
AN EFFICIENT GRADIENT FLOW METHOD FOR

UNCONSTRAINED OPTIMIZATION

a dissertation

submitted to the program in

scientific computing and computational mathematics

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

William Behrman

June 1998

c© Copyright 1998 by William Behrman

All Rights Reserved

ii

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Walter Murray
(Principal Adviser)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Joseph Oliger

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Michael Saunders

Approved for the University Committee on Graduate

Studies:

iii

To Edward and Mary Behrman, my parents.

iv

Abstract

This dissertation presents a method for unconstrained optimization based upon ap-

proximating the gradient flow of the objective function. Under mild assumptions the

method is shown to converge to a critical point from any initial point and to converge

quadratically in the neighborhood of a solution.

Two implementations of the method are presented, one using explicit Hessians

and O(n2) storage, the other using Hessian-vector products and O(n) storage. These

implementations were written in ANSI-standard Fortran 77 for others to use. They

have been extensively tested and have proven to be very reliable and efficient in

comparison to leading alternative routines.

v

Acknowledgments

A person could not ask for a better set of advisors, colleagues, and friends than I have

had the privilege of knowing and working with. Words cannot express how deeply

grateful I am for the many wonderful people who have made this work a joy. I would

particularly like to thank the following:

Walter Murray, my principal advisor, for having faith in this project and giving

me the freedom to pursue it, and for being most generous with his time, offering sage

advice and infusing the undertaking with the necessary sense of humor.

Michael Saunders for also being most generous with his time, for being a patient

and kind teacher whose excellent editing greatly improved the quality of the writing

and whose ideas played a key role in the software.

Joe Oliger, who was with this project from the start, for giving me the freedom

to explore and to formulate my ideas.

Juan Simo for providing encouragement early on and lending his considerable

enthusiasm.

Steve Smale for providing the inspiration for the project, both through his ideas

and through his approach to science.

Velvel Kahan for giving incisive help on several numerical matters and for having

developed ideas used to improve the software.

Horst Simon for providing encouragement early on and for likewise having devel-

oped ideas used to improve the software.

Gene Golub for creating and nurturing in the Scientific Computing and Com-

putational Mathematics Program an environment in which this sort of work could

flourish.

vi

My fellow students and friends here at Stanford for making this a special place

that will always be in my heart.

And finally my parents, to whom this dissertation is dedicated, for the love and

encouragement and support and good humor that have sustained me throughout this

project and throughout my life. I have truly been blessed.

vii

Contents

1 Introduction 1

1.1 History . 1

1.2 The problem . 3

1.3 Unconstrained optimization methods 4

1.4 Prior work on methods based on ordinary differential equations . . . 6

1.5 Overview of dissertation . 9

2 Theory 13

2.1 Continuous theory . 13

2.2 Discrete theory . 16

2.2.1 Derivation of algorithm . 16

2.2.2 Search criteria . 18

2.2.3 Statement of algorithm . 22

2.2.4 Convergence theory of algorithm 23

3 An algorithm using O(n2) storage 36

3.1 Implementation . 36

3.1.1 Search curve . 36

3.1.2 Curve search . 39

3.2 Performance of UMINH . 41

3.2.1 Test problems . 41

3.2.2 Numerical results . 48

viii

4 An algorithm using O(n) storage 55

4.1 Implementation . 55

4.1.1 Search subspace . 55

4.1.2 Krylov search subspace . 58

4.1.3 Information reuse . 62

4.2 Performance of UMINHV . 62

4.2.1 Test problems . 63

4.2.2 Numerical results . 63

5 Summary and future work 70

5.1 Summary . 70

5.2 Future work . 70

5.2.1 Software . 70

5.2.2 Applications . 71

A Test problem documentation 72

B Software documentation 76

B.1 Files and compilation . 77

B.2 UMINH . 79

B.3 UMINHV . 81

C Numerical results 83

Bibliography 121

ix

Chapter 1

Introduction

Newton’s method is the basis of current unconstrained optimization algorithms with

the desirable properties of finding a solution from any starting point and converging

rapidly in the neighborhood of a solution. This dissertation presents algorithms that

are not based on Newton’s method but still possess the same desirable properties.

Algorithms based upon Newton’s method have at their core the solution of linear

systems of equations. For large problems, such algorithms are therefore constrained by

their ability to approximate and solve the resulting large linear systems of equations.

The algorithms of this dissertation have a different computational kernel. In practice

their performance compares favorably with that of the leading alternatives.

1.1 History

On May 3, 1941, Richard Courant gave an address to the American Mathematical

Society in which he proposed three methods for numerically solving variational partial

differential equations [6]. Two of the methods, the finite element method and the finite

difference method, went into widespread use. The third method, which he called the

method of gradients, has not been pursued nearly as much.

The idea behind the method of gradients is very old; Courant himself cites work

of Hadamard published in 1908 [11]. The idea arose in the study of variational partial

differential equations. Each of these equations has a function f : X → R (also called

1

CHAPTER 1. INTRODUCTION 2

a functional) such that a solution of the equation is a minimizer of f . The method

of gradients starts with an initial point x0 ∈ X and seeks to find a minimizer of f by

following a curve φ defined by the ordinary differential equation

φ′(t) = −∇f(φ(t))

φ(0) = x0,

where ∇f is the gradient of f . The solution is called an integral curve and is simply

the curve that at each instant proceeds in the direction of the steepest descent of f .

In the early days of computing, the finite element and finite difference methods

had several advantages over the method of gradients. The finite element and finite

difference methods have as their computational kernel the solution of a linear system

of equations, and this kernel was particularly well suited to the small linear partial

differential equations that were the focus of early numerical work. The method of

gradients, on the other hand, has as its computational kernel the approximate solution

of an ordinary differential equation, and it was not clear how to best approach this

subproblem. According to Peter Lax, who worked with Courant in the early days,

another issue was the small memories of early computers, which severely limited

program size. The programs required for the finite element and finite difference

methods were simpler and shorter than those required for the method of gradients.

Finally, the mathematical foundations upon which to build analysis and convergence

theory were much stronger for the finite element and finite difference methods than

for the method of gradients. For the method of gradients, a convergence theory did

not exist even in the case of exact integral curves.

Since these early days, a number of significant changes have occurred. The size

of computer memory has greatly increased and no longer places severe constraints on

the size of programs for numerical algorithms. In the 1960s the theory of nonlinear

functional analysis was greatly expanded and included a convergence theory for the

method of gradients in the case of exact integral curves [20]. This dissertation extends

the theory to the case of approximate integral curves.

Along with the changes in computers, the nature of the problems to be solved

CHAPTER 1. INTRODUCTION 3

has changed. While in the early days the problems were typically small and linear,

now they are much larger and are frequently nonlinear. As problems grow in size,

the success of a method depends largely upon how its computational kernel scales. A

kernel that works well on small problems may not be as successful on large problems.

And while the finite element and finite difference methods are well-suited to linear

problems, their application to nonlinear problems requires drastic modifications. The

method of gradients, on the other hand, requires no modifications to be applied to

nonlinear problems.

While historically much of the motivation for and mathematical analysis behind

the method of gradients came from the desire to solve partial differential equations,

the function it seeks to minimize need not come from a partial differential equation.

The method of gradients is actually a general-purpose method for unconstrained

optimization. This dissertation will focus upon it as such and compare it with other

methods of optimization. However, some of the test problems on which it will be

tested come from partial differential equations, including some that were of great

interest to Courant.

1.2 The problem

Unconstrained optimization is one of the fundamental problems of numerical analysis,

with numerous applications. The problem is the following:

For a function f : X → R and an initial point x0, (P)

find a point x∗ that minimizes f .

Before we consider this problem, and algorithms for solving it, let us discuss the

assumptions we make and our expectations for the solution.

The only assumption we make on the function f is that it has a certain amount of

differentiability and that its derivatives are available or can be approximated. When

solving an optimization problem, it is usually best to use as much information about

the function as possible. If, for example, the function is convex or of a special form,

CHAPTER 1. INTRODUCTION 4

the best approach is usually an algorithm that takes advantage of these properties.

We make no assumptions regarding the form or properties of the function beyond

a certain differentiability. Software is now available that greatly simplifies the often

error-prone process of generating computer code for a function’s higher derivatives.

Packages such as ADIFOR [2], [3] are applicable to a wide range of functions and

reliably produce code for the gradient given code for the function, or code for the

Hessian or Hessian-vector product given code for the gradient.

Our problem is unconstrained, that is, the minimizer x∗ is not restricted to be

in any particular subset S ⊂ X. Constrained problems, where the minimizer x∗ is

restricted to a proper subset S (X, are very important, and various approaches

to solving them depending upon the nature of the set S exist. One approach is

to transform the constrained problem into an unconstrained problem or a sequence

of unconstrained problems. Such problems may then be solved by the algorithms

described in this dissertation.

Finally, we are seeking a local minimizer x∗, a point where the function f has its

lowest value over a local neighborhood. We are not seeking a global minimizer, a

point where the function f has its lowest value over the entire space; this is a very

difficult task. Algorithms for global minimization often contain algorithms for local

minimization but add other features such as a random sampling of initial points.

While we are only seeking a local minimizer, we are seeking the local minimizer

associated with the initial point in a sense that will be made precise below.

1.3 Unconstrained optimization methods

The most efficient methods for unconstrained optimization currently in use are based

upon Newton’s method. They rely on the quadratic approximation of the objective

function f at the point x,

f(x) +∇f(x) · (y − x) +
1

2
(y − x) · ∇2f(x)(y − x),

CHAPTER 1. INTRODUCTION 5

where ∇f is the gradient and ∇2f is the Hessian of f . When ∇2f(x) is positive

definite, this approximation has a unique minimizer

y = x− (∇2f(x))−1∇f(x), (1.1)

and the idea of Newton’s method is to use the minimizer of the quadratic approxi-

mation as the next point in an iterative process to find a minimizer of f .

Close to a minimizer of f with a positive-definite Hessian, there is a neighbor-

hood where Newton’s method works very well, but outside this neighborhood several

important issues arise. First, ∇2f(x) need not be positive definite. If ∇2f(x) has a

negative eigenvalue, the quadratic approximation will be unbounded below; (1.1) may

still be defined, but the value of the quadratic approximation at y could be greater

than its value at x. If ∇2f(x) is singular, (1.1) is not defined. Second, even if ∇2f(x)

is positive definite, the value of the objective function at y could be greater than its

value at x. Consequently, Newton’s method need not converge or even be defined.

The shortcomings of Newton’s method have led to extensions that fall into two

broad families: line-search methods and trust-region methods. Line-search methods

insure that the quadratic approximation has a unique minimizer by always using a

positive-definite matrix for the second-order term—replacing the Hessian if necessary.

If the value of the objective function at the computed point is greater than that

at the current point, these methods search along the ray connecting the current

and computed points; with a sufficiently small step, a point with a lower value is

guaranteed to be found. Trust-region methods take a different approach that uses the

Hessian in all cases. At each iteration these methods solve a constrained minimization

of the quadratic approximation within a ball centered at the current point and in this

way obtain a point even when the quadratic approximation is unbounded below.

Determining the solution of this constrained subproblem itself requires an iterative

process. If the value of the objective function at the computed point is greater than

that at the current point, these methods shrink the size of the ball and perform the

constrained minimization again; with a sufficiently small ball, a point with a lower

value is guaranteed to be found. Both line-search and trust-region methods have as

CHAPTER 1. INTRODUCTION 6

their computational kernel the solution of a linear system of equations; line-search

methods solve one system at each iteration, and trust-region methods solve at least

one system at each iteration.

For more information on line-search methods, trust-region methods, and their

extensions to the large-scale case where the full Hessian is not available, and for

information on software implementations of these methods, see [15, Chapter 2].

The method presented in this dissertation is based upon the solution of an ordinary

differential equation. This equation is defined, makes sense, and is solvable regardless

of the nature of the Hessian. The solution is a curve guaranteed to have a point that

has a lower value of the objective function than the current point.

1.4 Prior work on methods based on ordinary dif-

ferential equations

The idea of using ordinary differential equations for unconstrained optimization is an

old one. A number of methods based on this idea have been proposed over the years,

none of which has gone into widespread use. In this section we review this prior work.

Several different ordinary differential equations have been proposed. In what

follows, γ will be the displacement from the current point, so the initial condition for

all the equations is γ(0) = 0. One equation, that of Courant’s method of gradients,

is

γ′(t) = −∇f(x0 + γ(t)). (1.2)

A sequence of equations comes from approximating (1.2) locally at a sequence of

points,

γ′i(t) = −∇f(xi)−∇f 2(xi)γi(t). (1.3)

CHAPTER 1. INTRODUCTION 7

Another equation, sometimes called the continuous Newton equation, is

γ′(t) = −(∇f 2(x0 + γ(t)))−1∇f(x0 + γ(t)). (1.4)

This equation has the same disadvantage as (1.1) in that it is undefined when the

Hessian is singular. Finally, the equation

aγ′′(t) + b(t)γ′(t) +∇f(x0 + γ(t)) = 0 (1.5)

comes from considering the trajectory of a point mass in the force field −∇f with

dissipation. The limit of γ depends upon the dissipation, and it need not be the

minimizer in the basin of the initial point.

There are no formulas, in general, for the solutions to (1.2), (1.4), or (1.5), so all

methods based on these equations use ordinary differential equation solvers. There is a

formula for the solution of (1.3), which some methods based on (1.3) use, while others

use ordinary differential equations solvers. A disadvantage of ordinary differential

equation solvers is that they expend work accurately finding points along the curve

γ when all we are interested in is the limit point. Also, to handle stiffness, all of the

methods use implicit solvers, which require solving linear systems of equations of the

size of the problem at each step. All of the methods reviewed require O(n2) storage.

All were tested on relatively small test problems; half the papers had a largest test

problem of size n = 4, and the largest test problem in all the papers was one of size

n = 50.

The following review is in chronological order, and the references for this section

appear at the end of the section.

Botsaris and Jacobson [1] use (1.3) and the formula for its solution. They use

the Hessian; if it is nonsingular, they replace it with the operator with the same

eigenvectors and the absolute value of the eigenvalues so that the solution is bounded.

Vial and Zang [2] use (1.3) and the formula for its solution. They use a quasi-

Newton approximation of the Hessian.

Boggs [3] uses (1.2). He uses a predictor-corrector ordinary differential equation

solver and quasi-Newton approximations of both the Hessian and its inverse.

CHAPTER 1. INTRODUCTION 8

Botsaris [4] uses (1.3) and the formula for its solution. He uses an approximation

of the Hessian that he updates at each step using the gradient and the Sherman-

Morrison formula. In [5], he again uses (1.3) and the formula for its solution. He uses

an approximation of the eigensystem of the Hessian that he updates at each step by

solving n linear systems of equations each of dimension n+1 and then orthogonalizing

the resulting n vectors. In [6], he uses (1.4). He uses an implicit ordinary differential

equation solver and an approximation of the inverse of the Hessian that he updates

at each step using the Sherman-Morrison formula.

Zang [7] uses (1.3) and the formula for its solution. He uses a quasi-Newton

approximation of the Hessian.

Aluffi-Pentini, Parisi, and Zirilli [8], [9] use (1.5). Their method is for solving

nonlinear equations g(x) = 0, but they do this by minimizing f = g · g. They use an

implicit ordinary differential equation solver and an approximation of the Hessian.

Brown and Bartholomew-Biggs [10] experiment with a number of methods using of

(1.2)–(1.5). All of their methods used ordinary differential equation solvers. In their

computational experiments, the two most successful methods were based on (1.3);

one used the Hessian, the other used a quasi-Newton approximation of the Hessian.

References

[1] C. A. Botsaris and D. H. Jacobson. A Newton-type curvilinear search method

for optimization. J. Math. Anal. Appl., 54(1):217–229, 1976.

[2] Jean-Philippe Vial and Israel Zang. Unconstrained optimization by approxima-

tion of the gradient path. Math. Oper. Res., 2(3):253–265, 1977.

[3] Paul T. Boggs. An algorithm, based on singular perturbation theory, for ill-

conditioned minimization problems. SIAM J. Numer. Anal., 14(5):830–843,

1977.

[4] C. A. Botsaris. Differential gradient methods. J. Math. Anal. Appl., 63(1):177–

198, 1978.

CHAPTER 1. INTRODUCTION 9

[5] C. A. Botsaris. A curvilinear optimization method based upon iterative estima-

tion of the eigensystem of the Hessian matrix. J. Math. Anal. Appl., 63(2):396–

411, 1978.

[6] C. A. Botsaris. A class of methods for unconstrained minimization based on

stable numerical integration techniques. J. Math. Anal. Appl., 63(3):729–749,

1978.

[7] Israel Zang. A new arc algorithm for unconstrained optimization. Math. Pro-

gramming, 15(1):36–52, 1978.

[8] Filippo Aluffi-Pentini, Valerio Parisi, and Francesco Zirilli. A differential-

equations algorithm for nonlinear equations. ACM Trans. Math. Software,

10(3):299–316, 1984.

[9] Filippo Aluffi-Pentini, Valerio Parisi, and Francesco Zirilli. Algorithm 617,

DAFNE: a differential-equations algorithm for nonlinear equations. ACM Trans.

Math. Software, 10(3):317–324, 1984.

[10] A. A. Brown and M. C. Bartholomew-Biggs. Some effective methods for uncon-

strained optimization based on the solution of systems of ordinary differential

equations. J. Optim. Theory Appl., 62(2):211–224, 1989.

1.5 Overview of dissertation

First, a brief illustration of the algorithm that is the subject of this dissertation.

For a continuously differentiable objective function f , there is a vector field that at

each point is the negative gradient vector −∇f . From a given point, the algorithm

calculates a curve that is an approximation to the integral curve of this vector field

from this point. It then searches along this curve for a point that reduces the value of

the objective function and then repeats the process until it finds a point that satisfies

the specified convergence criteria.

If the objective function is quadratic, then the curve that the algorithm calculates

is the exact integral curve. For this reason, the algorithm finds the minimizer of a

CHAPTER 1. INTRODUCTION 10

-1 -0.8 -0.6 -0.4 -0.2 0
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 1.1: Search curve for positive-definite quadratic objective function.

positive-definite quadratic in one step. Figure 1.1 is a contour plot of a positive-

definite quadratic, with the algorithm’s search curve connecting the initial point on

the boundary with the minimizer in the interior. For all objective functions, the

algorithm’s search curve is initially tangent to the negative gradient. Likewise for all

objective functions, if the Hessian at the initial point of the search curve is positive

definite, then the search curve will be bounded and the step to the end of the curve

is the Newton step.

The objective function value of an indefinite quadratic is unbounded below. Fig-

ure 1.2 is a contour plot of the indefinite quadratic y2−x2 with part of the algorithm’s

search curve. This function has its largest values at the top and bottom of the figure

and its smallest values at the left and right of the figure. The point (0, 0) at the

center is a saddle point. The initial point of the search curve is at the top of the

figure. For all objective functions, if the Hessian at the initial point is indefinite and

the gradient has a component in the eigenspace of non-negative eigenvalues, then the

search curve will be unbounded. In the case of the indefinite quadratic, the objective

function value along the unbounded search curve is unbounded below.

A full explanation of the algorithm is given in Chapter 2. In Section 2.1 we tie the

CHAPTER 1. INTRODUCTION 11

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 1.2: Search curve for indefinite quadratic objective function.

CHAPTER 1. INTRODUCTION 12

algorithm to the mathematical tradition discussed in Section 1.1. We present a key

theorem from nonlinear functional analysis, published in 1964, that is central to our

analysis. Since the computer algorithm is iterative in nature, the theory of Section 2.1,

which is continuous in nature, has to be adapted; this is done in Section 2.2. The

mathematical basis and derivation of the algorithm is first explained. We then present

search criteria that constrain the union of the search curves to be a sufficiently good

approximation of the exact integral curve to apply the continuous theory. We then

combine these ideas and give a precise statement of the algorithm. Finally, we show

that under mild assumptions the algorithm converges to a critical point from any

initial point and converges quadratically in the neighborhood of a solution.

Turning from theory to practice, Chapters 3 and 4 present two implementations of

the algorithm. These implementations were written in ANSI-standard Fortran 77 for

others to use and have been extensively tested. Chapter 3 describes the implementa-

tion UMINH, which uses explicit Hessians and therefore O(n2) storage. Less storage

is required when the search curve is restricted to lie in a subspace. It turns out that

by using the right low-dimensional subspaces we can achieve performance close to

that using the entire space, with significant savings of storage and time. Chapter 4

describes the implementation UMINHV, which uses the Hessian-vector products and

O(n) storage. Both Chapters 3 and 4 discuss the key issues of the implementations

and present their performance in numerical tests in comparison to that of leading

alternative algorithms. Chapter 5 has some concluding remarks and discusses areas

for future work.

Appendix A contains the details of how to use the 142 test problems that were

developed to test the software. Appendix B contains the details of how to use UMINH

and UMINHV. Finally, Appendix C contains the detailed data of the performance of

UMINH, UMINHV, and the alternative routines on the test problems.

Chapter 2

Theory

This chapter presents an algorithm for solving (P), along with its convergence theory.

We begin by examining an ordinary differential equation associated with the problem.

This ordinary differential equation defines a curve that typically connects the initial

point to the solution. We next consider a readily computable approximation to this

curve. The algorithm then uses a sequence of these approximations.

2.1 Continuous theory

As our point of departure, we consider an approach to solving problem (P) that uses

information of the function f at a continuum of points. While such a method of

solution is not practicable on a computer, to consider it is nevertheless instructive

because it provides us with an ideal on which to base our algorithms.

If f is continuously differentiable, we can consider the vector field defined by the

negative gradient −∇f : X → X. Given an initial point x0 and this vector field, we

can define the following ordinary differential equation for φ,

φ′(t) = −∇f(φ(t)) (2.1)

φ(0) = x0.

A solution φ to this equation is called an integral curve of −∇f .

13

CHAPTER 2. THEORY 14

An integral curve for the 2-dimensional test problem BEAL58KO is shown in

Figure 2.1. In this contour plot, the integral curve connects the initial point x0 = (0, 0)

with a minimizer and is normal to all contours; the shaded area is the region where

the Hessian is positive definite.

If f : X → Y is a differentiable function between Banach spaces, then a point x

is called a critical point of f when Df(x) = 0. If X is a Hilbert space and Y = R,

then we can equivalently say that x is a critical point when ∇f(x) = 0. A solution φ

of (2.1) is a parameterized curve through X. If this curve contains no critical points

of f , then φ has the desirable property that f is always decreasing along it,

d

dt
f(φ(t)) = ∇f(φ(t)) · φ′(t)

= −‖∇f(φ(t))‖2 .

In addition, φ has the desirable property that for a large class of functions it

connects the initial point x0 to a critical point of f .

Theorem 2.1.1 Let X be a Hilbert space. Let f : X → R be Lipschitz continu-

ously differentiable, be bounded below, have isolated critical points, and satisfy the

Palais-Smale condition. Then there exists a unique solution φ : [0,∞[→ X of (2.1);

moreover, limt→∞ φ(t) exists and is a critical point of f .

Proof. See [1], Section 3.2C.

We need to define one of the hypotheses of this theorem.

Definition 2.1.2 Let X be a Banach space, and let f : X → R be differentiable.

Then f is said to satisfy the Palais-Smale condition when any subset S ⊂ X on

which f is bounded and on which ‖Df‖ is not bounded away from zero contains in

its closure a critical point of f .

An example of a function that does not satisfy this condition is f : R → R,

f(x) = e−x. On the set [0,∞[, f is bounded and ‖Df‖ is not bounded away from

zero, but f has no critical point on R.

CHAPTER 2. THEORY 15

-1 0 1 2 3 4

-3

-2

-1

0

1

2

Figure 2.1: An integral curve of −∇f .

CHAPTER 2. THEORY 16

A class of functions that does satisfy this condition are the differentiable functions

f : Rn → R such that f(x) → +∞ as ‖x‖ → ∞. For if such an f is bounded on a

set S, S must be bounded and thus have compact closure.

Through Theorem 2.1.1 we can associate with every initial point x0 a unique

critical point. Now critical points exist that are not local minimizers, and these may

be limit points of integral curves φ; for example, x0 could be a saddle point, in which

case φ(t) = x0 for all t ≥ 0. But in our situation, with isolated critical points, it is

extremely rare for an initial point to be associated with a critical point that is not a

local minimizer, and we will restrict our attention to initial points that are associated

with local minimizers. From such an initial point, the goal for the algorithms that

follow will be to find not just a local minimizer but the local minimizer associated

with the initial point.

2.2 Discrete theory

The integral curve in the previous section required information of the function f at

a continuum of points. We now consider curves that require information of f only at

discrete points.

2.2.1 Derivation of algorithm

Many algorithms for unconstrained nonlinear optimization are based upon approxi-

mations of f , usually through its Taylor series expansion. We instead approximate

the vector field −∇f and then use the integral curves of the approximating vector

fields.

Let φi be the solution to

φ′i(s) = −∇f(xi + φi(s)) (2.2)

φi(0) = 0.

Then xi + φi(s) is the integral curve of −∇f through xi. We approximate φi with

a curve γi by approximating the vector field −∇f near the point xi with the vector

CHAPTER 2. THEORY 17

field gi and letting γi be the solution to

γ′i(s) = gi(xi + γi(s)) (2.3)

γi(0) = 0.

Diagrammatically,

−∇f approximation−−−−−−−−→ gi

exact solution

y yexact solution

φi γi

Our approximate vector field gi will always satisfy gi(xi) = −∇f(xi). Thus the

curve γi is initially tangent to φi, and f(xi + γi(s)) is initially decreasing. We search

along xi + γi(s) for a new point xi+1 such that f(xi+1) < f(xi) and certain search

criteria are satisfied. From this new point we then repeat the process.

If the only information of f at xi is its gradient ∇f(xi), we can use for gi the

0th-order approximation,

gi(x) = −∇f(xi).

The solution to (2.3) with this constant vector field is γi(s) = −∇f(xi)s. Using

the ray xi + γi(s) to search for a new point that satisfies certain search criteria and

then repeating the process is the steepest-descent algorithm of Cauchy [5], [9]. While

this algorithm has the desirable property of convergence to a critical point, it can be

very slow: its asymptotic rate of convergence is linear with a constant that may be

arbitrarily close to 1.

If at xi the gradient ∇f(xi) and the Hessian ∇2f(xi) are known, we can use for

gi the 1st-order approximation,

gi(x) = −∇f(xi)−∇2f(xi)(x− xi). (2.4)

The solution γi to (2.3) with this linear vector field is readily computable. We will

CHAPTER 2. THEORY 18

use these curves below, pasting parts of them together to form a piecewise-smooth

curve γ that connects the initial point x0 with a critical point x∗ of f .

2.2.2 Search criteria

The convergence theory for the discrete algorithm is based upon the convergence the-

ory for the continuous algorithm, and for this reason the search must be constrained

from going “too far”, into a region in which the approximation used to define the

search curve is no longer valid.

Since the integral curve of the negative gradient field is not available to the algo-

rithm, it will measure the validity of the search curve at a point by comparing the

tangent to the search curve and the negative gradient field at that point. For the

integral curve, the tangent and negative gradient are equal. For the search curve, the

algorithm will require that they be sufficiently close in a way made precise in (2.6)

below.

Even if the search curve at each iteration were the true integral curve, the iterates

would still not converge to a critical point if a series of too small steps were taken. For

this reason, the search must be constrained from being “too close” to the initial point.

Again, a comparison of the tangent to the search curve and the negative gradient will

be used. At the initial point of the search curve, these two vectors are equal, but at

later search points they may differ. To keep the search point from being “too close”

to the initial point, we will seek to have the two vectors differ a certain minimum

amount in a way made precise in (2.7) below.

To express our search criteria, we first define a set of vectors “close to” a given

vector x ∈ X. For p = (p1, p2, p3) with 0 < p1 ≤ 1 ≤ p2 <∞ and 0 < p3 ≤ 1, let

V (x, p) = {y ∈ X : p1 ‖x‖ ≤ ‖y‖ ≤ p2 ‖x‖ and p3 ‖x‖ ‖y‖ ≤ x · y}. (2.5)

This set is the intersection of a spherical shell and a cone. The set

{y ∈ X : p1 ‖x‖ ≤ ‖y‖ ≤ p2 ‖x‖}

CHAPTER 2. THEORY 19

x

V (x, p)

V (x, q)

Figure 2.2: The sets V (x, p) and V (x, q).

is a spherical shell of vectors; the closer p1 and p2 are to 1, the closer the magnitudes

of these vectors are to x. The set

{y ∈ X : p3 ‖x‖ ‖y‖ ≤ x · y}

is a cone of vectors; the closer p3 is to 1, the smaller the angle between these vectors

and x. The algorithm actually uses two sets, V (x, q) (V (x, p), where q = (q1, q2, q3)

and p = (p1, p2, p3) satisfy

0 < p1 < q1 < 1 < q2 < p2 <∞

0 < p3 < q3 < 1,

see Figure 2.2.

We may now express our criteria for xi+1 = xi + γi(si). The restriction keeping

γ′i(s) from being “too far” from −∇f(xi + γi(s)) is that

γ′i(s) ∈ V (−∇f(xi + γi(s)), p), for s ∈ [0, si]. (2.6)

CHAPTER 2. THEORY 20

As a simple consequence of (2.6),

d

ds
f(xi + γi(s)) = ∇f(xi + γi(s)) · γ′i(s)

< 0, for s ∈ [0, si],

and therefore f(xi+1) < f(xi). The restriction of γ′i(s) from being “too close” to

−∇f(xi + γi(s)) is that

γ′i(si) /∈ V (−∇f(xi + γi(si)), q). (2.7)

The integral curve γi(s) of the vector gi defined by (2.4) is defined for all s ≥ 0.

Now it may happen that γ′i(s) ∈ V (−∇f(xi + γi(s)), q) for all s ≥ 0. But if there

is an S > 0 such that γ′i(S) /∈ V (−∇f(xi + γi(S)), q), then from the continuity of

γ′i and the intermediate value theorem there must be an si ≤ S such that (2.6) and

(2.7) simultaneously hold.

Figure 2.3 illustrates the tangent and the negative gradient at various points along

the search curve xi + γi(s). At point y1, (2.6) is satisfied but not (2.7), hence y1 is

“too close”. At point y3, (2.7) is satisfied but not (2.6), hence y3 is “too far”. At

point y2, both (2.6) and (2.7) are satisfied, and hence y2 could be used as xi+1.

The derivation of the algorithm and its convergence theory are quite different from

that of line-search methods. Still, it is instructive to compare the search criteria for

the former with those commonly used for the latter. For this purpose, let us adopt

the notation f(s) for f(xi + γi(s)) and f ′(s) for d
ds
f(xi + γi(s)), where γi is either a

search curve from the algorithm or a ray from a line-search method.

