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Abstract

Our research explores three topics in high-dimensional statistical learning. First, we consider
a regression scenario where it is natural to impose an order constraint on the coefficients.
We propose an order-constrained version of `1-regularized regression for this problem, and
show how to solve it efficiently using the well-known Pool Adjacent Violators Algorithm
as its proximal operator. We illustrate this idea on real and simulated data. We then
consider regression scenarios where it is natural to allow coefficients to vary as smooth
functions of other variables. We propose two constrained versions for this problem and
show how to solve them efficiently. Last, we study canonical correlation analysis (CCA) in
high-dimensional settings and propose a sparse CCA framework, and provide two efficient
algorithms. We discuss links between CCA and linear discriminant analysis (LDA). We
demonstrate its use on real and simulated data.
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Chapter 1

Introduction

In the past few decades, massive datasets have become available and the term ‘big data’
appears in almost every field. Classical statistics used to face only few observations and
features, and often cannot be applied directly in high-dimensional settings, where the
number of features often exceeds the number of observations. Many recent advances in
statistics have been developed in high-dimensional settings. We briefly review some relevant
techniques in the literature and introduce our contributions.

1.1 Supervised learning in high dimensions

Suppose that we observed data (xi, yi) for i = 1, 2, . . . , n, where n is the number of obser-
vations, xi = (xi1, xi2, . . . , xip) is a vector containing p real-valued feature measurements,
and yi is a real-valued response value. We consider the usual linear regression framework

yi = β0 +

p∑
j=1

xi j β j + ε i(1.1)

with E(ε i) = 0 and Var(ε i) = σ2. Ordinary least squares regression finds the solution to
(1.1) by minimizing the sum of squared errors:

(1.2) minimize
β0, β

n∑
i=1

(yi − β0 −

p∑
j=1

xi j β j )2.

1
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To simplify notation, we rewrite (1.2) in matrix notation as

(1.3) minimize
β∈Rp

‖y − X β‖22,

where the first column of X is a vector of 1s. Solutions to (1.3) satisfy XT X β̂ = XT y.
In high-dimensional settings, there are two challenges for this model: a) if p > n, XT X

is singular and β̂ cannot be calculated. b) β̂ is not sparse, and when p is large, the fitted
model cannot be easily interpreted. Many methods have been developed to solve these two
challenges. One well studied approach for extending (1.3) to high-dimensional settings
is to add a penalty term involving the parameters β. For example, ridge regression or
`2-regularized regression [29] chooses β to solve

(1.4) minimize
β

‖y − X β‖22 + λ‖ β‖
2
2

for some λ > 0. The unique solution to (1.4) satisfies (XT X + λI) β̂ = XT y. The penalty on
the elements of β regularizes the sample covariance matrix XT X . However, this approach
does not guarantee the solution β̂ to be sparse. The lasso or `1-regularized regression [51]
chooses the parameters β to solve

(1.5) minimize
β

‖y − X β‖22 + λ‖ β‖1,

where λ > 0 is a given tuning parameter. This problem yields sparse solutions β̂ for
sufficiently large values of λ. Therefore, lasso automatically performs feature selection in
high-dimensional settings. Furthermore, the problem is convex and many efficient solvers
have been developed; for instance, glmnet in R [22]. Many other penalties on the elements
of β have been considered in the literature, and to list a few, see Jacob et al. [35], Simon
et al. [46], Tibshirani et al. [52].

In this thesis, we consider two extensions to linear regression model. We call the
resulting procedures ordered lasso and time varying lasso. In the ordered lasso chapter,
we consider regression scenarios where it is natural to impose an order constraint on the
coefficients. We propose an order-constrained version of `1-regularized regression for this
problem, and show how to solve it efficiently using the well known Pool Adjacent Violators
Algorithm as its proximal operator. The main application of this idea is to time-lagged
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regression, where we predict an outcome at time t from features at the previous K time
points. In this setting it is natural to assume that the coefficients decay as we move farther
away from t, and hence the order constraint is reasonable. Potential application areas
include financial time series and prediction of dynamic patient outcomes based on clinical
measurements. We illustrate this idea on real and simulated data.

We then introduce a more relaxed model in chapter 3 and consider regression scenarios
where it is natural to allow coefficients to vary as smooth functions of other variables. We
propose two constrained versions for this problem and show how to solve them efficiently.

1.2 Unsupervised learning in high dimensions

Unsupervised learning is commonly viewed as learning without ground truth or a response.

Typically, one has a set of n observations X =
*....
,

xT
1
...

xT
n

+////
-

, and the goal is to learn important

properties of X without any response y. In this thesis, we consider having two sets of

n observations X =
*....
,

xT
1
...

xT
n

+////
-

and Y =
*....
,

yT
1
...

yT
n

+////
-

and study canonical correlation between these

two matrices. Canonical correlation analysis (CCA) was proposed by Hotelling [31] to
measure linear relationships between two multidimensional variables. In high-dimensional
settings, the classical canonical correlation analysis breaks down. We propose a sparse
canonical correlation analysis by adding `1 constraints on the canonical vectors and show
how to solve the resulting optimization problem efficiently using the linearized alternating
directionmethod ofmultipliers (ADMM) and using TFOCS as a black box. We demonstrate
its use on real and simulated data. While CCA is often used as an unsupervised tool, we
also discuss links between CCA with Fisher’s linear discriminant analysis (LDA) [21], a
supervised learning tool.
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1.3 Numerical optimization algorithms

Efficient optimization algorithms play important roles in the era of big data. We briefly
review some numerical optimization algorithms used in this dissertation.

1.3.1 Proximal gradient descent

Suppose that we want to solve

(1.6) minimize
x

f (x) = g(x) + h(x),

where g is convex and differentiable, and h is convex but not differentiable. Gradient
descent method cannot be directly applied, but proximal gradient methods are often used to
address this issue. The proximal mapping is defined as

proxt (x) = argmin
z

1
2t
‖x − z‖22 + h(z),

and the proximal gradient descent algorithm is as follows:

• Initialize x (0).

• Repeat for k = 1, 2, . . . :

x (k) = proxtk (x (k−1)) − tk∇g(x (k−1)),(1.7)

where tk > 0 is a step-size.

Note that the update for x (k) in (1.7) can be rewritten as

x (k) = x (k−1) − tkGtk (x (k−1)),

where Gt is called the generalized gradient of f :

Gt (x) =
x − proxt (x − t∇g(x))

t
.

If g and f satisfy the following assumptions:
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• g is convex, differentiable, dom(g) = Rn and∇g is Lipschitz continuous with constant
L > 0,

• h is convex, proxt (x) = argminz
1
2t ‖x − z‖22 + h(z) can be evaluated,

proximal gradient descent with fixed step size t ≤ 1
L satisfies

f (x (k)) − f ∗ ≤
‖x (0) − x∗‖22

2tk
.

Therefore, proximal gradient descent can obtain a convergence rate of O( 1
k ). Similar

to gradient descent, we can perform proximal gradient descent with backtracking line
search. At each iteration, we fix a parameter 0 < β < 1, and start with t = 1. If
g(x − tGt (x)) ≥ g(x) − t∇g(x)T Gt (x) + t

2 ‖Gt (x)‖22 , we shrink t to βt; otherwise, we
perform the normal proximal gradient update.

1.3.2 Accelerated proximal gradient method

The optimal convergence rate O( 1
k2 ) can be achieved using acceleration methods, see [6],

[9], [55]. There are many versions of acceleration. We present one of the choices used in
this dissertation:

• Initialize x (0) and let x (−1) = x (0).

• Repeat for k = 1, 2, . . .

v = x (k−1) +
k − 2
k + 1

(x (k−1) − x (k−2)),

x (k) = proxtk (v − tk∇g(v)).

With the assumptions above, the accelerated proximal gradient method with fixed step t ≤ 1
L

satisfies

f (x (k)) − f ∗ ≤
2‖x (0) − x∗‖22

t(k + 1)2 .
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1.3.3 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) [23] solves problems of the form

(1.8)
minimize

x,z
f (x) + g(z)

subject to Ax + Bz = c,

where x ∈ Rn, z ∈ Rn, A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, f : Rn → R ∪ {R,+∞}, and
g : Rm → R∪ {+∞}. In order to guarantee convergence, the usual assumptions for f and g
are closed, proper and convex [10]. The augmented Lagrangian is

Lρ(x, z, u) = f (x) + g(z) + uT (Ax + Bz − c) + ρ/2‖Ax + Bz − c‖22 .

The generic ADMM algorithm is

• Repeat for k = 1, 2, 3, . . . ,

x (k) = argmin
x

Lρ(x, z(k−1), u(k−1)),

z(k) = argmin
z

Lρ(x (k), z, u(k−1)),

u(k) = u(k) + ρ(Ax (k) + Bz(k) − c).

If B = −I and c = 0 , (1.8) becomes

(1.9)
minimize

x,z
f (x) + g(z)

subject to Ax = z,

and the augmented Lagrangian is

Lρ(x, z, u) = f (x) + g(z) + uT (Ax − z) +
ρ

2
‖Ax − z‖22 .
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In linearized ADMM, the last term of the augmented Lagrangian

ρ

2
‖Ax − z‖22 =

ρ

2
(AT Ax)T x − ρ(Az)T x +

ρ

2
zT z

=
ρ

2
(AT Ax − 2Az)T x +

ρ

2
zT z

is replaced by ρ(AT Ax (k) − Az(k))T x + µ/2‖x − x (k) ‖22, where 0 < µ ≤ λ/‖A‖22 . It can be
viewed as linearizing the quadratic term xT AT Ax and adding a new quadratic constraint to
update x. The generic algorithm for linearized ADMM is:

• Repeat for k = 1, 2, . . .

x (k) = proxµ f (x (k−1) −
µ

λ
AT (Ax (k−1) − z(k−1) + u(k−1))),

z(k) = proxλg (Axk + uk−1),

u(k) = uk−1 + Ax (k+1) − z(k+1) .

Under certain assumptions, the ADMM iterates satisfy residual convergence, objective
convergence and dual variable convergence. Details can be seen in [10]. The convergence
rate is not currently known but it roughly converges at a linear rate and behaves like
first-order methods.

1.3.4 Biconvexity

We briefly review some concepts in biconvex optimization problems. A detailed survey
can been seen in [25]. The set B ⊂ X × Y is a biconvex set on X × Y if Bx is convex for
every x ∈ X and By is convex for every y ∈ Y , where Bx = {y ∈ Y : (x, y) ∈ B} and
By = {x ∈ X : (x, y) ∈ B}. A function f : B → R on a biconvex set B ∈ X × Y is called a
biconvex function on B, if f x (•) := f (x, •) : Bx → R is a convex function on Bx for every
fixed x ∈ X , and f y (•) := f (•, y) : By → R is a convex function on By for every fixed
y ∈ Y . We call an optimization of the form

(1.10) minimize
x,y

f (x, y) : (x, y) ∈ B
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biconvex if the set B is biconvex on X × Y and the objective function f is biconvex on B.
One approach to solving biconvex problems is to use an alternating minimization method:

• Repeat until convergence:

1. Fix x and solve for y.

2. Fix y and solver for x.

Each subproblem is a convex problem and thus a global solution of each subproblem can
be achieved. However, since the biconvex problem is nonconvex, a global solution of the
problem cannot be guaranteed in general.



Chapter 2

An ordered lasso

In this chapter we add an additional order constraint on the coefficients, and we call the
resulting problem the ordered lasso. We derive an efficient algorithm for solving it. The
main application of this idea is to time-lagged regression, where we predict an outcome
at time t from features at the previous K time points. In this case, it is natural to assume
that the coefficients decay as we move farther away from t so that the order (monotonicity)
constraint is reasonable. For example, in a model for estimating fertility rate at t as a
function of personal exemption, a reasonable assumption is that personal exemption at
t, t − 1, . . . , t − K all have some effect on fertility rate at t. It is also reasonable to assume
that personal exemption at t has greater impact on fertility rate at t than personal exemption
at previous time points [61]. Moreover, directly from the monotonicity constraint, a key
feature of our procedure is that it automatically determines the most suitable value of K for
each predictor.

The chapter is organized as follows. Section 2.1 contains motivations and algorithms
for solving the ordered lasso and the strongly ordered lasso (which enforces monotonicity in
absolute value), as well as results comparing the ordered and the standard lasso on simulated
data. Section 2.2 contains detailed algorithms for applying the ordered lasso and the strongly
ordered lasso to time-lagged regression. We demonstrate the use of such algorithms on
real and simulated data in Sections 2.2.4 and 2.2.5. We also apply this framework to auto-
regressive (AR) time series and compare its performance with the traditional method for
fitting the ARmodel using least squares with the Akaike information criterion and Bayesian
information criterion, and with the lasso procedure for fitting the AR model [39]. Section

9
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2.4 generalizes the ordered lasso and the strongly ordered lasso to the logistic regression
model. Section 2.5 contains some discussion and directions for future work.

2.1 Lasso with an order constraint

2.1.1 The ordered lasso

We consider the lasso problem with an additional monotonicity constraint:

(2.1)
minimize

β0, β

1
2

N∑
i=1

(yi − β0 −

p∑
j=1

xi j β j )2 + λ

p∑
j=1
| β j |

subject to | β1 | ≥ | β2 | ≥ . . . ≥ | βp |.

This setup makes sense in problems where some natural order exists among the features.
However, the problem is not convex. Hence we modify the approach by writing each
β j = β+j − β

−
j with β+j , β

−
j ≥ 0 and pose the problem

(2.2)
minimize
β0, β+, β−

1
2

N∑
i=1

(yi − β0 −

p∑
j=1

xi j (β+j − β
−
j ))2 + λ

p∑
j=1

(β+j + β
−
j )

subject to β+1 ≥ β+2 ≥ . . . ≥ β+p ≥ 0, β−1 ≥ β−2 ≥ . . . ≥ β−p ≥ 0.

The penalty term encourages sparsity in β+j and β−j . The use of positive and negative
components (rather than absolute values)makes this a convex problem. Its solution typically
has one or both of each pair ( β̂+j , β̂

−
j ) equal to zero, in which case | β̂ j | = β̂+j + β̂

−
j and the

solutions | β̂ j | are monotone non-increasing in j. However, this need not be the case, as it
is possible for both β̂+j and β̂−j to be positive and the | β̂ j | to have some non-monotonicity.
In other words, the constraints strongly encourage, but don’t require, that the solutions be
monotone in absolute value. A similar approach was used in the interaction models of Bien
et al. [8]. This problem can be solved by a standard quadratic programming algorithm,
and this works well for small problems. For larger problems there is an efficient first-order
generalized gradient algorithm that uses the Pool Adjacent Violators Algorithm (PAVA) for
isotonic regression as its proximal operator (for example, see de Leeuw et al. [18]). We
describe details of the algorithm in the next subsection.
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2.1.2 Algorithmic details of the ordered lasso

We assume that the predictors and outcome are centered so that the intercept has the solution
β̂0 = 0. For illustrative purposes, we write our data in matrix form. Let X be the N × p data
matrix and y be the vector of length N containing the response value for each observation.
We first consider the problem

(2.3)
minimize

β

1
2

(y − Xβ)T (y − Xβ) + λ
p∑

j=1
β j,

subject to β1 ≥ β2 ≥ . . . ≥ βp ≥ 0.

We let h(β) = λ
∑p

j=1 β j + IC (β), where I is an indicator function and C is the convex set
given by {β ∈ Rp | β1 ≥ β2 ≥ . . . ≥ βp ≥ 0}. IC (β) is equal to 0 if β is in the convex set
C and infinity otherwise. We want to calculate the proximal mapping of h(β):

(2.4) proxh(β) = argmin
u

λ

p∑
j=1

u j + IC (u) +
1
2
‖u − β‖2.

