset of these that may be used. The authors in [18]
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explore two alternative approaches, both of which impose a hard limit on the number of

allowed control adjustments. The first approach involves formulating the problem as a

Mathematical Program with Equilibrium Constraints (MPEC), while the second and more

promising one approximates the integral constraint that limits the number of control adjust-

ments with a smooth non-linear inequality. In our view, using a hard limit for the number

of allowed control adjustments may not be desirable. The reason is that an adequate limit

is difficult to determine, and a poor choice for it may cause feasibility issues. Finally, the

authors in [56] and [88] try to quantify the cost of adjusting control devices and use al-

gorithms based on meta-heuristics that also handle the discrete variables associated with

certain controls such as transformer tap ratios and switched shunt admittances.

Although several techniques have been explored in the literature for addressing the OPF

deficiencies mentioned above, widely-used commercial OPF software still rely on common

rounding techniques for handling discrete variables, and provide limited functionality for

obtaining a practical number of control actions. For example, the commercial OPF packages

reviewed for this work either do not provide ways to obtain a small number of control

actions, or allow minimizing the number of control adjustments by using V-shaped penalty

functions and alternating between a Linear Programming (LP) solver and a power flow

solver. Approaches of this type typically lack robustness since alternating between solving

the linearized OPF problem and the power flow problem is typically only locally convergent.

This is especially true when a locally-convergent power flow method such as the widely-used

NR method of Section 3.3 is applied.

In this chapter, new techniques for jointly addressing these OPF aspects are described

and results assessing their effectiveness and computational requirements on mid-size power

networks are presented. The idea explored for handling discrete variables consists of alter-

nating between making progress towards solving a continuous relaxation, and evaluating

different discrete variable choices in parallel. The technique used for obtaining a practical

number of control actions is based on using a smooth approximation of a convex sparsity-

inducing penalty that has been widely used for solving problems in Machine Learning and

Statistics.
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4.2 The Optimal Power Flow Problem

The OPF problem considered here is given by

minimize
x,y

Pc(y) + ‖Cy‖0 (4.1)

subject to f(x, y) = 0

h(x, y) ≤ 0

Dy ∈ D.

The vector x consists of bus voltage angles, voltage magnitudes of unregulated buses, and

generator reactive powers. The vector y consists of adjustments of generator active powers,

voltage magnitude set points of regulated buses, transformer tap ratios, phase shifts of

phase-shifting transformers, and switched shunt admittances. The constraint f(x, y) = 0

denotes the power flow equations (2.37). The constraint h(x, y) ≤ 0 represents generator

active power limits (2.28), generator reactive power limits (2.29), bus voltage magnitude

limits (2.1), branch thermal limits (2.17), and control device limits (2.19), (2.20) and (2.27).

The constraint Dy ∈ D enforces discreteness of tap ratios and switched shunt admittances.

The matrix D extracts the sub-vector of y that contains these discrete variables. Finally,

Pc(y) is the cost of active power generation, where Pc is a separable convex quadratic

function [77], and ‖Cy‖0 is the cost of making adjustments of generator dispatches, voltage

set points, transformer tap ratios, phase shifts and switched shunt admittances. The matrix

C is a diagonal matrix of adjustment costs and the function ‖ · ‖0 is the “zero norm” [85],

which is defined by

‖z‖0 := |{ zi | zi 6= 0}|, (4.2)

where | · | gives the cardinality of a set (number of elements).

4.3 Modeling Approach

Solving problem (4.1) is difficult due to the non-convex power flow equations, the discrete

nature of the zero norm, the discreteness constraint of certain controls, and the fact that

electric power networks are typically large. To make it more tractable, a few smoothing

and approximation techniques are applied.
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4.3.1 Sparse Control Adjustments

Using a function of the form of ‖Cy‖0 for quantifying the cost of making control adjustments

provides two complications: First, the “zero norm” function ‖ · ‖0 is not continuous and

hence also not differentiable. Second, determining the cost of each control adjustment, i.e.,

the entries of the diagonal matrix C, is difficult. Hence, the alternative considered here

consists of using a smooth penalty function that is known to induce sparsity, and a trade-

off parameter that defines its relative importance with respect to generation cost. This

function is given by

Ps(y) :=
1

ns

∑
i

√( yi
∆yi

)2
+ ε, (4.3)

where ε is a small positive scalar, e.g., 10−6, ns is the size of the vector y, ∆yi is a normal-

ization factor given by

∆yi := max{ymax
i − ymin

i , η}, (4.4)

ymax
i and ymax

i are control adjustment limits, and η is a small positive scalar, e.g., 10−4

[44]. Figure 4.1 shows a one-variable version of this function. Aside from inducing sparsity,

this penalty also adds convexity and “regularization” to the problem, which make it easier

to solve. This also means that the size of the control adjustments obtained are likely to

become smaller as the emphasis on reducing the number of control adjustments is increased,

at least on problems for which achieving feasibility is not difficult.

The penalty function Ps considered here assigns equal weights to all control adjustments.

However, in practice, it may be desirable to favor certain adjustments over others, or to

consider certain adjustments as a last resort. This may be achieved easily by including

non-negative weights wi inside the summation terms of the expression that defines Ps. To

favor certain control adjustments, one would set their weights to be small. To consider

certain controls as a last resort, one would set their weights to be very large.

4.3.2 Voltage and Branch Thermal Limits

Voltage magnitude limits (2.1) and branch thermal limits (2.17) are somewhat soft con-

straints that are desirable to satisfy but not mandatory, and hence may be treated as such

[77] [91]. Branch thermal limit violations may be discouraged indirectly by discouraging
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Figure 4.1: Smooth sparsity-inducing penalty.

large voltage angle differences across branches [16] [77] [54]. Hence, the penalty function

Pl(x, y) :=
1

n

∑
k

(vk − v̄k
∆vk

)2
+

1

nb

∑
(k,m)∈B

(θkm
π

)2
(4.5)

is considered here for discouraging voltage and branch thermal limit violations. In the

above expression, n is the number of buses, B and nb are the set and number of branches,

respectively, v̄k and ∆vk are defined by

v̄k := 0.5(vmax
k + vmin

k ) (4.6)

∆vk := max{vmax
k − vmin

k , η}, (4.7)

where η is a small positive scalar, e.g., 10−4, and θkm is as defined in (2.15).

4.3.3 Variable Bounds

For handling simple scalar variable bounds of the form umin ≤ u ≤ umax, where umin and

umax ∈ R, such as generator active and reactive power limits and control device limits, an

alternative to the well known barrier and active-set strategies is explored. This alternative

readily allows warm or infeasible starts and avoids dealing explicitly with the combinatorial

problem of identifying the inequalities that are active at the solution. The approach consists
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of enforcing bounds using the smooth nonlinear equality constraints

ψ+(u) := ∆u+ + ε2/∆ū−
√

∆u2
+ + ε4/∆ū2 + ε2 = 0 (4.8)

ψ−(u) := ∆u− + ε2/∆ū−
√

∆u2
− + ε4/∆ū2 + ε2 = 0, (4.9)

where

∆u+ := umax − u (4.10)

∆u− := u− umin (4.11)

∆ū := max{umax − umin, ε}, (4.12)

and ε is small a positive scalar, e.g., 10−4. The key properties of these constraints are

presented in the next theorems, whose proofs use results about the constraint functions ψ+

and ψ+ derived in Appendix C.

Theorem 4.3.1. The functions ψ+ and ψ− satisfy the property

max
{
|ψ+(u)|, |ψ−(u)|

}
≤ ε ⇐⇒ umin − ε

1 + ∆ū
ε

≤ u ≤ umax +
ε

1 + ∆ū
ε

. (4.13)

Proof. Let b = ε2/∆ū. From the definition of ∆ū, it holds that ∆ū ≥ ε and hence that

1 ≥ ε/∆ū. Multiplying both sides by ε gives ε ≥ b. Hence, Lemma C.0.16 applies for both

ψ+ and ψ− and gives

|ψ+(u)| ≤ ε ⇐⇒ − b

1 + b
ε

≤ ∆u+ (4.14)

|ψ−(u)| ≤ ε ⇐⇒ − b

1 + b
ε

≤ ∆u−. (4.15)

From the definitions of ∆u+ and ∆u−, it holds that

− b

1 + b
ε

≤ ∆u+ ⇐⇒ u ≤ umax +
b

1 + b
ε

(4.16)

− b

1 + b
ε

≤ ∆u− ⇐⇒ u ≥ umin − b

1 + b
ε

. (4.17)
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Relation (4.13) follows from these and the fact that

b

1 + b
ε

=
ε

1 + ∆ū
ε

. (4.18)

Theorem 4.3.1 shows that with a feasibility tolerance of ε, constraints (4.8) and (4.9)

force u to be inside an interval that is only slightly larger than [umin, umax]. For example,

for a transformer tap ratio limit, with ε = 10−4 and a control range of umax − umin = 0.2

per unit, the maximum limit violation is

ε

1 + ∆ū
ε

= 5× 10−8. (4.19)

Theorem 4.3.2. If umax − umin ≥ ε, then

ψ+(u) = 0 and ψ−(u) = 0 ⇐⇒ u =
umax + umin

2
. (4.20)

Proof. Let b = ε2/∆ū. From Lemma C.0.17, it holds that

ψ+(u) = 0 ⇐⇒ ∆u+ =
ε2

2b
(4.21)

ψ−(u) = 0 ⇐⇒ ∆u− =
ε2

2b
. (4.22)

If umax − umin ≥ ε, then the definition of ∆ū gives ∆ū = umax − umin. Hence

∆u+ = ∆u− =
∆ū

2
=
umax − umin

2
. (4.23)

Then, the definitions of ∆u+ and ∆u− give that

u = umax −∆u+ =
umax + umin

2
(4.24)

u = umin + ∆u− =
umax + umin

2
, (4.25)

which proves (4.20).
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Theorem 4.3.2 shows that if the allowed variable range is non-trivial, satisfying con-

straints (4.8) and (4.9) exactly forces the variable to the midpoint of its range. Hence, the

midpoint minimizes the infeasibilities. This implies that even with a nonzero feasibility

tolerance, these constraints have a slight bias towards favoring points close to the midpoint

of the allowed range.

Figure 4.2 provides an illustration of ψ+ and ψ− as well as the u-interval they enforce

with a feasibility tolerance of ε.

Figure 4.2: Bound constraint functions ψ+ and ψ−.

This approach for treating bound constraints is used for enforcing active power limits of

generators (2.28), reactive power limits of generators (2.29), tap ratio limits of tap-changing

transformers (2.19), phase shift limits of phase-shifting transformers (2.20), and susceptance

limits of switched shunt devices (2.27).

A potential downside of using this approach for handling bounds as opposed to a barrier

or an active set method, is that variables may violate excessively their bounds, especially

during the initial iterations of an algorithm when using a poor initial point. This may

result in functions of these variables being evaluated at points that have little or no physical

meaning, and ill-conditioning may occur. One strategy that is used here to help overcome

this issue is to include terms in the objective function that encourage variables to take on
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physically meaningful values.

4.3.4 New Problem Formulation

Combining the ideas presented in Sections 4.3.1, 4.3.2 and 4.3.3, a more tractable OPF

problem formulation is obtained:

minimize
x,y

ϕ(x, y) := γcPc(y) + γsPs(y) + γlPl(x, y) (4.26)

subject to c(x, y) = 0

Dy ∈ D.

Here, the smooth nonlinear constraint c(x, y) = 0 consists of the power flow equations (2.37)

as well as the variable bounds expressed in terms of the functions ψ+ and ψ− defined in

Section 4.3.3. The positive scalars γc, γs and γl control the trade-off between generation

cost, control sparsity, and soft-constraint violations.

As in the power flow problem formulation of Section 3.4, quadratic regularization may

be added in order to make the objective function strongly convex in both x and y and

encourage physically meaningful iterates. As described in Section 3.5, this may be exploited

by the solution algorithm for constructing sufficient descent directions and ensuring global

convergence.

4.4 Solution Algorithm

The main idea of the algorithm considered for solving the OPF problem as formulated

in (4.26) consists of alternating between making progress towards solving a continuous

relaxation of the problem, where all variables are treated as continuous, and evaluating

different discrete variables choices. The evaluation of discrete variable choices is performed

in a distributed manner by executing parallel algorithms that make progress towards solving

(4.26) without modifying the discrete variables. The different discrete variable choices,

or trial discrete points, are constructed using information obtained from the continuous

relaxation. In particular, five strategies for constructing these points are explored.

For evaluating the performance of this approach, a benchmark method that resembles

typical methods used in practice is considered. This method consists of solving the continu-

ous relaxation of the problem, rounding the discrete variables to their nearest valid discrete
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values, and then solving the problem again while keeping the discrete variables fixed.

In the sequel, derivatives are assumed to be with respect to the optimization variables x

and y. In particular, the notation ∇ is used for denoting the gradient with respect to both

x and y.

4.4.1 Continuous Relaxation

The algorithm used for solving the continuous relaxation of problem (4.26), i.e.,

minimize
x,y

ϕ(x, y) (4.27)

subject to c(x, y) = 0,

is analogous to the power flow algorithm described in Section 3.5. In particular, it consists

of approximately solving the sequence of subproblems

minimize
x,y

L(x, y, λk, µk) := µkϕ(x, y)− µkλTk c(x, y) +
1

2
‖c(x, y)‖22, (4.28)

indexed by k ∈ Z+, where {λk} are Lagrange multiplier estimates, and {µk} are positive

penalty parameters. Search directions are obtained by using either the exact Hessian of L

or a positive definite approximation of it, as described in Section 3.5.3. Lagrange multiplier

estimates are updated by using a regularized first-order update, as described in Section

3.5.4. Since the objective function in the OPF problem is not an artificial element added to

the problem to help obtain feasibility, as in the proposed power flow problem formulation

described in Section 3.4, the termination condition consists of satisfying both feasibility and

first-order optimality according to the required feasibility and optimality tolerance. That

is, satisfying

‖ck‖∞ < εf and ‖∇ϕk − JTk λk‖∞ < εo(‖∇ϕk‖∞ + γk‖λk‖∞), (4.29)

where ck, ∇ϕk and Jk are c, ∇ϕ and the Jacobian of c at (xk, yk), respectively, εf and εo

are feasibility and optimality tolerances, respectively, and

γk := max
i,j
|Jij(xk, yk)|. (4.30)

This algorithm is referred to as crOPF, which stands for continuous relaxation OPF.
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Key parameters of the crOPF algorithm are shown in Table 4.1. More details about the

algorithm and about the role of its parameters can be found in Sections 3.4 and 3.5.

Table 4.1: Parameters of the crOPF algorithm.

name default value description

γc ∈ R++ 1× 100 weight for generation cost

γs ∈ R++ 1× 101 weight for sparsity penalty

γl ∈ R++ 1× 102 weight for soft-constraint penalty

κ ∈ R++ 1× 101 coefficient for computing initial µ

βs ∈ (0, 1) 2× 10−1 factor for decreasing µ significantly

βl ∈ (0, 1) 9× 10−1 factor for decreasing µ slightly

τs ∈ (0, 1) 2× 10−1 factor that defines required reductions in ‖∇L‖∞
τf ∈ (0, 1) 2× 10−1 factor that defines desirable reductions in ‖c‖∞
εf ∈ (0, 1) 1× 10−4 feasibility tolerance for c(x) = 0 in per unit base power

εo ∈ (0, 1) 1× 10−4 tolerance for first-order optimality conditions

ζs ∈ R++ 1× 10−2 threshold for using second-order power flow information

ρ1 ∈ R++ 1× 100 coefficient for regularization in first-order λ update

4.4.2 Exploration of Discrete Space

As mentioned above, the approach considered here for obtaining optimal or near-optimal

discrete variable values consists of alternating between two algorithms. The first algorithm,

or guide, makes progress towards solving the continuous relaxation of the problem. The

second algorithm, or evaluator, uses information obtained from the relaxation to construct

a valid discrete point, and evaluates this point by making progress towards solving (4.26)

without modifying the discrete variables. By using several evaluator algorithms, many trial

discrete points may be evaluated in parallel in order to find better solution estimates. The

OPF algorithm that utilizes this strategy for exploring the space of discrete variables is

referred to as alOPF, which stands for alternating OPF.

More specifically, the method performs the following four steps every outer iteration:

1. Relaxation: make progress towards solving the continuous relaxation.

2. Construction: construct trial discrete points using a specific strategy.

3. Evaluation: evaluate the constructed trial discrete points in parallel.
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4. Update: update the current solution estimate with information obtained from the

“most promising” discrete point evaluation.

The relaxation step consists of performing one outer iteration of the crOPF algorithm,

including dual variable update, towards solving the continuous relaxation problem

minimize
x,y

ϕ(x, y) (4.31)

subject to c(x, y) = 0.