Line-search methods commonly constrain the search parameter si from being “too

far” by requiring that it satisfy

f(si) < f(0)− µsi,

for a constant µ > 0. Whereas line-search methods are in a sense parameterized by

arclength, the curves of the algorithm are not and may have bounded length with

unbounded parameter. On a quadratic function with positive-definite Hessian, for

CHAPTER 2. THEORY 21

xi
y1

y2
y3

xi + φi(s)

xi + γi(s)

Figure 2.3: Tangent and negative gradient along search curve.

example, the algorithm would find the minimizer in one step as the limit of the

bounded curve γ0(s) as s → ∞. The line-search requirement would be too strict in

this case; nevertheless, (2.6) implies that the weaker requirement of f(si) < f(0) is

always satisfied.

Line-search methods commonly constrain the search parameter si from being “too

close” by requiring that it satisfy

|f ′(si)| ≤ β |f ′(0)|,

for a constant 0 < β < 1. Both this requirement and (2.7) have the same aim of

ensuring a sufficient change in the function f , and the algorithm need not contain

points that satisfy either. We use (2.7) because of its close relationship to (2.6). At

all points where (2.7) is not satisfied, (2.6) is; and if (2.7) is not satisfiable, this means

that the current search curve is sufficiently accurate for the algorithm to stop. On

the other hand, both (2.7) and the line-search requirement are satisfiable if the search

contains a point where f ′(s) = 0.

CHAPTER 2. THEORY 22

2.2.3 Statement of algorithm

Having explained the approximations gi to the vector field −∇f , the integral curves

γi of gi to be searched along, and the search criteria, we now combine these ideas into

an algorithm that will paste together parts of the γi into one curve that connects the

initial point x0 with a critical point of f .

Algorithm 2.2.1

for finding a critical point of f from the initial point x0.

Let X be a Hilbert space. Let f : X → R be twice continuously differentiable and

bounded below. Let x0 ∈ X. Let parameters p, q ∈ R3 be such that

0 < p1 < q1 < 1 < q2 < p2 <∞

0 < p3 < q3 < 1.

t0 = 0;

domain(γ) = [0, 0];

γ(0) = x0;

i = 0;

while (domain(γ) 6= [0,∞[)

Let γi : R→ X be the unique solution to

γ′i(s) = −∇f(xi)−∇2f(xi)γi(s)

γi(0) = 0;

if There is an si > 0 such that

γ′i(s) ∈ V (−∇f(xi + γi(s)), p), for 0 ≤ s ≤ si

γ′i(si) /∈ V (−∇f(xi + γi(si)), q).

then

Extend γ to include the interval]ti, ti + si]

CHAPTER 2. THEORY 23

γ(ti + s) = xi + γi(s), for 0 < s ≤ si;

ti+1 = ti + si;

xi+1 = γ(ti+1);

i = i+ 1;

else

Extend γ to include the interval]ti,∞[

γ(ti + s) = xi + γi(s), for s > 0.

end if

end while

2.2.4 Convergence theory of algorithm

Convergence to critical point from any initial point

We first prove that the algorithm solves the problem for which it was designed.

Theorem 2.2.1 Let X be a Hilbert space, and let f : X → R be twice continu-

ously differentiable, be bounded below, have isolated critical points, and satisfy the

Palais-Smale condition. Then for any initial point x0 and any curve γ generated by

Algorithm 2.2.1, limt→∞ γ(t) exists and is a critical point of f . In particular, the

critical point x∗ is either found in a finite number of iterations or limi→∞ xi = x∗.

Proof. The theorem follows immediately from the following two propositions. 2

Proposition 2.2.2 Let X be a Hilbert space, and let f : X → R be twice continuously

differentiable and bounded below. Then Algorithm 2.2.1 extends the domain of γ to

the entire interval [0,∞[.

Proof. Suppose that the algorithm extends the domain of γ to [0, t∗[where t∗ <∞.

We will show that this assumption leads to a contradiction.

CHAPTER 2. THEORY 24

From (2.24) and the fact that f is bounded below, we have an M > 0 such that

for all t1, t2 ∈ [0, t∗[, ∣∣∣∣∫ t2

t1
‖∇f(γ(t))‖2 dt

∣∣∣∣ ≤ M.

Thus from (2.23), we have that γ is Cauchy. Hence there is an x∗ ∈ X such that

γ(t) → x∗ as t → t∗. From the continuity of D2f , there is an L > 0 and an R > 0

such that ‖D2f(x)‖ ≤ L for x ∈ X with ‖x− x∗‖ ≤ R. From the continuity of γ,

there is an iR ≥ 0 such that ‖γ(t)− x∗‖ ≤ R for t ∈ [tiR , t∗[. Let Ai = −∇2f(xi) and

bi = −∇f(xi) for i ≥ 0.

Recall that for i ≥ 0,

γ′i(0) = −∇f(xi + γi(0)) = bi.

The search criterion for the algorithm,

γ′i(si) /∈ V (−∇f(xi + γi(si)), q),

and Lemma 2.2.8 below imply that for i ≥ 0 at least one of the following inequalities

holds:

Q ‖bi‖ < ‖γ′i(si)− bi‖ (2.8)

Q ‖bi‖ < ‖−∇f(xi + γi(si))− bi‖ ,

where Q = min{(1 − q1)/(1 + q1), (q2 − 1)/(q2 + 1), ((1 − q3)/2)1/2} > 0. We may

bound the right-hand sides of (2.8) for i ≥ iR using the bound on D2f and the mean

value inequality,

‖γ′i(si)− bi‖ = ‖Aiγi(si) + bi − bi‖ ≤ L ‖γi(si)‖ (2.9)

‖−∇f(xi + γi(si))− bi‖ ≤ L ‖γi(si)‖ .

CHAPTER 2. THEORY 25

Combining (2.8) and (2.9), we have for i ≥ iR,

Q ‖bi‖ < L ‖γi(si)‖ . (2.10)

Now for i ≥ 0,

γi(si) =
∫ si

0
e(si−r)Aibi dr.

Hence for i ≥ iR,

‖γi(si)‖ ≤
∫ si

0
e(si−r)L ‖bi‖ dr

=
1

L
(esiL − 1) ‖bi‖ . (2.11)

By the assumption that t∗ <∞, we know that for each i ≥ 0 there must be an si <∞
that satisfies (2.7). But if bi = 0 for any i ≥ 0, then we would have γi(s) = 0 and

γ′i(s) = 0 for all s ≥ 0, and no si ≥ 0 would satisfy (2.7). Hence bi 6= 0 for i ≥ 0. It

follows from this fact, (2.10), and (2.11) that for i ≥ iR,

Q < esiL − 1.

This and the fact that Q > 0 yields

0 <
1

L
ln(1 +Q) < si.

Finally,

t∗ =
∞∑
i=0

si ≥
∞∑
i=iR

si >
∞∑
i=iR

1

L
ln(1 +Q) = ∞,

contradicting the assumption that t∗ <∞. 2

The algorithm generates a curve with the following property.

CHAPTER 2. THEORY 26

Definition 2.2.3 A p-approximate integral curve of the vector field −∇f is a con-

tinuous, piecewise continuously differentiable map γ from an interval I ⊂ R to X

such that at all points t ∈ I where γ is differentiable,

γ′(t) ∈ V (−∇f(γ(t)), p). (2.12)

We may now state the second proposition, which completes the proof of Theo-

rem 2.2.1.

Proposition 2.2.4 Let X be a Hilbert space, and let f : X → R be continuously

differentiable, be bounded below, have isolated critical points, and satisfy the Palais-

Smale condition (Definition 2.1.2). Let γ : [0,∞[→ X be a p-approximate integral

curve of −∇f . Then limt→∞ γ(t) exists and is a critical point of f .

Proof. From (2.24) and the fact that f is bounded below, it follows that

∫ ∞
0
‖∇f(γ(t))‖2 dt <∞.

We may therefore construct a sequence {ti}i∈I ⊂ [0,∞[such that ti → ∞ and

‖∇f(γ(ti))‖ → 0 as i→∞. Again from (2.24) and the fact that f is bounded below,

it follows that {f(γ(ti))}i∈I is bounded. Thus from the Palais-Smale condition, we

have a subsequence {tj}j∈J ⊂ {ti}i∈I and a point x∗ ∈ X such that limj→∞ γ(tj) = x∗

and ∇f(x∗) = 0.

Our goal is to show that limt→∞ γ(t) = x∗.

Suppose otherwise. If γ does not converge to x∗, then there is an R1 > 0 such

that for any point t ≥ 0 there is a later point s > t such that ‖γ(s)− x∗‖ > R1.

Since the critical points of f are isolated, there is an R2 > 0 such that for any critical

point xc 6= x∗ we have ‖xc − x∗‖ > R2. Let R = min{R1, R2}. Since tj → ∞ and

γ(tj)→ x∗ as j →∞, for every point t ≥ 0 such that ‖γ(t)− x∗‖ > R, there is a later

point s > t such that ‖γ(s)− x∗‖ < R/2. And by construction, for every point t ≥ 0

such that ‖γ(t)− x∗‖ < R/2, there is a later point s > t such that ‖γ(s)− x∗‖ > R.

From the continuity of γ, we may therefore find an infinite number of disjoint intervals

CHAPTER 2. THEORY 27

x∗

γ(li)

γ(ui)
1
2
R

R

Figure 2.4: γ([li, ui]).

[li, ui] with ‖γ(li)− x∗‖ = R, ‖γ(ui)− x∗‖ = R/2, and R/2 ≤ ‖γ(t)− x∗‖ ≤ R for

t ∈ [li, ui] for i ≥ 0. See Figure 2.4.

Since f is bounded on γ([0,∞[)
⋂ {x ∈ X : R/2 ≤ ‖x− x∗‖ ≤ R} and since

the closure of this set has no critical points by construction, we have by the Palais-

Smale condition an M > 0 such that ‖∇f(γ(t))‖ ≥ M for all t ≥ 0 with R/2 ≤
‖γ(t)− x∗‖ ≤ R. Using this fact, the fact that ‖γ(ui)− γ(li)‖ ≥ R/2 for i ≥ 0, and

CHAPTER 2. THEORY 28

(2.22) and (2.24), we get

lim
t→∞

f(γ(t)) ≤ f(γ(0))− p1p3

∫ ∞
0
‖∇f(γ(t))‖2 dt

≤ f(γ(0))− p1p3

∞∑
i=0

∫ ui

li
‖∇f(γ(t))‖2 dt

≤ f(γ(0))− p1p3M
∞∑
i=0

∫ ui

li
‖∇f(γ(t))‖ dt

≤ f(γ(0))− p1p3M

p2

∞∑
i=0

‖γ(ui)− γ(li)‖

≤ f(γ(0))−
∞∑
i=0

p1p3M

p2

R

2

= −∞,

contradicting the assumption that f is bounded below. Thus limt→∞ γ(t) = x∗. 2

Local quadratic rate of convergence

We next prove that the algorithm quickly solves the problem for which it was designed.

The algorithm typically generates an infinite sequence of points converging to a

critical point x∗ of the function f . The number of iterations required to reach a

given radius of x∗ will typically depend upon the distance of the initial point x0

to x∗. For this reason, our measure of the quickness of the algorithm will be its

rate of convergence in the neighborhood of a solution. For the following theorem,

we combine the finite termination case with the infinite case by extending the finite

sequence generated by the algorithm to an infinite sequence in the following way: if

the solution x∗ is found at iteration k, define xi = x∗ for i > k.

Theorem 2.2.5 Let X be a Hilbert space, and let f : X → R be twice differentiable.

Let x∗ ∈ X be such that ∇f(x∗) = 0, the spectrum σ(∇2f(x∗)) ⊂ R>0, and ∇2f

is Lipschitz continuous in a neighborhood of x∗. Then there is an R > 0 such that

from any initial point x0 with ‖x0 − x∗‖ ≤ R the sequence {xi}i∈I generated by Algo-

rithm 2.2.1 converges to x∗ quadratically; that is, there is an M > 0 such that for all

CHAPTER 2. THEORY 29

i ∈ I,

‖xi+1 − x∗‖ ≤ M ‖xi − x∗‖2 .

Proof. By assumption, there is a neighborhood of x∗ on which ∇2f is Lipschitz

continuous with constant L. By the assumption on the spectrum of ∇2f(x∗), there

is a neighborhood of x∗ on which the spectrum of ∇2f belongs to an interval [cl, cu]

with 0 < cl ≤ cu < ∞; see, for example, [7, Section 7.6]. Let B(x∗, R1) be an open

ball belonging to both neighborhoods.

Let Ai = −∇f 2(xi) and bi = −∇f(xi). Recall that at iteration i of the algorithm,

the search curve γi satisfies

γ′i(s) = Aiγi(s) + bi (2.13)

and

γi(s) =
∫ s

0
e(s−r)Aibi dr. (2.14)

From (2.14), we get that

γ′i(s) = esAibi. (2.15)

For xi ∈ B(x∗, R1), Ai is invertible. In this case, (2.14) yields

γi(s) = Ai
−1(esAi − I)bi. (2.16)

Below we will need to bound ‖g(A)‖, where A ∈ L(X) is self-adjoint and g :

σ(A) → R is continuous. To do this, we will make use of the fact that g(A) is

self-adjoint, σ(g(A)) = g(σ(A)), and that for any self-adjoint B ∈ L(X), we have

‖B‖ = supλ∈σ(B) |λ|; see, for example, [22, Section 7.1].

We first find a smaller open ball B(x∗, R2) ⊂ B(x∗, R1) so that from any initial

point xi ∈ B(x∗, R2) the curve xi + γi(s) remains confined to B(x∗, R1) for all s ≥ 0.

CHAPTER 2. THEORY 30

Let xi ∈ B(x∗, R1) with ‖xi − x∗‖ = ε. For s ≥ 0,

‖γi(s)‖ ≤
∥∥∥Ai−1(esAi − I)

∥∥∥ ‖bi‖
=

1

cl
(1− e−cls) ‖bi‖

≤ 1

cl
‖bi‖ . (2.17)

Since ‖∇2f(x)‖ ≤ cu for x ∈ B(x∗, R1), we have by the mean value inequality that

‖bi‖ = ‖∇f(xi)−∇f(x∗)‖

≤ cu ‖xi − x∗‖ . (2.18)

It follows that for s ≥ 0,

‖xi + γi(s)− x∗‖ ≤ ‖xi − x∗‖+ ‖γi(s)‖

≤ (1 +
cu
cl

)ε.

Therefore the curve xi + γi(s) will be confined to B(x∗, R1) whenever xi ∈ B(x∗, R2)

with R2 = R1/(1 + cu/cl).

Using the notation of the algorithm,

xi+1 = xi + γi(si).

For xi ∈ B(x∗, R2), we then have from (2.16) that

xi+1 − x∗ = xi +Ai
−1esiAibi −Ai−1bi − x∗

= −Ai−1(bi +Ai(x∗ − xi)− esiAibi). (2.19)

We first seek to bound ‖bi +Ai(x∗ − xi)‖. By Taylor’s theorem and the Lipschitz

CHAPTER 2. THEORY 31

continuity of ∇2f ,

‖bi +Ai(x∗ − xi)‖ =
∥∥∥∇f(x∗)−∇f(xi)−∇2f(xi)(x∗ − xi)

∥∥∥
=

∥∥∥∥∫ 1

0
(∇2f(xi + r(x∗ − xi))−∇2f(xi)) dr (x∗ − xi)

∥∥∥∥
≤ 1

2
L ‖xi − x∗‖2 . (2.20)

We next seek to bound
∥∥∥esiAibi∥∥∥. From the search criteria, we have

γ′i(si) /∈ V (−∇f(xi + γi(si)), (q1, q2, q3)).

By Lemma 2.2.6, this implies

−∇f(xi + γi(si)) /∈ V (γ′i(si), (1/q2, 1/q1, q3)).

And by Lemma 2.2.7, we have

Q ‖γ′i(si)‖ < ‖−∇f(xi + γi(si))− γ′i(si)‖ ,

where Q = min{(1 − 1/q2), (1/q1 − 1), (1 − q3
2)1/2} > 0. Hence from (2.13), (2.15),

Taylor’s theorem, and the Lipschitz continuity of ∇2f ,

Q
∥∥∥esiAibi∥∥∥ <

∥∥∥−∇f(xi + γi(si)) +∇2f(xi)γi(si) +∇f(xi)
∥∥∥

=
∥∥∥∥− ∫ 1

0
(∇2f(xi + rγi(si))−∇2f(xi)) dr γi(si)

∥∥∥∥
≤ 1

2
L ‖γi(si)‖2 .

And using (2.17) and (2.18), we get

∥∥∥esiAibi∥∥∥ ≤ Lcu
2

2Qcl2
‖xi − x∗‖2 . (2.21)

CHAPTER 2. THEORY 32

Combining (2.19)–(2.21),

‖xi+1 − x∗‖ ≤ M ‖xi − x∗‖2 ,

where M = (L/(2cl))(1 + cu
2/(Qcl

2)). Finally, let R = min{R2,M/2}. Then xi ∈
B(x∗, R) implies

‖xi+1 − x∗‖ ≤
1

2
‖xi − x∗‖ ,

which in turn implies that xi+1 ∈ B(x∗, R) and xi → x∗ as i→∞. 2

Ancillary bounds and lemmas

We now present some bounds and lemmas for the p-approximate integral curves (Def-

inition 2.2.3) constructed by the algorithm.

Bounds for approximate integral curves. Let f : X → R be continuously

differentiable, and let γ : I ⊂ R → X be a p-approximate integral curve of −∇f .

The following bounds follow immediately from (2.12) and (2.5). For t1, t2 ∈ I with

t1 ≤ t2,

‖γ(t2)− γ(t1)‖ ≤
∫ t2

t1
‖γ′(t)‖ dt (2.22)

≤ p2

∫ t2

t1
‖∇f(γ(t))‖ dt,

and

‖γ(t2)− γ(t1)‖ ≤ p2

(∫ t2

t1
‖∇f(γ(t))‖2 dt

)1/2

(t2 − t1)1/2 . (2.23)

CHAPTER 2. THEORY 33

For t1, t2 ∈ I,

f(γ(t2))− f(γ(t1)) =
∫ t2

t1
∇f(γ(t)) · γ′(t) dt (2.24)

≤ −p1p3

∫ t2

t1
‖∇f(γ(t))‖2 dt.

Properties of V (x, p).

Lemma 2.2.6 For x, y ∈ X, we have y ∈ V (x, (p1, p2, p3)) if and only if x ∈
V (y, (1/p2, 1/p1, p3)).

Proof. Since p1, p2 > 0, the inequality p1 ‖x‖ ≤ ‖y‖ ≤ p2 ‖x‖ is equivalent to

‖y‖ /p2 ≤ ‖x‖ ≤ ‖y‖ /p1. And the inequality p3 ‖x‖ ‖y‖ ≤ x · y is symmetric in x and

y. 2

Lemma 2.2.7 For x ∈ X, we have x + δ ∈ V (x, (p1, p2, p3)) for all δ ∈ X with

‖δ‖ ≤ Q ‖x‖, where Q = min{(1− p1), (p2 − 1), (1− p3
2)1/2}.

Proof. The result is immediate for x = 0, so we will assume otherwise. Let δ ∈ X
with ‖δ‖ ≤ Q ‖x‖. Then

p1 ‖x‖ = ‖x‖ − (1− p1) ‖x‖ ≤ ‖x‖ − ‖δ‖ ≤ ‖x+ δ‖

and

‖x+ δ‖ ≤ ‖x‖ + ‖δ‖ ≤ ‖x‖+ (p2 − 1) ‖x‖ = p2 ‖x‖ .

CHAPTER 2. THEORY 34

Since 0 ≤ Q < 1, we have ‖x+ δ‖ ≥ (1−Q) ‖x‖ > 0. Let y ∈ X be the projection of

x onto the line spanned by x+ δ, and let θ be the angle between x and x+ δ. Then

x · (x+ δ)

‖x‖ ‖x+ δ‖ = cos θ =
‖y‖
‖x‖ =

(‖x‖2 − ‖y − x‖2)1/2

‖x‖

≥ (‖x‖2 − ‖δ‖2)1/2

‖x‖

≥ (‖x‖2 − (1− p3
2) ‖x‖2)1/2

‖x‖
= p3. 2

Lemma 2.2.8 For x ∈ X, we have x + δ1 ∈ V (x + δ2, (p1, p2, p3)) for all δ1, δ2 ∈ X
with ‖δ1‖ , ‖δ2‖ ≤ Q ‖x‖, where Q = min{(1 − p1)/(1 + p1), (p2 − 1)/(p2 + 1), ((1 −
p3)/2)1/2}.

Proof. The result is immediate for x = 0, so we will assume otherwise. Let δ1, δ2 ∈ X
with ‖δ1‖ , ‖δ2‖ ≤ Q ‖x‖. Then

p1 ‖x+ δ2‖ ≤ p1(‖x‖+ ‖δ2‖) ≤ p1(1 +
1− p1

1 + p1

) ‖x‖

= (1− 1− p1

1 + p1
) ‖x‖ ≤ ‖x‖ − ‖δ1‖ ≤ ‖x+ δ1‖

and

‖x+ δ1‖ ≤ ‖x‖+ ‖δ1‖ ≤ (1 +
p2 − 1

p2 + 1
) ‖x‖

= p2(1− p2 − 1

p2 + 1
) ‖x‖ ≤ p2(‖x‖ − ‖δ2‖) ≤ p2 ‖x+ δ2‖ .

In the following, i ∈ {1, 2}. Since 0 ≤ Q < 1, we have ‖x+ δi‖ ≥ (1 − Q) ‖x‖ > 0.

Let yi ∈ X be the projection of x onto the line spanned by x + δi, and let θi be the

CHAPTER 2. THEORY 35

angle between x and x+ δi. Then

cos θi =
‖yi‖
‖x‖ =

(‖x‖2 − ‖yi − x‖2)1/2

‖x‖

≥ (‖x‖2 − ‖δi‖2)1/2

‖x‖

≥ (‖x‖2 − 1
2
(1− p3) ‖x‖2)1/2

‖x‖

=
(
p3 + 1

2

)1/2

>
(

1

2

)1/2

.

It follows that 0 ≤ θi < π/4. Now let θ be the angle between x+ δ1 and x+ δ2. Then

(x+ δ1) · (x+ δ2)

‖x+ δ1‖ ‖x+ δ2‖
= cos θ

≥ cos(θ1 + θ2)

≥ cos(2 max{θ1, θ2})

= 2 cos2(max{θ1, θ2})− 1

≥ 2
(
p3 + 1

2

)
− 1

= p3. 2

Chapter 3

An algorithm using O(n2) storage

This chapter describes an implementation of Algorithm 2.2.1 in Rn that uses O(n2)

storage. The implementation is called UMINH, for unconstrained minimization with

Hessian. Its performance on a large set of test problems is presented and discussed.

3.1 Implementation

3.1.1 Search curve

At the point xi, Algorithm 2.2.1 uses a curve γi to search for a point that reduces the

value of the objective function. We now discuss how this curve is calculated.

In what follows, the space X will be Rn. Let Ai = −∇2f(xi) and bi = −∇f(xi).

Let the spectral decomposition of Ai be denoted by QiΛiQi
T , where Qi

TQi = I,

Qi = [q1
i , . . . , q

n
i], and Λi = diag(λ1

i , . . . , λ
n
i) with λ1

i ≤ . . . ≤ λni . Then the solution

to the ordinary differential equation defining γi is

γi(t) = Qig(Λi, t)Qi
T bi (3.1)

=
n∑
j=1

(qji · bi)g(λji , t)q
j
i , (3.2)

36

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 37

where

g(λ, t) =


1
λ
(eλt − 1) for λ 6= 0

t for λ = 0
.

The initial condition of the ordinary differential equation defining γi is that γ′i(0) =

−∇f(xi); that is, the search curve is initially tangent to the steepest-descent direction.

Therefore when ∇f(xi) 6= 0, there is a t > 0 for which f(xi + γi(t)) < f(xi).

If qji · bi = 0 for all j, then γi(t) = 0 for t ≥ 0. Otherwise, let p be the largest

integer such that qji · bi 6= 0. Then

γi(t) =
p∑
j=1

(qji · bi)g(λji , t)q
j
i .

The eigenvalue λpi determines the nature of the curve. We see from the formula for

γi that when λpi ≥ 0 the curve is unbounded, and when λpi < 0 the curve is bounded

with

lim
t→∞

γi(t) =
p∑
j=1

(qji · bi)(−1/λji)q
j
i .

If λpi < 0 and Ai is invertible, this last equation may be equivalently expressed

lim
t→∞

γi(t) = −Ai−1bi,

where the right-hand side is just the Newton direction. Therefore when ∇2f(xi) is

positive definite, it follows that the search curve γi is bounded and its limit is the

Newton direction. See Figure 3.1.

Ideally we would like the parameterization of the curve γi to be proportional to

its arclength. For such a parameterization, ‖γ′i‖ would be constant. The parame-

terization above, which we term the t-parameterization, is far from this ideal since

‖γ′i‖ → ∞ when λpi ≥ 0 and ‖γ′i‖ → 0 when λpi < 0. Unfortunately, parameterization

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 38

γi(0)

limt→∞ γi(t)

−∇f(xi)

−(∇2f(xi))
−1∇f(xi)

γi(t)

Figure 3.1: Search curve γi when ∇2f(xi) is positive definite.

by arclength is not practically computable. Instead, we have chosen the parameteri-

zation

s =


1
λpi

(eλ
p
i t − 1) for λpi 6= 0

t for λpi = 0
,

which we term the s-parameterization.

With the s-parameterization, ‖γ′i‖ is always bounded and bounded away from 0.

This follows from the fact that the component of γ′i associated with the eigenvector qpi

is now constant and its other components are either constant or decrease in magnitude

as s increases. When the curve is straight (λ1
i = · · · = λpi), the s-parameterization

reduces to parameterization by arclength. With the t-parameterization, all curves

have the parameter range t ∈ [0,∞[. With the s-parameterization, unbounded curves

(λpi ≥ 0) have the parameter range s ∈ [0,∞[, but bounded curves (λpi < 0) have

the parameter range s ∈ [0, smax], where smax = −1/λpi is the parameter for the limit

point at the end of the curve.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 39

0
s

f(s)

f(s) < f(0)
|f ′(s)| ≤ RSTOL |f ′(0)|

Figure 3.2: Search criteria.

3.1.2 Curve search

Once we have the curve xi + γi, we seek a point along it that satisfies certain search

criteria. This section describes how we perform the search along this curve for the

new point.

Since we will be restricting our attention to the behavior of f along the curve, let

us adopt the notation f(s) for f(xi + γi(s)) and f ′(s) for d
ds
f(xi + γi(s)). With this

notation, our criteria for accepting a new point xi + γi(s) are

f(s) < f(0) (C1)

|f ′(s)| ≤ RSTOL |f ′(0)|, (C2)

where 0 < RSTOL < 1. The search criteria are illustrated in Figure 3.2.

Our first task in finding a point along xi + γi that satisfies the search criteria is

to select an initial trial point. The scheme for selecting this point is an important

factor in the performance of the algorithm, both its speed and robustness, and for

this reason we experimented with a variety of different schemes. A good scheme will

produce initial points that themselves satisfy the search criteria a large percentage of

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 40

the time and that when they do not are not far from points that do.

Recall that the search curve is bounded when the parameterization eigenvalue

λpi < 0 and is unbounded when λpi ≥ 0. For a bounded curve, the point at the

end of the curve has parameter −1/λpi , and a step to this point is the Newton step.

This point has long been recognized as a good initial trial point in other nonlinear

optimization algorithms, especially close to the solution. We use this step as the

initial trial point for bounded curves subject to some safeguards discussed below. For

unbounded curves, we use the point with parameter 1/λpi as the initial trial point,

again with some safeguards (against for example λpi = 0) discussed below.

The just-mentioned points are usually, but not always, good initial trial points.

We need to constrain them somewhat as a safeguard for those cases in which they

are not. For this purpose, at each iteration we calculate the infinity-norm length of

the step taken. Then for each iteration after the first, we constrain the initial trial

point to be no farther in infinity-norm distance from xi than a constant times the

infinity-norm length of the preceding step. All the infinity-norms are calculated in

the current orthonormal eigenvector basis. At the first iteration, we do not have a

preceding step and instead we use λpi to constrain the initial trial point. When |λpi |
is sufficiently small, we use the point with parameter 1 as the initial trial point.

Once we have an initial trial point, we evaluate the function f at the point. If

criterion (C1) is met, we evaluate the derivative f ′. If both criteria (C1) and (C2)

are met, we return the point as the next point in the iteration; otherwise, we make

additional trials. By construction, the search curve will always contain points that

satisfy (C1), but it need not contain points that satisfy (C2). The search will either

yield a point that satisfies at least (C1), or, if no such point is found after a maximum

number of trials, will stop the algorithm and return an error condition.

We search for a point with a parameter in the search interval [0,−1/λpi] for a

bounded curve or in the search interval [0,∞[for an unbounded curve. A trial point

divides the search interval into two subintervals (if the curve is bounded and the trial

point is at parameter −1/λpi , then one of the subintervals is empty). Based upon

information of the function at the trial point, either it is accepted as the next point

in the iteration or one of the two subintervals is discarded and the trial point becomes

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 41

the new upper bound or the new lower bound of the search interval.

The search proceeds in two phases. The first phase ends when: 1) a trial point is

accepted, or 2) a trial point becomes the upper bound for the search interval, in which

case the second phase begins, or 3) a maximum number of trials occurs with neither

of the preceding outcomes, in which case either a point that satisfies (C1) is returned

or, if no such point was found, an error condition is returned and the algorithm stops.

The second phase begins with a bounded search interval. The derivative f ′ is always

known at the search interval lower bound, but it is not always evaluated at the search

interval upper bound. If it is known at the upper bound, then a safeguarded cubic

interpolant is used to choose a trial point; otherwise the search interval midpoint

is used. The function is then evaluated at the trial point, and the point is either

accepted or used to discard part of the search interval. The process continues until

either 1) a trial point is accepted or 2) a maximum number of trials occurs, in which

case, as before, either a point that satisfies (C1) is returned or, if no such point was

found, an error condition is returned and the algorithm stops.

3.2 Performance of UMINH

In this section, we examine the performance of UMINH on a large set of test problems

and compare its performance with that of two leading alternatives.

3.2.1 Test problems

We use a set of test problems taken from the Buckley test set [4]. This is a compilation

from many sources of 417 test problems from 83 test functions; some have been

developed by researchers for the testing of algorithms, others are real problems from

practitioners. Here we use the term test function to mean a functional form that may

have a variable size or have parameters that may be varied, and we use the term test

problem to mean a test function with specified size and parameters and a specified

initial point.