There is an elegant way to obtain this proximal mapping. We first consider solving the
problem

(2.5)
minimize

θ

1
2

n∑
j=1

(yi − θi)2 + λ

n∑
i=1

θi

subject to θ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0.

The solution can be obtained from an isotonic regression using the well-known Pool Ad-
jacent Violators Algorithm [4]. In particular, if {θ̂i} = { ŷ

λ
i } is the solution to the isotonic

regression of {yi − λ}, i.e.,

(2.6)
{θ̂i} = argmin

θ

1
2

n∑
i=1

(yi − λ − θi)2

subject to θ1 ≥ θ2 ≥ . . . ≥ θn,
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then {( ŷλi )+} solves problem (2.5), where x+ = max{x, 0}. Hence the solution to (2.4) is

proxh(β) = ( β̂λ )+.(2.7)

Using this in the proximal gradient algorithm gives the first-order generalized gradient
update step of β for solving (2.3):

β ← proxγh(β − γXT (Xβ − y)).(2.8)

The value γ > 0 is a step size that is adjusted by backtracking to ensure that the objective
function is decreased at each step. To solve (2.2) we augment each predictor xi j with
x∗i j = −xi j and write xi j β j = xi j β

+
j + x∗i j β

−
j . We denote the expanded parameters by

(β+, β−) and apply the proximal operator (2.8) alternately to X and X∗ to obtain the
minimizers ( β̂+, β̂−). Details for solving (2.2) can be seen in Algorithm 1. Isotonic
regression can be computed in O(N ) operations [26] and hence (2.8) can be computed in
O(pN ) operations (the number of entries in the data matrix X). Therefore, the ordered
lasso algorithm can be applied to large datasets.

The ordered lasso can be easily adapted to the elastic net [64] and the adaptive lasso
[63] by some simple modifications to the proximal operator in (2.7).

Algorithm 1 Ordered Lasso
function Ordered Lasso(X ∈ Rn×p, y ∈ Rn, X∗ = −X)

Initialize β̂+, β̂− = 0 ∈ Rp, λ
while (not converged) do

Fix β̂
−(k),

β̂
+(k+1)

← proxtkλ (β̂
+
− β̂

−
− tkXT (Xβ̂

+
+ X∗ β̂− − y));

Fix β̂
+(k+1),

β̂
−(k+1)

← proxt̃kλ (β̂
+(k+1)

− β̂
−
− t̃kXT (Xβ̂

+(k+1)
+ X∗ β̂− − y));

end while
end function
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Figure 2.1. Example of the ordered lasso compared to the standard lasso: the data
was generated from a true monotone sequence of coefficients plus Gaussian noise:
yi =

∑p
j=1 xi j β j + σ · Zi, with xi j ∼ N (0, 1), β = (10, 9, . . . , 2, 1, 0, 0, . . . 0), σ = 7.

There were 20 predictors and 30 observations. The black profiles show the true coefficients
and the colored profiles are the estimated coefficients for different values of λ from the
largest (at bottom) to the smallest (at top).

2.1.3 Comparison between the ordered lasso and the lasso

Figure 2.1 shows a comparison between the ordered lasso and the standard lasso. The data
was generated from a true monotone sequence plus Gaussian noise. The black profiles show
the true coefficients, while the colored profiles are the estimated coefficients for different
values of λ, from largest (at bottom) to smallest (at top). The corresponding plot for the
lasso is shown in the bottom panel. The ordered lasso—exploiting the monotonicity—does
amuch better job of recovering the true coefficients than the lasso, as seen by the fluctuations
of the estimated coefficients in the tails of the lasso plot.

2.1.4 The strongly ordered lasso

Previously in the ordered lasso, we wrote β j = β+j − β−j and solved for β+j and β−j , for
j = 1, 2, . . . , p. Though the resulting estimates β̂+j and β̂

−
j are monotone non-increasing, the

resulting solutions β̂ j might not be monotone non-increasing in absolute value. To obtain
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solutions guaranteed to be monotone in absolute value, we extend our procedure: we first
compute the minimizers to the ordered lasso problem

(2.9)
minimize
β0, β+, β−

1
2

N∑
i=1

(yi − β0 −

p∑
j=1

xi j (β+j − β
−
j ))2 + λ

p∑
j=1

(β+j + β
−
j )

subject to β+1 ≥ β+2 ≥ . . . ≥ β+p ≥ 0, β−1 ≥ β−2 ≥ . . . ≥ β−p ≥ 0.

Denote solutions to (2.9) by ( β̂0, β̂) = ( β̂0, β̂
+ − β̂−). Then we let s( β̂ j ) be the sign of β̂ j

for j = 1, 2, . . . , p and solve

(2.10)
minimize

θ0,θ

1
2

N∑
i=1

(yi − θ0 −

p∑
j=1

xi jθ j )2 + λ

p∑
j=1

s( β̂ j )θ j

subject to θ1s( β̂1) ≥ θ2s( β̂2) ≥ · · · ≥ θps( β̂p) ≥ 0.

This produces a monotone solution (in absolute value) that is not necessarily the global
minimum of the non-convex problem, but is guaranteed to be a stationary point.

Theorem 1. The solution (θ̂0, θ̂) to (2.10) exists, and is a stationary point for (2.1).

Proof Since (2.10) is a convex problem, the solution to (2.10) exists [11]. We rewrite the
second step optimization problem (2.10) in matrix form:

(2.11)

minimize
θ0,θ

1
2
‖y − θ0 − Xθ‖2 + λsTθ

subject to *
,

A
C

+
-
θ ≤ 0,

where

s =
*....
,

s( β̂1)
...

s( β̂p)

+////
-

, Cp×p =

*....
,

−s( β̂1)
. . .

−s( β̂p)

+////
-

, A(p−1)×p =

*....
,

−s( β̂1) s( β̂2)
. . .

−s( β̂p−1) s( β̂p)

+////
-

.
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The KKT condition for (2.11) is

−XT (y − θ0 − Xθ) + λs +
(
AT CT

) *
,

ξ1

ξ2

+
-
= 0,(2.12)

where ξ1, ξ2 are Lagrange multipliers and ξ1, ξ2 ≥ 0. We denote solutions to (2.12) by
(θ̂0, θ̂) and (ξ∗1, ξ

∗
2). We now write optimization problem (2.1) in matrix form and examine

its KKT condition:

(2.13)

minimize
β0, β

1
2
‖y − β0 − Xβ‖2 + λ

p∑
i=1
| βi |

subject to *
,

U
I

+
-
| β | ≤ 0,

where

| β | =

*....
,

| β1 |
...

| βp |

+////
-

, Up−1×p =

*....
,

−1 1
. . .

. . .

−1 1

+////
-

, Ip×p =

*....
,

−1
. . .

−1

+////
-

.

This problem is not convex and thus we write the KKT condition in terms of sub-gradients.
From [45], the sub-gradient of f (x) = |x | is

∂ f = s(x) =




−1 x < 0

[−1, 1] x = 0

1 x > 0

.

The KKT condition for (2.13) is thus

0 ∈ −XT (y − β0 − Xβ) + λs + JT
(
UT IT

) *
,

µ1

µ2

+
-
,(2.14)
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where Jp×p is the Jacobian matrix Jβ (| β |) =
*....
,

s(β1)
. . .

s(βp)

+////
-

and µ1, µ2 are Lagrange

multipliers with µ1, µ2 ≥ 0. It is not difficult to show that JTUT = AT and JTIT = CT . Since
s( β̂ j ) ∈ [−1, 1], j = 1, . . . , p, and if we plug (s( β̂), (θ̂0, θ̂), (ξ∗1, ξ

∗
2)) into (2.14), we know 0

is contained trivially in the right-hand side of (2.14). Therefore, (θ̂0, θ̂) is a stationary point
for problem (2.13). �

Compared to the ordered lasso procedure described in Section 2.1.2, the strongly ordered
lasso guarantees that the estimated coefficients β̂ j are monotone non-increasing in absolute
value.

2.1.5 A different relaxation

We consider a similar model:

(2.15)
minimize
β0, β+, β−

1
2

N∑
i=1

(yi − β0 −

p∑
j=1

xi j (β+j − β
−
j ))2 + λ

p∑
j=1

(β+j + β
−
j )

subject to β+1 + β
−
1 ≥ β+2 + β

−
2 ≥ · · · ≥ β+p + β

−
p ≥ 0, β+j , β

−
j ≥ 0.

The constraints in the ordered lasso (2.2) imply the ordered constraints in (2.15) but not
vice versa. It is also a convex problem and the penalty term encourages sparsity in β+j + β

−
j

and thus in β+j , β
−
j . Experiments showed that it performs slightly worse than the ordered

lasso, so we do not consider this formulation further.



CHAPTER 2. AN ORDERED LASSO 17

2.1.6 Relaxation of the monotonicity requirement

As a different generalization of our approach, we can relax problem (2.2) as follows:

(2.16)

minimize
β0, β+, β−

1
2

N∑
i=1

(yi − β0 −

p∑
j=1

xi j (β+j − β
−
j ))2

+ λ

p∑
j=1

(β+j + β
−
j ) + θ1

p−1∑
j=1

(β+j − β
+
j+1)+ + θ2

p−1∑
j=1

(β−j − β
−
j+1)+

subject to β+j , β
−
j ≥ 0, j = 1, 2 . . . , p.

As θ1, θ2 → ∞, the last two penalty terms force monotonicity in β+j and β−j and this is
equivalent to (2.2). However, for intermediate positive values of θ1, θ2, these penalties
encourage near-monotonicity. This idea was proposed by Tibshirani et al. [54] for data
sequences, generalizing the isotonic regression problem. The authors derive an efficient
algorithm NearIso, which is a generalization of thewell-knownPAVAprocedurementioned
above. Operationally, this creates no extra complication in our framework: we simply use
NearIso in place of PAVA in the generalized gradient algorithm described in Section 2.1.2.

2.2 Sparse time-lagged regression

In this section we apply the ordered lasso and the strongly ordered lasso to the time-lagged
regression problem. There are two problems we consider. The first is the static outcome
problem, where we observe outcome at a fixed time t and predictors at a series of time points,
and the outcome at time t is predicted from the predictors at previous time points. We also
consider the rolling prediction problem, where we observe both outcome and predictors at
a series of time points and the outcome is predicted at each time point from the predictors
at previous time points.
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2.2.1 Static prediction from time-lagged features

Here we consider the problem of predicting an outcome at a fixed time point from a set of
time-lagged predictors. We assume that our data has the form

{yi, xi11, . . . xiK1, xi12, . . . xiK2, . . . xi1p, . . . , xiK p},

for i = 1, 2, . . . , N with N being the number of observations. The value xik j is the
measurement of predictor j of observation i at time-lag k from the current time t. In other
words, we predict the outcome at time t from p predictors, each measured at K time points
preceding the current time t. Our model has the form

yi = β0 +

p∑
j=1

K∑
k=1

xik j βk j + ε i,

with E(ε i) = 0 and Var(ε i) = σ2. We denote ŷi = β0 +
∑p

j=1
∑K

k=1 xik j βk j , write each
βk j = β+k j − β

−
k j , and solve

(2.17)
minimize
β0, β+, β−

1
2

N∑
i=1

(yi − ŷi)2 + λ

p∑
j=1

K∑
k=1

(β+k j + β
−
k j )

subject to β+1 j ≥ β+2 j ≥ · · · ≥ β+K j ≥ 0, β−1 j ≥ β−2 j ≥ · · · ≥ β−K j ≥ 0, ∀ j .

This model makes the plausible assumption that each predictor has an effect up to K time
units away from the current time t, and this effect is monotone non-increasing as we move
farther back in time.

In order to solve (2.17), we first write each β±k j in the form

{
β±11, β

±
21, . . . , β

±
K1︸                ︷︷                ︸

block 1

| β±12, β
±
22, . . . , β

±
K2︸                ︷︷                ︸

block 2

| . . . | β±1p, β
±
2p, . . . , β

±
K p︸                ︷︷                ︸

block p

}
.

This leads to a blockwise coordinate descent procedure, with one block for each predictor.
For example, at step j, we compute the update for block j while holding the rest of the
blocks constant. With a sufficiently large time-lag K , the procedure automatically chooses
an appropriate number of non-zero coefficients for each predictor, and zeros out the rest
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in each block because of the order constraint on each predictor. Details can be seen in
Algorithm 2.

Algorithm 2 Ordered Lasso for Static Prediction
function Ordered Lasso(X ∈ Rn×(K p), y ∈ Rn,X∗ = −X)

Initialize β̂+, β̂− ∈ RK p, β̂+k j = 0, β̂−k j = 0, λ
while not converged do

for j = 1, . . . , p do
For each i, ri = yi −

∑
`, j

∑K
k=1(xik` β̂

+
k` + x∗ik` β̂

−
k`)

Apply the ordered lasso (Algorithm 1) to data
{ri, (xi1 j, . . . , xiK j ), (x∗i1 j, . . . , x∗iK j ), i = 1, 2, . . . , n}
to obtain new estimates { β̂k j, k = 1, 2, . . . K };

end for
end while

end function

2.2.2 Rolling prediction from time-lagged features

Here we assume that our data has the form {yt, xt1, . . . , xtp} for t = 1, 2, . . . , N . In detail,
we have a time series for which we observe the outcome and the values of each predictor at
N different time points. We consider a time-lagged regression model with a maximum lag
of K time points:

yt = β0 +

p∑
j=1

K∑
k=1

xt−k, j βk j + ε t,

with E(ε t ) = 0 and Var(ε t ) = σ2. We write each βk j = β+k j − β
−
k j and propose the problem

(2.18)
minimize
β0, β+, β−

1
2

N∑
t=1

(yt − ŷt )2 + λ

p∑
j=1

K∑
k=1

(β+k j + β
−
k j )

subject to β+1 j ≥ β+2 j ≥ . . . ≥ β+K j ≥ 0, β−1 j ≥ β−2 j ≥ . . . ≥ β−K j ≥ 0, ∀ j .

To solve this problem, we convert it into the form of Section 2.2.1. We build a larger feature
matrix Z of size N × (K p), with K columns for each predictor. In detail, each row has
the form

{
xt−1,1, xt−2,1, . . . , xt−K,1 | xt−1,2, xt−2,2, . . . , xt−K,2 | · · · | xt−1,p, xt−2,p, . . . , xt−K,p

}
.
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Each block corresponds to a predictor lagged for 1, 2, . . . , K time units. The matrix Z has
N such rows, corresponding to time points t − 1, t − 2, . . . , t − K . Again, we augment each
predictor xt−k, j with x∗t−k, j = −xt−k, j , choose a sufficiently large time-lag K , and let the
procedure zero out extra coefficients for each predictor. We can solve (2.18) using block
coordinate descent as in the previous section. Details are shown in Algorithm 3.

Algorithm 3 Ordered Lasso for Rolling Prediction
function Time lagged ordered lasso(X ∈ Rn×(K p), y ∈ Rn,X∗ = −X)

Initialize β̂+, β̂− ∈ RK p, β̂+k j = 0, β̂−k j = 0, λ
while not converged do

for j = 1, . . . , p do
For each t, rt = yt −

∑
`, j

∑K
k=1(xt−k,` β

+
k` + x∗t−k,` β

−
k`)

Apply the ordered lasso (Algorithm 1) to data
{rt, (xt−1, j, . . . , xt−K, j ), (x∗t−1, j, . . . , x∗t−K, j ), t = 1, 2, . . . , n}
to obtain new estimates { β̂k j, k = 1, 2, . . . , K };

end for
end while

end function

2.2.3 The strongly ordered lasso applied to time-lagged features

The strongly ordered lasso can be adapted to time-lagged regression by the following
two-step procedure:

1. Apply Algorithm 2 or Algorithm 3 to obtain signs of the estimated coefficients for
each predictor.

2. If there exists a predictor with non-monotone coefficients, apply the strongly ordered
lasso procedure to each predictor using blockwise coordinate descent, as described
in Section 2.2.1.

