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Abstract

The question of optimal strategic asset allocation for investors with behavioral util-

ities saving for retirement is addressed. To date this problem has been addressed

assuming that an investor is rational in the sense when making investment decisions

the preference relation of the investor satisfies all the axioms of choice. Research in

behavioral science indicates that not all the investment related decisions of an average

person satisfy the axioms of choice. In this thesis a broader class of smooth utilities

is considered that includes those satisfying the axioms of choice, but allows some to

be violated.

We also discuss the optimal consumption problem of how “best” a retiree should

invest and consume her retirement funds. We show that mathematically this problem

and that of how best to save for retirement can be formulated as large-scale nonlinear

constrained optimization problems. Although both can be solved using the same

algorithm, there are important differences in how the two problems are modeled.
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Chapter 1

Introduction

The investment problem of how an investor should invest for meeting long-term finan-

cial targets and goals is viewed as an important problem and has been the subject of

considerable research. In such studies there are assumptions made about the planner’s

preferences, assets available for investment and rules for the asset-price evolution.

Here a behavioral aspect of the problem is also addressed. We obtain the optimal

investment strategy for investors with a class of behavioral utilities. The traditional

utilities can also be solved for with this approach. The main emphasis of this work

is on an individual’s retirement planning problem.

We also address the problem of optimal consumption and investment of one’s

retirement funds during retirement. This problem has received less attention, but

in our view it is of equal importance; with increasing life-expectancy the number

of retirement years are approaching the number of pre-retirement investment years.

Moreover, it can be expected that a retiree will take on much more active role than

they could while saving for retirement. This is not only because they are likely

to have much more time on their hands, but also because consumption decisions

after retirement have a much more immediate impact on their quality of lives. The

consumptions problem is complementary to the long-term investment problem, and

1



CHAPTER 1. INTRODUCTION 2

the mathematical formulation of the problems are also similar.

1.1 The Investment Problem

We begin with exploring the modeling considerations for the retirement planning

problem, formalizing the decision making criterion and framing the optimal choice

problem as an optimization problem.

1.1.1 Utility Theory

An individual faced with a decision chooses from a set of alternatives. Let X denote

this set of alternatives. Among all elements of X the decision-maker weighs the merit

and de-merits of each option against others and attempts to select the option that

suits her best. This requires a precise definition of “best.”

In more rigorous terms, we need to define an ordering for the set of alternatives

that makes it possible to compare every element of the set with every other element.

We denote this ordering by ’�’, then if x, y ∈ X, x � y will imply that the decision-
maker prefers x to y, and x � y would imply x is strictly preferred to y.
The preference relation defined above is said to be rational if it satisfies the axioms

of choice. These axioms are reflexivity, completeness and transitivity and are defined

as follows (see Varian [56], MasColell [38]] :

Reflexivity For all x ∈ X we have x � x.

Completeness For all x, y ∈ X we have either x � y, y � x or both.

Transitivity For all x, y, z ∈ X, if x � y, y � z then x � z.

Although at first sight these axioms may look quite reasonable, it is worth taking

a closer look. Imposition of these axioms has enormous implications in practical
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terms. Reflexivity is the weakest and most acceptable axiom. The completeness axiom

implies that the decision-maker has done the introspection of all the alternatives,

however far they may be from one’s realm of common experience. It is easy to imagine

that this may need serious work and reflection on one’s preferences and may in some

cases be almost impossible. The transitivity axiom, on the other hand, implies that

in a sequence of pairwise choices there is no possibility of cycles, which is to say that

however the options are framed or presented, the decision-maker is mature enough

to be able to rank all of them in an order that contains no cycles. Besides the above

three axioms of choice, preference relations are assumed to satisfy additional axioms

like monotonicity, continuity and convexity of preferences.

1.1.2 Normative vs. Descriptive(Behavioral) Choice

The axioms of choice listed in the previous section form the normative theory of choice.

A decision-maker who satisfies these axioms is said to be rational. It is possible to

represent the preferences in terms of a utility function, which is a map from the

set of alternatives to the real line. Further assumptions of continuity, monotonicity

and convexity of the preference relation imply that the utility function obtained is a

continuous, increasing and concave function. Most research in economics and finance

has developed elegant and elaborate theory on the basis of the assumption that the

decision-makers’ preferences satisfy these axioms.

As was observed in the previous section, it may be a difficult proposition for an

average decision-maker to satisfy all the axioms of choice. Following this thought,

many behavioral scientists and economists have attempted to understand the decision-

making processes among ordinary people through experiments and studies of various

kinds (see Wright [60], Bell [2]). These attempts also try to quantify the choice

making process, but try to be parsimonious in their assumptions. They constitute

what is called the descriptive theory of choice. The five major phenomena of choice
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that violate the standard model of normative theory are listed as : Framing effects,

Nonlinear preferences, Source dependence, Risk seeking and Loss aversion. These

have been confirmed in a number of experiments, with both real and hypothetical

payoff and are defined as follows in Tversky & Kahnemann [55, 54], Tversky [53].

Framing effects Lack of description invariance implying that variations in the fram-

ing of options yield systematically different preferences.

Nonlinear preferences The expectation principle of utility theory states that util-

ity of risky prospects is linear in outcome probabilities. However, experimental

evidence indicates that people tend to transform probabilities nonlinearly, over-

weighing small probabilities and underweighing moderate and high ones.

Source dependence Willingness to bet on an uncertain event depends not only on

the degree of uncertainty but also on its source.

Risk Seeking As opposed to the generally assumed risk aversion in economic anal-

ysis, in certain situations people prefer more risk to less. For instance, people

prefer a small probability of winning a large prize over the expected value of

that prospect.

Loss Aversion Carriers of value are gains and losses defined relative to a reference

point. The losses loom larger than the gains, that is, an amount of loss elicits

more “unhappiness” than the same amount of gain elicits “happiness.”

Behavioral finance is a fast growing field of research. In this framework researchers

have made an attempt to understand and explain the investment style and preferences

of individual investors as well as other market characteristics from a descriptive stand

point. It is hoped that these descriptive studies will help bridge the gap between what

is rational and perfect and what is not. Bridging this gap will also help ‘educate’

people to make more rational decisions.
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1.1.3 The Portfolio Problem

The portfolio problem is a problem involving choice. The choice set typically contains

elements such as how much to invest, what to invest in, what point in one’s life-cycle

should one invest in what assets, how should one invest in order to have maximum

tax benefits over the life-cycle, etc. An investor saves from current earnings for

future consumption and invests the savings in investment vehicles, broadly classified

into asset classes like stocks, bonds, gold, real estate, etc. The investor evaluates

the performance of the investments using some criterion; we call this the investor’s

objective. Let us denote the investor’s objective by a function, U(.); this can be

a function of returns or wealth or any other aspect of the investment the investor

values. Moreover, since the future returns of the asset classes is uncertain, the wealth

one will have at future times is uncertain; in this case the objective is taken to be

the expected value of the function, U(.). The portfolio problem may be described in

broad terms as determining the set of decisions to maximize this objective function

E[U(.)]. Mathematically this may be written as

max
Xt,Ct,t=0,T−1

T∑

t=0

E[Ut(Wt, Ct,Rt, ...)],

where T is the planning horizon, Wt is the wealth at time t, Ct is the consumption

at time t, Rt is a vector of returns on the asset classes. Ut(.) is the utility function

at time t for Wealth, Return on assets, Consumption or any other properties at each

decision point t. The vector Xt is the wealth invested in each asset class at time t; i.e.,

if there are N asset classes, Xt will be a vector of size N . If instead of a discrete-time

problem this were a continuous-time problem, the
∑
U(.) would be replaced by an

∫ T
0
U(.).

The problem as stated above is in its most general form, other than assuming time-

additivity for the objective function. In order to solve the problem, it is simplified
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by making assumptions about the investor’s preferences; for instance, the utility may

be assumed to be a function of only wealth and consumption, or the investor may

not consume prior to the planning horizon, T . There are also bounds and constraints

imposed on these variables to make them physically feasible; for instance, you may

not be allowed to consume more than the wealth you have at any time.

1.1.4 Overview of Optimization Methods

Most commonly the optimal investment problem is stated as

max
Xt,Ct,t=0,T−1

T∑

t=0

E[Ut(Wt, Ct)].

The problem has been solved by several researchers under different assumptions about

planning horizon, utility function, asset classes and their price dynamics. In this

section we give a brief overview of this work.

Among the early works in the field, Markowitz [36] solved a one period portfolio

selection problem for an investor who jointly maximizes the mean of the portfolio re-

turn and minimizes its variance. Such preference is obtained when either the investor

has a quadratic utility or the assets-returns are normally distributed. The problem

becomes one of solving a quadratic program in the decision variables, which are the

investment weights for all the assets or asset-classes. Samuelson [48] poses the prob-

lem in a multi-period framework and obtains the optimal portfolio selection strategy

using stochastic dynamic programming. The problem is solved for the logarithmic and

power utilities (constant relative risk aversion utilities) using the dynamic program-

ming backward recursion. Merton [39, 40] supplemented and extended Samuelson [48]

by posing the problem as an optimal stochastic control problem in continuous time.

Closed form solutions were obtained for constant relative risk aversion utilities and

utilities with positive and hyperbolic absolute risk aversion by solving for the value
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function in the Hamilton-Jacobi-Bellman equation.

Among the more recent works, Brennan et al [9] model the rate of return on the

portfolio to be governed by a set of state variables. The optimal portfolio choice

problem is stated as an optimal stochastic control problem. The nonlinear partial

differential equation from the Hamilton-Jacobi-Bellman (HJB) equation for the value

function is solved using implicit finite difference approximation. Constant relative

risk aversion utilities are assumed. Karatzas et al [27] solve the optimal portfolio

choice problem in continuous-time as an optimal control problem and obtain a closed

form solution of the HJB equation for general strictly increasing and concave utilities.

Duffie and Zariphopoulou [15] generalize the above by introducing a stochastic income

process in the problem that is undiversifiable. They obtained a weak solution to the

HJB equation, referred to as a viscosity solution.

In Maranas et al [35] the Markowitz’s mean-variance model is extended to a multi-

period framework. Discrete time-steps and scenarios are considered and the optimal

“dynamically balanced” strategy is obtained by maximizing a linear combination of

mean and variance of return, with the coefficient of variance being negative. The

resulting problem is a non-convex nonlinear problem, which is solved using a global

optimization algorithm. Their algorithm is based on a convex lower bounding of the

objective and successive refinement of converging lower and upper bounds by means

of a standard branch-and-bound procedure. Birge [6], Dantzig and Infanger [13],

Infanger [25] approach the problem in the stochastic optimization framework. The

problem is posed as a large linear program and solved using decomposition techniques,

such as Bender’s decomposition. Shoven [50] considers an allocation-location problem

of wealth in pension and savings accounts. The major issues addressed are the optimal

allocation of wealth between risky and riskfree assets in the pension funds and the

optimal location of these funds in order to have maximum tax-benefits. Shoven

performed his study using Monte Carlo simulation using data from the past seventy
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years for parameters estimation.

1.2 The Consumption Problem

The consumption problem is also a problem involving choice. Most researchers have

studied this problem in an integrated fashion with the investment problem. We choose

to study it separately since in the retirement planning framework the two stages,

namely the time in life when one plans one’s retirement and the time when one is

retired have very different characteristics, concerns and preferences. A key difference

between pre-retirement and post-retirement decisions is that post-retirement decisions

have a much more immediate impact.

1.2.1 Basic Issues

Achieving retirement goals requires a well-defined plan. The most important consid-

erations for this planning would be

• retirement age,

• lifestyle and related expenses,

• life expectancy,

• sources of income at retirement,

• marital status,

• and bequest.

Clearly, a lot depends on how early and how well an individual plans for one’ re-

tirement and accumulates the retirement capital. We assume that the planner has

done the best in her capacity to accumulate the retirement funds, and address how
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the individual should consume the funds year by year after retirement and how the

remaining funds should be invested in order to keep the best flow of income during

the retirement years.

Modeling life expectancy is a critical aspect of the problem. At this stage of life

the uncertainty related to conditions of health and life is at the largest and modeling

of the problem should take this into account. Most other considerations listed above

for post-retirement planning can be taken as parameters of the model to an extent.

For instance, marital status can be accommodated by considering larger consumption

volumes; similar adjustment could be made for life-style and expenses. The problem

is formulated, similar to the investment problem, as

max
Xt,Ct,t=0,T̃−1

T̃∑

t=0

E[Ut(Wt, Ct)],

where Ct is the consumption at time, t and Xt is the investment decision. One critical

difference in this problem is that the planning horizon, T̃ is not known with certainty.

One option for dealing with this uncertainty is to use the expected life-expectancy, T

for an individual in place of the random value, T̃ and use other modeling techniques

to accommodate some of the uncertainty related with T̃ .

1.2.2 Overview of Optimization Methods

Most research work on this problem has been in an integrated framework along with

the investment problem. In this section we give a brief overview of these approaches.

Bodie, Merton and Samuelson [8] consider a life-cycle model with an optimal

investment choice, choice of labor and consumption over the life-time of the plan-

ner. The problem is posed as an optimal control problem in continuous time and

solved by assuming the wages are perfectly hedged. Relations are drawn between
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the optimal investment choice and the human capital of the planner over the plan-

ning period. Campbell and Viceira [10] consider an infinitely lived investor with

the Epstein-Zin-Weil utility (a recursive generalization of the power utility) and solve

the investor’s optimal consumption/investment problem. They replace the first-order

conditions (Euler equation) and budget constraints of the problem with approximate

equations and explore an analytical solution for the approximate problem. They an-

alyze trends like optimal growth rate of consumption, optimal consumption-wealth

ratio, etc. Viceira [57] extends Campbell-Viceira by including an undiversifiable la-

bor income process to the problem. Investors are infinitely lived but have a certain

probability, πr of transition to a retired state. After reaching a retired state investors

are assumed to stay retired thereafter. Power utility for consumption is assumed and

the solution technique is similar to Campbell-Viceira. Analysis is done of the effect

of retirement on the portfolio choice.

1.2.3 Contrast with the Investment Problem

With some basic understanding of both the investment and the consumption problem,

it is now possible to compare and contrast the characteristics of the two problems.

Contrast in the property of the planning horizon for the two problems stands out.

While the planning horizon, or the time when one plans to retire, is known with a

substantial degree of certainty in the investment problem, in the consumption problem

a challenging aspect of the problem is to model the uncertainty related with the

planning horizon. It is not only the horizon that is uncertain, but also the state and

cost of health related expenses needed by the planner along the planning period that

is not predictable. The state of a person’s health impacts the person’s utility.

In the investment problem the utility is essentially independent of time, since

utility is only for the final wealth, i.e., the wealth one is able to accumulate in one’s

retirement fund by the time one retires, while in the consumption problem practically
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all the utility comes from the consumption of wealth along the planning period and

very little, if any, utility comes from what is left at the end of the planning horizon.

In the investment problem the place of the consumption variables is taken by the

intermediate contribution variables, which is the yearly contribution one makes to

the retirement fund. Typically these contribution levels are not variables, since most

often a person invests the maximum amount allowed free of taxation. Further, the

consumption levels in the consumption problem are much higher than the periodic

contributions one makes in the investment problem. In the consumption problem

the retiree can greatly benefit from monitoring the consumptions, and may wish

to exercise some discretion on immediate consumption. The asset-classes available

for investment and their price-dynamics remain the same; therefore the investment

variables are the same in both problems.



Chapter 2

Modeling the Problem

An investment portfolio’s growth is driven by how much we save and invest, what

we invest in, how long we invest, what return we earn and how much of that return

we surrender to investment costs (transaction costs) and to taxes. As an individual

investor we usually have a great amount of control over every factor listed above,

except one, the asset-returns.

The returns we get on our investments are uncertain. The past performances may

be indicative of the future performance, but in no way are fully predictive. This fact

makes modeling the asset-return dynamics particularly challenging. In this chapter

we lay out the model we use for asset-return dynamics and formulate the optimal

investment/consumption problem in terms of it.