From the Buckley test set we selected for implementation 142 test problems from

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 42

all 83 test functions. The problems ranged in size from n = 2 to n = 1000. For a

gallery of some of the two-dimensional problems, see Figures 3.3–3.7. Each figure has

a contour plot of the objective function with a shaded area for the region where the

Hessian is positive definite. The black dot on the highest contour is the initial point.

Black dots in the interior are local minimizers, and grey dots are saddle points.

Each of the 142 test problems was implemented in Fortran with the aid of Math-

ematica [25] and ADIFOR [2], [3]. Mathematica was used to generate the objective

functions and gradients for all the problems and the Hessians for problems of size

n ≤ 20. ADIFOR was used to generate the Hessian-vector products for all problems

and the Hessians for problems of size n > 20.

We found the limit value of the objective function for all problems and the limit

point associated with the initial point for 99 of the 142 problems. To do this, we

first solved the problems in double precision with three routines: 1) UMINH, 2) the

NAG library routine E04LBF [18], a modified-Newton line-search method, and 3) the

AT&T PORT library routine DMNH [8], a trust-region method. If the local mini-

mizers found by each of these methods were close together, they were then used as

the starting points for the solution of the problem in quadruple precision. If different

local minimizers were found, a highly accurate ordinary differential equation solver

was used to determine which local minimizers were close to the limit point associated

with the initial point, and those local minimizers were then used as starting points

for the solution of the problem in quadruple precision. The minimizers found by

UMINH were improved by a quadruple-precision Newton method, and those found

by E04LBF and DMNH were improved by quadruple-precision versions of these re-

spective routines. The quadruple-precision results from the different methods always

agreed to the double-precision accuracy used in the numerical tests.

Further information on the test problems, including information on how to use

them, is included in Appendix A.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 43

-5 -2.5 0 2.5 5 7.5 10

-2.5

0

2.5

5

7.5

10

12.5

Figure 3.3: The test problem BOX662HL.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 44

-2 0 2 4 6 8

-6

-4

-2

0

2

Figure 3.4: The test problem BROWNB, log-log plot.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 45

-1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

Figure 3.5: The test problem GOTTFR.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 46

-1.5 -1 -0.5 0
-0.5

0

0.5

1

1.5

Figure 3.6: The test problem HIMM27.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 47

-1.5 -1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

2

2.5

Figure 3.7: The test problem ROSENB.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 48

3.2.2 Numerical results

The numerical testing was performed on a Sun SPARCstation 20 running SunOS

release 4.1.3 U1. The routines and test problems were all compiled with the Sun

Fortran compiler version SC3.0.1.

In Figure 3.8 we show how UMINH performed on the two-dimensional test problem

BEAL58KO introduced in Section 2.1. In this contour plot, the shaded area is the

region where the Hessian is positive definite, the smooth curve connecting the initial

point x0 = (0, 0) with a minimizer is the integral curve of −∇f , and the small dots

on the piecewise-linear curve are the iterates of UMINH.

Routines used

We compared the performance of our routine UMINH against that of two leading

commercial routines that also use first and second derivatives. For a line-search

method, we used the routine E04LBF from the NAG library [18]. For a trust-region

method, we used the routine DMNH from the AT&T PORT library [8]. The 142

test problems were run on each of these three routines, using the routines’ default or

suggested parameter values.

Performance measures

With the limit value f∗ of the objective function known for each test problem, we

were able to use the reduction in error

εi =

∣∣∣∣∣ fi − f∗f0 − f∗

∣∣∣∣∣
as a uniform measure of the routines’ convergence. We recorded the number of it-

erations, function evaluations, and gradient evaluations required by each routine to

achieve tolerance levels εi = 10−3, 10−6, 10−9, and 10−12.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 49

-1 0 1 2 3 4

-3

-2

-1

0

1

2

Figure 3.8: The iterates of UMINH for the test problem BEAL58KO.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 50

Problem Routine
UMINH E04LBF DMNH

ARTRIG10 10−8

BIGGS6 cycled
BROY7D 10−14

BRWNL100 10−17

CHEBYQ10 10−10 10−10

MORBV998 10−6

MSQRTB49 10−5

NMSUR484 10−3

NMSURF64 10−4

OSBRN1 cycled
OSBRN2 10−10

PEN2GM1 10−10

PEN2GM2 10−6 10−10

POWB1000 10−1

POWBS500 cycled 10−20

POWBSC50 cycled 10−20

POWSSQ 10−10

QUARTC 10−9

SNMSR484 diverged
SNMSUR64 diverged
TRLN100 1
TRLN1000 1

Table 3.1: Order of magnitude of ‖∇flast‖ / ‖∇f0‖ at solution failures.

Robustness

Of the 142 test problems, 22 caused at least one of the three routines to fail. Table 3.1

shows those instances where the routines failed to reduce εi to 10−12. In the case of

the Powell badly-scaled problem POWB1000, the solution tolerance was set to 10−9

since none of the three routines was able to solve this problem to 10−12. The ratios

of the gradient norms given in the table show that in some instances a routine would

find a critical point, but not the one associated with the initial point.

Run with its default parameters, UMINH correctly solved 139 of the 142 test

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 51

problems. With its default parameters, it found the wrong local minimizers for three

problems, but it found the correct local minimizers when it was set to perform a more

careful search. DMNH had the second lowest number of failures with 5. E04LBF had

the highest number of failures with 18.

Although it is common practice to compare the performance of optimization algo-

rithms on a standard set of test problems as we have done, their performance on real

problems may differ. While the test set included some real problems, many others

were designed to be particularly difficult to solve. Some had functions designed to

be hard to solve, such as the Powell badly-scaled problem. Others had bad initial

points. Since real problems rarely exhibit the extreme pathologies present in the test

problems and frequently have good initial points, the routines are likely to be more

robust in practice than they were in our tests.

Speed

The 142 test problems were run on each of the three routines, using the routines’

default or suggested parameter values. For each problem and routine, we recorded

the number of iterations, function evaluations, and gradient evaluations required for

the convergence measure εi to reach the tolerance levels 10−3, 10−6, 10−9, and 10−12.

The performance of each routine on each problem is given in Appendix C. The results

are summarized in Tables 3.2–3.4. The tables contain for each performance measure,

each tolerance level, and each routine, the number of test problems on which the

routine finished first, second, and third among the three routines and the number of

problems that it failed to solve. Ties occurred frequently. Since none of the three

routines was able to solve the Powell badly-scaled problem POWB1000 to a tolerance

of 10−12, it was omitted from testing at this tolerance.

UMINH had the highest number of first-place finishes in each of the three perfor-

mance measures. E04LBF had the second highest number of first-place finishes for

each of the three measures. DMNH had the lowest number of first-place finishes. The

performance of the routines was consistent across the four tolerance levels.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 52

Tolerance Routine Test Problem Place Finishes
First Second Third Failed

10−3

UMINH 116 22 2 2
E04LBF 109 15 9 9
DMNH 74 58 7 3

10−6

UMINH 113 24 2 3
E04LBF 104 18 7 13
DMNH 60 65 14 3

10−9

UMINH 110 28 1 3
E04LBF 89 30 6 17
DMNH 55 66 18 3

10−12

UMINH 113 25 0 3
E04LBF 90 24 10 17
DMNH 57 62 17 5

Table 3.2: Performance summary for number of iterations.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 53

Tolerance Routine Test Problem Place Finishes
First Second Third Failed

10−3

UMINH 114 22 4 2
E04LBF 93 22 18 9
DMNH 52 75 12 3

10−6

UMINH 111 25 3 3
E04LBF 90 18 21 13
DMNH 45 76 18 3

10−9

UMINH 107 29 3 3
E04LBF 83 19 23 17
DMNH 45 78 16 3

10−12

UMINH 107 28 3 3
E04LBF 83 19 22 17
DMNH 47 71 18 5

Table 3.3: Performance summary for number of function evaluations.

CHAPTER 3. AN ALGORITHM USING O(N2) STORAGE 54

Tolerance Routine Test Problem Place Finishes
First Second Third Failed

10−3

UMINH 110 28 2 2
E04LBF 81 25 27 9
DMNH 88 46 5 3

10−6

UMINH 111 27 1 3
E04LBF 80 21 28 13
DMNH 73 61 5 3

10−9

UMINH 110 28 1 3
E04LBF 75 18 32 17
DMNH 65 71 3 3

10−12

UMINH 112 26 0 3
E04LBF 74 16 34 17
DMNH 66 67 3 5

Table 3.4: Performance summary for number of gradient evaluations.

Chapter 4

An algorithm using O(n) storage

The algorithms discussed in Chapter 3 all require O(n2) storage. For a given amount

of storage, this requirement places a limit on the size of the problems that may

be solved. To solve larger problems, we need algorithms that require less storage.

This chapter describes an implementation of Algorithm 2.2.1 in Rn that uses O(n)

storage. The implementation is called UMINHV, for unconstrained minimization

with Hessian-vector products. Its performance on a large set of test problems is

presented and discussed.

4.1 Implementation

4.1.1 Search subspace

Recall that our aim is to approximate the integral curve of −∇f (Section 2.2.1).

If the integral curve lies in a low-dimensional submanifold, our approximation will

only require information of the Hessian on a low-dimensional subspace. But regard-

less of the nature of the integral curve, for large problems we have storage only for

information of the Hessian on a subspace. The central issue is what subspace to use.

Before we examine the issue of the choice of subspace, let us examine how the

search curve will be calculated for a given subspace. In what follows, let Ai =

−∇2f(xi) ∈ Rn×n and bi = −∇f(xi) ∈ Rn. Let Qi ∈ Rn×m, where m ≤ n and

55

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 56

Qi
TQi = I. The columns of Qi then form an orthonormal basis for the m-dimensional

subspace range(Qi). There is a canonical correspondence between range(Qi) and Rm,

namely Qi
T : range(Qi) → Rm, Qi : Rm → range(Qi). Using this correspondence,

we define Bi = Qi
TAiQi ∈ Rm×m, which is readily seen to be a self-adjoint lin-

ear operator. Let the spectral decomposition of Bi be denoted by SiΘiSi
T , where

Si
TSi = I and Θi = diag(θ1

i , . . . , θ
m
i) with θ1

i ≤ . . . ≤ θmi . The vectors in range(Qi)

that correspond to the eigenvectors of Bi are called Ritz vectors and will be denoted

by [y1
i , . . . , y

m
i] = Yi = QiSi. The diagonal elements of Θi are called Ritz values, and

the (θji , y
j
i) are called Ritz pairs. If range(Qi) = Rn, then the Ritz pairs are simply

the eigenpairs of Ai, and if range(Qi) (Rn, then the Ritz pairs are approximations

of eigenpairs.

Recall that the search curve for UMINH was defined using the eigenpairs of Ai

(3.1), (3.2). The search curve for UMINHV is defined by simply substituting Ritz

pairs for eigenpairs,

γi(t) = Yig(Θi, t)Yi
T bi (4.1)

=
m∑
j=1

(yji · bi)g(θji , t)y
j
i , (4.2)

where as before

g(θ, t) =


1
θ
(eθt − 1) for θ 6= 0

t for θ = 0
.

The entire discussion of the search curve for UMINH—when it is bounded and

unbounded, its parameterization, and so on—carries over to the search curve for

UMINHV. In fact, exactly the same code is used to calculate and search along the

curves in both routines.

Initially, γ′i(0) = YiYi
T (−∇f(xi)), that is, the search curve is initially tangent to

the orthogonal projection of the negative gradient into range(Qi). Therefore when

∇f(xi) 6= 0 and ∇f(xi) 6⊥ range(Qi), there is a t > 0 for which f(xi + γi(t)) < f(xi).

Hence a minimal requirement for range(Qi) is that it not be perpendicular to ∇f(xi).

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 57

In order for γ′i(0) = −∇f(xi), we would need the stronger requirement that ∇f(xi) ∈
range(Qi).

When Ai is negative definite, the search curve of UMINH was shown to be

bounded, with its limit being the Newton direction, −Ai−1bi. When the subspace

range(Qi) contains the Newton direction, it turns out that, despite the Ritz approxi-

mation, the search curve of UMINHV maintains these properties.

Lemma 4.1.1 Let Ai, bi, Qi, and γi be as above. If Ai is negative definite and

−Ai−1bi ∈ range(Qi), then γi is bounded and limt→∞ γi(t) = −Ai−1bi.

Proof. IfAi is negative definite, then Bi = Qi
TAiQi is likewise and hence is invertible.

From the formula for γi (4.1), we get that

lim
t→∞

γi(t) = −Qi(Qi
TAiQi)

−1Qi
T bi.

We have assumed

QiQi
TAi

−1bi = Ai
−1bi

and hence

Qi
T bi = Qi

TAiQiQi
TAi

−1bi

−Qi(Qi
TAiQi)

−1Qi
T bi = −QiQi

TAi
−1bi

= −Ai−1bi. 2

Because of the importance of the Newton direction in other optimization algo-

rithms, we decided to see how well UMINHV would perform when at each point

it used the subspace span{bi, Ai+bi}, where Ai
+ denotes the pseudo-inverse of Ai.

When Ai is negative definite, −Ai+bi = −Ai−1bi, the Newton direction. UMINHV

and UMINH were run on 75 of the 78 test problems described in Section 4.2.1, those

that could be run quickly. For each routine, we recorded the number of iterations,

function evaluations, and gradient evaluations required to solve each problem to sev-

eral tolerance levels. UMINH failed to solve 2 of the problems. UMINHV failed to

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 58

solve these 2 problems and 3 others, and it solved 2 others to the 10−6 tolerance

but not to 10−9 or 10−12. Thus there were 68 problems that both routines solved

to all tolerances. In number of iterations, UMINHV did better than UMINH on 10

problems, the same on 49 problems, and worse on 9 problems. In number of func-

tion evaluations, UMINHV did better on 13 problems, the same on 47 problems, and

worse on 8 problems. In number of gradient evaluations, UMINHV did better on 12

problems, the same on 49 problems, and worse on 7 problems.

The conclusion to be drawn from this experiment is that UMINHV can perform

quite well with a very small search subspace. With the 2-dimensional subspace in

the experiment, its performance was comparable to that of UMINH, which uses the

entire space. Unfortunately, Ai
+bi is very expensive to compute, requiring an amount

of computation and storage comparable to that used by UMINH. Nevertheless, it

provides a goal to aim for in more practical search subspaces.

4.1.2 Krylov search subspace

UMINHV was shown to perform quite well with the search subspace span{bi, Ai+bi}.
With the gradient available, it is easy to include bi in the search subspace. With the

Hessian available only through matrix-vector products and with only O(n) storage,

we now seek to generate efficiently a subspace nearly parallel to Ai
+bi. The Krylov

subspaces

K(Ai, bi, k) ≡ span{bi, Ai, . . . , Aik−1bi}

have long been effectively applied to approximating Ai
+bi. These subspaces also have

the desirable property that their Ritz pairs approximate the eigenpairs associated

with the extreme eigenvalues of Ai. The significance of this property can be seen

from the expression of the search curve of UMINH in terms of the eigenpairs of Ai

(3.2). The function g(λ, t) is a monotonically increasing function of λ for all t > 0;

therefore, the terms in (3.2) with the largest values of g(λ, t) are those associated

with the largest eigenvalues of Ai.

There is an algorithm by Lanczos for efficiently generating orthonormal bases for

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 59

the Krylov subspaces, [13] and [10, Chapter 9]. The Lanczos bases have the desirable

property of producing tridiagonal reduced matrices. If the columns of Qi are the

Lanczos vectors that form an orthonormal basis for K(Ai, bi, k), then Qi
TAiQi ≈ Ti,

a tridiagonal matrix; furthermore, the elements of Ti are generated in the calculation

of the Lanczos vectors.

While the Lanczos algorithm has many advantages in exact arithmetic, it requires

careful implementation in finite-precision arithmetic because of the Lanczos vectors’

loss of orthogonality. Simon [23], [24] has shown that the algorithm remains effective

when the Lanczos vectors maintain at least semiorthogonality; that is, when |qj1i ·qj2i | ≤
EPS

1
2 , where j1 6= j2 and EPS is the relative machine precision. In the same papers

he has also shown how to monitor efficiently the vectors’ orthogonality and how to

maintain semiorthogonality by reorthogonalizing the newest vector against some of

the earlier vectors, as necessary.

With this approach, semiorthogonality can be maintained with little additional

work. In our implementation, we use the Kahan algorithm that accurately orthogo-

nalizes a vector against a subspace (see [21, Section 6.9]) to orthogonalize each new

vector against the two preceding vectors; we monitor the new vector’s orthogonality

with respect to all previous vectors and reorthogonalize, as necessary, to maintain

semiorthogonality.

Finally, we need a way to measure how nearly parallel Ai
+bi is to K(Ai, bi, k) to

know when to stop expanding the search subspace. We use a simple formula by Paige

and Saunders [19] that calculates

min
y∈K(Ai,bi,k)

‖Aiy − bi‖

at each k and requires only a few flops.

Combining the above ideas we get the following.

Algorithm for calculating the Ritz pairs of the Krylov search subspace.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 60

Apply the Lanczos algorithm with partial reorthogonalization until

min
y∈K(Ai,bi,k)

‖Aiy − bi‖ ≤ RTOL ‖bi‖

or until

k = LMAX

to generate a matrix of Lanczos vectors Qi and its corresponding tridiagonal matrix

Ti, where Ti ≈ Qi
TAiQi.

Calculate the spectral decomposition Ti = SiΘiSi
T .

Calculate the Ritz vectors Yi = QiSi.

The generation of the Ritz pairs requires only O(n) flops and O(n) storage. Aside

from the LMAX n storage for the Ritz vectors and the LMAX storage for the Ritz

values, it needs only n + LMAX2 + 2 LMAX additional storage, where for large

problems LMAX� n. Our default values are RTOL = 1
8

and LMAX = 16.

The above algorithm, with the default values for RTOL and LMAX, was run on

the 78 test problems described in Section 4.2.1, and for each problem at each step the

dimension of the search subspace used was recorded. Table 4.1 shows for each problem

the minimum, the average, and the maximum dimensions of the subspace used. The

table is sorted in increasing average dimension, with the three values ranging from

1 to 16. Of the average dimensions, the median is 3.61 and the average is 5.69. On

average, fairly small search subspaces were used.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 61

Table 4.1: Search subspace dimensions
Function Problem Size Min. Ave. Max
BRWNAL BRWNL100 100 1 1.00 1
MANCIN MANCIN50 50 1 1.00 1
PENAL1 PEN1LN1 50 1 1.00 1
PENAL1 PEN1LN2 100 1 1.00 1
PENAL1 PEN1LN3 1000 1 1.00 1
VARDIM VARDIM 10 1 1.00 1
VARDIM VARDM100 100 1 1.00 1
XTX XTX16 16 1 1.00 1
POWBSC POWBS500 500 1 1.22 2
DIX7DG DIX7DGA 15 1 1.30 3
POWBSC POWB1000 1000 1 1.33 2
NONDIA NONDIA20 20 1 1.49 2
MORCIN MORCIN10 10 1 1.50 2
NONDIA NONDI500 500 1 1.51 2
NONDIA NOND1000 1000 1 1.51 2
BRWNAL BRWNAL10 10 1 1.57 2
EXTRSN EXTRAR50 50 1 1.60 2
EXTRSN EXTRA100 100 1 1.60 2
EXTRSN EXTR1000 1000 1 1.60 2
BRYBND BRYBND18 100 1 1.67 3
BRYBND BRYBND 10 1 1.75 3
TDQUAD TDQ500 500 1 1.75 4
TDQUAD TDQ1000 1000 1 1.75 4
QUARTC QUARTC 25 2 2.00 2
ENGVL1 ENGVL1B6 1000 1 2.11 4
ENGVL1 ENGVL1B4 100 1 2.30 4
ENGVL1 ENGVL1B2 10 1 2.33 4
TDQUAD TDQ10 10 2 2.67 4
POWER POWER75 75 1 2.68 4
FRDRTH FRDRTHB7 1000 1 2.82 5
FRDRTH FRDRTHB3 50 1 2.85 5
WOODS WOODS80 80 1 2.95 4
FRDRTH FRDRTHB4 100 1 3.00 5
PENAL3 PENL3GM3 50 1 3.27 8
PENAL3 PENL3GM5 1000 1 3.44 11
HILBRT HILBRT12 12 1 3.50 6
PENAL3 PENL3GM4 100 1 3.50 9
PWSING PWSING60 60 1 3.61 4
PWSING PWSIN100 100 1 3.61 4
PWSING PWSI1000 1000 1 3.61 4
CHEBYQ CHEBYQ10 10 2 4.54 7
TRIDIA TRIDIA10 10 5 5.00 5
ARTRIG ARTRIG10 10 2 5.33 9
DIXON DIXON 10 2 5.50 9
SCHMVT SCHV1000 1000 2 5.57 8
SCHMVT SCHMV500 500 2 5.71 8
CHNRSN CHNRSH10 10 2 5.81 8
CRGLVY CRGLVY10 10 1 5.84 9
BRYTRI BRYTRI6 20 4 5.86 8
BRYTRI BRYTRI10 600 5 6.14 8
TOINT PSPTOINT 50 2 6.33 11
WATSON WATSON12 12 1 6.33 12
SCHMVT SCHMVT50 50 4 6.38 8
ROSENB SHNRSN10 10 1 6.64 10
PENAL2 PEN2GM1 50 4 7.10 12
OSBRN2 OSBRN2 11 2 7.62 11
CRGLVY CRGLY500 500 1 7.76 16
CRGLVY CRGL1000 1000 1 7.86 16
PENAL2 PEN2GM2 100 2 8.00 16
GENRSN GENT50A 50 1 9.28 16
POWBSC POWBSC50 50 1 9.64 16
TRIDIA TRLN100 100 6 10.20 13
TRIGTO TRIGT50 50 6 10.46 16
GENRSN GENT500A 500 1 10.65 16
GENRSN GENT1000 1000 1 10.75 16
MNSRF1 NMSURF64 36 4 11.35 16
FRANK FRANK12 12 12 12.00 12
TRIGTO TRIGT100 100 6 12.16 16
BROY7D BROY7D 60 4 12.61 16
VAROSB VAROSBG1 50 5 13.05 16
SQRTMX MSQRTB49 49 5 13.47 16
MNSRF2 SNMSUR64 36 4 13.80 16
TRIDIA TRLN1000 1000 5 15.10 16
MNSRF2 SNMSR484 400 7 15.56 16
VAROSB VAROSBG2 100 5 15.67 16
MNSRF1 NMSUR484 400 7 15.75 16
MOREBV MOREBV18 18 12 15.84 16
MOREBV MORBV998 998 16 16.00 16

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 62

4.1.3 Information reuse

The Krylov search subspace in the preceding subsection uses at each step only fresh

information of the current Hessian through matrix-vector products. An alternative

approach is to approximate the Hessian at the current step based upon a model that

reuses information gathered from the Hessian at preceding steps. For the information

from the prior steps to be useful, the good search subspaces and the Hessian would

have to change little from step to step. There is also a trade-off between the compu-

tational savings achieved at each iteration by reusing information and the increase in

the total number of iterations due to the degradation in the quality of the information

used. Nevertheless, modeling the Hessian and reusing information have been effective

techniques in other methods and may be effective here.

A model-based approach can be applied in many ways. One way is simply to

extend the method of the preceding subsection by using a model to precondition

the Lanczos iteration. Iterative methods for calculating Ai
+bi can be substantially

accelerated through effective preconditioning. In our application, this would mean

less computation required at each step to achieve the same level of parallelness be-

tween the search subspace and Ai
+bi. A model could also be used in a completely

different manner. At each step the algorithm could produce a search subspace Yi

and an approximation to AiYi based upon old and new information. From there it is

straightforward to calculate the Ritz pairs and the search curve.

The many ways to apply modeling and the reuse of information in the algorithm

is an area for future work.

4.2 Performance of UMINHV

This section examines the performance of UMINHV on a large set of test problems

and compares this performance with that of two leading alternatives.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 63

4.2.1 Test problems

In Section 3.2.1 we discussed our implementation of 142 test problems from all 83

test functions of the Buckley test set [4]. Here we are using the term test function to

mean a functional form that may have a variable size or have parameters that may

be varied and the term test problem to mean a test function with specified size and

parameters and a specified initial point. For the testing of UMINHV, we restricted

our attention to the 42 test functions that had test problems of size n ≥ 10. For each

of the 42 test functions that had test problems of several sizes, one test problem was

chosen from each of the size ranges 10–99, 100–999, and 1000 that contained a test

problem. This resulted in 78 test problems, 42 with size 10 ≤ n ≤ 99, 23 with size

100 ≤ n ≤ 999, and 13 with size n = 1000.

Further information on the test problems, including information on how to use

them, is included in Appendix A.

4.2.2 Numerical results

The numerical testing was performed on a Sun SPARCstation 20 running SunOS

release 4.1.3 U1. The routines and test problems were all compiled with the Sun

Fortran compiler version SC3.0.1.

Routines used

We compared the performance of our routine UMINHV against that of two lead-

ing routines that also use O(n) storage: L-BFGS, a limited-memory quasi-Newton

method [14], and TN, a truncated-Newton method [16].

The routine L-BFGS is a limited-memory version of the BFGS method (the BFGS

method is discussed in [9, Section 4.5.2]. It uses information from preceding steps to

build a model of the inverse Hessian. The matrix approximating the inverse Hessian

is not actually formed, however, since this would require O(n2) storage; instead, the

m preceding displacements and changes in gradient are saved and used to calculate

the matrix-vector product with an approximation of the inverse Hessian. The code

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 64

has no default value for m, though it recommends 3 ≤ m ≤ 7; we used the value

m = 5 used by Nocedal in [17].

The routine TN approximates −Ai−1bi at each iteration using a preconditioned

linear conjugate-gradient method (discussed in [10, Sections 10.2 and 10.3]). It uses

information from preceding steps for the preconditioner, a scaled two-step limited-

memory BFGS method. It then calculates matrix-vector products of the current

Hessian through finite differences of the gradient. The code requires an estimate of

the value of the objective function at the solution; for this estimate we used the exact

value.

The information used by L-BFGS at each step is mostly from the preceding

steps. TN uses a mixture of information from preceding steps and the current step.

UMINHV uses only information at the current step. As tested, L-BFGS required

about 11n workspace, TN required 14n workspace, and UMINHV required about 23n

workspace.

Performance measures

With the limit value f∗ of the objective function known for each test problem, we

were able to use the reduction in error

εi =

∣∣∣∣∣ fi − f∗f0 − f∗

∣∣∣∣∣
as a uniform measure of the routines’ convergence. L-BFGS and TN evaluate the

function and the gradient. UMINHV in addition relies on the Hessian-vector product.

Since the computation required for the ADIFOR-generated Hessian-vector product is

roughly comparable to that for the gradient, and since in general this product could

be approximated with a gradient evaluation, we combined gradient with Hessian-

vector product evaluations. Thus we recorded the number of iterations, function

evaluations, and gradient and Hessian-vector product evaluations required by each

routine to achieve tolerance levels εi = 10−3, 10−6, 10−9, and 10−12.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 65

Problem Routine
UMINHV L-BFGS TN

BROY7D 10−10 10−9 10−10

BRYBND 10−11

BRYBND18 10−11

MORBV998 10−2 10−2 10−3

PEN2GM2 10−6 10−6 10−6

PENL3GM4 10−10

PENL3GM5 10−1

POWB1000 10−7 1
POWBS500 10−10 1
POWBSC50 10−12 1
WATSON12 10−11 10−10

Table 4.2: Order of magnitude of ‖∇flast‖ / ‖∇f0‖ at solution failures.

Robustness

Of the 78 test problems, 11 caused at least one of the three routines to fail. Table 4.2

shows those instances where the routines failed to reduce εi to 10−12. The ratios of

the gradient norms given in the table show that in some instances a routine would

find a critical point, but not the one associated with the initial point.

Run with its default parameters, UMINHV correctly solved 75 of the 78 test

problems. It found the wrong local minimizers for BROY7D and PEN2GM2. UMINH

also found the wrong local minimizers for these two problems. Both UMINH and

UMINHV found the correct local minimizers when set to perform a more careful

search. UMINHV reached its iteration limit before solving MORBV998. The Hessian

of MORBV998 is highly ill-conditioned at the points generated, with a condition

number of about 1011. UMINHV solved this problem within its iteration limit when

set to use a smaller RTOL and a larger LMAX than the default values.

L-BFGS failed to solve the same three problems that UMINHV failed to solve. In

addition, it failed to solve four others: POWB1000, POWBS500, POWBSC50, and

WATSON12. However, it came very close to solving these problems, reducing εi to

10−9 but not to 10−12.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 66

TN also failed to solve the three problems that UMINHV failed to solve. In

addition, it failed to solve eight others. For one problem, WATSON12, it reduced εi to

10−9 but not to 10−12. For three problems, BRYBND, BRYBND18, and PENL3GM4,

it appears to have found critical points, but not the ones associated with the initial

point. For the remaining four problems, PENL3GM5, POWB1000, POWBS500, and

POWBSC50, it did not find critical points.

Although it is common practice to compare the performance of optimization algo-

rithms on a standard set of test problems as we have done, their performance on real

problems may differ. While the test set included some real problems, many others

were designed to be particularly difficult to solve. Some had functions designed to

be hard to solve, such as the Powell badly-scaled problem. Others had bad initial

points. Since real problems rarely exhibit the extreme pathologies present in the test

problems and frequently have good initial points, the routines are likely to be more

robust in practice than they were in our tests.

Speed

The 78 test problems were run on each of the three routines with the parameter values

given above. For each problem and routine, we recorded the number of iterations,

function evaluations, and gradient and Hessian-vector product evaluations required

for the convergence measure εi to reach the tolerance levels 10−3, 10−6, 10−9, and 10−12.

The performance of each routine on each problem is given in Appendix C. The results

are summarized in Tables 4.3–4.5. The tables contain for each performance measure,

each tolerance level, and each routine, the number of test problems on which the

routine finished first, second, and third among the three routines and the number of

problems that it failed to solve. Ties occurred frequently.

UMINHV and TN had fewer, more-expensive iterations than L-BFGS. In terms of

number of iterations and number of function evaluations, UMINHV had the highest

number of first-place finishes, TN had the second highest, and L-BFGS had the

lowest. In terms of number of gradient and Hessian-vector product evaluations, L-

BFGS had the highest number of first-place finishes, followed by UMINHV and TN.