2.2.4 Simulated examples

Figure 2.2 shows an example of the ordered lasso procedure applied to a rolling time-
lagged regression. The simulated data consists of four predictors with a maximum lag of
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5 time points and 111 observations. The true coefficients for each of the four predictors
were (7, 5, 4, 2, 0), (5, 3, 0, 0, 0), (3, 0, 0, 0, 0) and (0, 0, 0, 0, 0). The features were generated
as i.i.d. N (0, 1) with Gaussian noise of standard deviation 7. The figure shows the true
coefficients (black), and estimated coefficients of the ordered lasso (blue) and the standard
lasso (orange) from 20 simulations. For each method, the coefficient estimates with the
smallest mean squared error (MSE) in each realization are plotted. We see that the ordered
lasso does a better job of recovering the true coefficients. The average mean squared errors
for the ordered lasso and the lasso were 4.08(.41) and 6.11(.54), respectively.
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Figure 2.2. True coefficients (black), coefficient estimates for the ordered lasso (blue) and
the standard lasso (orange) from 20 simulations.

Figure 2.3 shows a larger example with a maximum lag of 20 time points. The features
were generated as i.i.d. N (0, 1) with Gaussian noise of standard deviation 7. Let f (a, b, L)

denote the equally spaced sequence from a to b of length L. The true coefficients for each of
the four predictors were { f (5, 1, 20)}, { f (5, 1, 10), f (0, 0, 10)}, { f (5, 1, 5), f (0, 0, 15)} and
{ f (0, 0, 20)}. The left panel of the figure shows the mean squared error of the standard
lasso and the ordered lasso over 30 simulations. The value of λ giving the minimum MSE
was chosen in each realization. In the right panel we have randomly permuted the true
predictor coefficients for each realization, thereby causing the monotonicity to be violated
(on average), but keeping the same signal-to-noise ratio. Not surprisingly, the ordered lasso
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Figure 2.3. The lasso and the ordered lasso, applied to time-lagged features. Shown is the
mean squared error over 30 simulations using the minimizing value of λ for each realization.
In the left panel, the true coefficients are monotone; in the right, they have been scrambled
so that monotonicity does not hold.

does better when the true coefficients are monotone, while the reverse is true for the lasso.
However, we also see that in an absolute sense one can achieve a much lower MSE in the
monotone setting of the left panel.

2.2.5 Performance on the Los Angeles ozone data

These data are available at http://statweb.stanford.edu/~tibs/ElemStatLearn/
data.html. They represent the level of atmospheric ozone concentration from eight
daily meteorological measurements made in the Los Angeles basin for 330 days in 1976.
The response variable is the log of the daily maximum of the hourly-averaged ozone
concentrations in Upland, California. We divided the data into training and validation sets
of approximately the same size, and considered models with a maximum time-lag of 20
days.

Figure 2.4 shows the prediction error curves over the validation set, for the “cross-
sectional” lasso (predicting from measurements on the same day), the lasso (predicting
from measurements on the same day and the previous 19 days), and the ordered lasso,
which adds the monotonicity constraint to the lasso procedure. We see that the ordered

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html


CHAPTER 2. AN ORDERED LASSO 23

0 20 40 60 80

20
30

40
50

60
70

80

Degrees of freedom

P
re

di
ct

io
n 

E
rr

or

●

●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●● ●

●
●
●
●
●
●
●●●● ●●●●●●●●●●●●● ●●

●
●
●
●

●
●

●
●

● ● ● ●●●●● ● ● ● ● ●● ● ●● ● ● ●● ●● ●● ● ● ●●
●●

●●●
●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●● ●●

●●●●
●●● ●●●●

●
●

●
●
●
●●●● ●●●●●● ●●●●● ● ●●● ● ●●

● ●
●
●

●
●
●
●

●
●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Lasso
Ordered Lasso
Cross−sectional Lasso

Figure 2.4. Los Angeles ozone data: prediction error curves. The cross-sectional lasso
(blue) predicts from measurements on the same day, the lasso (red) predicts from mea-
surements on the same day and previous 19 days, and the ordered lasso (green) adds the
monotonicity constraint to the lasso. The ordered lasso achieves the lowest prediction with
the fewest degrees of freedom.

lasso and the lasso applied to time-lagged features achieve lower errors than the “cross-
sectional” lasso. In addition, the ordered lasso achieves the minimum with fewer degrees
of freedom (defined in Section 2.3).

Figure 2.5 shows the estimated coefficients from the ordered lasso (top), the strongly
ordered lasso (middle), and the lasso (bottom). The ordered lasso and the strongly ordered
lasso yield simpler and more interpretable solutions. For each predictor, the ordered lasso
and the strongly ordered lasso also determine the most suitable estimate of the time-lag
interval, beyond which the estimated coefficients are zero. For example, in the ordered
lasso plot, the estimated coefficients of the predictor “wind" are zero beyond a time-lag of
14 days from the current time t, whereas the estimated coefficients for “humidity" are zero
beyond a time-lag of 7 days from the current time t. It is also worth pointing out that even
though the ordered lasso yields more interpretable solutions, the estimated coefficients are
not monotone non-increasing in absolute value, as marked by blue circles in the top panel
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of Figure 2.5. On the other hand, the strongly ordered lasso not only produces a similar
plot, but also guarantees the estimated coefficients are monotone non-increasing in absolute
value.
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Figure 2.5. Ozone data: estimated coefficients from the ordered lasso (top), the strongly
ordered lasso (middle), and the lasso (bottom) versus time-lag. The blue circles mark
regions where the estimated coefficients are not monotone non-increasing in absolute value.
For reference, a dashed red horizontal line is drawn at zero.
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Figure 2.6. Sunspot data: estimated coefficients of the ordered lasso, the lasso and the
standard AR fit.

2.2.6 Auto-regressive time series applied to sunspot data and simulated
data

In an auto-regressive (AR) time series model, one predicts each value yt from the values
yt−1, yt−2, . . . , yt−k for some maximum lag, or “order” k. This fits into the time-lagged
regression framework, where the regressors are simply the time series itself at previous
time points. Our proposal for monotone constraints in the AR model seems to be novel.
Nardi and Rinaldo [39] studied the application of the standard lasso to the AR model and
derived its asymptotic properties.

Schmidt and Makalic [44] suggested a Bayesian approach to the lasso based on the
partial autocorrelation representation of ARmodels. In the following example, we compare
coefficient estimates and order estimates among the ordered lasso, the strongly ordered
lasso, the lasso, and the standard AR fit.

Performance on the sunspot data

The data for this example is available in the R package as sunspot.year. The data contains
289 measurements representing yearly numbers of sunspots from 1700 to 1988. Figure 2.6
shows the results of the auto-regressive model fit to the yearly sunspot data. We separated
the series into training and validation series of about equal size. The standard AR fit (right
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Method Estimated lag 1 2 3 4 5 6 7 8 9 10
AR/AIC 0 0 67 14 7 3 4 3 2 0
AR/BIC 0 0 98 2 0 0 0 0 0 0
Ordered Lasso 0 0 62 16 4 6 4 1 2 5
Strongly Ordered Lasso 0 0 66 14 3 5 3 3 3 3

Table 2.1. Estimates of AR lag from the ordered lasso, the strongly ordered lasso, and AR
model using least squares with AIC and BIC from 100 simulations. The data was generated
as yi =

∑3
k=1 yi−k βk +σ · Zi where σ = 4, yi, Zi ∼ N (0, 1), and β = {0.35, 0.25, 0.25}. Each

entry represents the number of times that a specific lagwas estimated in 100 simulations. The
results show that the ordered lasso and the strongly ordered lasso have similar performance
to AR/AIC for this task.

panel) chose an order of 9 using least squares and the AIC. The ordered lasso (with λ

chosen by two-fold cross validation) suggests an order of 10 (out of a maximum of 20) and
gives a well-behaved sequence of coefficients. The regular lasso (middle panel)—with no
monotonicity constraints—gives a less clear picture. All four estimates had about the same
error on the validation set.

Performance on simulated data

Table 2.1 shows the results of an experiment comparing the ordered lasso and the strongly
ordered lasso to the standard AR fitting using least squares with AIC and BIC from 100
simulations. The goal was to estimate the lag of the time series (number of non-zero
coefficients) , as in the previous figure. The true series was of length 1000 with an actual
lag of 3, and the maximum lag considered was 10. The data was divided into training and
validation series of approximately the same size. The ordered lasso and the strongly ordered
lasso used the second half of the series to estimate the best value of λ and estimate the order
of the series. The results show that the ordered lasso and the strongly ordered lasso have
similar performance to AR/AIC for this task.
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2.3 Degrees of freedom

Given a fit vector ŷ for estimation from a vector y ∼ N (µ, I · σ2), the degrees of freedom
of the fit can be defined as

df(ŷ) =
1
σ2

N∑
i=1

Cov(yi, ŷi)(2.19)

[19]. This applies even if ŷ is an adaptively chosen estimate. Zou et al. [65] show that for
the lasso, the number of non-zero coefficients in the solution is an unbiased estimate of the
degrees of freedom. Tibshirani and Taylor [53] give analogous estimates for generalized
penalties. For near-isotonic regression described in Section 2.1.6, letting k̂ denote the
number of nonzero “plateaus" in the solution, Tibshirani et al. [54] show that

E(k̂) = df(ŷ).(2.20)

For the ordered lasso, this can be applied directly in the orthogonal design case to yield
(2.20). For general X, we conjecture that the same result holds, and can be established by
studying the properties of projection onto the convex constraint set (as detailed in Tibshirani
and Taylor).

Heuristically, one can also perform a significance test to check the monotonicity of the
coefficients. We consider testing

H0 : β+1 ≥ β+2 ≥ . . . β
+
p ≥ 0; β−1 ≥ β−2 ≥ . . . β

−
p ≥ 0

H1 : β+ and β−not ordered.

We propose the following test statistic and conjecture that it has χ2 distribution under the
null hypothesis:

T =
(RSS( β̂lasso) − RSS( β̂ordered lasso))

σ̂2 ∼ χ2
df(lasso)−df(orderedlasso),

where df(orderedlasso) and df(lasso) are defined above.
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2.4 Logistic regression model

Here we show how to generalize the ordered lasso to logistic regression. Assume that we
observe (xi, yi), i = 1, 2, . . . , N with xi = (xi1, . . . , xip) and yi = 0 or 1. The log-likelihood
function is

l (β0, β) =
N∑

i=1
(yi (β0 + xT

i β) − log(1 + eβ0+xTi β)).

With the ordered lasso, we write each β j = β+j − β−j with β+j , β
−
j ≥ 0 for j = 1, 2, . . . , p

and solve

(2.21)
maximize
β0, β+, β−

l (β0, β
+ − β−) − λ(

p∑
j=1

(β+j + β
−
j )

subject to β+1 ≥ · · · ≥ β+p ≥ 0, β−1 ≥ · · · ≥ β−p ≥ 0

We write our data in matrix form and use the iteratively reweighted least squares method
(IRLS) to solve (2.21) [27], i.e., at each iteration we solve

minimize
β0, β+, β−

1
2

(z − β01 − X(β+ − β−))TW(z − β01 − X(β+ − β−)) + λ
p∑

i=1
(β+i + β

−
i ))

subject to β+1 ≥ · · · ≥ β+p ≥ 0, β−1 ≥ · · · ≥ β−p ≥ 0,

where z = βold
0 1 + X(β+old − β−old) +W−1(y − p), p is a vector with

pi =
exp(βold

0 + xT
i (β+old − β−old))

1 + exp(βold
0 + xT

i (β+old − β−old))
,

and W is a diagonal matrix with Wii = pi (1 − pi). We apply the ordered lasso (Algorithm
1) to solve (2.22) with modified updates:

β0 ← β0 − γ1TW(β01 + Xβ − z),

β ← proxγλ (β − γXTW(β01 + Xβ − z)).
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One can also apply the strongly ordered lasso to logistic regression similarly if the estimated
coefficients from the ordered lasso are not monotone non-increasing in absolute value.

Applying the ordered lasso to the logistic regression model with time-lagged features,
we approximate the log-likelihood function as in (2.22) and use Algorithm 2 or Algorithm
3 to solve the weighted least squares minimization subproblem. Similar extensions can be
made to other generalized linear models.

2.5 Discussion

We have proposed an order-constrained version of the lasso and provided an efficient
solution to the resulting problem. This procedure has natural applications to the static
and rolling prediction problems, based on time-lagged variables. It can be applied to any
dynamic prediction problem, including financial time series and prediction of dynamic
patient outcomes based on clinical measurements. For future work, we could generalize
our framework to higher-dimensional notions of monotonicity, which could be useful for
spatial data. The R package orderedLasso that implements the algorithms is available on
the CRAN website.



Chapter 3

Time varying regularized regression

3.1 Introduction

Suppose that we observe data (xi, yi) for i = 1, 2, . . . , n, where n is the number of obser-
vations, xi = (xi1, xi2, . . . , xip) is a vector of p feature measurements, and yi is a response
value. We consider the usual linear framework,

yi = β0 +

p∑
j=1

xi j β j + ε i

with E(ε i) = 0 and Var(ε i) = σ2. When p � n, Tibshirani [51] regularized the problem
by adding the `1-norm of the coefficients as a penalty:

minimize
β0,β

1
2

n∑
i=1

*.
,
yi − β0 −

p∑
j=1

xi j β j
+/
-

2

+ λ

p∑
j=1
| β j |,

where λ > 0 is a given tuning parameter.
Though the properties of linear models have been well established, classical linear

models are often unrealistic in applications. For example, as discussed by Fan and Zhang
[20], if we were to estimate the cross-country growth, the standard growth analyses assume
linear model assumptions. However, these assumptions are often violated as it is highly
likely that a country growth rate depends on the development of the country and thus linear
models fail to consider the dynamic pattern of such relations. Therefore, varying coefficient

30
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models are natural extensions to classical linear models. Not only do these enjoy nice
interpretability of the data but they also can capture the dynamic patterns of the impacts of
the predictors.

There has been some research done on this topic. They were first introduced by
Chambers [14] in the context of local regression models. The smoothing spline method
for estimating the varying coefficient models was studied by Hastie and Tibshirani [28] and
Chiang et al. [16]. Huang and Shen [32] studied the polynomial spline method. Park et al.
[41] provided a nice review of different kernel-local polynomial smoothing methods.

In this chapter, we consider a model where we assume that the coefficients are functions
of one common variable, such as time:

y(t) = u + β0(t) +
p∑

j=1
x j (t) β j (t) + ε

with E(ε ) = 0 and Var(ε ) = σ2, and u is the constant effect over the time. We propose a
constrained version of thismodel and call the resulting procedure time varying `1 regularized
regression (TV-`1). We present an efficient algorithm for solving the resulting problem.

This chapter is organized as follows. Section 3.2 contains motivations and an algorithm
for solving TV-`1. We show a close connection with the lasso problem in Section 3.3.1. We
present a robust version of TV-`1 in Section 3.3.2. We also extend our model to a different
framework, call the resulting procedure time varying group lasso regression, and provide
a detailed algorithm for solving it. We apply TV-`1 to different simulated examples in
Section 3.4 and a dynamical system in Section 3.5. Section 3.6 contains some discussions
and directions for future work.

