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Abstract

Equilibrium problem with equilibrium constraints (EPECs) often arise in engi-

neering and economics applications. One important application of EPECs is the

multi-leader-follower game in economics, where each leader is solving a Stackel-

berg game formulated as a mathematical program with equilibrium constraints

(MPEC). Motivated by applied EPEC models for studying the strategic behavior

of generating firms in deregulated electricity markets, the aim of this thesis is to

study theory, algorithms, and new applications for EPECs.

We begin by reviewing the stationarity conditions and algorithms for MPECs.

Then, we generalize Scholtes’s regularization scheme for solving MPECs. We de-

fine EPEC stationarity concepts in Chapter 3. We propose a sequential nonlinear

complementarity (SNCP) method for solving EPECs and establish its conver-

gence. We present the numerical results of the SNCP method and give a compar-

ison with two best-reply iterations, nonlinear Jacobi and nonlinear Gauss-Seidel,

on a set of randomly generated test problems. The computational experience to

date shows that both the SNCP algorithm and the nonlinear Gauss-Seidel method

outperform the nonlinear Jacobi method.

We investigate the issue of existence of an EPEC solution in Chapter 4. In

general, an EPEC solution may not exist because of nonconvexity of the associ-

ated MPECs. However, we show that the existence result can be established for

the spot-forward market model proposed by Allaz and Vila and the two-period

Cournot game studied by Saloner. We observe that the mathematical structure

of the spot-forward market model is similar to that of the multiple leader Stack-

elberg model analyzed by Sherali when new variables are introduced for spot

market sales. Consequently, we are able to adapt Sherali’s analysis to establish

the existence of a forward market equilibrium for M asymmetric producers with

nonidentical linear cost functions.

In Chapter 5, we present a novel MPEC approach for computing solutions of

incentive problems in economics. Specifically, we consider deterministic contracts
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as well as contracts with action and/or compensation lotteries for the static moral-

hazard problem, and formulate each case as an MPEC. We propose a hybrid

procedure that combines the best features of the MPEC approach and the LP

lottery approach. The hybrid procedure obtains a solution that is, if not global,

at least as good as an LP solution. It also preserves the fast local convergence

property by applying an SQP algorithm to MPECs. Numerical results on an

example show that the hybrid procedure outperforms the LP approach in both

computational time and solution quality in terms of the optimal objective value.
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Chapter 1

Introduction

An equilibrium problem with equilibrium constraints (EPEC) is a member of a new

class of mathematical programs that often arise in engineering and economics

applications. One important application of EPECs is the multi-leader-follower

game [47] in economics. In noncooperative game theory, the well-known Stackel-

berg game (single-leader-multi-follower game) can be formulated as an optimiza-

tion problem called a mathematical program with equilibrium constraints (MPEC)

[33, 43], in which followers’ optimal strategies are solutions of complementar-

ity problems or variational inequality problems based on the leader’s strategies.

Analogously, the more general problem of finding equilibrium solutions of a multi-

leader-follower game, where each leader is solving a Stackelberg game, is formu-

lated as an EPEC. Consequently, one may treat an EPEC as a two-level hierar-

chical problem, which involves finding equilibria at both lower and upper levels.

More generally, an EPEC is a mathematical program to find equilibria that si-

multaneously solve several MPECs, each of which is parameterized by decision

variables of other MPECs.

Motivated by applied EPEC models for studying the strategic behavior of

generating firms in deregulated electricity markets [5, 22, 49], the aim of this

thesis is to study the stationarities, algorithms, and new applications for EPECs.

The main contributions of this thesis are summarized below.

In Chapter 2, we review the stationarity conditions and algorithms for math-

ematical programs with equilibrium constraints. We generalize Scholtes’s regu-

larization scheme for solving MPECs and establish its convergence. Chapter 3

begins by defining EPEC stationarities, followed by a new class of algorithm,

called a sequential nonlinear complementarity (SNCP) method, which we propose

for solving EPECs. Numerical approaches used by researchers in engineering and

1



2 Chapter 1 Introduction

economics fields to solve EPEC models fall into the category of diagonalization

methods (or the best-reply iteration in the economics literature), a cyclic procedure

that solves the MPECs one at a time. The main drawback with this procedure

is that it may fail to find an EPEC solution even if one exists. To avoid this

disadvantage, we propose a sequential nonlinear complementarity (SNCP) algo-

rithm for solving EPECs and establish the convergence of this algorithm. We

present the numerical results of the SNCP method and give a comparison with

two best-reply iteration methods, nonlinear Jacobi and nonlinear Gauss-Seidel,

on a set of EPEC test problems, randomly generated by EPECgen, a Matlab

program we develop to study the numerical performance of various algorithms.

The computational experience to date shows that both the SNCP algorithm and

the nonlinear Gauss-Seidel method outperform the nonlinear Jacobi method.