That is, solving

minimize
x,y

L(x, y, λk, µk) (4.32)

until ‖∇L‖∞ is reduced by a factor τs (Table 4.1), where λk is the current vector of Lagrange

multiplier estimates, and µk is the current penalty parameter. The current solution estimate

(xk, yk) of problem (4.26) is used as initial point. The new primal point obtained is denoted

by (x̃k, ỹk). A new Lagrange multiplier estimate is then obtained by solving

minimize
λ

‖ZT (∇ϕ̃k − J̃Tk λ)‖22 + ρ1µk‖λ− λk‖22 (4.33)

using the procedure described in Section 3.5.4, where the columns of Z span the null space

of the matrix [ 0 D ] that extracts the discrete variables (transformer tap ratios, switched

shunt susceptances), ϕ̃k and J̃k are ϕ and the Jacobian of c at (x̃k, ỹk), respectively, and ρ1

is a positive scalar (Table 4.1). The solution of (4.33) is denoted by λ̃k. The use of the null

space matrix Z here is designed to encourage λ̃k to satisfy the optimality conditions of the

problem that considers the discrete variables fixed.

The construction step consists of using a specific strategy, as described below, to con-

struct m ∈ N trial discrete points (x̃ik, ỹ
i
k, λ̃

i
k), i ∈ [m], to evaluate.

The evaluation step consists of evaluating each of these m trial discrete points to de-

termine how the discrete variables should be updated. More specifically, for each i, the

primal-dual trial point (x̃ik, ỹ
i
k, λ̃

i
k) is evaluated by using it as a starting point and solving

minimize
x,y

ϕ(x, y) (4.34)

subject to c(x, y) = 0

Dy = Dỹik
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with the crOPF algorithm, using µk as initial penalty parameter and moving only in the

null space of [ 0 D ] until ‖ZT∇L‖∞ is reduced by a factor τs with respect to that at

(xk, yk, λk, µk).

The update step consists of setting the new solution estimate (xk+1, yk+1, λk+1) and

new penalty parameter µk+1 to the ones obtained by the “best” trial-point evaluation that

achieved the required progress. More specifically, after an evaluator algorithm, say the i-th

one, achieves the required progress, it informs all the other evaluator algorithms about its

achieved objective value, say ϕi. After receiving this information, the j-th evaluator, where

j 6= i, stops immediately if ϕj > (1 + ξ)ϕi, where ϕj is the objective value associated with

its current iterate, and ξ ∈ (0, 1). If ϕj ≤ (1 + ξ)ϕi, it continues working towards achieving

the required progress. After all evaluator algorithms stop, the solution estimate and penalty

parameter obtained from the evaluator algorithm that achieved the required progress and

obtained the lowest objective value are used for starting the next iteration of the algorithm.

The termination condition consists of satisfying the optimality conditions of the problem

solved by an evaluator algorithm to the required accuracy, i.e., satisfying

‖ck‖∞ < εf and ‖ZT (∇ϕk − JTk λk)‖∞ < εo(‖∇ϕk‖∞ + γk‖λk‖∞) (4.35)

with a valid discrete point, where ck, ∇ϕk, Jk and γk are as defined in Section 4.4.1.

Algorithm 4 shows pseudocode for the alOPF algorithm.

Algorithm 4 alOPF algorithm

1: Given (x0, y0, λ0) and parameters from Table 4.1
2: k ← 0
3: Set initial penalty µ0 as described in Section 3.5.1
4: while True do
5: if (xk, yk, λk) satisfies (4.35) with Dyk ∈ D then
6: return (xk, yk, λk)
7: end if
8: Obtain (x̃k, ỹk, λ̃k) by solving (4.32) until ‖∇L‖∞ is reduced by τs, and solving (4.33)
9: Construct discrete points (x̃ik, ỹ

i
k, λ̃

i
k), i ∈ [m], using a specific strategy

10: Evaluate points by solving (4.34), fixing Dy, until ‖ZT∇L‖∞ is reduced by τs
11: Set xk+1, yk+1 λk+1 and µk+1 with the ones from the “best” evaluation
12: k ← k + 1
13: end while
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Construction Strategies for Trial Discrete Points

Five strategies for constructing trial discrete points are considered. Two of these allow

creating one trial discrete point, while the others allow creating many of these for performing

evaluations in parallel. Each of the construction strategies is described next.

1. Rounding: This simple construction strategy takes the point obtained by the relax-

ation step, i.e., (x̃k, ỹk, λ̃k), and simply rounds the discrete variables to their nearest

valid discrete values. Hence, only one trial discrete point is constructed.

2. Coordinate Descent: This strategy takes the point obtained by the rounding strat-

egy, say (x̂, ŷ, λ̂), and replaces ŷ with ŷ + ∆ŷ, where ∆ŷ partially solves the problem

minimize
∆ŷ

L(x̂k, ŷ + ∆ŷ, λ̂, µ) (4.36)

subject to ∆ŷ ∈ Y.

Here, µ is the current penalty parameter and Y is a discrete set such that ∆ŷ ∈ Y only

moves the discrete variables either to the nearest right or left valid discrete values of

the discrete variables in ỹk. Coordinate descent [51] is used to partially solve (4.36),

and the coordinate to modify during each iteration is chosen as the one with the

largest sensitivity with respect to L. Only a relatively small number iterations are

performed, e.g., 50, and only one trial discrete point is obtained.

3. Thresholding: This strategy partitions the interval [0, 1] into m−1 intervals of equal

size. The partition points are denoted by αi, i ∈ [m]. For each i ∈ [m], each discrete

variable in ỹk, the point obtained by the relaxation step, is rounded to the nearest

right valid discrete value if it is more than αi of the way there from the nearest left

discrete value. Otherwise, it is rounded to the nearest left discrete value. For this

strategy, m trial discrete points are constructed, one for each threshold αi.

4. Optimal Thresholding: This strategy partitions the interval [0, 1] into m̃ − 1 in-

tervals of equal size, where m̃� m. The partition points are denoted by αi, i ∈ [m̃].

For each i ∈ [m̃], each discrete variable in ỹk, the point obtained by the relaxation

step, is rounded to the nearest right or left valid discrete value using threshold αi, as

done by the thresholding strategy. The set I ⊂ [m̃] corresponding to the m thresholds

that result in the lowest value of augmented Lagrangian L is identified. The m trial
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points constructed by this strategy are the ones obtained by rounding according to

the optimal thresholds αi, i ∈ I.

5. Discrete Line Search: This strategy uses the current point (xk, yk, λk) and the

point (x̃k, ỹk, λ̃k) obtained from the relaxation step to construct a primal-dual search

direction given by

∆x = x̃k − xk (4.37)

∆y = ỹk − yk (4.38)

∆λ = λ̃k − λk. (4.39)

Then, m equally-spaced points along the primal-dual line segment

(xk, yk, λk) + α(∆x,∆y,∆λ), α ∈ [0, 1], (4.40)

are obtained by using equally spaced αi ∈ [0, 1], i ∈ [m], including the endpoints.

The m trial points constructed by this strategy are obtained by rounding the discrete

variables of each of the points on the line segment to their nearest valid discrete value.

4.4.3 Benchmark Method

To evaluate the effectiveness in obtaining higher-quality solutions and the computational

requirements of the alOPF algorithm with the various construction strategies, a benchmark

algorithm is considered. This benchmark algorithm represents algorithms commonly used in

practice for handling discrete variables in OPF. It consists of first solving the problem using

the crOPF algorithm and treating all variables as continuous, then rounding the discrete

variables to their nearest valid discrete values, and then resolving the problem again with

the crOPF algorithm but keeping the discrete variables fixed. This algorithm is referred to

as rrOPF, which stands for round and resolve OPF.

4.5 Implementation

The OPF algorithms described here were implemented in the Python Programming Lan-

guage using Python’s C API for speeding up function evaluations and matrix constructions.

The linear algebra operations were performed using the Python packages Numpy and Scipy,
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and the sequential version of the multifrontal sparse direct solver MUMPS [3] through the

Python wrapper pymumps. Parallelization of the evaluation of trial discrete points for ex-

ploring the discrete variable space was implemented using Python’s multiprocessing module.

4.6 Experiments

Results of various experiments that assess the performance and computational requirements

of the described OPF techniques are presented. In particular, results regarding the effective-

ness of the smooth sparsity-inducing penalty for obtaining a manageable number of control

actions are shown as well as ones regarding the trade-off between solution quality and num-

ber of control actions. Lastly, results comparing the solution properties and computational

requirements of the crOPF and rrOPF algorithms with those of the alOPF algorithm with

each of the construction strategies are also presented.

The computer used for performing the experiments was an 8-core PC with Intel R©
CoreTM i7 CPU, 2.80 GHz, 8 GB of RAM, and running the operating system Ubuntu

12.04.

The test cases used consisted of four OPF problems from two different mid-size North

American System Operators. The data obtained consisted of load flow data only and

did not include generation cost data. Therefore, the same quadratic cost function was

used for all generators, each having a linear-term coefficient of 20 and a quadratic-term

coefficient of 0.01, as is done in the examples of [68]. Table 4.2 shows the properties of

the OPF test cases, including number of buses, number of branches (transmission lines and

transformers), number and properties of discrete variables corresponding to transformer tap

ratios, number and properties of discrete variables corresponding to switched shunt devices,

and total system load. Cases C and D were constructed from Cases A and B by increasing

the loads by factors of 2 and 1.5, respectively, while maintaining power factors. Transformer

tap and switched shunt position data is shown as µ±σ, where µ is the average and σ is the

standard deviation.

4.6.1 Sparse Control Adjustment Profiles

The first experiment consisted of displaying the control adjustments utilized by the crOPF

algorithm on each of the test cases for small and large sparsity weights in order to determine

the effectiveness of the smooth sparsity-inducing penalty Ps. Figures 4.4-4.7 show the
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Table 4.2: Properties of OPF test cases.

name buses branches taps positions shunts positions load (MW)

Case A 2454 2781 1038 21± 9 170 2± 1 7320

Case B 2468 3215 135 30± 6 160 2± 1 39200

Case C 2454 2781 1038 21± 9 170 2± 1 14640

Case D 2468 3215 135 30± 6 160 2± 1 58800

results obtained. The left plots correspond to small sparsity weights while the right plots

correspond to large sparsity weights. The adjustment of a control device is given as a

fraction of its control range. For example, for a tap adjustment of ∆t, the quantity shown

in the figure is ∆t/(tmax − tmin), where tmax and tmin are the tap ratio’s upper and lower

limits, respectively. Adjustments of each type of control device are shown with a different

color. Figure 4.3 shows the control quantity associated with each color. The plots also show

the number of control actions and cost obtained on each of the cases. A control action is

defined as a control adjustment that is greater than 2% of its control range. The cost shown

on the plots is given by γcPc + γlPl, i.e., the part of the objective function ϕ that measures

solution quality in terms of generation cost, voltage magnitude profiles, and phase angle

differences across branches.

Figure 4.3: Colors associated with OPF control quantities.
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Figure 4.4: Control adjustment profiles for OPF Case A.

Figure 4.5: Control adjustment profiles for OPF Case B.

Figure 4.6: Control adjustment profiles for OPF Case C.



CHAPTER 4. PLANNING AND CONTROL 68

Figure 4.7: Control adjustment profiles for OPF Case D.

As the figures show, the smooth penalty Ps allows reducing the number of control

actions. As expected, the solution quality (as measured by the cost) obtained by allowing

many control actions is better than the one obtained with only a few. This trade-off between

cost or solution quality and number of control actions was investigated more in depth by

the experiment described next.

4.6.2 Cost-Sparsity Trade-Off

The second experiment consisted of characterizing the trade-off between cost and number

of control actions, where the cost refers to the part of the objective function that measures

solution quality in terms of generation cost, voltage magnitude profiles and phase angle

differences across branches. To do this, the crOPF algorithm was applied to each case for

increasing values of the sparsity weight γs, while keeping the weights γc and γl associated

with generation cost and soft constraints fixed at 1 and 10, respectively. Figures 4.8-4.11

show the results obtained. In the figures, the left plots show how the cost γcPc+γlPl varies

as the sparsity weight γs is increased, while the right plots show how the number of control

actions varies as the sparsity weight γs is increased. The cost curves are shown in units of

cost obtained with the smallest sparsity weight.
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Figure 4.8: Trade-off between cost and number of control actions for OPF Case A.

Figure 4.9: Trade-off between cost and number of control actions for OPF Case B.
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Figure 4.10: Trade-off between cost and number of control actions for OPF Case C.

Figure 4.11: Trade-off between cost and number of control actions for OPF Case D.

As the figures show, increasing the sparsity weight γs while keeping the generation cost

and soft-constraint penalty weights γc and γl, respectively, fixed, reduces the number of

control actions at the expense of degradation in solution quality. For the simple cases, i.e.,

Cases A and B, the number of control actions is reduced to 0 or almost 0. This makes sense

since for these simple cases obtaining feasibility is not an issue. On the other hand, for the

hard cases, i.e., Cases C and D, the number of control actions does not go to zero as γs is

increased. This is because these cases require significant control adjustments to allow the

power network to accommodate the required transmission of power.
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4.6.3 Method Comparison

The third experiment consisted of comparing the solution properties and computational

requirements of all the methods on each of the OPF cases with various sparsity weights. In

particular, values of sparsity weight γs of 1, 10 and 100 were used while keeping γc and γl

fixed at 1 and 100, respectively. It was observed that the quality of the solution obtained

by all the methods had a significant dependence on the parameter κ, which determines the

initial penalty parameter (Section 3.5.1), and hence the initial importance of minimizing

the objective function relative to that of reducing the infeasibilities. Hence, for each of

the cases, each method was executed with κ ∈ {1, 10} and the best solution obtained was

recorded. For a few cases, some methods failed with such values of κ and hence different

values had to be used (shown in bold). For alOPF algorithms, the relaxation step was

stopped if it required more than 100 iterations. Also, the parameter ξ used for determining

whether an evaluator algorithm should stop, as described in Section 4.4.2, was set to 0.5. For

the alOPF algorithm with optimized thresholding strategy, a number of m̃ = 50 thresholds

were considered. For the alOPF algorithm with coordinate descent strategy, a number of 50

coordinates were considered. Tables 4.5-4.16 show the data collected. In these tables, the

strategies used with the alOPF method to construct trial discrete points are given as codes,

and these codes are described in Table 4.3. In the tables of results, the column labeled

∆ϕ (%) shows the difference in objective value obtained by the method with respect to

that obtained by the crOPF method. The column labeled “rank” gives a value between 1

and 7 that ranks the method according to objective value achieved for a particular case and

sparsity weight, where 1 is given to the one that obtained the lowest value. The columns

labeled t (s) and t/t0 show the time in seconds and the time ratio with respect to that of

the crOPF method, respectively. The columns labeled vmax and vmin show the solution’s

maximum and minimum bus voltage magnitudes, respectively, in per unit bus nominal

voltage. The column labeled “actions” shows the number of control actions utilized by

the method for solving a specific case. Lastly, the column labeled κ shows the value of the

parameter κ used, which is either 1 or 10 unless the method failed with both of these values.

The results obtained on each of the cases were aggregated in order to find an overall

ranking of methods in terms of finding solutions with the lowest objective value, and to

determine how much longer on average they are with respect to the crOPF method. The

solution quality ranking was obtained by adding all the individual ranks given to each

method, and then ranking them again based on the obtained rank sum. Again, the value



CHAPTER 4. PLANNING AND CONTROL 72

1 was assigned to the one with the lowest value, i.e., the “best” one. Table 4.4 shows the

aggregate results obtained.