3.2 Time varying `1 regularized regression (TV-`1)

Consider the time varying coefficient model

yi = u + βi0 +

p∑
j=1

xi j βi j (ti) + ε(3.1)
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for i = 1, 2, . . . , n, where n is the total number of observations. As before, we assume that
E(ε ) = 0 and Var(ε ) = 0. In this situation, u is a constant effect across all the observations,
and βi j is a function of ti for j = 1, . . . p. This model makes sense in problems where the
regression coefficients are not constant for all observations. For example, the coefficients
are a function of time. In this situation, linear models could not fully capture the dynamic
patterns of the coefficients and thus could lead to a large bias.

We consider solving problem

minimize
β0,β

1
2

n∑
i=1

(yi − u − βi0 −

p∑
j=1

xi j βi j )2+

λ

n∑
i=1

p∑
j=0
| βi j | +

λ2

2

n−1∑
i=1

p∑
j=1

(βi+1, j − βi, j )2

ti+1 − ti
,(3.2)

where βi j could be a function of ti for j = 1, . . . , p. The `1 penalty term encourages
sparsity in the coefficients and the `2 penalty term makes the coefficients vary smoothly
along the index variable t. Together, both penalties encourage sparsity and smoothness in
the coefficients.

In order to solve (3.2), we rewrite this model in matrix notation. Let A0 be the identity
matrix A0 = In×n. Let A j be a diagonal matrix containing observations for the j-th

features, A j =

*....
,

x1 j
. . .

xn j

+////
-

for j = 1, 2, . . . , p, and θ j be a vector θ j = (β1 j, . . . βn j ) for

j = 0, . . . , p. Let D be an (n − 1) × n matrix with i-th diagonal element 1√
ti+1−ti

and i-th
upper diagonal element − 1√

ti+1−ti
, for i = 1, . . . , n − 1. Thus, our model becomes

minimize
u,θ j, j=0,...,p

1
2
‖y − u1 −

p∑
j=0

A jθ j ‖
2
2 + λ

p∑
j=0
‖θ j ‖1 +

λ2

2

p∑
j=0

θT
j DT Dθ j,(3.3)

where 1 is a column vector of 1 with length n. The minimization problem can be solved
efficiently using blockwise minimization updates. Let θ =

(
θ0 θ1 · · · θp

)
. With
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θ0, . . . , θ j−1, θ j+1, . . . , θp fixed, the update rule for θ j can be simplified to solving

(AT
j A j + λ2DT D)θ̂ j = S(AT

j (y −
∑
k, j

Akθk ), λ),

where the soft-threshold operator S(x, λ) is defined as

S(x, λ) =




x − λ x > λ

x + λ x < −λ

0 x ∈ [−λ, λ]

.(3.4)

The matrix AT
j A j + λ2DT D is symmetric and tri-diagonal, so that the linear system Rθ j = b

can be solved inO(n) using the function solve.tridiag function of the package limSolve
in R. A detailed algorithm for solving (3.3) can be seen in Algorithm 4.

Algorithm 4 Time varying `1 regularized regression (TV-`1)
function Time varying(y ∈ Rn ; A0, A1, . . . , Ap; λ)

Initialize θ0, θ1, . . . , θp
while not converged do

u = 1
n
∑n

i=1(yi −
∑p

j=0 Ai jθi j )
Solve (AT

j A j + λ2DT D)θ̂ j = S(AT
j (y −

∑
k, j Akθk ), λ), j = 0, . . . , p

end while
end function

3.2.1 Prediction

The estimated coefficients of TV-`1 capture the dynamic pattern of the coefficients. When
it comes to predicting a new response y with a new observation x, it also allows flexible
prediction rules. For example, ŷ can be estimated from the median of the predicted values,
the mean of the predicted values, or the most recent of the predicted values:

ŷ = median(u + θT
0 + xT θ̂),(3.5)

ŷ = mean(u + θT
0 + xT θ̂),(3.6)

ŷ = u + θ0(n) + xT θ̂n.(3.7)
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Generally speaking, if the coefficients are believed to have a large noise, the median value
of the predicted values in (3.5) yields the smallest prediction error. If the coefficients are
believed to be functions of other variables, such as time, the prediction using the most recent
estimated coefficients for prediction (3.7) may have the best performance. If the data is
seasonal, we can plug in the seasonal average for a better prediction, as seen in Section 3.4.
When the coefficients are believed to be constant, the mean value of the predicted values
gives the best result.

3.3 Extensions of TV-`1

In this section, we discuss a few extensions of our model, and we see that TV-`1 is closely
related to many existing models in the literature.

3.3.1 Connection with the lasso problem

We show that the estimates of TV-`1 can be obtained from the solution of the lasso problem

on an augmented data set. We augment y, u1 with (n − 1) zeros: ỹ = *
,

y
0

+
-
and ũ = *

,

u1
0

+
-
.

We also augment X as

X̃ = *
,

A0 A1 . . . Ap
√
λ2D

√
λ2D . . .

√
λ2D

+
-
,

a (2n − 1) × (p + 1)n matrix. We then write θ̃ =
(
θ0 θ1 . . . θp

)T
and solve

minimize
θ̃,ũ

1
2
‖ỹ − ũ1 − X̃θ̃‖2 + λ1‖θ̃ ‖1.

This transformation enables one to use the R package glmnet [22] to solve (3.3). However,
since we have to augment our data and double our memory requirement, this approach is
not as efficient as our algorithm.
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3.3.2 Robust time varying `1 regularized regression

When our data is contaminated with outliers and influential points, robust regression [33]
is a common alternative to least squares. We consider a robust version of the time varying
`1 regularized regression

minimize
θ0,θ,u

ρ
(y − u1 −

∑p
j=0 A jθ j

s

)
︸                         ︷︷                         ︸

(∗)

+λ

p∑
j=0
‖θ j ‖1 +

λ2

2

p∑
j=0

θT
j DT Dθ j .(3.8)

We can use iteratively reweighted least squares [30] to solve problem (3.8), i.e, in each
iteration, we approximate (∗) by

(y − u1 −
∑p

j=0 A jθ j )

s

)T
W

(y − u1 −
∑p

j=0 A jθ j

s

)
=

1
s2 ‖y − u1 −

p∑
j=0

A jθ j ‖
2
W

and then solve

minimize
θ0,θ

1
s2 ‖y − u1 −

p∑
j=0

A jθ j ‖
2
W + λ

p∑
j=0
‖θ j ‖1 +

λ2

2

p∑
j=0

θT
j DT Dθ j .(3.9)

In each iteration, the solution to problem (3.9) is

θ j =
( AT

j W A j

s
+ λ2DT D

)−1
S
(
AT

j W
( y −∑

k, j Akθk

s
)
, λ

)
, j = 0, . . . , p,(3.10)

where S is the soft-threshold operator defined in (3.4). There are different choices of the
function ρ. For example, we consider the Huber function [34]

ρ(e) =



1
2 e2 for |e| ≤ k

k |e| − 1
2 k2 for |e| > k

.

The weight function for the Huber function is

w(e) =



1 if |e| ≤ k

k/|e| if |e| > k
.(3.11)
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The detailed algorithm can be seen in Algorithm 5.

Algorithm 5 Robust time varying `1 regularized regression
function Robust Time varying(y ∈ Rn;A0, A1, . . . , Ap; λ)

Initialize θ0, θ1, . . . , θp
while (not converged) do

while (not converged) do
update W matrix based on ((3.11))

û =
∑n

i=1 Wii yi∑n
i=1 Wii

−

∑n
i=1

∑p
j=1 Wii AT

j θ j∑n
i=1 Wii

θ̂ j = (
AT
j W Aj

s + λ + 2DT D)−1S
(
AT

j W
( y−∑k,j Akθk

s
)
, λ

)
, j = 0, . . . , p

end while
end while

end function

3.3.3 Time varying `1 groupwise regression

We can also apply the time varying `1 regularized regression to a longitudinal sample. A
longitudinal sample for m subjects is represented by

{Yi j, Xi (ti j ), ti j ; i = 1, . . . , n, j = 1, . . . ,m}

If we believe that a common varying coefficient set can explain all the subjects, we can
solve the problem

minimize
u,θ

1
g

g∑
s=1

1
2
‖ys − u1−

p∑
j=0

As jθ j ‖
2 + λ1

p∑
j=0
‖θ j ‖1 +

λ2

2

p∑
j=0

θT
j DT Dθ j,(3.12)

where g is the total number of groups. We apply the same procedure of solving the time
varying `1 regularized group lasso to solve (3.12). The detailed algorithm for solving (3.12)
can be seen in Algorithm 6.

3.3.4 Extensions to time varying group lasso regression

In (3.1), an `1 penalty is used to encourage the sparsity of coefficients for each observation.
Though the `1 penalty encourages sparsity, it generally does not zero out the whole sequence
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Algorithm 6 Time varying `1 regularized groupwise regression

function Groupwise regression(y ∈ Rgk ; As0, As1, . . . , Asp, s = 1, . . . , g; λ)
Initialize θ0, θ1, . . . , θp;
while (not converged) do

u = 1
g

∑g
s=1(ȳs −

∑p
j=0 As jθ j)

θ̂ j = (
∑g

s=1 AT
s j As j + λ2DT D)−1S(

∑g
s=1 AT

s j (ys −
∑

k, j Askθk ), λ), j = 0, . . . , p;
end while

end function

of a particular group. Motivated by the group lasso of Yuan and Lin [62], we propose to
add an `2 norm to zero out some coefficient sequences. This idea is also used by Simon
et al. [46]. The resulting problem is

minimize
θ0,θ,u

1
2
‖y − u1−

p∑
j=0

A jθ j ‖
2 + λ

p∑
j=0
‖θ j ‖2 +

λ2

2

p∑
j=0

θT
j DT Dθ j .(3.13)

We now derive the necessary steps to solve (3.13). The objective in (3.13) is a sum of convex
functions and therefore convex; and the optimal solution is characterized by subgradient
conditions. We denote r(− j) = y−u1−

∑
k, j Akθ k . Holding θ0, . . . θ j−1, θ j+1, . . . , θp fixed,

we optimize θ j using

(3.14) minimize
θ j

1
2
‖r(− j) − A jθ j ‖

2
2 + λ‖θ j ‖2 +

λ2

2
θT

j DT Dθ j .

Therefore, θ̂ j must satisfy

AT
j (y −

p∑
j=0

A jθ j ) = λγ + λ2DT Dθ j,

where γ is the sub-gradient ‖θ j ‖2:

γ =



θ j

‖θ j ‖2
if θ j , 0n×1

∈ {γ : ‖γ‖2 ≤ 1} if θ j = 0n×1
.(3.15)
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If θ j , 0, we have

AT
j (y −

p∑
j=0

A jθ j ) = λγ + λ2DT Dθ j .

We now derive the algorithm for solving (3.13) using blockwise descent. This derivation
follows closely the derivation of the sparse group lasso algorithm by Simon et al. [46].
Since the penalty is separable between different coefficient sequences, blockwise descent is
guaranteed to converge. Let

l (r(− j), θ j ) =
1
2
‖r(− j) − X( j)θ‖22 +

λ2

2
θT DT Dθ .

Note that this is a loss function without the l2 norm penalty. We are using θ here to denote
θ j . Now we approximate l near θ0 and get

M (θ) = l (r(− j), θ0) + (θ − θ0)T∇l (r(−k), θ0) +
1
2t
‖θ − θ0‖

2
2 + λ‖θ ‖2.

Minimizing M (θ) is equivalent to minimizing M̃ (θ):

M̃ (θ) =
1
2t
‖θ − (θ0 − t∇l (r(− j), θ0))‖22 + λ‖θ ‖2.

The derivative with respect to θ gives the following subgradient conditions:

(θ − (θ0 − t∇l (r(− j), θ0))) + tλγ = 0,

where γ is defined in (3.15). We have two scenarios according to the subgradient conditions:

1. θ̂ = 0 if ‖θ0 − t∇l (−r(− j), θ0)‖2 ≤ tλ.

2. Otherwise, θ̂ satisfies

(1 +
tλ

‖θ̂‖2
)θ̂ = θ0 − t∇l (r(− j), θ0).
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Taking the norm of the both sides, we get the norm of θ̂:

‖θ̂‖2 = ‖θ0 − t∇l (r(− j), θ0)‖2 − tλ.

Substituting this into the previous equation gives the estimate for θ̂:

θ̂ =
(
1 −

tλ
‖θ0 − t∇l (r(− j), θ0)‖2

)
(θ0 − t∇l (r(− j), θ0).

The update for θ as U (θ0, t) is now
(3.16)

U (θ0, t) =



0 if ‖θ0 − t∇l (−r(− j), θ0)‖2 ≤ tλ

(1 − tλ
‖θ0−t∇l (r(−j),θ0)‖2

)(θ0 − t∇l (r(− j), θ0) otherwise
,

and note that

∇l (r(− j), θ0) = −A( j)Tr(− j) +
( A( j)T A( j)

n
+ λ2DT D

)
θ0.

While holding θ1, . . . , θ j−1, θ j+1. . . . , θp fixed, we iterate (3.16) by updating θ j each iteration
until θ j converges to the optimal solution. Applying this to each block in turn will lead to
convergence. The detailed algorithm can be seen in Algorithm 7.

3.3.5 Connection with the group lasso

Problem (3.13) is closely related to the group lasso [62]. We augment ỹ = *
,

y
0

+
-
, X̃ =

*
,

A0 A1 . . . Ap
√
λ2D

√
λ2D . . .

√
λ2D

+
-
,ũ = *

,

u1
0

+
-
, and θ̃ =

*....
,

θ0
...

θp

+////
-

. We then solve

minimize
ũ,θ̃

1
2
‖ỹ − ũ − X̃θ̃ ‖2 + λ1‖θ̃‖2.
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Algorithm 7 Time varying group lasso regression
function Group lasso regression(y ∈ Rn A0, A1, . . . , Ap)

Fix λ; Initialize θ0, θ1, . . . , θp, β = 0.8, l = 1
while (not converged) do

θ0 = (AT
0 A0 + λ2DT D)−1(AT

0 (y −
∑p

j=1 A jθ j ))
for k = 1, . . . , p do

r−k = y −
∑

j=0, j,k A jθ j ;
if ‖ − AT

k r−k ‖2 ≤ λ1 then
θ̂ k = 0

end if
while (not converged) do

Let t = 1, l = 1, ξ (l,k) = θ (k,l) = θ k
while (not converged) do

update gradient g = ∇l (r(−k), θ (k,l)
repeat

t = t × β
until l (U (θ (k,l), t) ≤ l (θ (k,l)) + gT∆(l,t) +

1
2t ‖∆(l,t) ‖

2
2

ξ (k,l) ← U (θ (k,l), t)
Update the center via a Nesterov step:

θ (k,l+1) ← θ (k,l) +
l

l + 3
(ξ (k,l) − θ (k,l))

l = l + 1
end while

end while
end for

end while
end function
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3.4 Simulated examples

In this section, we consider simulated examples in different scenarios and compare the
performance of TV-`1 with least squares and the lasso.

3.4.1 Time varying coefficients

We first consider the following setup:

(3.17)

β0(t) = −2 sin(
tπ

120
) +

t
50
+ 6,

β1(t) = cos(
(t − 30)π

100
) −

t
45
+ 6,

β2(t), β3(t), . . . , β5(t) = 0,

where t is an index that varies from 0 to 199 and is incremented by 1. The true coefficients
can be seen as a function of time. We now examine the effect of changing λ2 on the
coefficients while holding λ fixed. We generate the data as follows:

xt ∼ N(0, 1), yt = β0 +

5∑
j=1

β j (t)xt + σN(0, 1),

where σ = 2 and t = 1, . . . , 200, and β j (t), j = 1, . . . , p are described in (3.17). The results
can be seen in Figure 3.1–Figure 3.3. The estimated coefficient curves get smoother as we
increase λ2. For β̂3(t), β̂4(t), β̂5(t), some fluctuations are seen around 0. Our procedure
recovers the general trend of the true coefficients, whereas least squares does not display
the dynamic pattern of the coefficients.