In Chapter 4, we investigate the issue of existence of an EPEC solution. In

general, an EPEC solution may not exist because of nonconvexity of the associ-

ated MPECs. However, we show that the existence result can be established for

specific models; for example, the forward-spot market model proposed by Allaz

and Vila [1] or the two-period Cournot game studied by Saloner [56, 57] and

Pal [44]. In [1], Allaz and Vila showed that one can solve for the forward market

Nash equilibrium in closed-form when the inverse demand function is affine and

the producers have identical linear cost functions. However, their approach is not

valid for the case of producers with nonidentical linear cost functions. As a result,

the existence of a forward market Nash equilibrium is in jeopardy. By introducing

additional variables for the spot market sales, we observe that the two-period for-

ward market model has structure similar to that of the multiple leader Stackelberg

model analyzed by Sherali [59]. Consequently, we can adapt Sherali’s analysis to

establish the existence of a forward market equilibrium when the M producers

have different linear cost functions. We further demonstrate the use of the SNCP

method to solve the EPEC formulation of this model on an example with three

asymmetric producers.

The aim of Chapter 5 is to extend the applicability of MPECs and EPECs

to new research fields. One particular topic we study is incentive problems in

economics. As one of the most active research topics in economics in the past

three decades, incentive problems such as contract design, optimal taxation and
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regulation, and multiproduct pricing, can be naturally formulated as an MPEC

or an EPEC. In Chapter 5, we present a novel MPEC approach for computing

solutions of the static moral-hazard problem. We consider deterministic contracts

as well as contracts with action and/or compensation lotteries, and formulate each

case as an MPEC. We investigate and compare solution properties of the MPEC

approach to those of the linear programming (LP) approach with lotteries. We

propose a hybrid procedure that combines the best features of both. The hybrid

procedure obtains a solution that is, if not global, at least as good as an LP

solution. It also preserves the fast local convergence property by applying an

SQP algorithm to MPECs. Numerical results on an example show that the hybrid

procedure outperforms the LP approach in both computational time and solution

quality in terms of the optimal objective value.
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Chapter 2

Mathematical Program with

Equilibrium Constraints

In this chapter, we first define mathematical programs with equilibrium con-

straints (MPECs). We propose a new regularization scheme for MPECs that

includes Scholtes’s approach [62] and the two-sided relaxation scheme proposed

by DeMiguel, Friedlander, Nogales, and Scholtes [9] as special cases. We show that

the convergence theorems studied in [62] can be carried over to our approach.

2.1 Preliminary on MPECs

We consider an MPEC formulated as a nonlinear program with complementarity

constraints:
minimize f(x)

subject to g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,

(2.1)

where f : Rn → R, g : Rn → Rp, h : Rn → Rq, G : Rn → Rm, and H : Rn → Rm

are twice continuously differentiable functions. Given a feasible vector x̄ of the

MPEC (2.1), we define the following index sets of active and inactive constraints:

IG(x̄) := {i |Gi(x̄) = 0}, Ic
G(x̄) := {i |Gi(x̄) > 0},

IH(x̄) := {i |Hi(x̄) = 0}, Ic
H(x̄) := {i |Hi(x̄) > 0},

IGH(x̄) := {i |Gi(x̄) = Hi(x̄) = 0}, Ig(x̄) := {i | gi(x̄) = 0},

(2.2)

5



6 Chapter 2 Mathematical Program with Equilibrium Constraints

where IGH(x̄) is known as the degenerate set. If IGH(x̄) = ∅, then the feasible

vector x̄ is said to fulfill the strict complementarity conditions.

Associated with any given feasible vector x̄ of MPEC (2.1), there is a nonlinear

program, called the tightened NLP (TNLP(x̄)) [46, 58]:

minimize f(x)

subject to g(x) ≤ 0, h(x) = 0,

Gi(x) = 0, i ∈ IG(x̄),

Gi(x) ≥ 0, i ∈ Ic
G(x̄),

Hi(x) = 0, i ∈ IH(x̄),

Hi(x) ≥ 0, i ∈ Ic
H(x̄).

(2.3)

Similarly, there is a relaxed NLP (RNLP(x̄)) [46, 58] defined as follows:

minimize f(x)

subject to g(x) ≤ 0, h(x) = 0,

Gi(x) = 0, i ∈ Ic
H(x̄),

Gi(x) ≥ 0, i ∈ IH(x̄),

Hi(x) = 0, i ∈ Ic
G(x̄),

Hi(x) ≥ 0, i ∈ IG(x̄).

(2.4)

It is well known that an MPEC cannot satisfy the standard constraint qualifica-

tions, such as linear independence constraint qualification (LICQ) or Mangasarian-

Fromovitz constraint qualification (MFCQ), at any feasible point [6, 58]. This

implies that the classical KKT theorem on necessary optimality conditions (with

the assumption that LICQ or MFCQ is satisfied at local minimizers) is not ap-

propriate in the context of MPECs. One then needs to develop suitable variants

of CQs and concepts of stationarity for MPECs. Specifically, the MPEC-CQs are

closely related to those of the RNLP (2.4).

Definition 2.1. The MPEC (2.1) is said to satisfy the MPEC-LICQ (MPEC-

MFCQ) at a feasible point x̄ if the corresponding RNLP(x̄) (2.4) satisfies the
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LICQ (MFCQ) at x̄.

In what follows, we define B(ouligand)-stationarity for MPECs. We also

summarize various stationarity concepts for MPECs introduced in Scheel and

Scholtes [58].