Table 4.3: Codes for rounding strategies of alOPF algorithms.

code strategy parallel processes

RO 1 Rounding 1

CD 1 Coordinate Descent 1

TH m Thresholding m

OT m Optimal Thresholding m

DL m Discrete Line Search m

Table 4.4: Method comparison - aggregate results.

method rank sum final rank average t/t0

crOPF 27 1 1.00

rrOPF 58 5 1.85

alOPF - RO 1 58 5 2.47

alOPF - CD 1 72 7 3.15

alOPF - TH 8 39 3 5.29

alOPF - OT 8 41 4 7.10

alOPF - DL 8 37 2 4.51

Table 4.5: Method comparison on OPF Case A with γs = 1.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 9.82 1.00 1.06 0.89 1138 10

rrOPF 0.4698 6 24.79 2.52 1.06 0.89 1113 10

alOPF - RO 1 0.4587 3 22.80 2.32 1.09 0.89 1124 10

alOPF - CD 1 0.4950 7 20.17 2.05 1.06 0.89 1116 10

alOPF - TH 8 0.4644 4 52.64 5.36 1.06 0.89 1105 10

alOPF - OT 8 0.4122 2 47.86 4.87 1.06 0.89 1112 10

alOPF - DL 8 0.4692 5 39.48 4.02 1.09 0.89 1117 10
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Table 4.6: Method comparison on OPF Case A with γs = 10.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 8.53 1.00 1.06 0.90 466 10

rrOPF 0.4510 2 21.39 2.51 1.06 0.90 480 10

alOPF - RO 1 2.4033 7 18.59 2.18 1.07 0.90 534 1

alOPF - CD 1 1.9751 6 21.71 2.55 1.06 0.90 526 1

alOPF - TH 8 1.2181 5 49.87 5.85 1.07 0.90 488 10

alOPF - OT 8 1.0525 3 52.88 6.20 1.06 0.90 495 1

alOPF - DL 8 1.0781 4 43.05 5.05 1.07 0.90 480 10

Table 4.7: Method comparison on OPF Case A with γs = 100.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 4.30 1.00 1.09 0.90 64 1

rrOPF 3.6033 4 8.36 1.94 1.09 0.89 118 1

alOPF - RO 1 3.5530 2 20.94 4.87 1.09 0.89 118 1

alOPF - CD 1 3.7115 7 29.35 6.83 1.09 0.89 121 10

alOPF - TH 8 3.7006 6 34.75 8.09 1.09 0.87 117 1

alOPF - OT 8 3.6111 5 67.86 15.79 1.09 0.89 119 10

alOPF - DL 8 3.6025 3 42.46 9.88 1.09 0.89 116 10

Table 4.8: Method comparison on OPF Case B with γs = 1.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 3 8.32 1.00 1.37 0.90 452 10

rrOPF 0.0552 5 8.59 1.03 1.37 0.89 450 1

alOPF - RO 1 0.0139 4 12.63 1.52 1.37 0.89 447 1

alOPF - CD 1 0.5218 7 25.46 3.06 1.36 0.89 485 10

alOPF - TH 8 −0.0029 2 36.92 4.44 1.37 0.89 450 1

alOPF - OT 8 0.2197 6 81.86 9.84 1.37 0.89 485 10

alOPF - DL 8 −0.0376 1 14.20 1.71 1.37 0.89 447 1
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Table 4.9: Method comparison on OPF Case B with γs = 10.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 3.85 1.00 1.37 0.88 199 1

rrOPF 0.0968 7 6.94 1.80 1.37 0.88 203 1

alOPF - RO 1 0.0724 4 9.40 2.44 1.37 0.88 203 1

alOPF - CD 1 0.0726 6 11.46 2.98 1.37 0.88 203 1

alOPF - TH 8 0.0644 2 25.59 6.65 1.37 0.88 204 10

alOPF - OT 8 0.0647 3 25.98 6.75 1.37 0.88 203 1

alOPF - DL 8 0.0724 4 15.03 3.91 1.37 0.88 203 1

Table 4.10: Method comparison on OPF Case B with γs = 100.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 3.42 1.00 1.41 0.89 38 10

rrOPF 0.7130 4 4.25 1.24 1.41 0.89 45 1

alOPF - RO 1 0.7133 6 9.49 2.77 1.41 0.89 45 1

alOPF - CD 1 0.7133 6 12.41 3.63 1.41 0.89 45 0.8

alOPF - TH 8 0.6935 2 17.98 5.26 1.41 0.89 43 1

alOPF - OT 8 0.7130 4 16.29 4.76 1.41 0.89 45 1

alOPF - DL 8 0.7128 3 24.84 7.26 1.41 0.89 45 10

Table 4.11: Method comparison on OPF Case C with γs = 1.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 5 15.83 1.00 1.20 0.84 1308 10

rrOPF −0.2149 4 27.15 1.72 1.20 0.85 1262 10

alOPF - RO 1 0.0863 6 32.67 2.06 1.21 0.86 1288 10

alOPF - CD 1 1.7402 7 37.71 2.38 1.21 0.87 1286 10

alOPF - TH 8 −0.5571 2 61.02 3.86 1.21 0.86 1265 1

alOPF - OT 8 −0.7563 1 73.93 4.67 1.21 0.86 1261 1

alOPF - DL 8 −0.5155 3 58.36 3.69 1.21 0.86 1266 1
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Table 4.12: Method comparison on OPF Case C with γs = 10.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 3 14.22 1.00 1.21 0.85 823 10

rrOPF 0.4113 4 25.60 1.80 1.21 0.86 827 10

alOPF - RO 1 26.4800 7 26.91 1.89 1.30 0.87 912 1

alOPF - CD 1 11.0077 6 37.94 2.67 1.24 0.87 952 1

alOPF - TH 8 −0.1192 1 49.941 3.51 1.20 0.86 838 1

alOPF - OT 8 0.5295 5 81.54 5.73 1.21 0.86 830 1

alOPF - DL 8 −0.0958 2 51.52 3.62 1.21 0.86 815 1

Table 4.13: Method comparison on OPF Case C with γs = 100.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 12.31 1.00 1.36 0.89 307 10

rrOPF 22.2815 7 33.91 2.75 1.37 0.88 476 10

alOPF - RO 1 1.4732 6 20.19 1.64 1.35 0.88 359 1

alOPF - CD 1 1.1743 4 34.76 2.82 1.35 0.89 358 1

alOPF - TH 8 1.0062 2 74.84 6.08 1.35 0.88 351 1

alOPF - OT 8 1.0178 3 101.43 8.24 1.35 0.88 352 1

alOPF - DL 8 1.1808 5 72.79 5.91 1.35 0.89 353 1

Table 4.14: Method comparison on OPF Case D with γs = 1.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 4 10.43 1.00 1.39 0.84 540 10

rrOPF −0.0220 3 16.00 1.53 1.39 0.85 540 10

alOPF - RO 1 4.6796 7 28.17 2.70 1.43 0.87 530 10

alOPF - CD 1 0.8473 6 30.57 2.93 1.40 0.84 543 1

alOPF - TH 8 −0.1609 2 41.03 3.93 1.39 0.84 533 10

alOPF - OT 8 0.1584 5 81.86 7.85 1.39 0.84 570 1

alOPF - DL 8 −0.1850 1 35.06 3.36 1.39 0.84 535 10
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Table 4.15: Method comparison on OPF Case D with γs = 10.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 5 10.82 1.00 1.39 0.84 329 10

rrOPF 0.2529 6 17.62 1.63 1.40 0.84 332 10

alOPF - RO 1 −0.4479 3 24.17 2.23 1.39 0.85 330 9

alOPF - CD 1 0.5692 7 27.00 2.49 1.39 0.85 399 1

alOPF - TH 8 −0.4213 4 43.61 4.03 1.39 0.85 327 10

alOPF - OT 8 −0.4535 2 47.07 4.35 1.39 0.85 334 1

alOPF - DL 8 −0.4664 1 30.49 2.82 1.39 0.85 330 10

Table 4.16: Method comparison on OPF Case D with γs = 100.

method ∆ϕ (%) rank t (s) t/t0 vmax vmin actions κ

crOPF 0.0000 1 7.95 1.00 1.41 0.82 149 1

rrOPF 0.3516 6 13.87 1.75 1.41 0.82 146 10

alOPF - RO 1 0.3154 3 23.48 2.96 1.41 0.82 145 80

alOPF - CD 1 0.3154 3 26.75 3.37 1.41 0.82 145 80

alOPF - TH 8 0.3570 7 51.22 6.45 1.41 0.82 146 1

alOPF - OT 8 0.2854 2 48.99 6.16 1.41 0.82 145 1

alOPF - DL 8 0.3337 5 23.36 2.94 1.41 0.82 145 0.01

As the aggregate results show, the crOPF algorithm is the best one in terms of finding

a solution with the lowest objective value. This is expected since this algorithm solves a

continuous relaxation of the problem, whose (global) optimum is a lower bound for the

original problem. Among the algorithms that obtain valid discrete points, the alOPF algo-

rithm with a discrete line search strategy is the best, followed by the alOPF algorithms with

thresholding-based strategies. An interesting result is that the algorithm with the simple

thresholding strategy outperformed the optimized one, i.e., the one that selects the best

thresholds according to the value of the augmented Lagrangian. This may be attributed to

the trial discrete points constructed from the thresholds selected by the optimized strategy

having less diversity, which reduces the ability of the algorithm to explore different regions

of the discrete variable space. The benchmark rrOPF algorithm and the alOPF algorithm

with the simple rounding strategy are tied and occupy the penultimate ranking position

in terms of solution quality. This result suggests that perhaps no benefits are obtained

by rounding the discrete variables during the early stages of the algorithm. Lastly, the

worst-performing algorithm was the alOPF algorithm with the greedy coordinate descent
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strategy. This result reinforces the idea that it is important to maintain exploration when

selecting trial discrete points, and not focus only on points that appear locally promising.

In terms of time, the aggregate results show that the alOPF algorithms that utilize sev-

eral parallel processes are the slowest. This is attributed partly to communication overhead

and the fact that these algorithms typically take more iterations due to followings paths

with more gradual approach to feasibility. In particular, the algorithm with discrete line

search strategy is about 4.5 times slower than the crOPF method, while the algorithm with

simple thresholding strategy is about 5.3 times slower. The alOPF algorithm with opti-

mized thresholding strategy is slower than these two since it requires extra computations

for finding the subset of most promising thresholds.

From the aggregate results, it may be concluded that the alOPF algorithm with discrete

line search strategy is the best algorithm that enforces the discreteness constraints. This

is because its solution quality ranking is behind only that of the crOPF algorithm and it

is faster than the alOPF algorithm with the simple thresholding strategy. However, the

individual case results show that this method failed to solve one case with the regular

values of κ. This suggests that it may be slightly less robust than the similarly ranked

but slower alOPF algorithm with simple thresholding strategy. Algorithms that also had

convergence issues are the alOPF algorithms with simple rounding and coordinate descent

strategies. These algorithms failed to solve two cases with the regular values of κ considered.

It was observed that these convergence issues were caused by the generation of poor search

directions during the evaluation of the trial discrete points. This is likely attributed to

exploring an ill-conditioned region of the problem after using a poor initial (trial) point.

A final observation is that for several cases, the crOPF method, which solves a relaxed

problem, did not achieve the lowest objective value. This happened mostly for cases having

small sparsity weights. A possible explanation for this may be that such problems have

excessive flexibility. This makes them ill-conditioned and results in algorithms making

large initial discrete variable adjustments that later complicate their progress towards the

solution. The algorithms that enforce discreteness may suffer less from this because they

reduce this flexibility by temporarily fixing the discrete variables.



CHAPTER 4. PLANNING AND CONTROL 78

4.7 Conclusions

In this chapter, two important challenges of OPF problems have been addressed, namely,

that of handling discrete variables and of obtaining a manageable number of control ad-

justments. For addressing these challenges, several modeling and optimization techniques

were explored. In particular, the use of a smooth sparsity-inducing penalty function was

considered for obtaining a small number of control adjustments without complicating the

problem. In fact, the penalty function considered adds convexity and “regularization” to

the problem, which can be exploited by the solution algorithm to improve its stability and

convergence properties, as done in the power flow method of Chapter 3. The algorithm

considered for handling discrete variables is based on alternating between a guide algorithm

that attempts to solve a continuous relaxation of the problem, and one or more evaluator

algorithms that explore different choices of discrete variables in parallel. Both guide and

evaluator algorithms are based on the augmented Lagrangian method described in Chap-

ter 3 for solving power flow problems. Results of experiments were presented that showed

the effectiveness of the smooth sparsity-inducing penalty in reducing the number of control

adjustments as well as the trade-off that exists between this number and solution quality.

Also, results were presented that compared the performance of the alternating algorithm

with that of one that solves a continuous relaxation of the problem and a benchmark method

that represents current practices. Several strategies for constructing trial discrete points

were considered, and it was found that ones based on discrete line search and simple thresh-

olding provided the best results in terms of objective value, outperforming the benchmark

method while being only slightly slower. The results suggested that an important factor

for obtaining better solutions with valid discrete values is exploration, and that greedy

approaches do not perform well.



Chapter 5

Online Security Assessment

5.1 Background and Overview

Power systems have numerous types of security constraints that system operators need to

monitor constantly, such as voltage stability constraints, branch thermal overload limits, bus

voltage limits, and dynamic stability constraints [55] [57]. Traditionally, security assessment

practices have typically consisted of first performing offline studies hours or even days in

advance due to their high computational cost. Critical quantities, e.g., load levels and

power transfer levels, are determined and one or two-dimensional nomograms describing the

security boundaries are constructed. During real-time operations, the pre-selected critical

quantities are monitored and nomograms are consulted in order to assess whether the system

is secure [57]. In the past, these practices were acceptable since systems had predictable

power flow directions and load patterns [57], and were operated in a very conservative

manner. Now, with industry restructuring, systems are less predictable and tend to operate

closer to their limits [90], and this is expected to become more common with the planned

increase of variable and distributed generation. Consequently, security assessments need to

be performed much more frequently, more quantities need to be monitored, and information

that is more concise needs to be presented to operators [57].

Several authors have explored new ways for performing security assessments more ef-

ficiently and effectively. In particular, efforts have been made for determining ways for

representing security boundaries and for determining their proximity to the current operat-

ing point. In [55], the authors consider various security constraints and describe an approach

for approximating boundaries using hyperplanes in the space of several pre-selected critical

79
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quantities. In [41], the authors follow the same approach and focus exclusively on thermal

security boundaries. In particular, they represent the boundaries using hyperplanes in the

space of “cut-set angles”, which are a particular choice of critical quantities that are related

to voltage angle differences across branches of transmission corridors. The construction

of the hyperplanes is done offline by stressing the critical quantities in different directions

and performing system simulations until boundary points are obtained. These points are

then used for setting up linear systems of equations that define the hyperplanes. An alter-

native approach for representing security boundaries and performing security assessment

is described in [57] and [90]. It consists of using an Artificial Neural Network (ANN) for

mapping values of pre-selected critical quantities to system security measures, and hence for

representing the boundary of a general set of security constraints. The ANN, once trained,

can be used online for constructing nomograms and assessing system security easily. How-

ever, the training procedure requires identifying a set of critical quantities of manageable

size and performing offline system simulations. Another approach for determining bounds

on thermal security margins is described in [19]. The approach uses a linear system model

based on sensitivities and expresses security margins in terms of changes in generator and

load powers. The authors test the approach on a power network of 80 buses, but do not

address the considerable computational challenges associated with realistic networks that

are much larger. These computational challenges are considered in our previous work [31],

where an approach based on a linear system model for determining and visualizing critical

thermal boundaries in the space of generator and load powers is also explored. The explored

techniques are shown to be efficient for large cases of up to 45000 buses, but are based on

approximate thermal limits that only consider branch active power flows.

In this chapter, efficient techniques are described for determining and visualizing secu-

rity boundaries of power systems for online security assessment. The main goals of these

techniques are to avoid repetitive and time-consuming computer simulations, and to dis-

cover and consider critical quantities that operators may not be aware of when assessing

security. A simple linear model of a power network is used and only a pre-contingency case is

considered with thermal overload and bus voltage magnitude limits as security constraints.

This simple model allows establishing an analytic framework and developing techniques for

filtering the most critical constraints and approximating the geometry of their boundaries

quickly. The results obtained with these approximate, but fast techniques, may then be

leveraged by more accurate and computationally expensive methods, such as ones based on
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a nonlinear system model.

5.2 The Critical Operating Boundaries Problem

The Critical Operating Boundaries (COB) problem considered here consists of three parts:

1. Determine the “nearest” reachable voltage and thermal overload boundaries from the

current operating point, where distance is measured in terms of changes in generator

and load powers.

2. Determine effective and practical adjustments in generation and load powers that

move the system away from the nearest reachable boundaries.

3. Determine how to visualize this information on a two-dimensional plane.

Mathematically, this problem may be formulated as follows: Let the power flow equa-

tions (2.37) be expressed as

Y y − f(x) = 0, (5.1)

where y is the vector of generator and load powers, Y is a “power injection” matrix that

associates injections (or consumptions) with buses, x is the vector of bus voltage magnitudes

and angles, and f gives the power leaving each bus through shunt devices and branches for

a given x. Also, let the function h be such that the constraints hi(x) ≥ 0, i ∈ [nc], where

nc ∈ N and [nc] := {1, . . . , nc}, represent all bus voltage magnitude limits (2.1) and branch

thermal overload limits (2.17). Lastly, let y0 be the current vector of generator and load

powers, and x0 the system state associated with y0. Also assume that hi(x0) > 0 for each

i ∈ [nc]. Then, the first part of the problem consists of finding a small constraint index set

N̄ ⊂ [nc] of size n̄c � nc such that δi ≤ δj for all i ∈ N̄ and j ∈ [nc] \ N̄ , where δi is the

distance from the current point to the boundary of hi(x) ≥ 0 in the space of generator and

load powers. That is, δi is the optimal value of

minimize
∆y,x

‖∆y‖2 (5.2)

subject to Y (y0 + ∆y)− f(x) = 0

hi(x) = 0

ymin ≤ y0 + ∆y ≤ ymax,
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where ymin and ymax are bounds on generator and load powers. By convention, when

problem (5.2) is infeasible, δi = +∞. The second part of the problem consists of finding

directions ∆y for moving y0 in such a way that a measure that quantifies how close the

system is to the boundaries of the constraints in N̄ is improved. These directions should

be practical in the sense that they should only involve a few actions, i.e., be sparse. Lastly,

the third part of the problem consists of visualizing the boundary { x | hi(x) = 0 } of each

constraint i ∈ N̄ .