The models one comes across in literature for asset-return or price dynamics can

be classified in two groups, continuous-time models and discrete-time models. In

continuous time, asset-price dynamics are modeled as being governed by a stochastic

differential equation, which in turn is driven by an underlying brownian motion or a

set of factors that are driven by brownian motion. Various additional features such as

mean-reversion and stochastic volatility are introduced to the process to make it more

realistic. With all these features these models have had varying degrees of success in

12
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their applications; however, they become quite complicated and analytical solutions

may not be possible, especially for more general classes of utilities or assumptions.

(See Duffie [15], Lamberton [30] for more details on continuous-time models.)

In discrete-time models the asset-return dynamics are primarily governed by a

transition rule, i.e., a rule that dictates how the price or return changes from one

period to the other. A discrete-time model could in some cases be considered to be

a time-discretization of a continuous-time stochastic differential equation model ob-

tained by discretizing the brownian motion or other sources of randomness therein.

There may not always be a one-to-one map for all discrete-time models to a continuous-

time model, since this depends on whether or not there is a limit of the discrete-time

transition rule as the time-grid size shrinks to zero.

Among the discrete-time models it is usual to consider discrete-time, discrete-

space asset-return models with a finite number of states. These models are often

represented by a “tree.” If each state at each time is depicted by a node, an arc can

be drawn from this node to every node at the next time period to which transition is

possible. The entire set of nodes and arcs so drawn for a finite number of time-periods

has an appearance of a tree with its branches.

2.1 Asset-price Dynamics - Binomial Tree Set-up

We have chosen to work with a discrete-time, discrete-space asset-return dynamics

model for our problem. At each point of time in this model, transition is possible to

two states for asset-returns – we call one of the states an “up” and the other “down.”

The “up” refers to a return greater than 1, or in other words, the price of the asset

goes up, and the “down” refers to the return being less than 1. At first sight this may

look like a simplistic approach, but this model has enjoyed enormous success due to its

1) ease of use and 2) its capacity to capture important characteristics of the problem.
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Figure 2.1: One period transition rule for binomial-tree model

We consider it to be equally probable for the returns to go up or down. Due to the

two-way branching at each node, this model is commonly known as the binomial tree

model (Sharpe [49]). It can be considered to be a version of the simple symmetric

random walk, the limit of which, as the size of time-interval shrinks to zero, is the

brownian motion. This further entails that the asset-price process dictated by the

binomial tree model is a geometric brownian motion in the limit (see Luenberger [32],

Ross [46] for details).

Throughout this work we consider two asset-classes, a risky one and a riskfree one.

At each point of time the risky asset’s return goes up or down with a probability 1/2,

whereas the return of the riskfree asset stays a constant, hence the name “riskfree.”

Let us denote the return of the risky asset on the “up” by Su and Sd on the “down.”

Let the return of the riskfree asset be Rf . If one invests Ws dollars in the risky asset

and Wb in the riskfree asset in a period, the wealth one would have in the next period

will be WsSu +WbRf if an “up” occurs and WsSd +WbRf if a “down” occurs. See

figure (2.1) for a pictorial description of the binomial tree model.
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2.2 Optimal Asset Allocation Problem

Based on the binomial-tree model described in the previous section, the optimal asset

allocation problem can be formulated as follows. Given a time-horizon, T for the

planning problem, at each time point t lying in {0, 1, ..., T − 1}, a decision regarding
the amount of wealth to invest in the two asset-classes needs to be made. Given the

investor knows the state of the world at t = 0, there are 2T − 1 number of nodes
between t = 0 and t = T − 1. Each node represents a decision variable, namely what
fraction of wealth to invest in the risky asset and the riskfree asset. The nodes are

ordered as indicated in figure (2.2). Let each decision variable be denoted by Xt,n,

where t is the time period and n is the number of the node in the ordering. The

investor invests an initial amount of wealth, W0 at t = 0. There is also an amount of

wealth associated with each node in the tree, denoted by Wt,n by the same convention

as for the investment decision variable. This is the wealth the investor has at that

node given that she starts with a wealth W0 at t = 0 and invests according to a

particular set of values for the decision variables, Xt,n. The relation between the

decision variables Xt,n and state variables Wt,n, Su, Sd and Rf can be written as

follows:

Xt,n1Wt,n1Su + (1−Xt,n1)Wt,n1Rf = Wt+1,n2 (2.1)

Xt,n1Wt,n1Sd + (1−Xt,n1)Wt,n1Rf = Wt+1,n3 , (2.2)

where equation (2.1) is for an “up” and equation (2.2) for a “down.” Xt,n is taken

to be the fraction of one’s wealth at time t and node n one invests in the risky asset.

This makes (1 − Xt,n) the fraction of wealth invested in the riskfree asset at time
t and node n, assuming that the investor invests all her wealth at each node. The

relation between the nodes n1, n2 and n3 is indicated in figure (2.2).

Utility is from the wealth at the planning horizon, since the investor does not
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Figure 2.2: Ordering of nodes in the binomial tree

consume prior to the planning horizon. The optimal asset allocation problem is

written as follows:

max
Xt,n,t=0,T−1,n=1,N

N∑

m=q

[pU(XT−1,mWT−1,mSu + (1−XT−1,m)WT−1,mRf) +

pU(XT−1,mWT−1,mSd + (1−XT−1,m)WT−1,mRf)],

where p is the probability of each node at the planning horizon. Index m ranges over

nodes one period prior to planning horizon, which are nodes 2T−1 to 2T − 1 in figure
(2.2).
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Solving the Problem

3.1 Introduction

In the long-term financial planning problem, also known as the strategic asset allo-

cation problem, the term “long” is a relative one. In some set-ups it may refer to a

year long planning period, whereas in others a 30 year period would be considered

appropriate. From a retirement planning perspective it seems reasonable to consider

a planning period ranging from 10 to 30 years. During this planning period, if the

planner makes yearly investment decisions, there are 10 to 30 decisions to make. This

may look like a relatively easy task, but unfortunately, there is more to the problem.

Future investment decisions depend on future economic scenarios, which are uncer-

tain. Therefore, what one really needs to know is one’s decision for every possible

economic scenario in future. It is easily imaginable that attempting to select a deci-

sion for every economic scenario for a period of 10 to 30 years is by no means an easy

task.

17



CHAPTER 3. SOLVING THE PROBLEM 18

In the previous chapter a model for possible future economic scenarios was pre-

sented. The scenarios were defined in terms of returns on the two asset-classes avail-

able for investment. In this chapter we first sketch the computational challenges as-

sociated with a scenario based decision approach and how they relate specifically to

our model for the problem. Before describing our approach for addressing these chal-

lenges, a brief overview of general optimization techniques is given. This is followed

by a description of methods used for finding the optimal solution for our problem. Fi-

nally, we present some modeling variations that facilitate computation of the optimal

solution, and give a comparison of our computational effort with other approaches.

3.2 Computational Challenges

In the previous chapter we described the binomial-tree model for evolution of asset

returns over time. In this model, in each time period asset returns have a transition

to two possible states; we called one of the states an “up” and the other a “down.”

The decision variables representing the fraction of wealth invested in the risky asset

at each node of the tree is denoted by Xt,n. Assuming that the investor invests all the

wealth at each node, (1−Xt,n) is the fraction invested in the riskfree asset. Evolution
of wealth, starting with wealth W0 at t = 0, was given by equations

Xt,n1Wt,n1Su + (1−Xt,n1)Wt,n1Rf = Wt+1,n2 (3.1)

Xt,n1Wt,n1Sd + (1−Xt,n1)Wt,n1Rf = Wt+1,n3 , (3.2)

where equation(3.1) is for an “up” and equation(3.2) for a “down.” Nodes n2 and n3

at time t + 1 are the nodes connected to node n1 at time t. Therefore, at a typical
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node at the planning horizon, T , wealth is given by

XT−1,mWT−1,mRr + (1−XT−1,m)WT−1,mRf , (3.3)

where Rr takes the value Su or Sd depending on whether the transition from T −1 to
T is an “up” or a “down.” Assuming that the planner derives utility from the wealth

at the planning horizon, the optimum asset allocation problem can be written as:

max
Xt,n,t=0,T−1,n=1,N

N∑

m=q

[pU(W uT,m) + pU(W
d
T,m)],

� 0 ≤ Xt,n ≤ 1, ∀t, n,
where W uT,m = XT−1,mWT−1,mSu + (1−XT−1,m)WT−1,mRf ,

W dT,m = XT−1,mWT−1,mSd + (1−XT−1,m)WT−1,mRf ,

where p is the probability of each node at the planning horizon and U(.) is the

investor’s utility for wealth at the planning horizon. Index m ranges over all the

outcomes at one period prior to the planning horizon. In our problem formulation we

permit no short sale, i.e., borrowing of assets is not allowed. This restriction translates

to the above bounds on the decision variables. The restriction reflects regulatory

constraints on positions the planner may take on the asset classes. In principle when

short-selling is allowed, the principal issue of concern is that the investor may default

on the borrowed assets. In other words, it may be necessary to impose constraints on

the wealth at each node of the tree to stay positive. In practice, individual investors

invest under restrictions on the positions they can take in terms of short-sale or

borrowing of assets.

The investment problem formulated as an optimization problem is a nonlinear

optimization problem with bounds on variables. Major sources of complexity in the

above optimization problem are 1) size of the problem, 2) nonlinearity of the objective
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and 3) the possibility of a less well-behaved objective. People typically need to plan

for retirement 20 to 30 years prior to retirement. This long planning period results in a

very large problem size, for instance, in a 20 period binomial tree there are 1, 048, 575

(= 220 − 1) nodes, hence as many decision variables. An optimization problem with
this many variables is indeed a large problem.

Nonlinearity of the objective is observed when the wealth term, WT−1,m in the

objective is replaced using equation (3.1) or (3.2) in terms of WT−2,m1 , where m1 at

T − 2 is a node connected to node m at T − 1 in the binomial tree. This process can
be recursively continued by repeatedly using equation (3.1) or (3.2) and expressing

WT−2,m1 in terms of WT−3,m2 , where m2 at T − 3 is a node connected to node m1
at T − 2 in the binomial tree, and so on. At the end of this substitution process
each term at which the utility function U(.) is evaluated is a T -degree polynomial of

appropriate Xt,n’s. Nonlinearity in the utility function further enhances nonlinearity

of the objective.

In Chapter 1 a brief description of different choice criteria was given, differen-

tiating the normative from the descriptive or behavioral class. Normative choice is

defined in terms of some regularizing principles that are called the axioms of choice.

A consequence of satisfying these axioms is that the utility function representing the

preference relation is a very well-behaved function. A preference relation in the de-

scriptive or behavioral category, however, may violate some of the axioms that define

normative preferences. As a result, the corresponding utility function may not be

a very well-behaved function. This will effectively mean that the objective of our

optimization problem may not be a smooth, concave function.
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3.3 Optimization Techniques

We now give a brief overview of the general optimization techniques for finding a

solution for a nonlinear optimization problem. Presentation is tailored for our problem

and is not an attempt to be comprehensive. Some excellent sources for detailed

discussion on optimization theory, numerical optimization and related practical issues

are Gill, Murray and Wright [23], Bersekas [5], Luenberger [31]. A general nonlinearly

constrained optimization problem can be written as:

max
x

f(x)

� l ≤ x ≤ u
Ax ≤ b
c(x) ≤ 0,

where x, l and u are vectors of dimension m, A is a matrix of size mxn, c(.) is a

vector of nonlinear constraints and f(.) is the nonlinear objective function. Therefore,

the above optimization problem has a nonlinear objective along with bounds on the

variables and linear & nonlinear inequality constraints. An optima for this problem

is characterized by a certain set of optimality conditions. Numerical algorithms to

solve the problem are developed by focusing on satisfying these conditions.

3.3.1 Univariate Optimization

If the optimization problem is one-dimensional, i.e., x ∈ �, and has no constraints or
bounds, a solution x∗ is characterized by the following conditions,

f ′(x∗) = 0 and f ′′(x∗) < 0,
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assuming sufficient differentiability of function f .

If derivatives of the objective are available, an approach for finding an optima

is to find a zero of the function f ′(.), which is a necessary condition for an optima.

Conditions for sufficiency can then be checked at these points. Some standard and

well-known methods for finding the zeros of a function are the bisection method,

the secant method and Newton’s method. These are iterative methods based on

reducing the interval of uncertainty at each iteration. The bisection method reduces

the interval of uncertainty by half in each iteration by comparing the function values

at the end points of the two subintervals. Newton’s method and the secant method

approximate the function by a linear function and the iterates are taken to be the

zero of the linear approximations.

Newton’s method can also be interpreted as a polynomial fitting method. In these

methods a polynomial is fitted to the objective function, f(x) using the function and

derivative information at the iterates and the optima of the approximating polynomial

is taken as the next iterate. In this class, Newton’s method corresponds to locally

fitting a quadratic polynomial to the objective. Bounds on the variable do not result in

much complication in one-dimensional problems, since they can be separately checked

for being the optima.

3.3.2 Multivariate Optimization

The problem of finding an optima becomes much harder when going from a one

dimensional problem to a higher dimensional one. In a single dimension there are

a total of two directions to choose from as a search direction; in higher dimensions

however, this choice set becomes infinite.

Line search methods form an important class of methods for multivariate op-

timization problems. Major considerations for iteratively finding the optima by line

search methods are (in each iteration) : 1) finding a search direction and 2) finding
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an appropriate length to move in the search direction to obtain the next iterate. Con-

vergence of the iterates (to a local optima) is guaranteed if the direction of search

is one of ascent (locally the objective function increases in this direction) and the

step-length results in a “sufficient” increase in the function value. Newton’s method

for the univariate case generalizes for the multivariate problem as follows. An ap-

proximating quadratic function is obtained by a second-order Taylor expansion of the

objective function at each iterate. The search direction is computed by solving the

exact optimal for the approximating quadratic function. A step of an appropriate

length is then taken in the search direction so that there is a “sufficient” increase in

the objective value.

The approximating quadratic function has a strict maxima only if the second

derivative of the objective at the iterate, ∇2f(xk) (known as the Hessian), is negative
definite. If this is not the case, the Hessian of the approximating quadratic function

is taken to be a modified negative definite version of the true Hessian of the objective.

This method is called the modified Newton’s method.

3.3.3 Quasi-Newton Algorithm

If the Hessian of the objective is either difficult or impossible to compute, the curva-

ture information can be built up as the iterations progress. The objective and gradient

information gained at each iteration is used. This class of methods is called the quasi-

Newton methods. The initial Hessian approximation B0 is usually taken to be the

identity matrix or whatever information is initially available on the Hessian. In every

subsequent iteration k, the Hessian is updated by adding an updating matrix Uk to

the Hessian. The updating matrix is such that the symmetric, negative-definiteness

of the approximate Hessian is not destroyed.

So far we have considered methods for unconstrained optimization problems. For

problems with bounds and constraints additional considerations will be required in the
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development of an algorithm. For problems with simple bounds the search direction

is selected so that feasibility is maintained. Variables are classified as free or fixed;

free variable implies that the variable is not on its bound, and fixed if the variable is

on its bound. At each iterate of Newton’s method or the quasi-Newton method the

descent direction is computed using only gradients and Hessian corresponding to the

free variables, and Hessian updates are required only for the free variables. Depending

on the step length, the variables either stay fixed/free or change from fixed to free or

vice versa, hence changing the working set. We next describe the sequential quadratic

programming methods that are considered the most robust and efficient methods for

solving nonlinearly constrained optimization problems.

3.3.4 Sequential Quadratic Programming Algorithm

A brief description of sequential quadratic programming (SQP) algorithms follows (a

more detailed description is given in Appendix A). An optimization problem with

nonlinear equality constraints can be stated as:

max
x

f(x)

� c(x) = 0

where x is a vector of dimension m, c(.) is a vector of nonlinear constraints and f(.)

is the nonlinear objective function. An associated function to the above optimization

problem, which gets used in finding the optima, is the Lagrangian function for the

problem and is defined as

L(x, λ) = f(x)− λT c(x).