Definition 2.2. Let x̄ be a feasible point for the MPEC (2.1). We say that x̄ is

a Bouligand- or B-stationary point if d = 0 solves the following linear program

with equilibrium constraints (LPEC) with the vector d ∈ Rn being the decision

variable:

minimize ∇f(x̄)Td

subject to g(x̄) + ∇g(x̄)Td ≤ 0, h(x̄) + ∇h(x̄)Td = 0,

0 ≤ G(x̄) + ∇G(x̄)Td ⊥ H(x̄) + ∇H(x̄)Td ≥ 0.

(2.5)

B-stationary points are good candidates for local minimizers of the MPEC

(2.1). However, checking B-stationarity is difficult because it may require checking

the optimality of 2|IGH(x̄)| linear programs [33, 58].

Definition 2.3. We define the MPEC Lagrangian with the vector of MPEC mul-

tipliers λ = (λg, λh, λG, λH) as in Scheel and Scholtes [58] and Scholtes [62]:

L(x, λ) = f(x) + (λg)Tg(x) + (λh)Th(x) − (λG)TG(x) − (λH)TH(x). (2.6)

Notice that the complementarity constraint G(x)TH(x) = 0 does not appear in

the MPEC Lagrangian function. This special feature distinguishes MPECs from

standard nonlinear programming problems.

The following four concepts of MPEC stationarity, stated in increasing

strength, are introduced in Scheel and Scholtes [58].

Definition 2.4. A feasible point x̄ of the MPEC (2.1) is called weakly stationary

if there exists a vector of MPEC multipliers λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H) such that (x̄, λ̄)

is a KKT stationary point of the TNLP (2.3), i.e., (x̄, λ̄) satisfies the following
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conditions:

∇xL(x̄, λ̄) =

∇f(x̄) + ∇g(x̄)Tλ̄g + ∇h(x̄)Tλ̄h −∇G(x̄)Tλ̄G −∇H(x̄)Tλ̄H = 0,

h(x̄) = 0; g(x̄) ≤ 0, λ̄g ≥ 0, (λ̄g)Tg(x̄) = 0,

i ∈ IG(x̄) : Gi(x̄) = 0,

i ∈ Ic
G(x̄) : Gi(x̄) ≥ 0, λ̄G

i ≥ 0, λ̄G
i Gi(x̄) = 0,

i ∈ IH(x̄) : Hi(x̄) = 0,

i ∈ Ic
H(x̄) : Hi(x̄) ≥ 0, λ̄H

i ≥ 0, λ̄H
i Hi(x̄) = 0.

(2.7)

In addition, the feasible vector x̄ is called

(a) a C(larke)-stationary point if λ̄G
i λ̄H

i ≥ 0 ∀ i ∈ IGH(x̄).

(b) a M(ordukhovich)-stationary point if either (λ̄G
i > 0, λ̄H

i > 0) or (λ̄G
i λ̄H

i = 0)

∀ i ∈ IGH(x̄).

(c) a strongly stationary point if λ̄G
i ≥ 0, λ̄H

i ≥ 0 ∀ i ∈ IGH(x̄).

Notice that by Definition 2.4, a point x̄ is a strongly stationary point of the

MPEC (2.1) if (x̄, λ̄) is a KKT pair of the RNLP (2.4).

Definition 2.5 (Upper-level strict complementarity (ULSC)). A weakly

stationary point x̄ is said to satisfy ULSC if there exist MPEC multipliers λ̄ =

(λ̄g, λ̄h, λ̄G, λ̄H) satisfying (2.7) with λ̄G
i λ̄H

i 6= 0 for all i ∈ IGH(x̄).

See [58] for a discussion of these various stationarity conditions and their re-

lations to others in the literature such as Clarke’s generalized stationarity.

The following two theorems relate the strongly stationary point to B-stationary

point and local minimizers of MPECs.

Theorem 2.6 ([58]). If a feasible point x̄ is a strong stationary point for the

MPEC (2.1), then it is a B-stationary point. Conversely, if x̄ is a B-stationary

point for the MPEC (2.1), and if the MPEC-LICQ holds at x̄, then it is a strongly

stationary point.
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Theorem 2.7 ([46, 58]). If the MPEC-LICQ holds at a local minimizer x̄ of the

MPEC (2.1), then x̄ is a strongly stationary point with a unique vector of MPEC

multipliers λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H).

Recently, researchers have shown that MPECs can be solved reliably and ef-

ficiently [2, 9, 13, 14, 32, 53] using standard nonlinear optimization solvers by

reformulating the MPEC (2.1) as the following equivalent nonlinear program:

minimize f(x)

subject to g(x) ≤ 0, h(x) = 0,

G(x) ≥ 0, H(x) ≥ 0,

G(x) ◦ H(x) ≤ 0.

(2.8)

The key observation in proving convergence of such an approach is that strong

stationarity is equivalent to the KKT conditions of the equivalent NLP (2.8). This

is stated in the following theorem.