5.3 Modeling Approach

A linear approximation of both the power flow equations and the security constraints is

used to simplify the problem and be able to perform fast analyses. The linearization of

the power flow equations is obtained from a first-order Taylor expansion of the function f

about the current operating point x0. This gives the linear system

Ax = b+ Y y, (5.3)

where

A := J(x0) ∈ R2n×2n and b = J(x0)x0 − f(x0) ∈ R2n, (5.4)

and J is the Jacobian of f , which is assumed to be non-singular. The vector y ∈ Rny , where

ny ∈ N, is composed of active powers of generators and loads. Reactive power consumptions

of loads and reactive power injections of non-regulating generators are obtained from their

active powers by assuming constant power factors. Generator reactive power limits are

ignored, and hence regulated voltage magnitudes are kept fixed at their set points. To

achieve this, for each k ∈ R, where R is the set of regulated buses, the row of A associated

with the reactive power mismatch at bus k is set to zero everywhere except for the entry

corresponding to the bus voltage magnitude vk, which is set to one. The corresponding

entry of b is set to the bus voltage magnitude set point vtk, and the corresponding row of

Y is set to zero everywhere. A similar technique is used for keeping the slack bus voltage

magnitude and angle fixed at their given values.

The linearization of the security constraints, which includes bus voltage limits (2.1) and

branch thermal overload limits (2.17), is obtained from first-order expansions of smooth

approximations of the branch current magnitudes |ikm| and |imk|, for each (k,m) ∈ B,
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where B is the set of branches. In particular, the smooth approximation of |ikm| used is

(
<{ikm}2 + ={ikm}2 + ρ

)1/2

, (5.5)

where ρ is some small positive scalar, e.g., 10−8, and <{·} and ={·} give the real and

imaginary parts of a complex number, respectively. An analogous approximation is used

for |imk|. The resulting linear inequality security constraints are denoted by

Cx ≥ d, (5.6)

where C ∈ Rnc×2n, d ∈ Rnc , and nc is the number of security constraints, i.e., nc = 2n+2|B|.
Hence, the linear system model considered here is given by

Ax = b+ Y y, Cx ≥ d. (5.7)

Since A is non-singular, the state vector x can be eliminated from the above system to

obtain a set of linear inequalities in terms of y only. These inequalities are given by

Qy ≥ t, (5.8)

where the matrix Q ∈ Rnc×ny and vector t ∈ Rnc are given by

Q := CA−1Y and t := d− CA−1b. (5.9)

One difficulty of dealing with these constraints given in terms of y is that, unlike A, Y

and C, the matrix Q is dense, and hence constructing this matrix is impractical for mid

to large-scale networks. The techniques described below for analyzing these constraints are

designed to utilize the matrix Q only via matrix-vector products, and hence the elements

of this matrix need not be known explicitly.

The particular security metric used to determine how far a point y is from the security

boundaries is given by the concave function

M(y) =
∑
i∈N̄

log(qTi y − ti), (5.10)
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where N̄ is the set of indices corresponding to the nearest reachable constraints, and qi is

the i-th row of Q. The larger the value of M(y) is, the more “interior” and hence more

secure the point y is. This function will be used later to identify recommended operator

actions for moving the system away from critical operating boundaries.

5.4 Solution Algorithm

The algorithms described next for solving the Critical Operating Boundaries or COB prob-

lem use the linear system model described in the previous section that involves y only, i.e.,

Qy ≥ t. Furthermore, they assume that the initial vector y0 of generator and load powers is

strictly feasible, i.e., Qy0 > t, and that Q does not have zero rows. These assumptions are

made only for keeping the exposition simple. In the implementation, rows of Q that have

negligible norm are easily detected to avoid dividing by a near-zero number, and infeasible

points are handled by adding a few safeguards to the techniques described in the sequel.

5.4.1 Nearest Reachable Boundaries

The algorithm for finding the nearest boundaries consists of first finding the nearest bound-

aries while ignoring bounds on the power vector y, and then filtering the ones that can

actually be reached by considering such bounds.

Using the linear system model in terms of y only, i.e., Qy ≥ t, and ignoring the bounds

on y, the distance δi to the boundary of the i-th security constraint qTi y ≥ ti from the

current point y0 is given by

minimize
∆y

‖∆y‖2 (5.11)

subject to qTi (y0 + ∆y) = ti,

where qi is the i-th row of Q. The next lemma characterizes this distance.

Lemma 5.4.1. The solution of problem (5.11) is given by −αiq̂i, where

αi :=
qTi y0 − ti
‖qi‖2

and q̂i :=
qi
‖qi‖2

, (5.12)

and the associated objective value, i.e., δi, is equal to αi.
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Proof. Let ∆y∗ := −αiq̂i. Then

qTi (y0 + ∆y∗) = qTi y0 − αiqTi q̂i (5.13)

= qTi y0 −
qTi y0 − ti
‖qi‖2

‖qi‖2 (5.14)

= ti, (5.15)

so ∆y∗ is a feasible point of (5.11). Since every feasible point may be expressed as

∆y = ∆y∗ + Zη, (5.16)

for some η, where Z is a matrix whose columns span the subspace of all vectors orthogonal

to qi, it follows that

‖∆y‖22 = ‖∆y∗ + Zη‖22 (5.17)

= ‖∆y∗‖22 + ‖Zη‖22 + 2(∆y∗)TZη (5.18)

= ‖∆y∗‖22 + ‖Zη‖22 − 2
αi
‖qi‖2

qTi Zη. (5.19)

Since qTi Z = 0, it follows that

‖∆y‖22 = ‖∆y∗‖22 + ‖Zη‖22 ≥ ‖∆y∗‖22, (5.20)

so ∆y∗ is the feasible point with smallest norm, and such norm is clearly αi.

Lemma 5.4.1 just states that the distance in the y space from the current point y0 to

the boundary of the security constraint qTi y ≥ ti is αi, and that the associated change in y

to reach the nearest boundary point is given by −αiq̂i.
The difficulty in determining the distance to the boundary of each security constraint,

and hence for determining the nearest ones, is that ‖qi‖2 and hence qi is needed for each

i ∈ [nc]. From (5.9), qTi = cTi A
−1Y , where ci is the i-th row of C, and hence constructing

each qi requires solving the linear system

AT ξi = ci. (5.21)

The difficulty is that ξi and the resulting qi = Y T ξi are not sparse in general. Therefore,
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doing this for all nc security constraints is not practical, since nc is large (nc = 2n+ 2|B|).
For example, for a 2.5k-bus system, nc is typically greater than 10k. For this reason, the

approach considered here for determining boundary distances is based on estimating each

‖qi‖2 using matrix-vector products only, and hence without having to construct each qi.

The idea of estimating the norms of the rows of a matrix via matrix-vector products has

been explored in the context of matrix equilibration [14]. It is based on the relation given

by the following lemma.

Lemma 5.4.2. Given any constant vector q and random vector z composed of independent

and identically distributed random variables of zero mean and unit variance, it holds that

E
(
(qT z)2

)
= ‖q‖22, (5.22)

where E(·) gives the expected value of a random variable.

Proof. This relation follows easily from the linearity of expectation:

E((qT z)2) = E(qT zqT z) (5.23)

= E(qT zzT q) (5.24)

= qTE(zzT )q (5.25)

= qT q. (5.26)

This relation just states that ‖q‖22 is the variance of the random variable qT z. Hence,

‖qi‖22 may be estimated by drawing random samples z1, z2, . . . , zk of z, and computing the

sample variance of qTi z, which is given by

σ2
ki :=

1

k

k∑
j=1

(qTi zj)
2. (5.27)

In fact, this may be done simultaneously for all qi using

σ2
k :=

1

k

k∑
j=1

wj ◦ wj , (5.28)
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where ◦ denotes element-wise product, wj := Cζj , and ζj solves Aζj = Y zj . From the

results of Lemma 5.4.1, boundary distance estimates are then obtained by

α̃ki :=
qTi y0 − ti
σki

, i ∈ [nc]. (5.29)

The number of samples k of the random vector z must be large enough such that the

distance estimates α̃k := {α̃ki}i∈[nc] are accurate enough to allow identifying the nearest

boundaries, and small enough such that the procedure is much faster than the naive ap-

proach of constructing each constraint normal qi, i ∈ [nc]. The strategy considered here

for determining this number exploits the fact that, when z is a vector of independent and

identically distributed Gaussian random variables, i.e., z ∼ N (0, I), where I is the identity

matrix, qTi z is Gaussian with zero mean and variance ‖qi‖22, i.e., qTi z ∼ N (0, ‖qi‖22), for

each i ∈ [nc]. From this, it follows that k
σ2
ki

‖qi‖22
has chi-squared distribution with k degrees

of freedom, i.e.,

k
σ2
ki

‖qi‖22
∼ χ2

k. (5.30)

Hence, for each i ∈ [nc], positive scalars L1
ki and L2

ki are known such that

L1
ki ≤ k

σ2
ki

‖qi‖22
≤ L2

ki (5.31)

with high probability, e.g., 0.9. Equivalently,

σki

√
k

L2
ki

≤ ‖qi‖2 ≤ σki

√
k

L1
ki

(5.32)

with high probability. From these confidence bounds on ‖qi‖2, confidence bounds on the

actual boundary distance αi are obtained, and these are given by

αmax
ki :=

qTi y0 − ti
σki

√
L2
ki

k
(5.33)

αmin
ki :=

qTi y0 − ti
σki

√
L1
ki

k
, (5.34)

for each i ∈ [nc]. These confidence bounds are used within the sampling procedure as

follows: After drawing a few samples, say k = 5, and updating σ2
k using (5.28), a set
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Ñ ⊂ [nc] of size ñc ∈ N, where ñc � nc, and such that α̃ki ≤ α̃kj for all i ∈ Ñ and

j ∈ [nc] \ Ñ , is obtained. This is done by finding the indices of the ñc smallest α̃ki, i ∈ [nc],

using the introselect algorithm [65]. As an example, ñc may be 100 for a network with nc

around 10k. Then, the threshold distance

αthk := max{ αmax
ki | i ∈ Ñ } (5.35)

is computed, and constraints i ∈ [nc] such that αmin
ki > αthk are identified and subsequently

ignored in the sampling process. The process is repeated until the distance estimates to

the boundaries of the “relevant constraints”, i.e., the ones for which αmin
ki ≤ αthk , converge.

This is tested by the condition

(∑
i∈H

(α̃ki − α̃(k−1)i)
2

)1/2

≤ ε

(∑
i∈H

(α̃ki)
2

)1/2

, (5.36)

where ε is some small positive scalar, e.g., 10−2, and H ⊂ [nc] is the set of indices of the

relevant constraints.

Bounds on the power vector y are considered for the constraints associated with the

index set Ñ , and an index set N̄ ⊂ Ñ of constraints that can be violated is extracted.

More specifically, for each security constraint i ∈ Ñ , the quantity νi is computed, where

νi := inf{ qTi y − ti | ymin ≤ y ≤ ymax }. (5.37)

The set N̄ is then given by

N̄ = { i ∈ Ñ | νi ≤ 0 }, (5.38)

and its size is denoted by n̄c. To obtain νi, qi is needed. Hence, qi needs to be constructed

for each i ∈ Ñ , but this is practical since ñc is small. Moreover, only one qi needs to be

stored at a given time and discarded after νi is determined. The value of νi can be easily

obtained analytically, as the next lemma shows.

Lemma 5.4.3. The solution νi of problem (5.37) is given by

νi = qTi y
∗
i − ti, (5.39)
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where y∗i ∈ Rny is the vector defined by

y∗ij =

 ymax
j , if qij ≤ 0

ymin
j , otherwise,

(5.40)

for each j ∈ [ny].

Proof. This result follows immediately from the fact that y∗ij satisfies

y∗ij = argmin{ qijz | z ∈ [ymin
j , ymax

j ] }, (5.41)

for each j ∈ [ny].

Algorithm 5 shows the pseudocode for finding the small index set N̄ associated with the

nearest reachable security boundaries.

Algorithm 5 Nearest Reachable Boundaries

1: Given ñc � nc, p ∈ N, ε > 0
2: k ← 1
3: while True do
4: Sample random vector zk ∼ N (0, I)
5: Update sample variance vector σ2

k using (5.28)
6: if k mod p = 0 then
7: Compute α̃k and bounds αmax

k and αmin
k using (5.29), (5.33) and (5.34)

8: Construct set Ñ of ñc nearest constraints according to α̃k
9: Compute threshold distance αthk using (5.35)

10: Construct set H of relevant constraints using αthk
11: if Distance estimates of relevant constraints satisfy (5.36) then
12: break
13: end if
14: end if
15: k ← k + 1
16: end while
17: Compute νi for each i ∈ Ñ using (5.39)
18: Construct set N̄ by removing indices from Ñ such that νi > 0.

5.4.2 Distributed Approach for Improving Linear Model

The constraints corresponding to the index set N̄ , which are denoted by Q̄y ≥ t̄, are a

small subset of the nearest reachable constraints according to the linear model. However,
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the distances and orientations of the boundaries of these constraints are only approximations

of the real ones. It may be that errors inherent in the linear model result in many constraints

begin incorrectly left out of the set N̄ of nearest reachable ones. To improve the accuracy

of the distance and orientation of the boundaries, and to try to avoid incorrectly leaving

out critical operating boundaries, a distributed approach is considered.

The main idea of the approach consists of determining m ∈ N key locations where to

re-linearize the system, repeat the distance estimation and filtering algorithms of Section

5.4.1 for each new system, and then update the original linear model with the information

obtained.

More specifically, given a number m, then m locations are determined in the space of

generator and load powers in such a way that they allow exploring the subspace containing

the nearest boundaries of the constraints obtained so far, i.e., Q̄y ≥ t̄. This is done by

considering the matrix

Ms := Q̄TD−1, (5.42)

where D is a diagonal matrix with diagonals −α̃iσi, i ∈ N̄ , α̃ is the vector of boundary

distance estimates, as defined in (5.29), and σ is the vector of norm estimates of constraint

normals, as defined in (5.28). This matrix is referred to as the security matrix and will

also play an important role in the visualization techniques considered below. The m left

singular vectors {ui}i∈[m] associated with the m largest singular values of Ms are obtained.

This is done by first finding the (orthonormal) eigenvectors {vi}i∈[m] associated with the m

largest eigenvalues {λi}i∈[m] of MT
s Ms using an implicitly restarted Lanczos method [45],

and then setting

ui =
Msvi√
λi
, (5.43)

for each i ∈ [m]. This procedure only uses matrix-vector products with Ms (and MT
s ), and

hence Q̄ need not be stored. For each direction ui, the scalar factor βi for reaching the

nearest boundary of the constraints Q̄y ≥ t̄ along ui is obtained by first computing the

vector

γ := (t̄− Q̄y0) ◦ η̄i, (5.44)

where ηi is the element-wise reciprocal of Q̄ui, and then setting βi = γj∗ , where j∗ is given

by

j∗ = argmin{ |γs| | s ∈ [n̄c] }. (5.45)
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The key locations used for re-linearizing the system are then given by

yi = y0 + τβiui, i ∈ [m], (5.46)

where τ ∈ (0, 1), e.g., 0.7, is user-defined.

For each i ∈ [m], the exact system state xi associated with the power vector yi is

obtained by solving the nonlinear power flow equations (5.1) using the Newton-Raphson

algorithm described in Section 3.3. It may be that this power flow algorithm fails due to

the initial point not being close enough to the solution, or due to the power flow equations

having no solution for the power vector yi. In this case, the power flow algorithm is applied

repeatedly along points in the line segment joining y0 and yi, as is done by continuation

methods [2] [17], and the point nearest to yi for which the algorithm succeeds is used. At

this point, the linear model described in Section 5.3 is constructed, giving

Qiy ≥ ti, (5.47)

where

Qi := Ci(Ai)−1Y and ti := di − Ci(Ai)−1bi. (5.48)

The superscript i is used here to differentiate this model from the ones obtained at other

points, i.e., at y0 and yj , j ∈ [m] \ {i}.
For each i ∈ [m], the distance estimation and filtering algorithms of Section 5.4.1 are used

to obtain a small subset of nearest reachable constraints given by Q̄iy ≥ t̄i. Subsequently,

from the constraints Q̄iy ≥ t̄i, only the ones whose constraint normal qi makes an angle

θ less than ϑ, say π/3, with −βiui are selected and used for updating the original linear

model. The reason for doing this is that such constraints are likely to be more accurate

for the linear system obtained at yi than for the original one obtained at y0. Figure 5.1

shows the boundary qT y = t of a constraint based on the original model obtained at y0, the

boundary (qi)T y = ti of the same constraint from the model obtained at yi, and the angle

θ the new constraint normal qi makes with −βiui.
The information obtained from the linear models constructed at the different points yi,

i ∈ [m], is used to update the original linear model as follows: Suppose that for the original
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Figure 5.1: Angle between new constraint normal qi and −βiui.

constraint qT y ≥ t, the variations

(qi)T y ≥ ti, i ∈ I, (5.49)

where I ⊂ [m], are obtained from the linear models constructed at points yi, i ∈ I. Then,

the new constraint is taken as (q′)T y ≥ t′, where

q′ := ζ0q +
ζ1

|I|
∑
i∈I

qi (5.50)

t′ := ζ0t+
ζ1

|I|
∑
i∈I

ti, (5.51)

and ζ0 and ζ1 ∈ (0, 1) such that ζ0 + ζ1 = 1, e.g., ζ0 = 0.25 and ζ1 = 0.75. The following

lemma states an important property of q′ and t′.