The performance of the routines was consistent across the four tolerance levels. Note

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 67

Tolerance Routine Test Problem Place Finishes
First Second Third Failed

10−3

UMINHV 52 22 2 2
L-BFGS 2 27 46 3
TN 33 31 6 8

10−6

UMINHV 46 27 2 3
L-BFGS 1 26 48 3
TN 37 25 6 10

10−9

UMINHV 43 28 4 3
L-BFGS 1 24 50 3
TN 39 25 4 10

10−12

UMINHV 45 26 4 3
L-BFGS 1 20 50 7
TN 36 26 5 11

Table 4.3: Performance summary for number of iterations.

that since L-BFGS is a first derivative method, it does not compute any Hessian-

vector products. No attempt was made to account for the work required by its

inverse Hessian approximation.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 68

Tolerance Routine Test Problem Place Finishes
First Second Third Failed

10−3

UMINHV 70 4 2 2
L-BFGS 8 61 6 3
TN 0 13 57 8

10−6

UMINHV 66 7 2 3
L-BFGS 9 58 8 3
TN 1 13 54 10

10−9

UMINHV 66 6 3 3
L-BFGS 8 55 12 3
TN 1 16 51 10

10−12

UMINHV 65 6 4 3
L-BFGS 10 52 9 7
TN 2 16 49 11

Table 4.4: Performance summary for number of function evaluations.

CHAPTER 4. AN ALGORITHM USING O(N) STORAGE 69

Tolerance Routine Test Problem Place Finishes
First Second Third Failed

10−3

UMINHV 17 32 27 2
L-BFGS 63 11 1 3
TN 10 31 29 8

10−6

UMINHV 9 31 35 3
L-BFGS 62 11 2 3
TN 11 32 25 10

10−9

UMINHV 8 26 41 3
L-BFGS 57 14 4 3
TN 14 34 20 10

10−12

UMINHV 14 21 40 3
L-BFGS 56 12 3 7
TN 13 36 18 11

Table 4.5: Performance summary for number of gradient and Hessian-vector product
evaluations.

Chapter 5

Summary and future work

5.1 Summary

This dissertation presented a method for unconstrained optimization based upon

approximating the gradient flow of the objective function (Algorithm 2.2.1). Under

mild assumptions the method was shown to converge to a critical point from any

initial point (Theorem 2.2.1) and to converge quadratically in the neighborhood of a

solution (Theorem 2.2.5).

Two implementations of the method were presented: UMINH, using explicit Hes-

sians and O(n2) storage, and UMINHV, using Hessian-vector products and O(n)

storage. These implementations were written in ANSI-standard Fortran 77 for others

to use. They have been extensively tested and have proven to be very reliable and

efficient in comparison to leading alternative routines.

5.2 Future work

5.2.1 Software

UMINH and UMINHV sometimes found local minimizers not in the basin of the

initial point. The option for a more careful search can be provided in the following

way. The value of the objective function along the search curve can be modeled with

70

CHAPTER 5. SUMMARY AND FUTURE WORK 71

the available information, and the deviation of this value from the actual value can

be used as a measure of trust of the search curve. By specifying bounds on this

deviation, we can specify the level of care for the search. Experiments with this

approach showed that when sufficient care was used, the solution in the basin of the

initial point was found in all cases.

UMINHV uses at each step only fresh information of the current Hessian through

matrix-vector products. An alternative approach is to approximate the Hessian at the

current step based upon a model that reuses information gathered from the Hessian

at preceding steps. Modeling the Hessian and reusing information have been effective

techniques in other methods and may be effective here. There are many different

ways to pursue modeling and information reuse, several of which are discussed in

Section 4.1.3.

5.2.2 Applications

The method of this dissertation is an outgrowth of a method proposed for solving

variational partial differential equations (Section 1.1). Some of the test problems come

from such equations (including some, such as the minimum surface area problem, that

were of interest Courant). It would be instructive to compare the performance of the

method on nonlinear variational partial differential equations with that of methods

specifically designed for this purpose.

Finally, in the past several years a wide range of problems has been shown to

be solvable through the technique of following a gradient flow on a manifold [12].

These problems include problems in constrained optimization, discrete optimization,

control theory, and signal processing. The extension of the ideas of this dissertation

to the realm of manifolds would therefore extend their applicability to a number of

important practical problems.

Appendix A

Test problem documentation

The software in Chapters 3 and 4 was tested with 142 test problems from the Buckley

test set [4]. Section 3.2.1 describes the problems, how they were implemented in

Fortran with the aid of Mathematica [25] and ADIFOR [2], [3], and how they were

solved in quadruple precision. In this section we describe how to use the problems.

The test problems were implemented in an object-oriented style that proved easy

to use with all of the software tested. Each test problem has two versions of the

form prob.f and prob.ad.f, which we call the ANSI and ADIFOR versions respec-

tively. The ANSI version is in ANSI-standard Fortran 77. The ADIFOR version

contains ADIFOR-generated code using the following three extensions to the ANSI

standard: use of the underscore in identifiers, the DO . . . END DO statement, and

symbolic names longer than 6 characters. If the user’s Fortran compiler can compile

the ADIFOR version, we recommend using it instead of the ANSI version because the

ADIFOR version has additional functionality. The ADIFOR version does not need

to be linked with the ADIFOR library.

72

APPENDIX A. TEST PROBLEM DOCUMENTATION 73

Each version of the test problems contains 15 functions and subroutines. First are

two functions to get the problem name and number of variables.

CHARACTER*32 FUNCTION GPNAME()

*

* Get problem name.

*

INTEGER FUNCTION GN()

*

* Get number of variables.

*

Next are six logical functions that return whether the initial and limit points are

provided, whether the limit value of the objective function is provided, and whether

the gradient, Hessian-vector product, and Hessian are provided.

LOGICAL FUNCTION X0Q()

*

* Query whether initial point provided.

*

LOGICAL FUNCTION XLQ()

*

* Query whether limit point provided.

*

LOGICAL FUNCTION FLQ()

*

* Query whether limit value of objective function provided.

*

LOGICAL FUNCTION GRADQ()

*

* Query whether analytic gradient provided.

*

LOGICAL FUNCTION HESSVQ()

*

* Query whether analytic Hessian-vector product provided.

*

LOGICAL FUNCTION HESSQ()

*

* Query whether analytic Hessian provided.

*

APPENDIX A. TEST PROBLEM DOCUMENTATION 74

Next are three routines for getting the initial point, limit point, and limit value of

the objective function.

SUBROUTINE GX0(N, X0, INFO)

*

* Get problem initial point.

*

SUBROUTINE GXL(N, XL, INFO)

*

* Get problem limit point.

*

SUBROUTINE GFL(FL, INFO)

*

* Get limit value of objective function.

*

The initial point and limit value of the objective function are provided for all test

problems. The limit point is provided for 99 of the 142 problems. The limit point is

provided for all problems of size n ≤ 20 except for 6 problems that had minimizers

sharing the same limit value, such as a line of minimizers. In addition, the limit

point is provided for 18 problems for which the exact minimizer is known and for

PENL3GM3, n = 50, which is particularly difficult to solve. The logical function

XLQ returns whether or not the limit point is provided for a particular problem.

The INFO argument for each routine returns 0 for a successful exit and 1 when the

information of the routine is not provided for the problem. The limit points and limit

values of the objective functions were calculated in several different ways in quadruple

precision, and the solutions always agreed to the double precision provided.

APPENDIX A. TEST PROBLEM DOCUMENTATION 75

The final four routines calculate the objective function, the gradient, the Hessian-

vector product, and the Hessian.

SUBROUTINE CF(N, X, F, INFO)

*

* Calculate value of objective function at point X.

*

SUBROUTINE CGRAD(N, X, GRAD, INFO)

*

* Calculate gradient of objective function at point X.

*

SUBROUTINE CHESSV(N, X, V, HESSV, INFO)

*

* Calculate Hessian of objective function at point X multiplied by

* vector V.

*

SUBROUTINE CHESS(N, X, HESS, LDHESS, INFO)

*

* Calculate Hessian of objective function at point X.

*

The objective function and the gradient are provided for all test problems. The

Hessian-vector product is not provided in the ANSI version but is provided in the

ADIFOR version. The Hessian-vector product is calculated directly without comput-

ing the Hessian. For most problems, the time to compute the product is comparable

to that of computing the gradient. The Hessian is provided in the ANSI version for

all problems of size n ≤ 20 and is provided in the ADIFOR version for all problems.

The INFO argument for each routine returns 0 for a successful exit, 1 when the infor-

mation of the routine is not provided for the problem, and another number, described

in the comments of each routine, when an error is encountered.

Appendix B

Software documentation

We provide two routines for solving unconstrained optimization problems: UMINH,

which requires O(n2) storage, and UMINHV, which requires O(n) storage. Which of

the two routines to use will depend upon the available hardware, the problem to be

solved, and the user’s aims. The size of the problem and the available storage could

preclude UMINH and require UMINHV. If there is sufficient storage to solve the

problem with both routines, the user may be guided by the following considerations.

Both routines use the objective function and the gradient. In addition UMINH uses

the Hessian, and UMINHV uses the Hessian-vector product; however, both of these

are equally easily to generate using ADIFOR. As a rule UMINH will require fewer

iterations to solve a problem than UMINHV, but each iteration will take longer to

compute. The total computation time to solve the problem will depend upon the

cost of evaluating the user’s routines. As a rule, UMINH will be more robust, that

is, more likely to find a solution.

We compiled data on the time it took to solve the same test problems with both

routines. On a Sun SPARCstation 20 (in 1997), we solved 78 test problems of size

10 ≤ n ≤ 1000 and timed how long it took each routine to satisfy the convergence

criterion |f∗ − fi| ≤ 10−12|f∗ − f0|, where f∗ is the value of the objective function at

the solution. On the 55 test problems of size 10 ≤ n ≤ 100, both routines took less

than 1 minute. On the 23 test problems of size 400 ≤ n ≤ 1000, UMINHV took less

time than UMINH; for 20 of these problems, UMINHV still took less than 1 minute.

UMINHV, however, failed to solve one of the problems that UMINH solved.

76

APPENDIX B. SOFTWARE DOCUMENTATION 77

B.1 Files and compilation

UMINH and UMINHV each has its own directory containing everything necessary to

run each routine. These two directories and their subdirectories contain README

files that explain their contents.

Each of the top-level directories for UMINH and UMINHV has a Makefile for

compiling the routines. Each Makefile contains eight variables that can be set by the

user. Each variable is explained in comments in the Makefile and is set to default

values. The variables specify the Fortran compiler (default: f77), the compiler options

(default: 〈none〉), the name of the file containing the problem to solve (default:

prob.f), whether to use LAPACK and BLAS libraries available on the system or to

use the provided source (default: 〈use provided source〉), and the remove command

(default: /bin/rm -f).

The directories for UMINH and UMINHV also contain several ancillary files. The

file run.f contains a driver routine. The driver contains a parameter NMAX that must

be at least as large as the problem’s number of variables (default: 100 for UMINH,

1000 for UMINHV). The driver gets the problem’s number of variables from the

function GN, and it gets the initial point from the subroutine GX0 in prob.f. The file

prob.f provided is a sample file of problem routines. The user need not provide all

of the routines provided in the sample file, only the ones explicitly mentioned above

or below. The file spar.f contains the routine for setting algorithm parameters. We

recommend that the user change only the parameter ITMAX to specify the maximum

number of iterations (default: 2000).

The directory ccnvg contains several files to specify the convergence criteria for

the algorithm.

ccnvg false.f Return not converged.

ccnvg f absolute.f |fi − fi−1| ≤ TOL

ccnvg f relative.f |fi − fi−1| ≤ TOL|fi − f0|
ccnvg grad absolute.f ‖∇fi‖2 ≤ TOL

ccnvg grad relative.f ‖∇fi‖2 ≤ TOL ‖∇f0‖2

APPENDIX B. SOFTWARE DOCUMENTATION 78

Each routine contains the parameter TOL to specify the convergence tolerance (de-

fault: 10−6). The file ccnvg.f in the same directory as the Makefile is the file used by

the compile. This file is initially a copy of ccnvg f relative.f. The user may specify

another of the provided convergence routines or one of his or her own by copying the

desired routine into ccnvg.f for the compile.

The directory out contains two files for writing out iteration information. The

file out null.f contains a routine that writes out no information. The file out f grad.f

contains a routine that writes out the iteration, the value of the objective function,

and the 2-norm of the gradient; for UMINH, it in addition writes out whether the

Hessian is positive definite. It writes out these values at the initial point, the final

point, and at iterations that are integral multiples of the parameter INC (default:

1). It gets the problem’s name from the function GPNAME in prob.f. The name of

the output file is specified by the parameter FILE (default: OUT F GRAD). A file

of this name will be created unless a file with the same name already exists, in which

case an error message will result. The file out.f in the same directory as the Makefile

is the file used by the compile. This file is initially a copy of out f grad.f. The user

may specify the other output routine provided or one of his or her own by copying

the desired routine into out.f for the compile.

The directory explog contains files for accurately calculating exp(x) − 1 and

log(1 + x). Fortran 77, the implementation language, does not have intrinsics for

these two functions. Many C math libraries, however, contain the functions expm1

and log1p for this purpose. It is preferable to use these C intrinsics, if they are avail-

able, and the file explog.c contains routines to access these intrinsics from Fortran. If

expm1 and log1p are not available on a system, or if for some other reason explog.c

does not work, we have provided the file explog.f, which contains ANSI-standard For-

tran 77 routines to calculate accurately exp(x) − 1 and log(1 + x) from exp and log

using algorithms developed by Prof. William Kahan at the University of California,

Berkeley. In our testing, explog.c worked on the following platforms: Sun Solaris,

SGI IRIX, IBM AIX, and DEC Ultrix. Special files were needed for HP UX and Cray

Unicos; these files are in explog/special. One of explog.c or explog.f must be in the

same directory as the Makefile for the compile; the default is explog.f.

APPENDIX B. SOFTWARE DOCUMENTATION 79

B.2 UMINH

The routine UMINH is for solving unconstrained optimization problems using the

objective function, its gradient, and its Hessian; it requires O(N2) storage. The

argument list for UMINH is as follows:

SUBROUTINE UMINH(N, X, F, GRAD, CF, CGRAD, CHESS,

& SPAR, CCNVG, OUT, WORK, LWORK, INFO)

*

* Find minimizer of objective function from initial point X.

*

* .. Arguments ..

* I N Number of variables.

* IO X On entry, initial point.

* On exit, final point.

* O F Value of objective function at final point.

* O GRAD Gradient of objective function at final point.

* CF Calculate value of objective function.

* CGRAD Calculate gradient of objective function.

* CHESS Calculate Hessian of objective function.

* SPAR Set parameters.

* CCNVG Determine whether point satisfies convergence criteria.

* OUT Write iteration information.

* WORK Workspace.

* LWORK Length of WORK.

* O INFO Information on subroutine execution.

* INFO = 0 Successful exit.

* INFO = 1 Error, invalid N.

* INFO = 2 Error, insufficient workspace.

* INFO = 3 Error, objective function value could

* not be improved from final point.

* INFO = 4 Error, ITMAX iterations reached without

* convergence.

* INFO = x5 Error exit x from CF.

* INFO = x6 Error exit x from CGRAD.

* INFO = x7 Error exit x from SPAR.

* INFO = x8 Error exit x from CCNVG.

* INFO = x9 Error exit x from OUT.

* INFO = x0 Error exit x from NX.

*

APPENDIX B. SOFTWARE DOCUMENTATION 80

On entry, the user provides the number of variables in N and the initial point in

X. On exit, the routine provides the final point in X and the value and gradient

of the objective function at the final point in F and GRAD, respectively. The user

provides the routines to calculate the value, gradient, and Hessian of the objective

function, respectively CF, CGRAD, and CHESS in the file prob.f. As discussed

above, the routines SPAR, CCNVG, and OUT are provided for the user, or others

may be substituted. Finally, the user must provide a vector of workspace of length

LWORK ≥ N2 + 9 N.

On exit, the variable INFO contains information on whether the routine was

successful or not. If INFO returns a value of 0, then the convergence criteria were

satisfied at the returned X. If INFO returns a value of 3, then the objective function

value could not be improved from the returned X. This will occur when the returned

X is a local minimizer but the convergence criteria were too strict to be satisfied. If

INFO returns a value of 4, then ITMAX iterations were reached without convergence,

where ITMAX is a parameter set in spar.f. If INFO returns a value ending in 9, then

the routine encountered a problem writing the output. This will occur when a file

already exists, perhaps from a previous run, that has the same name as the output

file that the routine is trying to write; this may be remedied by renaming the existing

file. If INFO returns the value of 2, then there was insufficient workspace; this may

be remedied by increasing LWORK. If INFO returns any other value, the user should

consult the comments of uminh.f to learn the nature of the error.

APPENDIX B. SOFTWARE DOCUMENTATION 81

B.3 UMINHV

The routine UMINHV is for solving unconstrained optimization problems using the

objective function, its gradient, and its Hessian-vector product (directional deriva-

tive); it requires O(N) storage. The argument list for UMINHV is as follows:

SUBROUTINE UMINHV(N, X, F, GRAD, CF, CGRAD, CHESSV,

& SPAR, CCNVG, OUT, WORK, LWORK, INFO)

*

* Find minimizer of objective function from initial point X.

*

* .. Arguments ..

* I N Number of variables.

* IO X On entry, initial point.

* On exit, final point.

* O F Value of objective function at final point.

* O GRAD Gradient of objective function at final point.

* CF Calculate value of objective function.

* CGRAD Calculate gradient of objective function.

* CHESSV Calculate directional derivative of objective function.

* SPAR Set parameters.

* CCNVG Determine whether point satisfies convergence criteria.

* OUT Write iteration information.

* WORK Workspace.

* LWORK Length of WORK.

* O INFO Information on subroutine execution.

* INFO = 0 Successful exit.

* INFO = 1 Error, invalid N.

* INFO = 2 Error, insufficient workspace.

* INFO = 3 Error, objective function value could

* not be improved from final point.

* INFO = 4 Error, ITMAX iterations reached without

* convergence.

* INFO = x5 Error exit x from CF.

* INFO = x6 Error exit x from CGRAD.

* INFO = x7 Error exit x from SPAR.

* INFO = x8 Error exit x from CCNVG.

* INFO = x9 Error exit x from OUT.

* INFO = x0 Error exit x from NX.

*

APPENDIX B. SOFTWARE DOCUMENTATION 82

On entry, the user provides the number of variables in N and the initial point in

X. On exit, the routine provides the final point in X and the value and gradient

of the objective function at the final point in F and GRAD, respectively. The user

provides the routines to calculate the value, gradient, and directional derivative of

the objective function, respectively CF, CGRAD, and CHESSV in the file prob.f. As

discussed above, the routines SPAR, CCNVG, and OUT are provided for the user, or

others may be substituted. Finally, the user must provide a vector of workspace of

length LWORK ≥ LMAX N + 2 LMAX + max(7 N,N + LMAX2 + 2 LMAX), where

LMAX is the maximum number of Lanczos vectors, a parameter set in spar.f.

On exit, the variable INFO contains information on whether the routine was

successful or not. If INFO returns a value of 0, then the convergence criteria were

satisfied at the returned X. If INFO returns a value of 3, then the objective function

value could not be improved from the returned X. This will occur when the returned

X is a local minimizer but the convergence criteria were too strict to be satisfied. If

INFO returns a value of 4, then ITMAX iterations were reached without convergence,

where ITMAX is a parameter set in spar.f. If INFO returns a value ending in 9, then

the routine encountered a problem writing the output. This will occur when a file

already exists, perhaps from a previous run, that has the same name as the output

file that the routine is trying to write; this may be remedied by renaming the existing

file. If INFO returns the value of 2, then there was insufficient workspace; this may

be remedied by increasing LWORK. If INFO returns any other value, the user should

consult the comments of uminhv.f to learn the nature of the error.

Appendix C

Numerical results

The detailed results of the numerical testing of UMINH and UMINHV and their

comparison routines are given in the tables of this section. The tables contain the

relative performance of each routine on each problem for each performance measure

and each tolerance level of the convergence measure

εi =

∣∣∣∣∣ fi − f∗f0 − f∗

∣∣∣∣∣ .
We compared the performance of UMINH against E04LBF, a line-search method

from the NAG library [18], and DMNH, a trust-region method from the AT&T PORT

library [8], on 142 test problems. The routines’ performance in terms of number of

iterations, function evaluations, and gradient evaluations for the tolerance levels 10−3,

10−6, 10−9, and 10−12 is contained in Tables C.1–C.12.

We compared the performance of UMINHV against L-BFGS, a limited-memory

quasi-Newton method [14], and TN, a truncated-Newton method [16], on 78 test

problems. The routines’ performance in terms of number of iterations, function eval-

uations, and gradient and Hessian-vector product evaluations for the tolerance levels

10−3, 10−6, 10−9, and 10−12 is contained in Tables C.13–C.24.

Each table has columns for the function name, problem name, and size. Recall

that one function can have several problems that specify different function sizes,

parameters, or initial points. Next, for each of the three routines there is a set of four

83

APPENDIX C. NUMERICAL RESULTS 84

columns marked 1, 2, 3, and f. If the performance of a routine on a given problem

ranked first, second, or third among the three routines, then there will be a number

respectively in its 1, 2, or 3 column. The number in these columns is the ratio of

the routine’s performance on the problem to that of the best routine’s performance.

In Table C.1, for example, for the solution of the problem BOX662HL, the DMNH

required the fewest number of iterations, UMINH came in second, requiring about

40% more iterations than DMNH, and E04LBF came in third, requiring about 60%

more iterations than DMNH. Ties occurred frequently. If a routine failed to solve a

given problem, there is an entry in its f column.

The bottom row of each table summarizes the number of first-place, second-place,

and third-place finishes for each routine along with the number of problems that it

failed to solve. Tables 3.2–3.4 collect these summary statistics from Tables C.1–C.12.

Tables 4.3–4.5 collect these summary statistics from Tables C.13–C.24.

APPENDIX C. NUMERICAL RESULTS 85

Table C.1: Place finishes for number of iterations, tolerance = 10−3.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 2.00
ARGQDZ ARGQDZ10 3 1 1 2.00
ARTRIG ARTRIG10 10 1 1 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1 1
BEAL58 BEAL58KO 2 1 1.25 1.25
BIGGS BIGGS6 6 3.50 1 f
BOOTH BOOTH 2 1 1 1
BOX66 BOX662HL 2 1.40 1.60 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1.20 2.00 1
BROWND BROWND 4 1 1 1.20
BROY7D BROY7D 60 f 1.50 1
BRWNAL BRWNAL10 10 1 1 2.00
BRWNAL BRWNL100 100 1 1 2.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.50 1.50
BRYTRI BRYTRI10 600 1 1 1.50
CHEBYQ CHEBYQ8 8 1 1.20 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1 1.12 1.12
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 1.67 2.00
CRGLVY CRGLVY 4 1 1.17 1
CRGLVY CRGLVY10 10 1 1 1
CRGLVY CRGLY500 500 1 1 1.29
CRGLVY CRGL1000 1000 1 1 1.14
DIX7DG DIX7DGA 15 1 1.25 1.25
DIXON DIXON 10 1 1 2.00
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.60 1.60 1
EXTRSN EXTRAR10 10 1 1 1
EXTRSN EXTRAR50 50 1 1 1.25
EXTRSN EXTRA100 100 1 1 1.06
EXTRSN EXTR1000 1000 1 1 1.12
FRANK FRANK8 8 1 1 2.00
FRANK FRANK12 12 1 1 2.00
FRDRTH FRDRTH 2 1.33 1.33 1
FRDRTH FRDRTHB3 50 1 1 1.33
FRDRTH FRDRTHB4 100 1 1 1
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT2B 2 1 1.50 1
GENRSN GENT50A 50 1.02 1 1.35
GENRSN GENT500A 500 1.03 1 1.25
GENRSN GENT1000 1000 1.03 1 1.26
GOTTFR GOTTFR 2 4.00 1 4.00
GULF GULFSH2 3 1 1.75 1.75
HELIX HELIX 3 1.20 1 1
HILBRT HILBR10A 10 2.00 1 2.00
HILBRT HILBRT12 12 2.00 1 2.00
HIMLN3 HIMLN3 2 1 1 1
HIMM1 HIMM1 2 1 1 2.00
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.17 1 1
HIMM28 HIMM28 2 1 1 1
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1 1 1
HIMM32 HIMM32 4 1 1 1
HIMM33 HIMM33A 2 1 2.00 1.50
HYPCIR HYPCIR 2 1 1 1
JENSMP JENSMP 2 1 1 1
KOWOSB KOWOSB1 4 1.50 1 1.50
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 3.00 1 1.67
MNSRF1 NMSURF64 36 1.64 1 1.27
MNSRF1 NMSUR484 400 4.27 1 8.67
MNSRF2 SNMSUR64 36 1 f 1.46
MNSRF2 SNMSR484 400 1.04 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 1 2.00
NONDIA NONDIA10 10 1 1 1.20
NONDIA NONDIA20 20 1 1 1
NONDIA NONDI500 500 1 1 1
NONDIA NOND1000 1000 1 1 1.10
OSBRN1 OSBRN1 5 2.67 1 f

APPENDIX C. NUMERICAL RESULTS 86

OSBRN2 OSBRN2 11 1 f 1.38
PENAL1 PEN1GM6 10 1 1 1
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1
PENAL2 PEN2GM6 4 1 1 1
PENAL2 PEN2GM1 50 1 f 1.75
PENAL2 PEN2GM2 100 1 f 2.89
PENAL3 PENL3GM3 50 1 1 1.25
PENAL3 PENL3GM4 100 1 1.38 1.12
PENAL3 PENL3GM5 1000 1 1.44 1.67
POWBSC POWBSC 2 1 1 1.29
POWBSC POWBSC50 50 1 7.60 1.20
POWBSC POWBS500 500 1.25 69.00 1
POWBSC POWB1000 1000 1.50 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 1 9.00
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1
PWSING PWSIN100 100 1 1 1
PWSING PWSI1000 1000 1 1 1
QUARTC QUARTC 25 1 1 1.40
RECIPE RECIPE 3 1.50 1.50 1
ROSENB ROSENB 2 1 1 1.12
ROSENB SHNRSN10 10 1 1 1
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1.20
SQRTMX MSQRTB9 9 1.25 2.00 1
SQRTMX MSQRTB49 49 1 77.00 1.20
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ500 500 1 1 2.00
TDQUAD TDQ1000 1000 1 1 2.00
TOIN2 TOIN2 3 1 1 1
TOIN4 TOIN4 4 1 1 3.00
TOINT PSPTOINT 50 1.50 1 2.00
TRIDIA TRIDIA10 10 1 1 2.00
TRIDIA TRLN100 100 1 f 2.00
TRIDIA TRLN1000 1000 1 f 2.00
TRIGTO TRIGT50 50 1 2.12 1.12
TRIGTO TRIGT100 100 1 2.10 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 3.00
VAROSB VAROSBG2 100 1 1 4.00
WATSON WATSON6 6 1 1 1
WATSON WATSON12 12 1 1 1
WOODS WOODS 4 1 1 1
WOODS WOODS80 80 1 1 1
XTX XTX2 2 1 1 1
XTX XTX16 16 1 1 2.00
ZANGWL ZANGWL1 3 1 1 2.00
Totals 116 22 2 2 109 15 9 9 74 58 7 3

APPENDIX C. NUMERICAL RESULTS 87

Table C.2: Place finishes for number of iterations, tolerance = 10−6.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 2.00
ARGQDZ ARGQDZ10 3 1 1 2.00
ARTRIG ARTRIG10 10 1.14 f 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1 1
BEAL58 BEAL58KO 2 1 1.17 1
BIGGS BIGGS6 6 2.32 1 f
BOOTH BOOTH 2 1 1 2.00
BOX66 BOX662HL 2 1.50 1.67 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1.17 1.83 1
BROWND BROWND 4 1 1 1.33
BROY7D BROY7D 60 f 1.22 1
BRWNAL BRWNAL10 10 1 1 1.50
BRWNAL BRWNL100 100 1 f 2.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1.20
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1 1.33
BRYTRI BRYTRI10 600 1 1 1.33
CHEBYQ CHEBYQ8 8 1 1.18 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1 1.09 1.09
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 1.29 1
CRGLVY CRGLVY 4 1 1 1
CRGLVY CRGLVY10 10 1 1 1
CRGLVY CRGLY500 500 1 1 1.20
CRGLVY CRGL1000 1000 1 1 1.10
DIX7DG DIX7DGA 15 1 1 1.20
DIXON DIXON 10 1 1 2.00
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1.20
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.20 1.20 1
EXTRSN EXTRAR10 10 1 1.06 1.11
EXTRSN EXTRAR50 50 1 1.06 1.33
EXTRSN EXTRA100 100 1 1.06 1.11
EXTRSN EXTR1000 1000 1 1.06 1.22
FRANK FRANK8 8 1 1 2.00
FRANK FRANK12 12 1 1 2.00
FRDRTH FRDRTH 2 1 1 1
FRDRTH FRDRTHB3 50 1 1 1.50
FRDRTH FRDRTHB4 100 1 1 1.25
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT2B 2 1 1.33 1
GENRSN GENT50A 50 1.03 1 1.39
GENRSN GENT500A 500 1.03 1 1.26
GENRSN GENT1000 1000 1.03 1 1.26
GOTTFR GOTTFR 2 2.25 1 2.25
GULF GULFSH2 3 1.25 1 1.44
HELIX HELIX 3 1.67 1 1.50
HILBRT HILBR10A 10 2.00 1 2.00
HILBRT HILBRT12 12 2.00 1 2.00
HIMLN3 HIMLN3 2 1.50 1 1.50
HIMM1 HIMM1 2 1 1 2.00
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.11 1 1
HIMM28 HIMM28 2 1 1 1
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1 1 1.12
HIMM32 HIMM32 4 1 1.33 1.33
HIMM33 HIMM33A 2 1 1.67 1.33
HYPCIR HYPCIR 2 1 1 1
JENSMP JENSMP 2 1 1 1.14
KOWOSB KOWOSB1 4 1.60 1 1.60
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1.21 1 1.77
MNSRF1 NMSURF64 36 1.43 1 1.21
MNSRF1 NMSUR484 400 3.79 1 7.00
MNSRF2 SNMSUR64 36 1 f 1.24
MNSRF2 SNMSR484 400 1.04 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 f 1.50
NONDIA NONDIA10 10 1 1 1.24
NONDIA NONDIA20 20 1 1 1.06
NONDIA NONDI500 500 1 1 1.06
NONDIA NOND1000 1000 1 1 1.12
OSBRN1 OSBRN1 5 4.00 1 f