Theorem 2.8 ([2, 14, 30, 62])). A vector x̄ is a strongly stationary point of

the MPEC (2.1) if and only if it is a KKT point of nonlinear program (2.8), i.e.,

there exists a vector of Lagrangian multipliers λ̂ = (λ̂g, λ̂h, λ̂G, λ̂H, λ̂GH), such that

(x̄, λ̂) satisfies the following conditions:

∇f(x̄) + ∇g(x̄)Tλ̂g + ∇h(x̄)Tλ̂h

−∇G(x̄)T[λ̂G − H(x̄) ◦ λ̂GH ] −∇H(x̄)T[λ̂H − G(x̄) ◦ λ̂GH ] = 0,

h(x̄) = 0; g(x̄) ≤ 0, λ̂g ≥ 0, (λ̂g)Tg(x̄) = 0,

G(x̄) ≥ 0, λ̂G ≥ 0, (λ̂G)TG(x̄) = 0,

H(x̄) ≥ 0, λ̂H ≥ 0, (λ̂H)TG(x̄) = 0,

G(x̄) ◦ H(x̄) ≤ 0, λ̂GH ≥ 0, (λ̂GH)T[G(x̄) ◦ H(x̄)] = 0.

(2.9)
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2.2 A Generalization of Scholtes’s Regulariza-

tion

In this section, we present a generalization of Scholtes’s regularization scheme [62].

Our approach suggests relaxing the complementarity constraints and perturbing

the coefficients in the objective function and constraints simultaneously. Hence,

Scholtes’s scheme is a special case of our approach if the objective function and

constraints are not perturbed. We show that the convergence analysis studied

in [62] can be extended to our method without any difficulty. The convergence

results of our method will be applied to establish the convergence of the sequential

nonlinear complementarity algorithm in the next section.

For any mapping F : Rn ×AF → Rm, where Rn is the space of variables and

AF is the space of (fixed) parameters, we denote the mapping as F (x; āF ) with

x ∈ Rn and āF ∈ AF . The order of elements in āF is mapping specific. For any

positive sequence {t} tending to 0, we perturb the parameters in F and denote

the new parameter vector as aF
t with aF

t → āF as t → 0, and aF
t = āF when t = 0.

Note that the perturbation on āF does not require the perturbed vector aF
t to be

parameterized by t.

To facilitate the presentation, we let Ω := {f, g, h, G, H} denote the collection

of all the functions in the MPEC (2.1). With the notation defined above, the

MPEC (2.1) is presented as

minimize f(x; āf)

subject to g(x; āg) ≤ 0, h(x; āh) = 0,

0 ≤ G(x; āG) ⊥ H(x; āH) ≥ 0,

(2.10)

where āω ∈ Aω, for all ω ∈ Ω.

For any positive sequence {t} tending to 0, we perturb every parameter vector

āω and denote the perturbed parameter vector as aω
t for all ω ∈ Ω. The perturbed

vector aω
t should satisfy the following two conditions for all ω ∈ Ω:

aω
t → āω, as t → 0+. (2.11)

aω
t = āω, when t = 0. (2.12)
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As {t} → 0+, we are solving a sequence of perturbed NLPs, denoted by Reg(t):

minimize f(x; af
t )

subject to g(x; ag
t ) ≤ 0, h(x; ah

t ) = 0,

G(x; aG
t ) ≥ 0, H(x; aH

t ) ≥ 0,

G(x; aG
t ) ◦ H(x; aH

t ) ≤ t e.

(2.13)

In what follows, we extend Theorem 3.1, Theorem 3.3, and Corollary 3.4 in [62]

to our relaxation method. The proof closely follows the one given by Scholtes

in [62] and is included here for the completeness. We first state two technical

lemmas. Lemma 2.9 states that the NLP-LICQ at a feasible point carries over

to all feasible points in a sufficiently small neighborhood. Lemma 2.10 extends

similar results to MPECs.

Lemma 2.9. Consider the nonlinear program

minimize f(x)

subject to h(x) = 0,

g(x) ≤ 0,

(2.14)

where f : Rn → R1, h : Rn → Rl and g : Rn → Rm are twice continuously

differentiable functions. If the NLP-LICQ holds at a feasible point x̄ of (2.14),

then there exists a neighborhood N (x̄) such that the NLP-LICQ holds at every

feasible point x ∈ N (x̄).

Proof. Let A(x̄) be the Jacobian matrix of active constraints at x̄ of (2.14). Since

NLP-LICQ holds at x̄, the rows of A(x̄) are linearly independent. Then, there ex-

ists a basis A.β(x̄) in A(x̄) and the determinant of A.β(x̄), denoted as det(A.β(x̄)),

is nonzero. Since det(A.β(x)) is a continuous function of x, it follows that there

exists a neighborhood N (x̄) such that for all feasible points x of (2.14) in N (x̄):

det(A.β(x)) 6= 0,

Ig(x) ⊆ Ig(x̄),

Ih(x) ⊆ Ih(x̄).

(2.15)
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This further implies that for every such x the gradient vectors of the active con-

straints in (2.14) are linearly independent. Hence, NLP-LICQ holds at every

feasible point x ∈ N (x̄). �

Given a feasible point x̄ of Reg(t) (2.13), we define the following index sets of

active constraints:

Ig(x̄, t) := {i | gi(x̄; ag
t ) = 0},

Ih(x̄, t) := {i | hi(x̄; ah
t ) = 0},

IG(x̄, t) := {i |Gi(x̄; aG
t ) = 0},

IH(x̄, t) := {i |Hi(x̄; aH
t ) = 0},

IGH(x̄, t) := {i |Gi(x̄; aH
t )Hi(x̄; aH

t ) = t}.