Lemma 5.4.4. The new constraint normal q′ and right hand side t′ given by (5.50) and

(5.51), respectively, satisfy

q′ = Y TA−T c̄ (5.52)

t′ = δ̄ − c̄TA−1b, (5.53)
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where

c̄ := ζ0c+
ζ1

|I|
∑
i∈I

AT (Ai)−T ci (5.54)

δ̄ := ζ0t+
ζ1

|I|
∑
i∈I

ti + c̄TA−1b, (5.55)

and c and ci are the normals of the state security constraints obtained at y0 and yi, respec-

tively, corresponding to the constraint qT y ≥ t.

Proof. For each i ∈ [m], using I = A−TAT and the definition of Qi, it follows that

qi = Y T (Ai)−T ci (5.56)

= Y TA−TAT (Ai)−T ci. (5.57)

Hence, from the definition of q′,

q′ = ζ0q +
ζ1

|I|
∑
i∈I

qi (5.58)

= ζ0Y
TA−T c+

ζ1

|I|
∑
i∈I

Y TA−TAT (Ai)−T ci (5.59)

= Y TA−T

(
ζ0c+

ζ1

|I|
∑
i∈I

AT (Ai)−T ci

)
(5.60)

= Y TA−T c̄. (5.61)

Moreover,

t′ = ζ0t+
ζ1

|I|
∑
i∈I

ti (5.62)

= ζ0t+
ζ1

|I|
∑
i∈I

ti + c̄TA−1b− c̄TA−1b (5.63)

= δ̄ − c̄TA−1b. (5.64)

The results from Lemma 5.4.4 show that the original constraint qT y ≥ t may be updated

with information from the new linear models by updating only the state security constraints
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Cx ≥ d, and not the power flow equations Ax = b + Y y. By doing this, the state security

constraints Cx ≥ d are adjusted to compensate for errors not only in C and d, but also in

A and b, and adjustments to one constraint do not affect the accuracy of any other one.

Figure 5.2 shows the updated constraint for the simple example shown in Figure 5.1.

y0

u i

y i

(q i) yT = t i

q yT = t

(q ') yT = t '

Figure 5.2: Resulting constraint (q′)T y ≥ t′ from averaging qT y ≥ t and (qi)T y ≥ ti.

One important property to consider is whether the vectors

νi := AT (Ai)−T ci, (5.65)

for i ∈ I, are sparse. In practice, one may consider only entries of νi that are large enough,

e.g.,

νij ≥ ε1 + ε2‖νi‖∞, (5.66)

where ε1 and ε2 are small positive scalars. Results regarding this matter are reported in

Section 5.6.

5.4.3 Recommended Power Adjustments

To move the system away from the boundaries of the nearest constraints, i.e., the ones

corresponding to the set N̄ , and increase security as measured by M(y), several directions

in the y space are obtained. The first and most effective direction d∗ (among the ones

obtained) is given by

d∗ = ∇M(y0) = Q̄Tλ, (5.67)
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where Q̄ is the matrix whose rows are given by qi, i ∈ N̄ , and λ is the vector whose entries

are given by (qTi y0 − ti)−1, i ∈ N̄ . Again, Q̄ need not be constructed explicitly since only

matrix-vector products are needed for obtaining λ and Q̄Tλ. If ∇M(y0) 6= 0, then d∗ is

an ascent direction for M(y0) and hence moving along d∗ in the vicinity of y0 increases

the security margin. If ∇M(y0) = 0, then y0 is the “most secure” point with respect to

the constraints in N̄ , since it is a global maximum of M(y). However, the direction d∗

may involve a number of generator and load power adjustments that are impractical for

operators to execute. Hence, directions that have similar effects to d∗ but that involve only

a few power adjustments are desirable.

Two practical directions are considered here, each of which involves only one power

adjustment. Other directions involving more power adjustments may be obtained by using

similar ideas to the ones described next. The directions considered here are given by

d1 = eie
T
i d
∗ and d2 = eje

T
j d
∗, (5.68)

where ei and ej are elementary vectors, i.e., having one entry equal to one and the rest

zero, and i and j satisfy

i = argmax
{
|d∗s| | s ∈ [ny]

}
(5.69)

j = argmax
{
|d∗s| | s ∈ [ny] \ {i}

}
. (5.70)

As the next lemma shows, these directions have desirable properties.

Lemma 5.4.5. The directions d1 and d2, as defined in (5.68), are orthogonal and satisfy

∇M(y0)Td1 ≥ 0, ∇M(y0)Td2 ≥ 0, (5.71)

and

‖d1 − d∗‖2 ≤ ‖d2 − d∗‖2 ≤ ‖eseTs d∗ − d∗‖2, ∀s ∈ [ny] \ {i, j}. (5.72)

Proof. Orthogonality is trivial since i 6= j. The inequalities (5.71) follow from the fact that

for any s ∈ [ny],

∇M(y0)T ese
T
s d
∗ = (∇M(y0)s)

2. (5.73)
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Lastly, the inequalities (5.72) follow from (5.69), (5.70) and the identity

∑
r 6=k

a2
r =

∑
r 6=m

a2
r + (a2

m − a2
k), (5.74)

for all vectors a ∈ Rny and indices k and m ∈ [ny].

Lemma 5.4.5 shows that the “practical” directions d1 and d2 are both ascent directions

of M(y) unless d∗i or d∗j is zero, which from the definition of i and j would imply that

∇M(y0) is zero or has at most one nonzero entry. Moreover, it also shows that these two

directions are the closest directions to d∗, in the Euclidean sense, that have only one nonzero

power adjustment.

Here, it has been assumed that all generators and loads of the system are controllable

by the system operator. In practice, operators may be able to adjust only a subset of these

or prefer adjusting some, e.g., generators, over others, e.g., loads, due to their economic

effects. Restricting power adjustments to controllable devices may be incorporated into the

procedure described above by only considering directions for which all entries associated

with uncontrollable devices are zero. Favoring some adjustments over others due to eco-

nomic factors cannot be directly incorporated into the procedure described here and it is a

subject of future research.

5.4.4 Visualization

After obtaining the nearest reachable boundaries Q̄y ≥ t̄ associated with the index set N̄ ,

and recommended power adjustments d∗, d1 and d2 for improving security margins, this

information needs to be presented to operators in a concise manner. Two approaches are

considered for constructing a simple two-dimensional visualization of this information. They

are based on finding a suitable two-dimensional plane that captures information about the

nearest boundaries, and constructing a representation of the boundaries and recommended

power adjustments on that plane.

A pair of orthonormal vectors u1 and u2 in the space of generator and load powers define

a plane P on that space given by

P = span{u1, u2}. (5.75)

Any point on that plane may be expressed as y = y0 + Uw, where U is the matrix whose
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columns are u1 and u2, and w ∈ R2. On that plane, the nearest reachable boundaries

Q̄y ≥ t̄ are given by

Q̄y ≥ t̄ ⇐⇒ Q̄(y0 + Uw) ≥ t̄ (5.76)

⇐⇒ Q̄Uw ≥ t̄− Q̄y0 (5.77)

⇐⇒ Q̂w ≥ t̂, (5.78)

where Q̂ = Q̄U and t̂ = t̄ − Q̄y0. As the next lemma shows, boundary distances on the

plane are greater than or equal to boundaries in the original space.

Lemma 5.4.6. For any constraint qT y ≥ t and two-dimensional plane P spanned by or-

thogonal vectors u1 and u2, the boundary distance on P is greater than or equal to the

boundary distance in the original space.

Proof. Using (5.77), the constraint on the plane is given by qTUw ≥ t − qT y0. Applying

Lemma 5.4.1 to both constraints qT y ≥ t and qTUw ≥ t− qT y0, and using the fact that y0

corresponds to w = 0 and is strictly feasible, the boundary distance in the original space is

given by

δ :=
qT y0 − t
‖q‖2

, (5.79)

while the one on the plane is given by

δ̄ :=
qT y0 − t
‖UT q‖2

. (5.80)

Since U has orthonormal columns, it holds that

‖UT q‖2 ≤ ‖UT ‖2‖q‖2 ≤ ‖q‖2. (5.81)

Hence, it follows that δ̄ ≥ δ.

On a plane P spanned by the two orthonormal columns of a matrix U , any recom-

mended direction of generator and load power adjustments may be projected to obtain a

corresponding direction on the plane. For one such a direction d ∈ Rny , the projected

direction is given by the vector UTd in terms of the basis given by the orthonormal columns

of U .
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One criterion for choosing a visualization plane is to try to maintain boundary distances

of the nearest boundaries as much as possible. This is desirable since showing a boundary

that is very close to the operating point as being far away may give operators a false sense

of security. A particular plane that attempts to maintain boundary distances giving more

emphasis to the ones that are nearest is the plane Ps given by

Ps = span{u1, u2}, (5.82)

where u1 and u2 are the left singular vectors associated with the two largest singular values

of the security matrix Ms defined in Section 5.4.2. This plane is referred to as the security

plane, and its key property is formalized by the next theorem.

Theorem 5.4.7. The matrix U∗ whose orthonormal columns span the security plane Ps

solves

maximize
U

∑
i∈N̄

β2
i ‖UT qi‖22 (5.83)

subject to UTU = I

U ∈ Rny×2,

with weights

βi = −(α̃iσi)
−1, i ∈ N̄ , (5.84)

where α̃ is the vector of boundary distance estimates, as defined in (5.29), and σ is the

vector of norm estimates of constraint normals, as defined in (5.28).

Proof. Letting ai = βiqi, for each i ∈ N̄ , and A the matrix whose columns are ai, i ∈ N̄ ,

the objective function of (5.83) may be expressed as

∑
i∈N̄

β2
i ‖UT qi‖22 =

∑
i∈N̄

(βiqi)
TUUT (βiqi) (5.85)

=
∑
i∈N̄

aTi UU
Tai (5.86)

= Tr(ATUUTA) (5.87)

= Tr(UTAATU), (5.88)
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where Tr(·) gives the trace of a matrix. Hence, problem (5.83) is equivalent to

maximize
U

Tr(UTAATU) (5.89)

subject to UTU = I

U ∈ Rny×2.

It is well known that the solution of (5.89) is given by the matrix U whose columns u1 and

u2 are the eigenvectors corresponding to the two largest eigenvalues of AAT [25] [42] [66].

Hence, u1 and u2 are the left singular vectors corresponding to the two largest singular

values of A. Since the matrix A is equal to the security matrix Ms defined in (5.42) for

weights given by (5.84), it follows that the matrix U∗ used to define the security plane is

the solution of (5.83) with such weights.

Since boundary distances on a plane are never smaller than in the original space,

as shown by Lemma 5.4.6, maintaining boundary distances is equivalent to minimizing

boundary distances on the plane. Since the boundary distance of a plane constraint

qTUw ≥ t− qT y0 is given by
qT y0 − t
‖UT q‖2

, (5.90)

minimizing its boundary distance over U is equivalent to maximizing the quantity ‖UT q‖22.

From this, it is clear that the security plane Ps, which uses a matrix U that solves (5.83),

attempts to maintain boundary distances giving more emphasis to the ones that are closer

to the current point y0.

Inevitably, the boundaries of some of the constraints in N̄ that are not nearest to the

point y0, i.e., the ones that are given low weights by the security plane, may appear on Ps

further than they are in the original space. Hence, adjustments may be made to the right

hand sides of the resulting plane constraints to correct for this. More specifically, t̂ in (5.78)

may be adjusted such that

t̂i = −α̃i‖UT qi‖2, (5.91)

for each i ∈ N̄ , where α̃ is as defined in (5.29).

Another criterion for choosing a visualization plane is to capture as much information

as possible about the geometry of the boundaries as seen by specific control actions. In this

case, two control actions ∆y1 and ∆y2 characterizing generator and load power adjustments
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may be used to define a control plane. This plane, which is denoted by Pc, is given by

Pc = span{u1, u2}, (5.92)

where u1 and u2 are unit vectors parallel to ∆y1 and ∆y2, respectively. In particular,

the sparse recommended adjustments d1 and d2 defined Section 5.4.3 may be used for this

purpose.

Scale and Boundaries

To draw the boundaries of the plane constraints Q̂w ≥ t̂, a scale must be determined along

with boundaries on w. This may be done by setting

wmax = sfδmine (5.93)

wmin = −sfδmine, (5.94)

where sf is a scaling factor, e.g., 4 or 5, δmin is the distance to the closest boundary, and

e ∈ R2 is the vector of ones.

5.4.5 Tracing Nonlinear Boundaries

Let P be the plane defined by

P = span{u1, u2}, (5.95)

where u1 and u2 are unit vectors in the space of generator and load powers. Then, the

boundary of a security constraint, say hi(x) ≤ 0, on P , is given by

T := { w ∈ R2 | Φ(x,w) = 0 for some x ∈ R2n }, (5.96)

where the function Φ is defined as

Φ(x,w) :=

 Y (y0 + Uw)− f(x)

hi(x)

 , (5.97)

U is the matrix with columns u1 and u2, and Y , y0 and f are as defined in Section 5.2.
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Given bounds wmin and wmax ∈ R2, the set of w such that

w ∈ T ∩ {w ∈ R2 | wmin ≤ w ≤ wmax } (5.98)

may be found by sweeping the value of one of the two entries of w, say w1, and obtaining the

corresponding values of w2 using the Newton-Raphson method with a predictor-corrector

strategy, as is commonly done in homotopy-based methods [23]. This procedure may be

stopped when the NR method fails or when w reaches its bounds. Figure 5.3 illustrates this

approach. There, the predictor step predicts the value w̃2 for the new value w′1 of w1. This

prediction typically results in the point (w′1, w̃2) not being in the desired set. The corrector

step is hence applied at this point to restore feasibility, giving the new point (w′1, w
′
2).

(w1,w2)∈T (w ' 1,w ' 2)∈T

(w ' 1, w̃2)∉T

Figure 5.3: Prediction-correction strategy for tracing nonlinear boundaries.

Information from the linear constraint on the plane, say q̂Tw ≥ t̂, corresponding to the

constraint hi(x) ≥ 0 may be exploited for simplifying the tracing of the nonlinear boundary.

This may be done by obtaining the point on the linear version of the boundary that is closest

to the current operating point y0, i.e.,

ŷ := y0 + Uŵ, (5.99)

where ŵ = q̂t̂/‖q̂‖22, and using ŵ and x̂ := A−1(b + Y ŷ) to start the predictor-corrector

procedure. Moreover, the orientation of q̂ may be used for determining whether to use w1

or w2 as the independent or “sweeping” variable. For example, if |q̂2| > |q̂1|, then w1 may

be preferable as the independent variable.
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5.5 Implementation

All the algorithms described were implemented in the Python programming language. The

linear algebra operations were performed using the Python packages Numpy and Scipy, and

the sequential version of the multifrontal sparse direct solver MUMPS [3] through the Python

wrapper pymumps. Parallelization of the re-linearizations of the system for improving the

model accuracy was implemented using Python’s multiprocessing module.

5.6 Experiments

Experimental results showing the performance of the algorithms described for determin-

ing and visualizing branch thermal and voltage magnitude limits are presented. These

include results regarding the accuracy of the linear model, the effectiveness of the matrix-

free stochastic approach for estimating constraint boundary distances, sample linear and

nonlinear boundary visualizations on different planes, and execution time profiles of all the

main algorithm steps.

The COB test cases used were obtained from three power networks of two different

North American System Operators. The data obtained for these cases consisted of load flow

data, which included branch thermal limits and generator active power limits. For voltage

magnitude limits, values of v ± 0.1 per unit bus nominal voltage were used, where v is the bus

voltage magnitude given in the base case data. For load active power limits, values of 0 and

2P were used, where P is the load active power given in the base case data. Table 5.1 shows

properties of the COB test cases. Cases A and B had one and four branch thermal violations,

respectively, at the given base case power. To obtain an initial strictly feasible state, the

thermal bounds of the corresponding violated constraints were set to a value 10% larger than

the branch current magnitude. Case C was a problematic power flow case for which active

and reactive power injections had to be modified significantly in order to make it solvable

by the available power flow solvers. The resulting case had several thermal violations, and

these were eliminated by increasing the corresponding thermal bounds as done for Cases A

and B. Since the resulting Case C had a significant number of thermal bounds that were

somewhat arbitrary, this case was only used for evaluating the computational requirements

of the algorithms.
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Table 5.1: Properties of COB test cases.

name buses branches voltage constraints thermal constraints

Case A 2454 2781 4908 5562

Case B 2468 3215 4936 6430

Case C 45286 58994 90572 117988

5.6.1 Model Accuracy

The accuracy of the linear model described in Section 5.3 near the critical operating bound-

aries was studied. This was done by first extracting the 200 nearest linear boundaries and

filtering the reachable ones using the algorithms described in Section 5.4.1. For each of

the obtained linear boundaries, the boundary point y nearest to the current point y0 was

obtained, which is of the form y = y0 − αq, where q is the constraint normal and α is some

positive scalar. Then, the constraint quantity, i.e., bus voltage magnitude or branch current

magnitude, corresponding to the system state at point y was obtained using both the linear

and nonlinear models, and the error between these two was computed. These errors were

then plotted as a function of the distance of the boundary point from the current point y0.