APPENDIX C. NUMERICAL RESULTS 88

OSBRN2 OSBRN2 11 1 f 1.27
PENAL1 PEN1GM6 10 1 1 1
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1
PENAL2 PEN2GM6 4 1 1 1
PENAL2 PEN2GM1 50 1 f 1.60
PENAL2 PEN2GM2 100 f f 1
PENAL3 PENL3GM3 50 1 1 1.10
PENAL3 PENL3GM4 100 1 1.20 1.10
PENAL3 PENL3GM5 1000 1 1.36 1.55
POWBSC POWBSC 2 1 1.04 1.20
POWBSC POWBSC50 50 1 4.70 1
POWBSC POWBS500 500 1.43 43.57 1
POWBSC POWB1000 1000 1.43 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 1 2.50
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1
PWSING PWSIN100 100 1 1 1.11
PWSING PWSI1000 1000 1 1 1
QUARTC QUARTC 25 1 1 1.22
RECIPE RECIPE 3 1.33 1.33 1
ROSENB ROSENB 2 1 1.06 1.17
ROSENB SHNRSN10 10 1 1 1
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1.50
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1.11
SQRTMX MSQRTB9 9 1.40 1.80 1
SQRTMX MSQRTB49 49 1 f 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ500 500 1 1 2.00
TDQUAD TDQ1000 1000 1 1 2.00
TOIN2 TOIN2 3 1 1 2.00
TOIN4 TOIN4 4 1 1 3.00
TOINT PSPTOINT 50 1.44 1 1.67
TRIDIA TRIDIA10 10 1 1 2.00
TRIDIA TRLN100 100 1 f 2.00
TRIDIA TRLN1000 1000 1 f 2.00
TRIGTO TRIGT50 50 1 2.12 1.25
TRIGTO TRIGT100 100 1 2.00 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 2.00
VAROSB VAROSBG2 100 1 1 2.50
WATSON WATSON6 6 1 1 1.11
WATSON WATSON12 12 1 1 1.10
WOODS WOODS 4 1 1 1.09
WOODS WOODS80 80 1 1 1.09
XTX XTX2 2 1 1 1
XTX XTX16 16 1 1 2.00
ZANGWL ZANGWL1 3 1 1 2.00
Totals 113 24 2 3 104 18 7 13 60 65 14 3

APPENDIX C. NUMERICAL RESULTS 89

Table C.3: Place finishes for number of iterations, tolerance = 10−9.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 2.00
ARGQDZ ARGQDZ10 3 1 1 2.00
ARTRIG ARTRIG10 10 1 f 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1.33 1
BEAL58 BEAL58KO 2 1 1.14 1
BIGGS BIGGS6 6 2.08 1 f
BOOTH BOOTH 2 1 1 2.00
BOX66 BOX662HL 2 1.43 1.57 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1 1.57 1
BROWND BROWND 4 1 1 1.29
BROY7D BROY7D 60 f 1.20 1
BRWNAL BRWNAL10 10 1 1 1.20
BRWNAL BRWNL100 100 1 f 2.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1.17
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.33 1.33
BRYTRI BRYTRI10 600 1 1 1.25
CHEBYQ CHEBYQ8 8 1 1.27 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1 1.08 1.08
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1.25 1.38 1
CRGLVY CRGLVY 4 1.06 1.06 1
CRGLVY CRGLVY10 10 1 1 1.15
CRGLVY CRGLY500 500 1 1 1.31
CRGLVY CRGL1000 1000 1 1 1.08
DIX7DG DIX7DGA 15 1 1 1.20
DIXON DIXON 10 1 1 2.00
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1.17
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.17 1.17 1
EXTRSN EXTRAR10 10 1 1.05 1.11
EXTRSN EXTRAR50 50 1 1.05 1.32
EXTRSN EXTRA100 100 1 1.05 1.11
EXTRSN EXTR1000 1000 1 1.05 1.21
FRANK FRANK8 8 1 1 2.00
FRANK FRANK12 12 1 1 2.00
FRDRTH FRDRTH 2 1.20 1.20 1
FRDRTH FRDRTHB3 50 1 1 1.20
FRDRTH FRDRTHB4 100 1 1 1.20
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT2B 2 1 1.29 1
GENRSN GENT50A 50 1.01 1 1.37
GENRSN GENT500A 500 1.03 1 1.26
GENRSN GENT1000 1000 1.03 1 1.26
GOTTFR GOTTFR 2 1.71 1 1.71
GULF GULFSH2 3 1.17 1 1.39
HELIX HELIX 3 1.38 1 1.38
HILBRT HILBR10A 10 2.00 1 2.00
HILBRT HILBRT12 12 2.00 1 2.00
HIMLN3 HIMLN3 2 1.50 1 2.00
HIMM1 HIMM1 2 1 1 2.00
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.30 1 1.20
HIMM28 HIMM28 2 1 1 1
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1 1 1.11
HIMM32 HIMM32 4 1 1.29 1.29
HIMM33 HIMM33A 2 1 1.25 1.25
HYPCIR HYPCIR 2 1 1.25 1
JENSMP JENSMP 2 1 1 1.12
KOWOSB KOWOSB1 4 1.50 1 1.50
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1.12 1 1.52
MNSRF1 NMSURF64 36 1.16 f 1
MNSRF1 NMSUR484 400 1 f 1.84
MNSRF2 SNMSUR64 36 1 f 1.22
MNSRF2 SNMSR484 400 1.05 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 f 1.50
NONDIA NONDIA10 10 1 1.06 1.28
NONDIA NONDIA20 20 1 1.06 1.06
NONDIA NONDI500 500 1 1.06 1.06
NONDIA NOND1000 1000 1 1.06 1.11
OSBRN1 OSBRN1 5 1.81 1 f

APPENDIX C. NUMERICAL RESULTS 90

OSBRN2 OSBRN2 11 1 f 1.25
PENAL1 PEN1GM6 10 1 1 1.09
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1.08
PENAL2 PEN2GM6 4 1 1.04 1.06
PENAL2 PEN2GM1 50 1 f 1.50
PENAL2 PEN2GM2 100 f f 1
PENAL3 PENL3GM3 50 1 1.10 1.20
PENAL3 PENL3GM4 100 1 1.18 1.09
PENAL3 PENL3GM5 1000 1 1.25 1.42
POWBSC POWBSC 2 1 1.12 1.12
POWBSC POWBSC50 50 5.50 f 1
POWBSC POWBS500 500 6.00 f 1
POWBSC POWB1000 1000 7.91 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 4.00 1
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1.08
PWSING PWSIN100 100 1 1 1.08
PWSING PWSI1000 1000 1 1 1.08
QUARTC QUARTC 25 1 1 1.15
RECIPE RECIPE 3 1.25 1.25 1
ROSENB ROSENB 2 1 1.05 1.16
ROSENB SHNRSN10 10 1 1.04 1.07
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1.08
SQRTMX MSQRTB9 9 1.17 1.67 1
SQRTMX MSQRTB49 49 1 f 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ500 500 1 1 2.00
TDQUAD TDQ1000 1000 1 1 2.00
TOIN2 TOIN2 3 1 1 2.00
TOIN4 TOIN4 4 1 1 3.00
TOINT PSPTOINT 50 1.40 1 1.60
TRIDIA TRIDIA10 10 2.00 1 2.00
TRIDIA TRLN100 100 1 f 2.00
TRIDIA TRLN1000 1000 1 f 2.00
TRIGTO TRIGT50 50 1 2.00 1.22
TRIGTO TRIGT100 100 1.09 2.00 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 2.00
VAROSB VAROSBG2 100 1 1 2.50
WATSON WATSON6 6 1 1 1.10
WATSON WATSON12 12 1 1 1.27
WOODS WOODS 4 1 1 1.11
WOODS WOODS80 80 1 1 1.08
XTX XTX2 2 1 1 1
XTX XTX16 16 1 1 2.00
ZANGWL ZANGWL1 3 1 1 2.00
Totals 110 28 1 3 89 30 6 17 55 66 18 3

APPENDIX C. NUMERICAL RESULTS 91

Table C.4: Place finishes for number of iterations, tolerance = 10−12.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 2.00
ARGQDZ ARGQDZ10 3 1 1 2.00
ARTRIG ARTRIG10 10 1 f 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1.14 1
BEAL58 BEAL58KO 2 1 1.12 1
BIGGS BIGGS6 6 2.02 1 f
BOOTH BOOTH 2 1 1 2.00
BOX66 BOX662HL 2 1.38 1.50 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1.14 1.57 1
BROWND BROWND 4 1 1 1.29
BROY7D BROY7D 60 f 1.27 1
BRWNAL BRWNAL10 10 1 1 1.17
BRWNAL BRWNL100 100 1 f 6.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1
BRYTRI BRYTRI10 600 1 1 1.25
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1 1.25
CHEBYQ CHEBYQ10 10 1 f f
CHEBYQ CHEBYQ8 8 1 1.17 1
CHNRSN CHNRSH10 10 1 1.08 1
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1.50 1.50 1
CRGLVY CRGLVY 4 1.05 1.05 1
CRGLVY CRGLVY10 10 1 1 1.06
CRGLVY CRGLY500 500 1 1 1.43
CRGLVY CRGL1000 1000 1 1 1.14
DIXON DIXON 10 1 1 2.00
DIX7DG DIX7DGA 15 1 1 1
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1.14
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.25 1.25 1
EXTRSN EXTRAR10 10 1 1.05 1.05
EXTRSN EXTRAR50 50 1 1.05 1.25
EXTRSN EXTRA100 100 1 1.05 1.10
EXTRSN EXTR1000 1000 1 1.05 1.20
FRANK FRANK12 12 1 1 2.00
FRANK FRANK8 8 1 1 2.00
FRDRTH FRDRTH 2 1 1 1
FRDRTH FRDRTHB3 50 1 1 1.17
FRDRTH FRDRTHB4 100 1 1 1
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT1000 1000 1.03 1 1.26
GENRSN GENT2B 2 1 1.29 1.14
GENRSN GENT50A 50 1.01 1 1.37
GENRSN GENT500A 500 1.03 1 1.26
GOTTFR GOTTFR 2 1.62 1 1.62
GULF GULFSH2 3 1.16 1 1.37
HELIX HELIX 3 1.38 1 1.50
HILBRT HILBRT12 12 2.00 1 2.00
HILBRT HILBR10A 10 2.00 1 2.00
HIMLN3 HIMLN3 2 1.50 1 2.00
HIMM1 HIMM1 2 1 1 2.00
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.27 1 1.27
HIMM28 HIMM28 2 1 1 1
HIMM29 HIMM29 2 1 1.06 1.06
HIMM30 HIMM30 3 1 1 1
HIMM32 HIMM32 4 1 1.43 1.29
HIMM33 HIMM33A 2 1 1.50 1.25
HYPCIR HYPCIR 2 1 1 1
JENSMP JENSMP 2 1 1 1
KOWOSB KOWOSB1 4 1.50 1 1.50
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1.12 1 1.51
MNSRF1 NMSURF64 36 1.16 f 1
MNSRF1 NMSUR484 400 1 f 1.81
MNSRF2 SNMSR484 400 1.05 f 1
MNSRF2 SNMSUR64 36 1 f 1.21
MORCIN MORCIN10 10 1 1 1
MOREBV MORBV998 998 1 f 1.33
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
NONDIA NONDIA10 10 1 1.05 1.26
NONDIA NONDIA20 20 1 1.05 1.05
NONDIA NONDI500 500 1 1.05 1.05
NONDIA NOND1000 1000 1 1.05 1.11
OSBRN1 OSBRN1 5 1.82 1 f

APPENDIX C. NUMERICAL RESULTS 92

OSBRN2 OSBRN2 11 1 f 1.23
PENAL1 PEN1GM6 10 1 1.04 1.12
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1
PENAL2 PEN2GM1 50 1 f 1.50
PENAL2 PEN2GM2 100 f f 1
PENAL2 PEN2GM6 4 1 1.04 1.05
PENAL3 PENL3GM3 50 1 1 1.18
PENAL3 PENL3GM4 100 1 1.27 1.09
PENAL3 PENL3GM5 1000 1 1.23 1.38
POWBSC POWBSC 2 1 1.35 1.13
POWBSC POWBSC50 50 1 f f
POWBSC POWBS500 500 1 f f
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 1.95 1
PWSING PWSING4 4 1 1 1.06
PWSING PWSING60 60 1 1 1.06
PWSING PWSIN100 100 1 1 1.06
PWSING PWSI1000 1000 1 1 1.06
QUARTC QUARTC 25 1 f 1.11
RECIPE RECIPE 3 1.25 1.25 1
ROSENB ROSENB 2 1 1.05 1.15
ROSENB SHNRSN10 10 1 1.05 1.03
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1.33
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1
SQRTMX MSQRTB49 49 1 f 1
SQRTMX MSQRTB9 9 1.14 1.43 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ1000 1000 1 1 2.00
TDQUAD TDQ500 500 1 1 2.00
TOINT PSPTOINT 50 1.27 1 1.45
TOIN2 TOIN2 3 1 1 2.00
TOIN4 TOIN4 4 1 1 3.00
TRIDIA TRIDIA10 10 2.00 1 2.00
TRIDIA TRLN100 100 1 f 1
TRIDIA TRLN1000 1000 1 f 2.00
TRIGTO TRIGT100 100 1 1.83 1
TRIGTO TRIGT50 50 1 2.00 1.22
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 1.67
VAROSB VAROSBG2 100 1 1 2.00
WATSON WATSON12 12 1 1 1.50
WATSON WATSON6 6 1 1 1.09
WOODS WOODS 4 1 1 1.08
WOODS WOODS80 80 1 1 1.08
XTX XTX16 16 1 1 2.00
XTX XTX2 2 1 1 1
ZANGWL ZANGWL1 3 1 1 2.00
Totals 113 25 0 3 90 24 10 17 57 62 17 5

APPENDIX C. NUMERICAL RESULTS 93

Table C.5: Place finishes for number of function evaluations, tolerance = 10−3.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1 2.00 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1 1
BEAL58 BEAL58KO 2 1 2.00 1
BIGGS BIGGS6 6 1.91 1 f
BOOTH BOOTH 2 1 1 1.50
BOX66 BOX662HL 2 1.12 3.50 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1 1.09 1.64
BROWND BROWND 4 1 1 1.33
BROY7D BROY7D 60 f 4.50 1
BRWNAL BRWNAL10 10 1 1 1.50
BRWNAL BRWNL100 100 1 1 2.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.25 1
BRYTRI BRYTRI10 600 1 1 1.50
CHEBYQ CHEBYQ8 8 1 2.71 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1.33 1.42 1
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 6.00 2.50
CRGLVY CRGLVY 4 1 1.12 1
CRGLVY CRGLVY10 10 1 1 1
CRGLVY CRGLY500 500 1 1 1.25
CRGLVY CRGL1000 1000 1 1 1.25
DIX7DG DIX7DGA 15 1 4.17 1.17
DIXON DIXON 10 1 1 2.00
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1.20
ENGVL1 ENGVL1B4 100 1 1 1.20
ENGVL1 ENGVL1B6 1000 1 1 1.40
ENGVL2 ENGVL2 3 1.57 1.71 1
EXTRSN EXTRAR10 10 1.11 1.21 1
EXTRSN EXTRAR50 50 1 1.10 1.57
EXTRSN EXTRA100 100 1 1.10 1.05
EXTRSN EXTR1000 1000 1 1.10 1.48
FRANK FRANK8 8 1 1 2.50
FRANK FRANK12 12 1 1 3.00
FRDRTH FRDRTH 2 1.25 1.25 1
FRDRTH FRDRTHB3 50 1 1 1.75
FRDRTH FRDRTHB4 100 1 1 1.25
FRDRTH FRDRTHB7 1000 1 1 1.67
GENRSN GENT2B 2 1 4.00 1.20
GENRSN GENT50A 50 1.15 1 2.18
GENRSN GENT500A 500 1.23 1 2.13
GENRSN GENT1000 1000 1.21 1 2.15
GOTTFR GOTTFR 2 1 2.00 1
GULF GULFSH2 3 1 2.46 1.15
HELIX HELIX 3 1 1.29 1.29
HILBRT HILBR10A 10 1.50 1 2.00
HILBRT HILBRT12 12 1.50 1 2.00
HIMLN3 HIMLN3 2 1.67 1.33 1
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.14 1 1
HIMM28 HIMM28 2 1 1.20 1.20
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1 1 1
HIMM32 HIMM32 4 1 1 1.29
HIMM33 HIMM33A 2 1 2.67 1.33
HYPCIR HYPCIR 2 1 1.25 1.25
JENSMP JENSMP 2 1 1 1
KOWOSB KOWOSB1 4 1 1.89 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 2.00
MEYER MEYER 3 2.50 1 1
MNSRF1 NMSURF64 36 11.47 1.47 1
MNSRF1 NMSUR484 400 4.81 1 3.00
MNSRF2 SNMSUR64 36 5.83 f 1
MNSRF2 SNMSR484 400 4.16 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 1 1.50
NONDIA NONDIA10 10 1 1.07 1.33
NONDIA NONDIA20 20 1.36 1.45 1
NONDIA NONDI500 500 1 1.14 1
NONDIA NOND1000 1000 1 1.33 1.58
OSBRN1 OSBRN1 5 2.43 1 f

APPENDIX C. NUMERICAL RESULTS 94

OSBRN2 OSBRN2 11 1 f 1
PENAL1 PEN1GM6 10 1 1 1.17
PENAL1 PEN1LN1 50 1 1 1.50
PENAL1 PEN1LN2 100 1 1 1.67
PENAL1 PEN1LN3 1000 1 1 2.00
PENAL2 PEN2GM6 4 1 1 1
PENAL2 PEN2GM1 50 1 f 2.00
PENAL2 PEN2GM2 100 1 f 1.28
PENAL3 PENL3GM3 50 1.08 1 1.23
PENAL3 PENL3GM4 100 1.07 2.47 1
PENAL3 PENL3GM5 1000 1 1.45 1.35
POWBSC POWBSC 2 1.20 1 1.20
POWBSC POWBSC50 50 1 67.00 1.50
POWBSC POWBS500 500 1 697.67 1.50
POWBSC POWB1000 1000 1 f 1.29
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1.17
POWQUD POWQUD8A 4 1 1 1.50
POWSSQ POWSSQ 2 f 1 1.07
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1.17
PWSING PWSIN100 100 1 1 1.17
PWSING PWSI1000 1000 1 1 1.33
QUARTC QUARTC 25 1 1 1.33
RECIPE RECIPE 3 1 1 1
ROSENB ROSENB 2 1 1.10 1.24
ROSENB SHNRSN10 10 1 1 1
SARSEB SARSEB 4 1 1 2.50
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1.33
SCHMVT SCHMV500 500 1 1 1.33
SCHMVT SCHV1000 1000 1 1 1.67
SISSER SISSER 2 1 1 1.17
SQRTMX MSQRTB9 9 1.83 3.67 1
SQRTMX MSQRTB49 49 1 307.80 1
TDQUAD TDQ10 10 1 1 2.00
TDQUAD TDQ500 500 1 1 3.00
TDQUAD TDQ1000 1000 1 1 3.00
TOIN2 TOIN2 3 1 1 1.50
TOIN4 TOIN4 4 1 1 2.00
TOINT PSPTOINT 50 2.58 1 1.92
TRIDIA TRIDIA10 10 1 1 2.00
TRIDIA TRLN100 100 1 f 2.50
TRIDIA TRLN1000 1000 1 f 2.50
TRIGTO TRIGT50 50 1 5.00 1.08
TRIGTO TRIGT100 100 1.29 6.43 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1.17
VAROSB VAROSBG1 50 1 1 2.50
VAROSB VAROSBG2 100 1 1 3.00
WATSON WATSON6 6 1 1 1
WATSON WATSON12 12 1 1 1
WOODS WOODS 4 1 1 1
WOODS WOODS80 80 1 1 1.40
XTX XTX2 2 1 1 1.50
XTX XTX16 16 1 1 2.00
ZANGWL ZANGWL1 3 1 1 3.00
Totals 114 22 4 2 93 22 18 9 52 75 12 3

APPENDIX C. NUMERICAL RESULTS 95

Table C.6: Place finishes for number of function evaluations, tolerance = 10−6.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1.11 f 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1 1
BEAL58 BEAL58KO 2 1.11 2.00 1
BIGGS BIGGS6 6 1.44 1 f
BOOTH BOOTH 2 1 1 2.00
BOX66 BOX662HL 2 1.22 3.33 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1 1.25 1.58
BROWND BROWND 4 1 1 1.43
BROY7D BROY7D 60 f 3.73 1
BRWNAL BRWNAL10 10 1 1 1.67
BRWNAL BRWNL100 100 1 f 2.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1.17
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1 1
BRYTRI BRYTRI10 600 1 1 1.40
CHEBYQ CHEBYQ8 8 1 2.60 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1.27 1.33 1
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 3.50 1.38
CRGLVY CRGLVY 4 1 1 1
CRGLVY CRGLVY10 10 1 1 1
CRGLVY CRGLY500 500 1 1 1.18
CRGLVY CRGL1000 1000 1 1 1.18
DIX7DG DIX7DGA 15 1 3.57 1.14
DIXON DIXON 10 1 1 2.00
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1.14
ENGVL1 ENGVL1B4 100 1 1 1.33
ENGVL1 ENGVL1B6 1000 1 1 1.33
ENGVL2 ENGVL2 3 1.25 1.33 1
EXTRSN EXTRAR10 10 1 1.13 1
EXTRSN EXTRAR50 50 1 1.13 1.61
EXTRSN EXTRA100 100 1 1.13 1.09
EXTRSN EXTR1000 1000 1 1.13 1.52
FRANK FRANK8 8 1 1 2.50
FRANK FRANK12 12 1 1 3.00
FRDRTH FRDRTH 2 1 1 1
FRDRTH FRDRTHB3 50 1 1 1.80
FRDRTH FRDRTHB4 100 1 1 1.40
FRDRTH FRDRTHB7 1000 1 1 1.40
GENRSN GENT2B 2 1 3.14 1.14
GENRSN GENT50A 50 1.16 1 2.28
GENRSN GENT500A 500 1.23 1 2.14
GENRSN GENT1000 1000 1.21 1 2.15
GOTTFR GOTTFR 2 1 1.58 1.17
GULF GULFSH2 3 1 1.24 1.09
HELIX HELIX 3 1.10 1 1.30
HILBRT HILBR10A 10 1.50 1 2.00
HILBRT HILBRT12 12 1.50 1 2.00
HIMLN3 HIMLN3 2 1.50 1 1
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.10 1 1
HIMM28 HIMM28 2 1 1.17 1.17
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1 1 1.09
HIMM32 HIMM32 4 1 1.25 1.62
HIMM33 HIMM33A 2 1 2.25 1.25
HYPCIR HYPCIR 2 1 1.20 1.20
JENSMP JENSMP 2 1 1 1.12
KOWOSB KOWOSB1 4 1 1.64 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1.67
MEYER MEYER 3 1.14 1 1.82
MNSRF1 NMSURF64 36 10.00 1.41 1
MNSRF1 NMSUR484 400 4.72 1 2.72
MNSRF2 SNMSUR64 36 8.00 f 1
MNSRF2 SNMSR484 400 4.10 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 f 1.33
NONDIA NONDIA10 10 1 1.09 1.50
NONDIA NONDIA20 20 1.21 1.26 1
NONDIA NONDI500 500 1 1.14 1.05
NONDIA NOND1000 1000 1 1.20 1.35
OSBRN1 OSBRN1 5 3.44 1 f

APPENDIX C. NUMERICAL RESULTS 96

OSBRN2 OSBRN2 11 1 f 1
PENAL1 PEN1GM6 10 1 1 1.10
PENAL1 PEN1LN1 50 1 1 1.30
PENAL1 PEN1LN2 100 1 1 1.40
PENAL1 PEN1LN3 1000 1 1 1.60
PENAL2 PEN2GM6 4 1 1 1
PENAL2 PEN2GM1 50 1 f 1.88
PENAL2 PEN2GM2 100 f f 1
PENAL3 PENL3GM3 50 1.07 1 1.13
PENAL3 PENL3GM4 100 1.06 2.24 1
PENAL3 PENL3GM5 1000 1 1.41 1.32
POWBSC POWBSC 2 1 1.06 1.16
POWBSC POWBSC50 50 1 39.27 1.18
POWBSC POWBS500 500 1 393.36 1.18
POWBSC POWB1000 1000 1 f 1.18
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1.10
POWQUD POWQUD8A 4 1 1 1.50
POWSSQ POWSSQ 2 f 1.18 1
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1.10
PWSING PWSIN100 100 1 1 1.20
PWSING PWSI1000 1000 1 1 1.20
QUARTC QUARTC 25 1 1 1.20
RECIPE RECIPE 3 1 1 1
ROSENB ROSENB 2 1 1.13 1.26
ROSENB SHNRSN10 10 1.14 1.24 1
SARSEB SARSEB 4 1 1 2.50
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1.33
SCHMVT SCHMV500 500 1 1 1.67
SCHMVT SCHV1000 1000 1 1 1.67
SISSER SISSER 2 1 1 1.10
SQRTMX MSQRTB9 9 1.86 3.29 1
SQRTMX MSQRTB49 49 1.07 f 1
TDQUAD TDQ10 10 1 1 2.00
TDQUAD TDQ500 500 1 1 3.00
TDQUAD TDQ1000 1000 1 1 3.00
TOIN2 TOIN2 3 1 1 2.00
TOIN4 TOIN4 4 1 1 2.00
TOINT PSPTOINT 50 2.67 1 1.73
TRIDIA TRIDIA10 10 1 1 2.00
TRIDIA TRLN100 100 1 f 2.50
TRIDIA TRLN1000 1000 1 f 2.50
TRIGTO TRIGT50 50 1 5.00 1.15
TRIGTO TRIGT100 100 1.27 6.07 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1.10
VAROSB VAROSBG1 50 1 1 2.00
VAROSB VAROSBG2 100 1 1 2.33
WATSON WATSON6 6 1 1 1.10
WATSON WATSON12 12 1 1 1.09
WOODS WOODS 4 1 1.02 1.09
WOODS WOODS80 80 1 1.02 1.16
XTX XTX2 2 1 1 1.50
XTX XTX16 16 1 1 2.00
ZANGWL ZANGWL1 3 1 1 3.00
Totals 111 25 3 3 90 18 21 13 45 76 18 3

APPENDIX C. NUMERICAL RESULTS 97

Table C.7: Place finishes for number of function evaluations, tolerance = 10−9.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1 f 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1.29 1
BEAL58 BEAL58KO 2 1.10 1.90 1
BIGGS BIGGS6 6 1.39 1 f
BOOTH BOOTH 2 1 1 2.00
BOX66 BOX662HL 2 1.20 3.10 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1 1.25 1.67
BROWND BROWND 4 1 1 1.38
BROY7D BROY7D 60 f 3.56 1
BRWNAL BRWNAL10 10 1 1 1.50
BRWNAL BRWNL100 100 1 f 2.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1.14
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.20 1
BRYTRI BRYTRI10 600 1 1 1.33
CHEBYQ CHEBYQ8 8 1 2.67 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1.25 1.31 1
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 2.73 1.09
CRGLVY CRGLVY 4 1.06 1.06 1
CRGLVY CRGLVY10 10 1 1 1.14
CRGLVY CRGLY500 500 1 1 1.29
CRGLVY CRGL1000 1000 1 1 1.14
DIX7DG DIX7DGA 15 1 3.57 1.14
DIXON DIXON 10 1 1 2.00
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1.12
ENGVL1 ENGVL1B4 100 1 1 1.29
ENGVL1 ENGVL1B6 1000 1 1 1.29
ENGVL2 ENGVL2 3 1.21 1.29 1
EXTRSN EXTRAR10 10 1 1.12 1
EXTRSN EXTRAR50 50 1 1.12 1.58
EXTRSN EXTRA100 100 1 1.12 1.08
EXTRSN EXTR1000 1000 1 1.12 1.50
FRANK FRANK8 8 1 1 2.50
FRANK FRANK12 12 1 1 3.00
FRDRTH FRDRTH 2 1.17 1.17 1
FRDRTH FRDRTHB3 50 1 1 1.50
FRDRTH FRDRTHB4 100 1 1 1.33
FRDRTH FRDRTHB7 1000 1 1 1.33
GENRSN GENT2B 2 1 2.88 1.12
GENRSN GENT50A 50 1.14 1 2.24
GENRSN GENT500A 500 1.23 1 2.13
GENRSN GENT1000 1000 1.21 1 2.15
GOTTFR GOTTFR 2 1 1.47 1.13
GULF GULFSH2 3 1 1.26 1.12
HELIX HELIX 3 1 1 1.25
HILBRT HILBR10A 10 1.50 1 2.00
HILBRT HILBRT12 12 1.50 1 2.00
HIMLN3 HIMLN3 2 1.50 1 1.25
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.33 1 1.08
HIMM28 HIMM28 2 1 1.17 1.17
HIMM29 HIMM29 2 1 1.18 1.06
HIMM30 HIMM30 3 1 1 1.08
HIMM32 HIMM32 4 1 1.22 1.56
HIMM33 HIMM33A 2 1 1.80 1.20
HYPCIR HYPCIR 2 1 1.40 1.20
JENSMP JENSMP 2 1 1 1.11
KOWOSB KOWOSB1 4 1 1.58 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1.67
MEYER MEYER 3 1.03 1 1.51
MNSRF1 NMSURF64 36 9.25 f 1
MNSRF1 NMSUR484 400 1.73 f 1
MNSRF2 SNMSUR64 36 7.74 f 1
MNSRF2 SNMSR484 400 4.08 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 f 1.33
NONDIA NONDIA10 10 1 1.13 1.52
NONDIA NONDIA20 20 1.20 1.30 1
NONDIA NONDI500 500 1 1.18 1.05
NONDIA NOND1000 1000 1 1.24 1.33
OSBRN1 OSBRN1 5 1.78 1 f

