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A B S T R A C T

Modern datasets are growing in terms of samples but even more so in
terms of variables. We often encounter datasets where samples consists of
time series, images, even movies, so that each sample has thousands, even
millions of variables. Classical statistical approaches are inadequate for
working with such high-dimensional data because they rely on theoretical
and computational tools developed without such data in mind. The work
in this thesis seeks to close the apparent gap between the growing size of
emerging datasets and the capabilities of existing approaches to statistical
estimation, inference, and computing.

This thesis focuses on two problems that arise in learning from high-
dimensional data (versus black-box approaches that do not yield insights
into the underlying data-generation process). They are:

1. model selection and post-selection inference: discover the latent low-
dimensional structure in high-dimensional data;

2. scalable statistical computing: design scalable estimators and algo-
rithms that avoid communication and minimize “passes” over the
data.

The work relies crucially on results from convex analysis and geometry.
Many of the algorithms and proofs are inspired by results from this beau-
tiful but dusty corner of mathematics.
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Part I

E S T I M AT I O N



1
R E G U L A R I Z AT I O N I N H I G H - D I M E N S I O N A L
S TAT I S T I C S

Regularization is an old idea. It was first proposed by Tikhonov (1943)
in the context of solving ill-posed inverse problems and soon appeared in
statistics (e. g. in Stein (1956), James and Stein (1961)). It has since become a
standard tool in the well-trained statistician’s toolkit. In the contemporary
era of high-dimensional statistics, where the sample size is of the same or-
der as the dimension of the samples or substantially smaller, ill-posedness
is the norm rather than the exception, and regularization is essential. There
is a voluminous literature on regularization in statistics, and a comprehen-
sive survey is beyond the scope of this thesis. Bühlmann and Van De Geer
(2011) gives a review of the recent developments spurred by the prolif-
eration of high-dimensional problems. We focus on recent developments
spurred by trends in the size and complexity of modern datasets.

Modern datasets are growing in terms of sample size n but even more
so in terms of dimension p. Often, we come across datasets where p ∼ n or
even p & n. In such high-dimensional settings, regularization serves two pur-
poses: one statistical and the other computational. Statistically, regulariza-
tion is essential: it prevents overfitting and allows us to design estimators
that exploit latent low-dimensional structure in the data to achieve consis-
tency. From the computational point of view, regularization improves the
stability of the problem and often leads to computational gains.

This thesis studies regularized M-estimators in the high-dimensional set-
ting. The goal is to estimate a parameter θ∗ ∈ Rp by minimizing the sum
of a loss function and a regularizer. More precisely, let Zn := {z1, . . . , zn}
be a collection of samples with marginal distribution P and θ∗ = θ∗(P). An
M-estimator estimates θ∗ by

θ̂ ∈ arg minθ∈Rp `n(θ,Zn) :=
1
n

n

∑
i=1

`n(θ, zi), (1.1)

where `n : Rp×Z → R is a loss function that measures the fit of a parameter
θ to a sample zi. The loss function is usually chosen so that the unknown
parameter θ∗ minimizes the population risk; i. e.

θ∗ = arg minθ∈Rp E[`n(θ, Z)].

2



regularization in high-dimensional statistics 3

A regularized M-estimator combines an M-estimator with a regularizer or
penalty ρ : Rp → R+ to induce solutions with some particular structure. It
is possible to combine the loss function and regularizer in two ways. The
first option is to minimize the loss function subject to a constraint on the
regularizer:

θ̂ ∈ arg minθ∈Rp `n(θ,Zn) subject to ρ(θ) ≤ r, (1.2)

where τ > 0 is a radius. We focus on the second option: to minimize the
Lagrangian form of the constrained problem:

θ̂ ∈ arg minθ∈Rp `n(θ,Zn) + λρ(θ), (1.3)

where λ > 0 is a regularization weight. If `n and ρ are convex in θ, the two
options are equivalent: for any choice of the regularization weight λ, there
is a radius r for which the solution set of (1.2) coincides with that of (1.3).

To set the stage for more complicated regularizers, we describe two sim-
ple examples. A classical example of a regularized M-estimator is the ridge
regression estimator by Hoerl and Kennard (1970). Given samples of the
form zi = (xi, yi) ∈ Rp × R, the ridge regression estimator minimizes the
sum of the least-squares criterion and the squared `2 regularizer:

θ̂ := arg minθ∈Rp
1

2n

n

∑
i=1

(yi − xT
i θ)2 +

λ

2
‖θ‖2

2 . (1.4)

Although linear regression is broadly applicable, some problems require
richer, more flexible models. The non-parametric analog of ridge regres-
sion in the non-parametric setting is

θ̂ := arg min f∈H
1

2n

n

∑
i=1

(yi − f (xi))
2 +

λ

2
‖ f ‖2

H , (1.5)

where H is some Hilbert space of real-valued functions equipped with
norm ‖·‖H . The Hilbert norm regularizer is usually chosen to induce some
kind of smoothness on the solution.

Another M-estimator that has been the subject of intensive study re-
cently is the lasso estimator:

minimize
θ∈Rp

1
2n

n

∑
i=1

(yi − xT
i θ)2 subject to ‖θ‖1 ≤ σ.



1.1 structured sparsity inducing regularizers 4

Its Lagrangian form, also known as basis pursuit denoising, is

minimize
θ∈Rp

1
2n

n

∑
i=1

(yi − xT
i θ)2 + λ ‖θ‖1 . (1.6)

In statistics, the Lagrangian form is often called the lasso. The constrained
form of the estimator was proposed by Tibshirani (1996), and the Lagrangian
form, by Chen et al. (1998). The `1 regularizer induces sparse solutions,
which is most appropriate when the unknown regression coefficients θ∗

are sparse. There is an extensive literature on the theoretical propoerties
of the lasso and other `1 regularized M-estimators in the high-dimensional
setting, including persistency (Greenshtein et al. (2004), Bunea et al. (2007),
Bickel et al. (2009)), consistency (Donoho (2006), Zhang and Huang (2008),
Donoho and Tanner (2009), Bickel et al. (2009)), and selection consistency
(Meinshausen and Bühlmann (2006), Zhao and Yu (2006), Tropp (2006),
Wainwright (2009)). We describe some extensions of the `1 regularizer in
Section 1.1.

1.1 structured sparsity inducing regularizers

In many problems, we expect the unknown parameters to be sparse in a
group-wise, possibly hierarchical way. To induce such structured sparse
solutions, many group-sparsity inducing regularizers have been proposed.
The simplest example is the group lasso regularizer by Kim et al. (2006) and
Yuan and Lin (2006):

ρ(θ) := ∑
g∈G

∥∥θg
∥∥

2 , (1.7)

where each g ∈ G is a subset of the indices [p]. In the original form of
the group lasso regularizer, the groups are non-overlapping. A variant of
the group lasso penalty that penalizes the sum of the `∞ norms of the
groups was proposed by Turlach et al. (2005). More recently, Zhao et al.
(2009), Jacob et al. (2009), and Baraniuk et al. (2010) proposed extensions
of the group lasso penalty to induce structured sparsity with overlapping
groups.

The naive overlapping group lasso regularizer suffers from a subtle
drawback. By design, regularizing with (1.7) encourages groups of pa-
rameters to be zero. Thus the complement of the support of a solution
is usually the union of some subset of the groups. Unfortunately, in many
applications, we seek solutions whose support is the union of groups—the
opposite effect.
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To correct this fault, Jacob et al. (2009) proposed the latent group lasso
regularizer:

ρ(θ) := infθ

{
∑g∈G

∥∥θg
∥∥

2 : θ = ∑g∈G θg

}
. (1.8)

We emphasize that θg in (1.7) is a point in R|g|, but θg in (1.8) is a point
in Rp. The latent group lasso is based on the observation that when the
groups overlap, a point θ has many possible group-sparse decompositions.
By minimizing over the decompositions, the latent group lasso ensures the
support of a solution is a union of groups.

Another form of structured sparsity is sparsity in a basis. That is, Dθ is
sparse for some matrix D ∈ Rm×p. Regularizers that induce sparsity in a
basis regularize Dθ instead of θ. In statistics, such regularizers are called
generalized lasso penalties: ‖Dθ‖1 . In signal processing, they are known as
analysis regularizers.

1.2 convex relaxations of the rank

There are many problems in multivariate statistics that boil down to opti-
mizing over the set of low-rank matrices. A compelling application is the
matrix completion problem: estimate an unknown matrix given (possibly
noisy) observations of a small subset of its entries. The problem arises
in collaborative filtering, where the goal is to recommend goods to users
based on the users’ ratings of a subset of items. The problem as stated
is ill-posed; some additional structural assumption is imperative. An em-
pirically justified assumption is that the unknown matrix has small rank.
Although an ideal approach is to penalize the rank (or enforce a rank con-
straint), the rank function is non-convex. Thus the ideal approach is not
computationally practical for all but the smallest problems.

The nuclear norm of a matrix is a natural convex relaxation of the rank
function. It is the analog of the `1 norm relaxation of the sparsity of a point.
For any Θ ∈ Rp1×p2 , the rank of Θ is the number of non-zero singular
values. Based on this observation, Fazel et al. (2001) suggest the nuclear
norm, which is given by the `1 norm of the singular values, as a convex
relaxation of the rank:

‖Θ‖nuc := ∑
i∈[p]

σi(Θ), (1.9)

where {σi(Θ)}i∈[p] are the singular values of Θ. A rich line of work, be-
ginning with Recht et al. (2010), shows that minimizing the nuclear norm
is often an exact surrogate for minimizing the rank. The theoretical prop-
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erties of nuclear norm regularization under various statistical models has
since been extensively studied, including matrix completion (e. g. Candès
and Recht (2009), Mazumder et al. (2010), Gross (2011), Koltchinskii et al.
(2011), Recht (2011), Negahban and Wainwright (2012)) and, more gener-
ally, matrix regression (e. g. Bach (2008), Recht et al. (2010), Candes and
Plan (2011), Negahban et al. (2011), Rohde et al. (2011)).

The nuclear norm also has a variational characterization:

‖Θ‖nuc := infΘ=UVT ‖U‖F ‖V‖F = infΘ=UVT
1
2

(
‖U‖2

F + ‖V‖
2
F

)
, (1.10)

which suggests other convex relaxations by replacing the Frobenius norm
with other matrix norms. A well-studied example proposed by Srebro et al.
(2004) is the max norm:

‖Θ‖max := infΘ=UVT
1
2

(
‖U‖2

2,∞ + ‖V‖2
2,∞

)
,

where the `q/`r matrix norm is

‖A‖q,r :=
(

∑
j∈[p]
‖aT

j ‖r
q

) 1
r
.

The variational characterization also leads to alternative approaches to min-
imizing the nuclear norm. We defer the details to Part II.

1.3 regularizers for structured matrix decomposition

It is possible to combine the aforementioned regularizers to obtain regular-
izers that induce solutions that are sums of components each possessing
some particular structure. For example, consider the robust form of the
matrix completion problem, where a few entries of the unknown low-rank
matrix may be contaminated with (possibly adversarial) noise. Thus the
unknown matrix has the form Θ = Θ∗1 + Θ∗2 , where Θ∗1 has low rank and
Θ∗2 is sparse.

To induce solutions that are the sum of structured components, we con-
sider regularizers of the form

ρ(θ) := infθ1,θ2 {ρ1(θ1) + ρ2(θ2) : θ = θ1 + θ2} , (1.11)

where ρ1 and ρ2 are regularizers chosen to induce the correct structure
in θ1 and θ2. In the robust matrix completion problem, natural choices of
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the constituent regularizers are the nuclear norm and the (entry-wise) `1

norm:
ρ(Θ) := infΘ1,Θ2 {‖Θ‖1 + ‖Θ2‖nuc : Θ = Θ1 + Θ2} . (1.12)

Since being proposed by Candès et al. (2011), the “low-rank plus sparse”
regularizer (1.12) has been extensively studied (e. g. Chandrasekaran et al.
(2011), Hsu et al. (2011)).

Another example of (1.11) is the combination of the `1 norm and the
`1/`q norm. It was proposed as an improvement upon `1/`∞ regulariza-
tion to induce group sparsity. Negahban and Wainwright (2011) showed
that the statistical efficiency of pure `1/`q regularization may be worse
than that of pure `1 regularization when the groups are incorrectly speci-
fied. To correct this deficiency, Jalali et al. (2010) propose a regularizer of
the form (1.11) that combines the `1 norm and the `1/`q norm. They show
that the combined regularizer outperforms pure `1 or pure `1/`q regular-
ization.

In the first part, we focus on the statistical properties of regularized M-
estimators. To begin, we study the consistency of regularized M-estimators
in the high-dimensional setting. Our study identifies a key property of the
regularizer that enables the estimator to identify latent low-dimensional
structure in the data, which in turn enables efficient estimation in high
dimensions.

In the second part, we turn our attention to computational issues. We
study two ways to evaluate regularized M-estimators efficiently. In the se-
quential setting we describe a family of methods that interpolate between
first- and second-order methods. In the distributed setting, we describe a
way to evaluate the estimators with a single round of communication. The
work in this thesis was performed jointly with Jason Lee, who contributed
equally.



2
C O N S I S T E N C Y O F R E G U L A R I Z E D M - E S T I M AT O R S

We turn our attention to the consistency of regularized M-estimators in the
high-dimensional setting. In this chapter, we focus on geometrically decom-
posable regularizers; i. e. regularizers that are sums of support functions. The
material in this and the following chapter appears in Lee et al. (2015b). Be-
fore delving in, we review some concepts from convex analysis that appear
in our study.

2.1 convex analysis background

Let C ⊂ Rp be a closed, convex set. The polar set C◦ is given by

{x ∈ Rn | xTy ≤ 1 for any y ∈ C}.

When C is a cone, i. e. C = λC for any λ > 0, its polar set is known as its
polar cone:

C◦ := {x ∈ Rn | xTy ≤ 0 for any y ∈ C}.

The notion of polarity is a generalization of the notion of orthogonal-
ity. In particular, the polar cone of a halfspace H = {x ∈ Rn | xTy ≤
0 for some y 6= 0} is the ray generated by its (outward) normal

H◦ = {λy | λ ≥ 0},

and the polar cone of a subspace is its orthocomplement. Further, given a
convex cone K ⊂ Rn, any point x ∈ Rn has an orthogonal decomposition
into its projections onto K and K◦.

Lemma 2.1. Let K ⊂ Rn be a closed convex cone. Any point x ∈ Rn has a unique
decomposition into its projections onto K and K◦, i. e. x = PK(x) + PK◦(x).
Further, the components PK(x) and PK◦(x) are orthogonal.

Recall the indicator function of a closed, convex set C ⊂ Rp is

IC(x) :=

0 x ∈ C,

∞ otherwise.
(2.1)

8



2.2 geometrically decomposable penalties 9

Its convex conjugate is the support function of C :

hC(x) := supy∈C xTy. (2.2)

Intuitively, support functions are (semi-)norms. In particular, they are sub-
linear: hC(αx) = αhC(x) for any α > 0 and hC(x + y) ≤ hC(x) + hC(y). If C
is symmetric about the origin, i. e. −x ∈ C for any x ∈ C, the first property
holds for any α ∈ R. Support functions (as functions of the set C) are also
additive:

hC1+C2(x) = hC1(x) + hC2(x).

Since support functions are supremums of linear functions, their subdiffer-
entials consist of the linear functions that attain the supremum:

∂hC(x) = {y ∈ C | yTx = hC(x)}. (2.3)

2.2 geometrically decomposable penalties

Since support functions are sublinear, they should be thought of as semi-
norms. In particular, the support function of a norm ball is the dual norm.
If C is symmetric about the origin and contains a neighborhood of the
origin, hC is a norm. This observation leads us to consider regularizers of
the form ρ(θ) = hC(θ) for some set C.

Definition 2.2 (Geometric decomposability). For any two closed convex sets
A, I ⊂ Rp containing the origin, a regularizer is geometrically decomposable
with respect to the pair (A, I) if

ρ(θ) = hA(θ) + hI (θ) for any θ ∈ Rp. (2.4)

The notation A and I should be as read as “active” and “inactive”:
span(A) should contain the unknown parameter and span(I) should con-
tain deviations that we wish to penalize.1 For example, if we know the
sparsity pattern of the unknown parameter, then A should span the sub-
space of all points with the correct sparsity pattern.

The form (2.4) is general; if ρ is a sum of support functions, i. e.

ρ(θ) = hC1(θ) + · · ·+ hCk(θ),

1 More generally, span(I)⊥ should contain the unknown parameter. Often, span(A) =
span(I)⊥.
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then, by the additivity of support functions, ρ has the form (2.4), where A
and I are sums of the sets C1, . . . , Ck. In many cases of interest, A+ I is a
norm ball and hA+I = hA + hI is the dual norm. In our study, we further
assume

1. the set A is bounded and contains the origin.

2. the set I contains a relative neighborhood of the origin, i. e. 0 ∈
relint(I).

To allow for unregularized parameters, we do not assume A+ I contains
a neighborhood of the origin. Thus ρ is not necessarily a norm.

To build some intuition, consider the sparse linear regression problem:
recover a sparse θ∗ ∈ Rp given predictors X ∈ Rn×p and responses y =

X ∈ Rn×p + ε. The lasso (BPDN) estimates θ∗ by the solution of

minimize
θ∈Rp

1
2n
‖y− Xθ‖2

2 + λ‖θ‖1. (2.5)

Let S ⊂ [p] be the support of θ, and S c be the complementary subset of
[p]. It is possible to show that the `1 norm is geometrically decomposable
with respect to the sets

B∞,S =
{

θ ∈ Rp | ‖θ‖∞ ≤ 1, θS c = 0
}

B∞,S c =
{

θ ∈ Rp | ‖θ‖∞ ≤ 1, θS = 0
}

.

There is a well-developed theory of the lasso that says, under suitable as-
sumptions on X, the lasso estimator is consistent. As we shall see, the
geometric decomposability of the `1 norm is the key to the performance of
the lasso.

Before we state the main results, we note that regularizers of the form
ρ(Dθ) for some D ∈ Rm×p are geometrically decomposable, as long as ρ is
geometrically decomposable. Indeed,

ρ(Dθ) = hA(Dθ) + hI (Dθ)

= hDTA(θ) + hDTI (θ).

Thus ρ is geometrically decomposable with respect to the images of A and
I under DT. This property makes geometric decomposability amendable
to studying analysis regularizers.
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2.3 consistency of regularized m-estimators with geomet-
rically decomposable regularizers

We begin by recalling the problem setup. We are given a collection of sam-
ples Zn := {z1, . . . , zn} with marginal distribution P. We seek to estimate
a parameter θ∗ ∈ M ⊂ Rp, whereM is the model subspace. The model sub-
space is usually low-dimensional and captures the simple structure of the
model. For example, M may be the subspace of vectors with a particular
support or a subspace of low-rank matrices.

Let `n : Rp → R be a convex and twice-continuously differentiable loss
function. We estimate θ∗ by an M-estimator with a geometrically decom-
posable regularizer:

minimize
θ∈Rp

`n(θ) + λ(hA(θ) + hI (θ)), (2.6)

where I ⊂ Rp is chosen so that M = span(I)⊥. This interplay between
I and M is crucial to the statistical properties of (2.6). Returning to the
sparse regression example, the model subspace is

{
θ ∈ Rp : θS c = 0

}
. It

is easy to show that span(B∞,S c)⊥ is the model subspace. Thus the lasso is
an instance of (2.6).

Before describing our results, we briefly review the voluminous litera-
ture on sufficient conditions for consistency of regularized M-estimators.
Negahban et al. (2012) proposes a unified framework for establishing con-
sistency and convergence rates for M-estimators with regularizers ρ that
are decomposable with respect to a pair of subspaces M, M̄:

ρ(x + y) = ρ(x) + ρ(y), for all x ∈ M, y ∈ M̄⊥.

Many common regularizers such as the lasso, group lasso, and nuclear
norm are decomposable in this sense. Negahban et al. (2012) also develop a
general notion of restricted strong convexity and prove a general result that
establishes the consistency of M-estimators with decomposable regulariz-
ers. Using their framework, they establish estimation consistency results
for different statistical models including sparse and group sparse linear
regression. Our results include a general framework for model selection
consistency in a similar setting.

More recently, van de Geer (2012) proposed the notion of weakly decom-
posability. A regularizer ρ is weakly decomposable if there is some norm
ρS c on Rp−|S| such that ρ is superior to the sum of ρ and ρS c ; i. e.

ρ(x) ≥ ρ(xS ) + ρS c(xS c), for all x ∈ Rp,
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where S ⊂ [ p ] and xS ∈ R|S|, xS c ∈ Rp−|S|. Many common sparsity in-
ducing regularizers, including the `2/`1-norm (with possibly overlapping
groups), are weakly decomposable. van de Geer (2012) shows oracle in-
equalities for the `1 regularizer generalizes to weakly decomposable regu-
larizers.