This procedure was repeated twice after updating the linear model using the distributed

algorithm described in Section 5.4.2.

For some of the constraints, it was not possible to obtain the system state based on

the nonlinear model corresponding to the nearest point on the linear boundary. This was

due to the point on the linear boundary being near or beyond the boundary of the feasible

region of the nonlinear power flow equations. The procedure used for trying to obtain the

nonlinear system state consisted of solving a sequence of closely-related power flow problems

with the NR method while gradually changing the loading conditions in the direction of −q.
When this procedure failed due to approaching the feasibility boundary and encountering

a near-singular Jacobian of the power flow constraints, the loading conditions and system

state associated with the last problem solved in the sequence were used for evaluating the

accuracy of the linear model. This was observed to occur mostly for voltage boundaries

for Case B, for which it affected around 50% of the constraints considered. For thermal

constraints or for Case A, this was observed to occur only for about 5% of the constraints

considered.

The distributed algorithm for updating the linear model used m = 8 parallel processes,

considered ñc = 100 nearest constraints, used a maximum angle ϑ = π/3, and used weights
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ζ0 = 0.25 and ζ1 = 0.75 for the averaging step. Figures 5.4 and 5.5 show the results

obtained. In the figures, voltage errors are shown in units or per unit nominal voltage,

while current magnitude errors are shown as percentages of branch thermal ratings.

Figure 5.4: Model accuracy near boundaries of COB Case A.

Figure 5.5: Model accuracy near boundaries of COB Case B.

From the plots, several observations can be made: For Case A, the model errors associ-

ated with the few nearest voltage boundaries are fairly small (≤ 0.02 p.u.), and, except for a

few constraints, so are the errors associated with the thermal boundaries (≤ 3%). For Case

B, the linear model has large errors associated with both voltage and thermal boundaries

that are near the current operating point. The distributed algorithm described in Section

5.4.2 reduces significantly the large errors associated with near thermal boundaries of Case

A and Case B, and the most significant error reductions occur after the first model update.
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This algorithm also reduces slightly the model errors associated with the few nearest voltage

boundaries of Case A. However, it does not reduce the large errors associated with a few

near voltage boundaries of Case B. One possible reason for this is the construction and use

of ill-conditioned linear systems at the new linearization points due to these points being

near the power flow feasibility boundary. To investigate this, the condition number of the

Jacobian of the power flow constraints of Case B was obtained at several points. These

points included the near-boundary points used to compare the linear and nonlinear system

models that resulted in larger errors, and the corresponding new linearization points used

by the distributed approach. It was found that at these points the condition numbers were

around 3× 108 and only slightly larger than those obtained at the current point of Case B

and at points associated with small model errors, which were around 1×108. Also, compared

to the condition number obtained at the current point of Case A, they were about one order

of magnitude larger. These numbers suggest that using poorly-conditioned linear systems

is not the cause of the inability of the distributed approach to reduce the large model errors

associated with the near voltage boundaries of Case B. Hence, it is conjectured that this

inability is attributed to the fact that Case B is near the power flow feasibility boundary, as

already noted, where voltages have a more nonlinear relation with powers (see PV curves in

[26]). Lastly, another observation is that most of the thermal errors are under-estimations,

while the voltage errors are over-estimations. These properties require further investigation

and are subject of future research.

With regards to the operation of the distributed algorithm for updating the linear model,

two important quantities were noted. One of these quantities was the percentage of nonzero

entries of the new state-space constraint normals (5.65) returned by each parallel process.

It was observed that this number on average was about 5% for Case A and about 25% for

Case B by applying (5.66) with ε1 = 10−7 and ε2 = 10−7. The other important quantity

was the number of constraints returned by each process to be used for updating the linear

model. It was observed that with the maximum angle ϑ = π/3, this number was on average

about 5 for both cases.

5.6.2 Nearest Boundaries

The effectiveness of the matrix-free stochastic algorithm described in Section 5.4.1 for es-

timating boundary distances and filtering the nearest ones was tested. This was done by

using the algorithm to obtain an approximate set of the 500 nearest constraints for each test
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case, and determining the percentage of the actual nearest 500 and nearest 50 contained in

that set. A brute force approach that constructs each constraint normal was used for deter-

mining the actual nearest constraints (according to the linear model). Tables 5.2-5.4 show

the results obtained. The stochastic algorithm was executed 10 times for each case, and

hence results are shown as µ± σ, where µ denotes the mean and σ the standard deviation

of a particular quantity. An interesting note is that although the algorithm for estimating

boundary distances was derived assuming Gaussian random vectors z, it was observed to

require fewer samples when using z consisting of independent and identically distributed

uniform random variables with zero mean and unit variance. The results shown here were

obtained using this enhancement.

Table 5.2: Near-constraint filtering on COB Case A.

algorithm time (s) samples % top 500 % top 50

stochastic 0.08± 0.004 53± 3 95.6± 0.5 100± 0

brute-force 13.92 - 100 100

Table 5.3: Near-constraint filtering on COB Case B.

algorithm time (s) samples % top 500 % top 50

stochastic 0.08± 0.006 52± 4 94.7± 1.0 100± 0

brute-force 15.66 - 100 100

Table 5.4: Near-constraint filtering on COB Case C.

algorithm time (s) samples % top 500 % top 50

stochastic 1.28± 0.09 53± 4 95.1± 1.6 100± 0

brute-force 4836.34 - 100 100

The results show that the matrix-free stochastic approach is effective for estimating

boundary distances and filtering the nearest constraints, and is suitable for online applica-

tions due to its speed. On the other hand, the brute-force approach is significantly slower

and impractical for large cases such as Case C, for which it takes more than 1 hour to

determine boundary distances.
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5.6.3 Visualization

The 200 nearest constraints of both Case A and Case B were obtained and from these

the ones that are reachable within the generator and load power bounds were extracted

using the algorithms of Section 5.4.1. The resulting constraints were reconstructed on both

the security and control planes, as described in Section 5.4.4. Figures 5.7 and 5.8 show

the plots obtained and Figure 5.6 provides the legend for the plots. It is noted that for

constraint reconstructions on the security plane, boundary distances on the plane were

adjusted to reflect distances on the original space in order to visualize more boundaries.

For reconstructions on the control plane, boundary distances reflect actual distances on the

plane. Also, for security-plane plots, the single-control recommended directions d1 and d2

are shown as d1 +d2, while for the control-plane plots, they are shown as separate directions

since they are the basis for the plane.

Figure 5.6: Legend for boundary plots.

Figure 5.7: Linear boundaries of COB Case A.
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Figure 5.8: Linear boundaries of COB Case B.

As the figures show, both cases appear to have boundaries that are only a few MW

away from the current operating point. These small MW distances can be attributed to

the following reasons: Both cases had branches with relatively small thermal limits (with

respect to other branches in the network) that were close to being reached at the current

operating point. For example, Case A has a branch with a thermal limit of 13 MVA and an

apparent power flow of 12 MVA at the current operating point. Case B, as stated before, is

a more ill-conditioned case for which the current operating point is closer to the boundary

of the power flow constraints, around which voltages tend to change more rapidly (see PV

curves in [26]). Also, distances shown in the figures only include MW changes of generators

and loads, and not the implicit MVAr changes due to our assumption that power factors

remain constant (Section 5.3). Finally, distances shown are in terms of Euclidean distances

in the space of generator and load powers, i.e., ‖∆y‖2, which are smaller than total absolute

power changes, i.e., ‖∆y‖1. They are related by the inequalities

‖∆y‖2 ≤ ‖∆y‖1 ≤
√
ny‖∆y‖2, (5.100)

where ny is the dimension of the vector ∆y. Considering other ways to measure distance,

such as using the total absolute changes in generator and load powers, is subject of future

research.

To compare linear boundaries with their nonlinear counterparts, the algorithm described

in Section 5.4.5 was used to trace the nonlinear boundaries. This was done for only a few

of the nearest voltage and thermal security constraints. Figure 5.9 shows the linear and
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nonlinear boundaries of the nearest voltage constraints of Case A, while Figure 5.10 shows

the linear and nonlinear boundaries of the nearest thermal constraints of Case B. For both

of these figures, the plots reflect actual distances on the plane.

Figure 5.9: Linear and nonlinear voltage boundaries of COB Case A.

Figure 5.10: Linear and nonlinear thermal boundaries of COB Case B.

5.6.4 Computational Requirements

The computational requirements of the tasks performed for determining and visualizing

critical security boundaries were evaluated. This was done by measuring the time spent

by each of the following tasks: finding the nonlinear system state, constructing the linear

model, filtering the 100 nearest constraints, filtering the ones that are reachable within the

power bounds, finding recommended adjustments, obtaining a basis for the security plane,
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reconstructing the constraints on the plane, and tracing the linear boundaries for creating

the display. Tables 5.5-5.7 show the results obtained for each of the test cases.

Table 5.5: Execution times of algorithms on COB Case A

task time (s) time (%)

finding nonlinear state 0.065 4.09

constructing linear model 1.041 65.42

filtering 100 nearest constr. 0.057 3.58

filtering reachable constr. 0.143 8.99

finding rec. adjustments 0.003 0.19

finding security plane basis 0.076 4.78

reconstructing constr. on plane 0.004 0.25

tracing linear boundaries 0.202 12.70

Total 1.591 100.0

Table 5.6: Execution times of algorithms on COB Case B

task time (s) time (%)

finding nonlinear state 0.057 3.43

constructing linear model 1.174 70.59

filtering 100 nearest constr. 0.079 4.75

filtering reachable constr. 0.145 8.72

finding rec. adjustments 0.003 0.18

finding security plane basis 0.061 3.67

reconstructing constr. on plane 0.004 0.24

tracing linear boundaries 0.140 8.42

Total 1.663 100.00
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Table 5.7: Execution times of algorithms on COB Case C

task time (s) time (%)

finding nonlinear state 2.620 8.49

constructing linear model 23.662 76.64

filtering 100 nearest constr. 0.875 2.83

filtering reachable constr. 2.379 7.70

finding rec. adjustments 0.050 0.16

finding security plane basis 1.079 3.49

reconstructing constr. on plane 0.073 0.24

tracing linear boundaries 0.139 0.45

Total 30.877 100.00

The results show that by far the most time-consuming task is constructing the linear

model. This task involves constructing the matrices and vectors A, b, Y , y0, C and d,

as described in Section 5.3. The reason for this task being slow is that, in the current

implementation, the routines for constructing these matrices and vectors are written in

Python, which is particularly slow for this type of operations. This is the reason why

the routines for performing function evaluations in the power flow and OPF algorithms of

Chapters 3 and 4, respectively, were implemented in C and wrapped using Python’s C API.

From experience, it is expected that if these routines are implemented in C, they would

be around 100 times faster and the entire procedure would take around 0.5 seconds for

Cases A and B, and around 7 seconds for the Case C. In this case, the execution time of

the algorithm would be dominated by the time spent filtering reachable constraints and

drawing linear boundaries, for Cases A and B, and by the time spent finding the nonlinear

state (solving the initial power flow given the current loading conditions) and filtering the

reachable constraints for Case C.

The computational requirements of the tasks for updating the linear model were also

evaluated. For doing this, the distributed algorithm for updating the linear model was

executed using 8 parallel processes for Cases A and B, and 3 parallel processes for Case

C. The reason for using only 3 processes for the large case is that the computer used for

the experiment did not have enough memory to run more. Tables 5.8-5.10 show the times

required by each task. The second through fifth tasks involve obtaining the system state

based on the nonlinear model (solving around three power flow problems), constructing the
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linear model by linearizing the system at the new state, and filtering the nearest and reach-

able constraints. They are performed by parallel processes and hence time values shown for

these tasks are averages. The last two tasks involve applying the filtering algorithms again

in order to obtain a new set of nearest reachable constraints based on the updated linear

model.

Table 5.8: Execution times of model-update tasks on COB Case A

task time (s) time (%)

finding new linearization locations 0.124 4.13

finding nonlinear state (ave.) 0.355 11.83

constructing linear model (ave.) 1.795 59.83

filtering 100 nearest constr. (ave.) 0.122 4.07

filtering reachable constr. (ave.) 0.233 7.77

updating state security constraints 0.009 0.30

transferring data to/from workers 0.162 5.40

re-filtering 100 nearest constr. 0.057 1.90

re-filtering reachable constr. 0.143 4.77

Total 3.000 100.00

Table 5.9: Execution times of model-update tasks on COB Case B

task time (s) time (%)

finding new linearization locations 0.091 2.67

finding nonlinear state (ave.) 0.373 10.95

constructing linear model (ave.) 2.057 60.37

filtering 100 nearest constr. (ave.) 0.142 4.17

filtering reachable constr. (ave.) 0.249 7.31

updating state security constraints 0.027 0.79

transferring data to/from workers 0.244 7.16

re-filtering 100 nearest constr. 0.079 2.32

re-filtering reachable constr. 0.145 4.26

Total 3.407 100.00
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Table 5.10: Execution times of model update tasks on COB Case C

task time (s) time (%)

finding new linearization locations 1.295 3.18

finding nonlinear state (ave.) 5.324 13.07

constructing linear model (ave.) 23.581 57.85

filtering 100 nearest constr. (ave.) 1.123 2.76

filtering reachable constr. (ave.) 2.643 6.49

updating state security constraints 0.085 0.21

transferring data to/from workers 3.442 8.45

re-filtering 100 nearest constr. 0.875 2.15

re-filtering reachable constr. 2.379 5.84

Total 40.747 100.00

From the execution times of the tasks for updating the linear model, it is observed that

the most time consuming ones are constructing the linear model and finding the nonlinear

state. Again, with a C implementation of the routines for constructing of the linear model,

as in the PF and OPF algorithms of Chapters 3 and 4, the construction task would be

computationally negligible and updating the linear model would take around 1.5 seconds

for Cases A and B, and around 15 seconds for Case C.

Lastly, the computational requirements of the algorithm for tracing nonlinear boundaries

were evaluated. This was done by measuring the time required for tracing various voltage

and thermal boundaries for each case. For a total number of boundary points equal to

200, it was found that the tracing algorithm required roughly about 6, 6, and 80 seconds

for Cases A, B and C, respectively, per boundary. Hence, tracing one nonlinear boundary

alone is much more computationally expensive than determining and visualizing several

critical linearized boundaries. From this, it is concluded that for any application that traces

nonlinear boundaries using the approach described in Section 5.4.5, different boundaries

should be traced in parallel.

5.7 Conclusions

In this chapter, the problem of determining and visualizing critical security boundaries

was considered. In particular, a modeling approach was described that is based on a linear

system model and a problem transformation that characterizes security boundaries in terms

of generation and load powers. Efficient filtering algorithms were proposed for estimating
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boundary distances, finding the nearest ones, and determining the ones that can actually be

reached or violated within the given power bounds. With respect to the set of nearest and

reachable constraints, a technique for determining power adjustments that move the system

away from the boundaries was described. A visualization procedure was then proposed for

showing the nearest reachable boundaries as well as the recommended power adjustments

on a two dimensional diagram. This procedure consisted of first finding a suitable plane

and then re-constructing the constraints on that plane. Two planes were considered: one

that attempts to preserve boundary distances while giving more emphasis to the ones that

are closer to the operating point, and another that captures boundaries that are relevant

to specific control actions. Experimental results showing the efficiency and effectiveness of

the filtering and visualization techniques were presented as well as sample visualizations.

The accuracy of the linear system model considered was evaluated, and it was found

that it provided reasonable accuracy for many but not all of the nearest security boundaries.

To try to improve its accuracy, a distributed algorithm was described that re-linearizes

the system at key locations and incorporates the information obtained into the original

system model. Experimental results presented showed that this algorithm was most effective

in reducing model errors associated with near thermal boundaries, and least effective in

reducing model errors associated with near voltage boundaries. It was conjectured that

the reason for this is that voltage boundaries are more nonlinear than thermal boundaries,

especially for ill-conditioned cases that are closer to their loadability limit.

Lastly, a technique for tracing nonlinear boundaries that utilizes information from the

linear boundary approximations was described. This technique is based on applying the

Newton-Raphson process repeatedly using a prediction-correction strategy. It was found

that tracing only one nonlinear boundary using this approach was much more computa-

tionally expensive that determining and visualizing linearized boundaries with the proposed

approach. Based on this, it was concluded that tracing nonlinear boundaries should be done

in parallel in order to be potentially suitable for online applications.



Chapter 6

Conclusions

In this work, modeling and numerical optimization techniques were explored for overcoming

the limitations associated with current algorithms used for power network operations and

planning. Current algorithms are typically based on heuristics and have worked well in

the past, but their limitations are compromising system efficiency and reliability as grids

become more complex, variable and unpredictable, and operate closer to their limits.