Optimality conditions for this problem are as follows: x∗ is a local maximizer of
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the problem if there exist multipliers λ∗ such that

c(x∗) = 0 (3.4)

ĴTλ∗ = g(x∗), [or ZTg(x∗) = 0] (3.5)

λ∗ > 0 (3.6)

ZT (x∗)W (x∗, λ∗)Z(x∗) is negative definite, (3.7)

where g = ∇f(x), Ĵ is the constraint Jacobian, Z(x) is a basis for the nullspace of
Ĵ(x), and W (x, λ) is the Hessian of the Lagrangian L(x, λ). These conditions are

called the second-order KKT (Karush-Kuhn-Tucker) conditions, the first three being

first-order conditions. These conditions are used for developing a method for finding

a solution for the constrained optimization problem.

Some early techniques for finding an optima for a nonlinearly constrained problem

involved converting the constrained problem into an unconstrained one. This is done

by including the nonlinear constraints within the objective in an appropriate way,

such as by the use of a penalty function or a barrier function. A penalty function

approach allows the iterates to become infeasible, but incurs a penalty that increases

with infeasibility, whereas a barrier function is a modification of the objective so that

the iterates are always feasible.

SQP methods are considered the most robust and efficient algorithms for solving

nonlinearly constrained optimization problems. They are iterative procedures and

can be viewed as a generalization of Newton’s method to the (inequality) constrained

problem. The basic idea is to construct a constrained quadratic model around the

current iterate, xk. Maximization of the quadratic model gives an update pk that

approximates the error (x∗−xk), where x∗ is a local optima of the objective function,
f . The new iterate is taken as xk+1 = xk + αkpk, where αk is usually determined by

a line search method applied to a merit function. Trust-region methods may also be
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used.

Any algorithm for constrained optimization needs to ensure that the algorithm

converges to a point that is both feasible and a constrained minimizer. Therefore, to

measure how good the next iterate is, simply looking at the objective is not enough

because that does not say anything about how close the iterate is to the feasible set.

A standard approach today is to define a merit function, which combines both the

objective and the constraint violations into one function. For this reason merit func-

tions are closely related to penalty functions. The two most popular merit functions

for SQP methods are the l1 merit function

M(x) = F (x) + ρ‖c(x)‖1,

and the augmented Lagrangian

M(x, λ) = F (x)− λT c(x) + ρ
2
c(x)T c(x),

where ρ > 0 is a penalty parameter and λ is a set of Lagrange multiplier estimates.

Both the objective of the approximating quadratic problem and the merit function

for computing step-length require the Lagrange multipliers. These are approximated

and updated from the solution of the quadratic subproblem.

3.3.5 Application to the Investment Problem

Our observations of the previous section indicated that the optimal investment choice

problem formulated using a binomial-tree model for asset returns is a nonlinear prob-

lem with bounds on the variables.

The smoothness properties of our objective are largely dependent on the smooth-

ness properties of the utility function U(.), since the expression at which utility is
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evaluated is a smooth function of the decision variables. Even if the utility is given

to be a smooth, differentiable function at all but a finite number of points, it is very

cumbersome to explicitly compute the gradients of the objective. Our options were

to either use an automatic differentiation software package such as ADIFOR (see

Appendix B) to compute the derivatives, or use optimization methods that use only

objective function values or perform a finite-difference approximation for the gradi-

ent of the objective to compute a descent direction. Alternatively, we could consider

reformulating the problem such that computing the exact derivatives is simplified.

We used the NPSOL [22] software package, a Fortran package for nonlinear pro-

gramming developed at the Systems Optimization Laboratory at Stanford Univer-

sity. (See Appendix C for more details on NPSOL.) NPSOL implements an SQP

algorithm [21] and is a general-purpose system for solving optimization problems in-

volving constraints. It maximizes a linear or nonlinear function subject to bounds

on the variables and linear or nonlinear constraints. NPSOL finds solutions that are

locally optimal. Ideally any nonlinear functions should be smooth and users should

provide gradients, although this is not essential. Unknown gradients are estimated

by finite differences. Discontinuities in the function gradients can often be tolerated

if they are not too close to an optimum. Each quadratic program is solved using a

quadratic programming package with several features that improve the efficiency of

an SQP algorithm.

3.4 Modeling Variations

In this section we first consider some variations in the modeling of the optimization

problem that facilitate computation of an optima. This is followed by some variations

in the model for the investment problem.
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3.4.1 Wealth as Variables

In the earlier sections of the chapter we formulated the optimal investments problem

as a nonlinear programming problem in terms of the decision variables, Xt,n. This

formulation makes the computation of the objective gradients expensive and cumber-

some. For simplicity we can use an optimizer that either requires only the function

values for computing search directions or uses finite-difference approximation of the

objective gradients. Both approaches would be inefficient, since they do not use the

exact first derivative information.

It is possible to rectify this by considering the wealth at each node to be a variable

in the optimization problem. Since the wealth values at each node are fully deter-

mined once the investment decisions Xt,n are known, we need to include constraints

that impose this characteristic of the investment problem. There will be 2(2T − 1)
variables in the new optimization problem. In the terminology of optimal control,

the wealth variables are the state-variables of the problem, whereas Xt,n’s are the

control variables. In a typical stochastic control problem the number of state vari-

ables is much larger than the number of control variables, but in our case they are

almost equal. This makes it feasible to treat them both as variables of the optimiza-

tion problem. However, we now need to solve a nonlinearly constrained optimization

problem. The nonlinear constraints of the problem are given by (3.1) & (3.2), where

Xt,n1 , Wt,n1 , Wt+1,n2 and Wt+1,n3 are now variables ∀t, n1, n2, n3 relevant indices. This
implies that the problem now has as many nonlinear constraints as there are decision

variables, i.e., 2T −1 of them, where T is the planning horizon. These constraints are
very structured; each constraint involves only three variables and is bilinear, i.e., each

term in the left-hand-side of the constraint is a product of two variables. These obser-

vations imply that the constraint Jacobian is very easy to compute and is sparse and

structured. All these properties can be put to good use in an optimization algorithm.

The most attractive advantage of this modeling variation is that now it is possible
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to compute all the objective gradients with great ease. It is, in fact, also possible to

compute the exact Hessian of the objective and constraint functions, which enables

computing the Hessian of the Lagrangian. The Hessian of the Lagrangian is also

sparse and highly structured. In the original formulation, although the Hessian of

the objective is half the size, it is dense and hard to compute. The gains in efficiency

from this modeling variation outweigh the losses from an increase in problem size.

A question that arises at this point is should the wealth at the planning horizon, T

also be treated as variable? If we do so, the number of nonlinear constraints increases

to 2T − 1 + 2T , which is an increase of 2T , and the number of variables increases to
2(2T −1)+2T , which is also an increase of 2T . The objective function of the problem
becomes:

max
Xt,n,t=0,T−1,n=1,N,Wt,n,t=0,T,n=1,N1

N1∑

m=q

[pU(WT,m)],

where p is the probability of each final node and m ranges over all the final nodes

of the tree. Clearly, this further reduces the nonlinearity of the objective. However,

we observe that the benefits from this change do not outweigh the loss of efficiency

from an increased number of variables and constraints. This modeling approach may

become desirable if we need to impose additional bounds on the wealth at the planning

horizon.

As was observed above, the alternate formulation made it possible to explicitly

compute the objective gradients and constraint Jacobian, and these were both struc-

tured and sparse. We used SNOPT [20] software package, a Fortran based package

for nonlinear programming from the Systems Optimization Laboratory at Stanford

University. SNOPT implements an SQP algorithm [21] and is a general-purpose

system for solving optimization problems involving many variables and constraints.

It maximizes a linear or nonlinear function subject to bounds on the variables and



CHAPTER 3. SOLVING THE PROBLEM 30

sparse linear or nonlinear constraints. SNOPT finds solutions that are locally opti-

mal, and ideally any nonlinear functions should be smooth and users should provide

gradients, although this is not essential. Unknown gradients are estimated by finite

differences. Discontinuities in the function gradients can often be tolerated if they are

not too close to an optimum. A more detailed description of the features of SNOPT

are discussed in Appendix D.

3.4.2 Non-Uniform Time Periods

The investment problem is solved on a rolling basis, hence each time an investment

decision needs to be made the optimization problem is solved taking the currently

owned wealth as the starting wealth of the problem. The optimal decision for t = 0

is implemented. This implies that the optimal decisions suggested for subsequent

periods are not of direct relevance to the planner. Such usage of the model suggests

that there should be a finer time-resolution in the beginning of the planning horizon

compared to later. In other words, the model for the problem should have shorter

time-periods in the beginning of the problem, and these time periods should pro-

gressively become larger towards the end. If a planner intends to make half-yearly

investment decisions, the model may first have 5 years spanned by half-year periods

(a total of 10 optimization problem periods), then have another 3 years spanned by

one year periods (additional 3 optimization problem periods) and finally have 12 years

spanned by 2 two year periods and 2 four year periods (which are another 4 opti-

mization problem periods). Consequently, there will be 17 periods in this problem

spanning a total of 20 years. When the problem is rolled over, in subsequent periods

a different selection of time-period lengths may be selected, perhaps with a greater

number of shorter-length periods. Therefore, there is considerable flexibility in this

framework for planning period size and planning horizon; this flexibility can be used

to the planner’s advantage.
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This change in the model of the investment problem does not structurally change

the character of the optimization problem. The parameters of the problem change,

specifically the asset returns for a period vary depending on the length of the period.

3.4.3 Intermediate Contributions

Typically people do not make a single large contribution to their retirement funds.

Instead, it is more common to make periodic contributions to the fund. This feature of

the problem is included in the model by introducing a contribution variable denoting

the dollar amount invested in the retirement fund in each period. The contribution

variables can be taken to be state and time-dependent, or be only time-dependent,

alternately for further simplicity, may be the same for all states and time.

While these changes introduce additional variables, the number of nonlinear con-

straints remains the same. The nonlinear constraints will now have an extra linear

term. We may also introduce additional bounds and constraints on the contribution

variables.

3.5 Comparison of Computational Effort

In this section we compare the computational complexity & effort of our approach

with some other approaches, such as dynamic programming, stochastic optimal con-

trol solved by solving the nonlinear partial differential equation and stochastic opti-

mization.

3.5.1 Dynamic Programming

Dynamic programming is a general technique for solving dynamic optimization prob-

lems, such as the investment problem, using a recursion structure. The basic idea of
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this technique is to optimize the decision for the first period, assuming that subse-

quently optimal decisions are made. Since the subsequent optimal decisions are not

known, a backward recursion approach is adopted in an implementation of the tech-

nique. The problem is formulated by identifying the set of actions the planner may

take, denoted by A, and a set that describes all possible states of the world for each

time period, denoted by S . If the problem is a finite horizon problem, we denote the

planning horizon by T . If Vt(s) is defined as the maximum expected “reward” that

can be earned starting from time t and state s up to T , then the recursion relation

may be written as

Vt(s) = max
a∈A
(r(s, a) + E[Vt+1(s)]), where s ∈ S . (3.8)

The term r(s, a) denotes the reward obtained in a single period in state s, when action

a is taken. The function V is commonly known as the value function for the problem

and the above equation is the Hamilton-Jacobi-Bellman (HJB) equation. In order

to solve the problem one also needs to define an end condition, such as VT (s) = f(s).

Using the end condition, equation (3.8) needs to be solved for each time t = T − 1 : 0
and for all values s, the state of the world, may take.

In the retirement planning problem, the planner’s utility is for the wealth she is

able to accumulate in the retirement fund at the time of retirement. The states of

the world are defined by the wealth level in the retirement fund at each time period,

which in turn depends on the investment decisions and the returns obtained on the

investments. The actions clearly are the investment decisions, which in our problem

are to decide at each time period what fraction of wealth to invest in the risky asset.

There is no immediate reward, hence the term r(s, a) is zero. The backward recursion
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equation becomes

VT (WT ) = U(WT ) (3.9)

Vt(Wt) = max
xt∈[0,1]

(E[Vt+1(xtWtSt + (1− xt)WtRf )]), for t = T − 1 : 0, (3.10)

where St is the per dollar return on the risky asset and Rf is the per dollar return

on the riskfree one. To solve the problem the recursion equation (3.10) needs to be

solved for a range of levels of wealth, Wt to determine the functional form for Vt, since

this will be required for the recursion step of t − 1. If Vt is not obtainable in closed
form, the computations become considerably intensive. If the utility function U(.) is

not well-behaved, the optima in each step of recursion may not be easy to obtain.

Issues related to uniqueness of solution are also of concern here.

3.5.2 Stochastic Optimal Control

When instead of a discrete-time formulation, the problem is solved in continuous-

time, the above approach becomes a stochastic control problem. In continuous-time

the HJB equation given above becomes the following nonlinear partial differential

equation.

sup
a∈A
DaJ(y, t) = 0, (y, t) ∈ (Y , [0, T ]), (3.11)

where,

DaJ(y, t) = g(a, y)Jy(y, t) + Jt(y, t) +
1

2
h(a, y)2Jyy(y, t), (3.12)

along with the boundary condition

J(y, T ) = U(y), y ∈ Y . (3.13)
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The functions g(a, y) and h(a, y) above arise from the equations that govern the

evolution of the state of the world given by y. Analytical solutions for this problem

are hard to obtain, and may be obtainable for only certain simple utility functions.

For more complex problems numerical approaches are required. The nonlinear partial

differential equations are solved using finite-difference methods. These are usually

rather large, complex numerical problems, and sophisticated methods need to be

employed.

3.5.3 Stochastic Optimization

The stochastic optimization approach is a scenario based approach for a finite hori-

zon problem where the uncertain components of the problem are taken to have a

finite number of outcomes in each time period. Decision variables are associated

with each outcome at each time period. The problem is formulated by introducing a

constraint for each scenario at each time period in order to keep decisions of a time

period consistent with those taken in the prior period(s). This results in a large con-

strained optimization problem. The constraint matrix consists of structured blocks.

In order to solve the problem when the objective is linear, the structure is exploited

using decomposition techniques, such as the L-shaped method, which is essentially a

Dantzig-Wolfe decomposition [14] of the dual or a Benders’ decomposition [3] of the

primal. A variation in the decomposition based method is one in which instead of ex-

actly computing the recourse function it is approximated using sampling techniques.

(See [12, 14].)

As the planning horizon or the number of sources of uncertainty or the number

of possible outcomes for each source of uncertainty increases, the problem size grows

enormously. This makes these problems computationally very challenging. Besides,

these solution techniques were developed for problems with linear objectives. Using

these approaches for a general nonlinear problem has definite challenges that are being
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currently addressed (see [6, 7]).



Chapter 4

Application to Investment Problem

A planner laying out a financial plan must have a criterion for comparing various

investment strategies that may be adopted, and possibly choose a strategy that is best

with respect to the criterion. In this chapter an outline for the theory of choice and

the utility theory is presented. We make distinctions between normative, descriptive

and prescriptive choice and present the optimal investment strategy with respect to

a class of descriptive or behavioral utilities. Finally, some results from the standard

normative utilities are presented and a comparison of results from the two categories

is discussed.

4.1 Introduction - Utility Theory

The process by which people make their wealth related decisions has been the subject

of study for a very long time, and can be at least dated back to Bernoulli [4]. In the

twentieth century, among others, work by Friedman and Savage [18], von Neumann

and Morgenstern [58], Markowitz [37] and Samuelson [51] forms the basis of research

in this field.

An individual faced with a decision chooses from a set of alternatives. Let X

36
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denote this set of alternatives. Among all elements of X the decision-maker weighs

the merit and de-merits of each option against others and attempts to select the

option that suits her “best.” This requires a precise definition of “best.”

In more rigorous terms, we need to define an ordering on the set of alternatives

that makes it possible to compare every element of the set with every other element.

We denote this ordering by ’�’, then if x, y ∈ X, x � y will imply that the decision-
maker prefers x to y, and x � y would imply x is strictly preferred to y.
The preference relation defined above is said to be rational if it satisfies the axioms

of choice. These axioms are reflexivity, completeness and transitivity and are defined

as follows (see Varian [56], MasColell [38]) :

Reflexivity For all x ∈ X we have x � x.

Completeness For all x, y ∈ X we have either x � y, y � x or both.