(2.16)

Lemma 2.10. If the MPEC-LICQ holds at the feasible point x̄ of the MPEC

(2.10), then there exists a neighborhood N (x̄) and a scalar t̄ > 0 such that for

every t ∈ (0, t̄ ), the NLP-LICQ holds at every feasible point x ∈ N (x̄) of Reg(t)

(2.13).

Proof. This follows from Lemma 2.9 and the following relations on the index sets

of active constraints:

Ig(x, t) ⊆ Ig(x̄),

Ih(x, t) ⊆ Ih(x̄),

IG(x, t) ∪ IH(x, t) ∪ IGH(x, t) ⊆ IG(x̄) ∪ IH(x̄),

IG(x, t) ∩ IGH(x, t) = ∅,

IH(x, t) ∩ IGH(x, t) = ∅,

(2.17)

which hold for all x in a sufficiently small neighborhood N (x̄) and all t ∈ (0, t̄)

for sufficiently small t̄ > 0.
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For every feasible x of (2.13) in N (x̄), by Lemma 2.9 and (2.17), the system

∑

i∈Ig(x,t)

λg
i∇gi(x) +

∑

i∈Ih(x,t)

λh
i ∇gi(x)

+
∑

i∈IG(x,t)

λG
i ∇Gi(x) +

∑

i∈IH(x,t)

λH
i ∇Hi(x)

+
∑

i∈IGH(x,t)

[(λGH
i Hi(x; aH

t ))∇Gi(x) + (λGH
i Gi(x; aG

t ))∇Hi(x)] = 0

(2.18)

implies that λg
i = λh

i = λG
i = λH

i = λGH
i Gi(x; aG

t ) = λGH
i Hi(x; aH

t ) = 0. Since

Gi(x; aG
t )Hi(x; aH

t ) = t,

we have

Gi(x; aG
t ) > 0, Hi(x; aH

t ) > 0,

and thus, λGH
i = 0. This proves that the NLP-LICQ holds at x. �

Theorem 2.11. Let {tν} be a sequence of positive scalars tending to zero as

ν → ∞. Denote a stationary point of Reg(tν) by xν for each ν and let the sequence

{xν} converge to x̄. Suppose the MPEC-LICQ holds at x̄. Then

(i) The point x̄ is a C-stationary point of the MPEC (2.1).

(ii) If, for each ν, the point xν also satisfies second-order necessary optimality

conditions for Reg(tν), then x̄ is an M-stationary point of the MPEC (2.1).

(iii) Moreover, if the ULSC assumption holds at x̄, then x̄ is a B-stationary point

of the MPEC (2.1).

Proof. First, by (2.11) and (2.12), it is easy to see that x̄ is a feasible point of

the MPEC (2.1). Let λν = (λg
ν , λ

h
ν , λ

G
ν , λH

ν , λGH
ν ) be the Lagrangian multipliers of

Reg(tν) (2.13) at the stationary point xν , and let

I0 = {i | i ∈ IGH(xν , tν) for infinitely many ν}.

Since MPEC-LICQ holds at x̄, the multiplier vector λν is unique in the following
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KKT system of Reg(tν) (2.13) for sufficiently small tν :

∇f(xν ; a
f
tν

) + ∇g(xν ; ag
tν

)Tλg
ν + ∇h(xν ; ah

tν )Tλh
ν

−∇G(xν ; aG
tν )TλG

ν −∇H(xν ; a
H
tν )TλH

ν

+∇G(xν ; a
G
tν

)T[H(xν ; aH
tν

) ◦ λGH
ν ] + ∇H(xν ; a

H
tν

)T[G(xν ; aG
tν

) ◦ λGH
ν ] = 0,

h(xν ; a
h
tν ) = 0,

g(xν ; ag
tν

) ≤ 0, λ
g
ν ≥ 0, g(xν ; ag

tν
)Tλ

g
ν = 0,

G(xν ; aG
tν

) ≤ 0, λG
ν ≥ 0, G(xν ; aG

tν
)TλG

ν = 0,

H(xν ; a
H
tν ) ≤ 0, λH

ν ≥ 0, H(xν ; a
H
tν )TλH

ν = 0,

G(xν ; aG
tν

) ◦ H(xν ; a
H
tν

) − tν e ≤ 0, λGH
ν ≥ 0,

[G(xν ; aG
tν

) ◦ H(xν ; a
H
tν

) − tν e]TλGH
ν = 0.