Given an estimator there are various ways to assess its performance.
We consider two notions: consistency and model selection consistency. An
estimator θ̂ is consistent (in the `2 norm) if the error decays to zero in
probability: ∥∥θ̂ − θ∗

∥∥
2

p→ 0 as n, p→ ∞.

An estimator θ̂ is model selection consistent if θ̂ is in the model subspace with
high probability:

Pr(θ̂ ∈ M)→ 1. (2.7)

First, we state our assumptions on the problem. Our main assumptions
are on the sample Fisher information: Qn = ∇2`n(θ∗) : restricted strong con-
vexity, strong smoothness, and irrepresentability.

Assumption 2.3 (Restricted strong convexity). Let C ⊂ Rp be some (a priori)
known convex set containing θ∗. The loss function `n is restricted strongly convex
(on C ∩M) with constant µl > 0 when

∆T∇2`n(θ)∆ ≥ µl ‖∆‖2
2

for any θ ∈ C ∩M and any ∆ ∈ (C ∩M)− (C ∩M).

Assumption 2.4 (Strong smoothness). The loss function `n is strongly smooth
on C with constant µu > 0 when

‖∇2`n(θ)−Qn‖2 ≤ µu ‖θ − θ∗‖2 for any θ ∈ B.

When C is compact, which it often is, restricted strong smoothness neces-
sarily holds by the continuity of ∇2`n. Similar notions of restricted strong
convexity/smoothness are common in the literature on high-dimensional
statistics. For example, the unified framework by Negahban et al. (2012)
requires a (slightly stronger) notion of restricted strong convexity.

For a concrete example, we return to the sparse linear regression prob-
lem. When the rows of X are i.i.d. Gaussian random vectors, Raskutti et al.
(2010) showed there are constants µ1, µ2 > 0 such that

1
n
‖X∆‖2

2 ≥ µ1 ‖∆‖2
2 − µ2

log p
n
‖∆‖2

1 for any ∆ ∈ Rp
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with probability at least 1 − c1 exp (−c2n) . Their result implies RSC on
span(B∞,S ) (for any S ⊂ [p]) with constant µ1

2 as long as n > 2 µ2
µ1
|S| log p.

Thus sparse linear regression with random Gaussian designs satisfies RSC,
even when there are dependencies among the predictors.

Assumption 2.5 (Irrepresentability). There is δ ∈ [0, 1) such that

supz∈∂hA(M) hI◦(PM⊥(QnPM(PMQnPM)†PMz− z)) < 1− δ,

where ∂hA(M) :=
⋃

x∈M ∂hA(x).

To interpret the irrepresentable condition, consider again the sparse re-
gression problem. Since Qn is the sample covariance matrix 1

n XTX, irrep-
resentibility is ∥∥XT

S c

(
XT
S
)† sign(θ∗S )

∥∥
∞ ≤ 1− δ. (2.8)

To ensure (2.8), it is sufficient to assume∥∥XT
S c

(
XT
S
)†∥∥

∞ ≤ 1− δ for some δ ∈ [0, 1). (2.9)

The rows of XT
S c

(
XT
S
)† are the regression coefficients of xj, j ∈ S c on XS .

Thus (2.9) says the relevant predictors (columns of XS ) are not overly well-
aligned with the irrelevant predictors. Ideally, we would like the irrelevant
predictors to be orthogonal to the relevant predictors:

∥∥XT
S c

(
XT
S
)†∥∥

∞ = 0.
Unfortunately, orthogonality is impossible in the high-dimensional setting.
The irrepresentable condition relaxes orthogonality to “near orthogonal-
ity”.

Finally, we require the regularization parameter λ be large enough to
dominate the “empirical process” part of the problem. More precisely, we
require λ & ρ∗(∇`∗n). However, when ρ is not a norm (e. g. when there
are unregularized parameters), ρ∗(∇`∗n) is usually infinite. To allow for
unregularized parameters, we relax the requirement to λ & ρ̄∗(∇`∗n) for a
norm ρ̄ : Rp → R+ that dominates ρ : ρ̄(θ) ≥ ρ(θ) for any θ ∈ Rp.

Before we state the main consistency result, we define some compatibility
constants that appear in its statement:

1. κρ ∈ R+ (resp. κρ̄, κρ̄∗) is the compatibility constant between ρ (resp.
ρ̄, ρ̄∗) and the `2 norm onM :

κρ := supθ {ρ(θ) : θ ∈ B2 ∩M} .
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2. κir ∈ R+ is the compatibility constant between the irrepresentable
term and ρ̄∗ :

κir := supz
{

hI◦(PM⊥(QnPM(PMQnPM)†PMz− z)) : ρ̄∗(z) ≤ 1
}

.

The constants are finite because B2 ∩M, {z ∈ Rp | ρ̄∗(z) ≤ 1} are compact
sets, and ρ, ρ̄, ρ̄∗ are locally bounded.

Theorem 2.6. For any M-estimator of the form (2.6), suppose

1. the loss function `n is strongly convex and strongly smooth on C ∩M with
constants µl and µu,

2. the loss function satisfies the irrepresentable condition,

3. the regularization parameter λ is in the interval[
4κir

δ ρ̄∗(∇`∗n),
µ2

l
2µu

(
2κρ +

δκρ̄

2κir

)−2
δ

κρ̄∗κir

]
. (2.10)

Then, the estimator is unique,

1. consistent:
∥∥θ̂ − θ∗

∥∥
2 ≤

2
µl

(
κρ +

δκρ̄

4κir

)
λ,

2. model selection consistent: θ̂ ∈ M.

Theorem 2.6 makes a deterministic statement about the optimal solution
to (2.6). To use the result to derive consistency and model selection con-
sistency results for a particular M-estimator under a particular statistical
model, we must

1. show the M-estimator has the form given by (2.6),

2. show the loss function and regularizer satisfies restricted strong con-
vexity, restricted strong smoothness and irrepresentability,

3. choose a regularization parameter between (2.10). Since the left side
of (2.10) is Op(

1√
n ) for most statistical models of interest, there is such

a λ for n large enough.

Proof. The proof of Theorem 2.6 consists of three main steps:

1. Show the solution to a restricted problem (2.11) is unique and consis-
tent (Lemma 2.7).
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2. Establish a primal-dual witness (PDW) condition that ensures all so-
lutions to the original problem are also solutions to the restricted
problem (Lemma 2.8).

3. Construct a primal-dual pair for the original problem from the solu-
tion to the restricted problem that satisfies the dual certificate condi-
tion.

Let (θ̃, z̃A, z̃M⊥) be a primal-dual pair to the restricted problem:

minimize
θ∈Rp

`n(θ) + λ(hA(θ) + hM⊥(θ)). (2.11)

Since M⊥ is a subspace, hM⊥(θ) is IM. The restricted primal-dual pair
satisfies the first-order optimality condition

∇`n(θ̃) + λz̃A + λz̃M⊥ = 0

z̃A ∈ ∂hA(θ̃), z̃M⊥ ∈ M⊥.
(2.12)

First, we show the solution to the restricted problem is consistent.

Lemma 2.7. If `n is strongly convex on C ∩M and λ is between (2.10), the
optimal solution to the restricted problem is unique and consistent:∥∥θ̃ − θ∗

∥∥
2 ≤

2
µl

(
κρ +

δκρ̄

4κir

)
λ.

Next, we establish the PDW condition that ensures all solutions to the
original problem are also solutions to the restricted problem.

Lemma 2.8. Suppose θ̂ is a primal solution to (2.6), and ẑA, ẑI are dual solutions;
i. e. (θ̂, ẑA, ẑI ) satisfy

∇`n(θ̂) + λ(ẑA + ẑI ) = 0

ẑA ∈ ∂hA(θ̂), ẑI ∈ ∂hI(θ̂).

If ẑI ∈ relint(I), then all primal solutions to (2.6) satisfy hI (θ) = 0.

Finally, we use the restricted primal-dual pair to construct a feasible
primal-dual pair for the original problem (2.6). The optimality conditions
of the original problem are

∇`n(θ̂) + λ(ẑA + ẑI ) = 0

ẑA ∈ ∂hA(θ̂), ẑI ∈ ∂hI(θ̂).
(2.13)
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By construction, the pair (θ̃, z̃A, ẑM⊥) satisfies

∇`n(θ̂) + λ(ẑA + ẑI ) = 0, ẑA ∈ ∂hA(θ̂).

To show θ̃ is the unique solution to the original problem, it suffices to show
ẑM is PDW feasible: ẑM⊥ ∈ relint(I).

The restricted primal-dual pair (θ̃, z̃A, z̃M⊥) satisfies (2.12) and thus the
zero reduced gradient condition:

PM∇`n(θ̃) + λPMz̃A = 0.

We expand ∇`n around θ∗ (component-wise) to obtain

PM∇`∗n + PMQnPM(θ̃ − θ∗) + PMRn + λPMz̃A = 0,

where ∇`∗n is shorthand for ∇`n(θ∗) and

Rn = ∇`(θ̃)−∇`(θ∗)−Qn(θ̃ − θ∗)

is the Taylor remainder term. Since PMQnPM is invertible on M, we solve
for the error to obtain

θ̃ − θ∗ = −(PMQnPM)†PM(∇`∗n + λz̃A + Rn).

We return to (2.12) and expand ∇`n around θ∗ to obtain

∇`∗n + Qn(θ̃ − θ∗) + Rn + λ(z̃A + z̃M⊥) = 0.

We substitute in the expression for the error to obtain

0 = ∇`∗n −Qn(PMQnPM)†PM(∇`∗n + λz̃A + Rn) + Rn + λ(z̃A + z̃M⊥).

Rearranging, we obtain

z̃M⊥ =
1
λ

(
Qn(PMQnPM)†PM(∇`∗n + λz̃A + Rn)−∇`∗n − Rn − λz̃A)

)
= QnPM(PMQnPM)†PMz̃A − z̃A

+
1
λ

(
QnPM(PMQnPM)†PM(∇`∗n + Rn)−∇`∗n + Rn

)
.
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Finally, we take hI◦ to obtain

hI◦(z̃M⊥) ≤ hI◦(PM⊥(QnPM(PMQnPM)†PMz̃A − z̃A))

+
1
λ

hI◦(PM⊥(QnPM(PMQnPM)†∇`∗n −∇`∗n))

+
1
λ

hI◦(PM⊥(QnPM(PMQnPM)†PMRn − Rn)).

The irrepresentable condition implies the first term is small:

hI◦(PM⊥(QnPM(PMQnPM)†PMz̃A − z̃A)) ≤ 1− δ.

Thus

hI◦(z̃M⊥) ≤ 1− δ + κir

( ρ̄∗(∇`∗n)
λ

+
ρ̄∗(Rn)

λ

)
.

If λ is between (2.10), then κir
λ ρ̄∗(∇`∗n) ≤ δ

4 and

hI◦(z̃M⊥) < 1− δ +
δ

4
+

κir

λ
ρ̄∗(Rn). (2.14)

Lemma 2.9. Under the conditions of Lemma 2.7, if `n is also strongly smooth on
C ∩M and λ is between (2.10), κir

λ ρ̄∗(Rn) <
δ
4 .

We substitute the bound into (2.14) to obtain

hI◦(z̃M⊥) < 1− δ +
δ

4
+

δ

4
≤ 1− δ

2
< 1.

Thus z̃M⊥ is PDW feasible. By Lemma 2.8 and the uniquenss of the solution
to the restricted problem, θ̃ is the unique solution to the original problem.

2.4 the necessity of irrepresentability

Although the irrepresentable condition seems cryptic and hard to verify,
Zhao and Yu (2006) and Wainwright (2009) showed it is necessary for sign
consistency of the lasso.2 In this section, we give necessary conditions for
an M-estimator with a geometrically decomposable penalty to be both con-
sistent and model selection consistent.

2 Zhao and Yu (2006) and Wainwright (2009) refer to the (slightly) stronger condition (2.9) as
irrepresentability. Thus their results are often summarized as irrepresentability is “almost”
necessary for model selection consistency.
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Theorem 2.10. Suppose

1. the loss function `n is strongly convex on C ∩M,

2. the loss function satisfies the irrepresentable condition,

3. the optimal solution to (2.6) is unique, consistent, and model selection con-
sistent, i. e. θ̂ ∈ (θ∗ + rB2) ∩M.

Then

PM⊥QnPM(PMQnPM)†(∇`n(θ
∗) + λẑA + Rn)

∈ PM⊥(∇`n(θ
∗) + Rn + λ(ẑA + I))

for some ẑA ∈ ∂hA((θ∗ + rB2) ∩M), where Rn = ∇`n(θ̂) − ∇`n(θ∗) −
Qn(θ̂ − θ∗) is the Taylor remainder term.

Proof. The proof proceeds like the proof of Theorem 2.6. The optimal solu-
tion to (2.6) satisfies (2.13). By assumption, θ̂ ∈ (θ∗ + rB2) ∩M. We solve
for the error to obtain

θ̂ − θ∗ = −(PMQnPM)†PM(∇`n(θ
∗) + λẑA + Rn).

Substituting in the expression for the error into (2.13),

0 = ∇`n(θ
∗)−Q(PMQnPM)†PM(∇`n(θ

∗) + λẑA + Rn) + Rn + λ(ẑA + ẑI + ẑE⊥).

We project onto M⊥ to obtain the stated result.

Theorem 2.10 is a deterministic statement concerning the optimal solu-
tion of (2.6). It says

PM⊥(∇`n(θ
∗) + Rn)− PM⊥QnPM(PMQnPM)†(∇`n(θ

∗) + Rn) (2.15)

falls in the set

PM⊥(∂hA((θ∗ + rB2) ∩M) + I)
− PM⊥QnPM(PMQnPM)†∂hA((θ∗ + rB2) ∩M).

(2.16)

To deduce the necessity of irrepresentability, it suffices to show the claims
of Lemma 2.10 are invalid with non-zero probability when irrepresentabil-
ity is violated. Although the distribution of (2.15) is generally hard to char-
acterize, it suffices to show the distribution is symmetric, i. e.

Pr((2.15) ∈ C) = Pr((2.15) ∈ −C) for any measurable set C.
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Corollary 2.11. Under the conditions of Theorem 2.10, if we also assume

1. the set A is a convex polytope,

2. the distribution of (2.15) is symmetric,

3. the unknown parameter θ∗ is in
⋃

θ∈ext(A) relint(NA(θ)).

When irrepresentability is violated—say

infz∈ ∂hA(θ∗) hI◦(PM⊥(QnPM(PMQnPM)†PMz− z)) ≥ 1,

Pr(θ̂ ∈ (θ∗ + rB2) ∩M) ≤ 1
2

for any r small enough such that θ∗ + rB2 ⊂
⋃

x∈ext(A) relint(NA(x)).

Proof. Since θ∗ ∈ ⋃x∈ext(A) relint(NA(x)), ∂hA(θ∗) is a point. Call the point
ẑ∗A. For any r small enough such that

θ∗ + rB2 ⊂
⋃

x∈ext(A) relint(NA(x)),

∂hA((θ∗ + rB2) ∩M) is also the point ẑ∗A. Thus (2.16) is given by

PM⊥(∂hA(θ∗) + I)− PM⊥QnPM(PMQnPM)† ẑ∗A. (2.17)

When irrepresentability is violated, (2.17) is a convex set that does not
contain a relative neighborhood of the origin. Thus there is a halfspace
(through the origin) that contains (2.17). Since the distribution of (2.15) is
symmetric, Pr((2.15) ∈ (2.16)) ≤ 1

2 .

Although Corollary 2.11 “justifies” the irrepresentable condition, the ne-
cessity of the condition offers little comfort to practitioners whose predic-
tors are often correlated. Jia and Rohe (2012) propose preconditioning re-
gression problems to conform to the irrepresentable condition. They show
their technique improves the performance of a broad class of model selec-
tion techniques in linear regression.



3
R A N K C O N S I S T E N C Y O F N U C L E A R N O R M
M I N I M I Z AT I O N

Geometric decomposability, although general, excludes some widely used
regularizers. In this chapter, we turn our attention to weakly decomposable
regularizers; i. e. regularizers that are well-approximated by sums of sup-
port functions. The example we have in mind is low-rank multivariate
regression. Consider the (multivariate) linear model

Y = XΘ∗ + W, (3.1)

where the rows of Y ∈ Rn×p2 are (multivariate) responses. When Θ∗ ∈
Rp1×p2 is low-rank, a natural approach to estimating Θ∗ is nuclear norm
minimization:

minimize
Θ∈Rp1×p2

1
2n
‖Y− XΘ‖2

F + λ ‖Θ‖nuc , (3.2)

where the nuclear norm is given by (1.9). Bach (2008) showed that nuclear
norm minimization is rank consistent, i. e.

Pr
(
rank(Θ̂) = rank(Θ∗)

)
→ 1, (3.3)

subject to irrepresentability. Although rank consistency is not an instance
of our notion of model selection consistency because the set of rank r ma-
trices is not a subspace, our results may be used to derive a non-asymptotic
form of Bach’s rank consistency result.

3.1 weakly decomposable regularizers

To study the rank consistency of nuclear norm minimization, we consider
a weaker notion of decomposability: weak decomposability. Our notion of
weak decomposability was inspired by the notion proposed by van de Geer
(2012). Although similar in spirit, our notion is more general. In particular,
it does not depend on the component-wise separability of the regularizer.

20
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Definition 3.1 (Weakly decomposability). For any two closed convex sets
A, I ⊂ Rp containing the origin, a regularizer is weakly decomposable with
respect to the pair (A, I) at θ∗ ∈ Rp if

∂ρ(θ∗) = ∂hA(θ∗) + ∂hI (θ∗).

We assume A is bounded and 0 ∈ relint(I).

Weak decomposability is more general than geometric decomposabil-
ity. However, the structure of the subdifferential of a weakly decompos-
able penalty at θ∗ is very similar to that of a geometrically decomposable
penalty. Consequently, the directional derivative of ρ at θ∗ along any ∆ is
geometrically decomposable:

ρ′(θ∗, ∆) = h∂hA(θ∗)(∆) + h∂hI (θ∗)(∆).

As we shall see, the geometric decomposability of ρ′(θ∗, ∆) is the key to
the model selection properties of weakly decomposable penalties.

The setup is similar to the setup in Chapter 2. We are given a samples
Zn := {z1, . . . , zn} with marginal distribution P. We seek to estimate a
parameter θ∗ ∈ M ⊂ Rp, where M is the model manifold. To keep things
simple, we focus on regularized least squares:

minimize
θ∈Rp

1
2

θTQnθ − cT
n θ + λρ(θ), (3.4)

where ρ is weakly decomposable with respect to sets A, I ⊂ Rp at θ∗. The
set I is chosen so that the tangent space of M at θ∗ is span(I)⊥. That is,
span(I) contains deviations from θ∗ that we wish to kill.

3.2 dual consistency of regularized m-estimators

To study the model selection properties of (3.4), we compare its optimum
to that of a linearized problem

minimize
θ∈Rp

1
2

θTQnθ − cT
n θ + λ(ρ(θ∗) + ρ′(θ∗, θ − θ∗)). (3.5)

Since the objective functions of (3.5) and (3.4) are similar, we expect the
(optimal) solutions of be close. Unfortunately, due to the lack of strong
convexity, we cannot conclude the solutions are close. However, as we shall
see, the dual solutions are close.
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After a change of variables, the linearized problem is

minimize
∆∈Rp

1
2

∆TQn∆ + (Qnθ∗ − cn)
T∆ + λ(h∂hA(θ∗)(∆) + hI (∆)). (3.6)

We recognize (3.6) is an M-estimator with a geometrically decomposable
regularizer. Under the conditions of Theorem 2.6, there is a unique primal-
dual pair (∆̃, z̃A, z̃I ) that satisfies

Qn(θ
∗ + ∆̃)− cn + λ(z̃A + z̃I ) = 0

z̃A ∈ ∂hA(θ∗), z̃I ∈ I .
(3.7)

Further, ∆̃ is consistent and z̃I is PDW feasible. We summarize the proper-
ties of (∆̃, z̃A, z̃I ) in a lemma.

Lemma 3.2. When the restricted eigenvalues of Qn on span(I)⊥ are at least µl ,
Qn satisfies the irrepresentable condition, and the regularization parameter λ is at
least 4κir

δ ρ′∗(Qnθ∗ − cn), the unique primal-dual pair of (3.6) (∆̃, z̃A, z̃I ) is

1. consistent:
∥∥∆̃
∥∥

2 ≤
2
µl

(
κρ′ +

δκρ′
4κir

)
λ;

2. PDW feasible: hI◦(z̃I ) ≤ 1− δ
2 .

The main result of this chapter shows the optimal dual solutions of (3.4)
and (3.6) are close.