Transitivity For all x, y, z ∈ X, if x � y, y � z then x � z.

For the existence of an ordinal utility function that maps the elements of X to

the real line, � (U : X �→ �), another axiom called the continuity axiom is required.

Continuity For all x ∈ X, the sets {y: x � y} and {y: y � x} are closed sets.

Given the above four axioms, existence of an ordinal utility function can be proved.

This utility function is a continuous function such that

U(x) > U(y) ⇔ x � y
U(x) = U(y) ⇔ x ∼ y.

It is important to note that this representation for the preference relation “�” is not
unique, since ∀ f , monotonic and mapping � �→ �, f(U(x)) is also a representation
for “�.”
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Although at first sight these axioms may look reasonable, it is worth taking a closer

look. Imposition of these axioms has enormous implications in practical terms. Re-

flexivity is the weakest and most acceptable axiom. The completeness axiom implies

that the decision-maker has done the introspection of all the alternatives, however far

removed they may be from one’s realm of common experience. It is easy to imagine

that satisfying the completeness axiom may need serious work and reflection on one’s

preferences, and may in some cases be almost impossible. The transitivity axiom, on

the other hand, implies that in a sequence of pairwise choices there is no possibility of

cycles, which is to say that however the options are framed or presented, the decision-

maker is mature enough to be able to rank all of them in an order that contains no

cycles. Besides the above axioms of choice, preference relations are assumed to satisfy

more axioms, such as monotonicity, convexity.

So far the alternatives from which the decision-maker chooses had no uncertainty

associated with them. For a study of choice under uncertainty we will need to

frame the axioms in terms of “lotteries.” Lotteries, L, are defined by outcomes

x = {x1, x2, ..., xm} and the corresponding probabilities π = {π1, π2, ..., πm}. The
probability of each outcome is taken to be the objective probability of the event. The

axioms of choice in this case become:

Reflexivity For every lottery L, L � L.

Completeness For every pair of lotteries L1, L2, either L1 � L2 or L2 � L1.

Transitivity For all L1, L2, L3, if L1 � L2 and L2 � L3, then L1 � L3.

Continuity If x1 � x2 � x3, then there exists a probability π, 0 ≤ π ≤ 1, such that
x2 ∼ {(x2, x3), (π, 1− π)}. The probability π is unique unless x1 ∼ x3.

Independence Let L1 = {(x1, .., xν , .., xm), π} and L2 = {(x1, .., z, .., xm), π}. If
xν ∼ z, then L1 ∼ L2. z may be either a simple outcome or another lottery. If
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z is a lottery, z = {(xν1, xν2, ..., xνn), πν}, then

L1 ∼ L2 ∼ {(x1, ..., xν−1, xν1 , ..., xνn, xν+1, ..., xm),
(π1, ..., πν−1, πνπν1 , ..., πνπ

ν
n, πν+1, ..., πm)}

Dominance Let L1 = {(x1, x2), (π1, 1 − π1)} and L2 = {(x1, x2), (π2, 1 − π2)}. If
x1 � x2, then L1 � L2 if and only if π1 > π2.

Assuming that the above axioms are satisfied, it is possible to prove the existence of an

ordinal utility, such that the decision-maker chooses lotteries by comparing expected

utility of the lotteries with respect to this ordinal utility and the objective probabili-

ties, π. This is called the von Neumann-Morgenstern [58] utility after its originators.

Therefore, if U is the ordinal utility for the outcomes, the von Neumann-Morgenstern

utility becomes U(x) = E[U(x)]. Utility functions so defined are determined uniquely

up to a positive linear transformation, i.e., U(x) and aU(x) + b are equivalent for

a > 0.

These axioms imply that only the final pay-offs matter and there is no thrill or

aversion for suspense or gambling per se. Among all the above axioms the indepen-

dence axiom is most difficult to satisfy in practical terms (see Machina [34] for more

details).

4.1.1 Descriptive, Normative, and Prescriptive Decision Mak-

ing

The study of the process of decision making can be classified into three major cate-

gories (see Bell, Raiffa and Tversky [2] for more details):

Descriptive Descriptive models, also called behavioral decision making models, are

concerned with how and why real people think and act the way they do. How do
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they perceive uncertainties? What are their internal conflicts, biases or hang-

ups? Do they decompose complex problems, think separately about component

parts of problems, and then integrate these separate analyses? Or do they think

more holistically and intuitively? The study of these questions may at times

involve intricate mathematical modeling and require clinical, experimental or

sophisticated statistical analysis. In short, it is an abstract system that purports

to describe or predict behavior.

Normative A normative model can be defined as an abstract system that attempts

to capture how ideal people behave. The hallmarks of normative analysis are

rationality, coherence and consistency, as captured by certain prescribed ax-

ioms, basic principles and fundamental desiderata motivated by what is logical,

rational and intelligent behavior. There is not much space for the cognitive con-

cerns, internal turmoil, shifting values, anxieties, disappointments and regrets

of real people, or space for the fact that real people may not always be capable

of performing intricate computations etc. in this analysis.

Prescriptive Prescriptive analysis addresses the question, what could be done to

help real people make better choices? It involves devising aids for helping people

lessen their cognitive concerns and internal turmoil, and as a result helps them

make more consistent, coherent decisions.

The axioms of choice listed in the previous section form the basis for the normative

theory of choice. Decision-makers whose preferences satisfy these axioms are said to

be economically rational and it is possible to represent the preference relation by a

utility function, which is a map from the set of alternatives to the real line. If the

preference relation also satisfies convexity and monotonicity properties, the utility

function obtained is an increasing, smooth and concave function. Most research in
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economics and finance is developed on the basis of the assumption that decision-

makers’ preferences satisfy these axioms of choice.

In practical terms, it may be a difficult proposition for an average decision-maker

to satisfy all the above axioms of choice. Decision-makers are not economic automa-

tons, but instead make mistakes, have remorse, suffer anxiety and sometimes cannot

make-up their minds. By such non-rational behavior we don’t mean people with di-

minished capacity, but ordinary people who get caught in cognitive traps from time

to time.

Several behavioral scientists have attempted to understand the decision-making

process among ordinary people through experiments and studies of various kinds (see

Bell, Raiffa and Tversky [2], Edwards and Tversky [16], Wright [60]). The five major

phenomena observed and confirmed in a number of experiments with real or hypo-

thetical payoffs that violate the standard models of normative choice are : Framing

effects, Nonlinear preferences, Source dependence, Risk seeking and Loss aversion.

These phenomena are defined in Tversky & Kahnemann [55, 54], Tversky [53] as

follows.

Framing effects Lack of description invariance implying that variations in the fram-

ing of options yield systematically different preferences.

Nonlinear preferences The expectation principle of utility theory states that the

utility of risky prospects is linear in outcome probabilities. However, experimen-

tal evidence indicates that people tend to transform probabilities nonlinearly,

overweighing small probabilities and underweighing moderate and high ones.

Source dependence Willingness to bet on an uncertain event depends not only on

the degree of uncertainty but also on its source.

Risk Seeking As opposed to the generally assumed risk aversion in economic anal-

ysis, in certain situations people prefer more risk to less. For instance, people
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prefer a small probability of winning a large prize over the expected value of

that prospect.

Loss Aversion Carriers of value are gains and losses defined relative to a reference

point. The losses loom larger than the gains, that is, an amount of loss elicits

more “unhappiness” than the same amount of gain elicits “happiness.”

In the rest of this chapter we explore the optimal investment decision for an

investor with a behavioral utility. Clearly, this does not fall within the realm of

a descriptive study, since no attempt is being made to see how people with such

utilities actually make their investment decisions. It also does not fall under the

normative framework, since these utilities do not satisfy the axioms of choice. This

work may best be described as a prescriptive model or a second-order approximation of

a descriptive model (assuming normative models are the first-order approximations).

On the other hand, it is hoped that computation of optimal strategy corresponding

to these behavioral utilities will help bridge the gap between what is rational and

perfect and what is not. Bridging this gap will help “educate” people to make more

rational decisions.

4.2 Behavioral Utilities - Challenge

In the normative decision models a monotonic, twice-differentiable, concave utility

function is obtained. Such a well-behaved utility may not be obtainable when one

or more of the assumptions of the normative theory are violated. Descriptive studies

indicate that real people do not always act rationally as claimed by the normative

models. They are hindered in making coherent, consistent and rational decisions due

to short-falls in their cognitive capacities. As a result, their utility or value functions

may lack the good properties associated with normative utility functions. Therefore,
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attempting to find an optima for behavioral utilities creates challenges.

People think in terms of summary statistics for their future wealth; for example,

they may be interested in maximizing the probability of their future wealth exceeding

a “Goal” value. They may determine their “Goal” value as an estimate of the amount

of wealth that will allow them to lead a comfortable life after retirement. In a discrete

model this will imply that the value function is discontinuous, making computation

of objective derivatives almost impossible. Alternatively, besides desiring to reach

the Goal value, they may also want to mitigate losses as much as possible. In other

words, there may be multiple-objectives involving both maximizing the probability of

reaching a Goal and maximizing say, the fifth percentile of future wealth distribution.

People may evaluate their wealth outcomes with respect to a reference point, judging

doing better than the reference differently than doing worse. This will result in a

different value function on either side of the reference point, and hence a possible loss

of differentiability at the reference point.

Special considerations will be required for finding the optimal investment decisions

for all these different types of utilities or value functions. In the following sections we

explore and present our results for the problem.

4.3 Optimal Results for Behavioral Utilities

Average decision-makers are not economic automatons, instead from time to time

they are affected by emotions and cognitive hindrances in making rational decisions.

For these reasons their utility functions may differ from the ones implied by the

normative theory of choice. In what follows it is assumed that although this may

be the case, the decision-makers should nevertheless make decisions that are optimal

with respect to their utilities. Wherever relevant throughout this section, we will also

assume that the decision-maker is an expected utility maximizer.
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The optimization problem formulated in the previous chapter, with binomial tree

model for asset-returns, is to find the optimal value of the investment decision vari-

ables, Xt,n, so that the expected utility of wealth at the planning horizon is maximized.

Therefore, the following problem is solved for specific utility functions, U(.):

max
Xt,n,t=0,T−1,n=1,N

N∑

m=q

[pU(XT−1,mWT−1,mSu + (1−XT−1,m)WT−1,mRf) +

pU(XT−1,mWT−1,mSd + (1−XT−1,m)WT−1,mRf)]
� 0 ≤ Xt,n ≤ 1, ∀t, n,

where p is the probability of each node at the planning horizon, T is the planning

horizon and U(.) is the investor’s utility for wealth at the planning horizon. The

index m ranges over all the outcomes at one period prior to the planning horizon.

In our problem formulation we permit no short sale, i.e., borrowing of assets is not

allowed. This restriction translates to the above bounds on the decision variables.

These bounds reflect regulatory constraints on positions the planner can take.

In the above formulation it is possible to solve for the optimal asset allocation

decisions for a large class of utilities; only some of these are presented in what follows.

Also, the size of problems for which results are presented is chosen to be moderate

for ease of presentation. The results from the non-uniform time-periods framework is

presented only for the loss-aversion utility, although other utilities may be used.

4.3.1 Loss Aversion Utility

Tversky and Kahnemann developed an alternative theory to the expected utility

theory of normative choice, called the prospect theory. The salient features of this

alternative theory are (see Tversky and Kahneman [54] for more details) :

Reference dependence The carriers of utility are gains and losses defined relative
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Figure 4.1: Plot of loss-aversion utility against wealth, W

to a reference point.

Loss aversion The function is steeper in the negative than in the positive domain,

implying that losses loom larger than corresponding gains.

Diminishing sensitivity The marginal utility of both gains and losses decreases

with their size.

This utility function is continuous and increasing, but the above properties give it an

asymmetric S-shape (see figure 4.1). The utility is convex and much steeper below

the reference point and concave and less steep above it, hence the derivatives don’t

match at the reference point.

Figures (4.2) and (4.3) give the optimal asset allocation for loss-aversion utility

for T = 9 and the reference point is taken as the 8% annual return on the starting

wealth. In figure (4.2) the optimal allocation for nodes at each time-period are plotted

from “top” to “bottom.” “Top” is the scenario where return is high in all prior time

periods and “bottom” is where return has been low in all prior periods. In figure
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(4.3) the allocation is plotted by wealth level at the nodes in each time period. Due

to overlapping fewer points are visible in these plots than there are nodes in the tree

at each time-period.

It is interesting to observe the effect of the reference point on the optimal asset

allocation. In figure (4.4) and (4.5) the optimal asset allocation for three different

reference points for the loss aversion utility is given. The first reference point is as

before, the second corresponds to the riskfree annual rate of return of 5% and the

third is the starting wealth.

Note that in the above formulation of the problem all the characteristics of

prospect theory modeling of utility are not followed; in particular, we do not weight

the probabilities associated with the final nodes in the tree according to Kahneman-

Tversky’s prospect theory.

Results for non-uniform time periods are given in figure (4.6). A 9 periods problem

is solved with 4 quarters, 2 half-year periods, 1 one year period, 1 two years period and

1 four years period. Therefore, a total of 9 years is spanned with a higher resolution

for periods close to t = 0.

4.3.2 Piece-wise Linear Utility

The piece-wise linear utility is also a utility with a reference point; there is a kink at

the reference point. The slope is higher below the kink than above it. Figure (4.7)

plots the utility.

Formulation of the problem as done for loss-aversion utility does not work for a

piece-wise linear objective. SNOPT tests for the correctness of the objective gradients
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Figure 4.2: Optimal Stocks investment weights for a 9 periods problem using Loss
aversion utility
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Figure 4.3: Optimal Stocks investment weights for a 9 periods problem using Loss
aversion utility, plotted by wealth levels at nodes for each time period
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Figure 4.4: Optimal Stocks investment weights for a 9 periods problem using Loss
aversion utility, with different reference points (continuous for 8% yearly return,
dashed line for 5% yearly return)
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Figure 4.5: Optimal Stocks investment weights for a 9 periods problem using Loss
aversion utility, with different reference points (continuous for 8% yearly return,
dashed line for starting wealth)
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Figure 4.6: Optimal Stocks investment weights for a 9 periods problem using Loss
aversion utility, with non-uniform time periods (4 quarters, 2 half year, 1 one year, 1
two year and 1 four year periods)
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Figure 4.7: Plot of piece-wise linear utility against wealth
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provided using finite-difference approximation (since it assumes that the objective is

a smooth function). The finite difference approximation of derivative does not match

those given to the solver and hence it detects an error. In order to be able to solve the

problem for a piece-wise linear utility, we first alter the formulation of the problem

as follows.

Wealth levels at all nodes are taken as variables, including the wealth at the

planning horizon T . Two extra variables are defined for each node at the planning

horizon of the tree, i.e., there are now (2T−1) Xt,n variables, (2T+1−1)Wt,n variables
and 2(2T ) additional variables. Let these additional variables be Z1(1 : 2

T ) and

Z2(1 : 2
T ). If the slope of each linear in the utility is c1 and c2 and the reference point

is ŵ, then the objective for the new, equivalent problem formulation becomes

max
Xt,n,Wt,n,Z1,Z2

2T∑

i=1

p(c1Z1(i) + c2Z2(i)) (4.1)

�WT,2T+i−1 = Z1(i) + Z2(i) for i = 1 : 2
T (4.2)

0 ≤ Z1(i) ≤ ŵ for i = 1 : 2T (4.3)

0 ≤ Z2(i) ≤ ∞ for i = 1 : 2T , (4.4)

along with the constraints (3.1) & (3.2) involving Xt,n andWt,n variables. The bounds

(4.2), (4.3) & (4.4) make sure that the variables Z1(1 : 2
T ) and Z2(1 : 2

T ) are

consistent with the variables WT,n for n = 2
T : 2T+1 − 1. In the new formulation the

objective is linear.