APPENDIX C. NUMERICAL RESULTS 98

OSBRN2 OSBRN2 11 1 f 1
PENAL1 PEN1GM6 10 1 1 1.17
PENAL1 PEN1LN1 50 1 1 1.21
PENAL1 PEN1LN2 100 1 1 1.29
PENAL1 PEN1LN3 1000 1 1 1.50
PENAL2 PEN2GM6 4 1.04 1.21 1
PENAL2 PEN2GM1 50 1 f 1.78
PENAL2 PEN2GM2 100 f f 1
PENAL3 PENL3GM3 50 1 1 1.12
PENAL3 PENL3GM4 100 1.06 2.17 1
PENAL3 PENL3GM5 1000 1 1.35 1.26
POWBSC POWBSC 2 1 1.15 1.06
POWBSC POWBSC50 50 5.53 f 1
POWBSC POWBS500 500 4.59 f 1
POWBSC POWB1000 1000 5.71 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1.07
POWQUD POWQUD8A 4 1 1 1.50
POWSSQ POWSSQ 2 f 4.00 1
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1.14
PWSING PWSIN100 100 1 1 1.14
PWSING PWSI1000 1000 1 1 1.21
QUARTC QUARTC 25 1 1 1.14
RECIPE RECIPE 3 1 1 1
ROSENB ROSENB 2 1 1.12 1.25
ROSENB SHNRSN10 10 1.04 1.24 1
SARSEB SARSEB 4 1 1 2.50
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1.25
SCHMVT SCHMV500 500 1 1 1.25
SCHMVT SCHV1000 1000 1 1 1.50
SISSER SISSER 2 1 1 1.07
SQRTMX MSQRTB9 9 1.62 3.00 1
SQRTMX MSQRTB49 49 1.07 f 1
TDQUAD TDQ10 10 1 1 2.00
TDQUAD TDQ500 500 1 1 3.00
TDQUAD TDQ1000 1000 1 1 3.00
TOIN2 TOIN2 3 1 1 2.00
TOIN4 TOIN4 4 1 1 2.00
TOINT PSPTOINT 50 2.56 1 1.69
TRIDIA TRIDIA10 10 1.50 1 2.00
TRIDIA TRLN100 100 1 f 2.50
TRIDIA TRLN1000 1000 1 f 2.50
TRIGTO TRIGT50 50 1 4.71 1.14
TRIGTO TRIGT100 100 1.33 6.07 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1.07
VAROSB VAROSBG1 50 1 1 2.00
VAROSB VAROSBG2 100 1 1 2.33
WATSON WATSON6 6 1 1 1.09
WATSON WATSON12 12 1 1 1.33
WOODS WOODS 4 1 1.02 1.11
WOODS WOODS80 80 1 1.02 1.15
XTX XTX2 2 1 1 1.50
XTX XTX16 16 1 1 2.00
ZANGWL ZANGWL1 3 1 1 3.00
Totals 107 29 3 3 83 19 23 17 45 78 16 3

APPENDIX C. NUMERICAL RESULTS 99

Table C.8: Place finishes for number of function evaluations, tolerance = 10−12.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 2.00
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1 f 1
AVRIEL AVRIEL3 2 1 1 2.00
BARD70 BARD70 3 1 1.12 1
BEAL58 BEAL58KO 2 1.09 1.82 1
BIGGS BIGGS6 6 1.38 1 f
BOOTH BOOTH 2 1 1 2.00
BOX66 BOX662HL 2 1.18 2.91 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1 1.15 1.54
BROWND BROWND 4 1 1 1.38
BROY7D BROY7D 60 f 3.47 1
BRWNAL BRWNAL10 10 1 1 1.43
BRWNAL BRWNL100 100 1 f 4.00
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1
BRYTRI BRYTRI10 600 1 1 1.33
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1 1
CHEBYQ CHEBYQ10 10 1 f f
CHEBYQ CHEBYQ8 8 1 2.50 1
CHNRSN CHNRSH10 10 1.31 1.38 1
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1.08 2.58 1
CRGLVY CRGLVY 4 1.04 1.04 1
CRGLVY CRGLVY10 10 1 1 1.06
CRGLVY CRGLY500 500 1 1 1.40
CRGLVY CRGL1000 1000 1 1 1.20
DIXON DIXON 10 1 1 2.00
DIX7DG DIX7DGA 15 1 3.25 1
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1.12
ENGVL1 ENGVL1B4 100 1 1 1.25
ENGVL1 ENGVL1B6 1000 1 1 1.25
ENGVL2 ENGVL2 3 1.29 1.36 1
EXTRSN EXTRAR10 10 1.04 1.17 1
EXTRSN EXTRAR50 50 1 1.12 1.52
EXTRSN EXTRA100 100 1 1.12 1.08
EXTRSN EXTR1000 1000 1 1.12 1.48
FRANK FRANK12 12 1 1 3.00
FRANK FRANK8 8 1 1 2.50
FRDRTH FRDRTH 2 1 1 1
FRDRTH FRDRTHB3 50 1 1 1.43
FRDRTH FRDRTHB4 100 1 1 1.14
FRDRTH FRDRTHB7 1000 1 1 1.33
GENRSN GENT1000 1000 1.21 1 2.15
GENRSN GENT2B 2 1 2.88 1.25
GENRSN GENT50A 50 1.14 1 2.23
GENRSN GENT500A 500 1.23 1 2.13
GOTTFR GOTTFR 2 1 1.44 1.12
GULF GULFSH2 3 1 1.26 1.11
HELIX HELIX 3 1 1 1.33
HILBRT HILBRT12 12 1.50 1 2.00
HILBRT HILBR10A 10 1.50 1 2.00
HIMLN3 HIMLN3 2 1.50 1 1.25
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 2.00
HIMM27 HIMM27 2 1.31 1 1.15
HIMM28 HIMM28 2 1 1.14 1.14
HIMM29 HIMM29 2 1 1.21 1.11
HIMM30 HIMM30 3 1 1 1
HIMM32 HIMM32 4 1 1.33 1.56
HIMM33 HIMM33A 2 1 2.00 1.20
HYPCIR HYPCIR 2 1 1.17 1.17
JENSMP JENSMP 2 1 1 1
KOWOSB KOWOSB1 4 1 1.58 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1.50
MEYER MEYER 3 1.04 1 1.50
MNSRF1 NMSURF64 36 9.25 f 1
MNSRF1 NMSUR484 400 1.74 f 1
MNSRF2 SNMSR484 400 4.04 f 1
MNSRF2 SNMSUR64 36 7.50 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MORBV998 998 1 f 1.25
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
NONDIA NONDIA10 10 1 1.12 1.50
NONDIA NONDIA20 20 1.19 1.29 1
NONDIA NONDI500 500 1 1.17 1.04
NONDIA NOND1000 1000 1 1.23 1.32
OSBRN1 OSBRN1 5 1.79 1 f

APPENDIX C. NUMERICAL RESULTS 100

OSBRN2 OSBRN2 11 1 f 1
PENAL1 PEN1GM6 10 1 1.14 1.29
PENAL1 PEN1LN1 50 1 1 1.18
PENAL1 PEN1LN2 100 1 1 1.22
PENAL1 PEN1LN3 1000 1 1 1.32
PENAL2 PEN2GM1 50 1 f 1.78
PENAL2 PEN2GM2 100 f f 1
PENAL2 PEN2GM6 4 1.08 1.25 1
PENAL3 PENL3GM3 50 1.06 1 1.19
PENAL3 PENL3GM4 100 1.06 2.22 1
PENAL3 PENL3GM5 1000 1 1.33 1.25
POWBSC POWBSC 2 1 1.58 1.10
POWBSC POWBSC50 50 1 f f
POWBSC POWBS500 500 1 f f
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1.05
POWQUD POWQUD8A 4 1 1 1.50
POWSSQ POWSSQ 2 f 2.33 1
PWSING PWSING4 4 1 1 1.06
PWSING PWSING60 60 1 1 1.11
PWSING PWSIN100 100 1 1 1.11
PWSING PWSI1000 1000 1 1 1.17
QUARTC QUARTC 25 1 f 1.11
RECIPE RECIPE 3 1 1 1
ROSENB ROSENB 2 1 1.12 1.24
ROSENB SHNRSN10 10 1.12 1.37 1
SARSEB SARSEB 4 1 1 2.50
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1.25
SCHMVT SCHMV500 500 1 1 1.50
SCHMVT SCHV1000 1000 1 1 1.50
SISSER SISSER 2 1 1 1
SQRTMX MSQRTB49 49 1.06 f 1
SQRTMX MSQRTB9 9 1.56 2.67 1
TDQUAD TDQ10 10 1 1 2.00
TDQUAD TDQ1000 1000 1 1 3.00
TDQUAD TDQ500 500 1 1 3.00
TOINT PSPTOINT 50 2.41 1 1.59
TOIN2 TOIN2 3 1 1 2.00
TOIN4 TOIN4 4 1 1 2.00
TRIDIA TRIDIA10 10 1.50 1 2.00
TRIDIA TRLN100 100 1 f 1.67
TRIDIA TRLN1000 1000 1 f 2.50
TRIGTO TRIGT100 100 1.25 5.69 1
TRIGTO TRIGT50 50 1 4.71 1.14
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1.05
VAROSB VAROSBG1 50 1 1 1.75
VAROSB VAROSBG2 100 1 1 2.00
WATSON WATSON12 12 1 1 1.62
WATSON WATSON6 6 1 1 1.08
WOODS WOODS 4 1 1.02 1.09
WOODS WOODS80 80 1 1.02 1.15
XTX XTX16 16 1 1 2.00
XTX XTX2 2 1 1 1.50
ZANGWL ZANGWL1 3 1 1 3.00
Totals 107 28 3 3 83 19 22 17 47 71 18 5

APPENDIX C. NUMERICAL RESULTS 101

Table C.9: Place finishes for number of gradient evaluations, tolerance = 10−3.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 1.50
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1 2.29 1
AVRIEL AVRIEL3 2 1 1 1.50
BARD70 BARD70 3 1 1 1
BEAL58 BEAL58KO 2 1 3.20 1.20
BIGGS BIGGS6 6 1.82 1 f
BOOTH BOOTH 2 1 1 1
BOX66 BOX662HL 2 1.50 4.67 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1.17 2.00 1
BROWND BROWND 4 1 1 1.17
BROY7D BROY7D 60 f 7.71 1
BRWNAL BRWNAL10 10 1 1 1.50
BRWNAL BRWNL100 100 1 1 1.50
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.67 1.33
BRYTRI BRYTRI10 600 1 1.33 1.33
CHEBYQ CHEBYQ8 8 1.18 3.45 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1 1.89 1.11
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 6.00 1.75
CRGLVY CRGLVY 4 1 1.29 1
CRGLVY CRGLVY10 10 1 1 1
CRGLVY CRGLY500 500 1 1 1.25
CRGLVY CRGL1000 1000 1 1 1.12
DIX7DG DIX7DGA 15 1 5.00 1.20
DIXON DIXON 10 1 1 1.50
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.83 2.00 1
EXTRSN EXTRAR10 10 1 1.35 1
EXTRSN EXTRAR50 50 1 1.35 1.24
EXTRSN EXTRA100 100 1 1.35 1.06
EXTRSN EXTR1000 1000 1 1.35 1.12
FRANK FRANK8 8 1 1 1.50
FRANK FRANK12 12 1 1 1.50
FRDRTH FRDRTH 2 1.25 1.25 1
FRDRTH FRDRTHB3 50 1 1 1.25
FRDRTH FRDRTHB4 100 1 1 1
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT2B 2 1 4.00 1
GENRSN GENT50A 50 1 1.04 1.25
GENRSN GENT500A 500 1 1.02 1.15
GENRSN GENT1000 1000 1 1.01 1.15
GOTTFR GOTTFR 2 1 2.80 1
GULF GULFSH2 3 1.50 4.00 1
HELIX HELIX 3 1.17 1.50 1
HILBRT HILBR10A 10 1.50 1 1.50
HILBRT HILBRT12 12 1.50 1 1.50
HIMLN3 HIMLN3 2 1.33 1.33 1
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 1.50
HIMM27 HIMM27 2 1.14 1 1
HIMM28 HIMM28 2 1 1.20 1
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1.14 1.29 1
HIMM32 HIMM32 4 1 1.17 1
HIMM33 HIMM33A 2 1 2.67 1.33
HYPCIR HYPCIR 2 1 1.25 1
JENSMP JENSMP 2 1 1 1
KOWOSB KOWOSB1 4 1 2.43 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1.67 1.33 1
MNSRF1 NMSURF64 36 10.67 1.87 1
MNSRF1 NMSUR484 400 1.64 1 2.79
MNSRF2 SNMSUR64 36 2.65 f 1
MNSRF2 SNMSR484 400 1.15 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 1 1.50
NONDIA NONDIA10 10 1 1.45 1.18
NONDIA NONDIA20 20 1 1.45 1
NONDIA NONDI500 500 1 1.45 1
NONDIA NOND1000 1000 1 1.33 1
OSBRN1 OSBRN1 5 1.29 1 f

APPENDIX C. NUMERICAL RESULTS 102

OSBRN2 OSBRN2 11 1 f 1.33
PENAL1 PEN1GM6 10 1 1 1
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1
PENAL2 PEN2GM6 4 1 1 1
PENAL2 PEN2GM1 50 1 f 1.33
PENAL2 PEN2GM2 100 1.19 f 1
PENAL3 PENL3GM3 50 1.09 1.18 1
PENAL3 PENL3GM4 100 1.30 3.70 1
PENAL3 PENL3GM5 1000 1.06 1.81 1
POWBSC POWBSC 2 1 1.25 1.25
POWBSC POWBSC50 50 1 67.00 1.17
POWBSC POWBS500 500 1.20 837.20 1
POWBSC POWB1000 1000 1.40 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 1.50 1
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1
PWSING PWSIN100 100 1 1 1
PWSING PWSI1000 1000 1 1 1
QUARTC QUARTC 25 1 1 1.33
RECIPE RECIPE 3 1.33 1.33 1
ROSENB ROSENB 2 1 1.35 1.12
ROSENB SHNRSN10 10 1 1 1
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1.17
SQRTMX MSQRTB9 9 1.60 4.40 1
SQRTMX MSQRTB49 49 1.29 439.71 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ500 500 1 1 1.50
TDQUAD TDQ1000 1000 1 1 1.50
TOIN2 TOIN2 3 1 1 1
TOIN4 TOIN4 4 1 1 2.00
TOINT PSPTOINT 50 1 1.09 1.18
TRIDIA TRIDIA10 10 1 1 1.50
TRIDIA TRLN100 100 1 f 1.50
TRIDIA TRLN1000 1000 1 f 1.50
TRIGTO TRIGT50 50 1.30 6.50 1
TRIGTO TRIGT100 100 1.64 8.18 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 2.00
VAROSB VAROSBG2 100 1 1 2.50
WATSON WATSON6 6 1 1 1
WATSON WATSON12 12 1 1 1
WOODS WOODS 4 1 1 1
WOODS WOODS80 80 1 1 1
XTX XTX2 2 1 1 1
XTX XTX16 16 1 1 1.50
ZANGWL ZANGWL1 3 1 1 1.50
Totals 110 28 2 2 81 25 27 9 88 46 5 3

APPENDIX C. NUMERICAL RESULTS 103

Table C.10: Place finishes for number of gradient evaluations, tolerance = 10−6.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 1.50
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1.12 f 1
AVRIEL AVRIEL3 2 1 1 1.50
BARD70 BARD70 3 1 1 1
BEAL58 BEAL58KO 2 1 2.57 1
BIGGS BIGGS6 6 1.29 1 f
BOOTH BOOTH 2 1 1 1.50
BOX66 BOX662HL 2 1.57 4.29 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1.14 2.14 1
BROWND BROWND 4 1 1 1.29
BROY7D BROY7D 60 f 5.60 1
BRWNAL BRWNAL10 10 1 1 1.33
BRWNAL BRWNL100 100 1 f 1.50
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1.17
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.25 1.25
BRYTRI BRYTRI10 600 1 1.25 1.25
CHEBYQ CHEBYQ8 8 1.17 3.25 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1 1.67 1.08
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1 3.50 1
CRGLVY CRGLVY 4 1 1.08 1
CRGLVY CRGLVY10 10 1 1 1
CRGLVY CRGLY500 500 1 1 1.18
CRGLVY CRGL1000 1000 1 1 1.09
DIX7DG DIX7DGA 15 1 4.17 1.17
DIXON DIXON 10 1 1 1.50
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1.17
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.36 1.45 1
EXTRSN EXTRAR10 10 1 1.37 1.11
EXTRSN EXTRAR50 50 1 1.37 1.32
EXTRSN EXTRA100 100 1 1.37 1.11
EXTRSN EXTR1000 1000 1 1.37 1.21
FRANK FRANK8 8 1 1 1.50
FRANK FRANK12 12 1 1 1.50
FRDRTH FRDRTH 2 1 1 1
FRDRTH FRDRTHB3 50 1 1 1.40
FRDRTH FRDRTHB4 100 1 1 1.20
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT2B 2 1 3.14 1
GENRSN GENT50A 50 1 1.02 1.26
GENRSN GENT500A 500 1 1.03 1.16
GENRSN GENT1000 1000 1 1.02 1.15
GOTTFR GOTTFR 2 1 1.90 1
GULF GULFSH2 3 1.17 1.71 1
HELIX HELIX 3 1.10 1 1
HILBRT HILBR10A 10 1.50 1 1.50
HILBRT HILBRT12 12 1.50 1 1.50
HIMLN3 HIMLN3 2 1.25 1 1
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 1.50
HIMM27 HIMM27 2 1.10 1 1
HIMM28 HIMM28 2 1 1.17 1
HIMM29 HIMM29 2 1 1 1
HIMM30 HIMM30 3 1 1.10 1
HIMM32 HIMM32 4 1 1.43 1.29
HIMM33 HIMM33A 2 1 2.25 1.25
HYPCIR HYPCIR 2 1 1.20 1
JENSMP JENSMP 2 1 1 1.12
KOWOSB KOWOSB1 4 1 2.00 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1 1.28 1.45
MNSRF1 NMSURF64 36 9.00 1.72 1
MNSRF1 NMSUR484 400 1.60 1 2.53
MNSRF2 SNMSUR64 36 3.05 f 1
MNSRF2 SNMSR484 400 1.14 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 f 1.33
NONDIA NONDIA10 10 1 1.33 1.22
NONDIA NONDIA20 20 1 1.33 1.06
NONDIA NONDI500 500 1 1.33 1.06
NONDIA NOND1000 1000 1 1.26 1.05
OSBRN1 OSBRN1 5 2.33 1 f

APPENDIX C. NUMERICAL RESULTS 104

OSBRN2 OSBRN2 11 1 f 1.25
PENAL1 PEN1GM6 10 1 1 1
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1
PENAL2 PEN2GM6 4 1 1 1
PENAL2 PEN2GM1 50 1 f 1.29
PENAL2 PEN2GM2 100 f f 1
PENAL3 PENL3GM3 50 1.17 1.25 1
PENAL3 PENL3GM4 100 1.25 3.17 1
PENAL3 PENL3GM5 1000 1.06 1.72 1
POWBSC POWBSC 2 1 1.31 1.19
POWBSC POWBSC50 50 1 39.27 1
POWBSC POWBS500 500 1.38 540.88 1
POWBSC POWB1000 1000 1.38 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 1.82 1
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1
PWSING PWSIN100 100 1 1 1.10
PWSING PWSI1000 1000 1 1 1
QUARTC QUARTC 25 1 1 1.20
RECIPE RECIPE 3 1.25 1.25 1
ROSENB ROSENB 2 1 1.37 1.16
ROSENB SHNRSN10 10 1 1.24 1
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1.33
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1.10
SQRTMX MSQRTB9 9 1.67 3.83 1
SQRTMX MSQRTB49 49 1.27 f 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ500 500 1 1 1.50
TDQUAD TDQ1000 1000 1 1 1.50
TOIN2 TOIN2 3 1 1 1.50
TOIN4 TOIN4 4 1 1 2.00
TOINT PSPTOINT 50 1.07 1 1.07
TRIDIA TRIDIA10 10 1 1 1.50
TRIDIA TRLN100 100 1 f 1.50
TRIDIA TRLN1000 1000 1 f 1.50
TRIGTO TRIGT50 50 1.18 5.91 1
TRIGTO TRIGT100 100 1.58 7.58 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 1.67
VAROSB VAROSBG2 100 1 1 2.00
WATSON WATSON6 6 1 1 1.10
WATSON WATSON12 12 1 1 1.09
WOODS WOODS 4 1 1.25 1.06
WOODS WOODS80 80 1 1.25 1.06
XTX XTX2 2 1 1 1
XTX XTX16 16 1 1 1.50
ZANGWL ZANGWL1 3 1 1 1.50
Totals 111 27 1 3 80 21 28 13 73 61 5 3

APPENDIX C. NUMERICAL RESULTS 105

Table C.11: Place finishes for number of gradient evaluations, tolerance = 10−9.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 1.50
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1 f 1
AVRIEL AVRIEL3 2 1 1 1.50
BARD70 BARD70 3 1 1.29 1
BEAL58 BEAL58KO 2 1 2.38 1
BIGGS BIGGS6 6 1.24 1 f
BOOTH BOOTH 2 1 1 1.50
BOX66 BOX662HL 2 1.50 3.88 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1 1.88 1
BROWND BROWND 4 1 1 1.25
BROY7D BROY7D 60 f 5.18 1
BRWNAL BRWNAL10 10 1 1 1.17
BRWNAL BRWNL100 100 1 f 1.50
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1.14
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.50 1.25
BRYTRI BRYTRI10 600 1 1.20 1.20
CHEBYQ CHEBYQ8 8 1.17 3.33 1
CHEBYQ CHEBYQ10 10 1 f f
CHNRSN CHNRSH10 10 1 1.62 1.08
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1.22 3.33 1
CRGLVY CRGLVY 4 1.06 1.12 1
CRGLVY CRGLVY10 10 1 1 1.14
CRGLVY CRGLY500 500 1 1 1.29
CRGLVY CRGL1000 1000 1 1 1.07
DIX7DG DIX7DGA 15 1 4.17 1.17
DIXON DIXON 10 1 1 1.50
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1.14
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.31 1.38 1
EXTRSN EXTRAR10 10 1 1.35 1.10
EXTRSN EXTRAR50 50 1 1.35 1.30
EXTRSN EXTRA100 100 1 1.35 1.10
EXTRSN EXTR1000 1000 1 1.35 1.20
FRANK FRANK8 8 1 1 1.50
FRANK FRANK12 12 1 1 1.50
FRDRTH FRDRTH 2 1.17 1.17 1
FRDRTH FRDRTHB3 50 1 1 1.17
FRDRTH FRDRTHB4 100 1 1 1.17
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT2B 2 1 2.88 1
GENRSN GENT50A 50 1 1.03 1.26
GENRSN GENT500A 500 1 1.03 1.16
GENRSN GENT1000 1000 1 1.02 1.15
GOTTFR GOTTFR 2 1 1.69 1
GULF GULFSH2 3 1.12 1.65 1
HELIX HELIX 3 1 1 1
HILBRT HILBR10A 10 1.50 1 1.50
HILBRT HILBRT12 12 1.50 1 1.50
HIMLN3 HIMLN3 2 1.25 1 1.25
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 1.50
HIMM27 HIMM27 2 1.17 1 1.08
HIMM28 HIMM28 2 1 1.17 1
HIMM29 HIMM29 2 1 1.25 1
HIMM30 HIMM30 3 1 1.09 1
HIMM32 HIMM32 4 1 1.38 1.25
HIMM33 HIMM33A 2 1 1.80 1.20
HYPCIR HYPCIR 2 1 1.40 1
JENSMP JENSMP 2 1 1 1.11
KOWOSB KOWOSB1 4 1 1.90 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1 1.36 1.35
MNSRF1 NMSURF64 36 8.20 f 1
MNSRF1 NMSUR484 400 1 f 1.57
MNSRF2 SNMSUR64 36 2.96 f 1
MNSRF2 SNMSR484 400 1.15 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
MOREBV MORBV998 998 1 f 1.33
NONDIA NONDIA10 10 1 1.37 1.26
NONDIA NONDIA20 20 1 1.37 1.05
NONDIA NONDI500 500 1 1.37 1.05
NONDIA NOND1000 1000 1 1.30 1.05
OSBRN1 OSBRN1 5 1.30 1 f

APPENDIX C. NUMERICAL RESULTS 106

OSBRN2 OSBRN2 11 1 f 1.23
PENAL1 PEN1GM6 10 1 1 1.08
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1.07
PENAL2 PEN2GM6 4 1 1.50 1.06
PENAL2 PEN2GM1 50 1 f 1.25
PENAL2 PEN2GM2 100 f f 1
PENAL3 PENL3GM3 50 1.08 1.23 1
PENAL3 PENL3GM4 100 1.23 3.00 1
PENAL3 PENL3GM5 1000 1.11 1.72 1
POWBSC POWBSC 2 1 1.41 1.11
POWBSC POWBSC50 50 5.38 f 1
POWBSC POWBS500 500 5.58 f 1
POWBSC POWB1000 1000 7.33 f 1
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 6.00 1
PWSING PWSING4 4 1 1 1
PWSING PWSING60 60 1 1 1.07
PWSING PWSIN100 100 1 1 1.07
PWSING PWSI1000 1000 1 1 1.07
QUARTC QUARTC 25 1 1 1.14
RECIPE RECIPE 3 1.20 1.20 1
ROSENB ROSENB 2 1 1.35 1.15
ROSENB SHNRSN10 10 1 1.49 1.07
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1.07
SQRTMX MSQRTB9 9 1.43 3.43 1
SQRTMX MSQRTB49 49 1.25 f 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ500 500 1 1 1.50
TDQUAD TDQ1000 1000 1 1 1.50
TOIN2 TOIN2 3 1 1 1.50
TOIN4 TOIN4 4 1 1 2.00
TOINT PSPTOINT 50 1.06 1 1.06
TRIDIA TRIDIA10 10 1.50 1 1.50
TRIDIA TRLN100 100 1 f 1.50
TRIDIA TRLN1000 1000 1 f 1.50
TRIGTO TRIGT50 50 1.17 5.50 1
TRIGTO TRIGT100 100 1.67 7.58 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 1.67
VAROSB VAROSBG2 100 1 1 2.00
WATSON WATSON6 6 1 1 1.09
WATSON WATSON12 12 1 1 1.25
WOODS WOODS 4 1 1.24 1.08
WOODS WOODS80 80 1 1.24 1.05
XTX XTX2 2 1 1 1
XTX XTX16 16 1 1 1.50
ZANGWL ZANGWL1 3 1 1 1.50
Totals 110 28 1 3 75 18 32 17 65 71 3 3

APPENDIX C. NUMERICAL RESULTS 107

Table C.12: Place finishes for number of gradient evaluations, tolerance = 10−12.
Function Problem Size UMINH E04LBF DMNH

1 2 3 f 1 2 3 f 1 2 3 f
ARGAUS ARGAUS 3 1 1 1
ARGQDN ARGQDN50 5 1 1 1.50
ARGQDO ARGQO10 5 1 1 1.50
ARGQDZ ARGQDZ10 3 1 1 1.50
ARTRIG ARTRIG10 10 1 f 1
AVRIEL AVRIEL3 2 1 1 1.50
BARD70 BARD70 3 1 1.12 1
BEAL58 BEAL58KO 2 1 2.22 1
BIGGS BIGGS6 6 1.23 1 f
BOOTH BOOTH 2 1 1 1.50
BOX66 BOX662HL 2 1.44 3.56 1
BRKMCC BRKMCC 2 1 1 1
BROWNB BROWNB 2 1.12 1.88 1
BROWND BROWND 4 1 1 1.25
BROY7D BROY7D 60 f 4.92 1
BRWNAL BRWNAL10 10 1 1 1.14
BRWNAL BRWNL100 100 1 f 3.50
BRYBND BRYBND 10 1 1 1
BRYBND BRYBND18 100 1 1 1
BRYTRI BRYTRI10 600 1 1.20 1.20
BRYTRI BRYTRI2 5 1 1 1
BRYTRI BRYTRI6 20 1 1.20 1.20
CHEBYQ CHEBYQ10 10 1 f f
CHEBYQ CHEBYQ8 8 1.15 3.08 1
CHNRSN CHNRSH10 10 1 1.57 1
CLIFF CLIFF 2 1 1 1
CLUSTR CLUSTR 2 1.44 3.44 1
CRGLVY CRGLVY 4 1.05 1.09 1
CRGLVY CRGLVY10 10 1 1 1.06
CRGLVY CRGLY500 500 1 1 1.40
CRGLVY CRGL1000 1000 1 1 1.13
DIXON DIXON 10 1 1 1.50
DIX7DG DIX7DGA 15 1 3.71 1
ENGVL1 ENGVL1A 2 1 1 1
ENGVL1 ENGVL1B2 10 1 1 1
ENGVL1 ENGVL1B4 100 1 1 1.12
ENGVL1 ENGVL1B6 1000 1 1 1
ENGVL2 ENGVL2 3 1.38 1.46 1
EXTRSN EXTRAR10 10 1 1.33 1.05
EXTRSN EXTRAR50 50 1 1.33 1.24
EXTRSN EXTRA100 100 1 1.33 1.10
EXTRSN EXTR1000 1000 1 1.33 1.19
FRANK FRANK12 12 1 1 1.50
FRANK FRANK8 8 1 1 1.50
FRDRTH FRDRTH 2 1 1 1
FRDRTH FRDRTHB3 50 1 1 1.14
FRDRTH FRDRTHB4 100 1 1 1
FRDRTH FRDRTHB7 1000 1 1 1
GENRSN GENT1000 1000 1 1.02 1.15
GENRSN GENT2B 2 1 2.88 1.12
GENRSN GENT50A 50 1 1.03 1.26
GENRSN GENT500A 500 1 1.02 1.16
GOTTFR GOTTFR 2 1 1.64 1
GULF GULFSH2 3 1.11 1.63 1
HELIX HELIX 3 1 1 1.08
HILBRT HILBRT12 12 1.50 1 1.50
HILBRT HILBR10A 10 1.50 1 1.50
HIMLN3 HIMLN3 2 1.25 1 1.25
HIMM1 HIMM1 2 1 1 1.50
HIMM25 HIMM25 2 1 1 1.50
HIMM27 HIMM27 2 1.15 1 1.15
HIMM28 HIMM28 2 1 1.14 1
HIMM29 HIMM29 2 1 1.28 1.06
HIMM30 HIMM30 3 1.09 1.18 1
HIMM32 HIMM32 4 1 1.50 1.25
HIMM33 HIMM33A 2 1 2.00 1.20
HYPCIR HYPCIR 2 1 1.17 1
JENSMP JENSMP 2 1 1 1
KOWOSB KOWOSB1 4 1 1.90 1
MANCIN MANCIN10 10 1 1 1
MANCIN MANCIN50 50 1 1 1
MEYER MEYER 3 1 1.35 1.34
MNSRF1 NMSURF64 36 8.20 f 1
MNSRF1 NMSUR484 400 1 f 1.55
MNSRF2 SNMSR484 400 1.15 f 1
MNSRF2 SNMSUR64 36 2.88 f 1
MORCIN MORCIN10 10 1 1 1
MOREBV MORBV998 998 1 f 1.25
MOREBV MOREBV10 10 1 1 1
MOREBV MOREBV18 18 1 1 1
NONDIA NONDIA10 10 1 1.35 1.25
NONDIA NONDIA20 20 1 1.35 1.05
NONDIA NONDI500 500 1 1.35 1.05
NONDIA NOND1000 1000 1 1.29 1.05
OSBRN1 OSBRN1 5 1.33 1 f