Theorem 3.3. Under the conditions of Lemma 3.2, the optimal dual solutions of
(3.5) and (3.4) satisfy

‖z̃A + z̃I − ẑ‖2
2 ≤

‖Qn‖2
λ

(
Rρ(∆̃)− Rρ(∆̂)

)
,

where Rρ(∆) = ρ(θ∗ + ∆)− ρ(θ∗)− ρ′(θ∗, ∆).

Proof. After a change of variables, the original problem is

minimize
∆∈Rp

1
2

∆TQ∆ + (Qnθ∗ − cn)
T∆ + λρ(θ∗ + ∆). (3.8)

Its optimality conditions are

Qn(θ
∗ + ∆̂)− γ + λẑ = 0

ẑ ∈ ∂ρ(θ∗ + ∆̂).
(3.9)
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Let ∆̃ and ∆̂ be the optimums of (3.6) and (3.8). By Fermat’s rule, z̃A +

z̃I and ẑA + ẑI are also the optimal dual solutions of (3.5) and (3.4). We
subtract (3.9) from (3.7) to obtain

Qn(∆̂− ∆̃) = λ(z̃A + z̃I − ẑ). (3.10)

To complete the proof, we show
∥∥Qn(∆̂− ∆̃)

∥∥2
2 is small. By inspection of

the optimality conditions (3.9) and (3.7), ∆̃ and ∆̂ are also the solutions of

minimize
∆∈Rp

∆̃TQn∆ + (Qnθ∗ − cn)
T∆ + λρ′(θ∗, ∆),

minimize
∆∈Rp

∆̂TQn∆ + (Qnθ∗ − cn)
T∆ + λ(ρ(θ∗ + ∆)− ρ(θ∗)).

Since ∆̃ and ∆̂ are their respective optimums, we know

∆̃TQn∆̃ + (Qnθ∗ − cn)
T∆̃ + λρ′(θ∗, ∆̃)

≤ ∆̃TQn∆̂ + (Qnθ∗ − cn)
T∆̂ + λρ′(θ∗, ∆̂),

∆̂TQn∆̂ + (Qnθ∗ − cn)
T∆̂ + λ(ρ(θ∗ + ∆̂)− ρ(θ∗))

≤ ∆̂TQn∆̃ + (Qnθ∗ − cn)
T∆̃ + λ

(
ρ(θ∗ + ∆̃)− ρ(θ∗)

)
.

We add the inequalities and rearrange to obtain

(∆̃− ∆̂)TQn(∆̃− ∆̂) = ‖∆‖2
Q ≤ λ

(
Rρ(∆̃)− Rρ(∆̂)

)
,

where Rρ(∆) = ρ(θ∗+∆)− ρ(θ∗)− ρ′(θ∗, ∆). Since ‖Qn∆‖2
2 ≤ ‖Qn‖2 ‖∆‖2

Qn
,∥∥Qn(∆̂− ∆̃)

∥∥2
2 ≤ ‖Qn‖2

∥∥∆̂− ∆̃
∥∥2

Qn
≤ ‖Qn‖2 λ

(
Rρ(∆̃)− Rρ(∆̂)

)
.

We substitute in (3.10) to obtain the stated conclusion.

3.3 rank consistency of low-rank multivariate regression

We return to the low-rank multivariate regression problem. The nuclear
norm is weakly decomposable. Let Θ∗ = UΣVT be the (full) SVD of Θ∗

and define the sets

A =
{

Θ ∈ B2 ⊂ Rp1×p2 | Θ = UrDVT
r for some diagonal D

}
,

I =
{

Θ ∈ B2 ⊂ Rp1×p2 | Θ = Up1−rDVT
p2−r for some diagonal D

}
,
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where r = rank(Θ∗) and Ur, Up1−r (resp. Vr, Vp2−r) are the submatrices of
U (resp. V) consisting of the first r and last p1 − r left (resp. p2 − r right)
singular vectors of Θ∗. It is not hard to check that the nuclear norm is
weakly decomposable at Θ∗ in terms of A, I . Since A+ I ⊂ B2,

‖Θ‖nuc = hB2(Θ) ≥ hA(Θ) + hI (Θ).

Before we delve into the rank consistency of low-rank multivariate re-
gression, we state the assumptions on the problem. Let ~X ∈ Rp1 p2 be the
vectorized form of X ∈ Rp1×p2 . In vector notation, the model is

~Y = X(Θ∗) + ~W, (3.11)

where X : Rp1×p2 → Rn is a linear mapping. Since X is a linear map,
we abuse notation by writing ~Y = X~Θ + ~W. The Fisher information Qn :
Rp1×p2 → Rp1×p2 is given by 1

n X∗X. We assume

1. the restricted eigenvalues of Qn on span(I)⊥ are at least µl ,

2. the predictors satisfy the strong irrepresentable condition:

supZ∈B2

∥∥UT
p1−r

[
PIQnPI⊥(PI⊥QnPI⊥)

†Z
]
Vp2−r

∥∥
2 ≤ 1− δ, (3.12)

where PI : Rp1×p2 → Rp1×p2 (resp. PI⊥) is the projector onto span(I)
(resp. span(I)⊥).

3. the entries of W are i.i.d. subgaussian random variables with mean
zero and subgaussian norm σ.

As its name suggests, assumption (3.12) is stronger than irrepresentability.
It implies irrepresentability:∥∥UT

p1−r
[
PI
(
QnPI⊥(PI⊥QnPI⊥)

†UrVT
r −UrVT

r
)]

Vp2−r
∥∥

2

=
∥∥UT

p1−r
[
PI
(
QnPI⊥(PI⊥QnPI⊥)

†UrVT
r
)]

Vp2−r
∥∥

2

≤ supZ∈B2

∥∥UT
p1−r

[
PIQnPI⊥(PI⊥QnPI⊥)

†Z
]
Vp2−r

∥∥
2.

(3.13)

We make the stronger assumption to obtain an explicit expression for the
constant κir (in terms of the constant δ).

The final ingredient we require is a “Taylor’s theorem” for the nuclear
norm that says the nuclear norm is well-approximated by its linearization.

Lemma 3.4. For any ∆ ∈ span(I)⊥, ‖∆‖2 < σ∗r
2 , we have

‖Θ∗ + ∆‖nuc − ‖Θ
∗‖nuc − tr

(
UT

r ∆Vr
)
≤ 4

3σ∗r
‖∆‖2

F ,
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where σ∗r is the smallest non-zero singular value of Θ∗.

We put the pieces togther to deduce the rank-consistency of low-rank
multivariate regression.

Corollary 3.5. Under the aforementioned conditions, the optimum of (3.2) with

regularization parameter λ = 8(2−δ)
δ ν

( p1+p2
n

) 1
2 is unique and rank consistent

when

n > max
{1282M2(

√
2 + δ′)4

9σ∗r
2µ4

l δ4δ′2
r2,

16(
√

2 + δ′)2

µ2
l

r
}

ν2(p1 + p2)

with probability at least 1− c1e−c2(p1+p2). The constants M and δ′ are given by
sup∆∈BF

‖Qn∆‖F and 4(2−δ)
δ .

Proof. To show Θ̂ has rank at most r, it suffices to show the optimal dual
solution ÛV̂T has no more than r non-zero singular values. At a high level,
the proof consists of three steps:

1. Show that the unique primal-dual pair to a linearized problem
(
∆̃, UrVT

r , Ũp1−rṼT
p2−r

)
is consistent and PDW feasible.

2. By Theorem 3.3, ÛV̂T is close to the optimal dual solution of the
linearized problem UrVT

r + Ũp1−rṼT
p2−r. Since Ũp1−rṼT

p2−r is PDW fea-
sible, its singular values are bounded away from one.

3. Apply a singular value perturbation result to deduce ÛV̂T has (no
more than) r unit singular values.

Consider the linearized problem

minimize
∆∈Rp1×p2

1
2n
‖Y− X(Θ∗ + ∆)‖2

F + λ
(
tr
(
UT

r ∆Vr
)
+ ‖UT

p1−r∆Vp2−r‖∗
)
.

(3.14)
By Lemma 3.2, a primal-dual pair (∆̃, UrVT

r , Ũp1−rṼT
p2−r) that satisfies

Qn(Θ∗ + ∆̃)− cn + λ(UrVT + Ũp1−rṼT
p2−r) = 0,

Ũp1−rṼT
p2−r ∈ I

is unique, consistent, and PDW feasible.

Lemma 3.6. Under the aforementioned conditions, the unique primal-dual pair

of (3.14) with regularization parameter λ = 8(2−δ)
δ σ

( p1+p2
n

) 1
2 is

1. consistent:
∥∥∆̃
∥∥

F ≤
4
m

(√
2 + 4(2−δ)

δ

)
ν
( r(p1+p2)

n

) 1
2 .
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2. PDW feasible:
∥∥Ũp1−rṼT

p2−r
∥∥

2 ≤ 1− δ
2 .

By Theorem 3.3 (and the convexity of the nuclear norm),∥∥ÛV̂T −UrVT
r − Ũp1−rṼT

p2−r
∥∥2

2

≤ ‖ÛV̂T −UrVT
r − Ũp1−rṼT

p2−r‖2
F

≤ M
λ

(
R(∆̃)− R(∆̂)

)
≤ M

λ
R(∆̃),

where M := sup‖∆‖F≤ 1 ‖Q∆‖F . Since ∆̃ ∈ span(I)⊥, by Lemma 3.4,

∥∥ÛV̂T −UrVT
r − Ũp1−rṼT

p2−r
∥∥2

2 ≤
4

3σ∗r

M
λ
‖∆̃‖2

F

as long as ‖∆̃‖2 ≤ σ∗r
2 . By the consistency of the linearized problem,

‖∆̃‖2 ≤ ‖∆̃‖F ≤
4
µl
(
√

2 + δ′)ν
( r(p1 + p2)

n

) 1
2
,

where δ′ = 4(2−δ)
δ . We put the pieces together to obtain∥∥ÛV̂T −UrVT

r − Ũp1−rṼT
p2−r

∥∥2
2

≤ 32
3σ∗r

M
µ2

l

(
√

2 + δ′)2

δ′
νr
( (p1 + p2)

n

) 1
2
,

(3.15)

when n > 16
µ2

l

ν2

σ∗r
2 (
√

2 + δ′)2r(p1 + p2).

By Lemma 3.2, Ũp1−rṼT
p2−r is PDW feasible. Thus it has at most r unit

singular values. Its p− r remaining singular values are smaller than 1− δ
2 .

By Weyl’s inequality, it suffices to ensure

∥∥ÛV̂T −UrVT
r − Ũp1−rṼT

p2−r
∥∥

2 ≤
δ

2
(3.16)

to ensure ŨṼT has no more than r unit singular values. We combine (3.15)
and (3.16) to deduce the requirement on n.
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4
P R O X I M A L N E W T O N - T Y P E M E T H O D S

In the second part of the thesis, we turn our attention to evaluating regu-
larized M-estimators, which require minimizing composite functions of the
form

minimize
x∈Rp

φ(x) := φsm(x) + φns(x) (4.1)

where φsm : Rp → R convex, twice continuously differentiable, and φns :
Rp → R is convex but not necessarily differentiable. The material in this
and the subsequent chapter appears in Lee et al. (2014).

Optimization methods are broadly classified into first- and second-order
methods, depending on whether they incorporate second-order (curvature)
information to guide the optimization. Second-order methods usually take
fewer iterations to converge, with the caveat that each iteration is more
expensive. First-order methods tend to scale better to the large-scale prob-
lems that arise in modern statistics, making them especially appealing to
practitioners.

Most first-order methods for minimizing composite functions form the
next iterate xt+1 from the current iterate xt by forming a simple quadratic
approximation (the quadratic term is a multiple of I) to the smooth part:

φ̂sm,t(x) = φ̂sm(xt) +∇φ̂sm(xt)
T(x− xt) +

1
2αt
‖x− xt‖2

2,

where αt > 0 is a step size, and setting

xt+1 ← arg minx φ̂sm,t(x) + φns(x).

The efficiency of first-order methods depends on the cost of evaluating
∇φ̂sm and that of minimizing φ̂sm,t + φns. For many regularizers of interest,
it is possible to solve the subproblem in closed form.

In this chapter, we describe a family of methods that “interpolate” be-
tween first- and second-order methods. The methods can be interpreted as
generalizations of first-order proximal methods that incorporate curvature
information in the subproblem. To set the stage, we give an overview of
proximal methods.

28
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4.1 background on proximal methods

The proximal mapping of a convex function φ at x is

proxφ(x) := arg miny∈Rp φ(y) +
1
2
‖y− x‖2

2 . (4.2)

Proximal mappings can be interpreted as generalized projections because
if φ is the indicator function of a convex set, proxφ(x) is the projection of
x onto the set.

The proximal gradient method alternates between taking gradient descent
steps to optimize the smooth part and taking a proximal step to optimize
the nonsmooth part. More precisely, the proximal gradient iteration is
xt+1 ← proxαtφns

(xt − αt∇φsm(xt)), where αt > 0 is a step size. Equiva-
lently,

xt+1 ← xt − αtgαt(xt)

gαt(xt) :=
1
αt

(
xt − proxαtφns

(xt − αt∇φsm(xt))
)
, (4.3)

where gαt(xt) is a composite gradient step. The composite gradient step at x
is zero if and only if x is an optimum of φ; i. e. g(x) = 0, where g(x) :=
x− proxφns

(x−∇φsm(x)) generalizes the familiar zero gradient optimality
condition to composite functions.

Most first-order methods are variants of the proximal gradient method.
A popular method is SpaRSA by Wright et al. (2009), which combines a
spectral step size with a nonmonotone line search to improve convergence. It
is also possible to accelerate the convergence rate of first-order methods
using ideas in Nesterov (2003). The resulting methods, aptly called acceler-
ated first-order methods, achieve ε-suboptimality within O(1/

√
ε) iterations.

The most popular methods in this family are Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) by Nesterov (2007).

Behind the scenes, the proximal gradient algorithm forms simple quadratic
models of φsm near the current iterate:

φ̂sm,t(x) := φsm(xt) +∇φsm(xt)
T(x− xt) +

1
2αt
‖x− xt‖2

2 .
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The composite gradient step moves to the optimum of φ̂sm,t + φns :

xt+1 = proxαtφns
(xt − αt∇φsm(xt))

= arg minx αtφns(x) +
1
2
‖x− xt + αt∇φsm(xt)‖2

2

= arg minx∇φsm(xt)
T(x− xt) +

1
2αt
‖x− xt‖2

2 + φns(x).

(4.4)

By the optimality of the composite gradient step, it is possible to see the
composite gradient step is neither a gradient nor a subgradient of φ at any
point; rather it is the sum of an explicit gradient (at xt) and an implicit
subgradient (at xt+1). By rearranging the optimality conditions of (4.4), we
have

gαt(xt) ∈ ∇φsm,t(xt) + ∂φns(xt+1).

4.2 proximal newton-type methods

Proximal Newton-type methods replace the simple quadratic form with a
general quadratic form to incorporate curvature information (of φsm) into
the choice of search direction:

φ̂sm,t(x) = φsm(xt) +∇φsm(xt)
T(x− xt) +

1
2
(y− xt)

T Ht(x− xt).

The basic idea can be traced back to the projected Newton method by gen-
eralized proximal point method by Fukushima and Mine (1981). A proximal
Newton-type search direction ∆xt solves the subproblem

∆xt ← arg mind φ̂t(xt + d) := φ̂sm,t(xt + d) + φns(xt + d). (4.5)

There are many strategies for choosing Ht. If we set Ht = ∇2φsm(xt), we ob-
tain the proximal Newton method. If we form Ht according to a quasi-Newton
strategy, we obtain a proximal quasi-Newton method. If the problem is large,
we can use limited memory quasi-Newton updates to reduce memory us-
age. Generally speaking, most strategies for choosing Hessian approxima-
tions in Newton-type methods (for minimizing smooth functions) can be
adapted to forming Ht in proximal Newton-type methods.

When Ht is not positive definite, we can also adapt strategies for han-
dling indefinite Hessian approximations in Newton-type methods. The
most simple strategy is Hessian modification: we add a multiple of the
identity to Ht when Ht is indefinite. This makes the subproblem strongly
convex and damps the search direction. In a proximal quasi-Newton method,
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we can also do update skipping: if an update causes Ht to become indefi-
nite, simply skip the update.

Many popular methods for minimizing composite functions are special
cases of proximal Newton-type methods. Methods tailored to a specific
problem include glmnet by Friedman et al. (2007), newglmnet by Yuan et al.
(2012), QUIC by Hsieh et al. (2011), and the Newton-LASSO method by
Olsen et al. (2012). Generic methods include projected Newton-type methods
by Schmidt et al. (2009, 2011), proximal quasi-Newton methods by Schmidt
(2010), Becker and Fadili (2012), and the method by Tseng and Yun (2009).

To highlight the connection between a proximal Newton-type search di-
rection and the composite gradient step, we express the search direction
in terms of scaled proximal mappings. This allows us to interpret the search
direction as a “composite Newton step”.

Definition 4.1. Let φ be a convex function and H be a positive definite matrix.
The scaled proximal mapping of φ at x is

proxH
φ (x) := arg miny∈Rn φ(y) +

1
2
‖y− x‖2

H .

Scaled proximal mappings share many properties with (unscaled) prox-
imal mappings:

1. The scaled proximal point proxH
φ (x) exists and is unique for x ∈

dom φ because the proximity function is strongly convex if H is pos-
itive definite.

2. Let ∂φ(x) be the subdifferential of φ at x. Then proxH
φ (x) satisfies

H
(
x− proxH

φ (x)
)
∈ ∂φ

(
proxH

φ (x)
)
.

3. Scaled proximal mappings are firmly nonexpansive in the H-norm.
That is, if u = proxH

φ (x) and v = proxH
φ (y), then

(u− v)T H(x− y) ≥ ‖u− v‖2
H ,

and the Cauchy-Schwarz inequality implies ‖u− v‖H ≤ ‖x− y‖H.

We can express proximal Newton-type search directions as “composite
Newton steps” using scaled proximal mappings:

∆x = proxH
φns

(
x− H−1∇φsm(x)

)
− x.
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We use the second property of scaled proximal mappings to deduce that
proximal Newton search directions satisfy

H
(

H−1∇φsm(x)− ∆x
)
∈ ∂φns(x + ∆x).

We simplify to obtain

H∆x ∈ −∇φsm(x)− ∂φns(x + ∆x). (4.6)

Thus proximal Newton-type search directions, like composite gradient
steps, combine an explicit gradient with an implicit subgradient. This ex-
pression reduces to the Newton system when φns = 0.

Lemma 4.2. If H is positive definite, then ∆xt given by (4.5) satisfies

φ(xt+1) ≤ φ(xt) + α
(
∇φsm(xt)

T∆x + φns(xt + ∆xt)− φns(xt)
)
+ O(α2

t ),
(4.7)

∇φsm(xt)
T∆x + φns(xt + ∆xt)− φns(xt) ≤ −∆xT

t Ht∆xt. (4.8)

Lemma 4.2 implies the search direction is a descent direction for φ be-
cause we can substitute (4.8) into (4.7) to obtain

φ(xt+1) ≤ φ(xt)− α∆xT
t Ht∆xt + O(α2

t ). (4.9)

In a few special cases we can derive a closed-form expression for the
proximal Newton search direction, but usually we must resort to an itera-
tive method to solve the subproblem. The user should choose an iterative
method that exploits the properties of φns. For instance, if φns is the `1

norm, coordinate descent methods combined with an active set strategy
are known to be very efficient.

We suggest a line search procedure to select a step size αt that satisfies a
sufficient descent condition: the next iterate xt+1 satisfies φ(xt+1) ≤ φ(xt)+
αt
2 δt, where

δt := ∇φsm(xt)
T∆x + φns(x + ∆x)− φns(xt). (4.10)

A simple option is a backtracking line search that shortens the step until
sufficient descent is achieved. Although simple, backtracking performs ad-
mirably in practice.

An alternative strategy is to search along the proximal arc, i. e., the ar-
c/curve

∆xt(α) := φ̃sm,t(x) + φns(x),
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where

φ̃sm,t(x) := arg minx∇φsm(xt)
T(x− xt) +

1
2α

(x− xt)
T Ht(x− xt).

Arc search procedures have some benefits over line search procedures.
When the optimal solution lies on a low-dimensional manifold of Rp, an
arc search strategy is likely to identify the manifold. The main drawback
is the cost of obtaining trial points: a subproblem must be solved at each
trial point.

Lemma 4.3. When H � µl I for some µl > 0 and ∇φsm is Lipschitz con-
tinuous with constant µu, the sufficient descent condition is satisfied by any
α ≤ min

{
1, µl

µu

}
.