It may be thought that increasing the number of variables in this manner would

have a serious impact on the efficiency of the solver. However, at every iteration it

can be shown that at least one of the two new variables, Z1(i) and Z2(i), must be

on a bound. Consequently, the degrees of freedom does not increase at each iteration

and this factor dominates the efficiency of SNOPT. In figure (4.8) the optimal asset
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Figure 4.8: Optimal Stocks investment weights for a 9 periods problem using Piece-
wise Linear utility, plotted by wealth levels at nodes for each time period

allocation is given for T = 9. We compare the solutions for shifted reference points,

taking them to be the starting wealth and riskfree return on the starting wealth. The

results are very similar to the loss aversion utility.

4.3.3 α - t Semivariance Utility

The α - t semivariance utility also has a reference point and is quadratic below the

reference and linear above it. Figure (4.9) plots the utility. Two cases for this utility

are considered - one flat above the reference, the other increasing above the reference.

In figures (4.10) & (4.11) the optimal asset allocation is given for the two cases of α-t

semivariance utility for a 9 periods problem.
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Figure 4.9: Plot of α-t semivariance utility against wealth
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Figure 4.10: Optimal Stocks weights for a 9 periods problem using α-t semivariance
utility, plotted by wealth levels at each time period
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Figure 4.11: Optimal Stocks investment weights for a 9 periods problem using α-t
semivariance utility, where slope is zero above the reference

4.3.4 Probability of Reaching a Goal

This utility evaluates the performance of wealth accumulated at the planning horizon

by the probability of it exceeding a prespecified target wealth level, referred to as

Goal. The decision-makers may come up with a target wealth level by estimating the

total expenses they expect to have after retirement. Because of its intuitive appeal,

financial advisors like to talk in terms of this utility with their clients. Mathematically

the utility may be written as

Prob(WT > G), (4.5)

where WT is the random variable denoting the wealth at the planning horizon and G

is the target wealth level.

In a discrete model for asset-returns this utility is a discontinuous one, hence the

problem needs to be formulated so that the objective becomes a continuous function.

Our approach is as follows. Adopt an investment strategy such that the target value

(Goal) is achieved at a certain number of nodes at the planning horizon. Then select
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nodes at the planning horizon in a certain order in order to maximize the wealth

attained at them. This formulation of the problem results in the objective being

continuous.

A good starting point is crucial in this problem. We present two strategies to get

a good starting point.

Strategy 1 The investor initially invests only in the risky asset unless a transition

node is reached. At the transition node part of wealth is invested in the riskfree

asset and at all subsequent nodes all wealth is invested in the riskfree asset.

The determination of the transition node and the proportion of wealth to invest

in the risky asset is determined by assuring that the target wealth is reached at

the node at the planning horizon.

Strategy 2 The investor initially invests both in the risky and the riskfree asset

unless a transition node is reached. At the transition node investment in the

two assets is made such that at all subsequent nodes wealth needs to be invested

only in the riskfree asset to achieve the target wealth. Prior to the transition

node investment in the two asset classes is made so that at each node the

expected returns for the remaining time periods just attains the Goal level.

Note that both these starting points are feasible and that the total number of

active constraints is close to the number of variables. After adopting one of the above

two strategies a set of nodes at the planning horizon is at the Goal level. We next

pick the highest non-Goal node and maximize the wealth level at this node along

with constraints that the nodes that have already achieved the Goal stay at Goal.

Optimization could be done on a sub-tree or on the entire tree. In figure (4.12)

investments for a planning horizon, T = 7 are given, and in (4.13) a histogram for

the corresponding wealth at the planning horizon is given. Note that a considerable

number (almost 50%) of nodes are at Goal, while on the other hand there are some
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Figure 4.12: Optimal Stocks weights for a 7 periods problem using Probability of
Goal utility, plotted by wealth levels for each time period

nodes that are even below the starting wealth level of 1 unit. It is interesting to

observe the number of nodes at the planning horizon at which Goal is attained for

different values of Goal levels. Figure (4.14) gives a plot of number of the nodes at

which Goal is attained against different Goal levels. A conspicuous jump occurs in

the number of Goal-nodes for a Goal value around 2.23.

A variant of the above problem is that the investor has a rough idea of what her

Goal value is, but will like to maximize the Goal value once a certain number of

nodes at which it is attained has been determined. For this problem we again adopt

one of the above two strategies and perform the above mentioned optimization on

number of nodes that attain the Goal. We then maximize the Goal value itself, under

constraints that the number of nodes that attained the Goal does not decrease.
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Figure 4.13: Histogram for wealth at the planning horizon, T = 7
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Figure 4.14: Number of nodes at which target wealth is achieved for a range of target
wealth values
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4.3.5 Variant of Probability of Reaching a Goal

A variant of the previous utility may be when the investor also cares for the downside

risk besides caring for reaching a target wealth level. As before, in a discrete model

for asset-returns this utility is a discontinuous one; hence the problem needs to be

formulated so that the objective becomes a continuous function. We adopt a similar

strategy to that described earlier: we adopt an investment strategy such that the

target value, Goal, is achieved at a certain number of nodes at the planning horizon,

along with no node being below a lower bound, say L.

A good starting point is again crucial. We modify the two strategies from the

previous section for this problem as

Strategy 3 Following strategy 1 the investor initially invests only in the risky asset

unless a transition node is reached. At the transition node part of wealth is

invested in the riskfree asset and at all subsequent nodes all wealth is invested

in the riskfree asset. A transition node on the downside is the node where the

wealth level becomes low enough that investing in the riskfree asset will barely

make it stay above L at the planning horizon. Therefore, when a transition

node is hit on the downside, the investor invests only in the riskfree asset in all

subsequent nodes.

Strategy 4 Following strategy 2 the investor initially invests both in the risky and

the riskfree asset unless a transition node is reached. The strategy is then

identical to that of strategy 3.

Therefore, there are now two types of transition nodes: one is identical to that

described in strategy 1 and the other is one at which continuing investing in the risky

asset can no longer ensure the final wealth to satisfy its lower bound. As with the

first type of transition node, the investment is split between the two asset-classes and

at all subsequent nodes all investment is in the riskfree asset.
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After adopting one of the above two strategies a set of nodes at the planning

horizon is at the Goal level and none of them is below L. We next pick the highest non-

Goal node and maximize the wealth level at the selected node, along with constraints

that the nodes that already achieved the Goal stay at Goal and none goes below L.

Optimization could be done on a sub-tree or on the entire tree.

As before, another variant of the above problem is that the investor would like

to maximize the Goal value once a certain number of nodes at which it is attained

is figured out. For this problem we again adopt one of the above two strategies and

perform the above mentioned optimization on the number of nodes that attain the

Goal. We then maximize the Goal value itself, under constraints that the nodes that

attained the Goal stay so and no node at the planning horizon goes below the level

L.

4.4 Verification of Results from Standard Utilities

Research in finance and economics has primarily focused on utilities in the normative

class. In order to validate our modeling and solution method, we applied our method

to utilities in the normative class and checked if our results qualitatively match those

of others. We begin with the constant relative risk aversion utility.

Power Utility

Absolute risk aversion, A(W ) as defined by Arrow and Pratt, is given as

−U ′′(W )
U ′(W )

,

for twice continuously differentiable utilities. It is a measure of aversion to risk for

different values of wealth. On the other hand, relative risk aversion, R(W ) is defined
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as

−WU ′′(W )
U ′(W )

,

and is a measure of aversion to risk relative to the wealth level (see Huang and

Litzenberger [19]). As the name suggests, relative risk aversion is a constant for

constant relative risk aversion(CRRA) utilities, i.e., aversion to risk decreases with

wealth.

Power utility is a constant relative risk aversion utility. In continuous time, given

two asset classes with prices governed by a constant coefficient stochastic differential

equation, the optimal allocation is given as :

X∗t =
α− r
σ2(1− γ) ,

where r is the riskfree rate, α, σ are coefficients of the stochastic differential equation

governing asset-price dynamics and 1 − γ is the relative risk aversion (see Merton
[41]). Therefore, the optimal allocation for the power utility is a constant over time.

Optimal allocation from our computations is a constant over all time-periods, Xt,n = 1

for all t and n. This is consistent with the continuous-time result, since in our model

r = 1.05, α = 1.11, σ = 0.15 and 1 − γ is taken as 1.5. Therefore, the optimal
constant allocation to the risky asset should be 0.06

0.152(1.5)
= 1.78. Due to the bounds

imposed on the decision variables, our solution is Xt,n = 1.

Logarithmic Utility

Logarithmic utility is a special case of the power utility with the characteristic that

zero wealth level elicits infinite displeasure (it is not defined for negative wealth levels).

The results are similar to that of a power utility.
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Figure 4.15: Optimal Stocks investment weights for a 9 periods problem using Nega-
tive Exponential utility, plotted by wealth levels at nodes for each time period

Negative Exponential Utility

The (negative) exponential utility belongs to the constant absolute risk aversion class

(CARA), which implies that with increasing levels of wealth the aversion to risk

remains the same. The utility asymptotes to a horizontal line as wealth goes to

infinity. Continuous-time result for the negative exponential utility is

X∗t =
α− 1
ηrσ2Wt

,

where η is the absolute risk aversion. Therefore, the optimal dollar amount invested

in stocks is a constant. Our results for a 9 periods problem are in figure (4.15). The

optimization is done with constraints that allow no short selling, hence the saturation

at low wealth levels. There are not as many points visible in the plot as there are

number of nodes in each time-period of the tree, because several of the points overlap.

This is because wealth levels are the same at these nodes.
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Figure 4.16: Plot of quadratic utility against wealth

Quadratic Utility

Quadratic utility, which is a concave, quadratic function of wealth, has the unde-

sirable property of saturating at a wealth level that corresponds to the maxima of

the function, after which there is dis-utility for more wealth (see figure (4.16)). This

property of the quadratic utility seems somewhat counter-intuitive.

One way to remedy this property is to replace the decreasing part of the quadratic

by an increasing linear function. This modification makes the utility resemble the α-t

semivariance type utility studied before. Results from our computations using the

quadratic utility can be seen in figure (4.17).

Kritzman’s Combination Utility

This utility is a combination of the power and logarithmic utility; more specifically,

the utility function is U(W ) = logW − 1
W
. A plot of the utility function is given in

figure (4.18). Results for the Kritzman’s Combination Utility can be seen in figure

(4.19).
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Figure 4.17: Optimal Stocks investment weights for a 9 periods problem using
quadratic utility, plotted by wealth levels at nodes for each time period

4.5 Comparisons and Conclusions

Using our formulation for the investment problem it is possible to obtain the optimal

investment decisions for several different types of utility functions, results for some of

which were presented in the previous sections. We solved the problem and presented

results for some behavioral utilities and some of their variants. This was followed by

results for some more traditional utilities from the normative class of utilities.

We now make some general remarks comparing the characteristics of the optimal

investment decisions for utilities in the two classes, normative and descriptive. The

two classes are large and contain rather diverse utilities, so it is not possible to make

very rigorous comparative statements. Among the behavioral utilities it was observed

that there were considerable shifts from investing all the wealth in the risky asset,

i.e., at several wealth levels investments in the riskfree asset was favored. However,

among the normative utilities, except for the negative exponential utility, investments



CHAPTER 4. APPLICATION TO INVESTMENT PROBLEM 63

0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

Wealth

K
rit

zm
an

 C
om

bi
na

tio
n 

U
til

ity

Figure 4.18: Plot of Kritzman’s combination utility
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Figure 4.19: Optimal Stocks investment weights for a 9 periods problem using Kritz-
man’s combination utility, plotted by wealth levels at nodes for each time period
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only in the risky asset for all times and all levels of wealth was obtained as optimal.

In the problem formulation and results presented earlier we imposed bounds on

the investment decision variables allowing no short-selling or borrowing of the asset

classes. It is interesting to solve the problem for both normative and behavioral

utilities and observe the impact of relaxing these bounds so that some amount of short-

selling is permitted. The results in this case for the referential behavioral utilities, such

as the loss-aversion utility, piece-wise linear utility etc., have similar characteristics

as before. The V-shaped “dip” in the allocation to the risky asset that appears at a

range of wealth level persists. Outside the dip, the “saturation” level is now at the

new upper bound of the investment decision variables. For the normative utilities

such as power or logarithmic utility, consistent with the analytic results, the optimal

investment decision is a constant for all times and wealth levels.

It was observed earlier that the exercise of obtaining optimal investment decisions

for the behavioral utilities may be viewed as a prescriptive step. This is, however,

a very subjective analysis. To someone whose preferences are represented by the

Prospect theory loss-aversion utility the corresponding optimal investment decisions

make look reasonable and satisfactory, while some others may feel uncomfortable

about, for instance, investing all the wealth in the risky asset at low levels of wealth.

As a consequence, the subsequent prescriptive steps will continue to be subjective.

4.6 Contribution Schemes

In the results seen so far the optimization problem for the investment problem was

formulated with the assumption that the investor deposits all the wealth she will ever

invest in the retirement fund at t = 0, i.e., at the beginning of the planning period.

This is clearly far from reality, since in reality people make periodic contributions to

the retirement fund. We now look at this version of the problem.
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Greatest degree of flexibility in modeling the contributions will be to make them

both state and time dependent variables. This will double the total number of de-

cision variables in the problem. It is reasonable to impose an upper bound on the

contribution variables, since there are restrictions in practice on how much one can

contribute yearly to a retirement fund. It is also reasonable to expect most utility

functions to be increasing in wealth, since it is highly unlikely that one should prefer

to have less wealth rather than more. As a result, the contribution variables will

always be on their upper bounds in the solution of the optimization problem. This

suggests that there is not much advantage in treating them as variables, and one only

needs to select sensible levels of upper bounds for contribution levels in formulating

the problem. In other words, it suffices to model the problem with a fixed level of

contribution amount for each time period of the problem.

The cases where the contribution variables may not be on their upper bound

are either when the utility function is not an increasing function of wealth or when

the problem is formulated within a holistic financial planning framework, i.e., one in

which the planner considers trade-offs between contributing to retirement fund and

spending the wealth now. In the latter case the objective of the problem will also

have terms that represent utility from spending the wealth now along with utility

derived from saving and investing the wealth towards retirement.

4.6.1 Problem Formulation for Contributions

The problem is now formulated as follows. The contribution levels for each time

period is taken as Kt,n and the upper bound on this variable is denoted by K̄t. The

transfer of wealth equations become

Xt,n1(Wt,n1 +Kt,n1)Su + (1−Xt,n1)(Wt,n1 +Kt,n1)Rf = Wt+1,n2 (4.6)

Xt,n1(Wt,n1 +Kt,n1)Sd + (1−Xt,n1)(Wt,n1 +Kt,n1)Rf = Wt+1,n3, (4.7)
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where Wt,n1 denotes the wealth in the retirement fund, and Kt,n1 denotes the dollar

contribution made at time t and node n1 to the retirement fund. The optimization

problem becomes

max
Xt,n,Kt,nt=0,T−1,n=1,N

E0[U(W̃T ]

� 0 ≤ Xt,n ≤ 1, ∀t, n
0 ≤ Kt,n ≤ K̄t ∀t, n.

This problem formulation is very similar to the consumption problem that will be

studied in greater detail in the next chapter. The only major difference between the

two problems is that here the objective contains no utility term for the contributions

whereas in the consumption problem the objective primarily consists of utility from

consumptions.

4.6.2 Results

Following the argument presented earlier regarding the contribution levels ending

up on their upper bounds when the problem is solved for a utility function that is

increasing in wealth, we modify the problem as follows. We fix the contribution levels

at their problem upper bounds and solve the following optimization problem.

max
Xt,n,t=0,T−1,n=1,N

E0[U(W̃T ]

� 0 ≤ Xt,n ≤ 1, ∀t, n
Xt,n1(Wt,n1 + K̄t)Su + (1−Xt,n1)(Wt,n1 + K̄t)Rf =Wt+1,n2
Xt,n1(Wt,n1 + K̄t)Sd + (1−Xt,n1)(Wt,n1 + K̄t)Rf =Wt+1,n3 .

In figure (4.20) the results are plotted for the prospect theory loss-aversion utility in

a three dimensional plot by the wealth level at each node; wealth level is taken as net
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Figure 4.20: Optimal Stocks investment weights for a 6 periods problem using loss
aversion utility, plotted by wealth levels at nodes for each time period

of the contribution made at the node.