(2.19)

(i) Define λ̃G
i,ν = −λGH

i,ν Hi(xν ; a
H
tν

) and λ̃H
i,ν = −λGH

i,ν Gi(xν ; a
G
tν

) for i ∈ IGH(xν , tν)

and rewrite the first equation in (2.19) as

−∇f(xν ; a
f
tν )

=
∑

i∈Ig(xν)

λg
i,ν∇gi(xν ; a

g
tν ) +

∑

i∈Ih(xν)

λh
i,ν∇hi(xν ; a

h
tν

)

−
∑

i∈IG(xν ,tν)

λG
i,ν∇Gi(xν ; a

G
tν

) −
∑

i∈IH(xν ,tν)

λH
i,ν∇Hi(xν ; a

H
tν

)

−
∑

i∈IGH(xν ,tν)∩Ic
G

(x̄)

λ̃H
i,ν

[

∇Hi(xν ; a
H
tν

) +
Gi(xν ; a

G
tν

)

Hi(xν ; aH
tν

)
∇Gi(xν ; a

G
tν

)

]

−
∑

i∈IGH(xν ,tν)∩Ic
H

(x̄)

λ̃G
i,ν

[

∇Gi(xν ; a
G
tν

) +
Hi(xν ; a

H
tν

)

Gi(xν ; aG
tν )

∇Hi(xν ; a
H
tν

)

]

−
∑

i∈IGH(xν ,tν)∩IG(x̄)∩IH(x̄)

[

λ̃G
i,ν∇Gi(xν ; a

G
tν

) + λ̃H
i,ν∇Hi(xν ; a

H
tν

)
]

.

(2.20)

For every sufficient large ν, we construct a matrix A(xν) with rows being the
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transpose of the following vectors:

∇gi(xν ; a
g
tν

), i ∈ Ig(x̄),

∇hi(xν ; a
h
tν

), i ∈ Ih(x̄),

−∇Gi(xν ; a
G
tν

), i ∈ IG(x̄) \ (IGH(xν , tν) ∩ Ic
H(x̄)),

−∇Gi(xν ; a
G
tν

) −
Hi(xν ; a

H
tν

)

Gi(xν ; aG
tν )

∇Hi(xν ; a
H
tν

), i ∈ IGH(xν , tν) ∩ Ic
H(x̄),

−∇Hi(xν ; a
H
tν

), i ∈ IH(x̄) \ (IGH(xν , tν) ∩ Ic
G(x̄)),

−∇Hi(xν ; a
H
tν

) −
Gi(xν ; a

G
tν

)

Hi(xν ; a
H
tν )

∇Gi(xν ; a
G
tν

), i ∈ IH(x̄) \ (IGH(xν , tν) ∩ Ic
G(x̄)).

Then (2.20) can be represented as an enlarged system of equations A(xν)
Tyν =

−∇f(xν) with some components in yν set to 0. The sequence of matrices {A(xν)}

converges to the matrix A(x̄) with linearly independent rows

∇gi(x̄; āg), i ∈ Ig(x̄),

∇hi(x̄; āh), i ∈ Ih(x̄),

∇Gi(x̄; āG), i ∈ IG(x̄),

∇Hi(x̄; āH), i ∈ IH(x̄).

It follows that yν converges to a unique vector, λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H), with

lim
ν→∞

λg
i,ν = λ̄g

i ≥ 0, lim
ν→∞

λh
i,ν = λ̄h

i ,

i /∈ I0 : lim
ν→∞

λG
i,ν = λ̄G

i ≥ 0, lim
ν→∞

λH
i,ν = λ̄H

i ≥ 0,

i ∈ I0 :











− lim
ν→∞

λGH
i,ν Hi(xν ; a

H
tν

) = λ̄G
i ≤ 0,

− lim
ν→∞

λGH
i,ν Gi(xν ; a

G
tν

) = λ̄H
i ≤ 0.

(2.21)

This completes the proof of (i).

(ii) Suppose x̄ is not an M-stationary point of the MPEC (2.1). Then there exists
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an index j ∈ IGH(x̄) such that

− lim
ν→∞

λGH
j,ν Hj(xν ; a

H
tν

) = λ̄G
j < 0, − lim

ν→∞
λGH

j,ν Gj(xν ; a
G
tν

) = λ̄H
j ≤ 0.

From (i), this further implies that j ∈ I0 and Gj(xν ; a
G
tν

)Hj(xν ; a
H
tν

) = tν for every

sufficiently large ν.

For every ν, we construct a matrix B(xν) with rows being the transpose of the

vectors
∇gi(xν ; a

g
tν ), i ∈ Ig(x̄),

∇hi(xν ; a
h
tν

), i ∈ Ih(x̄),

∇Gi(xν ; a
G
tν

), i ∈ IG(x̄),

∇Hi(xν ; a
H
tν

), i ∈ IH(x̄).

The sequence of matrices {B(xν)} converges to the matrix B(x̄) with linearly

independent rows

∇gi(x̄; āg), i ∈ Ig(x̄),

∇hi(x̄; āh), i ∈ Ih(x̄),

∇Gi(x̄; āG), i ∈ IG(x̄),

∇Hi(x̄; āH), i ∈ IH(x̄).