Algorithm 1 Proximal Newton-type method

Require: initial point x0 ∈ dom φ
1: repeat
2: choose Ht, a positive definite approximation to the Hessian
3: solve the subproblem for a search direction:

∆xt ← arg mind∇φsm(xt)Td + 1
2 dT Htd + φns(xt + d)

4: select αt with a line search
5: update: xt+1 ← xt + αt∆xt
6: until stopping conditions are satisfied

4.3 convergence of the proximal newton and proximal quasi-
newton methods

We analyze the convergence behavior of proximal Newton-type methods
when the subproblems are solved exactly. We show that proximal Newton-
type methods and proximal quasi-Newton methods converge quadrati-
cally and superlinearly subject to standard assumptions on the smooth
part φsm.

To begin, we show proximal Newton-type methods converge globally
to some optimal solution x∗. There are many similar results; e. g., those
in (Patriksson, 1999, section 4), and Theorem 4.4 is neither the first nor
the most general. We include the result because the proof is simple and
intuitive.

We assume

1. the function φ is closed and the minimum is attained;
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2. the Ht’s are (uniformly) positive definite; i. e. Ht � µl I for some
µl > 0.

The second assumption ensures the methods are executable, i. e. by Lemma
4.3, there are step sizes that satisfy the sufficient descent condition.

Theorem 4.4. Under the aforementioned assumptions, the sequence {xt} con-
verges to an optimum of φ from any initial point x0 ∈ dom φ.

Proof. By (4.9) and Lemma 4.3, the sequence {φ(xt)} is decreasing:

φ(xt)− φ(xt+1) ≤
αt

2
δt ≤ 0.

The sequence {φ(xt)} must converge to some limit because φ is closed and
the optimal value is attained. Thus |αtδt|must decay to zero. The step sizes
αt are bounded away from zero because sufficiently small step sizes satisfy
the sufficient descent condition. Thus it is δt that decays to zero. By (4.8),
we deduce that ∆xt also converges to zero:

‖∆xt‖2
2 ≤

1
µl

∆xT
t Ht∆xt ≤ −

δt

µl
.

It is possible to show ∆xt is zero if and only if x is an optimum of (4.1).
Thus the sequence {xt} converges to an optimum.

We turn our attention to the convergence rate of the proximal Newton
and quasi-Newton methods. We assume

1. the smooth part φsm is twice-continuously differentiable and its gra-
dient ∇φsm and Hessian ∇2φsm are Lipschitz continuous with con-
stants µu and µ′u;

2. φsm is strongly convex with constant µl > 0. Since φsm is twice dif-
ferentiable, strong convexity is equivalent to ∇2φ(x) � µl I for any
x.

Both assumptions are standard in the analysis of Newton-type methods
for minimizing smooth functions. For our purposes, both assumptions can
be relaxed to a local assumption in a neighborhood of x∗.

The proximal Newton method incorporates the Hessian ∇2φsm(xt) in
the local quadratic model of φ. It converges q-quadratically:

‖xt+1 − x∗‖2 = O
(
‖xt − x∗‖2

2
)
.

First, we show that the unit step size satisfies the sufficient descent condi-
tion after sufficiently many iterations.
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Lemma 4.5. Under the aforementioned conditions, the unit step size satisfies the
sufficient decrease condition after sufficiently many iterations.

Theorem 4.6. Under the aforementioned conditions, the proximal Newton method
converges quadratically to x∗.

Proof. Since the assumptions of Lemma 4.5 are satisfied, the unit step size
satisfies the sufficient descent condition:

xt+1 = xt + ∆xt = prox∇
2φsm(xt)

φns

(
xt −∇2φsm(xt)

−1∇φsm(xt)
)
.

Since scaled proximal mappings are firmly non-expansive in the scaled
norm, we have

‖xt+1 − x∗‖∇2φsm(xt)

=
∥∥prox∇

2φsm(xt)
φns

(xt −∇2φsm(xt)
−1∇φsm(xt))

− prox∇
2φsm(xt)

φns
(x∗ −∇2φsm(xt)

−1∇φsm(x∗))
∥∥
∇2φsm(xt)

≤
∥∥xt − x∗ +∇2φsm(xt)

−1(∇φsm(x∗)−∇φsm(xt))
∥∥
∇2φsm(xt)

≤ 1
√

µl

∥∥∇2φsm(xt)(xt − x∗)−∇φsm(xt) +∇φsm(x∗)
∥∥

2 .

Since ∇2φsm is Lipschitz continuous,

∥∥∇2φsm(xt)(xt − x∗)−∇φsm(xt) +∇φsm(x∗)
∥∥

2 ≤
µ′u
2
‖xt − x∗‖2

2 .

We conclude that xt converges to x∗ quadratically:

‖xt+1 − x∗‖2 ≤
1
√

µl
‖xt+1 − x∗‖∇2φsm(xt)

≤ µ′u
2µl
‖xt − x∗‖2

2 .

Proximal quasi-Newton methods avoid evaluating ∇2φsm by forming a
sequence of Hessian approximations {Ht}. If the sequence {Ht} satisfies
the Dennis-Moré criterion∥∥(Ht −∇2φsm(x∗)

)
(xt+1 − xt)

∥∥
2

‖xt+1 − xt‖2
→ 0, (4.11)

it is possible to show that a proximal quasi-Newton method converges
superlinearly:

‖xt+1 − x∗‖2 ≤ o(‖xt − x∗‖2).
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Again, we assume that φsm is twice-continuously differentiable and strongly
convex with constant m, and ∇φsm and ∇2φsm are Lipschitz continuous
with constants µu and µ′u. These are the assumptions required to prove
that quasi-Newton methods for minimizing smooth functions converge su-
perlinearly.

First, we state two auxiliary results: (i) the unit step size satisfies the
sufficient descent condition after sufficiently many iterations; (ii) the proxi-
mal quasi-Newton search direction is close to the proximal Newton search
direction.

Lemma 4.7. Under the conditions of Theorem 4.6, if {Ht} also has bounded
eigenvalues and satisfies the Dennis-Moré criterion (4.11), the unit step satisfies
the sufficient descent condition after sufficiently many iterations.

Lemma 4.8. Let H1, H2 be positive definite matrices with bounded eigenvalues
and ∆x1, ∆x2 be search directions generated by H1, H2 :

∆x1 = proxH1
φns

(
x− H−1

1 ∇φsm(x)
)
− x,

∆x2 = proxH2
φns

(
x− H−1

2 ∇φsm(x)
)
− x.

There is a constant c1 > 0 that depends only on H1 and H2 such that

‖∆x1 − ∆x2‖2 ≤
√

1+c1
µl,1

∥∥(H2 − H1)∆x1
∥∥1/2

2 ‖∆x1‖1/2
2 .

Further, c1 is bounded as long as the eigenvalues of H1 and H2 are bounded.

Theorem 4.9. Under the conditions of Lemma 4.7, a proximal quasi-Newton
method converges q-superlinearly to x∗.

Proof. Since the assumptions of Lemma 4.7 are satisfied, the unit step sat-
isfies the sufficient descent condition after sufficiently many iterations:

xt+1 = xt + ∆xt.

Since the proximal Newton method converges q-quadratically (cf. Theorem
4.6),

‖xt+1 − x∗‖2 ≤ ‖xt + ∆xnt,t − x∗‖2 + ‖∆xt − ∆xnt,t‖2

≤ µ′u
µl
‖xnt,t − x∗‖2

2 + ‖∆xt − ∆xnt,t‖2 , (4.12)
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where ∆xnt,t is the proximal-Newton search direction and xnt = xt + ∆xnt,t.
By Lemma 4.8, the second term is bounded by

‖∆xt − ∆xnt,t‖2 ≤
√

1+ct
µl

∥∥(∇2φsm(xt)− Ht)∆xt
∥∥1/2

2 ‖∆xt‖1/2
2 . (4.13)

Since the Hessian ∇2φsm is Lipschitz continuous and ∆xt satisfies the
Dennis-Moré criterion, we have∥∥(∇2φsm(xt)− Ht

)
∆xt
∥∥

2

≤
∥∥(∇2φsm(xt)−∇2φsm(x∗)

)
∆xt
∥∥

2 +
∥∥(∇2φsm(x∗)− Ht

)
∆xt
∥∥

2

≤ µ′u ‖xt − x∗‖2 ‖∆xt‖2 + o(‖∆xt‖2).

By Tseng and Yun (2009), Lemma 3, we know that ‖∆xt‖2 is within a con-
stant θ̄t of ‖∆xnt,t‖2. We also know that the proximal Newton method con-
verges q-quadratically. Thus

‖∆xt‖2 ≤ ct ‖∆xnt,t‖2 = ct ‖xnt,t+1 − xt‖2

≤ ct (‖xnt,t+1 − x∗‖2 + ‖xt − x∗‖2)

≤ O
(
‖xt − x∗‖2

2
)
+ ct ‖xt − x∗‖2 .

Substituting in the bound on ‖∆xt‖ into (4.13), we obtain

‖∆xt − ∆xnt,t‖2 = o(‖xt − x∗‖2).

We substitute this expression into (4.12) to deduce that xt converges to x∗

superlinearly:

‖xt+1 − x∗‖ ≤ µ′u
µl
‖xnt,t − x∗‖2

2 + o(‖xt − x∗‖2).

There has been a flurry of recent activity around the development of
Newton-type methods for minimizing composite functions: Hsieh et al.
(2011), Becker and Fadili (2012), Olsen et al. (2012). We have shown that
proximal Newton-type methods converge rapidly near the optimal solu-
tion, and can produce a solution of high accuracy. The main drawback of
proximal Newton-type methods is the cost of solving the subproblems. As
we shall see, it is possible to reduce the cost by solving the subproblems
inexactly and retain the fast convergence rate.
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4.4 computational results

We compare the performance of the proximal L-BFGS method with that of
SpaRSA and FISTA on sparse logistic regression:

minimize
w∈Rn

1
m

m

∑
i=1

log(1 + exp(−y(i)wTx(i))) + λ ‖w‖1 ,

where {(x(i), y(i))}i∈[m] are feature-label pairs. The `1 regularizer encour-
ages sparse solutions, and the parameter λ trades off goodness-of-fit and
sparsity.

We train on two datasets: (i) gisette, a handwritten digits dataset from
the NIPS 2003 feature selection challenge, and (ii) rcv1, an archive of cate-
gorized news stories from Reuters.1 The parameter λ was chosen to match
the values reported by Yuan et al. (2012), where it was chosen by five-
fold cross validation. Figures 1 and 2 show relative suboptimality versus
number of function evaluations and wall time on the gisette and rcv1

datasets.
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Figure 1: Sparse logistic regression on gisette dataset

On the dense gisette dataset, evaluating φsm dominates the training
cost. The proximal L-BFGS method outperforms FISTA and SpaRSA be-
cause it evaluates φsm less often. On the sparse rcv1 dataset (40 million
nonzero entries in a 542000× 47000 design matrix), evaluating φsm only
makes up a small portion of the training cost, and the proximal L-BFGS
method barely outperforms SpaRSA.

1 These datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 2: Sparse logistic regression on rcv1 dataset
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I N E X A C T P R O X I M A L N E W T O N - T Y P E M E T H O D S

Proximal Newton-type methods are like most second-order methods in
terms of their computational cost: they take only a few iterations to con-
verge, but each iteration is costly. The main cost per iteration is the cost of
solving subproblem (4.5) for a search direction.

Inexact proximal Newton-type methods reduce the cost per iteration by
solving the subproblem inexactly. These methods can be more efficient
than their exact counterparts because they require less computation per
iteration. Indeed, many practical implementations of proximal Newton-
type methods such as glmnet, newGLMNET, and QUIC solve the subproblems
inexactly.

In practice, how exactly the subproblem is solved is critical to the effi-
ciency and reliability of the method. Most practical implementations use a
variety of heuristics to decide how accurately to solve the subproblem. Al-
though these methods perform admirably in practice, there are few results
on how the inexact subproblem solutions affect their convergence behavior.
In this chapter, we propose a criterion for deciding how exactly to solve
the subproblem, and study the convergence rate of an inexact proximal
Newton method that implements the proposed criterion.

5.1 an adaptive stopping condition

To begin, we observe that the subproblem (4.5) is itself a composite func-
tion minimization problem:

arg mind φ̂t(xt + d) := φ̂sm,t(xt + d) + φns(xt + d).

Thus the size of the composite gradient step (on the subproblem)

ĝt,α(x) :=
1
α

(
x− proxφns

(x− α∇φ̂sm,t(x))
)

is a measure of the exactness of the search direction. We propose a stop-
ping condition that mimics the one used by inexact Newton-type methods for
minimizing smooth functions. Let µu ≥ µl > 0 be bounds on the eigen-

40
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values of Ht. We stop the subproblem solver when the subproblem iterate
xt + ∆xt satisfies

‖ĝt,1/µu(xt + ∆xt)‖2 ≤ ηt‖g1/µu(xt)‖2, (5.1)

where ηt is a forcing term that requires the left-hand side to be small. We
set ηt based on how well ĝt−1 approximates g near xt: we require

ηt = min
{µl

2
,
‖ĝt−1,1/µu(xt)− g1/µu(xt)‖2

‖g1/µu(xt−1)‖2

}
. (5.2)

This choice due to Eisenstat and Walker (1996) yields desirable conver-
gence results and performs admirably in practice.

Intuitively, we should solve the subproblem exactly if

1. xt is close to the optimum,

2. φ̂t is a good model of φ near xt.

If the former, we seek to preserve the fast local convergence behavior of
proximal Newton-type methods; if the latter, then minimizing φ̂t is a good
surrogate for minimizing φ. In these cases, (5.1) and (5.2) are small, so the
subproblem is solved accurately.

We can derive an expression like (4.6) for an inexact search direction in
terms of an explicit gradient, an implicit subgradient, and a residual term
rt. The adaptive stopping condition (5.1) is equivalent to

0 ∈ ĝt,1/µu(xt + ∆xt) + rt

= ∇φsm,t(xt + ∆xt) + ∂φns(xt + ∆xt + ĝt,1/µu(xt + ∆xt)) + rt

= ∇φsm(xt) + Ht∆xt + ∂φns(xt + ∆xt + ĝt,1/µu(xt + ∆xt)) + rt

for some rt : ‖rt‖2 ≤ ηt ‖g(xt)‖2. Thus

Ht∆xt ∈ −∇φsm(xt)− ∂φns(xt + ∆xt + ĝt,1/µu(xt + ∆xt)) + rt. (5.3)

5.2 convergence of an inexact proximal newton method

As we shall see, the inexact proximal Newton method with unit step con-
verges locally

• at a linear rate when the forcing terms ηt are uniformly smaller than
the inverse of the Lipschitz constant of g;
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• at a superlinear rate when the forcing terms ηt are chosen according
to (5.2).

Before delving into the convergence analysis, we review some recent
results by Byrd et al. (2013). They analyze the inexact proximal Newton
method with a more stringent stopping condition:

‖ĝt,1/µu(xt +∆xt)‖2 ≤ ηt‖g1/µu(xt)‖2 and φ̂t(xt +∆xt)− φ̂t(xt) ≤
δt

2
. (5.4)

The latter is a sufficient descent condition (on the subproblem). When the
nonsmooth is the `1 norm, they show that the inexact proximal Newton
method with stopping condition (5.4)

1. converges globally,

2. eventually accepts the unit step size,

3. converges linearly or superlinearly depending on the choice of forc-
ing terms.

Although their first two results generalize readily to composite functions
with other nonsmooth part, their third result depends on the separability
of the `1 norm. We generalize their third result to composite functions with
a other nonsmooth parts. In other words, when combined with their first
two results, our result implies the inexact proximal Newton method with
the more stringent stopping condition converges globally, and converges
linearly or superlinearly (depending on the choice of forcing terms)

As before, we assume

1. the smooth part φsm is twice-continuously differentiable and strongly
convex with constant µl ,

2. the gradient ∇φsm and Hessian ∇2φsm are Lipschitz continuous with
constants µu and µ′u.

We also assume x0 is sufficiently close to x∗ so that the unit step always
satisfies the sufficient descent condition. These are the same assumptions
made by Dembo et al. (1982) and Eisenstat and Walker (1996) in their anal-
ysis of inexact Newton methods for minimizing smooth functions.

First, we show that (i) ĝt is a good approximation of g, (ii) ĝt inherits the
Lipschitz continuity and strong monotonicity of ∇φsm,t.

Lemma 5.1. Under the aforementioned assumptions, ‖g(x)− ĝt(x)‖2 ≤ µ′u
2 ‖x− xt‖2

2 .
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Lemma 5.2. If ∇φsm is Lipschitz continuous with constant µu, g is Lipschitz
continuous with constant µu + 1 :

‖g(x)− g(x∗)‖2 ≤ (µu + 1) ‖x− x?‖2 .

The next result generalizes Byrd et al. (2013), Lemma 4.1 to composite
functions with a generic nonsmooth part. To our knowledge, it is a novel
result concerning the composite gradient step.

Lemma 5.3. If ∇φsm is Lipschitz continuous with constant µu and strongly
monotone with constant µl , gα is strongly monotone with constant µl

2 for any
α ≤ 1

µu
:

(x− y)T(gα(x)− gα(y)) ≥
µl

2
‖x− y‖2

2 .

We use these two results to show that the inexact proximal Newton
method with unit step sizes converges locally at a linear or superlinear
rate depending on the choice of forcing terms.

Theorem 5.4. Under the aforementioned conditions,

1. when ηt is smaller than η̄ < µl
2 , the inexact proximal Newton method with

unit steps converges q-linearly to x∗;

2. when ηt decays to zero, the inexact proximal Newton method with unit steps
converges q-superlinearly to x∗.

Proof. The local quadratic model φ̂t is strongly convex with constant µl . By
Lemma 5.3, ĝt,1/µu is strongly monotone with constant µl

2 :

(x− y)T(ĝt,1/µu(x)− ĝt,1/µu(y)
)
≥ µl

2
‖x− y‖2

2 .

By the Cauchy-Schwarz inequality, we have

‖ĝt,1/µu(x)− ĝt,1/µu(y)‖2 ≥
µl

2
‖x− y‖2 .

We apply this result to xt + ∆xt and x∗ to obtain

‖xk+1 − x∗‖2 = ‖xt + ∆xt − x∗‖2 ≤
2
µl
‖ĝt,1/µu(xt + ∆xt)− ĝt,1/µu(x∗)‖2.

(5.5)
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Let rt be the residual −gt,1/µu(xt + ∆xt). The adaptive stopping condition
(5.1) requires ‖rt‖2 ≤ ηt‖g1/µu(xt)‖2. We substitute this expression into
(5.5) to obtain

‖xk+1 − x∗‖2 ≤
2
µl
‖ − ĝt,1/µu(x∗)− rt‖2

≤ 2
µl

(
‖ĝt,1/µu(x∗)‖2 + ‖rt‖2

)
≤ 2

µl

(
‖ĝt,1/µu(x∗)‖2 + ηt‖g1/µu(xt)‖2

)
. (5.6)

Applying Lemma 5.1 to 1
µu

φ and 1
µu

φ̂ gives

‖ĝt,1/µu(x∗)‖2 ≤
µ′u

2µu
‖xt − x∗‖2

2 + ‖g1/µu(x∗)‖2 =
µ′u

2µu
‖xt − x∗‖2

2 .

We substitute this bound into (5.6) to obtain

‖xk+1 − x∗‖2 ≤
2
µl

( µ′u
2µu
‖xt − x∗‖2

2 + ηt‖g1/µu(xt)‖2

)
≤ µ′u

µuµl
‖xt − x∗‖2

2 +
2ηt

µl
‖xt − x∗‖2 .

We deduce that (i) xt converges q-linearly to x∗ when ηt ≤ η̄ for some η̄ <
µl
2 , and (ii) xt converges q-superlinearly to x∗ when ηt decays to zero.

Finally, we justify our choice of forcing terms. If we set ηt according to
(5.2), then the inexact proximal Newton method converges q-superlinearly.
When minimizing smooth functions, we recover the result by Eisenstat and
Walker (1996) on choosing forcing terms in an inexact Newton method.

Theorem 5.5. Under the conditions of Theorem 5.4, if we set ηt according to
(5.2), then the inexact proximal Newton method with unit steps converges q-
superlinearly.

Proof. To show superlinear convergence, we must show

‖ĝt−1,1/µu(xt)− g1/µu(xt)‖2

‖g1/µu(xt−1)‖2
→ 0. (5.7)
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By Lemma 5.2, we have

‖ĝt−1,1/µu(xt)− g1/µu(xt)‖2 ≤
µ′u

2µu
‖xt − xt−1‖2

2

≤ µ′u
2µu

(‖xt − x∗‖2 + ‖x
∗ − xt−1‖2)

2 .

By Lemma 5.3, we also have

‖g1/µu(xt−1)‖2 = ‖g1/µu(xt−1)− g1/µu(x∗)‖2 ≥
µl

2
‖xt−1 − x∗‖2 .