Here the starting wealth is taken to be 0.5 units of wealth, along with 0.1 units of

wealth contributed in each subsequent period. The pattern for optimal investing in

the later periods is very similar to what was seen in the non-contributions case, but

in earlier periods, specifically for t = 0 and t = 1, there is considerable difference in

investment levels. The investment shift from investing in stocks because the wealth

levels in the retirement fund are comparatively low towards the beginning of the

planning period.



Chapter 5

Consumption Problem

5.1 Introduction

The consumption problem refers to the problem of finding the optimal consumption

strategy for wealth after retirement. An accompanying, supporting optimal invest-

ment strategy also needs to be computed. Most researchers have studied this problem

in an integrated fashion with the investment problem. We choose to study it sepa-

rately since in the retirement planning framework, the two stages, namely the time in

life when one plans one’s retirement and the time when one is retired have very differ-

ent characteristics, concerns and preferences. A key difference between pre-retirement

and post-retirement decisions is that post-retirement decisions have a much more im-

mediate impact.

Achieving retirement goals requires a well-defined plan. The most important

considerations for this planning would be:

• when one retires or the retirement age,

• expected lifestyle and related expenses after retirement,

• what is one’s life expectancy,

68
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• what different sources of income one has after retirement,

• marital status,

• and whether or not there is a bequest motive.

Clearly, a lot depends on how early and how well an individual plans for one’s re-

tirement and accumulates the retirement capital. The consumption problem assumes

that the planner has done the best in her capacity to accumulate the retirement funds,

and addresses how the individual should consume the funds year by year after retire-

ment and how the remaining funds should be invested in order to keep a continuous,

assured flow of income during the retirement years.

Modeling life expectancy is a critical aspect of the problem. A related issue is

a retiree’s health. This may impact both consumption due to health care costs and

a retiree’s ability to enjoy life. The uncertainty related with health and life is at

the largest in one’s life at this stage and modeling of the problem should take this

into account. Most other considerations listed above for retirement planning can

be taken as parameters of the model to an extent– for instance, marital status can

be accommodated by considering larger consumption volumes; a similar adjustment

could be made for lifestyle and related expenses. The problem is formulated very

similar to the investment problem as

max
Xt,Ct,t=0,T−1

T̃∑

t=0

E[Ut(Wt, Ct)]

with the difference that the planning horizon, T̃ , is not known with certainty and

there is an extra set of variables, Ct, representing consumption over time.

As was mentioned earlier, most work on this problem has been in an integrated

framework along with the investment problem. We give a brief overview of these

approaches. Bodie, Merton and Samuelson [8] consider a life-cycle model with an
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optimal investment choice, choice of labor and consumption over the life-time of a

planner. The problem is posed as an optimal control problem in continuous time and

solved by assuming the wages to be perfectly hedged. Relations are drawn between the

optimal investment choice and human capital of the planner over the planning period.

Campbell and Viceira [10] consider an infinitely-lived investor with the Epstein-Zin-

Weil utility (a recursive generalization of the power utility) and solve the investor’s

optimal consumption/investment problem. They replace the first-order conditions

(Euler equation) and budget constraints of the problem with approximate equations

and explore an analytical solution for the approximate problem. They analyze trends

such as optimal growth rate of consumption, optimal consumption-wealth ratio, etc.

Viceira [57] extends Campbell-Viceira by including an undiversifiable labor income

process to the problem. Investors are infinitely lived, but have a certain probability, πr

of transition to a retired state. After reaching a retired state investors are assumed

to stay retired thereafter. The power utility for consumption is assumed and the

solution technique is similar to Campbell-Viceira. Analysis is done on the effect of

retirement on the portfolio choice.

There are several other researchers who have performed empirical analyses to un-

derstand retirement behavior among individuals. We briefly outline this work. Hurd

and McGarry [24] study the evolution of subjective survival probabilities and their

ability to predict actual mortality. They find that subjective probabilities reasonably

predict actual survival. In Rust [47] a dynamic programming based model for retire-

ment behavior is developed and solved using a nested fixed-point algorithm. At each

time step the worker chooses how much to consume and whether to work full-time,

part-time, or exit the labor force. The objective is to maximize expected discounted

utility over the worker’s remaining life-time. Lumsdaine, Stock and Wise [33] study

the predictive performance of three models of retirement behavior - “option value,”

dynamic programming, and probit. They advocate the use of a simpler model with
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good predictability, and find that in this sense the “option value” model does better

than the dynamic programming one.

5.2 Problem Set-up

The problem set-up is similar to the investment problem. Investment decisions of

how much to invest in the two asset-classes, risky and riskfree, need to be made.

Returns from the risky asset are modeled using the binomial-tree model. There

are new variables for the consumption decisions over time, denoted by Ct,n. Ct,n

represents the dollar amount withdrawn from the retirement fund at time t and node

n for consumption during the subsequent period. The planner derives utility from

consumption, hence the objective of the problem is to maximize the expected utility

of consumption. Since there is uncertainty in the planning horizon of the problem,

the planner is likely to prefer consuming earlier in the planning period rather than

delay it for later use. The planner may have plans for activities, such as traveling

after retirement, which they are likely to be more fit to do early in retirement rather

than later for health related reasons. This may be another motivation for preferring

early consumption. To model the preference for early consumption, a time-preference

parameter, δ is introduced. Utility for consumption at time, t, is taken to be δtU(Ct),

where δ lies in the interval (0, 1). As a result, utility from consumption in periods

farther out in the planning period get incrementally discounted. There may also be

a bequest term in the objective, which is taken as the utility for wealth remaining

at the planning horizon. The objective has several additional terms and is more

complicated than before. At each node the wealth remaining in the retirement fund,

after the consumption money is set aside, is invested in the two asset-classes. The



CHAPTER 5. CONSUMPTION PROBLEM 72

transfer of wealth equations for the consumption problem become:

Xt,n1(Wt,n1 − Ct,n1)Su + (1−Xt,n1)(Wt,n1 − Ct,n1)Rf = Wt+1,n2 (5.1)

Xt,n1(Wt,n1 − Ct,n1)Sd + (1−Xt,n1)(Wt,n1 − Ct,n1)Rf = Wt+1,n3 , (5.2)

where equation (5.1) is for an “up” and equation (5.2) for a “down.” Xt,n1 is taken

to be the fraction of wealth at time t and node n1 invested in the risky asset and

(1−Xt,n1) the fraction invested in the riskfree asset. This is assuming that the investor
invests all the wealth at each node after setting aside the consumption money. Nodes

n2 and n3 at time t+1 are connected to node n1 at time t. Ct,n1 is the dollar amount

of wealth withdrawn from the investment fund for consumption between time t and

t+ 1 at node n1. The optimal asset allocation problem is written as:

max
Xt,n,Ct,n,t=0,T̃−1,n=1,N

T̃−1∑

t=0

E0[δ
tU(Ct,.)] + E0[δ

T̃U(WT̃ ,.)]

WT̃ ,m1 = XT̃−1,m(WT̃−1,m − CT̃−1,m)S + (1−XT̃−1,m)(WT̃−1,m − CT̃−1,m)Rf ,

where S takes the value Su if the transition from m to m1 is an “up” and the value

Sd if the transition is a “down.” U(.) is the utility for consumption and for wealth at

the planning horizon, δ is the time-preference parameter for consumption, and T̃ is

the random planning horizon. We have taken the utility for consumption and wealth

to be the same, although these may in some cases be different. For instance, if there

is no bequest motive, there may be a dis-utility for a positive wealth remaining at

the planning horizon. Corresponding changes in the objective are easy to make.

In the above optimization problem formulation we also need to impose bounds

on the decision variables. As in the investment problem, the problem is formulated

so that short selling is not permitted, i.e., borrowing of assets is not allowed. This
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restriction translates to bounds on the investment decision variables, namely 0 ≤
Xt,n ≤ 1. The restriction reflects regulatory constraints on positions the planner can
take on the asset classes. If some short selling is allowed, it would not seriously alter

either the nature of the problem or the method for solving it. One set of sensible

bounds on the consumption decisions would be Ct,n ≥ 0. Although a lower bound of 0
is meaningful for the consumption variables, we believe that a more strict bound may

be desirable. The lower bound should reflect the minimum amount one requires to

maintain a normal subsistence level. With this in view, the lower bound will depend

on the life-style, standard of living, or marital status parameters of the planner. The

bound may be taken to be increasing with time to adjust for inflation, and also

perhaps, for reasons such as increased health related expenses as one gets older.

We mentioned in the previous section that a critical modeling aspect of this prob-

lem has to do with the planning horizon of the problem. Although the planning

horizon in the investment problem was not an absolutely certain event, the planner

had a considerable amount of control over it. In the consumption problem, however,

the planner has little or no control over the planning horizon. This makes it impor-

tant to capture this characteristic of the problem in the modeling of the problem.

One option for dealing with this uncertainty is to use the expected life-expectancy, T ,

for an individual in place of the random value, T̃ , and use other modeling techniques

to accommodate some of the uncertainty related with T̃ .

We propose to have non-uniform time periods for this problem, beginning with

shorter periods that progressively become long as the planning horizon is reached.

For instance, we may start with quarter or half-year long periods, and increase them

to periods of two years or four years length. The discount factor gets accordingly

adjusted by being raised to the appropriate power. This implies that for the later,

longer periods, utility of consumption is much lower than that in the early periods.

The problem is solved on a rolling basis; therefore it is possible to adjust for all the
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parameters of the problem according to how the outcomes turn out to be. One may

wonder that imposing this decreased utility of consumption as time progresses will

entail not having much money left for later consumption, in case one happens to live

much longer than the expected life-expectancy. This is where the lower bound on the

consumption variables for t = 0 : T plays an important role; by making sure that one

will be able to maintain the minimum desired living standards. Life expectancy is

adjusted between rolling solves of the problem, and hence will be modeled accurately.

5.3 Computational Issues

The consumption problem stated above as an optimization problem is a nonlinear

programming problem, similar to the investment problem. In the investment prob-

lem there were three major sources of complexity, size of the problem, nonlinearity

of the objective and possibility of a less well-behaved utility function. In the original

formulation the objective gradients were hard to compute. An alternate formulation

of the problem, in which we treated the wealth level at each node of the tree to be a

variable, made the objective gradient simple and easy to compute. An upshot of it,

however, was we introduced as many nonlinear constraints in the problem as there

are decision nodes in the tree. The consumption problem is formulated similarly.

The complexities of the investment problem are enhanced in the consumption prob-

lem. There are an additional 2T − 1 consumption variables, Ct,n, which also appear
nonlinearly in the objective.

If the expected life-expectancy of a planner is 25 years, we model a 25 years

problem using non-uniform time-intervals, and span the 25 years using, say, 20 opti-

mization problem periods. In a 20 period binomial-tree there are (220−1 =) 1, 048, 575
nodes, and hence twice as many decision variables. All the variables have bounds,

and there are an additional 1, 048, 575 nonlinear constraints in the problem. The
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alternate formulation made the objective gradients easy to compute, but since the

consumption variables appear in the objective, they are more complicated compared

to the investment problem. The constraints also include the consumption variables,

hence the constraint Jacobian matrix is more complicated and relatively dense than

the investment problem. However, the matrix is still sparse and structured.

We used the SNOPT (Sparse Nonlinear OPTimizer) software [20] developed at

the Systems Optimization Laboratory at Stanford University to solve the investment

problem. SNOPT is very suitable for our problem, and yet not too specific for the

current structure of the problem. In seeking a method to solve our problem, we did

not want the method to be too specific to the models currently under consideration.

What we wanted to establish is that a powerful general purpose algorithm could solve

our current models. By using a general purpose algorithm we will not need to switch

algorithms when additional complexity is added to the model. The consumption

problem is slightly more complex, but the overall structure and properties of the

problem are very similar to the investment problem, hence we use SNOPT to solve

the problem. Exact function derivatives are provided to the solver.

5.4 Results

We now solve the problem using a specific utility function and present the results in

this section. Consider the case when the planner invests only in the riskfree asset

after retirement; this will guarantee a standard of living. Assuming that there is no

bequest motive, this implies that she can consume at the highest possible rate such

that no wealth is left at the planning horizon. To find the rate at which consumption
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is supported with this scheme, solve the following equations for Cf .

W1 = (W0 − Cf)Rf
W2 = (W1 − CfRc)Rf
W3 = (W2 − CfR2c)Rf
...

WT = (WT−1 − CfRT−1c )Rf

WT = 0

In the above equations it is assumed that consumption in every subsequent period

increases at a rate Rc and the riskfree rate is denoted by Rf . Increase in consumption

with time is justified to not only adjust for inflation (since consumption is taken in

nominal terms), but also to take into account increased expected expenses, such as

health related expenses, as one gets older. If we solve the consumption problem using

a utility function that is increasing in consumption levels, along with the above rate

of consumption as the lower bound on the consumption variables, it is no surprise

that all the consumption levels will be at their bounds. We denote these bounds by

Ct and call them the reference lower bound. For simplicity take Rc = Rf . Note that

this lower bound is the highest feasible lower bound on the consumption variables.

Now consider the case when the planner invests both in the risky and the riskfree

asset. The lower bound on the consumption variables is reduced from the reference

level by a fraction ρ. The new lower bounds are ρC t, where ρ ∈ (0, 1). The consump-
tion problem is solved with this reduced lower bound. We now apply this approach

to a specific utility function.
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Figure 5.1: Negative exponential utility plot for a 8 periods problem

5.4.1 Negative Exponential utility

Negative exponential utility is a constant absolute risk aversion (CARA) utility. Ab-

solute risk aversion, A(W ) as defined by Arrow and Pratt is given as

−U ′′(W )
U ′(W )

, (5.3)

for twice continuously differentiable utilities. Absolute risk aversion is a measure of

aversion for risk, and for the negative exponential utility is a constant for all levels

of wealth. This implies that a planner’s appetite for risk is a constant for whatever

their level of consumption or wealth. Time preference parameter, δ, is taken to be

0.9. A plot of the utility for consumption for an 8 periods problem is given in figure

(5.1).

We solve an 8 periods problem with the lower bound relaxed by taking the bound

relaxation parameter, ρ equal to 0.8. In figure (5.2) a three dimensional plot of the

optimal consumption variables is presented. In figure (5.3) the corresponding optimal
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Figure 5.2: Optimal consumption decisions for a 8 periods problem for negative ex-
ponential utility

investment variables are plotted. Note that at several nodes the optimal investment

is to invest 100% in the risky asset. A question one may ask is what is the benefit

in term of consumption levels from taking these risky investment positions. One way

to measure the “benefit” would be to see the number of nodes in the tree that are

above the corresponding reference lower bound level. In figure (5.4) percentage of

consumption variables that are above their problem bounds, ρCt, and the reference

lower bound Ct are plotted for each time period. The point of this comparison is to

see the improvement in consumption from investing in the risky asset. Figure (5.5)

is a plot of minimum, maximum and mean consumption levels for each time period

for an 8 periods problem.
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Figure 5.3: Optimal investment decisions for a 8 periods problem for negative expo-
nential utility
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Figure 5.5: Minimum, Maximum and Mean Consumption level for each time, t.

The results for the consumption problem with the bound relaxation parameter

taken as 0.8 indicated that approximately 55% of the nodes exceed the reference

lower bound. We now address the question of how this percentage changes as the

relaxation parameter varies in the range 0 to 1. Figure (5.6) is a plot of a range of

values for the bound relaxation parameter and the corresponding percentage of nodes

that are above the reference lower bound. The plot has an interesting characteristic,

for a ρ value around 0.8 the percentage of nodes that exceed the reference lower bound

peaks and then asymptotes to 35%, approximately.

We take a closer look at four levels for the bound relaxation parameter, ρ, in order

to understand the characteristic of this plot. Figure (5.7) plots the consumption levels

on the tree by their utility. The effect on the consumption levels is visible when the

relaxation bound is lowered from 0.8 to 0.7. During this change the effect from the

time-preference criterion for consumption overtakes the effect from the lower bound

on consumption; as a result, consumption in the early periods is higher leaving less

money for later consumption. As a consequence, the percentage of nodes that are
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bound level
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able to exceed the reference lower bound begins to decrease as the bound relaxation

parameter is further decreased.