3.4.2 Contamination among coefficients

We now consider a scenario where the true coefficients are contaminated by a random noise.
This situation may happen when the coefficient effects are corrupted during a certain time
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Figure 3.1. The estimated coefficients β̂0 of TV-`1 (colored) and the true coefficients β0
(black). λ = 0.1 on the left panel and λ = 1 on the right panel. As λ2 increases, the
estimated coefficients become smoother. As λ increases, the estimated coefficients become
smaller.
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Figure 3.2. The estimated coefficients β̂1 of TV-`1 (colored) and the true coefficients β1
(black). λ = 0.1 on the left panel and λ = 1 on the right panel. As λ2 increases, the
estimated coefficients become smoother. As λ increases, the estimated coefficients become
smaller.
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Figure 3.3. The estimated coefficients of TV-`1 β̂3,4,5(colored) and the true coefficients
β3,4,5 are all 0. λ = 0.1 on the left panel and λ = 1 on the right panel. The fluctuations
among estimated coefficients decrease as we increase λ.

period. The coefficients are generated as follows:

(3.18)

ξ ∼ Uni(0, 1),

βi j =




2 for i = 1, . . . , 19; 51, . . . , 60; j = 1, . . . , 5,

2 + 0.5ξ for i = 20, . . . , 50; j = 1, . . . , 5,

0 for i = 1, . . . , 60; j = 6, . . . , 30

,

xi j ∼ N(0, 1), yi = β0 +

p∑
j=1

xi j βi j + σε, σ = 1, ε ∼ N(0, 1).

We choose λ and λ2 by 5-fold cross-validation on the training data set, and we generate our
test data as follows:

(3.19)

βi0 = 1 for i = 1, . . . , 20

βi, j = 2 for i = 1, . . . , 20, j = 1, . . . , 10

xi, j ∼ N(0, 1), yi = β0,i +

30∑
j=1

βi, j xi, j + N(0, 1) for i = 1, . . . , 20.
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Table 3.1: Performance comparison between the lasso and TV-`1.
Methods Train error Test error
Lasso 0.87(0.27) 1.54(0.54)

TV-`1 (mean) 0.86(0.24) 1.49 (0.47)
TV-`1 (median) 0.86(0.239) 1.49(0.46)

In this situation, we expect the lasso should perform well because the true test data are
generated from uncontaminated coefficients. We run the simulation process 20 times
according to (3.19) and average the training error and test error. For each simulation, we
use (3.5) and (3.6) to obtain estimated response. The results in Table 3.1 show that TV-`1

performs slightly better than the lasso.

3.5 Application to dynamical systems

In this section, we consider extracting physical laws using a data-driven approach. Re-
searchers in the domain of dynamical systems have recently started using sparsity-promoting
techniques to discover governing physical equations from measurement data, under the as-
sumption that the structure of the model is dependent on a few important terms, for example,
see Brunton et al. [12]. We consider a dynamical system and show our algorithm can suc-
cessfully recover the dynamical structure of the model.

Consider ẋ(t) = f (x(t)), where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn represents the state of
the system at time t and the nonlinear function f (x(t)) represents the dynamic constraints
that define the equations of motion of the system.

Lorenz system Consider a time varying Lorenz system [37]:

(3.20)

ẋ = σ(t)(y − x); σ(t) = 10 − sin(t/3),

ẏ = x(ρ − z) − y,

ż = xy − β(t)z; β(t) = 2 + 0.25 sin(t).

The dynamics of themodel can be seen in Figure 3.4. The goal is to reconstruct the dynamics
of x, y, z without full knowledge of the right-hand side of (3.20). Table 3.2 illustrates how
we can construct the data matrix X and y to recover the underlying dynamical system. In
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Figure 3.4: Lorenz system

Table 3.2. An example feature matrix and response vector in a dynamical system. The left
table represents our feature matrix and the right table represents the response vector.

x y z xy yz xz y2 z3 z4 z5

× × × × × × × × × ×

× × × × × × × × × ×

× × × × × × × × × ×

ẏ

×

×

×

order to improve computational efficiency, we can first use the lasso to identify the nonzero
coefficients as a heuristic and then use TV-`1 to refine the selected estimated coefficients.
As shown in the left panel of Figure 3.5 – Figure 3.7, we can see that

• ẋ could be a function of x, y;

• ẏ could be a function of x, y, and xz;

• ż could be a function of xy, z.

We now apply TV-`1 to the refined matrices and results can be seen in the right panel of
those figures. Different colors represent different values of λ2 and black lines plot the true
coefficients. We see that we can recover the general trend of the estimated coefficients for
the dynamical system, whereas linear squares in this situation cannot capture the whole
picture. There are many other dynamical systems where the coefficients are function of
time. For example, in modeling of population, the common equation for the number of
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Figure 3.5. The lasso path when regressing ẋ onto the data matrix described in the Table 3.2.
The estimated coefficients from TV-`1 are in the right panel.

4 3 2 1 0 −1 −2

0
5

10
15

20
25

Log Lambda

C
oe

ffi
ci

en
ts

55 20 7.4 2.7 1 0.37 0.14

Lambda

x

xz

y

yz

z

y2

z5

Figure 3.6. The lasso path when regressing ẏ onto the data matrix described in the Table 3.2.
The estimated coefficients from TV-`1 are in the right panel.

populations can bewritten as dp/dt = rp(1−p/k), where p denotes the population, r denotes
the population growth rate, and k denotes the carrying capacity (maximum sustainable
population). Normally r and k are constant, but recently researchers have pointed out that
constant effects may not capture the whole picture of the change of population because r

and k change with time. One can apply TV-`1 to obtain estimates for r and k.

3.6 Discussion

We have proposed `1 and `2 regularized versions of the time varying regressions and
provided efficient algorithms for the resulting problem. These algorithms have natural



CHAPTER 3. TIME VARYING REGULARIZED REGRESSION 47

4 3 2 1 0 −1

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Log Lambda

C
oe

ffi
ci

en
ts

55 20 7.4 2.7 1 0.37

Lambda

z

xy

xz

y2

Figure 3.7. The lasso path when regressing ż onto the data matrix described in the Table 3.2.
The estimated coefficients from TV-`1 are in the right panel.

application to problems where the dynamic patterns are of significance in predictions and
linear models cannot capture such information. For future work, we could extend our
framework to other generalized linear models.



Chapter 4

Sparse canonical correlation analysis

4.1 Introduction

Correlation measures dependence among two or more random variables. The most popular
measure is Pearson’s correlation coefficient. For random variables x, y ∈ R, the population
correlation coefficient is defined as ρx,y = Cov(x, y)/(

√
Var(x)

√
Var(y)). It is important to

remove the variance in random variables x and y by dividing by their standard deviation.
We could not emphasize more the importance of this standardization, and we present two
toy examples in Table 4.1. Clearly, x and y are more correlated in the left table than the
right table even though the covariance between x and y is seemingly much smaller in the
left table than the right. This example demonstrates that a large covariance doesn’t mean
large correlation and a small covariance doesn’t small correlation. Moreover, correlation is
a unit-less quantity and thus doesn’t depend on the units of variables, whereas covariance
does. Therefore, correlation is a better notion of dependence than covariance. Canonical
correlation studies the correlation between two multidimensional random variables. Let
x ∈ Rp and y ∈ Rq be random variables with covariances Σx , Σy and joint covariance Σxy.

Table 4.1. Covariance Matrix: the correlation between x and y in the left table is
Corr(x, y) = 0.9 whereas on the right it is Corr(x, y) = 1

3 . It is important to remove
the variance in random variables x and y before considering the correlation.

Covariance x y

x 0.1 0.09
y 0.09 0.1

and
Covariance x y

x 0.9 0.3
y 0.3 0.9

48
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In words, we seek linear combinations of x and y such that the resulting values are most
correlated. The mathematical definition is

(4.1)
uTΣxyv√

uTΣxu
√
vTΣyv

.

Solving (4.1) is easy in low-dimensional settings, i.e., n � p, because with change of
variables Σ1/2

x u = a and Σ1/2
y v = b, (4.1) becomes

maximize
a∈Rp b∈Rq

aTΣ
−1/2
x ΣxyΣ

−1/2
y b

√
aT a
√

bT b
,(4.2)

which can be solved using the singular value decomposition of the newmatrixΣ−1/2
x ΣxyΣ

−1/2
y .

However, when p � n, this method is not feasible because Σ−1
x and Σ−1

y cannot be estimated
accurately. Moreover, we might want to seek a sparse representation of features in x and y

to obtain interpretability of the data.
Let X ∈ Rn×p,Y ∈ Rn×q be the data matrices. We consider a regularized version of the

problem:

minimize
u,v

− Cov(Xu,Yv) + τ1 |u|1 + τ2 |v |1

subject to Var(Xu) = 1; Var(Yv) = 1,

and since the constraints of the minimization problem are not convex, we further relax it to

(4.3)
minimize

u,v
−Cov(Xu,Yv) + τ1 |u|1 + τ2 |v |1

subject to Var(Xu) ≤ 1; Var(Yv) ≤ 1.

The resulting problem is still nonconvex but it is biconvex. This formulation has two
advantages. First, it does not require calculation of Σ−1

X and Σ−1
Y . Second, it encourages the

sparsity of canonical vectors u and v.

Related Work Though some research has been done on canonical correlation analysis in
high-dimensional settings, there are issues we would like to point out:
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1. Computationally efficient algorithms. We have not found an existing algorithm to
solve (4.3) that scales efficiently.

2. Correct relaxations. An efficient algorithm to find sparse canonical vectors was
proposed byWitten et al. [60] and implemented in the R package PMA. Their algorithm
relaxes the constraints Var(Xu) = 1 and Var(Yv) = 1 to ‖u‖2 ≤ 1 and ‖v‖2 ≤ 1, with
the assumptions of Σx = I and Σy = I. The relaxations of the covariance matrices are
not realistic in high-dimensional settings, and the resulting correlation is no longer
unit-less. Our algorithm relaxes Var(Xu) = 1 to Var(Xu) ≤ 1, and Var(Yv) = 1 to
Var(Yv) ≤ 1. Though we cannot guarantee the constraints are active at a solution, it
is often the case.

3. Simulated examples. We consider a variety of simulated examples, including some
that are frequently considered in the literature. We also present some examples that
are not considered in the literature and are more challenging but whose structure is
closer to that of real data sets.

The chapter is organized as follows. Section 4.2 contains motivations and algorithms.
Section 4.2.3 contains an algorithm to find rth canonical vectors, though we only focus on
estimating the first pair of canonical vectors. We show that finding sparse canonical vectors
is equivalent to finding sparse eigenvectors in a special case in Section 4.3. We demonstrate
the use of such algorithms on simulated data in Section 4.5 and show detailed comparisons
among sparse CCA methods proposed by Gao et al. [24], Witten et al. [60], and Tan et al.
[50]. Section 4.8 contains some discussion and directions for future research.

4.2 Sparse canonical correlation analysis

4.2.1 The basic idea

Problem (4.3) is equivalent to solving
(4.4)
minimize

u,v
−Cov(Xu,Yv) + τ1‖u‖1 + τ2‖v‖1 + 1{u : Var(Xu) ≤ 1} + 1{v : Var(Yv) ≤ 1},
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where 1{•} = 0 if • ≤ 1. Problem (4.4) is biconvex, i.e., if we fix u, the resulting
minimization is convex with respect to v, and if we fix v, the minimization is convex with
respect to u. Our algorithm seeks a local minimum with the following procedure.

• Repeat until converged:

1. Fix v, solve for u:

minimize
u

− Cov(Xu,Yv) + τ1‖u‖1 + 1{u : Var(Xu) ≤ 1}(4.5)

2. Fix u, solve for v:

minimize
v

− Cov(Xu,Yv) + τ2‖v‖1 + 1{v : Var(Yv) ≤ 1}(4.6)

In Section 4.2.2, we describe how to solve subproblems (4.5) and (4.6).
The method proposed by Witten et al. [60] is based on the formulation

minimize
u,v

−Cov(Xu,Yv) + τ1‖u‖1 + τ2‖v‖1

subject to ‖u‖2 ≤ 1; ‖v‖2 ≤ 1,

in which the covariance matrices XT X and YTY have been replaced by identity matrices.
They also used an alternating minimization approach, and with one variable fixed, the
other variable has a closed form solution. As a result, this formulation can be solved
very efficiently. However, a simple example shows that the solution can be inaccurate and
non-sparse.
Example 1: We generate our data as follows:

*
,

x

y
+
-
∼ N(*

,

0
0

+
-
, *

,

ΣX ΣXY

ΣY X ΣY

+
-
),

where

(Σx)i j = (Σy)i j = 0.9|i− j |, ΣXY = ΣX (u1ρv
T
1 )ΣY,

u1 and v1 are specified sparse canonical vectors with the numbers of nonzero elements



CHAPTER 4. SPARSE CANONICAL CORRELATION ANALYSIS 52

chosen to be 5, 5, respectively. The locations of nonzero elements are chosen randomly and
normalized with respect to the true covariance of X andY , i.e., uT

1ΣXu1 = 1 and vT
1 ΣY v1 = 1.

We first present a proposition from Chen et al. [15].

Proposition 1. Consider the problem

(4.7)
maximize

a,b
aTΣxyb

subject to aTΣxa = 1; bTΣyb = 1.

When Σxy has rank 1, the solution (up to sign jointly) of (4.7) is (θ, η) if and only if
the covariance structure between X and Y can be written as Σxy = λΣxθη

TΣy, where
0 ≤ λ ≤ 1, θTΣxθ = 1, and ηTΣyη = 1. In other words, the correlation between aT X

and bTY is maximized by Corr(Xθ,Yη), and λ is the canonical correlation between X and
Y . More generally, if Σxy has rank r , the solution of (4.7) is (θ1, η1) if and only if the
covariance structure between X and Y can be written Σxy = Σx (

∑r
i=1 λiθiη

T
i )Σy.

The sample size is n = 500 and pu = pv = 600, ρ = 0.9. We denote the solution of
Witten et al. [60] by ûw, v̂w, and our solution by û1, v̂1. We have two main goals when we
solve for canonical vectors: maximizing the correlation while maintaining sparsity in the
canonical vectors. A common way to measure the performance is to use the Pareto curve,
seen in Figure 4.1 and Figure 4.2. The left panel traces

x :
−ûT XTY v̂

√
ûT XT Xû

√
v̂YTY v̂

vs. y : ‖û‖1 + ‖v̂‖1,

and the right panel traces

x :
−ûTΣXY v̂√

ûTΣX û
√
v̂TΣY v̂

vs. y : ‖û‖1 + ‖v̂‖1.

We prefer a point that is close to the left corner of the Pareto curve, because it represents a
solution consisting of sparse canonical vectors and also achieves the maximum correlation.