We substitute these expressions into (5.7) to obtain

‖ĝt−1,1/µu(xt)− g1/µu(xt)‖2

‖g1/µu(xt−1)‖2

≤
µ′u

2µu
(‖xt − x∗‖2 + ‖x∗ − xt−1‖2)

2

µl
2 ‖xt−1 − x∗‖2

=
µ′u

µuµl

‖xt − x∗‖2 + ‖xt−1 − x∗‖2
‖xt−1 − x∗‖2

(‖xt − x∗‖2 + ‖xt−1 − x∗‖2)

=
µ′u

µuµl

(
1 +

‖xt − x∗‖2
‖xt−1 − x?‖2

)
(‖xt − x∗‖2 + ‖xt−1 − x∗‖2) .

By Theorem 5.4, we have ‖xt−x∗‖2
‖xt−1−x?‖2

< 1 and

‖ĝt−1,1/µu(xt)− g1/µu(xt)‖2

‖g1/µu(xt−1)‖2
≤ 2µ′u

µuµl
(‖xt − x∗‖2 + ‖xt−1 − x∗‖2) .

Thus the forcing terms decay to zero. By Theorem 5.4, the inexact prox-
imal Newton method with adaptive stopping condition (5.1) converges
q-superlinearly.

5.3 computational experiments

We study how inexact search directions affect the convergence of proximal
Newton-type methods on a sparse inverse covariance estimation problem

minimize
Θ∈Rn×n

tr
(
Σ̂Θ
)
− log det(Θ) + λ ‖Θ‖1 , (5.8)

where Σ̂ is the sample covariance matrix. We regularize using the (entry-
wise) `1 norm to encourage sparse solutions.
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We fit a sparse inverse covariance matrix to two datasets: (i) Estrogen,
a gene expression dataset consisting of 682 probe sets collected from 158

patients, and (ii) Leukemia, another gene expression dataset consisting of
1255 genes from 72 patients.1 The regularization parameter λ was chosen
to match the value reported by Hsieh et al. (2011).

We solve the inverse covariance estimation problem (5.8) using a proxi-
mal BFGS method, i. e., Ht is updated according to the BFGS update. (The
proximal Newton method would be computationally very expensive on
such large datasets.) To study the effects of inexact search directions, we
compare the convergence of the proximal BFGS method with two rules to
decide how accurately to solve the subproblem (4.7):

1. adaptive: stop when the subproblem iterate satisfies the adaptive
stopping condition (5.1);

2. exact: stop when the norm of the composite gradient step (on the
subproblem) is smaller than 10−6.

Figure 3 shows relative suboptimality versus number of function eval-
uations and wall time on the two datasets. We observe that the proximal
BFGS method with both rules converges at roughly the same rate in terms
of function evaluations. However, the exact rule spends more time per
iteration solving the subproblem exactly. If we account for the time per
iteration, the adaptive stopping rule converges significantly faster than the
exact stopping rule.

Finally, we observe that although the conditions for superlinear conver-
gence of proximal quasi-Newton methods are not met (log det is strongly
convex), we observe in Figure 3 that the proximal BFGS method with
both stopping rules transitions from linear to superlinear convergence. The
transition is characteristic of BFGS and other quasi-Newton methods on
smooth problems.

1 These datasets are available from http://www.math.nus.edu.sg/~mattohkc/ with the
SPINCOVSE package.

http://www.math.nus.edu.sg/~mattohkc/
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(a) estrogen dataset ( nz(Θ̂)
p2 = 0.0222)
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Figure 3: Convergence of the proximal BFGS method on the sparse inverse covari-
ance estimation problem with three subproblem stopping conditions.
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C O M M U N I C AT I O N E F F I C I E N T D I S T R I B U T E D S PA R S E
R E G R E S S I O N

Explosive growth in the size of modern datasets has fueled interest in
distributed statistical learning. For examples, we refer to Boyd et al. (2011),
Dekel et al. (2012), Duchi et al. (2012), Zhang et al. (2013) and the references
therein. The problem arises, for example, when working with datasets that
are too large to fit on a single machine and must be distributed across mul-
tiple machines. The main bottleneck in the distributed setting is usually
communication between machines/processors, so the overarching goal of
algorithm design is to minimize communication costs.

In distributed statistical learning, the simplest and most popular ap-
proach is averaging: each machine forms a local estimator θ̂k with the por-
tion of the data stored locally, and a “master” averages the local estimators
to produce an aggregate estimator: θ̄ = 1

m ∑m
k=1 θ̂k. Averaging was first

studied by Mcdonald et al. (2009) for multinomial regression. They derive
non-asymptotic error bounds on the estimation error that show averaging
reduces the variance of the local estimators, but has no effect on the bias
(from the centralized solution). In follow-up work, Zinkevich et al. (2010)
studied a variant of averaging where each machine computes a local esti-
mator with stochastic gradient descent (SGD) on a random subset of the
dataset. They show, among other things, that their estimator converges to
the centralized estimator.

More recently, Zhang et al. (2013) studied averaged empirical risk min-
imization (ERM). They show that the mean squared error (MSE) of the
averaged ERM decays like O

(
N−

1
2 + m

N

)
, where m is the number of ma-

chines and N is the total number of samples. Thus, so long as m .
√

N,
the averaged ERM matches the N−

1
2 convergence rate of the centralized

ERM. Even more recently, Rosenblatt and Nadler (2014) studied the opti-
mality of averaged ERM in two asymptotic settings: N → ∞, m, p fixed
and p, n→ ∞, p

n → µl ∈ (0, 1), where n = N
m is the number of samples per

machine. They show that in the n→ ∞, p fixed setting, the averaged ERM
is first-order equivalent to the centralized ERM. However, when p, n→ ∞,
the averaged ERM is suboptimal (versus the centralized ERM).

We develop an approach to distributed statistical learning in the high-di-
mensional setting. Since p & n, regularization is essential. At a high level,

48
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the key idea is to average local debiased regularized M-estimators. We show
that our averaged estimator converges at the same rate as the centralized
regularized M-estimator. The material in this chapter appears in Lee et al.
(2015a).

6.1 background on the lasso and the debiased lasso

To keep things simple, we focus on sparse linear regression. Consider the
sparse linear model

y = Xβ∗ + ε,

where the rows of X ∈ Rn×p are predictors, and the components of y ∈ Rn

are the responses. To keep things simple, we assume

(A1) the predictors x ∈ Rp are independent subgaussian random vectors
whose covariance Σ has smallest has smallest eigenvalue λmin(Σ);

(A2) the regression coefficients β∗ ∈ Rp are s-sparse, i. e. all but s compo-
nents of β∗ are zero;

(A3) the components of ε ∈ Rn are independent, mean zero subgaussian
random variables.

Given the predictors and responses, the lasso estimates β∗ by

β̂ = arg minβ∈Rp
1

2n
‖y− Xβ‖2

2 + λ‖β‖1.

There is a well-developed theory of the lasso that says, under suitable as-
sumptions on X, the lasso estimator β̂ is nearly as close to β∗ as the oracle
estimator: X†

nz(β∗)y (e. g. see Hastie et al. (2015), Chapter 11 for an overview).

More precisely, under some conditions on 1
n XTX, the MSE of the lasso es-

timator is roughly s log p
n . Since the MSE of the oracle estimator is (roughly)

s
n , the lasso estimator is almost as good as the oracle estimator.

However, the lasso estimator is also biased1. Since averaging only re-
duces variance, not bias, we gain (almost) nothing by averaging the biased
lasso estimators. That is, it is possible to show if we naively averaged local
lasso estimators, the MSE of the averaged estimator is of the same order as
that of the local estimators. The key to overcoming the bias of the averaged
lasso estimator is to “debias” the lasso estimators before averaging.

1 We refer to Section 2.2 in Javanmard and Montanari (2013a) for a more formal discussion
of the bias of the lasso estimator.
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The debiased lasso estimator by Javanmard and Montanari (2013a) is

β̂d = β̂ +
1
n

Θ̂XT(y− Xβ̂), (6.1)

where β̂ is the lasso estimator and Θ̂ ∈ Rp×p is an approximate inverse
to Σ̂ = 1

n XTX. Intuitively, the debiased lasso estimator trades bias for vari-
ance. The trade-off is obvious when Σ̂ is non-singular: setting Θ̂ = Σ̂−1

gives the ordinary least squares (OLS) estimator (XTX)−1XTy.
Another way to interpret the debiased lasso estimator is a corrected esti-

mator that compensates for the bias incurred by shrinkage. By the optimal-
ity conditions of the lasso, the correction term 1

n XT(y− Xβ̂) is a subgradi-
ent of λ ‖·‖1 at β̂. By adding a term proportional to the subgradient of the
regularizer, the debiased lasso estimator compensates for the bias incurred
by regularization. The debiased lasso estimator has previously been used
to perform inference on the regression coefficients in high-dimensional
regression models. We refer to the papers by Javanmard and Montanari
(2013a), van de Geer et al. (2013), Zhang and Zhang (2014), Belloni et al.
(2011) for details.

The choice of Θ̂ in the correction term is crucial to the performance of
the debiased estimator. Javanmard and Montanari (2013a) suggest forming
Θ̂ row by row: the j-th row of Θ̂ is the optimum of

minimize
θ∈Rp

θTΣ̂θ

subject to ‖Σ̂θ − ej‖∞ ≤ δ.
(6.2)

The parameter δ should large enough to keep the problem feasible, but as
small as possible to keep the bias (of the debiased lasso estimator) small.

As we shall see, when the rows of X are subgaussian, setting δ ∼
( log p

n

) 1
2

is usually large enough to keep (6.2) feasible.

Definition 6.1 (Generalized coherence). Given X ∈ Rn×p, let Σ̂ = 1
n XTX.

The generalized coherence between Σ̂ and Θ ∈ Rp×p is

GC(Σ̂, Θ) = maxj∈[p] ‖Σ̂ΘT
j − ej‖∞.

Lemma 6.2 (Javanmard and Montanari (2013a)). Under (A1), when 16κσ4
x n >

log p, the event

EGC(Σ̂) :=
{

GC(Σ̂, Σ−1) ≤ 8√
c1

√
κσ2

x

( log p
n

) 1
2
}
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occurs with probability at least 1− 2p−2 for some c1 > 0, where κ := λmax(Σ)
λmin(Σ)

is
the condition number of Σ.

As we shall see, the bias of the debiased lasso estimate is of higher order
than its variance under suitable conditions on Σ̂. In particular, we require
Σ̂ to satisfy the restricted eigenvalue (RE) condition.

Definition 6.3 (RE condition). For any S ⊂ [p], let

C(S) := {∆ ∈ Rp | ‖∆S c‖1 ≤ 3 ‖∆xS‖1}.

We say Σ̂ satisfies the RE condition on the cone C(S) when

∆TΣ̂∆ ≥ µl‖∆S‖2
2

for some µl > 0 and any ∆ ∈ C(S).

The RE condition requires Σ̂ to be positive definite on C(S). When the
rows of X ∈ Rn×p are i.i.d. Gaussian random vectors, Raskutti et al. (2010)
show there are constants µ1, µ2 > 0 such that

1
n
‖X∆‖2

2 ≥ µ1 ‖∆‖2
2 − µ2

log p
n
‖∆‖2

1 for any ∆ ∈ Rp

with probability at least 1− c2 exp (−c2n) . Their result implies the RE con-
dition holds on C(S) (for any S ⊂ [p]) as long as n & |S| log p, even when
there are dependencies among the predictors. Their result was extended
to subgaussian designs by Rudelson and Zhou (2013), also allowing for de-
pendencies among the covariates. We summarize their result in a lemma.

Lemma 6.4. Under (A1), when n > 4000s̃σ2
x log

( 60
√

2ep
s̃

)
and p > s̃, where

s̃ := s + 25920κs, the event

ERE(X) =
{

∆TΣ̂∆ ≥ 1
2

λmin(Σ)‖∆S‖2
2 for any ∆ ∈ C(S)

}
occurs with probability at least 1− 2e

− n
4000σ4

x .

Proof. The lemma is a consequence of Rudelson and Zhou (2013), Theorem
6. In their notation, we set δ = 1√

2
, k0 = 3 and bound maxj∈[p]

∥∥Aej
∥∥2

2 and

K(s0, k0, Σ
1
2 ) by λmax(Σ) and λmin(Σ)−

1
2 .

When the RE condition holds, the lasso and debiased lasso estimators
are consistent for a suitable choice of the regularization parameter λ. The
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parameter λ should be large enough to dominate the “empirical process”
part of the problem: 1

n

∥∥XTy
∥∥

∞ , but as small as possible to reduce the bias

incurred by regularization. As we shall see, setting λ ∼ σy
( log p

n

) 1
2 is a good

choice.

Lemma 6.5. Under (A3),

1
n
‖XTε‖∞ ≤ maxj∈[p](Σ̂j,j)

1
2 σy

(3 log p
c2n

) 1
2

with probability at least 1− ep−2 for any (non-random) X ∈ Rn×p.

When Σ̂ satisfies the RE condition and λ is large enough, the lasso and
debiased lasso estimators are consistent.

Lemma 6.6 (Negahban et al. (2012)). Under (A2) and (A3), suppose Σ̂ satisfies
the RE condition on C∗ with constant µl and 1

n‖XTε‖∞ ≤ λ,

‖β̂− β‖1 ≤
3
µl

sλ and ‖β̂− β‖2 ≤
3
µl

√
sλ.

When the lasso estimator is consistent, the debiased lasso estimator is
also consistent. Further, it is possible to show that the bias of the debiased
estimator is of higher order than its variance. Similar results by Javanmard
and Montanari (2013a), van de Geer et al. (2013), Zhang and Zhang (2014),
Belloni et al. (2011) are the key step in showing the asymptotic normality
of the (components of) the debiased lasso estimator. The result we state is
essentially Javanmard and Montanari (2013a), Theorem 2.3.

Lemma 6.7. Under the conditions of Lemma 6.6, when (Σ̂, Θ̂) has generalized
incoherence δ, the debiased lasso estimator has the form

β̂d = β∗ +
1
n

Θ̂XTε + ∆̂,

where ‖∆̂‖∞ ≤ 3δ
µl

sλ.

Lemma 6.7, together with Lemmas 6.5 and 6.2, shows that the bias of the
debiased lasso estimator is of higher order than its variance. In particular,
setting λ and δ according to Lemmas 6.5 and 6.2 gives a bias term ‖∆̂‖∞

that is O
( s log p

n

)
. By comparison, the variance term 1

n‖Θ̂XTε‖∞ is the maxi-
mum of p subgaussian random variables with mean zero and variances of

O(1), which is O
(( log p

n

) 1
2
)
. Thus the bias term is of higher order than the

variance term as long as n & s2 log p.
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Corollary 6.8. Under (A2), (A3), and the conditions of Lemma 6.6, when (Σ̂, Θ̂)

has generalized incoherence δ′
( log p

n

) 1
2 and we set λ = maxj∈[p](Σ̂j,j)

1
2 σy
( 3 log p

c2n

) 1
2 ,

‖∆̂‖∞ ≤
3
√

3√
c2

δ′maxj∈[p](Σ̂j,j)
1
2

µl
σy

s log p
n

.

6.2 averaging debiased lassos

Recall the problem setup: we are given N samples of the form zi = (xi, yi)

distributed across m machines:

X =


X1
...

Xm

 , y =


y1
...

ym

 .

The k-th machine has local predictors Xk ∈ Rnk×p and responses yk ∈ Rnk .
To keep things simple, we assume the data is evenly distributed, i. e. n1 =

· · · = nk = n = N
m . The averaged debiased lasso estimator (for lack of a better

name) is

β̄ =
1
m

m

∑
k=1

β̂d
k =

1
m

m

∑
k=1

β̂k + Θ̂kXT
k (yk − Xk β̂k), (6.3)

We study the error of the averaged debiased lasso in the `∞ norm.

Lemma 6.9. Suppose the local sparse regression problem on each machine satisfies
the conditions of Corollary 6.8, that is when m ≤ p,

1. {Σ̂k}k∈[m] satisfy the RE condition on C∗ with constant µl ,

2. {(Σ̂k, Θ̂k)}k∈[m] have generalized incoherence cGC
( log p

n

) 1
2 ,

3. we set λ1 = · · · = λm = cΣσy
( 3 log p

c2n

) 1
2 .

Then

‖β̄− β∗‖∞ ≤ cσy

(( cΩ log p
N

) 1
2
+

cGCcΣ

µl
σy

s log p
n

)
with probability at least 1− ep−1, where c > 0 is a universal constant, cΩ :=
maxj∈[p], k∈[m]((Θ̂kΣ̂kΘ̂T

k )j,j) and cΣ := maxj∈[p],k∈[m]((Σ̂k)j,j)
1
2 .

Lemma 6.9 hints at the performance of the averaged debiased lasso. In

particular, we note the first term is O
(( log p

N

) 1
2
)
, which matches the conver-
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gence rate of the centralized estimator. When n is large enough, s log p
n is

negligible compared to
( log p

N

) 1
2 , and the error is O

(( log p
N

) 1
2
)
.

Finally, we show the conditions of Lemma 6.9 occur with high probabil-
ity when the rows of X are independent subgaussian random vectors.

Theorem 6.10. Under (A1), (A2), and (A3), when m < p, p > s̃,

1. n > max
{

4000s̃σ2
x log( 60

√
2ep

s̃ ), 8000σ4
x log p, 3

c1
max{σ2

x , σx} log p
}

,

2. we set λ1 = · · · = λm = maxj∈[p],k∈[m]((Σ̂k
)

j,j)
1
2 σy
( 3 log p

c2n

) 1
2 ,

3. we set δ1 = · · · = δm = 8√
c1

√
κσ2

x
( log p

n

) 1
2 and form {Θ̂k}k∈[m] by (6.2),

‖β̄− β∗‖∞ ≤ c
(

σy

(maxj∈[p] Σ−1
j,j log p

N

) 1
2

+

√
κ maxj∈[p](Σj,j)

1
2

λmin(Σ)
σ2

x σy
s log p

n

)
with probability at least 1− (8 + e)p−1 for some universal constant c > 0.

Proof. We start with the conclusion of Lemma 6.9:

‖β̄− β∗‖∞ ≤ σy

(2cΩ log p
c2N

) 1
2
+

3
√

3√
c2

cGCcΣ

µl
σy

s log p
n

.

First, we show that the two constants cΩ = maxj∈[p], k∈[m](Θ̂kΣ̂kΘ̂T
k )j,j and

cΣ := maxj∈[p],k∈[m]((Σ̂k)j,j)
1
2 are bounded with high probability.

Lemma 6.11. Under (A1),

Pr
(
maxj∈[p] Σ−1

j Σ̂Σ−1
j > 2 maxj∈[p] Σ−1

j,j

)
≤ 2pe

−c1 min{ n
σ2

x
, n

σx }

for some universal constant c1 > 0.

Since we form {Θ̂k}k∈[m] by (6.2),

(Θ̂kΣ̂kΘ̂T
k )j,j ≤ maxj∈[p](Σ−1Σ̂kΣ−1))j,j.

Lemma 6.11 implies

maxj∈[p](Σ−1Σ̂kΣ−1))j,j ≤ 2 maxj∈[p] Σ−1
j,j for each k ∈ [m]

with probability at least 1− 2pe
−c1 min{ n

σ2
x

, n
σx }.
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Lemma 6.12. Under (A1),

Pr(maxj∈[p](Σ̂j,j)
1
2 >
√

2 maxj∈[p](Σj,j)
1
2 ) ≤ 2pe

−c1 min{ n
16σ2

x
, n

4σx }

for some universal constant c1 > 0.

We put the pieces together to obtain the stated result:

1. By Lemma 6.11 (and a union bound over k ∈ [m]),

Pr(cΩ ≥ 2 maxj Σ−1
j,j ) ≤ 2mpe

−c1 min{ n
σ2

x
, n

σx }.

Since m ≤ p, when n > 3
c1

max{σ2
x , σx} log p,

Pr
(
cΩ < 2 max

j
Σ−1

j,j

)
≥ 1− 2p−1.

2. By Lemma 6.12 (and a union bound over k ∈ [m]),

Pr(cΣ <
√

2 maxj∈[p](Σj,j)
1
2 ) ≥ 1− 2mpe

−c1 min{ n
16σ2

x
, n

4σx }.

When n > 3
c1

max{σ2
x , σx} log p, the right side is again at most 2p−1.

3. By Lemma 6.4, as long as

n > max{4000s̃σ2
x log( 60

√
2ep

s̃ ), 8000σ4
x log p},

Σ̂1, . . . , Σ̂m all satisfy the RE condition with probability at least

1− 2me
− n

4000σ4
x ≥ 1− 2p−1.

4. By Lemma 6.2,

Pr
(
∩k∈[m]EGC(Σ̂k)

)
≥ 1− 2p−2.