Since the MPEC-LICQ holds at x̄, it follows that the rows in the matrix B(xν)

are linearly independent for every sufficiently large ν. Consequently, the following

system has no solutions for ν large enough:

B(xν)
Tzν = 0, zν 6= 0. (2.22)

By Gale’s theorem of alternatives [34, p. 34], the following system has a solution
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dν for every sufficiently large ν:

∇gi(xν ; a
g
tν

)Tdν = 0, i ∈ Ig(x̄),

∇hi(xν ; a
h
tν

)Tdν = 0, i ∈ Ih(x̄),

∇Gi(xν ; a
G
tν

)Tdν = 0, i ∈ IG(x̄), i 6= j,

∇Hi(xν ; a
H
tν

)Tdν = 0, i ∈ IH(x̄), i 6= j,

∇Gj(xν ; a
G
tν

)Tdν = 1,

∇Hj(xν ; a
H
tν

)Tdν = −
Hj(xν ; a

H
tν

)

Gj(xν ; aG
tν

)
,

and we represent the system as

B(xν) dν = bν . (2.23)

Similarly, the following system has a solution d̄:

∇gi(x̄; āg)Td̄ = 0, i ∈ Ig(x̄),

∇hi(x̄; āh)Td̄ = 0, i ∈ Ih(x̄),

∇Gi(x̄; āG)Td̄ = 0, i ∈ IG(x̄), i 6= j,

∇Hi(x̄; āH)Td̄ = 0, i ∈ IH(x̄), i 6= j,

∇Gj(x̄; āG)Td̄ = 1,

∇Hj(x̄; āG)Td̄ = −λ̄G/λ̄H ,

and we represent the system as

B(x̄) d̄ = b̄. (2.24)

Below, we construct a bounded sequence {dν} converging to d̄. Without loss

of generality, we can assume that there exists an index set β such that B.β(x̄)

is a basis in B(x̄) and B.β(xν) is a basis in B(xν) for every sufficient large ν.

Furthermore, the vector d̄ is a basic solution of (2.24) associated with the basis
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B.β(x̄) with d̄β satisfying

B.β(x̄)d̄β = b̄

and the rest of the components in d̄ being 0.

Similarly, for every sufficiently large ν, the vector dν is a basic solution of

(2.23) associated with the basis B.β(xν) with (dν)β satisfying

B.β(xν)(dν)β = bν

and the rest of the components in dν being 0.

From (2.21), it is clear that Hj(xν ; a
H
tν

)/Gj(xν ; a
G
tν

) → λ̄G/λ̄H , and hence,

bν → b̄ as ν → ∞. With B(xν) converging to B(x̄), it follows that the sequence

{dν} is bounded and dν → d̄ as ν → ∞.

It is easy to see that dν is a critical direction of Reg(tν) (2.13) at xν for ν large

enough. If the constraint Gj(x; aG
tν

)Hj(x; aH
tν

) ≤ tν is active at xν , we examine the

term associated with this constraint in the Lagrangian function of Reg(tν) for the

second-order necessary optimality conditions. In particular,

λGH
j,ν dT

ν ∇
2
(

Gj(xν ; a
G
tν

)Hj(xν ; a
H
tν

) − tν
)

dν

= λGH
j,ν Hj(xν ; a

H
tν

) dT
ν ∇

2Gj(xν ; a
G
tν

) dν + λGH
j,ν Gj(xν ; a

G
tν

) dT
ν ∇

2Hj(xν ; a
H
tν

) dν

− λGH
j,ν Hj(xν ; a

H
tν

)
2

Gj(xν ; aG
tν

)
.

While the first two terms in the above equation are bounded, the third term

−λGH
j,ν Hj(xν ; a

H
tν

)
2

Gj(xν ; a
G
tν )

→ −∞, as ν → ∞,

since λGH
j,ν Hj(xν ; a

H
tν

) → −λ̄j > 0 and Gj(xν ; a
G
tν

) → 0+. It is easy to check that

all other terms in dT
ν ∇

2L(xν , λν)dν are bounded, and hence, the second-order

necessary optimality condition of Reg(tν) (2.13) fails at xν for sufficiently large ν.

(iii) Since, from (ii), x̄ is an M-stationary point and the ULSC holds at x̄, it

follows that x̄ is a strongly stationary point, and hence, a B-stationary point. �



Chapter 3

Equilibrium Problem with

Equilibrium Constraints

In this chapter, we define EPECs and their stationarity concepts. Diagonalization

methods [4, 5, 22, 25, 49] have been widely used by researchers in engineering

fields to solve EPECs. The absence of convergence results for diagonalization

methods is one of their main drawbacks. We briefly discuss the convergence

properties of the diagonalization methods, in which every MPEC subproblem is

solved as an equivalent nonlinear program [13, 14]. We also propose a sequential

nonlinear complementarity (NCP) approach for solving EPECs and establish the

convergence of this algorithm. Finally, we present the numerical results of the

SNCP method and give a comparison with two diagonalization methods, nonlinear

Jacobi and nonlinear Gauss-Seidel, on a set of randomly generated EPEC test

problems.