The left panel of Figure 4.1 is a plot of the estimated correlation ûT XTY v̂ versus the
sum of ‖û‖1 and ‖v̂‖1, averaged over 100 simulations. The right panel plots estimated
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Figure 4.1. Pareto curves of our estimators. The left panel plots the estimated correlation
ûT XTY v̂ versus the sum of ‖û‖1 and ‖v̂‖1, averaged over 100 simulations. The red dot
corresponds to (uT XTYv, ‖u‖1 + ‖v‖1). The right panel plots the estimated correlation
ûTΣXY v̂ versus the sum of ‖û‖1 and ‖v̂‖1, averaged over 100 simulations. The red dot
corresponds to (uTΣXYv, ‖u‖1 + ‖v‖1). Note that the red dot (true solution) is on the Pareto
curve in both cases, which means that our algorithm can achieve this optimal value with the
right choice of regularizers.
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Figure 4.2. Pareto curves ofWitten et al. [60]. The left panel plots the estimated correlation
ûT XTY v̂ versus the sum of ‖û‖1 and ‖v̂‖1, averaged over 100 simulations. The red dot
corresponds to (uT XTYv, ‖u‖1 + ‖v‖1). The Right panel plots the estimated correlation
ûTΣXY v̂ versus the sum of ‖û‖1 and ‖v̂‖1, averaged over 100 simulations. The red dot
corresponds to (uTΣXYv, ‖u‖1 + ‖v‖1). Note that the red dot is not on the Pareto curve
in both cases, which means that the algorithm cannot achieve this optimal value with any
choice of regularizers.
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correlation ûTΣXY v̂ versus the sum of ‖û‖1 and ‖v̂‖1, averaged over 100 simulations. Note
that we replace the sample covariance with the true covariance. From both panels, with
the right choice of regularizers, we see that our algorithm can achieve the optimal values.
However, as shown in Figure 4.2, the solutions of Witten et al. [60] are very far from the
true solution. The red dots are not on their solutions’ path, meaning that their results do not
achieve the optimal value with any choices of regularizer.

4.2.2 Algorithmic details

Linearized alternating direction minimization method

We assume that the data matrices X and Y are centered and divided by the square root of
the number of samples. We write (4.5) as

minimize
u

− uT XTYv + τ1‖u‖1 + 1{u : ‖Xu‖2 ≤ 1},(4.8)

where Σ̂x = XT X, Σ̂y = YTY, Σ̂xy = XTY . Letting z = Xu, we have

minimize
u,z

−uT XTYv + τ1‖u‖1︸                   ︷︷                   ︸
f (u)

+1{‖z‖2 ≤ 1}︸         ︷︷         ︸
g(z)

subject to Xu = z.(4.9)

We can use the Linearized Alternating Direction Method of Multipliers [40] (ADMM) to
solve this problem. ADMM minimizes the augmented Lagrangian by solving for each
variable and dual variable one by one until convergence. A detailed derivation is in the
Appendix, and the complete algorithm can been seen in Algorithm 8.

TFOCS

Another approach to solving problem (4.5) is to use TFOCS [7]. Since v is fixed, letting
c = vTYT X and minimizing the objective function is equivalent to minimizing

− cu/τ1 + ‖u‖1 + 1{u : ‖Xu‖2 ≤ 1}.(4.10)
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Instead of optimizing (4.10), we minimize

‖u‖1 +
1
2
µ‖u − (uold +

1
τ1µ

c)‖22 + 1{u : ‖Xu‖2 ≤ 1}

for µ > 0. Intuitively, we solve (4.10) without going too far from the current approximation.
This formulation can be solved using tfocs_SCD.

Algorithm 8 ADMM for Sparse CCA
1: function CCA(X,Y )
2: Initialize u0, v0, z0, ξ0

3: while not converged do
4: Fix vk

5: while not converged do

uk+1 ← proxµ f (uk −
µ

λ
XT (Xuk − zk + ξk ))

zk+1 ← proxλg (Xuk+1 + ξk )

ξk+1 ← ξk + Xuk+1 − zk+1

6: end while
7: Fix uk+1

8: while not converged do

vk+1 ← proxµ f (vk −
µ

λ
YT (Yvk − zk + ξk ))

zk+1 ← proxλg (Yvk+1 + ξk )

ξk+1 ← ξk + Yvk+1 − zk+1

9: end while
10: end while
11: end function
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4.2.3 The remaining canonical vectors

Given the first r − 1 canonical vectors U =
(
u1 . . . ur−1

)
and V =

(
v1 . . . vr−1

)
, we

consider solving for the r-th canonical vectors using the problem

minimize
u,v

− uT XTYv + τ1‖u‖1 + τ2‖v‖1 + 1{u : ‖Xu‖2 ≤ 1} + 1{v : ‖Yv‖2 ≤ 1}

subject to UT XT Xu = 0; VTYTYv = 0.

We again use the alternating minimization approach. Fixing v, we get û by solving

minimize
u,z

− uT XTYv + τ1 |u|1 + 1{z : ‖z‖2 ≤ 1}

subject to Xu = z; UT XT Xu = 0r−1,

and fixing û, we get v̂ by solving

minimize
v,z

− uT XTYv + τ1 |v |1 + 1{z : ‖z‖2 ≤ 1}

subject to Yv = z; VTYTYv = 0r−1.

The constraints can be combined as

*
,

X

UT XT X
+
-

u − *
,

I

0
+
-

z = 0; *
,

Y

VTYTY
+
-
v − *

,

I

0
+
-

z = 0.(4.11)

Letting X̃ = *
,

X

UT XT X
+
-
and Ỹ = *

,

Y

VTYTY
+
-
, we see that

uT X̃TỸv = uT XTYv + uT XT XUVTYTYv = uT XTYv,

where the last equality is due to the fact that the constraints (4.11) are satisfied. To get the
r-th canonical vectors, we can use Algorithm 8 with the new matrices X̃ and Ỹ (CCA(X̃ ,



CHAPTER 4. SPARSE CANONICAL CORRELATION ANALYSIS 57

Ỹ )) with a modification of

proxλg (x) =



proxλg (x[1 : n]) for x[1 : n]

0 for x[n + 1 : n + r]
,

where x[1 : n] denotes elements from 1 to n in x, in order to enforce the constraints
UT XT Xu = 0 and VTYTYv = 0.

4.2.4 A bridge for the covariance matrix

As mentioned, Witten et al. [60] proposed to replace the covariance matrix with an identity
matrix. Since their formulation can be solved efficiently, it is of interest to investigate the
relation between our method and theirs. Therefore, we consider a covariance matrix of the
form

αx XT X + (1 − αx)Ipu,pu

and a similar one for Y . The term ‖Xu‖22 gives

uT (αx XT X + (1 − αx)I)u = αx ‖Xu‖22 + (1 − αx)‖u‖22 = ‖ *
,

√
αx X

√
1 − αxIpu,pu

+
-︸              ︷︷              ︸

(∗)

u‖22 .

This form can be minimized using Algorithm 8 by changing the linear operator to the matrix
(∗) above. To see how solutions change from Witten et al. [60] to our solution, we can use
the above to see the path using different choices of αx, αy.

4.2.5 A predictive view

We consider a scenario where one of the matrices X and Y is low-dimensional and we show
how to use CCA as a prediction tool under a normal distribution assumption. Without loss
of generality, we may assume that X ∈ Rn×p, n > p and Y ∈ Rn×q, n < q. Assume the data
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matrices X and Y are generated from

*
,

X

Y
+
-
∼ N(*

,

µ1

µ2

+
-
, *

,

ΣX ΣXY

ΣY X ΣY

+
-
).

The conditional distribution of X |Y is given by

X |Y ∼ N(µ1 + ΣXYΣ
−1
Y (Y − µ2), ΣX − ΣXYΣ

−1
Y ΣY X ).

From Proposition 1, Σ̂XY = Σ̂X ρ̂ûv̂T Σ̂Y , which is equivalent to Σ̂XY Σ̂
−1
Y = Σ̂X ρ̂ûv̂T , where

Σ̂x can be estimated from sample data X ; see for example, [43], [13]. If we are given a new
observation y, we can estimate x as follows:

E[x |y] = µ1 + Σ̂x ρ̂ûv̂T (y − µ2).

4.2.6 Semidefinite programming approach

We now show that a variation of problem (4.3) can be solved using a semidefinite program-
ming approach. This idea is borrowed from d’Aspremont et al. [17]’s approach to sparse
principal components analysis with some modifications. The problem

(4.12)

minimize
u,v

−uT XTYv

subject to uT XT Xu = 1; vTYTYv = 1
card(v) ≤ kv; card(u) ≤ ku

where card(u) denotes the number of non-zero elements of a vector u, can be relaxed to

minimize
H

trace(Y XT H12)

subject to H � 0, trace(XT X H11) = 1, trace(YTY H22) = 1;
1T |H11 |1 ≤ k1 1T |H22 |1 ≤ k2,

1T |H12 |1 ≤
√

k1k2,
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where H = *
,

H11 H12

H21 H22

+
-
, H11 = uuT, H12 = uvT, H21 = vuT, H22 = vvT , and 1 is a vector of

1s. We then relax it to

minimize
H

trace(Y XT H12) − ρ1T |H |1

subject to H � 0, trace(XT X H11) = 1, trace(YTY H22) = 1,

where ρ > 0 is a regularizer constant.
There are many other relaxations of problem (4.12). However, semidefinite program-

ming problems can be very computationally expensive using existing methods, especially
when p is much greater than n. Therefore, we do not compute sparse canonical vectors using
this formulation. Finding an efficient algorithm for this problem would be an interesting
direction for future research.

4.3 A special case

In this section, we consider a special case in which the covariance matrices of x and y

are the identity. With Σx = Σy = I, suppose the covariance matrix has singular value
decomposition Σxy = UΛVT , U ∈ Rp×k,V ∈ Rq×k , and Λ ∈ Rk×k is diagonal so that Σxy

has rank k. We show that sparse CCA is similar to a sparse principal component analysis.
Note that UTU = Ik and VTV = Ik . The joint distribution of x and y is

*
,

X

Y
+
-
∼ N

( *
,

0
0

+
-

*
,

I UΛVT

VΛUT I
+
-

)
.

Proposition 2. Estimation of u and v can be obtained using spectral decomposition and
thus we can use sparse principal components software to obtain u and v.

Proof Let Σ = A + I = *
,

0 UΛVT

VΛUT 0
+
-
+ *

,

I 0
0 I

+
-
, where

A = *
,

0 UΛVT

VΛUT 0
+
-
=

1
2

*
,

U

V
+
-
Λ

(
UT VT

)
−

1
2

*
,

U

−V
+
-
Λ

(
UT −VT

)
.
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Let Ui,Vi denote the ith columns of U and V respectively, and denote

Wi =
1
√

2
*
,

Ui

Vi

+
-
, Wk+i =

1
√

2
*
,

Ui

−Vi

+
-

for i = 1, . . . , k. Note that WT
i W j = I(i = j), for i, j = 1, . . . , 2k. Let {Wi}

p+q
i=2k+1 be an

orthonormal set of vectors orthogonal to {Wi}
2k
i=1. Then the matrix Σ = A+ I has the spectral

decomposition

Σ =

k∑
i=1

(1 + Λi,i)WiWT
i +

2k∑
i=k+1

(1 − Λi−k,i−k )WiWT
i +

pu+pv∑
i=2k+1

WiWT
i .

Therefore, Σ can be thought of as a spiked covariance matrix, where the signal to noise
ratio (SNR) can be interpreted as 1 + mini Λi,i. We know that in the high-dimensional
regime, if SNR ≥

√
p/n we can recover u and v even if u and v are not sparse. However, if

SNR <
√

p/n, we need to enforce sparsity in u and v; see Baik et al. [2] and Paul [42] for
details. �

We can see from Proposition 2 that if the covariance matrices of x and y are the identity, or
act more or less like identity matrices, finding canonical vectors can be roughly viewed as
finding sparse principal components. Therefore, in this case, estimating canonical vectors
is roughly as hard as computing sparse eigenvectors.

4.4 Equivalence to Fisher’s linear discriminant analysis

Fisher’s linear discriminant analysis (LDA) [21] is a classification tool and was designed
to find projections of the data in order to maximize the between-group variance relative to
within-group variance. Let X be the data matrix with n rows xT

i that belong to K classes,
and wc be the class c, for c = 1, . . . , K . Mathematically, it solves

(4.13)
maximize

a
aT SBa

subject to aT SW a = 1,
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Table 4.2. Error comparison between our method and msda. All values are the median of
100 simulations. Our method achieves the same classification error as msda. The numbers
of non-zeros are 33 and 33 in the estimated discriminant vectors and 26 and 36 in the
estimated canonical vectors.

Test error msda our method
Error % 8.3 8.3
Std Dev% 0.039 0.04
Non-zeros (33,33) (26,36)

where SB =
∑K

c=1 nc( x̄ (c) − x̄)( x̄ (c) − x̄)T amd SW =
∑K

c=1
∑

x∈wc
(x − x̄ (c))(x − x̄ (c))T ,

x̄ (c) = 1
nc

∑
xi∈wc,i=1,...,n

xi and x̄ = 1
n
∑n

i=1 xi. Many researchers have noticed that CCA is

equivalent to LDA when one of the matrices X or Y is written in certain forms and LDA is
thus viewed as a special case of CCA. The discovery is traced back to Bartlett [5]. Sun and
Chen [49] give discussions of why LDA is equivalent to CCA when Y represents the class
labels of the corresponding observations in X , and Barker and Rayens [3] provide detailed
proofs for some cases. One representation is as follows: let Yi be the ith row of matrix Y ,

Yi =
(
Yi1 . . . YiK

)
; Yi j =




1 if i ∈ w j

0 otherwise
, for j = 1, . . . , K .

We examine the performance of our method on the GDS1615 dataset with the method
proposed by Mai et al. [38] and implemented as the R package msda. msda performs
high-dimensional multi-class linear discrimant analysis and has the best performance on
this dataset. The dataset contains 22283 gene expression levels of 127 people, either
normal or with Crohn’s disease, or with ulcerative colitis. It is publicly available from
Gene Expression Omnibus with number GDS1615. The dataset was pre-processed and the
details can be seen in the paper [38]. The final dataset contains 127 people with 127 gene
expression levels. We divide the data into a training set and test set, with a ratio of roughly 2
to 1. 10-fold cross-validation was performed on the training set for both methods to choose
the best parameter. The result on the test set can be seen in Table 4.2. Our sparse CCA
algorithm does as well as msda on this data. Figure 4.3 plots the result from applying our
method, where xvar1 = Xû1 and xvar2 = Xû2, and û1, û2 are the first and second sparse
canonical vectors of X . The numbers of nonzero elements for û1, û2 are 26, 39. Most
observations are well separated, as seen in the figure.
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Figure 4.3. Sparse CCA applied to GDS1615 dataset. xvar1 = Xû1 and xvar2 = Xû2
where û1, û2 are the first and second sparse canonical vectors of X . The numbers of nonzero
elements of û1 and û2 are 26, 39. Most observations are well separated by our method.
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4.5 Simulated data

In this section, we carefully analyze different cases of covariance structure of x and y and
compare the performance of our method with other methods. We first explain how we
generate the data.

Let X ∈ Rn×p and Y ∈ Rn×q be data generated from the model

*
,

x

y
+
-
∼ N

( *
,

0
0

+
-
, *

,

Σx Σxy

Σyx Σy

+
-

)
,

where Σxy = ρΣxuvTΣy, where u and v are the true canonical vectors, and ρ is the true
canonical correlation. We would like to estimate u and v from the data matrices X and
Y . We compare our method with other methods available on different choices of triplets:
(n, p, q), where n is the number of samples, p is the number of features in X , and q is the
number of features in Y . In order to measure the discrepancy of the estimated û, v̂ from the
true u and v, we use the sine of the angle between û and u, v̂ and v from Johnstone and Lu
[36]:

Loss(v̂, v) = min(‖v̂ − v‖22, ‖v̂ + v‖
2
2 ),(4.14)

where ‖v̂‖2 = ‖v‖2 = 1.