APPENDIX C. NUMERICAL RESULTS 108

OSBRN2 OSBRN2 11 1 f 1.21
PENAL1 PEN1GM6 10 1 1.23 1.12
PENAL1 PEN1LN1 50 1 1 1
PENAL1 PEN1LN2 100 1 1 1
PENAL1 PEN1LN3 1000 1 1 1
PENAL2 PEN2GM1 50 1 f 1.25
PENAL2 PEN2GM2 100 f f 1
PENAL2 PEN2GM6 4 1 1.50 1.05
PENAL3 PENL3GM3 50 1.07 1.14 1
PENAL3 PENL3GM4 100 1.23 3.08 1
PENAL3 PENL3GM5 1000 1.11 1.68 1
POWBSC POWBSC 2 1 1.93 1.13
POWBSC POWBSC50 50 1 f f
POWBSC POWBS500 500 1 f f
POWER POWER10 10 1 1 1
POWER POWER75 75 1 1 1
POWQUD POWQUD8A 4 1 1 1
POWSSQ POWSSQ 2 f 2.84 1
PWSING PWSING4 4 1 1 1.06
PWSING PWSING60 60 1 1 1.06
PWSING PWSIN100 100 1 1 1.06
PWSING PWSI1000 1000 1 1 1.06
QUARTC QUARTC 25 1 f 1.11
RECIPE RECIPE 3 1.20 1.20 1
ROSENB ROSENB 2 1 1.33 1.14
ROSENB SHNRSN10 10 1 1.54 1.03
SARSEB SARSEB 4 1 1 1
SCHMVT SCHMVT 3 1 1 1
SCHMVT SCHMVT50 50 1 1 1
SCHMVT SCHMV500 500 1 1 1.25
SCHMVT SCHV1000 1000 1 1 1
SISSER SISSER 2 1 1 1
SQRTMX MSQRTB49 49 1.23 f 1
SQRTMX MSQRTB9 9 1.38 3.00 1
TDQUAD TDQ10 10 1 1 1
TDQUAD TDQ1000 1000 1 1 1.50
TDQUAD TDQ500 500 1 1 1.50
TOINT PSPTOINT 50 1 1 1
TOIN2 TOIN2 3 1 1 1.50
TOIN4 TOIN4 4 1 1 2.00
TRIDIA TRIDIA10 10 1.50 1 1.50
TRIDIA TRLN100 100 1 f 1
TRIDIA TRLN1000 1000 1 f 1.50
TRIGTO TRIGT100 100 1.54 7.00 1
TRIGTO TRIGT50 50 1.17 5.50 1
VARDIM VARDIM 10 1 1 1
VARDIM VARDM100 100 1 1 1
VAROSB VAROSBG1 50 1 1 1.50
VAROSB VAROSBG2 100 1 1 1.75
WATSON WATSON12 12 1 1 1.46
WATSON WATSON6 6 1 1 1.08
WOODS WOODS 4 1 1.23 1.05
WOODS WOODS80 80 1 1.23 1.05
XTX XTX16 16 1 1 1.50
XTX XTX2 2 1 1 1
ZANGWL ZANGWL1 3 1 1 1.50
Totals 112 26 0 3 74 16 34 17 66 67 3 5

APPENDIX C. NUMERICAL RESULTS 109

Table C.13: Place finishes for number of iterations, tolerance = 10−3.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 2.50 1.17
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 2.00 1
BRWNAL BRWNL100 100 1 2.00 1
BRYBND BRYBND 10 1 1 f
BRYBND BRYBND18 100 1 1.25 1.25
BRYTRI BRYTRI6 20 1 6.50 2.00
BRYTRI BRYTRI10 600 1 7.00 1.50
CHEBYQ CHEBYQ10 10 1.33 3.00 1
CHNRSN CHNRSH10 10 2.25 5.00 1
CRGLVY CRGLVY10 10 1.75 2.50 1
CRGLVY CRGLY500 500 1 1.71 1.14
CRGLVY CRGL1000 1000 1 1.71 1.29
DIX7DG DIX7DGA 15 1.67 2.33 1
DIXON DIXON 10 1 7.00 2.00
ENGVL1 ENGVL1B2 10 1.33 2.00 1
ENGVL1 ENGVL1B4 100 1.33 2.00 1
ENGVL1 ENGVL1B6 1000 1 1.50 1.50
EXTRSN EXTRAR50 50 1.90 3.00 1
EXTRSN EXTRA100 100 1.90 2.60 1
EXTRSN EXTR1000 1000 1.73 2.36 1
FRANK FRANK12 12 1 15.00 5.00
FRDRTH FRDRTHB3 50 1 3.25 1.25
FRDRTH FRDRTHB4 100 1 2.40 1
FRDRTH FRDRTHB7 1000 1 2.00 1.50
GENRSN GENT50A 50 1.14 3.36 1
GENRSN GENT500A 500 1.12 3.67 1
GENRSN GENT1000 1000 1.11 3.70 1
HILBRT HILBRT12 12 2.00 4.00 1
MANCIN MANCIN50 50 1 1 1.50
MNSRF1 NMSURF64 36 1 3.00 1.64
MNSRF1 NMSUR484 400 2.22 1.65 1
MNSRF2 SNMSUR64 36 1 4.29 2.43
MNSRF2 SNMSR484 400 2.47 1.61 1
MORCIN MORCIN10 10 2.00 2.00 1
MOREBV MOREBV18 18 1 11.22 1.22
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 1.88 2.00 1
NONDIA NONDI500 500 2.43 2.57 1
NONDIA NOND1000 1000 2.43 2.43 1
OSBRN2 OSBRN2 11 1.08 4.46 1
PENAL1 PEN1LN1 50 1 1.40 3.60
PENAL1 PEN1LN2 100 1 1.40 9.60
PENAL1 PEN1LN3 1000 1 1.40 300.40
PENAL2 PEN2GM1 50 1 6.75 3.25
PENAL2 PEN2GM2 100 1 f f
PENAL3 PENL3GM3 50 1 2.00 1.44
PENAL3 PENL3GM4 100 1 2.33 3.89
PENAL3 PENL3GM5 1000 1 1.85 f
POWBSC POWBSC50 50 1 1.40 f
POWBSC POWBS500 500 1 1.40 f
POWBSC POWB1000 1000 1 1.40 f
POWER POWER75 75 1.25 2.00 1
PWSING PWSING60 60 1 2.00 1.20
PWSING PWSIN100 100 1 2.00 1
PWSING PWSI1000 1000 1 2.00 1.20
QUARTC QUARTC 25 1 1.40 1.20
ROSENB SHNRSN10 10 1 1.25 1.25
SCHMVT SCHMVT50 50 1 4.50 1.50
SCHMVT SCHMV500 500 1 4.50 1
SCHMVT SCHV1000 1000 1 5.00 1
SQRTMX MSQRTB49 49 1 2.80 1.40
TDQUAD TDQ10 10 1 4.00 1
TDQUAD TDQ500 500 1 2.00 7.00
TDQUAD TDQ1000 1000 1 2.00 10.00
TOINT PSPTOINT 50 1.25 2.62 1
TRIDIA TRIDIA10 10 1 3.50 1.50
TRIDIA TRLN100 100 1 6.33 1.33
TRIDIA TRLN1000 1000 1 7.00 2.67
TRIGTO TRIGT50 50 1 2.12 1.25
TRIGTO TRIGT100 100 1 2.50 1.17
VARDIM VARDIM 10 2.50 2.50 1
VARDIM VARDM100 100 2.50 3.50 1
VAROSB VAROSBG1 50 1 10.40 2.00
VAROSB VAROSBG2 100 1 11.00 1.78
WATSON WATSON12 12 1 3.20 1
WOODS WOODS80 80 1 3.33 1.67
XTX XTX16 16 1 2.00 1
Totals 52 22 2 2 2 27 46 3 33 31 6 8

APPENDIX C. NUMERICAL RESULTS 110

Table C.14: Place finishes for number of iterations, tolerance = 10−6.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 2.56 1.11
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 3.00 2.00
BRWNAL BRWNL100 100 1 2.00 1
BRYBND BRYBND 10 1 1.17 f
BRYBND BRYBND18 100 1 1.50 f
BRYTRI BRYTRI6 20 1 5.75 1.50
BRYTRI BRYTRI10 600 1 6.25 2.00
CHEBYQ CHEBYQ10 10 1.25 3.38 1
CHNRSN CHNRSH10 10 1.62 3.25 1
CRGLVY CRGLVY10 10 1.09 1.91 1
CRGLVY CRGLY500 500 1 2.30 2.40
CRGLVY CRGL1000 1000 1 1.90 3.00
DIX7DG DIX7DGA 15 1.75 2.25 1
DIXON DIXON 10 1 5.00 1.75
ENGVL1 ENGVL1B2 10 1.17 1.83 1
ENGVL1 ENGVL1B4 100 1.17 1.83 1
ENGVL1 ENGVL1B6 1000 1 1.67 1.67
EXTRSN EXTRAR50 50 2.00 2.77 1
EXTRSN EXTRA100 100 2.00 2.46 1
EXTRSN EXTR1000 1000 1.86 2.36 1
FRANK FRANK12 12 1 32.00 7.00
FRDRTH FRDRTHB3 50 1.67 2.50 1
FRDRTH FRDRTHB4 100 1.29 2.14 1
FRDRTH FRDRTHB7 1000 1 1.86 1.43
GENRSN GENT50A 50 1.15 3.47 1
GENRSN GENT500A 500 1.13 3.75 1
GENRSN GENT1000 1000 1.13 3.75 1
HILBRT HILBRT12 12 1.33 3.00 1
MANCIN MANCIN50 50 1 1 1.67
MNSRF1 NMSURF64 36 1 4.93 1.60
MNSRF1 NMSUR484 400 2.27 3.84 1
MNSRF2 SNMSUR64 36 1 7.10 2.10
MNSRF2 SNMSR484 400 2.71 3.87 1
MORCIN MORCIN10 10 1 1.50 1
MOREBV MOREBV18 18 1 13.50 1.50
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 2.50 2.42 1
NONDIA NONDI500 500 2.91 2.73 1
NONDIA NOND1000 1000 2.50 2.50 1
OSBRN2 OSBRN2 11 1.22 8.56 1
PENAL1 PEN1LN1 50 1 1.44 2.33
PENAL1 PEN1LN2 100 1 1.44 6.33
PENAL1 PEN1LN3 1000 1 1.44 196.56
PENAL2 PEN2GM1 50 1 6.00 2.33
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1 2.27 1.27
PENAL3 PENL3GM4 100 1 2.42 f
PENAL3 PENL3GM5 1000 1 1.87 f
POWBSC POWBSC50 50 1 1.44 f
POWBSC POWBS500 500 1 1.56 f
POWBSC POWB1000 1000 1 1.56 f
POWER POWER75 75 2.00 3.00 1
PWSING PWSING60 60 1 1.89 1
PWSING PWSIN100 100 1 1.78 1
PWSING PWSI1000 1000 1.12 2.12 1
QUARTC QUARTC 25 1.29 1.86 1
ROSENB SHNRSN10 10 5.86 7.86 1
SCHMVT SCHMVT50 50 1 5.25 1.75
SCHMVT SCHMV500 500 1 5.25 1.50
SCHMVT SCHV1000 1000 1 5.25 1.50
SQRTMX MSQRTB49 49 1 6.40 1.30
TDQUAD TDQ10 10 1 4.00 1
TDQUAD TDQ500 500 1 2.33 2.33
TDQUAD TDQ1000 1000 1 2.00 3.33
TOINT PSPTOINT 50 1 3.67 1
TRIDIA TRIDIA10 10 1 3.00 1
TRIDIA TRLN100 100 1 9.20 1.60
TRIDIA TRLN1000 1000 1 10.50 1.30
TRIGTO TRIGT50 50 1 3.33 1.22
TRIGTO TRIGT100 100 1 3.93 1.07
VARDIM VARDIM 10 3.00 4.00 1
VARDIM VARDM100 100 3.00 4.33 1
VAROSB VAROSBG1 50 1 8.90 1.40
VAROSB VAROSBG2 100 1.55 7.82 1
WATSON WATSON12 12 1 10.31 1.08
WOODS WOODS80 80 1.89 3.00 1
XTX XTX16 16 1 2.00 1
Totals 46 27 2 3 1 26 48 3 37 25 6 10

APPENDIX C. NUMERICAL RESULTS 111

Table C.15: Place finishes for number of iterations, tolerance = 10−9.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 2.90 1.10
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1.33 4.00 1
BRWNAL BRWNL100 100 1 2.00 1
BRYBND BRYBND 10 1 1.29 f
BRYBND BRYBND18 100 1 1.57 f
BRYTRI BRYTRI6 20 1 5.50 1.67
BRYTRI BRYTRI10 600 1 7.00 2.60
CHEBYQ CHEBYQ10 10 1.20 3.00 1
CHNRSN CHNRSH10 10 1.56 3.33 1
CRGLVY CRGLVY10 10 1 2.94 1
CRGLVY CRGLY500 500 1 2.73 2.20
CRGLVY CRGL1000 1000 1 2.79 2.71
DIX7DG DIX7DGA 15 2.00 2.50 1
DIXON DIXON 10 1 4.83 1.33
ENGVL1 ENGVL1B2 10 1.14 1.86 1
ENGVL1 ENGVL1B4 100 1 1.62 1
ENGVL1 ENGVL1B6 1000 1 1.62 1.62
EXTRSN EXTRAR50 50 2.00 2.64 1
EXTRSN EXTRA100 100 2.00 2.43 1
EXTRSN EXTR1000 1000 1.87 2.33 1
FRANK FRANK12 12 1 44.00 10.00
FRDRTH FRDRTHB3 50 1.25 2.12 1
FRDRTH FRDRTHB4 100 1 1.89 1
FRDRTH FRDRTHB7 1000 1 1.36 1.36
GENRSN GENT50A 50 1.16 3.49 1
GENRSN GENT500A 500 1.14 3.75 1
GENRSN GENT1000 1000 1.13 3.75 1
HILBRT HILBRT12 12 1.25 7.00 1
MANCIN MANCIN50 50 1 1 1.75
MNSRF1 NMSURF64 36 1 6.44 1.44
MNSRF1 NMSUR484 400 2.43 5.49 1
MNSRF2 SNMSUR64 36 1 9.50 2.08
MNSRF2 SNMSR484 400 2.80 5.42 1
MORCIN MORCIN10 10 1 1.33 1
MOREBV MOREBV18 18 1 12.96 1.25
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 2.36 2.21 1
NONDIA NONDI500 500 3.17 2.67 1
NONDIA NOND1000 1000 2.92 2.54 1
OSBRN2 OSBRN2 11 1.18 10.18 1
PENAL1 PEN1LN1 50 1 1.46 1.62
PENAL1 PEN1LN2 100 1 1.46 4.46
PENAL1 PEN1LN3 1000 1 1.46 139.77
PENAL2 PEN2GM1 50 1 5.88 2.00
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1 2.62 1.23
PENAL3 PENL3GM4 100 1 2.92 f
PENAL3 PENL3GM5 1000 1 2.08 f
POWBSC POWBSC50 50 1 8.40 f
POWBSC POWBS500 500 1 11.65 f
POWBSC POWB1000 1000 1 6.33 f
POWER POWER75 75 2.50 4.00 1
PWSING PWSING60 60 1.27 2.27 1
PWSING PWSIN100 100 1.40 3.60 1
PWSING PWSI1000 1000 1.27 2.91 1
QUARTC QUARTC 25 1.62 2.50 1
ROSENB SHNRSN10 10 24.25 17.42 1
SCHMVT SCHMVT50 50 1 6.00 1.67
SCHMVT SCHMV500 500 1 5.50 1.67
SCHMVT SCHV1000 1000 1 6.60 2.00
SQRTMX MSQRTB49 49 1.18 8.00 1
TDQUAD TDQ10 10 1.50 5.00 1
TDQUAD TDQ500 500 1 3.00 2.33
TDQUAD TDQ1000 1000 1 2.67 3.33
TOINT PSPTOINT 50 1 5.23 1.15
TRIDIA TRIDIA10 10 1 3.40 1.20
TRIDIA TRLN100 100 1 10.14 1.57
TRIDIA TRLN1000 1000 1.11 9.89 1
TRIGTO TRIGT50 50 1 3.91 1.09
TRIGTO TRIGT100 100 1 5.06 1
VARDIM VARDIM 10 2.40 3.20 1
VARDIM VARDM100 100 3.25 4.75 1
VAROSB VAROSBG1 50 1 7.80 1.20
VAROSB VAROSBG2 100 2.27 10.00 1
WATSON WATSON12 12 1 425.79 75.58
WOODS WOODS80 80 1.97 2.97 1
XTX XTX16 16 1 2.00 1
Totals 43 28 4 3 1 24 50 3 39 25 4 10

APPENDIX C. NUMERICAL RESULTS 112

Table C.16: Place finishes for number of iterations, tolerance = 10−12.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 3.08 1.17
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1.75 3.50 1
BRWNAL BRWNL100 100 1 2.00 1
BRYBND BRYBND 10 1 1.38 f
BRYBND BRYBND18 100 1 1.44 f
BRYTRI BRYTRI6 20 1 6.00 1.71
BRYTRI BRYTRI10 600 1 6.57 2.57
CHEBYQ CHEBYQ10 10 1 2.77 1.31
CHNRSN CHNRSH10 10 1.45 3.64 1
CRGLVY CRGLVY10 10 1 3.74 1.05
CRGLVY CRGLY500 500 1 4.43 1.76
CRGLVY CRGL1000 1000 1 3.81 2.19
DIX7DG DIX7DGA 15 2.50 3.00 1
DIXON DIXON 10 1 4.50 1.12
ENGVL1 ENGVL1B2 10 1 1.67 1
ENGVL1 ENGVL1B4 100 1 1.50 1
ENGVL1 ENGVL1B6 1000 1 1.67 1.89
EXTRSN EXTRAR50 50 2.00 2.53 1
EXTRSN EXTRA100 100 2.00 2.33 1
EXTRSN EXTR1000 1000 1.88 2.25 1
FRANK FRANK12 12 1 52.00 13.00
FRDRTH FRDRTHB3 50 1.30 1.90 1
FRDRTH FRDRTHB4 100 1 1.58 1
FRDRTH FRDRTHB7 1000 1 1.55 1.82
GENRSN GENT50A 50 1.16 3.49 1
GENRSN GENT500A 500 1.13 3.75 1
GENRSN GENT1000 1000 1.13 3.75 1
HILBRT HILBRT12 12 1 15.17 1.17
MANCIN MANCIN50 50 1.20 1 1.80
MNSRF1 NMSURF64 36 1 7.75 1.45
MNSRF1 NMSUR484 400 2.55 6.85 1
MNSRF2 SNMSUR64 36 1 9.27 1.80
MNSRF2 SNMSR484 400 2.84 6.66 1
MORCIN MORCIN10 10 1 1.50 1
MOREBV MOREBV18 18 1 13.84 1.32
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 2.50 2.29 1
NONDIA NONDI500 500 3.15 2.54 1
NONDIA NOND1000 1000 2.93 2.36 1
OSBRN2 OSBRN2 11 1.12 10.54 1
PENAL1 PEN1LN1 50 1 1.50 1.44
PENAL1 PEN1LN2 100 1 1.47 3.47
PENAL1 PEN1LN3 1000 1 1.44 101.39
PENAL2 PEN2GM1 50 1 5.70 1.80
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1 2.73 1.20
PENAL3 PENL3GM4 100 1 3.14 f
PENAL3 PENL3GM5 1000 1 2.32 f
POWBSC POWBSC50 50 1 f f
POWBSC POWBS500 500 1 f f
POWBSC POWB1000 1000 1 f f
POWER POWER75 75 2.38 4.12 1
PWSING PWSING60 60 1.29 3.57 1
PWSING PWSIN100 100 1.50 4.17 1
PWSING PWSI1000 1000 1.38 3.69 1
QUARTC QUARTC 25 2.00 2.89 1
ROSENB SHNRSN10 10 9.06 5.49 1
SCHMVT SCHMVT50 50 1 6.00 1.50
SCHMVT SCHMV500 500 1 6.86 2.00
SCHMVT SCHV1000 1000 1 5.86 2.00
SQRTMX MSQRTB49 49 1.43 8.29 1
TDQUAD TDQ10 10 1 4.00 1
TDQUAD TDQ500 500 1 2.50 1.75
TDQUAD TDQ1000 1000 1 2.50 2.50
TOINT PSPTOINT 50 1 6.33 1.27
TRIDIA TRIDIA10 10 1 2.86 1.14
TRIDIA TRLN100 100 1 9.20 1.30
TRIDIA TRLN1000 1000 1.41 11.45 1
TRIGTO TRIGT50 50 1 4.08 1.08
TRIGTO TRIGT100 100 1.06 5.61 1
VARDIM VARDIM 10 2.17 2.83 1
VARDIM VARDM100 100 3.60 5.00 1
VAROSB VAROSBG1 50 1 8.74 1.37
VAROSB VAROSBG2 100 2.71 10.48 1
WATSON WATSON12 12 1 f f
WOODS WOODS80 80 1.94 2.87 1
XTX XTX16 16 1 2.00 1
Totals 45 26 4 3 1 20 50 7 36 26 5 11

APPENDIX C. NUMERICAL RESULTS 113

Table C.17: Place finishes for number of function evaluations, tolerance = 10−3.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 2.75 4.75
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 1.50 2.00
BRWNAL BRWNL100 100 1 1.50 1.50
BRYBND BRYBND 10 1 1 f
BRYBND BRYBND18 100 1 1.20 7.60
BRYTRI BRYTRI6 20 1 4.00 6.50
BRYTRI BRYTRI10 600 1 4.00 6.00
CHEBYQ CHEBYQ10 10 1 1.77 2.69
CHNRSN CHNRSH10 10 1 1.26 1.26
CRGLVY CRGLVY10 10 1 1.38 2.75
CRGLVY CRGLY500 500 1 1.75 6.12
CRGLVY CRGL1000 1000 1 1.75 7.62
DIX7DG DIX7DGA 15 1 1.33 2.33
DIXON DIXON 10 1 5.00 6.33
ENGVL1 ENGVL1B2 10 1 1.40 4.00
ENGVL1 ENGVL1B4 100 1 1.40 2.20
ENGVL1 ENGVL1B6 1000 1 1.60 5.00
EXTRSN EXTRAR50 50 1 1.18 1.55
EXTRSN EXTRA100 100 1 1.09 1.88
EXTRSN EXTR1000 1000 1 1.09 1.61
FRANK FRANK12 12 1 8.00 13.50
FRDRTH FRDRTHB3 50 1 1.67 2.22
FRDRTH FRDRTHB4 100 1 1.44 2.22
FRDRTH FRDRTHB7 1000 1 2.00 3.67
GENRSN GENT50A 50 1 2.64 4.97
GENRSN GENT500A 500 1 2.88 5.27
GENRSN GENT1000 1000 1 2.98 5.53
HILBRT HILBRT12 12 1 1.67 1.33
MANCIN MANCIN50 50 1 1.33 5.33
MNSRF1 NMSURF64 36 1.30 1 2.51
MNSRF1 NMSUR484 400 4.05 1 4.91
MNSRF2 SNMSUR64 36 1 1.10 3.03
MNSRF2 SNMSR484 400 4.63 1 4.71
MORCIN MORCIN10 10 1 1.33 1.33
MOREBV MOREBV18 18 1 10.80 10.00
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 1.48 1 2.22
NONDIA NONDI500 500 1.72 1 1.24
NONDIA NOND1000 1000 1.96 1 1.30
OSBRN2 OSBRN2 11 1 4.06 4.88
PENAL1 PEN1LN1 50 1 1.67 7.83
PENAL1 PEN1LN2 100 1 1.67 17.00
PENAL1 PEN1LN3 1000 1 2.17 501.17
PENAL2 PEN2GM1 50 1 5.83 7.50
PENAL2 PEN2GM2 100 1 f f
PENAL3 PENL3GM3 50 1 2.13 2.93
PENAL3 PENL3GM4 100 1 1.94 6.35
PENAL3 PENL3GM5 1000 1 1.68 f
POWBSC POWBSC50 50 1 1.33 f
POWBSC POWBS500 500 1 1.33 f
POWBSC POWB1000 1000 1 1.50 f
POWER POWER75 75 1 1.50 5.00
PWSING PWSING60 60 1 2.00 4.83
PWSING PWSIN100 100 1 2.00 4.33
PWSING PWSI1000 1000 1 1.83 5.17
QUARTC QUARTC 25 1 1.50 5.17
ROSENB SHNRSN10 10 1 1.20 5.80
SCHMVT SCHMVT50 50 1 4.00 7.33
SCHMVT SCHMV500 500 1 4.33 3.00
SCHMVT SCHV1000 1000 1 4.67 3.00
SQRTMX MSQRTB49 49 1 1.90 4.80
TDQUAD TDQ10 10 1 2.50 2.00
TDQUAD TDQ500 500 1 2.50 10.00
TDQUAD TDQ1000 1000 1 2.50 13.00
TOINT PSPTOINT 50 1 1.06 1.53
TRIDIA TRIDIA10 10 1 2.67 4.00
TRIDIA TRLN100 100 1 5.25 3.25
TRIDIA TRLN1000 1000 1 6.00 16.50
TRIGTO TRIGT50 50 1 1.62 6.54
TRIGTO TRIGT100 100 1 1.80 3.85
VARDIM VARDIM 10 1 1 1.17
VARDIM VARDM100 100 1 1.33 1.67
VAROSB VAROSBG1 50 1 8.83 14.00
VAROSB VAROSBG2 100 1 10.10 15.90
WATSON WATSON12 12 1 3.33 4.00
WOODS WOODS80 80 1 2.75 5.50
XTX XTX16 16 1 1.50 1.50
Totals 70 4 2 2 8 61 6 3 0 13 57 8

APPENDIX C. NUMERICAL RESULTS 114

Table C.18: Place finishes for number of function evaluations, tolerance = 10−6.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 2.82 4.36
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 2.00 5.00
BRWNAL BRWNL100 100 1 1.50 1.50
BRYBND BRYBND 10 1 1.14 f
BRYBND BRYBND18 100 1 1.43 f
BRYTRI BRYTRI6 20 1 4.50 6.00
BRYTRI BRYTRI10 600 1 4.67 13.67
CHEBYQ CHEBYQ10 10 1 2.20 3.00
CHNRSN CHNRSH10 10 1 1.35 1.74
CRGLVY CRGLVY10 10 1 1.69 5.15
CRGLVY CRGLY500 500 1 2.36 19.73
CRGLVY CRGL1000 1000 1 2.09 21.82
DIX7DG DIX7DGA 15 1 1.25 2.25
DIXON DIXON 10 1 4.20 6.60
ENGVL1 ENGVL1B2 10 1 1.50 3.75
ENGVL1 ENGVL1B4 100 1 1.50 3.00
ENGVL1 ENGVL1B6 1000 1 1.71 6.57
EXTRSN EXTRAR50 50 1.13 1 1.41
EXTRSN EXTRA100 100 1.21 1 1.70
EXTRSN EXTR1000 1000 1.18 1 1.52
FRANK FRANK12 12 1 17.50 19.50
FRDRTH FRDRTHB3 50 1 1 1.41
FRDRTH FRDRTHB4 100 1 1.31 2.08
FRDRTH FRDRTHB7 1000 1 1.55 4.27
GENRSN GENT50A 50 1 2.73 4.96
GENRSN GENT500A 500 1 2.94 5.27
GENRSN GENT1000 1000 1 2.96 5.39
HILBRT HILBRT12 12 1 2.20 2.00
MANCIN MANCIN50 50 1 1.25 5.75
MNSRF1 NMSURF64 36 1 1.46 2.59
MNSRF1 NMSUR484 400 1.64 1 2.43
MNSRF2 SNMSUR64 36 1 2.27 3.70
MNSRF2 SNMSR484 400 1.91 1 2.35
MORCIN MORCIN10 10 1 1.67 2.33
MOREBV MOREBV18 18 1 13.35 12.29
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 1.70 1 1.80
NONDIA NONDI500 500 2.34 1 1.25
NONDIA NOND1000 1000 2.32 1 1.32
OSBRN2 OSBRN2 11 1 5.73 3.60
PENAL1 PEN1LN1 50 1 1.60 5.70
PENAL1 PEN1LN2 100 1 1.60 12.10
PENAL1 PEN1LN3 1000 1 1.90 354.10
PENAL2 PEN2GM1 50 1 5.62 6.12
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1 2.29 2.82
PENAL3 PENL3GM4 100 1 2.10 f
PENAL3 PENL3GM5 1000 1 1.72 f
POWBSC POWBSC50 50 1 1.40 f
POWBSC POWBS500 500 1 1.50 f
POWBSC POWB1000 1000 1 1.80 f
POWER POWER75 75 1 1.45 3.18
PWSING PWSING60 60 1 1.90 4.50
PWSING PWSIN100 100 1 1.90 4.60
PWSING PWSI1000 1000 1 1.80 4.10
QUARTC QUARTC 25 1 1.50 3.60
ROSENB SHNRSN10 10 1.53 2.00 1
SCHMVT SCHMVT50 50 1 5.00 7.60
SCHMVT SCHMV500 500 1 5.00 9.00
SCHMVT SCHV1000 1000 1 5.20 9.20
SQRTMX MSQRTB49 49 1 4.73 7.13
TDQUAD TDQ10 10 1 4.00 2.33
TDQUAD TDQ500 500 1 3.25 5.00
TDQUAD TDQ1000 1000 1 2.75 6.50
TOINT PSPTOINT 50 1 1.69 2.11
TRIDIA TRIDIA10 10 1 2.60 3.00
TRIDIA TRLN100 100 1 8.00 6.67
TRIDIA TRLN1000 1000 1 10.27 10.64
TRIGTO TRIGT50 50 1 2.50 6.29
TRIGTO TRIGT100 100 1 2.77 3.68
VARDIM VARDIM 10 1 1.30 1.10
VARDIM VARDM100 100 1 1.40 1.40
VAROSB VAROSBG1 50 1 8.36 10.09
VAROSB VAROSBG2 100 1 5.09 6.34
WATSON WATSON12 12 1 8.33 3.78
WOODS WOODS80 80 1 1.06 1.71
XTX XTX16 16 1 1.50 1.50
Totals 66 7 2 3 9 58 8 3 1 13 54 10