With regards to scenario analysis, current power flow algorithms lack robustness, and

this complicates system analyses and potentially limits the ability of operators and planners

to assess system performance and security. To address this, a new problem formulation

was explored together with robust optimization techniques. The resulting algorithm was

shown to be much more robust and informative than a benchmark algorithm representing

current practices. The algorithm was also found to be slower than the benchmark method

for simple cases. Hence, it was suggested that the new algorithm be used on challenging

scenarios for which current algorithms fail or sensitivity information is required. Future

directions for enhancing this work may be to develop a hybrid algorithm that combines the

fast NR algorithm with the robust techniques explored here to produce a single tool. Also,

techniques for reducing the number of iterations of the proposed algorithm may be explored

in the future by using a statistical approach. The large number of iterations required by

the proposed method is partly attributed to a competition between the objective function

and the constraints. The objective function used in this work was the same for all cases.

Statistics or Machine Learning techniques may be used for determining the best objective

function, or equivalently, the most suitable prior distribution of a power flow solution, for a

specific network based on historical data. Lastly, ways of extending the techniques explored
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here to handle other problem elements that are typically handled with heuristics in current

algorithms, such as DC lines, may be explored.

With regards to system planning and control, current optimal power flow algorithms

typically use inadequate rounding techniques for handling discrete variables, and may rec-

ommend an impractical number of control actions. These deficiencies were addressed here

by exploring the use of a smooth sparsity-inducing penalty function and parallel processing.

The smooth sparsity-inducing function was found to be effective for obtaining a manageable

number of control actions. The parallel processing approach, which was built on top of the

robust techniques proposed for solving power flow problems, was found to allow obtaining

higher-quality solutions than a benchmark method representing current practices. Future

directions for enhancing this work may be to test the proposed techniques for handling dis-

crete variables on large-scale cases using computer clusters. Other ways of parallelizing the

exploration of the discrete-variable space may be considered. For example, instead of using

the solution estimate of the “best” discrete point evaluation for starting the next iteration,

one may use the best two or more of these and start several new iterations in parallel. Also,

the techniques proposed here for handling discrete variables may be compared or enhanced

with other techniques that have been proposed in the OPF literature, such as sequential

MILP and progressive rounding.

With regards to online security assessment, current methods rely on operator experience

and computer simulations that are computationally expensive for determining and visual-

izing critical operating boundaries. These deficiencies were addressed by exploring efficient

techniques based on a linear system model and matrix-free methods. These techniques were

found to allow quick identification of critical thermal and voltage security boundaries, and

determination of suitable visualization planes and scales. The accuracy of the results ob-

tained was found to be acceptable for most but not all of the system boundaries. However, a

proposed distributed approach for improving the linear system model was found to be effec-

tive for reducing the model errors associated with the nearest thermal boundaries. Future

directions for enhancing this work may be to consider other ways of measuring boundary

distances. One example would be to use the total absolute changes in generator and load

powers instead of the Euclidean distance. Ways of incorporating reactive power limits of

generators and their effect on voltage regulation need to be explored. The proposed tech-

niques may be also extended to consider post-contingency constraints and more complex
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operating boundaries. Post-contingency constraints may be considered without naively re-

peating the entire procedure for each contingency. This may be done by exploiting the

fact that the linear model of a contingency case is very similar to the one of the base case,

and that contingency effects may be mostly local. Considering more complex operating

boundaries, such as voltage stability boundaries, is expected to be challenging since the

applicability of a linear model for this is questionable. Lastly, ways of incorporating and

taking advantage of the techniques described here in current security assessment practices

need to be determined. The algorithms presented here, given information about the current

loading conditions, can quickly provide a visualization of the critical thermal and (simple)

voltage boundaries and power adjustments to improve security. The visualization plane

and scale obtained are dynamic and change according to the loading conditions and state

of the system. The information obtained with the proposed techniques may be used to

define “power transfer studies” that rely less on historical data and obtain fast approxi-

mate boundary visualizations. These may then be enhanced by applying more accurate

but computationally expensive methods based on system simulations to improve security

awareness.



Appendix A

Global Convergence

Under the assumption that bounded power mismatches implies bounded voltage magni-

tudes, it is shown that the sequence of iterates {xk} of the power flow algorithm described

in Section 3.5 has a feasible point (according to the required tolerance) or a limit point that

is a stationary point of the function cT c (restricted to the set of x such that Ax = b). This

result is obtained without assuming that the Jacobian of the power flow equations is full

rank. In the following proofs, the subscript i is used for buses or terms inside a sum or

product series, the subscript j is used to associate an object with the j-th inner iteration of

subproblem (3.36), and the subscript k is used to associate an object with the k-th outer

iteration. The continuity of the functions involved is also used throughout. To simplify the

notation, derivatives are assumed to be with respect to x and hence a subscript x is not

used for derivatives of functions that include other variables.

The reader is reminded that x is a vector of voltage magnitudes {vi}i∈[n]\{s}, voltage

angles {θi}i∈[n]\{s}, generator reactive powers {Qgi }i∈R, and positive and negative regulated

voltage magnitude deviations {yi}i∈R and {zi}i∈R, respectively. The function Φ is the

smooth vector-valued function whose scalar function entries are given by (3.23) and (3.24).

The objective function ϕ is a strongly convex non-negative quadratic function, and the

function f is the vector-valued function of active and reactive power mismatches. The

function c consists of both f and Φ, as defined in (3.34). Throughout this section, J is used

to denote the Jacobian of c, and Z is used to denote the matrix whose columns span the

null space of A, the Jacobian of the linear equality constraints.

When dealing with outer iterations, ϕk, fk, Φk, ck and Jk are used to denote ϕ(xk),

f(xk), Φ(xk), c(xk) and J(xk), respectively. Similar shorthand notation is used when dealing
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with inner iterations.

Assumption 1. For all M > 0, the set {x | f(x)T f(x) ≤M} has bounded voltage magni-

tudes {vi}i∈[n]\{s}.

Lemma A.0.1. For any given penalty parameter µ > 0 and vector λ, the search directions

{pj}j∈Z+ used during the solution of subproblem (3.36) are descent directions. That is, they

satisfy

∇Lµ(xj , λ)T pj < 0 (A.1)

for each j ∈ Z+ such that ZT∇Lµ(xj , λ) 6= 0.

Proof. Suppose not. Then, for some j such that ZT gj 6= 0, where gj := ∇Lµ(xj , λ),

gTj pj ≥ 0. Hence, pj does not satisfy (3.48) and must have been obtained from

ZT H̃µ(xj , λ)Zqj = −ZT gj (A.2)

and pj = Zqj . In that case, since H̃µ(xj , λ) � 0, Z is full rank and ZT gj 6= 0, it follows

that qj 6= 0 and

gTj pj = gTj Zqj = −qTj ZT H̃µ(xj , λ)Zqj < 0, (A.3)

which is a contradiction.

Since ϕ(x) is non-negative for all x, it is clear that for any given µ and λ, the function

Lµ(·, λ) is bounded below. From this, Lemma A.0.1, and the continuity of the functions

involved, it can be shown that there exists a step length that satisfies the strong Wolfe

conditions (3.5) and (3.6), provided that c1 and c2 satisfy 0 < c1 < c2 < 1 [67]. From this,

the following lemma is obtained.

Lemma A.0.2. For any given µ > 0 and vector λ, the sequence {Lµ(xj , λ)}j∈Z+ is mono-

tonically non-increasing and convergent, where {xj}j∈Z+ are the inner iterates generated

during the solution of subproblem (3.36).

Proof. Let hj and gj denote Lµ(xj , λ) and∇Lµ(xj , λ), respectively, for each j. From Lemma

A.0.1, for each j such that ZT gj 6= 0, it holds that gTj pj < 0. Hence, for each such j, the

line search procedure gives αj > 0 such that

hj+1 ≤ hj + c1αjg
T
j pj . (A.4)
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This implies that hj+1 ≤ hj for all j and hence that the sequence {hj} is monotonically

non-increasing. Since Lµ(·, λ) is bounded below, the sequence {hj} is bounded and hence

also convergent. If ZT gj = 0 for some j, the process clearly stops and there is nothing more

to check.

Using Lemma A.0.2 and exploiting the properties of the objective function ϕ, a com-

pactness result can be obtained for the inner iterates.

Lemma A.0.3. For any µ > 0 and vector λ, the sequence of inner iterates {xj}j∈Z+

generated during the solution of subproblem (3.36) lies in a compact set.

Proof. From Lemma A.0.2, there exist N1, N2 > 0 such that

N1 ≤ µϕj − µλT cj +
1

2
‖cj‖22 ≤ N2 (A.5)

for all j. This implies that the sequence {ϕj} is bounded. Since ϕ is non-negative, quadratic

and strongly convex, it can be expressed as

ϕ(x) = (x− a)TA(x− a) + b, (A.6)

where a is some vector, A is a positive definite matrix, and b is a non-negative scalar. Since

‖xj‖2 ≤ ‖xj − a‖2 + ‖a‖2 (A.7)

= ‖A−1/2A1/2(xj − a)‖2 + ‖a‖2 (A.8)

≤ ‖A−1/2‖2‖A1/2(xj − a)‖2 + ‖a‖2 (A.9)

≤ ‖A−1/2‖2ϕ1/2
j + ‖a‖2 (A.10)

for all j, it follows that {xj} is a bounded sequence and hence that it lies in a compact

set.

With Lemmas A.0.2 and A.0.3, the following theorem is obtained.

Theorem A.0.4. For any given µ > 0 and vector λ, if ZT∇Lµ(xj , λ) 6= 0 for all j ∈ Z+,

the iterates {xj}j∈Z+ generated during the solution of subproblem (3.36) satisfy

lim
j→∞

∇Lµ(xj , λ)T pj
‖qj‖2

= 0, (A.11)
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where pj = Zqj.

Proof. Let hj and gj denote Lµ(xj , λ) and ∇Lµ(xj , λ), respectively, for all j, and suppose

that (A.11) does not hold. Then, there exists an ε > 0 and a countably infinite set I ⊂ Z+

such that for all j ∈ I,

−
gTj pj

‖qj‖2
≥ ε. (A.12)

From condition (3.5) of the line search, for all such j ∈ I,

hj − hj+1 ≥ −c1αjg
T
j pj (A.13)

= −c1αj‖qj‖2

(
gTj pj

‖qj‖2

)
(A.14)

≥ c1αj‖qj‖2ε. (A.15)

From Lemma A.0.2, hj − hj+1 → 0 as j → ∞ so (A.15) implies that the sequence

{αj‖qj‖2}j∈I converges to 0. From condition (3.6) of the line search, for all j ∈ I,

(
gj+1 − gj

)T
Zqj ≥ −(1− c2)gTj pj . (A.16)

From this, the Cauchy-Schwarz inequality and (A.12), it follows that for all j ∈ I,

‖ZT gj+1 − ZT gj‖2
1− c2

≥ −
gTj pj

‖qj‖2
≥ ε. (A.17)

From Lemma A.0.3, the sequence {xj} lies in some compact set K. Hence, the continuous

function ZT∇Lµ(·, λ) is actually uniformly continuous in K. This implies that there exists

a δ such that for all y and z ∈ K such that ‖y − z‖2 < δ,

‖ZT∇Lµ(y, λ)− ZT∇Lµ(z, λ)‖2 <
ε(1− c2)

2
. (A.18)

Now, since {αj‖qj‖2}j∈I converges to zero, so does {αj‖pj‖2}j∈I and hence there exists an

l ∈ I such that

αl‖pl‖2 < δ. (A.19)

For such l,

‖xl+1 − xl‖2 = αl‖pl‖2 < δ (A.20)
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so
‖ZT gl+1 − ZT gl‖2

1− c2
<
ε

2
, (A.21)

which contradicts (A.17). Therefore, (A.11) must hold.

An important property of the Hessian approximation used for computing the search

directions is now shown. This property allows showing that the search directions used by

the algorithm are not only descent directions, as shown in Lemma A.0.1, but sufficient

descent directions.

Lemma A.0.5. For any given µ > 0 and vector λ, there exists a η > 0 such that H̃µ(xj , λ),

as defined in (3.42), satisfies

κ(ZT H̃µ(xj)Z) < η (A.22)

for all inner iterations j ∈ Z+, where κ(·) gives the condition number of its argument.

Proof. From Lemma A.0.3, {xj} lies in some compact set K. Since, ‖ · ‖2 and ZTJTJZ

are continuous functions, the image of K under their composition is compact. Hence, there

exists a σ > 0 such that for each j,

λmax

(
ZTJTj JjZ

)
= ‖ZTJTj JjZ‖2 < σ, (A.23)

where λmax(·) gives the largest eigenvalue of its argument. Letting A = ZT∇2ϕjZ, which is

positive definite and independent of xj , and Bj = ZTJTj JjZ, which is positive semi-definite,

the following inequalities hold:

λmin(µA+Bj) = inf
‖v‖2=1

vT (µA+Bj)v (A.24)

≥ µ inf
‖v‖2=1

vTAv + inf
‖v‖2=1

vTBjv (A.25)

= µλmin(A) + λmin(Bj) (A.26)

≥ µλmin(A) > 0, (A.27)
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where λmin(·) gives the smallest eigenvalue of its argument. Similarly,

λmax(µA+Bj) = sup
‖v‖2=1

vT (µA+Bj)v (A.28)

≤ µ sup
‖v‖2=1

vTAv + sup
‖v‖2=1

vTBjv (A.29)

= µλmax(A) + λmax(Bj) (A.30)

< µλmax(A) + σ. (A.31)

Letting H̃j denote H̃µ(xj , λ), these inequalities imply that for all j,

κ(ZT H̃jZ) =
λmax(ZT H̃jZ)

λmin(ZT H̃jZ)
=
λmax(µA+Bj)

λmin(µA+Bj)
<
µλmax(A) + σ

µλmin(A)
. (A.32)

Lemma A.0.6. For any given µ > 0 and vector λ, there exists a ρ > 0 such that the search

directions {pj}j∈Z+ computed during the solution of subproblem (3.36) satisfy

− ∇Lµ(xj , λ)T pj
‖ZT∇Lµ(xj , λ)‖2‖qj‖2

> %, (A.33)

for all j ∈ Z+ such that ZT∇Lµ(xj , λ) 6= 0, where pj = Zqj.

Proof. From Lemma A.0.5, there exists an η > 0 such that for all j,

κ(ZT H̃jZ) < η, (A.34)

where H̃j denotes H̃µ(xj , λ). Letting gj and Cj denote∇Lµ(xj , λ) and ZT H̃jZ, respectively,
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it follows that for all j such that ZT gj 6= 0 and qj was computed using Cj ,

−
gTj pj

‖ZT gj‖2‖qj‖2
=

gTj ZC
−1
j ZT gj

‖ZT gj‖2‖C−1
j ZT gj‖2

(A.35)

≥
λmin(C−1

j )

λmax(C−1
j )

(A.36)

=
λmin(Cj)

λmax(Cj)
(A.37)

=
1

κ(Cj)
>

1

η
. (A.38)

For j such that ZT gj 6= 0 and qj was not computed using Cj , the exact Hessian was used

and pj must have passed condition (3.48). Hence, letting % = min{ξ, 1/η} completes the

proof, where ξ is the predefined small positive scalar described in Section 3.5.3.

With Lemmas A.0.6 and Theorem A.0.4, it can be proved that the vPF algorithm always

solves each subproblem (3.36) to the required accuracy.

Theorem A.0.7. For any given µ > 0 and vector λ, the iterates {xj}j∈Z+ generated during

the solution of subproblem (3.36) satisfy either

ZT∇Lµ(xl, λ) = 0 (A.39)

for some l ∈ Z+, or

lim
j→∞

ZT∇Lµ(xj , λ) = 0. (A.40)

Proof. If l exists such that ZT∇Lµ(xl, λ) = 0, the theorem is proved. Otherwise, Lemma

A.0.6 gives that

−
gTj pj

‖qj‖2
> %‖ZT gj‖2 (A.41)

for all j, where gj denotes ∇Lµ(xj , λ). From Theorem A.0.4, the left-hand side of this

inequality goes to zero as j goes to infinity. Hence,

lim
j→∞

ZT gj = 0. (A.42)
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Corollary A.0.7.1. Given a penalty parameter µ > 0, vector λ and any subproblem opti-

mality tolerance δ > 0, the inner level of the vPF algorithm always finds x̄ such that

‖ZT∇Lµ(x̄, λ)‖∞ < δ (A.43)

in a finite number of iterations.

Proof. This results follows immediately from Theorem A.0.7.

Properties of the outer iterates generated by the vPF algorithm are now proved. First,

it is shown that the sequence of values of the Augmented Lagrangian function associated

with the outer iterates is bounded.

Lemma A.0.8. Given any initial point x0, initial penalty parameter µ0 > 0, and initial

vector of Lagrange multiplier estimates λ0, if ‖c(xk)‖∞ ≥ εf for all k ∈ Z+, the sequence

{Lµk(xk, λk)}k∈Z+ is bounded, where {xk}k∈Z+ are the outer iterates generated by the vPF

algorithm.