Since m < p, the probability is at least 1− 2p−1.

We apply the bounds cΩ ≤ 2 maxj∈[p] Σ−1
j,j , cΣ ≤

√
2 maxj∈[p](Σj,j)

1
2 , cGC =

8√
c1

√
κσ2

x , and µl =
1
2 λmin(Σ) to obtain

‖β̄− β∗‖∞ ≤ σy

(4 maxj∈[p] Σ−1
j,j log p

c2N

) 1
2

+
48
√

6√
c1c2

√
κ maxj∈[p](Σj,j)

1
2

λmin(Σ)
σ2

x σy
s log p

n
.
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We validate our theoretical results with simulations. First, we study the
estimation error of the averaged debiased lasso in `∞ norm. To focus on the
effect of averaging, we grow the number of machines m linearly with the
(total) sample size N. In other words, we fix the sample size per machine n
and grow the total sample size by adding machines. Figure 4 compares the
estimation error (in `∞ norm) of the averaged debiased lasso estimator with
that of the centralized lasso. We see the estimation error of the averaged
debiased lasso estimator is comparable to that of the centralized lasso.

(a) Σ = I (b) (Σ)i,j = 0.5|i−j|

Figure 4: The estimation error (in `∞ norm) of the averaged debiased lasso estima-
tor versus that of the centralized lasso when the predictors are Gaussian.
In both settings, the estimation error of the averaged debiased estimator
is comparable to that of the centralized lasso.

We conduct a second set of simulations to study the effect of the number
of machines on the estimation effor of the averaged estimator. To focus on
the effect of the number of machines k, we fix the (total) sample size N and
vary the number of machines the samples are distributed across. Figure 5

shows how the estimation error (in `∞ norm) of the averaged estimator
grows as the number of machines grows. When the number of machines is
small, the estimation error of the averaged estimator is comparable to that
of the centralized lasso. However, when the number of machines exceeds a
certain threshold, the estimation error grows with the number of machines.
This is consistent with the prediction of Theorem 6.10: when the number of
machines exceeds a certain threshold, the bias term of order s log p

n becomes
dominant.

The averaged debiased lasso has one serious drawback versus the lasso:
β̄ is usually dense. The density of β̄ detracts from the intrepretability of the
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(a) Σ = I (b) (Σ)i,j = 0.5|i−j|

Figure 5: The estimation error (in `∞ norm) of the averaged estimator as the num-
ber of machines m vary. When the number of machines is small, the
error is comparable to that of the centralized lasso. However, when the
number of machines exceeds a certain threshold, the bias term (which
grows linearly in m) is dominant, and the performance of the averaged
estimator degrades.

coefficients and makes the estimation error large in the `2 and `1 norms.
To remedy both problems, we threshold the averaged debiased lasso:

HTt(β̄)← β̄ j · 1{|β̄ j|≥t},

STt(β̄)← sign(β̄ j) ·max{|β̄ j| − t, 0}.

As we shall see, both hard and soft-thresholding give sparse aggregates
that are close to β∗ in `2 norm.

Lemma 6.13. As long as t > ‖β̄− β∗‖∞, β̄ht = HTt(β̄) satisfies

1. ‖β̄ht − β∗‖∞ ≤ 2t,

2. ‖β̄ht − β∗‖2 ≤ 2
√

2st,

3. ‖β̄ht − β∗‖1 ≤ 2
√

2st.

The analogous result also holds for β̄st = STt(β̄).

Proof. By the triangle inequality,

‖β̄ht − β∗‖∞ ≤ ‖β̄ht − β̄‖∞ + ‖β̄− β∗‖∞

≤ t +
∥∥β̄− β∗

∥∥
∞

≤ 2t.
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Since t >
∥∥β̄− β∗

∥∥
∞ , β̄ht

j = 0 whenever β∗j = 0. Thus β̄ht is s-sparse and
β̄ht − β∗ is 2s-sparse. By the equivalence between the `∞ and `2, `1 norms,

‖β̄ht − β∗‖2 ≤ 2
√

2st,

‖β̄ht − β∗‖1 ≤ 2
√

2st.

The argument for β̄st is similar.

By combining Lemma 6.13 with Theorem 6.10, we show that β̄ht con-
verges at the same rates as the centralized lasso.

Theorem 6.14. Under the conditions of Theorem 6.10, hard-thresholding β̄ at

σy

( 4 maxj∈[p] Σ−1
j,j log p

c2 N

) 1
2
+ 48

√
6√

c1c2

√
κ maxj∈[p](Σj,j)

1
2

λmin(Σ)
σ2

x σy
s log p

n gives

1. ‖β̄ht − β∗‖∞ .P σy

(maxj∈[p] Σ−1
j,j log p

N

) 1
2
+
√

κ maxj∈[p](Σj,j)
1
2

λmin(Σ)
σ2

x σy
s log p

n ,

2. ‖β̄ht − β∗‖2 .P σy

(maxj∈[p] Σ−1
j,j s log p

N

) 1
2
+
√

κ maxj∈[p](Σj,j)
1
2

λmin(Σ)
σ2

x σy
s

3
2 log p

n ,

3. ‖β̄ht − β∗‖1 .P σy

(maxj∈[p] Σ−1
j,j s2 log p

N

) 1
2
+
√

κ maxj∈[p](Σj,j)
1
2

λmin(Σ)
σ2

x σy
s2 log p

n .

Remark 6.15. By Theorem 6.14, when m . n
s2 log p , the variance term is dominant

and the convergence rates given by the theorem simplify:

1. ‖β̄ht − β∗‖∞ .P
( log p

N

) 1
2 ,

2. ‖β̄ht − β∗‖2 .P
( s log p

N

) 1
2 ,

3. ‖β̄ht − β∗‖1 .P
( s2 log p

N

) 1
2 .

The convergence rates for the centralized lasso estimator β̂ are identical (modulo
constants):

1. ‖β̂− β∗‖∞ .P
( log p

N

) 1
2 ,

2. ‖β̂− β∗‖2 .P
( s log p

N

) 1
2 ,

3. ‖β̂− β∗‖1 .P
( s2 log p

N

) 1
2 .

The estimator β̄ht matches the convergence rates of the centralized lasso in `1, `2,
and `∞ norms. Furthermore, β̄ht can be evaluated in a communication-efficient
manner by a one-shot averaging approach.
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We conduct a third set of simulations to study the effect of thresholding
on the estimation error in `2 norm. Figure 6 compares the estimation error
incurred by the averaged estimator with and without thresholding versus
that of the centralized lasso. Since the averaged estimator is usually dense,
its estimation error (in `2 norm) is large compared to that of the central-
ized lasso. However, after thresholding, the averaged estimator performs
comparably versus the centralized lasso.

(a) Σ = I (b) (Σ)i,j = 0.5|i−j|

Figure 6: The estimation error (in `2 norm) of the averaged estimator with and
without thresholding versus that of the centralized lasso when the pre-
dictors are Gaussian. Although the estimation error of the averaged esti-
mator is large compared to that of the centralized lasso, the thresholded
averaged estimator performs comparably versus the centralized lasso.

6.3 a distributed approach to debiasing

The averaged estimator we studied has the form

β̄ =
1
m

m

∑
k=1

β̂k + Θ̂kXT
k (y− Xk β̂k).

The estimator requires each machine to form Θ̂k by the solution of (6.2).
Since the dual of (6.2) is an `1-regularized quadratic program:

minimize
γ∈Rp

1
2

γTΣ̂kγ− Σ̂kγ + δ ‖γ‖1 , (6.4)

forming Θ̂k is (roughly speaking) p times as expensive as solving the local
lasso problem, making it the most expensive step (in terms of FLOPS) of
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evaluating the averaged estimator. To trim the cost of the debiasing step,
we consider an estimator that forms only a single Θ̂ :

β̃ =
1
m

m

∑
k=1

β̂k +
1
N

Θ̂
m

∑
k=1

XT
k (y− Xk β̂k). (6.5)

To evaluate (6.5),

1. each machine sends β̂k and 1
n XT

k (y− Xk β̂k) to a central server,

2. the central server forms 1
m ∑m

k=1 β̂k and 1
N ∑m

k=1 XT
k (y − Xk β̂k) and

sends the averages to all the machines,

3. each machine, given the averages, forms p
m rows of Θ̂ and debiases

p
m coefficients:

β̃ j =
1
m

m

∑
k=1

β̂ j + Θ̂j

( 1
N

m

∑
k=1

XT
k (y− Xk β̂k)

)
,

where Θ̂j ∈ Rp is a row vector.

As we shall see, each machine can perform debiasing with only the data
stored locally. Thus, forming the estimator (6.5) requires two rounds of
communication.

The question that remains is how to form Θ̂j. We consider an estimator
proposed by van de Geer et al. (2013): nodewise regression on the predic-
tors. For some j ∈ [p] that machine k is debiasing, the machine solves

γ̂j := arg minγ∈Rp−1
1

2n
‖xk,j − Xk,−jγ‖2

2 + λj‖γ‖1, j ∈ [p],

where Xk,−j ∈ Rn×(p−1) is Xk less its j-th column xk,j, and forms

Ĉ :=


1 −γ̂1,2 . . . −γ̂1,p

−γ̂2,1 1 . . . −γ̂2,p
...

...
. . .

...

−γ̂p,1 −γ̂p,2 . . . −γ̂p,p

 ,

where the components of γ̂j are indexed by k ∈ {1, . . . , j− 1, j + 1, . . . , p}.
Finally, we scale the rows of Ĉ by diag

([
τ̂1, . . . , τ̂p

])
, where

τ̂j =
( 1

n
‖xj − X−jγ̂j‖2

2 + λj‖γ̂j‖1
) 1

2 ,
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to form Θ̂ = T̂−2Ĉ. Each row of Θ̂ is given by

Θ̂j = −
1
τ̂2

j

[
γ̂j,1 . . . γ̂j,j−1 1 γ̂j,j+1 . . . γ̂j,p

]
. (6.6)

Since γ̂j and τ̂j only depend on Xk, they can be formed without any com-
munication.

van de Geer et al. (2013) show that when the rows of X are i.i.d. subgaus-
sian random vectors and the precision matrix Σ−1 is sparse, Θ̂j converges
to Σ−1

j at the usual convergence rate of the lasso. For completeness, we
restate their result.

We consider a sequence of regression problems indexed by the sample
size N, dimension p, sparsity s0 that satisfies (A1), (A2), and (A3). As N
grows to infinity, both p = p(N) and s = s(N) may also grow as a func-
tion of N. To keep notation manageable, we drop the index N. We further
assume

(A4) the covariance of the predictors (rows of X) has smallest eigenvalue
λmin(Σ) ∼ Ω(1) and largest diagonal entry maxj∈[p] Σj,j ∼ O(1),

(A5) the rows of Σ−1 are sparse: maxj∈[p]
s2

j log p
n ∼ o(1), where sj is the

sparsity of Σ−1
j .

Lemma 6.16 (van de Geer et al. (2013), Theorem 2.4). Under (A1)–(A5), (6.6)

with suitable parameters λj ∼
( log p

n

) 1
2 satisfies

‖Θ̂j − Σ−1
j ‖1 .P

( s2
j log p

n

) 1
2

for any j ∈ [p].

We show the estimator (6.5) matches the convergence rate of the central-
ized lasso. The argument is similar to the proof of Theorem 6.10.

Theorem 6.17. Under (A1)–(A5), (6.5), where Θ̂ is given by (6.6), with suitable

parameters λ, λk ∼
( log p

n

) 1
2 , k ∈ [m] satisfies

‖β̄− β∗‖∞ .P

( log p
N

) 1
2
+

maxj∈[p+1] sj log p
n

.
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Proof. We start by substituting the linear model into (6.5):

β̃ =
1
m

m

∑
k=1

β̂k − Θ̂Σ̂k(β̂k − β∗) +
1
n

Θ̂XT
k εk

=
1
m

m

∑
k=1

β̂k − Θ̂Σ̂k(β̂k − β∗) +
1
N

Θ̂XTε.

Subtracting β∗ and taking norms, we obtain

‖β̃− β∗‖∞ ≤
1
m

m

∑
k=1
‖(I − Θ̂Σ̂k)(β̂k − β∗)‖∞ +

∥∥ 1
N

Θ̂XTε
∥∥

∞. (6.7)

By Vershynin (2010), Proposition 5.16, and Lemma (6.11), it is possible to
show that ∥∥ 1

N
Θ̂XTε

∥∥
∞ .P

( log p
N

) 1
2
.

We turn our attention to the first term in (6.7). It’s straightforward to see
each term in the sum is bounded by

‖(I − Θ̂Σ̂k)(β̂k − β∗)‖∞

≤ ‖(I − Σ−1Σ̂k)(β̂k − β∗)‖∞ + ‖(Σ−1 − Θ̂)Σ̂k(β̂k − β∗)‖∞

≤ maxj∈[p] ‖eT
j − Σ−1

j Σ̂k‖∞‖β̂k − β∗‖1 + ‖Σ−1
j − Θ̂j‖1‖Σ̂k(β̂k − β∗)‖∞.

We put the pieces together to deduce each term is O
(maxj∈[p] sj log p

n

)
:

1. By Lemmas 6.4, 6.6, 6.12, ‖β̂k − β∗‖1 .P
√

s0λ.

2. By Lemma 6.16, ‖Σ−1
j − Θ̂j‖1 .P sj

( log p
n

) 1
2 .

3. By the triangle inequality,

‖Σ̂k(β̂k − β∗)‖∞ ≤
∥∥∥ 1

n
XT

k (yk − Xk β̂k)
∥∥∥

∞
+
∥∥∥ 1

n
XT

k εk

∥∥∥
∞

.

By the optimality conditions of the (local) lasso estimator, the first
term is λ, and it is possible to show, by Lemma 6.11 and Vershynin

(2010), Proposition 5.16, that the second term is OP
(( log p

n

) 1
2
)
.

Since λ ∼
( log p

n

) 1
2 , by a union bound over k ∈ [m], we obtain

‖β̄− β∗‖∞ ∼ OP

(( log p
N

) 1
2
+

maxj∈[p] sj log p
n

)
.
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By combining the Lemma 6.13 with Theorem 6.17, we can show that
β̃ht := HT(β̃, t) for an appropriate threshold t converges to β∗ at the same
rates as the centralized lasso.

Theorem 6.18. Under the conditions of Theorem 6.17, hard-thresholding β̃ at

t ∼
( log p

N

) 1
2 +

maxj∈[p] sj log p
n gives

1. ‖β̃ht − β∗‖∞ .P
( log p

N

) 1
2 +

maxj∈[p] sj log p
n ,

2. ‖β̃ht − β∗‖2 .P
( s0 log p

N

) 1
2 +

√
s0 maxj∈[p] sj log p

n ,

3. ‖β̃ht − β∗‖1 .P
( s2

0 log p
N

) 1
2 +

s0 maxj∈[p] sj log p
n .

Assuming s ∼ sj, for any j ∈ [p], Theorem 6.18 shows that for m . n
s2

0 log p ,
the variance term is dominant, so the convergence rates simplify:

1. ‖β̃ht − β∗‖∞ .P
( log p

N

) 1
2 ,

2. ‖β̃ht − β∗‖2 .P
( s0 log p

N

) 1
2 ,

3. ‖β̃ht − β∗‖1 .P
( s2

0 log p
N

) 1
2 .

Thus, estimator β̃ht shares the advantages of β̄ht over the centralized lasso
(cf. Remark 6.15). It also achieves computational gains over β̄ht by amorti-
zing the cost of debiasing across m machines.

Finally, we mention that it is possible to obtain a sharper result by forgo-
ing the `∞ norm convergence rate. We state the result, but defer its proof
to Appendix C.7.

Theorem 6.19. Under the conditions of Theorem 6.17, hard-thresholding β̃ at
t = |β̃|(ŝ0) for some ŝ0 ∼ s0, i. e. setting all but the largest s′0 debiased coefficients
to zero, gives

1. ‖β̃ht − β∗‖2 .P
( s0 log p

N

) 1
2 + s0 log p

n ,

2. ‖β̄ht − β∗‖1 .P
( s2

0 log p
N

) 1
2 +

s3/2
0 log p

n .

As long as n & s0 log p, it is possible to obtain a good estimate of s0 by
the empirical sparsity of any of the local lasso estimators. Let Ê ⊂ [p] be the
equicorrlation set of the lasso estimator.

{j ∈ [p] : |xT
j (y− Xβ̂)| = λ}.

The empirical sparsity ŝ0 is the size of Ê .
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Lemma 6.20. Under (A1)–(A3), when

n > max{4000s̃0σ2
x log( 60

√
2ep

s̃0
), 4000σ4

x log p, s0 log p},

where s̃0 := s0 + 25920κs0, we have

ŝ0 ≤
(192σ2

x + 384λmax(Σ)
λmin(Σ)

+
3842σ4

x
c1λmin(Σ)2

)2
s

with probability at least 1− 2p−(s0+1).

By Theorem 6.19, when m . N
s0 log p , the variance term is dominant and

the convergence rates given by the theorem simplify to the convergence
rates of the (centralized) lasso estimator:

1. ‖β̄ht − β∗‖2 .P
( s0 log p

N

) 1
2 ,

2. ‖β̄ht − β∗‖1 .P
( s2

0 log p
N

) 1
2 .

Thus, by forgoing consistency in the `∞ norm, it is possible to reduce the
sample complexity of the averaged estimator to m . s log p

N . When m = 1,
we recover the sample complexity of the lasso estimator.
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S U M M A RY A N D D I S C U S S I O N

This thesis has two parts: estimation and computing. Although estimation
and inference have been core topics in statistics since its inception as a
scientific discipline, computation is a recent addition. However, as the size
and complexity of datasets continue to grow, the computational aspects of
statistical practice become ever more important.

In this thesis, we study the statistical and computational properties of
regularized M-estimators of the form (1.3). Although regularization is an
old idea, the emergence of high-dimensional datasets in modern science
and engineering has led to a resurgence of interest in the idea. Statistically,
regularization is essential: it prevents overfitting and allows us to design
estimators that discover latent low-dimensional structure in the data. Com-
putationally, it improves the stability of the estimator and often leads to
computational gains.

7.1 estimation and inference

The first part focuses on the statistical properties of regularized M-estimators.
The estimators are used in diverse areas of science and engineering to fit
high-dimensional models with some low-dimensional structure. In Chap-
ter 2, we develop a framework for establishing consistency and model se-
lection consistency of regularized M-estimators on high-dimensional prob-
lems.1 Our analysis identifies two key properties of regularized M-estimators
that ensure consistency and model selection consistency: geometric decom-
posability and irrepresentability. We also showed that for an estimator to be
consistent and model selection consistent, irrepresentability is necessary.

We only studied the “first-order correctness” of regularized M-estimators
in the high-dimensional setting. As our understanding of first-order prop-
erties becomes more complete, attention has shifted to “second-order” prop-
erties, including testing (statistical) hypotheses and forming confidence in-
tervals. In a separate series of papers, beginning with Lee et al. (2013), we
cast the high-dimensional inference problem as a selective inference prob-

1 Recall our notion of model selection consistency means the estimator falls in the model
subspace with high probability. In the context of sparse regression, it means the fitted
coefficients of the truly irrelevant predictors are zero.
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lem and propose an approach based on a new framework for selective
inference in linear models. At the core of the framework is a result that
characterizes the distribution of a post-selection estimator conditioned on
the selection event. We specialize the approach to model selection by the
lasso to obtain exact (non-asymptotically valid) confidence intervals for the
regression coefficients. Related work by Taylor et al. (2014), Lee and Tay-
lor (2014), Sun and Taylor (2014), Reid and Tibshirani (2014), Fithian et al.
(2014), Choi et al. (2014), Tian et al. (2015) generalizes the approach to
other statistical models and selection strategies. Further investigation of
the effects of regularization on the second-order correctness of estimators
remains an exciting area of future research.

7.2 computing

The second part focuses on algorithms to evaluate regularized M-estimators.
The estimators are usually expressed as the solution to composite func-
tion minimization problems. Recently there has been a flurry of activity
around the development of Newton-type methods for minimizing com-
posite functions. Most of the proposed methods fall under the umbrella
of proximal Newton-type methods. In Chapter 4 we analyze the meth-
ods and show that they inherit the fast local convergence properties of
Newton-type methods for minimizing smooth functions, even when the
search directions are computed inexactly.

Follow-up work by Tran-Dinh et al. (2015) studies the convergence of the
proximal Newton method on composite functions where the smooth part
is self-concordant. By assuming self-concordance, they show global rates of
convergence and characterize the region of quadratic convergence. It re-
mains an open problem to study the convergence rate of inexact proximal
Newton-type methods on self-concordant functions.