4.5.1 Identity-like covariance models

In the sparse canonical correlation analysis literature, structured covariances of x and y are
thoroughly investigated. For example, the covariance of x may be the identity or Toeplitz,
or have a sparse inverse covariance. From the plot of the covariances matrix in Figure 4.4
and Figure 4.5, we can see that Toeplitz and sparse inverse covariances act more or less
like identity matrices. Since the covariances of x and y act more or less like identity
matrices, as discussed previously, computing u and v is roughly as hard as computing
sparse eigenvectors. In other words, the covariance of x and y does not change the signal in
u and v much and as a result, the signal in Σxy is very sparse. In this case, an initial guess
is very important. We propose the following procedure:

1. Denoise the matrix XTY by soft thresholding the matrix elementwise. Call the
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Figure 4.4. Toeplitz matrices with σi j = 0.9 |i−j |. We see that even though it is not exactly
an identity matrix, the general structure does look like one.

resulting matrix Sxy.

2. Obtain an initial guess as follows:

(a) Take the singular value decomposition Sxy = Û ŜV̂T .

(b) Normalize each columnui, vi in Û and V̂ byui ←
ui√

uTi (XT X )ui
and vi ←

vi√
vTi YTYvi

.

Denote the resulting matrices by Ũ and Ṽ .

(c) Calculate D̃ = ŨT XTYṼT . Choose the index k where the maximum diagonal
element of D̃ is obtained. Obtain the initial guess uk and vk .

3. Use the initial guess uk and vk to start the alternating minimization algorithm.

We consider three types of covariance matrix in this category: Toeplitz, identity, and
sparse inverse matrices.

1. Σ = Ip.

2. Σ = (σi j ), where σi j = 0.9|i− j | for all i, j ∈ p, q. Here Σ are Toeplitz matrices. See
the plot of the Toeplitz matrix and its corresponding Σxy = Σx ρuvTΣy. We see that
though it is not an identity matrix, it behaves more or less like one. Note that the
smaller the Toeplitz constant is, the more it looks like an identity matrix.
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Figure 4.5. Sparse inverse matrix. Σ = (
σ0
i j√

σ0
iiσ

0
j j

). Σ0 = (σ0
i j ) = Ω

−1 where Ω = (ωi j )

with ωi j = 1{i=j } + 0.5 × 1{ |i−j |=1} + 0.4 × 1{ |i−j |=2}, i, j ∈ [p]. The resulting Ω is very
sparse.

3. Σ = (σ0
i j ), where (σ0

i j ) = Ω
−1 and Ω = (ωi j ) with

ωi j = 1{i= j} + 0.5 × 1{|i− j |=1} + 0.4 × 1{|i− j |=2}, i, j ∈ [p].

The resulting Ω is very sparse and thus Σx and Σy have sparse inverse matrices.

In each example, we simulate 100 data sets X andY in order to average our performance.
We set the number of nonzeros in u and v to be 5. The indices of nonzeros are randomly
chosen. We vary the number of nonzeros in the next comparison. For each simulation, we
have a sequence of regularizers τu and τv to choose from. For simplicity, we choose the best
τu and τv such that the estimated û and v̂ minimize the Loss defined above in every method.

We present our results in Table 4.3–4.5. Some notation is presented in the tables and
we now explain it here. ρ̂ is the estimated canonical correlation between data X and Y ;
eu = Loss(û, u); and ev = Loss(v̂, v). We compare our results with the methods proposed
by Witten et al. [60] and Gao et al. [24]. Since we are not able to run the code from Tan
et al. [50] very efficiently, we compare our method with their approach in the next section.
In order to compare them in the same units, we calculate the estimates of each method and
then normalize them by Xû and Y v̂ respectively. We then normalize the estimates to have
norm 1. We report the estimated canonical correlation, loss of u, and loss of v in the format
(ρ, eu, ev) for each method in all tables. We see that the SCCA method proposed by Gao
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Table 4.3. Error comparison for identity matrices. We use a format of ( ρ̂,Loss(û),Loss(v̂))
to represent each method’s result. Our method performed similarly to SCCA.

(n, p, q) Our method SCCA PMA

(400, 800,800) (0.90,0.056,0.062) (0.90,0.060,0.066) (0.76, 0.26,0.27)
(500, 600, 600) (0.90,0.05,0.056) (0.90, 0.053, 0.057) (0.61,0.15,0.16)
(700, 1200,1200) (0.90,0.045, 0.043) (0.90,0.045, 0.043) (0.6, 0.143,0.144)

Table 4.4. Error comparison for Toeplitz matrices. We use a format of ( ρ̂,Loss(û),Loss(v̂))
to represent each method’s result.

(n, p, q) Our method SCCA PMA

(400, 800, 800) (0.91, 0.173 ,0.218) (0.91, 0.213, 0.296) (0.52,1.038,1.067)
(500, 600, 600) (0.90, 0.136, 0.098) (0.90, 0.145, 0.109) (0.55, 1.11, 0.94)

(700, 1200, 1200) (0.90, 0.109, 0.086) (0.90, 0.110, 0.088) (0.60, 1.098,0.89)

et al. [24] performs similarly to ours. However, their two-step procedure is computationally
expensive compared to ours and it is hard to choose regularizers. For the identity case in
Table 4.3, the estimates byWitten et al. [60] do the worst among three methods, even though
their formulation assumes covariance matrices to be identity, and worse for the Toeplitz and
sparse inverse matrices, as seen in Table 4.4–4.5. Their method fails to provide accurate
approximations because of low sample size we considered.

4.5.2 Spiked covariance models

In this section, we consider spiked covariance matrices of x ∈ Rp and y ∈ Rq:

Cov(x) =
kx∑

i=1
λiwiw

T
i + Ip, Cov(y) =

ky∑
i=1

λiwiw
T
i + Iq.

Table 4.5. Error comparison for sparse inverse matrices. We use a format of
( ρ̂,Loss(û),Loss(v̂)) to represent each method’s result.

(n, p, q) Our method SCCA PMA

(400, 800, 800) (0.92,0.092,0.149) (0.92,0.129, 0.190) (0.6,0.68,0.79)
(500, 600, 600) (0.90, 0.068, 0.059) (0.90, 0.069, 0.0623) (0.67, 0.64, 0.41)

(700, 1200, 1200) (0.90, 0.050 ,0.044) (0.90, 0.051, 0.047) (0.55,0.61,0.33)
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In Example 2 we see that even if we have more observations than the number of features,
the traditional singular value decomposition (SVD) can return poor results.
Example 2: We generate Σx and Σy as follows:

Σx =

k∑
i=1

λx,iwx,iw
T
x,i + I, Σy =

k∑
i=1

λy,iwy,iw
T
y,i + I,

where wx,1, . . . ,wx,k , wy,1, . . . ,wy,k are independent orthonormal vectors in Rp, Rq and
λx,i = λy,i = 250 and k = 20. The covariance Σxy is generated as Σxy = Σx ρuvTΣy, where
u and v are the true canonical vectors and have 10 nonzero elements with indices randomly
chosen. We generate the data matrices X ∈ Rn×p and Y n×q from the distribution

*
,

x

y
+
-
∼ N(*

,

0
0

+
-
, *

,

Σx Σxy

ΣT
xy Σy

+
-
).

Therefore, when n = 1000, p = 800, q = 800, we should be able to estimate u and v using
the SVD of the matrix

Σ̂
−1/2
x Σ̂xyΣ̂

−1/2
y = (XT X )−1/2(XTY )(YTY )−1/2.

However, the estimated û and v̂ can be seen in Figure 4.6. The results are wrong and not
sparse. This is an indication that we need more samples to estimate the canonical vectors.
When we increase the sample size to n = 3000, the estimates of u and v are more accurate
but not very sparse, as seen in Figure 4.7. For our method with n = 400, the estimated û

and v̂ can be seen in Figure 4.8. Our method returns sparse and better estimates for u and
v.

4.5.3 A detailed comparison

To further illustrate the accuracy of our method, we compare it with the methods proposed
by Tan et al. [50] using the plot of scaled sample size versus estimation error. We choose
the same set up as theirs because their method performed better in comparison with PMA.
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Figure 4.6. Plot of estimated û, v̂ from SVD (blue) and true u, v (red), The number of
observations n = 1000, with p = 800, q = 800. The estimated u and v using SVD of the
transformed estimated covariance matrix are not good estimates of the true u and v. The
results are wrong and not sparse. This is an indication that we need more samples to estimate
the canonical vectors.
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Figure 4.7. Plot of Estimated u, v from SVD (blue) and true u, v (red), The number of
observations n = 3000, with p = 800, q = 800. Though the correct support is recovered but
solution is not as sparse as our method.
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Figure 4.8. Plot of estimates u (top panel), and v (bottom panel) from our method (blue)
and true u, v (red), The number of observations is n = 400, with p = 800, q = 800. Note
that we use less samples than the results of Figure 4.6. We can successfully recover the
correct support and return a sparse solution.

The data was simulated as

ρ = 0.9, u j =
1
√

5
, v j =

1
√

5
for j = 1, 6, 11, 16, 21,

and Σx and Σy are block-diagonal matrices with five blocks, each of dimension d/5 × d/5,
where element ( j, j′) of each block takes the value 0.7| j− j ′ |. The set-up of our simulation
is exactly the same as for Tan et al. [50]. In order to make comparisons between two
methods, we normalize both û and v̂ to have norm 1 for both methods and average the mean
square errors of 100 simulations. As shown in Figure 4.9, our method outperforms theirs
in general, and in the low sample regime, our method does significantly better.

4.6 Application to Human Connectome Project

The human connectome project (HCP) [57] acquires high-quality imaging and behavioral
data from a large sample of healthy young adult subjects, in an effort to map macroscopic
human brain circuits and their association with behavior. It contains imaging data, which
measures functional and structural brain connectivity, and non-image data, which contains
demographics, psychometrics, and other behavioral measures. A large part of the datasets
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Figure 4.9. A comparison between performance of our method and the method proposed
by Tan et al. [50]. The left panel is the Loss(û) versus rescaled sample size n/s log(d), and
the right panel is the Loss(v̂) versus rescaled sample size n/s log d. The Blue line is the
result of Tan et al. [50] and the black line is the result of our method.

are publicly available at https://db.humanconnectome.org/. This project gives re-
searchers a tool to potentially answer open questions such as what makes humans unique,
and how brain networks integrate information through complex neural connections. One
of those questions is whether any specific parts of brain are associated with specific sets of
behavior variables when performing a certain task.

A natural approach of relating image to non-imaging data is to use canonical correlation
analysis, and many researchers in neuroscience community have used this approach. While
there has been an intent to use CCA on this data, the methods in the literature so far have
made one of the following modifications in response to the high dimensionality of the
imaging data:

• Principal component analysis is first conducted to reduce the dimensions of the
imaging data and then canonical correlation analysis is performed [47], but the
solutions are generally dense.

• The variance of the imaging data is assumed to be the identity [1], which leads to a
sparse singular value decomposition.

These modifications limit the ability of algorithms to find true canonical correlations in the
data, and the second one even violates the mathematical definition of CCA. We apply our

https://db.humanconnectome.org/
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method to behavioral variables and functional statistical maps. In this dissertation, we study
the ‘n-back’ task designed to measure working memory. In this particular task, all subjects
were presented with items one at a time and then asked to identify each item that repeats
relative to the item that occurred n times before. The data contains 495 subjects and to be
more specific, the data matrices X and Y are constructed as follows:

• We obtain unrestricted behavioral data from HCP. We first delete the variables with
80% missing data and replace NA values with the mean value of the corresponding
column. This process is also performed by Asteris et al. [1]. We then choose the
variables that intersect with the paper by Smith et al. [47], which include scores
from psychological tests, physiological measurements, and self-reported behavior
questionnaires. The dimension of the resulting Y matrix is 495 × 61.

• We use the pre-computed 2back-0back statistical contrast maps provided by the
HCP. It was preprocessed using standard preprocessing such as motion correc-
tion. Details of the preprocessing can be found in [57] and on the website https:
//db.humanconnectome.org. The nilearn python package was then used to
resample the Voxels to different scales. The higher the scale, the coarser the imag-
ing data is, which potentially can eliminate the effect of correlations among Voxels
nearby. The dimensions of the resulting matrix X are 495 × 109350 (corresponding
to scaling factor 2), 495 × 32400 (corresponding to scaling factor 3), 495 × 13068
(corresponding to scaling factor 4), and 495 × 6804 (corresponding to scaling factor
5).

We present the results of applying Sparse CCA to four resulting datasets, where each set
corresponds to one scaling factor. The non-zero elements in estimated canonical vec-
tor v̂1 corresponding to behavior variables can be found in Figure 4.10. The font size
reflects the canonical vector weights in absolute value. Even though we run four dif-
ferent datasets, we get similar behavior variables with very minor differences and thus
we present one set of the results. We see that the variables that play more important
roles are PMAT24_A_CR, CardSort_Unadj, PicVocab_AgeAdj, ListSort_AgeAdj, Perc-
Stree_Unadj, AngeHostil_Unadj, etc. PMAT24_A_CR measures the number of correct
responses to a test where participants are presented patterns made up from 2 × 2, 1 × 5
etc. squares with one of the squares missing and must pick one of five response choices

https://db.humanconnectome.org
https://db.humanconnectome.org
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that best fits the missing square. PercStress_Unadj measures how unpredictable, uncon-
trollable, overloaded respondents find their lives. It is interesting to find that variables
such as PMAT24_A_CR, PicVocal_AgeAdj play opposite effects compared with vari-
ables such as AngHostil_Unadj, PerStress_Unadj for this particular task. We can see that
positive factors are the features that are related to intelligence; however, the negative ef-
fects are dominated by variables such as emotion and stress. The negative factors were
not discovered by Asteris et al. [1]. Detailed descriptions for each feature in the fig-
ure are given at https://wiki.humanconnectome.org/display/PublicData/HCP+
Data+Dictionary+Public-+500+Subject+Release. Figures 4.11—4.14 show the re-
sults of estimated canonical vectors û1 of the imaging data mapped back into the brain.
When the scaling factor increases, the resolution of images decreases. We identified activa-
tion regions (in red) known to be involved in executive function and working memory and
deactivation regions (in blue) known to be associated with engagement of difficult cognitive
functions but with some differences relative to the result of Asteris et al. [1]. The study of
brain functions is still at an early stage and we hope that sparse CCA can be used as a tool
to advance this field.

4.7 Cross-language document retrieval

In cross-language document retrieval, among a collection of multilingual documents the
goal is to find the most relevant documents in the target languages. CCA has been shown
to be an efficient tool by Sriperumbudur et al. [48] and Vinokourov et al. [59]. In this
setting, CCA tries to find a low-dimensional representation or a basis in languages, in order
to maximize correlations among documents. In this dissertation, we apply sparse CCA to
multilingual databases and seek a low-dimensional model that is only dependent on a small
subsets of words in documents with a maximum correlation. Sparse CCA allows us to find
such a representation and the resulting words can be translations of one another [48].

The data sets are downloaded from http://optima.jrc.it/Acquis/index_2.2.
html. They contain regulations of the European Union translated into different languages.
We used the documents in English, French, and Spanish. We removed non-words, ID
numbers, diatrics, unicode punctuation, and isolated characters, and represented words in
terms of TFIDF [56] (term frequency-inverse document frequency) to reflect how important

https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500+Subject+Release
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500+Subject+Release
http://optima.jrc.it/Acquis/index_2.2.html
http://optima.jrc.it/Acquis/index_2.2.html
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Figure 4.10. Behavior variables corresponds to the non-zero elements of estimated canon-
ical vector v̂1. The font size reflects the canonical vector weights in absolute value.
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Figure 4.11. Result of applying sparse CCA to matrix Y and matrix X with scaling
factor 2. The estimated canonical vectors are mapped back to the brain with positive
values corresponding to activation regions (in red) and negative values corresponding to
deactivation regions (in blue).