Proof. Suppose ‖ck‖∞ ≥ εf for all k. Hence, the vPF algorithm never terminates and

generates an infinite sequence of outer iterates xk. By the equivalency of norms in finite

dimensional spaces, there exists some ε such that ‖ck‖2 ≥ ε for all k. During outer iteration

k, the inner level of the algorithm takes xk, µk and λk and generates the next outer iterate

xk+1. By Lemma A.0.2, it must be that

Lµk(xk+1, λk) ≤ Lµk(xk, λk), (A.44)

for all k. Equivalently,

µkϕk+1 − µkλTk ck+1 +
1

2
‖ck+1‖22 ≤ µkϕk − µkλTk ck +

1

2
‖ck‖22. (A.45)

By construction (last paragraph of Section 3.5.4), there exists some M > 0 such that

‖λk‖2 ≤ M for all k. Hence, using the Cauchy-Schwarz inequality, the fact that µk is
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non-increasing, and the non-negativity of ϕ, it follows that

µkϕk+1 − µkM‖ck+1‖2 +
1

2
‖ck+1‖22 ≤ µkϕk + µkM‖ck‖2 +

1

2
‖ck‖22 (A.46)

µkϕk+1 +
1

2
‖ck+1‖22

(
1− 2µkM

‖ck+1‖2

)
≤ µkϕk +

1

2
‖ck‖22

(
1 +

2µkM

‖ck‖2

)
(A.47)

µk+1ϕk+1 +
1

2
‖ck+1‖22

(
1− 2µkM

ε

)
≤ µkϕk +

1

2
‖ck‖22

(
1 +

2µkM

ε

)
(A.48)

for all k. Since µk ↓ 0 as k →∞, there is some K ∈ N such that for all k ≥ K,

1/2 < 1− 2µkM/ε < 1. (A.49)

For such k,(
1− 2µkM

ε

)(
µk+1ϕk+1 +

1

2
‖ck+1‖22

)
≤
(

1 +
2µkM

ε

)(
µkϕk +

1

2
‖ck‖22

)
, (A.50)

or

µk+1ϕk+1 +
1

2
‖ck+1‖22 ≤ ηk

(
µkϕk +

1

2
‖ck‖22

)
, (A.51)

where

ηk :=
1 + 2µkM

ε

1− 2µkM
ε

. (A.52)

It follows that for k > K,

µkϕk +
1

2
‖ck‖22 ≤

(
µKϕK +

1

2
‖cK‖22

) k−1∏
i=K

ηi. (A.53)

Now, for k ≥ K, it holds that

log ηk = log
(

1 +
2µkM

ε

)
− log

(
1− 2µkM

ε

)
. (A.54)

Hence, the bounds

1− 1

y
≤ log y ≤ y − 1, (A.55)

for all y ∈ R++, imply that

log ηk ≤ µk
2M

ε
+ µK

4M

ε
= µk

6M

ε
. (A.56)
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Since, µk ≤ βkl µ0, where βl ∈ (0, 1), there exists some N > 0 such that for all k > K,

log
k−1∏
i=N

ηi =
k−1∑
i=N

log ηi ≤
6Mµ0

ε

∞∑
i=N

βil < N. (A.57)

This implies that for all k > K,

µkϕk +
1

2
‖ck‖22 ≤

(
µKϕK +

1

2
‖cK‖22

)
eN (A.58)

and hence that {Lµk(xk, λk)} is a bounded sequence.

With the boundedness result of Lemma A.0.8, the boundedness of other important

quantities can be shown.

Lemma A.0.9. If the vPF algorithm never terminates and Assumption 1 holds, the voltage

magnitudes {vi}i∈[n]\{s}, generator reactive powers {Qgi }i∈R, and regulated voltage magni-

tude deviations {yi}i∈R and {zi}i∈R associated with each of the outer iterates {xk}k∈Z+ are

uniformly bounded. Moreover, the sequence {Jk}k∈Z+ of Jacobian matrices is bounded.

Proof. If the vPF algorithm never terminates, ‖ck‖∞ ≥ εf for all k. Then, by Lemma A.0.8,

the sequence {Lµk(xk, λk)} is bounded. From the definition of Lµ, the sequence {‖ck‖2} is

bounded. Then, from the definition of c (Section 3.5), {‖fk‖2} must be bounded. Hence,

Assumption 1 gives that the voltage magnitudes {vi} associated with the outer iterates are

uniformly bounded. The uniform boundedness of the generator reactive powers {Qgi } then

follows from the boundedness of reactive power mismatches and voltage magnitudes, and

from (2.40). Similarly, from the definition of c, {‖Φk‖2} is also bounded. The uniform

boundedness of {yi} and {zi} then follows from the uniform boundedness of {Qgi }, the fact

that {Φk} is a bounded sequence, and from (3.23) and (3.24). Lastly, the boundedness of

{Jk} is implied from the uniform boundedness of {vi}, {Qgi }, {yi} and {zi}, and the fact

that angles only appear inside sine and cosine functions.

Lemma A.0.10. If the vPF algorithm never terminates, the sequence {µk∇ϕk}k∈Z+ sat-

isfies µk∇ϕk → 0 as k →∞, where {xk}k∈Z+ are the outer iterates.

Proof. If the vPF algorithm never terminates, ‖ck‖∞ ≥ εf for all k. Then, by Lemma A.0.8,

the sequence {Lµk(xk, λk)} is bounded. From the definition of Lµ, the sequence {µkϕk} is
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bounded. Since ϕ is non-negative, quadratic and strongly convex, it can be expressed as

ϕ(x) = (x− a)TA(x− a) + b, (A.59)

where a is some vector, A is a positive definite matrix, and b is a non-negative scalar. Hence,

{µkϕk} bounded implies that there exists some M > 0 such that for all k,

‖A1/2(x− a)‖2 ≤

√
M

µk
. (A.60)

It follows that

µk‖∇ϕk‖2 = µk‖2A(x− a)‖2 (A.61)

≤ µk2‖A1/2‖2‖A1/2(x− a)‖2 (A.62)

≤ 2
√
µkM‖A1/2‖2. (A.63)

The result then follows from the fact that µk → 0 as k →∞.

The main result about the convergence of the vPF algorithm can now be proved.

Theorem A.0.11. Under Assumption 1, the vPF algorithm either finds during some iter-

ation l ∈ Z+ an outer iterate xl that is feasible according to the required tolerance, i.e., that

satisfies ‖cl‖∞ < εf , or it generates a sequence of outer iterates {xk}k∈Z+ that satisfies

lim
k→∞

ZTJTk ck = 0. (A.64)

From {xk}k∈Z+, a bounded sequence {x̃k}k∈Z+ can be constructed such that

J(x̃k)
T c(x̃k) = JTk ck, (A.65)

for all k, by translating the voltage angles of {xk}k∈Z+ to [−π, π]. This new sequence is

guaranteed to have a limit point x∗ that satisfies

ZTJ(x∗)T c(x∗) = 0. (A.66)

Proof. Suppose that Assumption 1 holds. If for some l ∈ Z+, the outer iterate xl satisfies

‖c(xl)‖∞ < εf , the result holds. Otherwise the vPF algorithm does not terminate and it
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generates a sequence of outer iterates {xk} such that

‖ZT∇Lµk(xk+1, λk)‖∞ < δk, (A.67)

where δk ↓ 0. Hence,

νk := ‖ZT∇Lµk(xk+1, λk)‖2 → 0 (A.68)

as k →∞. Now, for all k,

‖ZTJTk+1ck+1‖2 = ‖ZT∇Lµk(xk+1, λk)− µkZT∇ϕk+1 + µkZ
TJTk+1λk‖2 (A.69)

≤ νk + µk‖Z‖2‖∇ϕk+1‖2 + µk‖Z‖2‖Jk+1‖2‖λk‖2 (A.70)

≤ νk +
µk+1

βs
‖Z‖2‖∇ϕk+1‖2 + µk‖Z‖2‖Jk+1‖2‖λk‖2, (A.71)

where the last inequality follow from µk+1 ≥ βsµk. Since {λk} is bounded by construction

and {Jk} is bounded from Lemma A.0.9, the last term on the right hand side of (A.71) goes

to zero as k → 0. From Lemma A.0.10, the middle term goes to zero as k → 0. Hence, the

entire right hand side of (A.71) goes to zero and (A.64) holds.

Since the voltage angles appear in c and J only inside sine and cosine functions, they

can be translated to lie inside [−π, π] by adding or subtracting multiplies of 2π to create a

sequence {x̃k} with uniformly bounded angles that satisfies

J(x̃k)
T c(x̃k) = JTk ck, (A.72)

for all k. The sequence {x̃k} hence lies in a compact set and has a limit point x∗ that

satisfies (A.66).

This completes the proof of the convergence of the vPF algorithm. It has been shown

that this algorithm either terminates with a feasible point according to the required toler-

ance, or that it generates a sequence of iterates that has a limit point that is a stationary

point of the function cT c (restricted to the set of x such that Ax = b).



Appendix B

Lossy Networks

In Section 3.5.5, lossy networks were introduced as power networks for which active power

losses are positive for any set of complex bus voltages that are not all zero. In this sec-

tion, a simple characterization of these networks based on the nodal admittance matrix

is proved, and also that for these networks, bounded power mismatches implies bounded

voltage magnitudes.

Lemma B.0.12. A power network is a lossy network if an only if the Hermitian matrix

G̃, as defined in (2.35), is positive definite.

Proof. Let {P gk }k∈[n] be the active powers injected by generators and {P lk}k∈[n] the active

powers consumed by loads at each bus of the network. It is known that the total active

power injected into the system must equal the total active power consumed by loads plus

the total active power lost in the system. Hence

∑
k∈[n]

P gk −
∑
k∈[n]

P lk = L, (B.1)

where L denotes the total active power losses. For each k ∈ [n], let wk be the complex

voltage at bus k, i.e.,

wk := vke
jθk . (B.2)
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Then, from (2.38),

∑
k∈[n]

P gk −
∑
k∈[n]

P lk = <

{ ∑
k∈[n]

∑
m∈[n]

vkvmY
∗
kme

j(θk−θm−φkm)

}
(B.3)

= <

{ ∑
k∈[n]

∑
m∈[n]

wkw
∗
mỸ
∗
km

}
(B.4)

= <{w∗Ỹ ∗w}, (B.5)

where Ỹ is as defined in (2.34), <{·} gives the real part of its argument, and ∗ denotes

conjugate transpose. From (2.35) and (2.36), it follow that

w∗Ỹ ∗w = w∗(G̃+ jB̃)∗w (B.6)

= w∗G̃∗w − jw∗B̃∗w. (B.7)

Since both G̃ and B̃ are Hermitian, G̃ = G̃∗, B̃ = B̃∗, and hence that w∗G̃∗w and w∗B̃∗w

are real. Therefore, ∑
k∈[n]

P gk −
∑
k∈[n]

P lk = w∗G̃w, (B.8)

so L = w∗G̃w and that for any w 6= 0, L > 0 if and only if G̃ � 0.

Lemma B.0.13. For all lossy networks and for all M , the set {x | f(x)T f(x) ≤ M} has

bounded voltage magnitudes, where x and f are the vector of power flow variables and the

vector-valued function of power mismatches, respectively, as defined in Section 3.4.

Proof. Suppose the network is lossy and let M > 0. Let x be such that f(x)T f(x) ≤ M

and w the corresponding vector of complex bus voltages. Also, let I denote the set [n]\{s},
i.e., the set of all buses except the slack. Then, using results derived in Lemma B.0.12,

<

{∑
k∈I

∑
m∈[n]

wkw
∗
mỸ
∗
km

}
= <

{ ∑
k∈[n]

∑
m∈[n]

wkw
∗
mỸ
∗
km

}
−<

{ ∑
m∈[n]

wsw
∗
mỸ
∗
sm

}
(B.9)

= w∗G̃w −<{wsw∗η}, (B.10)

where η∗ is the s-th row of Ỹ , and ∗ denotes conjugate transpose. Since ws is a complex

constant in the power flow problem, let ν to denote the constant complex vector wsη. From
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(B.10) and the definition of f ,

w∗G̃w −<{w∗ν} =
∑
k∈I

(
P gk − P

l
k

)
−
∑
i∈A

fi(x), (B.11)

where A is the set of indices of the vector f(x) that correspond to active power mismatches

at buses k ∈ [n] \ {s}. Hence,

λmin(G̃)‖w‖2 − ‖w‖‖ν‖ ≤
∑
k∈I

∣∣P gk − P lk∣∣+ ‖f(x)‖1, (B.12)

where ‖ · ‖ is the norm induced by the inner product 〈a, b〉 := b∗a, for any complex vectors

a and b. Since P gk and P lk are constants (independent of x) for k ∈ I, the quantity

N :=
∑
k∈I

∣∣P gk − P lk∣∣ (B.13)

is also a constant. Then, using the inequalities

‖f‖1 ≤ m‖f‖∞ ≤ m
√
fT f ≤ m

√
M, (B.14)

where m is the dimension of f(x), it follows that

λmin(G̃)‖w‖2 − ‖w‖‖ν‖ ≤ N +m
√
M. (B.15)

From Lemma B.0.12, λmin(G̃) > 0. From this and the fact that N and M are independent

of x, it can be concluded that the set

{w | f(x)T f(x) ≤M} (B.16)

is bounded.



Appendix C

Bound Constraint Function

Let the function ψ be defined by

ψ(a) := a+ b−
√
a2 + b2 + ε2, (C.1)

where b and ε ∈ R++.

Lemma C.0.14. The derivative of ψ satisfies

0 < ψ′(a) < 2, (C.2)

for all a ∈ R, and hence ψ is monotonically strictly increasing.

Proof. The derivative of ψ is given by

ψ′(a) = 1− a√
a2 + b2 + ε2

. (C.3)

Since b and ε are positive, it follows that

√
a2 + b2 + ε2 >

√
a2 = |a|. (C.4)

Hence,

−1 < − a√
a2 + b2 + ε2

< 1. (C.5)

Adding 1 to these inequalities gives (C.2).
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Lemma C.0.15. The function ψ satisfies

lim
a→−∞

ψ(a) = −∞ (C.6)

lim
a→∞

ψ(a) = b, (C.7)

and

−∞ < ψ(a) < b, (C.8)

for all a ∈ R.

Proof. First, the limit (C.6) follows easily from the fact that −
√
a2 + b2 + ε2 → −∞ as

a→ −∞. To show the other limit, consider a > 0 and let f and g be such that

f(a) = 1−
√

1 +
b2 + ε2

a2
and g(a) =

1

a
. (C.9)

Then

ψ(a) = a+ b−
√
a2 + b2 + ε2 (C.10)

= b+
1−

√
1 + b2+ε2

a2

1
a

(C.11)

= b+
f(a)

g(a)
. (C.12)

Clearly, f(a)→ 0 and g(a)→ 0 as a→∞. Also,

f ′(a)

g′(a)
= − b2 + ε2√

a2 + b2 + ε2
→ 0 (C.13)

as a→∞. Hence, by L’Hôpital’s Rule, it follows that

lim
a→∞

ψ(a) = b+ lim
a→∞

f(a)

g(a)
= b+ lim

a→∞

f ′(a)

g′(a)
= b. (C.14)

From Lemma C.0.14, ψ is monotonically strictly increasing and hence (C.8) follows.

Lemma C.0.16. If ε ≥ b, the function ψ satisfies

|ψ(a)| ≤ ε ⇐⇒ − b

1 + b
ε

≤ a <∞. (C.15)
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Proof. If ε ≥ b, if follows from Lemma C.0.15 that

|ψ(a)| ≤ ε ⇐⇒ −ε ≤ ψ(a). (C.16)

From Lemma C.0.14, ψ is monotonically strictly increasing so

−ε ≤ ψ(a) ⇐⇒ ψ−1(−ε) ≤ a. (C.17)

Since

ψ

(
− b

1 + b
ε

)
= ψ

(
− bε

b+ ε

)
(C.18)

= − bε

b+ ε
+ b− 1

b+ ε

√
b2ε2 + b2(b+ ε)2 + ε2(b+ ε)2 (C.19)

=
b2

b+ ε
− 1

b+ ε

√
b4 + 2b2ε(b+ ε) + ε2(b+ ε)2 (C.20)

=
b2

b+ ε
− 1

b+ ε

√
(b2 + ε(b+ ε))2 (C.21)

=
b2

b+ ε
− b2 + ε(b+ ε)

b+ ε
(C.22)

= −ε, (C.23)

it holds that

ψ−1(−ε) = − b

1 + b
ε

. (C.24)

The relation (C.15) follows from this, (C.16) and (C.17).

Lemma C.0.17. The function ψ satisfies

ψ(a) = 0 ⇐⇒ a =
ε2

2b
. (C.25)
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Proof. The result follows from

ψ(u) = 0 ⇐⇒ a+ b =
√
a2 + b2 + ε2 (C.26)

⇐⇒ a2 + 2ab+ b2 = a2 + b2 + ε2 (C.27)

⇐⇒ 2ab = ε2 (C.28)

⇐⇒ a =
ε2

2b
. (C.29)
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