In Chapter 6 we describe a communication-efficient approach to sparse
regression when the samples Zn = {(x1, y1), . . . , (xN , yN)} are stored in a
distributed fashion. On modern distributed computing platforms, commu-
nication is often the dominant cost of computing, and avoiding communi-
cation is usually the primary tenet of algorithm design. Our approach,
based on the idea of averaging debiased lassos, requires only a single
round of communication. We show that as long as the data is not split
across too many machines, the averaged estimator achieves the conver-
gence rate of the centralized lasso estimator.

Traditionally, the benchmark of an estimator is its statistical efficiency.
However, as the size and complexity of datasets continue to grow, the com-
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putational efficiency of an estimator is becoming increasingly important.
In recent years, the literature on the statistical benefits of regularization
has grown vastly. For many high-dimensional problems, there are essen-
tially minimax optimal estimators (modulo constants) that depend on reg-
ularization to achieve optimality. However, the computational benefits of
regularization are not as well understood. A line of work beginning with
Agarwal et al. (2012) show that the proximal gradient method on (1.3) con-
verges linearly, even when the objective function is not strongly convex
(and strong convexity is impossible when n > p). However, similar results
on other methods are scarce. A key outstanding challenge is to design com-
putationally and statistically optimal estimators for emerging applications.
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A
P R O O F S O F L E M M A S I N C H A P T E R S 2 A N D 3

a.1 proof of lemma 2 .7

Since θ̂ is the solution to the restricted problem,

`n(θ̂) + λhA(θ̂) ≤ `n(θ
∗) + λhA(θ∗).

Since θ̂ ∈ C ∩M and `n is strongly convex on C ∩M, θ̂ is the unique
solution to (2.11). Again, by the restricted strong convexity of `n,

∇`n(θ
∗)TPM(θ̂ − θ∗) +

µl

2
‖θ̂ − θ∗‖2

2 + λ(ρ(θ̂)− ρ(θ∗)) ≤ 0.

We take norms to obtain

0 ≥ −ρ̄∗(PM∇`n(θ
∗))ρ̄

(
θ̂ − θ∗

)
+

µl

2

∥∥θ̂ − θ∗
∥∥2

2 − λρ(θ̂ − θ∗)

≥ −κρ̄ρ̄∗(PM∇`n(θ
∗))
∥∥θ̂ − θ∗

∥∥
2 +

µl

2

∥∥θ̂ − θ∗
∥∥2

2 − λρ(θ̂ − θ∗).

Further, since θ̂ − θ∗ ∈ M,

0 ≥ −κρ̄ρ̄∗(PM∇`n(θ
∗))
∥∥θ̂ − θ∗

∥∥
2 +

µl

2

∥∥θ̂ − θ∗
∥∥2

2 − κρλ
∥∥θ̂ − θ∗

∥∥
2.

We rearrange to obtain

∥∥θ̂ − θ∗
∥∥

2 ≤
2
µl

(
κρ̄ρ̄∗(PM∇`n(θ

∗)) + κρλ
)

.

We substitute in λ > 4κir
δ ρ̄∗(PM∇`n(θ∗)) to obtain the stated conclusion.

a.2 proof of lemma 2 .8

Suppose the original problem has two optimal solutions: i. e. there are two
pairs (θ̂1, ẑA,1, ẑI ,1) and (θ̂2, ẑA,2, ẑI ,2) that satisfy

∇`n(θ̂1) + λ(ẑA,1 + ẑI ,1) = 0 (A.1)

∇`n(θ̂2) + λ(ẑA,2 + ẑI ,2) = 0.
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Since the original problem is convex, the optimal value is unique:

`n(θ̂1) + P(θ̂1) = `n(θ̂1) + λ(ẑA,1 + ẑI ,1)
T θ̂1

= `n(θ̂2) + P(θ̂2) = `n(θ̂2) + λ(ẑA,2 + ẑI ,2)
T θ̂2.

We subtract λ(ẑA,1 + ẑI ,1)
T θ̂2 from both sides to obtain

`n(θ̂1) + λ(ẑA,1 + ẑI ,1)
T(θ̂1 − θ̂2)

= `n(θ̂2) + λ(ẑA,2 + ẑI ,2 − ẑA,1 − ẑI ,1)
T θ̂2.

Rearranging,

`n(θ̂1)− `n(θ̂2) + λ(ẑA,1 + ẑI ,1)
T(θ̂1 − θ̂2)

= λ(ẑA,2 + ẑI ,2 − ẑA,1 − ẑI ,1)
T θ̂2.

We substitute in (A.1) to obtain

`n(θ̂1)− `n(θ̂2)−∇`n(θ̂1)
T(θ̂1 − θ̂2)

= λ(ẑA,2 + ẑI ,2 − ẑA,1 − ẑI ,1)
T θ̂2.

Since `n is convex, the left side is non-positive, which implies

(ẑA,2 + ẑI ,2)
T θ̂2 ≤ (ẑA,1 + ẑI ,1)

T θ̂2.

But we also know

(ẑA,1 + ẑI ,1)
T θ̂2 ≤ hA(θ̂2) + ẑT

I ,1θ̂2 = ẑT
A,2θ̂2 + ẑT

I ,1θ̂2.

We combine the two inequalities to obtain

(ẑA,2 + ẑI ,2)
T θ̂2 ≤ (ẑA,1 + ẑI ,1)

T θ̂2 ≤ ẑT
A,2θ̂2 + ẑT

I ,1θ̂2,

which implies ẑT
I ,2θ̂2 ≤ ẑT

I ,1θ̂2. If ẑI ,1 ∈ relint(I) but θ̂2 has a component in
span(I), we arrive at a contradiction:

ẑT
I ,1θ̂2 < hI (θ̂2) = ẑT

I ,2θ̂2.

Thus θ̂2 has no component in span(I).
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a.3 proof of lemma 2 .9

The Taylor remainder term is

R = ∇`n(θ̂)−∇`n(θ
∗)−Q(θ̂ − θ∗).

By the mean value theorem (along θ̂ − θ∗), we have

R =
∫ 1

0

(
∇2`n(θ

∗ + α(θ̂ − θ∗))−Qn
)
(θ̂ − θ∗) dα.

Since `n is strongly smooth on C ∩M with constant µl ,

‖R‖2 =
∥∥∥∫ 1

0

(
∇2`n(θ

∗ + α(θ̂ − θ∗))−Qn
)
(θ̂ − θ∗) dα

∥∥∥
2

≤
∫ 1

0

∥∥∇2`n(θ
∗ + α(θ̂ − θ∗))−Qn

∥∥∥∥θ̂ − θ∗
∥∥

2 dα

≤
∫ 1

0
µu
∥∥θ̂ − θ∗

∥∥2
2α dα

≤ µu

2

∥∥θ̂ − θ∗
∥∥2

2.

By Lemma 2.7,

‖R‖2 ≤
2µu

µ2
l

(
κρ +

δκρ̄

4κir

)2
λ2.

To ensure κir
λ ρ̄∗(R) ≤ δ

4 , it sufficies to ensure κir
λ ‖R‖2 ≤ δ

4κρ̄∗
. We recall λ is

in the interval (2.10) to obtain the stated conclusion.

a.4 proof of lemma 3 .4

For any ∆ ∈ span(I)⊥, we have

‖Θ∗ + ∆‖∗ − ‖Θ
∗‖∗ − tr

(
VrUT

r ∆
)

= tr
(
ṼrŨT

r (Θ
∗ + ∆)

)
− tr

(
VrUT

r Θ∗
)
− tr

(
VrUT

r ∆
)
,

where Ũ ∈ Rp1×r and Ṽ ∈ Rp2×r are the left and right singular factors of
Θ∗ + ∆. Since tr

(
ṼrŨT

r Θ∗
)
≤ tr

(
VrUT

r Θ∗
)
,

‖Θ∗ + ∆‖∗ − ‖Θ
∗‖∗ − tr

(
VrUT

r ∆
)
≤ tr

((
ŨrṼT

r −UrVT
r
)T∆

)
≤
∥∥ŨrṼT

r −UrVT
r
∥∥

F ‖∆‖F .
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By Li and Sun (2002), Theorem 2.4,

∥∥ŨrṼT
r −UrVT

r
∥∥

F ≤
4

3σ∗r
‖∆‖F

for any ∆ such that ‖∆‖2 ≤ 1
2 σ∗r . We put the pieces together to obtain the

stated bound.



B
P R O O F S O F L E M M A S I N C H A P T E R S 4 A N D 5

b.1 proof of lemma 4 .2

For any α ∈ (0, 1],

f (xt+1)− f (xt)

= φsm(xt+1)− φsm(xt) + φns(xt+1)− φns(xt)

≤ φsm(xt+1)− φsm(xt) + αφns(xt + ∆xt) + (1− α)φns(xt)− φns(xt)

= φsm(xt+1)− φsm(xt) + α(φns(xt + ∆xt)− φns(xt))

= ∇φsm(xt)
T(α∆xt) + α(φns(xt + ∆xt)− φns(xt)) + O(α2),

which shows (4.7).
By the optimality of ∆xt, α∆xt satisfies

∇φsm(xt)
T∆xt +

1
2

∆xT
t H∆xt + φns(xt + ∆xt)

≤ ∇φsm(xt)
T(α∆xt) +

α2

2
∆xT

t H∆xt + φns(xt+1)

≤ α∇φsm(xt)
T∆xt +

α2

2
∆xT

t H∆xt + αφns(xt + ∆xt) + (1− α)φns(xt).

We rearrange and then simplify:

(1− α)∇φsm(xt)
T∆xt +

1− α2

2
∆xT

t H∆xt + (1− α)(φns(xt + ∆xt)− φns(xt)) ≤ 0

∇φsm(xt)
T∆xt +

1 + α

2
∆xT

t H∆xt + φns(xt + ∆xt)− φns(xt) ≤ 0

∇φsm(xt)
T∆xt + φns(xt + ∆xt)− φns(xt) ≤ −

1 + α

2
∆xT

t H∆xt.

Finally, we let α tend to 1 and rearrange to obtain (4.8).
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b.2 proof of lemma 4 .3

We bound the decrease at each iteration by

φ(xt+1)− φ(xt) = φsm(xt+1)− φsm(xt) + φns(xt+1)− φns(xt)

≤
∫ 1

0
∇φsm(xt + t(α∆xt))

T(α∆xt)dt + αφns(xt + ∆xt)

+ (1− α)φns(xt)− φns(xt)

= ∇φsm(xt)
T(α∆xt) + α(φns(xt + ∆xt)− φns(xt))

+
∫ 1

0
(∇φsm(xt + t(α∆xt))−∇φsm(xt))

T(α∆xt)dt

≤ α
(
∇φsm(xt)

T∆xt + φns(xt + ∆xt)− φns(xt)

+
∫ 1

0
‖∇φsm(xt + t(∆xt))−∇φsm(xt)‖2 ‖∆xt‖2 dt

)
.

Since ∇φsm is Lipschitz continuous with constant µu,

φ(xt+1)− φ(xt) ≤ α
(
∇φsm(xt)

T∆xt + φns(xt + ∆xt)− φns(xt) +
µut
2
‖∆xt‖2

2
)

= α
(
δt +

µut
2
‖∆xt‖2

2
)
. (B.1)

If we choose α ≤ µl
µu

, then

αµu

2
‖∆xt‖2

2 ≤
µl

2
‖∆xt‖2

2 ≤
1
2

∆xT
t H∆xt.

By (4.8), we have αµu
2 ‖∆xt‖2

2 ≤ − 1
2 δt. We combine this bound with (B.1) to

conclude
φ(xt+1)− φ(xt) ≤ α

(
δt −

1
2

δt
)
=

α

2
δt.

b.3 proof of lemmas 4 .5 and 4 .7

Since Lemma 4.5 is a special case of Lemma 4.7, we focus on proving
Lemma 4.7. Since ∇2φsm is Lipschitz continuous,

φsm(xt +∆xt) ≤ φsm(xt)+∇φsm(x)T∆xt +
1
2

∆xT
t ∇2φsm(xt)∆xt +

µ′u
6
‖∆xt‖3

2 .
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We add φns(x + ∆xt) to both sides to obtain

φ(xt + ∆xt) ≤ φsm(xt) +∇φsm(x)T∆xt +
1
2

∆xT
t ∇2φsm(xt)∆xt

+
µ′u
6
‖∆xt‖3

2 + φns(x + ∆xt).

We then add and subtract φns(x) from the right-hand side to obtain

φ(xt + ∆xt) ≤ φsm(xt) + φns(x) +∇φsm(x)T∆xt + φns(x + ∆xt)− φns(x)

+
1
2

∆xT
t ∇2φsm(xt)∆xt +

µ′u
6
‖∆xt‖3

2

≤ φ(xt) + δt +
1
2

∆xT
t ∇2φsm(xt)∆xt +

µ′u
6
‖∆xt‖3

2

≤ φ(xt) + δt +
1
2

∆xT
t ∇2φsm(xt)∆xt +

µ′u
6µl
‖∆xt‖2 δt,

where we use (4.8). We add and subtract 1
2 ∆xT

t H∆xt to obtain

φ(xt + ∆xt) ≤ φ(xt) + δt +
1
2

∆xT
t
(
∇2φsm(xt)− H

)
∆xt +

1
2

∆xT
t H∆xt +

µ′u
6µl
‖∆xt‖2 δt

≤ φ(xt) + δt +
1
2

∆xT
t
(
∇2φsm(xt)− H

)
∆xt −

1
2

δt +
µ′u
6µl
‖∆xt‖2 δt,

(B.2)

where we again use (4.8). Since ∇2φsm is Lipschitz continuous and the
search direction ∆xt satisfies the Dennis-Moré criterion,

1
2

∆xT
t
(
∇2φsm(xt)− H

)
∆xt

=
1
2

∆xT
t
(
∇2φsm(xt)−∇2φsm(x?t )

)
∆xt +

1
2

∆xT
t
(
∇2φsm(x?t )− H

)
∆xt

≤ 1
2

∥∥∇2φsm(xt)−∇2φsm(x?t )
∥∥

2 ‖∆xt‖2
2 +

1
2

∥∥(∇2φsm(x?t )− H
)

∆xt
∥∥

2 ‖∆xt‖2

≤ µ′u
2
‖x− x∗‖2 ‖∆xt‖2

2 + o
(
‖∆xt‖2

2
)
.

We substitute this expression into (B.2) and rearrange to obtain

φ(xt + ∆xt) ≤ φ(xt) +
1
2

δt + o
(
‖∆xt‖2

2
)
+

µ′u
6µl
‖∆xt‖2 δt.
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It is possible to show that ∆xt decays to zero by the same argument used to
prove Theorem 4.4. Thus φ(xt + ∆xt)− φ(xt) <

1
2 δt after sufficiently many

iterations.

b.4 proof of lemma 4 .8

By (4.7) and Fermat’s rule, ∆x1 and ∆x2 are also the solutions to

∆x1 = arg mind ∇φsm(x)Td + ∆xT
1 H1d + φns(x + d),

∆x2 = arg mind ∇φsm(x)Td + ∆xT
2 H2d + φns(x + d).

Thus ∆x1 and ∆x2 satisfy

∇φsm(x)T∆x1 + ∆xT
1 H1∆x1 + φns(x + ∆x1)

≤ ∇φsm(x)T∆x2 + ∆xT
2 H1∆x2 + φns(x + ∆x2)

and

∇φsm(x)T∆x2 + ∆xT
2 H2∆x2 + φns(x + ∆x2)

≤ ∇φsm(x)T∆x1 + ∆xT
1 H2∆x1 + φns(x + ∆x1).

We sum these two inequalities and rearrange to obtain

∆xT
1 H1∆x1 − ∆xT

1 (H1 + H2)∆x2 + ∆xT
2 H2∆x2 ≤ 0.

We then complete the square on the left side and rearrange to obtain

∆xT
1 H1∆x1 − 2∆xT

1 H1∆x2 + ∆xT
2 H1∆x2

≤ ∆xT
1 (H2 − H1)∆x2 + ∆xT

2 (H1 − H2)∆x2.

The left side is ‖∆x1 − ∆x2‖2
H1

and the eigenvalues of H1 are bounded.
Thus

‖∆x1 − ∆x2‖2 ≤
1
√

µl,1

(
∆xT

1 (H2 − H1)∆x2 + ∆xT
2 (H1 − H2)∆x2

)1/2

≤ 1
√

µl,1

∥∥(H2 − H1)∆x2
∥∥1/2

2 (‖∆x1‖2 + ‖∆x2‖2)
1/2. (B.3)
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We apply Tseng and Yun (2009), Lemma 3 to bound ‖∆x1‖2 + ‖∆x2‖2 . Let
H̃1 = H−1/2

2 H1H−1/2
2 . Then ‖∆x1‖2 and ‖∆x2‖2 satisfy

‖∆x1‖2 ≤
1 + µ̃u,1 + (1− 2µ̃l,1 + µ̃2

u,1)
1/2

2
µu,1

µl,2
‖∆x2‖2 .

We denote the constant in front of ‖∆x2‖2 by c1 and conclude that

‖∆x1‖2 + ‖∆x2‖2 ≤ (1 + c1) ‖∆x2‖2 . (B.4)

We substitute (B.4) into (B.3) to obtain

‖∆x1 − ∆x2‖2
2 ≤

√
1+c1
µl,1

∥∥(H2 − H1)∆x2
∥∥1/2

2 ‖∆x2‖1/2
2 .

b.5 proof of lemma 5 .1

Proof. By the non-expansiveness of the proximal mapping,

‖φsm(x)− ĝt(x)‖2 =
∥∥proxφns

(x−∇φsm(x))− proxφns
(x−∇φ̂sm,t(x))

∥∥
2

≤
∥∥∇φsm(x)−∇φ̂sm,t(x)

∥∥
2 .

Since ∇φsm and ∇2φsm are Lipschitz continuous,∥∥∇φsm(x)−∇φ̂sm,t(x)
∥∥

2 ≤
∥∥∇φsm(x)−∇φsm(xt)−∇2φsm(xt)(x− xt)

∥∥
2

≤ µ′u
2
‖x− xt‖2

2 .

Combining the two inequalities gives the desired result.

b.6 proof of lemma 5 .2

The composite gradient steps at x and the optimal solution x∗ satisfy

g(x) ∈ ∇φsm(x) + ∂φns(x− g(x)),

g(x∗) ∈ ∇φsm(x∗) + ∂φns(x∗).

We subtract these two expressions and rearrange to obtain

∂φns(x− g(x))− ∂φns(x∗) 3 g(x)− (∇φsm(x)−∇φsm(x∗)).
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Since φns is convex, ∂φns is monotone and

0 ≤ (x− g(x)− x∗)T∂φns(x− g(x))

= −g(x)Tg(x) + (x− x∗)Tg(x) + g(x)T(∇φsm(x)−∇φsm(x∗))

+ (x− x∗)T(∇φsm(x)−∇φsm(x∗)).

We drop the last term because it is nonnegative (∇φsm is monotone) to
obtain

0 ≤ −‖g(x)‖2
2 + (x− x∗)Tg(x) + g(x)T(∇φsm(x)−∇φsm(x∗))

≤ −‖g(x)‖2
2 + ‖g(x)‖2 (‖x− x∗‖2 + ‖∇φsm(x)−∇φsm(x∗)‖2),

so that
‖g(x)‖2 ≤ ‖x− x∗‖2 + ‖∇φsm(x)−∇φsm(x∗)‖2 . (B.5)

Since ∇φsm is Lipschitz continuous, we conclude

‖g(x)‖2 ≤ (µu + 1) ‖x− x∗‖2 .

b.7 proof of lemma 5 .3

The composite gradient step on φ has the form

gα(x) =
1
α
(x− proxαφns

(x− α∇φsm(x))).

By Moreau’s decomposition,

gα(x) = ∇φsm(x) +
1
α

prox[α·φns]∗
(x− α∇φsm(x)).

Thus gα(x)− gα(y) has the form

gα(x)− gα(y) = ∇φsm(x)−∇φsm(y) +
1
α

prox[α·φns]∗
(x− α∇φsm(x))

− 1
α

prox[α·φns]∗
(y− α∇φsm(y)).

Let w = prox[α·φns]∗
(x− α∇φsm(x))− prox[α·φns]∗

(y− α∇φsm(y)) and

d = x− α∇φsm(x)− (y− α∇φsm(y))

= (x− y)− α(∇φsm(x)−∇φsm(y)).
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We express (B.6) in terms of W = wwT

wTd to obtain

gα(x)− gα(y) = ∇φsm(x)−∇φsm(y) +
w
α

= ∇φsm(x)−∇φsm(y) +
1
α

Wd.

We multiply by x− y to obtain

(x− y)T(gα(x)− gα(y))

= (x− y)T(∇φsm(x)−∇φsm(y)) +
1
α
(x− y)TWd

= (x− y)T(∇φsm(x)−∇φsm(y)) +
1
α
(x− y)TW(x− y)

− (∇φsm(x)−∇φsm(y)).