5.5 Conclusions

It is a better choice to invest in the risky asset with higher expected returns after

retirement along with the riskfree investments. Although riskfree investing guarantees

a level of consumption, exposing oneself – up to an extent – to a risky asset brings

the opportunity of improving consumption substantially. Interestingly, the results

show that reducing one’s guaranteed income below approximately 80% of the assured

income gives little additional benefit.

Even though the models used for the consumption problem discussed in the chap-

ter were simple, some interesting characteristics of the problem are observed. We

could further enhance the models by including a model for randomness in the plan-

ning horizon that better reflects the nature of the problem. Other extensions to this

problem are discussed in greater detail in the final chapter.



Chapter 6

An Alternate Approach

6.1 Introduction

The problem of finding optimal investment decisions for long-term financial planning

becomes computationally intractable in its most general form. This could either be

due to the asset-dynamics models chosen or the properties of the utility function of

the investors. Closed form analytical solutions are obtainable only in special cases.

To solve this important problem for other cases, various simplifying assumptions

are made. Some well-behaved and well- investigated utility functions are log utility

(Mossin [42]), mean-variance (Markowitz [36]), Mean Absolute Deviation (Stone [52],

Worzel et al [59]), and concave piece-wise linear utility (Dantzig and Infanger [13],

Konno [29]). Asset dynamics have been simplified by discretizing the asset returns

using multinomial trees (Mulvey and Ruszczynski [43]), network flows (Mulvey and

Valdimirou [44]), and scenario based modeling ( Rockafellar and Wets [45], Carino et

al. [11]). Monte Carlo importance sampling is used to reduce drastically the effort

needed to approximate a large multinomial tree (Dantzig and Infanger [13]).

In the previous chapters a binomial-tree based model was developed and opti-

mal investment and consumption decisions were obtained for a more general class of

84
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utilities. In this chapter we present an alternate approach to finding the optimal in-

vestment decisions. For scenario based methods, including binomial trees, the number

of decision variables grows exponentially with the number of time periods. Inspec-

tion of the optimal solution using these methods can, however, reveal a structure

that can be exploited to simplify the problem. We develop an approach that exploits

the observed structure in the solution by approximating the optimal decision in each

period with a low dimensional parameterization. The problem is reformulated as a

nonlinear optimization in the parameter space, its dimension increasing linearly with

the number of time periods. This approach allows us to find optimal investments for

a more general class of utilities than the standard concave ones.

6.2 The Asset Allocation Problem using a Behav-

ioral Utility

In Chapter 1 the asset allocation problem was viewed as one involving choice, where

the planner chooses the “best” mix of assets over time in their portfolio to meet a

certain objective at the planning horizon. The preference relations were taken to be

represented by a utility function, U(.). In the past years there has been considerable

interest in finance literature in utility functions studied in the psychology literature.

These utility functions, referred to as behavioral, are a result of experiments con-

ducted with people involving real or imaginary pay-offs. The subjects are presented

with different choice options under different settings and inferences are drawn from

their choice behavior. In the behavioral framework, Prospect theory, developed by

Kahneman and Tversky [26, 55, 54], has earned particular attention. Essential char-

acteristics of the prospect theory utility are :

Reference dependence The carriers of utility are gains and losses defined relative
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to a known reference point. People perceive and evaluate different choice options

as a gain or a loss from a reference point.

Loss aversion The function is steeper in the negative rather than in the positive

domain, implying that losses loom larger than corresponding gains. An amount

of loss elicits more “unhappiness” than the same amount of gain elicits “happi-

ness.”

Diminishing sensitivity The marginal utility of both gains and losses decreases

with their size. Gain or loss of an extra dollar results in a lesser impact as the

amount of overall gain or loss gets larger.

The implication of these characteristics on the utility function are that it has an

asymmetric S-shape that is concave above a reference and convex below it (see figure

6.1). The utility is referential in nature, which is the other contrasting property with

the standard utility functions. Lack of concavity and differentiability of the prospect

theory utility make computation of the corresponding optimal investment decision

more challenging.

From a retirement planning point of view the problem addressed is to find an

optimal asset-class mix for an investor’s portfolio over a planning period so that

the expected utility at the planning horizon is maximized. As before, the utility

is taken to be for wealth, in particular for the wealth at planning horizon. This

is a reasonable assumption, since in the retirement planning framework there is a

tax penalty associated with premature withdrawals from the retirement fund. We

will continue to consider a two asset-classes problem, namely, risky and riskfree. A

more general problem may be considered, for instance, one in which utility is also for

intermediate wealth and consumptions or when there are more than 2 asset-classes.
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Figure 6.1: Prospect theory loss-aversion utility of wealth

The planning horizon for the problem is when the planner intends to retire, and

it is assumed that the planner has a fair idea of when she plans to retire. We denote

the planning horizon by T ; therefore the planning period is from 0 to T , where

0 represents the beginning of the planning period. xt is taken to be the fraction

of wealth at time t, denoted by Wt, invested in the risky asset. (The notation is

purposefully changed to make a distinction with the variables in the binomial tree

approach.) Hence assuming that all the wealth at each time is either invested in the

risky or the riskfree asset, (1 − xt) is the fraction of wealth invested in the riskfree
asset. The problem is formulated as:

max
xt,t=0,T−1

E0[U(WT )]. (6.1)

Therefore, the problem is to find the optimal investment weight for the risky (and

the riskfree) asset over the planning period so that the expected utility for wealth at

the planning horizon is maximized.
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Figure 6.2: 9 Periods plot of optimal allocation in the risky asset against nodes in
the binomial tree

6.2.1 Discovering the Structure in Solution

In chapter 4 the above problem was solved using a binomial-tree model for asset-

return dynamics. In this set-up the risky asset return follows a simple random-walk;

in each period there is an equal probability of either a high or a low return. The high-

low return values are chosen to match the appropriate mean and standard deviation.

An investment decision is made at each node of the tree, and is chosen so that the

expected utility of wealth at T is maximized. In figures (6.2) and (6.3) some results

from chapter 4 for the loss aversion utility are presented.

Optimal investment weights for the risky asset are denoted byXt,n, where t denotes

the time and n the ordering of nodes of the binomial tree as given in figure (2.2).

The problem is solved taking the planning horizon, T = 9 and the reference point of

the utility function is taken to be the wealth one would obtain if an 8% yearly return
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Figure 6.3: 9 Periods plot of optimal allocation in the risky asset against wealth levels
for each time period

is obtained each year for the entire planning period. In figure (6.2) the investment

weights are plotted by the nodes of the tree for each time period. The plot is not

much more instructive than indicating that there are a small number of scenarios at

periods t = 4 to t = 8 in which the optimal allocation in the risky asset is less than

100%. When the asset dynamics are “memoryless” the optimal allocation is expected

to be state dependent, rather than path dependent. Figure (6.3) confirms this. It

shows that not only is the optimal asset allocation a function of wealth, it is a very

simple function of wealth.

6.2.2 The Structure

The structure observed above may be described as follows. At extreme low levels

of wealth the optimal allocation to the risky asset is 100%. As wealth increases,

the optimal allocation to the risky asset falls, then rises back to 100%. In a multi-

period setting the “dip” in the allocation to the risky asset gets shallower and moves

towards lower wealth levels as the number of time periods to the planning horizon
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increases (see figure 6.3). The dip eventually disappears completely, indicating that

at sufficiently many periods prior to the planning horizon it is optimal to be fully

invested in the risky asset at all levels of wealth. The dips also have a dependence on

the reference point of the utility, as was observed in chapter 4, shifting together with

the reference wealth level.

The “saturation” for extreme levels of wealth is due to the constraint imposed

on the asset allocation variables to allow no short selling. Relaxing these bounds to

allow some short-selling (borrowing of assets) retains the structure with a different

saturation level. For instance, if a short-sell position could be taken up to the cur-

rent wealth level, the relaxed bounds for allocation weights will be −1 and 2. The
saturation level will now be at 200% level instead of the earlier 100% level.

This time varying dip is also observed for other utilities like the piece-wise linear,

α-t target semi-variance (Fishburn [17], Adachi [1]), and other S-shaped smooth util-

ities. This implies that for a large class of utility functions, the optimal investment

strategies may be both time and wealth level dependent. Hence, for utility functions

in this class strategies that are time-invariant (buy & hold) or wealth-invariant will

be sub-optimal.

6.2.3 The Central Idea : Use the Structure

In our approach for solving for the optimal investment strategy we make use of the

above observed characteristic of the optimal asset allocation by parametrizing x(t,Wt)

with respect to Wt with a few parameters for each t.

The method is as follows. First solve a one or two period problem using any brute

force technique, such as dynamic programming. This step may be required only once

for a class of utilities that have similar functional form for optimal asset allocation.

We then choose a set of approximating functions for the optimal solution as a function

of wealth. The multi-period problem is solved by maximizing the expected utility of
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wealth at the planning horizon with respect to the parameters of the approximating

function. This is a nonlinear optimization problem. Scenario generation for objective

function evaluation is done using Monte Carlo simulation. In the next section an

example problem is solved.

6.3 Applying Parametric Optimization

For illustration we apply the above outlined method to the prospect theory loss-

aversion utility, along with bounds on the investment weights allowing no short-selling.

The true solution for a range of starting wealths for the loss-aversion utility is given

in figure (6.4). For each time period this can be approximated with a linear for the

left edge of the dip and a quadratic function for the right edge (along with bounds

that the allocation is bound above by 1). This entails 5 parameters (2 for linear and

3 for the quadratic) for each time-period t = 0 to T − 1. Therefore, the functional
forms of the approximating functions are:

l(t,Wt) = a1(t) + b1(t)Wt (Linear) (6.2)

q(t,Wt) = a2(t) + b2(t)Wt + c2(t)W
2
t (Quadratic). (6.3)

The linear function l(t,Wt) approximates the left edge of the dip and the quadratic

function q(t,Wt) approximates the right. It may be desirable to introduce some more

bounds and constraints – for instance, the slope of the linear should be negative,

while the quadratic should be a concave function. Optimize E[U(WT )] w.r.t. the

5T parameters. Note that the number of parameters, and hence variables in the

optimization problem, grow only linearly with T .
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Figure 6.4: Optimal stock allocation for a one period and a four period problem as a
function of wealth and time horizon
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Figure 6.5: Comparison of the parametric solution with the true solution for a four
periods problem
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We set up the nonlinear programming problem with (a1(t), b1(t), a2(t), b2(t), c2(t); t =

0, T − 1) being the variables of optimization as follows.

max
a1(t),b1(t),a2(t),b2(t),c2(t);t=0,T−1

E0[U(WT )], (6.4)

x(t,Wt) = min(1, max(l(t,Wt), q(t,Wt))), (6.5)

Wt+1 = x(t,Wt)Wt S̃ + (1− x(t,Wt))WtRf , (6.6)

where S̃ is the stochastic return from the risky asset and Rf is the return on the

riskfree asset. Here the bounds on the variables are suppressed for simplicity. The

problem is solved for the optimal investment decisions using MATLAB’s nonlinear

optimizer routine. As in most iterative procedures, getting a good starting point is

critical for this problem. We adopted certain steps involving optimizing a subproblem,

such as fixing some of the variables, to get a good starting point. See figure (6.5)

for plots of parametric versus true solution for a four periods problem using the loss

aversion utility. For function evaluation Monte Carlo simulation was used, taking the

price process of the risky asset to be lognormally distributed, with mean, µ = 1.11

and standard deviation, σ = 0.15. The price evolution is given as

St = St−1 exp(µ+σÑ ), (6.7)

where Ñ is a standard normal. The riskfree rate, Rf = 1.05. A sample size of 10000

is used in the optimization.

6.4 Sensitivity to Asset-Dynamics Parameters

There is an inherent uncertainty associated with mean, standard deviation, etc., of

future asset-returns. As a result, the apparent precision of a solution is somewhat
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deceptive since the problem may itself be viewed as not so well defined. In this

section, we compare our approximation error (parametric solution relative to the true

solution) to the problem specification error (due to uncertainty in the asset dynamics).

We obtain the true and the parametric optimal asset allocation for a certain set of

values for the asset-dynamics parameters, Rf , µ, and σ. Let us call this true solution,

the reference. If, however, these values are not known precisely, but say within 1%

accuracy, we obtain a different set of true optimal allocations. These are plotted in

figures (6.6) and (6.7) in the top plots for a 4 period problem and allocations at t = 3,

by ±1% shift in the µ and σ values, respectively. The bottom figures in (6.6) and
(6.7) are plots of parametric optimal along with the true curves corresponding to the

±1% shifts in value of µ and σ, respectively. Similar plots can also be obtained for
t = 0, 1, 2 and for shifts in riskfree return, Rf .

Our approximate parametric optimal is well within the ±1% absolute shift of
optimal asset allocation for µ, σ and Rf . And the combined effect of change in these

asset-dynamics parameters will only result in greater shifts in the true solutions.

Therefore, precision of the parametric solution is a problem only if the parameters for

asset-dynamics are known with greater precision. If this is the case, one can select a

different parametrization for a better approximation.

6.5 Conclusion

In this chapter we developed a method for obtaining near optimal multi-period in-

vestment decisions in a concise parametric form for a range of state variable levels. In

Keane and Wolpin [28] the method suggested for making problems in discrete-time
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Figure 6.6: Sensitivity analysis: Variation in true solution due to 1% misspecification
in the stock mean parameter, µ. The approximate parametric solution falls well
within the error due to 1% misspecification of µ.
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Figure 6.7: Variation in true solution due to 1% misspecification in the stock volatility
parameter, σ. The approximate parametric solution falls well within the error due to
1% misspecification of σ.
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stochastic control tractable is similar in flavor, although they simplify the computa-

tional requirement using a simulation and interpolation scheme for the value function

of the problem.

In the binomial tree approach each x(Wt) is a variable, resulting in an exponential

increase in the number of variables as the planning horizon increases. In the para-

metric formulation, however, the number of variables increases only linearly with the

planning horizon. An assumption in this approach is that the user has an a priori

knowledge of the type of solution the problem may have in order to come up with a

plausible set of parametric forms for it. But, this is not too demanding since a one or

two periods problem is usually tractable using dynamic programming or other brute

force methods.

Another attractive feature of this approach is greater freedom to model the asset-

dynamics process. Correlations of the risky asset with the (relatively) riskfree one,

or two risky assets (for example, small-cap/large-cap, stock/bond index etc.) can

be easily accommodated. Either of which will square the complexity for a binomial

lattice or a tree approach, but here the change will be only in the sample generation

process; the number of variables in optimization problem will not be greatly affected.

In the parametric framework it is also possible to have multiple sources of risk

which will get incorporated into the simulation process, not disturbing any other

modeling aspects. Serial correlation in any of the price processes may introduce

path dependence in the optimal asset allocations, thus adding some complexity to

the parametrization. The approach can be extended to a problem with more than

2 assets (mutual funds, stock sectors etc.). This would make the problem greater

than one-dimensional. Contributions and consumption can be introduced with some

minor changes in the modeling. This method of parametrizing the action in terms of

states of the world can also be used in other problems where the parametrization is

possible.



Chapter 7

Future Work

A framework for financial planning is developed in the previous chapters, with a

specific focus on retirement planning. The retirement related planning problem is

viewed as comprised of two subproblems, the problem of acquiring wealth for retiring

by saving and optimal investing, and the problem of optimal withdrawals of wealth

from the retirement fund after retirement. There are several extensions possible to

the problems and the framework developed so far. The extensions can be classified

into the following categories.

Asset-return dynamics

Solution technique

Investment problem

Consumption problem

Usability of the tool

We now explore these extensions in greater detail.
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7.1 Asset-return Dynamics Models

Assets available for investing were classified into two major categories, risky and

riskfree. Returns on the risky asset were modeled using a binomial tree model, where

in every period the returns were either high or low with equal probability. Returns

on the riskfree asset are known with certainty for all time. In reality this may not

be totally satisfactory, since every type of asset has some degree of uncertainty or

risk associated with its outcomes. In order to incorporate this in the model, multiple

branching at each node of the tree will be required, especially if the two asset classes

are not perfectly correlated. The asset prices are known to mean-revert; this can be

modeled by making the transition probabilities time dependent. For instance, if there

is an “up” in a period, the probability of a subsequent “up” may be lower. Besides,

there is also a need to allow asset returns to have more than two possible outcomes

in each period; this is particularly important for the asset with a higher variance.