Figure 4.12. Result of applying sparse CCA to matrix Y and matrix X with scaling
factor 3. The estimated canonical vectors are mapped back to the brain with positive
values corresponding to activation regions (in red) and negative values corresponding to
deactivation regions (in blue).

Figure 4.13. Result of applying sparse CCA to matrix Y and matrix X with scaling
factor 4. The estimated canonical vectors are mapped back to the brain with positive
values corresponding to activation regions (in red) and negative values corresponding to
deactivation regions (in blue).
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Figure 4.14. Result of applying sparse CCA to matrix Y and matrix X with scaling
factor 5. The estimated canonical vectors are mapped back to the brain with positive
values corresponding to activation regions (in red) and negative values corresponding to
deactivation regions (in blue).

a word is to a corpus.
There are a total of 7749 documents in common among the three languages, with 26149

unique words in English, 29340 unique words in French, 33638 unique words in Spanish.
We analyzed them in pairs. The resulting matrices are large (e.g., 7, 749 × 26, 149 for
English) but very sparse. In order to speed up computations and minimize memory usage,
we store the centered matrices in a sparse plus rank-one form, and use a randomized SVD
to initialize our algorithm.

We visualize the results using word clouds in Figures 4.15–4.16. The font size reflects
the estimated canonical correlation vectors û and v̂ in absolute values. In order to achieve
high canonical correlation, the resulting canonical vectors put more weight on certain key
words in different languages. For example, reglement and reglamento mean regulation in
French and Spanish. One can easily pick out literal translations from the estimated canonical
vectors.

4.8 Discussion

We have proposed a sparse canonical correlation framework and shown how to solve it
efficiently using ADMM and TFOCS. We have extensively studied different simulation sce-
narios and shown our estimates are sparse, efficient and accurate. Though our formulation
is non-convex, global solutions are often obtained, as seen among simulated examples.
We have presented the results of our methods on real datasets and demonstrated its use in
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Figure 4.15. Sparse canonical correlation applied to documents in English and French.
Estimated canonical vectors in û and v̂ put more weight on words with the same mean-
ing in different languages. Reglement and beurre in French mean regulation and butter,
respectively.

Figure 4.16. Sparse canonical correlation applied to documents in English and Spanish.
Estimated canonical vectors in û and v̂ put more weight on words with the same meaning
in different languages. Reglamento and precio in Spanish mean regulation and price,
respectively.
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Figure 4.17. Sparse canonical correlation applied to documents in French and Spanish.
Estimated canonical vectors in û and v̂ put more weight on words with the same meaning in
different languages.

real-world applications. There are many directions for further research and we list a few
here.

• LDA is a special case of CCA when one of the matrices in CCA is written to contain
class information of the data. As discussed by Sun and Chen [49], the indicator
matrix or class label can be viewed as a hard label for each data point. Instead of
using an indicator matrix, we can use a soft class label encoding for each sample.
They showed some improvements on some datasets in low-dimensional settings and
it would be interesting to explore whether the advantages remain in high-dimensional
settings.

• In the HCP project, the X matrices analyzed were from original images, and in order
to reduce the correlation, we used different scaling factors. Another approach would
be to project the images into some known basis such as the MSDL atlas [58] and then
perform sparse CCA on the resulting matrices.
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Appendix

Detailed derivations for linearized ADMM

The augmented Lagrangian form of (4.9) is

L(u, z, φ) = −uT XTYv + τ1‖u‖1 + 1{‖z‖2 ≤ 1} + φT (Xu − z) +
ρ

2
‖Xu − z‖22 .

Thus, the updates of variables are obtained from

uk+1 = argmin
u
{−uT XTYv + τ1‖u‖1 + φkT

(Xu − zk ) +
ρ

2
‖Xu − zk ‖22 },

zk+1 = argmin
z
{1{‖z‖2 ≤ 1} + φT (Xuk+1 − z) +

ρ

2
‖Xuk+1 − z‖22 },

φk+1 = φk + ρ(Xuk+1 − zk+1).

Letting ξk =
φk

ρ and adding some constants, we get

uk+1 = argmin
u
{−uT XTYv + τ1‖u‖1 + ρξkT

(Xu − zk ) +
ρ

2
‖Xu − zk ‖22 +

ρ

2
‖ξ‖22 },

zk+1 = argmin
z
{1{‖z‖2 ≤ 1} + ρξT (Xuk+1 − z) +

ρ

2
‖Xuk+1 − z‖22 +

ρ

2
‖ξ‖22 },

ξk+1 = ξk + (Xuk+1 − zk+1).
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Therefore, we have

u ← argmin
u
{−uT XTYv + τ1‖u‖1 +

ρ

2
‖Xu − z + ξ‖22 },

z ← argmin
z
{1{‖z‖2 ≤ 1} +

ρ

2
‖Xu − z + ξ‖22 },

ξ ← ξ + (Xu − z).

The Linearized ADMM replaces the quadratic term ρ
2 ‖Xu − z + ξ‖22 by a linear term in

order to speed it up:

u ← argmin
u
{−uT XTYv + τ1‖u‖1 + ρ(XT Xuk − XT zk )Tu +

µ

2
‖u − uk ‖22 },

z ← argmin
z
{1{‖z‖2 ≤ 1} +

ρ

2
‖z − Xuk+1 + ξk ‖22 },

ξ ← ξ + (Xuk+1 − zk+1).

Letting ρ = 1/λ and µ̃ = 1
µ , we get

u ← argmin
u
{−uT XTYv + τ1‖u‖1 +

1
λ

(XT Xuk − XT zk )Tu +
1

2µ̃
‖u − uk ‖22 },

z ← argmin
z
{1{‖z‖2 ≤ 1} +

ρ

2
‖z − Xuk+1 + ξk ‖22 },

ξ ← ξ + (Xuk+1 − zk+1).

Letting µ = µ̃, for the first minimization problem, after some simple algebra we get

uk+1 = argmin
u
{−uT XTYv + τ1‖u‖1 +

1
2µ
‖u − (uk −

µ

λ
(XT (Xuk − zk + ξk ))‖22 }.

Therefore, our detailed updates are

uk+1 ← proxµ f (uk −
µ

λ
XT (Xuk − zk + ξk )),

zk+1 ← proxλg (Xuk+1 + ξk ),

ξk+1 ← ξk + Xuk+1 − zk+1.
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The analytic proximal mapping of f and g can be easily derived: f (x) involves a soft
threshold and g(x) is a projection onto the convex set (a norm ball):

proxµ f (x) =




x + µc − µτ if x + µc > µτ

x + µc + µτ if x + µc < −µτ

0 otherwise

,

proxλg (x) =



x if ‖x‖2 ≤ 1
x
‖x‖2

otherwise
,(5.1)

where c = XTYv (the gradient of the objective function with respect to one canonical vector
with the other canonical vector fixed).

Equivalence between CCA and LDA

Let X and Y be the original data matrices. Let Y be the label matrix and without loss of

generality, we can assume that Y has the form Y =

*.......
,

1n1

1n2
. . .

1nc

+///////
-n×nC

, where C is

the number of class labels. The sample covariance matrices can be written

Sx =
1

n − 1
(X −

1
n

11T X )T (X −
1
n

11T X ) =
1

n − 1
XT (I −

1
n

11T )X,

Sy =
1

n − 1
(Y −

1
n

11TY )T (Y −
1
n

11TY ) =
1

n − 1
YT (I −

1
n

11T )Y,

Sxy =
1

n − 1
XT (I −

1
n

11T )Y .

We know that the CCA problem solves

maximize
u,v

uT Sxyv

subject to uT Sxu = 1, vT Syv = 1.
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From the KKT conditions, if u∗, v∗, λ∗u and λ∗v are a maximizer of the CCA problem, we
have

SxyS−1
y Syxu∗ = λ∗uSxu∗,

Syx S−1
x Sxyv

∗ = λ∗vSyv∗,

We now derive the inverse of Sy using the Sherman-Morrison formula:

S−1
y = (n − 1)(YTY −

1
n

YT 11TY )−1

= (n − 1)(YTY −
1
n

*....
,

n1
...

nq

+////
-

(
n1 . . . nq

)
)−1

= (n − 1)[(YTY )−1 −
1
n

(YTY )−1uvT (YTY )−1

1 + uT (YTY )−1v
],(5.2)

where u = v =

*....
,

n1
...

nq

+////
-

, (YTY )−1 =

*.......
,

1
n1

1
n2

. . .
1
nc

+///////
-

. (5.2) becomes

(n − 1)[(YTY )−1 −
1

n(n + 1)
11T ].

To simplify SxyS−1
y Syx , Sxy can be rewritten as

Sxy =
1

n − 1
XT (I −

1
n

11T )Y

=
1

n − 1
(∑n1

i=1 x (1)
i

∑n2
i=1 x (2)

i . . .
∑nq

i=1 x (q)
i

)
−

1
n − 1

∑
xi

(
n1 . . . nq

)
=

1
n − 1

(∑n1
i=1 x (1)

i − x̄n1
∑n2

i=1 x (2)
i − x̄n2 . . .

∑nq
i=1 x (q)

i − x̄nq

)
.
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Therefore, SxyS−1
y Syx is simplified to

SxyS−1
y Syx =

1
n − 1

(
x̄ (1)

n1 − x̄ x̄ (2)
n2 − x̄ . . . x̄ (q)

nq − x̄
) *.......

,

∑n1
i=1 x (1)

i − n1 x̄∑n2
i=1 x (2)

i − n2 x̄
...∑nq

i=1 x (q)
i − nq x̄

+///////
-

=
1

n − 1

nq∑
i=1

ni ( x̄ (i)
i − x̄)( x̄ (i)

i − x̄)T .

Thus we have

(5.3)

SBu∗ = λ∗uSxu∗

SBu∗ = λ∗u(SB + SW )u∗

(1 − λ∗u)SBu∗ = λ∗uSW u∗

SBu∗ =
λ∗u

1 − λ∗u
SW u∗.

Recall that in linear discriminant analysis (LDA), we solve

minimize
a

aT SBa

subject to aT SW a = 1,

By the KKT conditions, if a∗, λ∗a is a maximizer of the LDA problem, we have SBa∗ =

λ∗aSW a∗. Letting λ∗a =
λ∗u

1−λ∗u
, it is exactly equivalent to CCA by (5.3).
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Non-differentiable Functions. Springer-Verlag New York, Inc., 1985.

[46] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group
lasso. Journal of Computational and Graphical Statistics, 22(2):231–245, 2013. doi:
10.1080/10618600.2012.681250.

[47] Stephen M Smith, Thomas E Nichols, Diego Vidaurre, Anderson M Winkler, Tim-
othy EJ Behrens, Matthew F Glasser, Kamil Ugurbil, Deanna M Barch, David C
Van Essen, and Karla L Miller. A positive-negative mode of population covariation
links brain connectivity, demographics and behavior. Nature Neuroscience, 18(11):
1565, 2015.

[48] Bharath K Sriperumbudur, David A Torres, and Gert RG Lanckriet. A majorization-
minimization approach to the sparse generalized eigenvalue problem. Machine Learn-
ing, 85(1-2):3–39, 2011.

[49] Tingkai Sun and Songcan Chen. Class label versus sample label-based CCA. Applied
Mathematics and Csomputation, 185(1):272–283, 2007.

[50] K. M. Tan, Z. Wang, H. Liu, and T. Zhang. Sparse generalized eigenvalue problem:
Optimal Statistical Rates via Truncated Rayleigh Flow. ArXiv e-prints, April 2016.

[51] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1996.

[52] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight.
Sparsity and smoothness via the fused lasso. Journal of the Royal Statistics Society
Series B, 67(1):91–108, 2005.



BIBLIOGRAPHY 88

[53] Ryan Tibshirani and Jonathan Taylor. On the degrees of freedom of the lasso. Annals
of Statistics, (40):1198–1232, 2011.

[54] Ryan Tibshirani, Holger Hoefling, and Robert Tibshirani. Nearly-isotonic regression.
Technometrics, 53(1):54–61, 2011.

[55] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
01 2008.

[56] Jeffrey David Ullman. Mining of Massive Datasets. Cambridge University Press,
2011.

[57] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa
Yacoub, Kamil Ugurbil, Wu-Minn HCP Consortium, et al. The WU-Minn human
connectome project: an overview. Neuroimage, 80:62–79, 2013.

[58] Gaël Varoquaux, Alexandre Gramfort, Fabian Pedregosa, Vincent Michel, and
Bertrand Thirion. Multi-subject dictionary learning to segment an atlas of brain spon-
taneous activity. In Biennial International Conference on Information Processing in
Medical Imaging, pages 562–573. Springer, 2011.

[59] Alexei Vinokourov, Nello Cristianini, and John Shawe-Taylor. Inferring a semantic
representation of text via cross-language correlation analysis. In Advances in Neural
Information Processing Systems, pages 1497–1504, 2003.

[60] Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decom-
position, with applications to sparse principal components and canonical correlation
analysis. Biostatistics, 10(3):515–534, 2009. doi: 10.1093/biostatistics/kxp008.

[61] J. M. Wooldridge. Introductory Econometrics: A Modern Approach. South-Western
College Publishing, 2009.

[62] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, Series B, 68(1):49–67, 2007.

[63] H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418–1429, 2006.



BIBLIOGRAPHY 89

[64] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society Series B, 67(2):301–320, 2005.

[65] Hui Zou, Trevor Hastie, and Robert Tibshirani. On the “degrees of freedom" of the
lasso. Annals of Statistics, 35(5):2173–2192, 2007.


	Abstract
	Acknowledgments
	Introduction
	Supervised learning in high dimensions
	Unsupervised learning in high dimensions
	Numerical optimization algorithms
	Proximal gradient descent
	Accelerated proximal gradient method
	Alternating direction method of multipliers
	Biconvexity


	An ordered lasso
	Lasso with an order constraint
	The ordered lasso
	Algorithmic details of the ordered lasso
	Comparison between the ordered lasso and the lasso
	The strongly ordered lasso
	A different relaxation
	Relaxation of the monotonicity requirement

	Sparse time-lagged regression
	Static prediction from time-lagged features
	Rolling prediction from time-lagged features
	The strongly ordered lasso applied to time-lagged features
	Simulated examples
	Performance on the Los Angeles ozone data
	Auto-regressive time series applied to sunspot data and simulated data

	Degrees of freedom
	Logistic regression model
	Discussion

	Time varying regularized regression
	Introduction
	Time varying 1 regularized regression (TV-1)
	Prediction

	Extensions of TV-1
	Connection with the lasso problem
	Robust time varying 1 regularized regression
	Time varying 1 groupwise regression
	Extensions to time varying group lasso regression
	Connection with the group lasso

	Simulated examples
	Time varying coefficients
	Contamination among coefficients

	Application to dynamical systems
	Discussion

	Sparse canonical correlation analysis
	Introduction
	Sparse canonical correlation analysis
	The basic idea
	Algorithmic details
	The remaining canonical vectors
	A bridge for the covariance matrix
	A predictive view
	Semidefinite programming approach

	A special case
	Equivalence to Fisher's linear discriminant analysis
	Simulated data
	Identity-like covariance models
	Spiked covariance models
	A detailed comparison

	Application to Human Connectome Project
	Cross-language document retrieval
	Discussion

	Appendix
	Bibliography