(B.6)

Let H(t) = ∇2g(x + t(x− y)). By the mean value theorem, we have

(x− y)T(gα(x)− gα(y))

=
∫ 1

0
(x− y)T

(
H(t)−WH(t) +

1
α

W
)
(x− y) dt

=
∫ 1

0
(x− y)T

(
H(t)− 1

2
(WH(t) + H(t)W) +

1
α

W
)
(x− y) dt. (B.7)

To show the strong monotonicity of gα, it suffices to show that H(t)+ 1
α W−

1
2 (WH(t) + H(t)W) is positive definite for α ≤ 1

µu
. We rearrange

(
√

αH(t)− 1√
α

W)(
√

αH(t)− 1√
α

W) � 0

to obtain
tH(t)2 +

1
α

W2 �WH(t) + H(t)W.

Combining this expression with (B.7), we obtain

(x− y)T(gα(x)− gα(y))

≥
∫ 1

0
(x− y)T

(
H(t)− α

2
H(t)2 +

1
α

(
W − 1

2
W2))(x− y) dt.

Since prox[α·φns]∗
is firmly non-expansive, we have ‖w‖2 ≤ dTw and

W =
wwT

wTd
=
‖w‖2

2
wTd

wwT

‖w‖2
2

� I.



B.7 proof of lemma 5 .3 80

Since 0 �W � I, W −W2 is also positive semidefinite and

(x− y)T(gα(x)− gα(y)) ≥
∫ 1

0
(x− y)T

(
H(t)− α

2
H(t)2

)
(x− y) dt.

If we set α ≤ 1
µu

, the eigenvalues of H(t)− α
2 H(t)2 are

λi(t)−
α

2
λi(t)2 ≥ λi(t)−

λi(t)2

2µu
≥ λi(t)

2
>

µl

2
,

where {λi(t)}i∈[n] are the eigenvalues of H(t). We conclude

(x− y)T(gα(x)− gα(y)) ≥
µl

2
‖x− y‖2

2 .



C
P R O O F S O F L E M M A S I N C H A P T E R 6

c.1 proof of lemma 6 .2

Let zi = Σ−
1
2 xi. The generalized coherence between X and Σ−1 is given by

|||Σ−1Σ̂− I|||∞ = ||| 1
n

n

∑
i=1

(Σ−
1
2 zi)(Σ

1
2 zi)

T − I|||∞.

Each entry of 1
n ∑n

i=1(Σ
− 1

2 zi)(Σ
1
2 zi)

T − I is a sum of independent subexpo-
nential random variables. Their subexponential norms are bounded by

‖(Σ− 1
2 zi)j(Σ

1
2 zi)k − δj,k‖ψ1 ≤ 2‖(Σ− 1

2 zi)j(Σ
1
2 zi)k‖ψ1 .

Recall for any two subgaussian random variables X, Y, we have

‖XY‖ψ1
≤ 2 ‖X‖ψ2

‖Y‖ψ2
.

Thus

‖(Σ− 1
2 zi)j(Σ

1
2 zi)k − δj,k‖ψ1 ≤ 4‖(Σ− 1

2 zi)j‖ψ2‖(Σ
1
2 zi)k‖ψ2 ≤ 4

√
κσ2

x ,

where σx = ‖zi‖ψ2 . By a Bernstein-type inequality,

Pr
( 1

n

n

∑
i=1

(Σ−
1
2 zi)j(Σ

1
2 zi)k − δj,k ≥ t

)
≤ 2e

−c1 min{ nt2

σ̃4
x

, nt
σ̃2

x
}
,

where c1 > 0 is a universal constant and σ̃2
x := 4

√
κσ2

x . Since σ̃4
x n > log p,

we set t = 2σ̃2
x√
c1

( log p
n

) 1
2 to obtain

Pr
( 1

n

n

∑
i=1

(Σ−
1
2 zi)j(Σ

1
2 zi)k − δj,k ≥

2σ̃2
x√
c1

( log p
n

) 1
2
)
≤ 2p−4.

We obtain the stated result by taking a union bound over the p2 entries of
1
n ∑n

i=1(Σ
− 1

2 zi)(Σ
1
2 zi)

T − I.

81
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c.2 proof of lemma 6 .5

By Vershynin (2010), Proposition 5.10,

Pr
( 1

n
|xT

j ε| > t
)
≤ e exp

(
− c2n2t2

σ2
y‖xT

j ‖2
2

)
≤ e exp

(
− c2n2t2

σ2
y maxj∈[p] Σ̂j,j

)
.

We take a union bound over the p components of 1
n XTε to obtain

Pr
( 1

n
‖XTε‖∞ > t

)
≤ e exp

(
− c2n2t2

σ2
y maxj∈[p] Σ̂j,j

+ log p
)

.

We set λ = maxj∈[p] Σ̂
1
2
j,jσy

( 3 log p
c2n

) 1
2 to obtain the desired conclusion.

c.3 proof of lemma 6 .7

We start by substituting in the linear model into (6.1):

β̂d = β̂ +
1
n

Θ̂XT(y− Xβ̂) = β∗ + MΣ̂(β∗ − β̂) +
1
n

MXTε.

By adding and subtracting ∆̂ = β∗ − β̂, we obtain

β̂d = β∗ +
1
n

Θ̂XT(y− Xβ̂) = β∗ + (MΣ̂− I)(β∗ − β̂) +
1
n

MXTε.

We obtain the expression of β̂d by setting ∆̂ = (MΣ̂− I)(β∗ − β̂).
To show ‖∆̂‖∞ ≤ 3δ

µ sλ, we apply Hölder’s inequality to each component

of ∆̂ to obtain

|(MΣ̂− I)(β∗ − β̂)| ≤ maxj ‖Σ̂mT
j − ej‖∞‖β̂− β∗‖1 ≤ δ‖β̂− β∗‖1, (C.1)

where δ is the generalized incoherence between X and M. By Lemma 6.6,
‖β̂− β∗‖1 ≤ 3

µ sλ. We combine the bound on ‖β̂− β∗‖1 with (C.1) to obtain

the stated bound on ‖∆̂‖∞.

c.4 proof of lemma 6 .9

By Lemma 6.7,

β̄− β? =
1
N

m

∑
k=1

Θ̂kXT
k εk +

1
m

m

∑
k=1

∆̂k.
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We take norms to obtain

‖β̄− β∗‖∞ ≤
∥∥∥ 1

N

m

∑
k=1

Θ̂kXT
k εk

∥∥∥
∞
+

1
m

m

∑
k=1
‖∆̂k‖∞.

We focus on bounding the first term. Let aT
j := eT

j

[
Θ̂1XT

1 . . . Θ̂mXT
m

]
. By

Vershynin (2010), Proposition 5.10,

Pr
(∣∣ 1

N
aT

j ε
∣∣ > t

)
≤ e exp

(
− c2N2t2

‖aj‖2
2σ2

y

)
for some universal constant c2 > 0. Further,

‖aj‖2
2 =

m

∑
k=1
‖XkΘ̂T

k ej‖2
2 = n

m

∑
k=1

(
Θ̂kΣ̂kΘ̂T

k
)

j,j ≤ cΩN,

where cΩ := maxj∈[p],k∈[m]

(
Θ̂kΣ̂kΘ̂T

k

)
j,j. By a union bound over j ∈ [p],

Pr
(

maxj∈[p]
∣∣ 1

N
aT

j ε
∣∣ > t

)
≤ e exp

(
− c2Nt2

cΩσ2
y
+ log p

)
.

We set t = σy
( 2cΩ log p

c2 N

) 1
2 to deduce

Pr
(

maxj∈[p]
∣∣ 1

N aT
j ε
∣∣ ≥ σy

( 2cΩ log p
c2 N

) 1
2
)
≤ ep−1.

We turn our attention to bounding the second term. By Lemma 6.5 and
a union bound over j ∈ [p], when we set

λ1 = · · · = λm = λ := maxj∈[p],k∈[m]((Σ̂k
)

j,j)
1
2 σy

(3 log p
c2n

) 1
2
,

we have 1
n‖XT

k ε‖∞ ≤ λ for any k ∈ [m] with probability at least 1− em
p2 ≥

1− ep−1. By Lemma 6.7, when

1. {Σ̂k}k∈[m] satisfy the RE condition on C∗ with constant µl ,

2. {(Σ̂k, Θ̂k)}k∈[m] have generalized incoherence cGC
( log p

n

) 1
2 ,

the second term is at most 3
√

3√
c2

cGCcΣ
µl

σy
s log p

n . We put the pieces together to
obtain

‖β̄− β∗‖∞ ≤ σy

(2cΩ log p
c2N

) 1
2
+

3
√

3√
c2

cGCcΣ

µl
σy

s log p
n

,
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c.5 proof of lemma 6 .11

We express

Σ−1
j,· Σ̂Σ−1

j,· = Σ−1
j,· Σ̂Σ−1

j,· − Σ−1
j,j + Σ−1

j,j =
1
n

n

∑
i=1

(xT
i Σ·,j)2 − Σ−1

j,j + Σ−1
j,j .

Since the subgaussian norm of zi = Σ−
1
2 xi is σx, xT

i Σ·,j is also subgaussian
with subgaussian norm bounded by

‖xT
i Σ·,j‖ψ2 ≤ ‖Σ

1
2 zi‖ψ2‖Σ·,j‖2 ≤ σx(Σj,j)

1
2 .

We recognize 1
n ∑n

i=1(xT
i Σ·,j)2 − Σ−1

j,j as a sum of i.i.d. subexponential ran-
dom variables with subexponential norm bounded by

‖(xT
i Σ·,j)2 − Σ−1

j,j ‖ψ1 ≤ 2‖(xT
i Σ·,j)2‖ψ1 ≤ 4‖xT

i Σ·,j‖2
ψ2
≤ 4σ2

x Σ−1
j,j .

By Vershynin (2010), Proposition 5.16, we have

Pr
( 1

n

n

∑
i=1

(xT
i Σ·,j)2 − Σ−1

j,j > t
)
≤ 2e

−c1 min{ nt2

16σ2
x (Σ
−1
j,j )2

, nt
4σxΣ−1

j,j
}

for some absolute constant c1 > 0. For t = Σ−1
j,j , the bound simplifies to

Pr
( 1

n

n

∑
i=1

(xT
i Σ·,j)2 − Σ−1

j,j > Σ−1
j,j

)
≤ 2e

−c1 min{ n
16σ2

x
, n

4σx }.

We take a union bound over j ∈ [p] to obtain the stated result.

c.6 proof of lemma 6 .12

We follow a similar argument as the proof of Lemma 6.11:

Σ̂k;j,j = Σ̂j,j = Σ̂j,j − Σj,j + Σj,j =
1
n

n

∑
i=1

x2
i,j − Σj,j + Σj,j.

Since the zi = Σ−
1
2 xi is subgaussian with subgaussian norm σx, xi,j is also

subgaussian with subgaussian norm bounded by

‖xi,j‖ψ2 ≤ ‖Σ
1
2
j,·zi‖ψ2 ≤ σx(Σj,j)

1
2 .
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We recognize Σ̂j,j − Σj,j =
1
n ∑n

i=1 x2
i,j − Σj,j as a sum of i.i.d. subexponential

random variables with subexponential norm bounded by

‖Σ̂j,j − Σj,j‖ψ1 ≤ 2‖x2
i,j‖ψ1 ≤ 4‖xi,j‖2

ψ2
≤ 4σ2

x Σj,j.

By Vershynin (2010), Proposition 5.16, we have

Pr(Σ̂j,j − Σj,j > t) ≤ 2e
−c1 min{ nt2

16σ2
x Σ2

j,j
, nt

σxΣj,j
}

for some absolute constant c1 > 0. For t = Σj,j, the bound simplifies to

Pr(Σ̂j,j − Σj,j > Σj,j) ≤ 2e
−c1 min{ n

16σ2
x

, n
4σx }.

We take a union bound over j ∈ [p] to obtain the stated result.

c.7 proof of theorem 6 .19

The sharper consistency result depends on a result by Javanmard and Mon-
tanari (2013b), which we combine with Lemma 6.16 and restate for com-
pleteness. Before stating the results, we define the (∞, l) norm of a point
x ∈ Rp as

‖x‖(∞,l) := maxA⊂[p],|A|≥l
‖xA‖2√

l
.

When l = 1, the (∞, l) norm of x is its `∞ norm. When l = p, the (∞, l)
norm is the `2 norm (rescaled by 1√

p ). Thus the (∞, l) norm interpolates
between the `2 and `∞ norms. Javanmard and Montanari (2013b), Theorem
2.3 shows that the bias of the debiased lasso is of order

√
s0 log p

n .

Lemma C.1. Under the conditions of Theorem 6.17,

‖∆̂k‖(∞,c′s0) .P
c
√

s0 log p
n

for any k ∈ [m] for any c′ > 0,

where c is a constant that depends only on c′ and Σ.

Proof. The result is essentially Javanmard and Montanari (2013b), Theorem
2.3 with Ω̂ = Θ̂ given by (6.6). Lemma 6.16 shows that

maxj∈[p] ‖Θ̂j − Σ−1
j ‖1 .P sj

( log p
n

) 1
2 ,
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Since
maxj∈[p] s2

j log p
n ∼ o(1), Θ̂ satisfies the conditions of Javanmard and

Montanari (2013b), Theorem 2.3:

‖∆̂k‖(∞,c′s0) .P
c
√

s0 log p
n

for any k ∈ [m],

The bound is uniform in k ∈ [m] by a union bound for suitable parameters

λk ∼
( log p

n

) 1
2 .

By Lemma C.1, the estimator (6.5) is consistent in the (∞, s0) norm. The
argument is similar to the proof of Theorem 6.17.

Theorem C.2. Under the conditions of Theorem 6.17,

‖β̄− β∗‖(∞,c′s0) ∼ OP

(( log p
N

) 1
2
+

√
s0 log p

n

)
.

Proof. We start by substituting the linear model into (6.5):

β̃ =
1
m

m

∑
k=1

∆̂k +
1
N

Θ̂XTε.

Subtracting β∗ and taking norms, we obtain

‖β̃− β∗‖(∞,c′s0) ≤
1
m

m

∑
k=1
‖∆̂k‖(∞,c′s0) +

∥∥ 1
N

Θ̂XTε
∥∥
(∞,c′s0)

. (C.2)

By Lemma C.1, the first (bias) term is of order c
√

s0 log p
n . We focus on show-

ing the second (variance) term is of order
( log p

N

) 1
2 . Since the (∞, l) norm is

non-increasing in l,

∥∥ 1
N

Θ̂XTε
∥∥
(∞,c′s0)

≤
∥∥ 1

N
Θ̂XTε

∥∥
∞.

By Vershynin (2010), Proposition 5.16 and Lemma 6.11, it is possible to
show that ∥∥ 1

N
Θ̂XTε

∥∥
∞ ∼ OP

(( log p
N

) 1
2
)

.

Thus the second term in (C.2) is of order
( log p

N

) 1
2 . We put all the pieces

together to obtain the stated conclusion.

Finally, we prove Theorem 6.19. Since β̃ht − β∗ is 2s0-sparse,

‖β̃ht − β∗‖2
2 . s0‖β̃ht − β∗‖2

(∞,c′s0)



C.8 proof of lemma 6 .20 87

or, equivalently,

‖β̃ht − β∗‖2 .
√

s0‖β̃ht − β∗‖(∞,c′s0).

By the triangle inequality,

‖β̃ht − β∗‖(∞,c′s0) ≤ ‖β̃
ht − β̃‖(∞,c′s0) + ‖β̃− β∗‖(∞,c′s0)

≤ 2‖β̃− β∗‖(∞,c′s0),

where the second inequality is by the fact that thresholding at t = |β̃|(c′s0)

minimizes ‖β− β∗‖(∞,c′s0) over c′s0-sparse points β. Thus

‖β̃ht − β∗‖2 ∼ OP

(( s0 log p
N

) 1
2
+

s0 log p
n

)
.

The consistency of β̃ht in the `1 norm follows by the fact that β̃ht − β∗ is
2s0-sparse.

c.8 proof of lemma 6 .20

First, we derive an inequality in terms of s0 and ŝ0.

Lemma C.3. Suppose Σ̂ satisfies the RE condition on C∗ with constant µl and
λ ≥ 2

n‖XTε‖∞. Then, the empirical sparsity satisfies

ŝ0 ≤
192µu(ŝ0)

µl
s0. (C.3)

Proof. Since ‖ẑÊ‖2
2 = λ2ŝ0, the optimality conditions of the lasso give

ŝ0 =
1

(λn)2 ‖X
T
Ê (y− Xβ̂)‖2

2. (C.4)

We express the right side as

‖ 1
n

XT
Ê (y− Xβ̂)‖2

2 ≤ ‖
1
n

XT
ÊX(β̂− β∗)‖2

2 + ‖
1
n

XT
Ê ε‖2

2.

By Hastie et al. (2015), Chapter 11, Theorem 2, the first term is bounded by

‖ 1
n

XT
ÊX(β̂− β∗)‖2

2 ≤
1
n
‖XT
Ê ‖

2
2

1
n
‖X(β̂− β∗)‖2

2 ≤
122µu(ŝ0)

µl
s0λ2,
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where

µu(s0) := supη∈K(s0)
ηTΣ̂η : K(s0) = {x ∈ Sp−1 : ‖x‖0 ≤ s0}

is the s-sparse (upper) eigenvalue. Since λ is at least 2
n‖XTε‖∞,

‖ 1
n

XT
Ê ε‖2

2 ≤ ŝ0‖
1
n

XT
Ê ε‖2

∞ ≤
ŝ0λ

4
.

We substitute the bounds into (C.4) to obtain ŝ0 ≤ 122µu(ŝ0)
µl

s0 +
ŝ0
4 . Simplify-

ing gives the stated bound.

Lemma C.3 gives a fixed-point inequality. To obtain a bound on ŝ0, we
plug in an upper bound for µu(ŝ0) and solve the inequality for ŝ0.

Lemma C.4 (Loh and Wainwright (2012), Lemma 15). Under (A1),

Pr
(
supη∈K(s0)

|ηTΣ̂η − ηTΣη| > t
)
≤ 2e

−c1n min{ t2

σ4
x

, t
σ2

x
}+s0 log p

for some constant c1 > 0.

Let γ ∈ Rp be the top (largest) s-sparse eigenvector of Σ : λu,s0(Σ) =

γTΣγ. We have

µu(s)− λu,s0(Σ) = supη∈K(s) ηTΣ̂η − γTΣγ

≤ γT(Σ̂− Σ)γ.

Thus Pr
(
µu(s)− λu,s0(Σ) > t

)
≤ Pr

(
supη∈K(s0)

|γT(Σ̂− Σ)γ| > t
)
. As long

as n > s0 log p, setting t = 2√
c1

σ2
x
( s0 log p

n

) 1
2 shows that

µu(s) ≤ λu,s0(Σ) +
2√
c1

σ2
x

( s0 log p
n

) 1
2

(C.5)

with probability at least 1− 2p−s0 .
To complete the proof of Lemma 6.20, we substitute (C.5) into (C.3) to

obtain

ŝ0 ≤
192
µl

(
λu,s0(Σ) +

2√
c1

σ2
x

( s0 log p
n

) 1
2
)

s0. (C.6)

(C.6) is a quadratic inequality in
√

ŝ0. Rearranging,

ŝ0 −
384σ2

x√
c1µl

√
s0

( s0 log p
n

) 1
2√

ŝ0 ≤
192λu,s0(Σ)

µl
s0.
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When n > s0 log p, the left side is larger than ŝ0 − 384σ2
x√

c1µl
σ2

x
√

s0
√

ŝ0. Thus

ŝ0 −
384σ2

x√
c1µl

√
s0
√

ŝ0 ≤
192λu,s0(Σ)

µl
s0.

Completing the square,

(√
ŝ0 −

384σ2
x√

c1µl

√
s0

)2
≤
(192λu,s0(Σ)

µl
+

1922σ4
x

c1µ2
l

)
s0.

We take the square root and rearrange to obtain

√
ŝ0 ≤

(96σ2
x + 192λu,s0(Σ)

µl
+

1922σ4
x

c1µ2
l

)√
s0.

Squaring both sides gives

ŝ0 ≤
(96σ2

x + 192λu,s0(Σ)
µl

+
1922σ4

x

c1µ2
l

)2
s0.

We have λu,s0(Σ) ≤ λmax(Σ), and by Lemma 6.4, as long as

n > max{4000s̃0σ2
x log( 60

√
2ep

s̃ ), 4000σ4
x log p},

µl is at least 1
2 λmin(Σ) with probability at least 1− 2p−1. Thus

ŝ0 ≤
(96σ2

x + 192λmax(Σ)
µl

+
1922σ4

x

c1µ2
l

)2
s0

with probability at least 1− 2p−(s0+1).
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