APPENDIX C. NUMERICAL RESULTS 115

Table C.19: Place finishes for number of function evaluations, tolerance = 10−9.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 3.17 4.42
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 1.75 1.62
BRWNAL BRWNL100 100 1 1.50 1.50
BRYBND BRYBND 10 1 1.25 f
BRYBND BRYBND18 100 1 1.50 f
BRYTRI BRYTRI6 20 1 4.62 6.62
BRYTRI BRYTRI10 600 1 5.57 19.86
CHEBYQ CHEBYQ10 10 1 2.18 3.12
CHNRSN CHNRSH10 10 1 1.46 1.83
CRGLVY CRGLVY10 10 1 2.94 5.47
CRGLVY CRGLY500 500 1 2.94 22.12
CRGLVY CRGL1000 1000 1 2.93 26.80
DIX7DG DIX7DGA 15 1 1.22 2.00
DIXON DIXON 10 1 4.43 5.14
ENGVL1 ENGVL1B2 10 1 1.56 3.67
ENGVL1 ENGVL1B4 100 1 1.56 3.56
ENGVL1 ENGVL1B6 1000 1 1.67 6.89
EXTRSN EXTRAR50 50 1.19 1 1.45
EXTRSN EXTRA100 100 1.24 1 1.69
EXTRSN EXTR1000 1000 1.22 1 1.52
FRANK FRANK12 12 1 24.00 25.50
FRDRTH FRDRTHB3 50 1 1.12 1.76
FRDRTH FRDRTHB4 100 1 1.46 2.62
FRDRTH FRDRTHB7 1000 1 1.27 5.00
GENRSN GENT50A 50 1 2.74 4.90
GENRSN GENT500A 500 1 2.93 5.26
GENRSN GENT1000 1000 1 2.96 5.38
HILBRT HILBRT12 12 1 5.50 2.67
MANCIN MANCIN50 50 1 1.20 5.80
MNSRF1 NMSURF64 36 1 2.14 2.67
MNSRF1 NMSUR484 400 1.12 1 1.81
MNSRF2 SNMSUR64 36 1 3.46 4.26
MNSRF2 SNMSR484 400 1.30 1 1.76
MORCIN MORCIN10 10 1 1.50 2.50
MOREBV MOREBV18 18 1 13.04 10.48
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 1.81 1 1.88
NONDIA NONDI500 500 2.87 1 1.26
NONDIA NOND1000 1000 3.06 1 1.30
OSBRN2 OSBRN2 11 1 7.14 3.63
PENAL1 PEN1LN1 50 1 1.57 4.07
PENAL1 PEN1LN2 100 1 1.57 8.86
PENAL1 PEN1LN3 1000 1 1.79 259.79
PENAL2 PEN2GM1 50 1 5.60 5.50
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1 2.58 2.95
PENAL3 PENL3GM4 100 1 2.57 f
PENAL3 PENL3GM5 1000 1 1.84 f
POWBSC POWBSC50 50 1 4.18 f
POWBSC POWBS500 500 1 11.20 f
POWBSC POWB1000 1000 1 6.41 f
POWER POWER75 75 1 1.56 2.56
PWSING PWSING60 60 1 1.80 3.67
PWSING PWSIN100 100 1 2.73 3.27
PWSING PWSI1000 1000 1 2.40 3.53
QUARTC QUARTC 25 1 1.57 2.93
ROSENB SHNRSN10 10 10.34 3.71 1
SCHMVT SCHMVT50 50 1 5.86 7.14
SCHMVT SCHMV500 500 1 5.43 11.43
SCHMVT SCHV1000 1000 1 6.50 13.50
SQRTMX MSQRTB49 49 1 5.88 6.60
TDQUAD TDQ10 10 1 3.50 1.75
TDQUAD TDQ500 500 1 3.75 5.00
TDQUAD TDQ1000 1000 1 3.50 6.50
TOINT PSPTOINT 50 1 2.41 2.62
TRIDIA TRIDIA10 10 1 3.00 3.50
TRIDIA TRLN100 100 1 9.25 6.75
TRIDIA TRLN1000 1000 1 8.90 6.76
TRIGTO TRIGT50 50 1 3.12 5.69
TRIGTO TRIGT100 100 1 3.62 3.54
VARDIM VARDIM 10 1 1.31 1.38
VARDIM VARDM100 100 1 1.43 1.29
VAROSB VAROSBG1 50 1 7.56 10.06
VAROSB VAROSBG2 100 1 4.53 4.42
WATSON WATSON12 12 1 263.63 232.71
WOODS WOODS80 80 1 1.01 1.63
XTX XTX16 16 1 1.50 1.50
Totals 66 6 3 3 8 55 12 3 1 16 51 10

APPENDIX C. NUMERICAL RESULTS 116

Table C.20: Place finishes for number of function evaluations, tolerance = 10−12.
Function Problem Size UMINHV L-BFGS TN

1 2 3 f 1 2 3 f 1 2 3 f
ARTRIG ARTRIG10 10 1 3.29 4.64
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1.12 1 1
BRWNAL BRWNL100 100 1 1.50 1.50
BRYBND BRYBND 10 1 1.33 f
BRYBND BRYBND18 100 1 1.40 f
BRYTRI BRYTRI6 20 1 5.11 6.78
BRYTRI BRYTRI10 600 1 5.67 21.56
CHEBYQ CHEBYQ10 10 1 2.44 4.94
CHNRSN CHNRSH10 10 1 1.77 2.04
CRGLVY CRGLVY10 10 1 3.70 5.35
CRGLVY CRGLY500 500 1 4.68 17.50
CRGLVY CRGL1000 1000 1 3.91 24.59
DIX7DG DIX7DGA 15 1 1.18 1.64
DIXON DIXON 10 1 4.22 4.44
ENGVL1 ENGVL1B2 10 1 1.60 3.90
ENGVL1 ENGVL1B4 100 1 1.45 3.55
ENGVL1 ENGVL1B6 1000 1 1.70 8.20
EXTRSN EXTRAR50 50 1.21 1 1.48
EXTRSN EXTRA100 100 1.26 1 1.72
EXTRSN EXTR1000 1000 1.23 1 1.57
FRANK FRANK12 12 1 28.00 32.50
FRDRTH FRDRTHB3 50 1.05 1 1.76
FRDRTH FRDRTHB4 100 1 1.24 2.82
FRDRTH FRDRTHB7 1000 1 1.40 6.33
GENRSN GENT50A 50 1 2.78 4.92
GENRSN GENT500A 500 1 2.93 5.26
GENRSN GENT1000 1000 1 2.96 5.38
HILBRT HILBRT12 12 1 14.71 4.57
MANCIN MANCIN50 50 1 1 5.00
MNSRF1 NMSURF64 36 1 2.75 2.86
MNSRF1 NMSUR484 400 1 1.14 1.75
MNSRF2 SNMSUR64 36 1 3.89 4.16
MNSRF2 SNMSR484 400 1.00 1 1.48
MORCIN MORCIN10 10 1 1.60 2.60
MOREBV MOREBV18 18 1 14.06 10.97
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 1.88 1 1.84
NONDIA NONDI500 500 3.02 1 1.30
NONDIA NOND1000 1000 3.34 1 1.36
OSBRN2 OSBRN2 11 1 7.82 3.77
PENAL1 PEN1LN1 50 1 1.59 3.65
PENAL1 PEN1LN2 100 1 1.56 7.11
PENAL1 PEN1LN3 1000 1 1.68 192.32
PENAL2 PEN2GM1 50 1 5.58 5.08
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1 2.71 3.05
PENAL3 PENL3GM4 100 1 2.73 f
PENAL3 PENL3GM5 1000 1 1.98 f
POWBSC POWBSC50 50 1 f f
POWBSC POWBS500 500 1 f f
POWBSC POWB1000 1000 1 f f
POWER POWER75 75 1 1.70 2.65
PWSING PWSING60 60 1 2.84 3.63
PWSING PWSIN100 100 1 3.05 3.05
PWSING PWSI1000 1000 1 2.79 3.26
QUARTC QUARTC 25 1 1.47 2.42
ROSENB SHNRSN10 10 3.89 1.02 1
SCHMVT SCHMVT50 50 1 6.11 6.44
SCHMVT SCHMV500 500 1 6.75 14.25
SCHMVT SCHV1000 1000 1 5.88 14.62
SQRTMX MSQRTB49 49 1 5.34 5.94
TDQUAD TDQ10 10 1 4.00 2.50
TDQUAD TDQ500 500 1 3.20 4.00
TDQUAD TDQ1000 1000 1 3.20 5.20
TOINT PSPTOINT 50 1 3.03 3.10
TRIDIA TRIDIA10 10 1 2.62 3.62
TRIDIA TRLN100 100 1 8.73 5.82
TRIDIA TRLN1000 1000 1 8.31 5.06
TRIGTO TRIGT50 50 1 3.39 5.39
TRIGTO TRIGT100 100 1 4.00 3.37
VARDIM VARDIM 10 1 1.29 1.43
VARDIM VARDM100 100 1 1.37 1.16
VAROSB VAROSBG1 50 1 8.65 11.60
VAROSB VAROSBG2 100 1 4.00 4.26
WATSON WATSON12 12 1 f f
WOODS WOODS80 80 1 1.01 1.66
XTX XTX16 16 1 1.50 1.50
Totals 65 6 4 3 10 52 9 7 2 16 49 11

APPENDIX C. NUMERICAL RESULTS 117

Table C.21: Place finishes for number of gradient and Hessian-vector product evalu-

ations, tolerance = 10−3.

Function Problem Size UMINHV L-BFGS TN
1 2 3 f 1 2 3 f 1 2 3 f

ARTRIG ARTRIG10 10 1.86 1 1.73
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 1 1.33
BRWNAL BRWNL100 100 1 1 1
BRYBND BRYBND 10 2.00 1 f
BRYBND BRYBND18 100 1.50 1 6.33
BRYTRI BRYTRI6 20 1 1 1.62
BRYTRI BRYTRI10 600 1 1 1.50
CHEBYQ CHEBYQ10 10 1.91 1 1.52
CHNRSN CHNRSH10 10 2.38 1 1
CRGLVY CRGLVY10 10 2.55 1 2.00
CRGLVY CRGLY500 500 1.43 1 3.50
CRGLVY CRGL1000 1000 1.43 1 4.36
DIX7DG DIX7DGA 15 1.75 1 1.75
DIXON DIXON 10 1.07 1 1.27
ENGVL1 ENGVL1B2 10 1.43 1 2.86
ENGVL1 ENGVL1B4 100 1.29 1 1.57
ENGVL1 ENGVL1B6 1000 1.12 1 3.12
EXTRSN EXTRAR50 50 1.62 1 1.31
EXTRSN EXTRA100 100 1.75 1 1.72
EXTRSN EXTR1000 1000 1.75 1 1.47
FRANK FRANK12 12 1 1.14 1.93
FRDRTH FRDRTHB3 50 1 1 1.33
FRDRTH FRDRTHB4 100 1.46 1 1.54
FRDRTH FRDRTHB7 1000 1 1.20 2.20
GENRSN GENT50A 50 2.76 1 1.89
GENRSN GENT500A 500 3.10 1 1.83
GENRSN GENT1000 1000 3.09 1 1.85
HILBRT HILBRT12 12 1.50 1.25 1
MANCIN MANCIN50 50 1.25 1 4.00
MNSRF1 NMSURF64 36 3.62 1 2.51
MNSRF1 NMSUR484 400 21.50 1 4.91
MNSRF2 SNMSUR64 36 3.73 1 2.76
MNSRF2 SNMSR484 400 24.66 1 4.71
MORCIN MORCIN10 10 1.50 1 1
MOREBV MOREBV18 18 1.49 1.08 1
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 2.43 1 2.22
NONDIA NONDI500 500 2.55 1 1.24
NONDIA NOND1000 1000 2.89 1 1.30
OSBRN2 OSBRN2 11 1.62 1 1.20
PENAL1 PEN1LN1 50 1.10 1 4.70
PENAL1 PEN1LN2 100 1.10 1 10.20
PENAL1 PEN1LN3 1000 1 1.18 273.36
PENAL2 PEN2GM1 50 1 1 1.29
PENAL2 PEN2GM2 100 1 f f
PENAL3 PENL3GM3 50 1.31 1 1.38
PENAL3 PENL3GM4 100 1.33 1 3.27
PENAL3 PENL3GM5 1000 1.52 1 f
POWBSC POWBSC50 50 1.38 1 f
POWBSC POWBS500 500 1.38 1 f
POWBSC POWB1000 1000 1.22 1 f
POWER POWER75 75 1.56 1 3.33
PWSING PWSING60 60 1.58 1 2.42
PWSING PWSIN100 100 1.58 1 2.17
PWSING PWSI1000 1000 1.73 1 2.82
QUARTC QUARTC 25 1.78 1 3.44
ROSENB SHNRSN10 10 1.67 1 4.83
SCHMVT SCHMVT50 50 1.25 1 1.83
SCHMVT SCHMV500 500 1.11 1.44 1
SCHMVT SCHV1000 1000 1 1.56 1
SQRTMX MSQRTB49 49 2.63 1 2.53
TDQUAD TDQ10 10 1 1.25 1
TDQUAD TDQ500 500 1 1.67 6.67
TDQUAD TDQ1000 1000 1 1.67 8.67
TOINT PSPTOINT 50 1.83 1 1.44
TRIDIA TRIDIA10 10 1.62 1 1.50
TRIDIA TRLN100 100 2.46 1.62 1
TRIDIA TRLN1000 1000 1.42 1 2.75
TRIGTO TRIGT50 50 5.38 1 4.05
TRIGTO TRIGT100 100 4.92 1 2.14
VARDIM VARDIM 10 1.83 1 1.17
VARDIM VARDM100 100 1.38 1 1.25
VAROSB VAROSBG1 50 1.28 1 1.58
VAROSB VAROSBG2 100 1.25 1 1.57
WATSON WATSON12 12 1 1 1.20
WOODS WOODS80 80 1 1.38 2.75
XTX XTX16 16 1 1 1
Totals 17 32 27 2 63 11 1 3 10 31 29 8

APPENDIX C. NUMERICAL RESULTS 118

Table C.22: Place finishes for number of gradient and Hessian-vector product evalu-

ations, tolerance = 10−6.

Function Problem Size UMINHV L-BFGS TN
1 2 3 f 1 2 3 f 1 2 3 f

ARTRIG ARTRIG10 10 1.87 1 1.55
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1 1.33 3.33
BRWNAL BRWNL100 100 1 1 1
BRYBND BRYBND 10 2.00 1 f
BRYBND BRYBND18 100 1.50 1 f
BRYTRI BRYTRI6 20 1.07 1 1.33
BRYTRI BRYTRI10 600 1.04 1 2.93
CHEBYQ CHEBYQ10 10 1.67 1 1.36
CHNRSN CHNRSH10 10 2.87 1 1.29
CRGLVY CRGLVY10 10 3.00 1 3.05
CRGLVY CRGLY500 500 1.35 1 8.35
CRGLVY CRGL1000 1000 1.52 1 10.43
DIX7DG DIX7DGA 15 1.80 1 1.80
DIXON DIXON 10 1.19 1 1.57
ENGVL1 ENGVL1B2 10 1.83 1 2.50
ENGVL1 ENGVL1B4 100 1.75 1 2.00
ENGVL1 ENGVL1B6 1000 1.33 1 3.83
EXTRSN EXTRAR50 50 2.02 1 1.41
EXTRSN EXTRA100 100 2.16 1 1.70
EXTRSN EXTR1000 1000 2.11 1 1.52
FRANK FRANK12 12 1 2.50 2.79
FRDRTH FRDRTHB3 50 2.53 1 1.41
FRDRTH FRDRTHB4 100 2.29 1 1.59
FRDRTH FRDRTHB7 1000 1.59 1 2.76
GENRSN GENT50A 50 2.96 1 1.82
GENRSN GENT500A 500 3.09 1 1.80
GENRSN GENT1000 1000 3.11 1 1.82
HILBRT HILBRT12 12 1.50 1.10 1
MANCIN MANCIN50 50 1.40 1 4.60
MNSRF1 NMSURF64 36 2.23 1 1.77
MNSRF1 NMSUR484 400 9.57 1 2.43
MNSRF2 SNMSUR64 36 2.15 1 1.63
MNSRF2 SNMSR484 400 11.26 1 2.35
MORCIN MORCIN10 10 1.20 1 1.40
MOREBV MOREBV18 18 1.28 1.09 1
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 2.80 1 1.80
NONDIA NONDI500 500 3.41 1 1.25
NONDIA NOND1000 1000 3.34 1 1.32
OSBRN2 OSBRN2 11 1.79 1.59 1
PENAL1 PEN1LN1 50 1.19 1 3.56
PENAL1 PEN1LN2 100 1.19 1 7.56
PENAL1 PEN1LN3 1000 1 1 186.37
PENAL2 PEN2GM1 50 1.11 1 1.09
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1.26 1 1.23
PENAL3 PENL3GM4 100 1.38 1 f
PENAL3 PENL3GM5 1000 1.54 1 f
POWBSC POWBSC50 50 1.71 1 f
POWBSC POWBS500 500 1.40 1 f
POWBSC POWB1000 1000 1.22 1 f
POWER POWER75 75 2.06 1 2.19
PWSING PWSING60 60 2.05 1 2.37
PWSING PWSIN100 100 2.05 1 2.42
PWSING PWSI1000 1000 2.17 1 2.28
QUARTC QUARTC 25 1.87 1 2.40
ROSENB SHNRSN10 10 6.72 2.00 1
SCHMVT SCHMVT50 50 1.16 1 1.52
SCHMVT SCHMV500 500 1 1 1.80
SCHMVT SCHV1000 1000 1 1.08 1.92
SQRTMX MSQRTB49 49 1.56 1 1.51
TDQUAD TDQ10 10 1.29 1.71 1
TDQUAD TDQ500 500 1 1.30 2.00
TDQUAD TDQ1000 1000 1 1.10 2.60
TOINT PSPTOINT 50 1.43 1 1.25
TRIDIA TRIDIA10 10 1.92 1 1.15
TRIDIA TRLN100 100 1.42 1.20 1
TRIDIA TRLN1000 1000 1.27 1 1.04
TRIGTO TRIGT50 50 3.46 1 2.51
TRIGTO TRIGT100 100 3.28 1 1.33
VARDIM VARDIM 10 1.73 1.18 1
VARDIM VARDM100 100 1.36 1 1
VAROSB VAROSBG1 50 1.55 1 1.21
VAROSB VAROSBG2 100 3.10 1 1.25
WATSON WATSON12 12 1.01 2.21 1
WOODS WOODS80 80 2.29 1 1.61
XTX XTX16 16 1 1 1
Totals 9 31 35 3 62 11 2 3 11 32 25 10

APPENDIX C. NUMERICAL RESULTS 119

Table C.23: Place finishes for number of gradient and Hessian-vector product evalu-

ations, tolerance = 10−9.

Function Problem Size UMINHV L-BFGS TN
1 2 3 f 1 2 3 f 1 2 3 f

ARTRIG ARTRIG10 10 1.68 1 1.39
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1.08 1.08 1
BRWNAL BRWNL100 100 1 1 1
BRYBND BRYBND 10 2.00 1 f
BRYBND BRYBND18 100 1.50 1 f
BRYTRI BRYTRI6 20 1.14 1 1.43
BRYTRI BRYTRI10 600 1 1.05 3.76
CHEBYQ CHEBYQ10 10 1.81 1 1.43
CHNRSN CHNRSH10 10 2.80 1 1.26
CRGLVY CRGLVY10 10 2.06 1 1.86
CRGLVY CRGLY500 500 2.11 1 7.53
CRGLVY CRGL1000 1000 1.86 1 9.14
DIX7DG DIX7DGA 15 1.82 1 1.64
DIXON DIXON 10 1.23 1 1.16
ENGVL1 ENGVL1B2 10 1.86 1 2.36
ENGVL1 ENGVL1B4 100 1.79 1 2.29
ENGVL1 ENGVL1B6 1000 1.73 1 4.13
EXTRSN EXTRAR50 50 2.13 1 1.45
EXTRSN EXTRA100 100 2.22 1 1.69
EXTRSN EXTR1000 1000 2.17 1 1.52
FRANK FRANK12 12 1 3.43 3.64
FRDRTH FRDRTHB3 50 2.26 1 1.58
FRDRTH FRDRTHB4 100 2.05 1 1.79
FRDRTH FRDRTHB7 1000 2.42 1 3.95
GENRSN GENT50A 50 2.98 1 1.79
GENRSN GENT500A 500 3.09 1 1.79
GENRSN GENT1000 1000 3.11 1 1.82
HILBRT HILBRT12 12 1.31 2.06 1
MANCIN MANCIN50 50 1.50 1 4.83
MNSRF1 NMSURF64 36 1.82 1 1.25
MNSRF1 NMSUR484 400 7.19 1 1.81
MNSRF2 SNMSUR64 36 1.55 1 1.23
MNSRF2 SNMSR484 400 8.27 1 1.76
MORCIN MORCIN10 10 1.50 1 1.67
MOREBV MOREBV18 18 1.54 1.24 1
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 2.98 1 1.88
NONDIA NONDI500 500 4.09 1 1.26
NONDIA NOND1000 1000 4.28 1 1.30
OSBRN2 OSBRN2 11 1.83 1.97 1
PENAL1 PEN1LN1 50 1.23 1 2.59
PENAL1 PEN1LN2 100 1.23 1 5.64
PENAL1 PEN1LN3 1000 1.08 1 145.48
PENAL2 PEN2GM1 50 1.22 1.02 1
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1.16 1 1.14
PENAL3 PENL3GM4 100 1.15 1 f
PENAL3 PENL3GM5 1000 1.47 1 f
POWBSC POWBSC50 50 1.48 1 f
POWBSC POWBS500 500 1.36 1 f
POWBSC POWB1000 1000 2.55 1 f
POWER POWER75 75 2.12 1 1.64
PWSING PWSING60 60 2.37 1 2.04
PWSING PWSIN100 100 1.56 1 1.20
PWSING PWSI1000 1000 1.78 1 1.47
QUARTC QUARTC 25 1.82 1 1.86
ROSENB SHNRSN10 10 36.87 3.71 1
SCHMVT SCHMVT50 50 1.10 1 1.22
SCHMVT SCHMV500 500 1.05 1 2.11
SCHMVT SCHV1000 1000 1 1.18 2.45
SQRTMX MSQRTB49 49 1.91 1 1.12
TDQUAD TDQ10 10 1.71 2.00 1
TDQUAD TDQ500 500 1 1.50 2.00
TDQUAD TDQ1000 1000 1 1.40 2.60
TOINT PSPTOINT 50 1.11 1 1.09
TRIDIA TRIDIA10 10 1.72 1 1.17
TRIDIA TRLN100 100 1.50 1.37 1
TRIDIA TRLN1000 1000 2.20 1.32 1
TRIGTO TRIGT50 50 2.76 1 1.82
TRIGTO TRIGT100 100 2.64 1.02 1
VARDIM VARDIM 10 1.47 1 1.06
VARDIM VARDM100 100 1.50 1.11 1
VAROSB VAROSBG1 50 1.76 1 1.33
VAROSB VAROSBG2 100 3.68 1.03 1
WATSON WATSON12 12 1 70.98 62.65
WOODS WOODS80 80 2.44 1 1.62
XTX XTX16 16 1 1 1
Totals 8 26 41 3 57 14 4 3 14 34 20 10

APPENDIX C. NUMERICAL RESULTS 120

Table C.24: Place finishes for number of gradient and Hessian-vector product evalu-

ations, tolerance = 10−12.

Function Problem Size UMINHV L-BFGS TN
1 2 3 f 1 2 3 f 1 2 3 f

ARTRIG ARTRIG10 10 1.67 1 1.41
BROY7D BROY7D 60 f f f
BRWNAL BRWNAL10 10 1.81 1 1
BRWNAL BRWNL100 100 1 1 1
BRYBND BRYBND 10 1.92 1 f
BRYBND BRYBND18 100 1.79 1 f
BRYTRI BRYTRI6 20 1.07 1 1.33
BRYTRI BRYTRI10 600 1 1 3.80
CHEBYQ CHEBYQ10 10 1.68 1 2.02
CHNRSN CHNRSH10 10 2.41 1 1.15
CRGLVY CRGLVY10 10 1.77 1 1.45
CRGLVY CRGLY500 500 1.80 1 3.74
CRGLVY CRGL1000 1000 2.17 1 6.29
DIX7DG DIX7DGA 15 1.85 1 1.38
DIXON DIXON 10 1.39 1 1.05
ENGVL1 ENGVL1B2 10 1.94 1 2.44
ENGVL1 ENGVL1B4 100 2.12 1 2.44
ENGVL1 ENGVL1B6 1000 1.71 1 4.82
EXTRSN EXTRAR50 50 2.19 1 1.48
EXTRSN EXTRA100 100 2.28 1 1.72
EXTRSN EXTR1000 1000 2.23 1 1.57
FRANK FRANK12 12 1 4.00 4.64
FRDRTH FRDRTHB3 50 2.81 1 1.76
FRDRTH FRDRTHB4 100 2.52 1 2.29
FRDRTH FRDRTHB7 1000 2.19 1 4.52
GENRSN GENT50A 50 2.95 1 1.77
GENRSN GENT500A 500 3.09 1 1.80
GENRSN GENT1000 1000 3.11 1 1.82
HILBRT HILBRT12 12 1 3.68 1.14
MANCIN MANCIN50 50 1.86 1 5.00
MNSRF1 NMSURF64 36 1.54 1 1.04
MNSRF1 NMSUR484 400 6.03 1 1.53
MNSRF2 SNMSUR64 36 1.53 1 1.07
MNSRF2 SNMSR484 400 6.85 1 1.48
MORCIN MORCIN10 10 1.38 1 1.62
MOREBV MOREBV18 18 1.49 1.28 1
MOREBV MORBV998 998 f f f
NONDIA NONDIA20 20 3.09 1 1.84
NONDIA NONDI500 500 4.32 1 1.30
NONDIA NOND1000 1000 4.66 1 1.36
OSBRN2 OSBRN2 11 1.76 2.07 1
PENAL1 PEN1LN1 50 1.22 1 2.30
PENAL1 PEN1LN2 100 1.25 1 4.57
PENAL1 PEN1LN3 1000 1.16 1 114.19
PENAL2 PEN2GM1 50 1.34 1.10 1
PENAL2 PEN2GM2 100 f f f
PENAL3 PENL3GM3 50 1.19 1 1.12
PENAL3 PENL3GM4 100 1.13 1 f
PENAL3 PENL3GM5 1000 1.40 1 f
POWBSC POWBSC50 50 1 f f
POWBSC POWBS500 500 1 f f
POWBSC POWB1000 1000 1 f f
POWER POWER75 75 2.09 1 1.56
PWSING PWSING60 60 1.56 1 1.28
PWSING PWSIN100 100 1.45 1 1
PWSING PWSI1000 1000 1.58 1 1.17
QUARTC QUARTC 25 1.96 1 1.64
ROSENB SHNRSN10 10 12.29 1.02 1
SCHMVT SCHMVT50 50 1.09 1 1.05
SCHMVT SCHMV500 500 1 1.12 2.38
SCHMVT SCHV1000 1000 1 1 2.49
SQRTMX MSQRTB49 49 2.34 1 1.11
TDQUAD TDQ10 10 1.20 1.60 1
TDQUAD TDQ500 500 1 1.33 1.67
TDQUAD TDQ1000 1000 1 1.33 2.17
TOINT PSPTOINT 50 1 1.01 1.03
TRIDIA TRIDIA10 10 2.05 1 1.38
TRIDIA TRLN100 100 1.77 1.50 1
TRIDIA TRLN1000 1000 3.09 1.64 1
TRIGTO TRIGT50 50 2.52 1 1.59
TRIGTO TRIGT100 100 2.84 1.19 1
VARDIM VARDIM 10 1.50 1 1.11
VARDIM VARDM100 100 1.68 1.18 1
VAROSB VAROSBG1 50 1.55 1 1.34
VAROSB VAROSBG2 100 4.12 1 1.06
WATSON WATSON12 12 1 f f
WOODS WOODS80 80 2.47 1 1.65
XTX XTX16 16 1 1 1
Totals 14 21 40 3 56 12 3 7 13 36 18 11

Bibliography

[1] Melvyn S. Berger. Nonlinearity and Functional Analysis: Lectures on Nonlinear

Problems in Mathematical Analysis. Academic Press, 1977.

[2] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The

ADIFOR 2.0 system for the automatic differentiation of Fortran 77 programs.

Technical Report ANL-MCS-P481-1194, Argonne National Laboratory, 1994.

[3] Christian Bischof, Alan Carle, Peyvand Khademi, Andrew Mauer, and Paul Hov-

land. ADIFOR 2.0 user’s guide. Technical Report ANL-MCS-TM-192, Argonne

National Laboratory, 1995.

[4] Albert G. Buckley. Test functions for unconstrained minimization. Technical

report, Department of Mathematics, Royal Roads Military College, 1994.

[5] Augustin Cauchy. Méthode générale pour la résolution des systèmes d’équations

simultanées. C. R. Acad. Sci. Paris, 25(16):536–538, 1847.

[6] R. Courant. Variational methods for the solution of problems of equilibrium and

vibrations. Bull. Amer. Math. Soc., 49:1–23, 1943.

[7] Nelson Dunford and Jacob T. Schwartz. Linear Operators: General Theory,

volume 1. Wiley, 1958.

[8] David M. Gay. Usage summary for selected optimization routines. Technical

Report CSTR 153, AT&T Bell Laboratories, 1990.

[9] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.

Academic Press, 1981.

121

BIBLIOGRAPHY 122

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins

University Press, 1996.

[11] Jacques Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre des

plaques élastiques encastrées. Mémoires présentés par divers savants à l’A-

cadémie des Sciences de l’Institut National de France, Series 2, 33(4):1–128,

1908.

[12] Uwe Helmke and John B. Moore. Optimization and Dynamical Systems.

Springer-Verlag, 1994.

[13] Cornelius Lanczos. An iteration method for the solution of the eigenvalue prob-

lem of linear differential and integral operators. J. Res. Nat. Bur. Standards,

45(4):255–282, 1950.

[14] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large

scale optimization. Math. Programming, 45(3):503–528, 1989.

[15] Jorge J. Moré and Stephen J. Wright. Optimization Software Guide. Society for

Industrial and Applied Mathematics, 1993.

[16] Stephen G. Nash. Newton-type minimization via the Lanczos method. SIAM J.

Numer. Anal., 21(4):770–788, 1984.

[17] Stephen G. Nash and Jorge Nocedal. A numerical study of the limited memory

BFGS method and the truncated-Newton method for large scale optimization.

SIAM J. Optim., 1(3):358–372, 1991.

[18] Numerical Algorithms Group. The NAG Fortran Library Manual, Mark 17, 1996.

[19] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear

equations. SIAM J. Numer. Anal., 12(4):617–629, 1975.

[20] R. S. Palais and S. Smale. A generalized Morse theory. Bull. Amer. Math. Soc.,

70:165–172, 1964.

[21] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

BIBLIOGRAPHY 123

[22] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics :

Functional Analysis, volume 1. Academic Press, 1980.

[23] Horst D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogo-

nalization methods. Linear Algebra Appl., 61:101–131, 1984.

[24] Horst D. Simon. The Lanczos algorithm with partial reorthogonalization. Math.

Comp., 42(165):115–142, 1984.

[25] Stephen Wolfram. The Mathematica Book. Cambridge University Press, 1996.