The planner may wish to classify assets into more than two asset classes, differing

from each other in the levels of riskiness and returns. The categories may be of stock-

bonds and cash, or of different mutual funds that the planner is required to select

from. Modeling asset-returns for a greater number of asset classes will result in a

greater degree of branching at each node of the tree.

Prospect theory, as discussed in earlier chapters, is developed by two psychologist,

Daniel Kahneman and Amos Tversky. It is an alternate theory to the expected

utility theory. One of the results of the theory is that people tend to transform

probabilities in a nonlinear fashion when evaluating uncertain prospects. The low

probabilities get overweighed while the higher ones get underweighed. In order to

provide a comprehensive tool for use in a descriptive (behavioral) framework, we will

need to extend our models so that this characteristic of people’s decision making is

incorporated.
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A direct implication of the extensions in the asset-return dynamics models sug-

gested in this section is an exponential increase in the optimization problem size. In

order to be able to address larger problems we will need to explore improved solution

techniques, and this is the topic of discussion in the next section.

7.2 Solution Technique

In Chapter 3 solution method for the optimization problem arising in resource allo-

cation for the investment and consumption problem was outlined. The optimization

problem was formulated as a nonlinearly constrained optimization problem. Sequen-

tial quadratic programming algorithms are a robust and efficient set of algorithms to

solve problems in this category. There was substantial sparsity and structure in our

problem, and we used SNOPT software to solve the optimization problem. SNOPT

(Sparse Nonlinear OPTimizer), developed at the Systems Optimization Laboratory

at Stanford, is a sparse implementation of sequential quadratic programming algo-

rithms. The current version of SNOPT does not use second derivative information

for the functions of a problem. In our problem formulation, where the wealth level at

each node of the tree is treated as a variable (along with a nonlinear constraint for

each node to satisfy the budgetary constraints), the second derivative of the objective

and constraints are easy to compute. By being able to use this additional informa-

tion, we hope to achieve greater efficiency for solving the problem, and potentially

allowing the capability of solving larger sized problems.

Another attractive feature of the optimization problem developed here is that it

yields very well to decomposition techniques. At each node there are only three linking

variables between the root of the tree and the subtree starting from the node, which

makes it easy to decompose the problem into subproblems. Decomposition techniques

adopted in collaborative or multidisciplinary optimization, used in applications such
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as aircraft design can be very beneficially implemented here.

There are 2t subtrees starting at each node at time t. An optimization problem

may be separately solved on each of the subtrees. Since there are only three variables

in the base of the tree that are linked with any single subtree, matching these common

(between the base and the subtree) variables with those at the base of the tree is easy.

For several utility functions considered in previous chapters, it was optimal to invest

100% in the risky asset in the earlier periods. For these utility functions matching

variables gets even more simplified.

7.3 Investment Problem

In the investment problem optimal decisions are computed for saving and investing to

acquire retirement funds. The objective for the problem was taken to be the expected

utility of wealth at the planning horizon, where the planning horizon was the time one

expects to retire. Therefore, the planner evaluated her overall performance in terms

of the wealth at the planning horizon. This may not usually be the case. According to

prospect theory people like to evaluate outcome of their single decision, rather than

outcome of a sequence of decisions. To implement this will imply that the objective

of the optimization problem will not only involve expected utility of wealth at the

planning horizon, but also that of wealth at all intermediate time periods. In the case

of utility functions with a reference point, the reference point for intermediate time

periods may vary with time.

In implementing any investment recommendations there are transaction costs in-

volved that should be taken into consideration in the overall asset allocation problem.

This is necessary for the recommendations to stay realistic. There is also a need for

tax related considerations in locating and allocating wealth in different asset classes.
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7.4 Consumption Problem

The consumption problem addressed the post-retirement resources allocation problem

of how best to consume the wealth saved in the retirement fund, while optimally

investing the remaining wealth. Uncertainty associated with planning horizon of

the problem was addressed in modeling for the problem. Results were obtained for

the negative exponential utility, a constant absolute risk aversion utility. Exploring

the optimal consumption decisions when the utility for consumption is descriptive

in nature is an interesting direction. Some additional questions that will need to

be addressed with the behavioral utilities are how does the time preference criterion

change and what is an appropriate reference point in the utility function for each time

period. Transaction costs and tax related issues need to be addressed in this problem

also.

7.5 Improving Usability of Tool

To provide a seamless planning tool, the pre-retirement planning and the post-

retirement planning will need to be merged so that there is a smooth transition from

one planning phase to the other. The problem will be viewed with three regions of

planning, the first when the time of retirement is far out, and hence the main focus is

on saving and investing. This will be followed by a region where retirement is near and

the planner will continue to plan the saving and investing for acquiring adequate re-

tirement funds, but also begin to plan the consumption process after retirement. And

the third region will be the purely post-retirement planning region when the planner

would have retired and will be concerned with the optimal consumption decisions and

investment decisions for the remaining wealth in the retirement fund.

In order to make this tool usable, there is a need for a good user interface. The
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user interface will need to fulfill several functions. First, it will be necessary to help

the planner figure out their utility functions or objectives for retirement planning.

Second, good methods will need to be devised for communicating the results of the

optimization problem to the user, so that its implications and consequences are un-

derstood. Third, some capability will need to be built for the planner to do analysis

of the investment recommendations obtained from the optimizer. And lastly, if the

tool is to be used as a prescriptive tool, some features will need to be developed that

aid the re-assessment process of the planner’s preference criteria.



Appendix A

Sequential Quadratic Programming

Algorithms

A.1 Problem

A typical nonlinear optimization problem with nonlinear constraints may be written

as

NLP : min
x
F (x)

� c(x) ≥ 0,

where F (x), the objective function, is a nonlinear function, and c(x) is a mN -vector

of nonlinear constraint functions.

Most optimization algorithms are designed to try and satisfy the optimality condi-

tions for optima. Before stating the necessary and sufficient conditions for optimality,

define a local minimizer to the NLP to be a point x∗ such that c(x∗) ≥ 0 and there
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exists a δ > 0 such that F (x) ≥ F (x∗) for all x satisfying

‖x− x∗‖ ≤ δ and c(x) ≥ 0. (A.1)

The necessary conditions for x∗ to be a local minimizer are that there exist multipliers

λ∗ such that

c(x) ≥ 0 (A.2)

ĴT (x∗)λ∗ = g(x∗), [or ZTg(x∗) = 0] (A.3)

λ∗ ≥ 0 (A.4)

ZT (x∗)W (x∗, λ∗)Z(x∗) is positive semidefinite, (A.5)

where g = ∇F (x), Ĵ is the constraint Jacobian, Z(x) is a basis for the nullspace of
Ĵ(x), and W (x, λ) is the Hessian of the Lagrangian L(x, λ). These conditions are

called the second-order KKT (Karush-Kuhn-Tucker) conditions. The first three are

called the first-order conditions. If the last two conditions are replaced by

λ∗ > 0 (A.6)

ZT (x∗)W (x∗, λ∗)Z(x∗) is positive definite, (A.7)

the conditions become sufficient for optimality.

A.2 Introduction

Sequential quadratic programming (SQP) algorithms can be viewed as a generaliza-

tion of Newton’s method to the (inequality-) constrained problem. The basic idea is
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to construct a constrained quadratic model around the current iterate xk. Minimiza-

tion of this quadratic model gives an update pk that approximates the error x
∗ − xk.

The new iterate is xk+1 = xk +αkpk, where αk is usually determined be a line search.

Trust-region methods may also be used.

In other words, SQP methods solve a sequence of quadratic programs (QPs).

Each QP has linear constraints and a quadratic objective. The QP constraints are

a linearization of the nonlinear constraints at xk. It is important to note that the

quadratic objective is an approximation to the Lagrangian L(x, λ), and not to the

objective function F (x). The kth QP subproblem for NLP can be stated as

QP :min
p
gTk p+ p

THkp

� Jkp ≥ −ck,

where gk = ∇F (xk), Jk is the Jacobian of c at xk, and Hk is an approximation to the
Hessian of the Lagrangian.

A.3 Merit Function and Line Search

Any algorithm for constrained optimization needs to ensure that the algorithm con-

verges to a point that is both feasible and a constrained minimizer. Therefore, to

measure how good a given point is, simply looking at the objective is not enough

because that does not say anything about how close the iterate is to the feasible

set. The standard approach today is to define a merit function which combines both

the objective and the constraint violations into one function. For this reason, merit

functions are closely related to penalty functions. For simplicity let us assume all

constraints in NLP are equalities of the form c(x) = 0, the two most popular merit
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functions for SQP methods are the l1 merit function

M(x) = F (x) + ρ‖c(x)‖1, (A.8)

and the augmented Lagrangian

M(x, λ) = F (x)− λT c(x) + ρ
2
c(x)T c(x), (A.9)

where ρ > 0 is a penalty parameter and λ is a set of Lagrange multiplier estimates.

In practice, a more complicated version of the augmented Lagrangian merit function

is used.

We now focus on algorithms that use a line search as opposed to the trust region

approach. That is, after a search direction p has been determined, we search along

the line x + αp in order to find a good step length α. The merit function is used in

the line search to determine the step α. Most convergence proofs for SQP methods

rely on proving a sufficient decrease in the merit function at each iteration.

A.4 Multiplier Estimates

The augmented Lagrangian merit function based SQP methods rely on Lagrange

multiplier estimates. Instead of only searching in the primal space for x∗, these

methods generate iterates (xk, λk) that need to converge to (x
∗, λ∗). Hence the search

needs to be done in a higher-dimensional space than that of x. This basic idea is also

the foundation of primal-dual methods. It is important that we compute accurate

multiplier estimates, since x cannot converge to x∗ any faster than λ→ λ∗.
In SQP methods we need to distinguish between the multipliers of the nonlinear

problem and those of the QP subproblems. In each QP minor iteration, the QP

multiplier estimates are updated. After solving a QP, the QP multipliers can then be
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used to define the search direction in the Lagrange multiplier (dual) space.

A.5 Quasi-Newton Update of the Hessian

Most SQP methods do not require exact second derivatives because these may be

unavailable or expensive to compute. Another potential problem is that the exact

Hessian may be indefinite. Standard SQP methods assume H is positive semidefinite

and thus the QP subproblems are convex. We focus on SQP methods where at each

iteration, a positive definite quasi-Newton approximation of the Hessian is used.

A.6 Active-set Approach

There are two main strategies for handing constraints in optimization problems. In

interior-point (barrier) methods, the iterates are strictly feasible with respect to in-

equality constraints. The problem of finding an initial feasible point remains. If no

such point is known, the problem is typically augmented with an artificial variable

that creates an obvious feasible point for the augmented problem. When both equal-

ities and inequalities are present, not all interior-point methods are feasible-point

methods; infeasible-interior-point methods also exist.

A different approach is taken in active-set methods. The idea is to predict which

constraints are active (that is, equality holds) at the solution x∗. The algorithm

maintains a set of constraints that are forced to be active at each iteration. However,

active-set methods are often very efficient in practice because the working set changes

little when the iterates are close to minimizer.
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A.7 A Simple SQP Algorithm

Based on the previous sections, we outline a simplified SQP algorithm; real imple-

mentations of SQP algorithms tend to be much more complicated.

Algorithm A.1: Simple SQP algorithm

Choose x0, λ0 and H0. Set k = 0.

While the KKT conditions are not satisfied

Set up a QP subproblem at xk. Compute a search direction pk and a Lagrange

multiplier µk.

Compute a step length α that reduces the merit function.

Update xk+1 = xk + αpk.

Use µk to update the multiplier estimates λk.

Set k = k + 1.

Evaluate c(xk), g(xk), J(xk).

Update Hk, the Hessian approximation.

end
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ADIFOR

ADIFOR is a tool for the automatic differentiation of Fortran 77 programs. Given

a Fortran 77 source code and a user’s specification of dependent and independent

variables, ADIFOR will generate an augmented derivative code that computes the

partial derivatives of all of the specified dependent variables with respect to all of

the specified independent variables in addition to the original result. ADIFOR is

a collaborative project between the Mathematics and Computer Science Division at

Argonne National Laboratory and the Center for Research on Parallel Computation

at Rice University.
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NPSOL Package

NPSOL is a set of Fortran subroutines designed to minimize a smooth function subject

to constraints, which may include bounds on the variables, linear constraints and

smooth nonlinear constraints. The problem is assumed to be stated in the following

form:

min
x
F (x)

� l1 ≤ x ≤ u1
l2 ≤ Ax ≤ u2
l3 ≤ c(x) ≤ u3,

where F (x), the objective function, is a nonlinear function, A is a constant matrix

of general constraints, and c(x) is a mN -vector of nonlinear constraint functions.

NPSOL may also be used for unconstrained, bound-constrained and linearly con-

strained optimization problems, in which case A or c may be empty. The user needs

to provide subroutines that define the objective and constraint functions and (op-

tionally) their gradients; the unspecified objective derivatives are approximated by

finite-differences. The objective function F and the constraints functions are assumed
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to be smooth, i.e., at least twice-continuously differentiable. All matrices are treated

as dense, and hence NPSOL is not intended for large sparse problems.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the

search direction is the solution of a quadratic programming subproblem. The al-

gorithm treats bounds, linear constraints and nonlinear constraints separately. The

Hessian of each QP subproblem is a positive-definite quasi- Newton approximation to

the Hessian of the Lagrangian function. The steplength at each iteration is required

to produce a sufficient decrease in an augmented Lagrangian merit function. Each QP

subproblem is solved using a quadratic programming package with several features

that improve the efficiency of an SQP algorithm.
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SNOPT Package

SNOPT is a general-purpose system for solving optimization problems involving many

variables and constraints. It minimizes a linear or nonlinear function subject to

bounds on the variables and sparse linear or nonlinear constraints. The problem is

assumed to be stated in the form:

min
x
f(x)

� l1 ≤ x ≤ u1
l2 ≤ Gx ≤ u2
l3 ≤ C(x) ≤ u3,

where l1, l2, l3 are lower bounds and u1,u2,u3 are upper bounds, f is a smooth

scalar objective function, G is a sparse matrix, C(x) is a vector of smooth nonlinear

constraint functions. It is suitable for large-scale linear and quadratic programming

and linearly constrained optimization as well as for general nonlinear programs.

SNOPT finds solutions that are locally optimal, and ideally any nonlinear func-

tions should be smooth and users should provide gradients. It is often more widely

useful. For example, local optima are often global solutions, and discontinuities in
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the function gradients can often be tolerated if they are not too close to an optimum.

Unknown gradients are estimated by finite differences.

If nonlinear functions are absent SNOPT applies the primal simplex method. If

the objective is nonlinear, SNOPT uses a sparse sequential quadratic programming

(SQP) algorithm that obtains search direction from a sequence of quadratic pro-

gramming subproblems (using limited-memory quasi-Newton approximations to the

Hessian of the Lagrangian). Each QP subproblem minimizes a quadratic model of

a certain Lagrangian function subject to a linearization of the constraints. An aug-

mented Lagrangian merit function is reduced along each search direction to ensure

convergence from any starting point.

SNOPT is most efficient if only some of the variables enter nonlinearly, or if the

number of active constraints (including simple bounds) is nearly as large as the num-

ber of variables. SNOPT requires relatively few evaluations of the problem functions.

Hence, it is especially effective if the objective or constraint functions (and their gra-

dients) are expensive to evaluate. In cases where objective and constraint functions

are structured in the sense that they are formed from sums of linear and nonlinear

functions, the structure can be exploited by SNOPT.

The source code for SNOPT is suitable for any machine with a Fortran compiler.

SNOPT may be called from a driver program (typically in Fortran, C or MatLab).

SNOPT may also be used as a stand-alone package, reading data in the MPS format

used by commercial mathematical programming systems.
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