3.1 Formulation and stationarity conditions

An EPEC is a problem of finding an equilibrium point that solves several MPECs

simultaneously. Since practical applications of EPEC models often arise from

multi-leader-follower game settings, we consider the EPEC consisting of MPECs

with shared decision variables and shared equilibrium constraints. In particular,

we assume the EPEC consists of K MPECs, and for each k = 1, . . . , K, the k-th

MPEC has the following form with independent decision variables xk ∈ Rnk and

19



20 Chapter 3 Equilibrium Problem with Equilibrium Constraints

shared decision variables y ∈ Rn0:

minimize fk(xk, y; x̄−k)

subject to gk(xk, y; x̄−k) ≤ 0, hk(xk, y; x̄−k) = 0,

0 ≤ G(xk, y; x̄−k) ⊥ H(xk, y; x̄−k) ≥ 0,

(3.1)

where fk : Rn → R, gk : Rn → Rpk, hk : Rn → Rqk, G : Rn → Rm and

H : Rn → Rm are twice continuously differentiable functions in both x = (xk)K
k=1

and y, with n =
∑K

k=0 nk. The notation x̄−k means that x−k = (xj)K
j=1 \ xk

(∈ Rn−nk−n0) is not a variable but a fixed vector. This implies that we can

view (3.1), denoted by MPEC(x̄−k), as being parameterized by x̄−k. Given x̄−k,

we assume the solution set of the k-th MPEC is nonempty and denote it by

SOL(MPEC(x̄−k)). Notice that in the above formulation, each MPEC shares the

same equilibrium constraints, represented by the complementarity system

0 ≤ G(x, y) ⊥ H(x, y) ≥ 0.

The EPEC, associated with K MPECs defined as above, is to find a Nash

equilibrium (x∗, y∗) ∈ Rn such that

(xk∗, y∗) ∈ SOL(MPEC(x−k∗)) ∀ k = 1, . . . , K. (3.2)

Mordukhovich [39] studies the necessary optimality conditions of EPECs in the

context of multiobjective optimization with constraints governed by parametric

variational systems in infinite-dimensional space. His analysis is based on ad-

vanced tools of variational analysis and generalized differential calculus [37, 38].

Since we only consider finite-dimensional optimization problems, following Hu [25],

we use the KKT approach and define stationary conditions for EPECs by applying

those for MPECs.

Definition 3.1. We call a vector (x∗, y∗) a B-stationary (strongly stationary, M-

stationary, C-stationary, weakly stationary) point of the EPEC (3.2) if for each

k = 1, . . . , K, (xk∗, y∗) is a B-stationary (strongly stationary, M-stationary, C-

stationary, weakly stationary) point for the MPEC(x−k∗).
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Theorem 3.2. Let (x∗, y∗) be a (possibly local) equilibrium point of EPEC (3.2).

If for each k = 1, . . . , K, the MPEC-LICQ holds at (xk∗, y∗) for MPEC(x−k∗)

(3.1), then (x∗, y∗) is an EPEC strongly stationary point. In particular, there exist

vectors λ∗ = (λ1∗, . . . , λK∗) with λk∗ = (λg, k∗, λh, k∗, λG, k∗, λH, k∗, λGH, k∗) such that

(x∗, y∗, λ∗) solves the system

∇xkfk(xk, y; x−k)

+∇xkgk(xk, y; x−k)Tλg, k + ∇xkhk(xk, y; x−k)Tλh, k

−∇xkG(xk, y; x−k)TλG, k −∇xkH(xk, y; x−k)TλH, k

+∇xkG(xk, y; x−k)T[H(xk, y; x−k) ◦ λGH, k]

+∇xkH(xk, y; x−k)T[G(xk, y; x−k) ◦ λGH, k] = 0

∇yf
k(xk, y; x−k)

+∇yg
k(xk, y; x−k)Tλg, k + ∇yh

k(xk, y; x−k)Tλh, k

−∇yG(xk, y; x−k)TλG, k −∇yH(xk, y; x−k)TλH, k

+∇yG(xk, y; x−k)T[H(xk, y; x−k) ◦ λGH, k]

+∇yH(xk, y; x−k)T[G(xk, y; x−k) ◦ λGH, k] = 0

hk(xk, y; x−k) = 0

0 ≥ gk(xk, y; x−k) ⊥ λg, k ≥ 0,

0 ≤ G(xk, y; x−k) ⊥ λG, k ≥ 0,

0 ≤ H(xk, y; x−k) ⊥ λH, k ≥ 0,

0 ≤ −G(xk, y; x−k) ◦ H(xk, y; x−k) ⊥ λGH, k ≥ 0,
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k = 1, . . . , K.

(3.3)

Conversely, if (x∗, y∗, λ∗) is a solution of the above system (3.3), then (x∗, y∗) is

a B-stationary point of the EPEC (3.2).
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Proof. Since (x∗, y∗) is a (possibly local) equilibrium point of the EPEC (3.2),

it follows that for each k = 1, . . . , K, the point (xk∗, y∗) is a (local) minimizer

of the MPEC(x−k∗) (3.1). By applying Theorem 2.7 and Theorem 2.8 to the

MPEC(x−k∗) (3.1) for k = 1, . . . , K, we can show that there exists a vector λk∗ =

(λg, k∗, λh, k∗, λG, k∗, λH, k∗, λGH, k∗) such that (xk∗, y∗, λk∗) satisfies the conditions in

the system (3.3) for each k = 1, . . . , K. Let λ∗ = (λ1∗, . . . , λK∗). Then, the vector

(x∗, y∗, λ∗) is a solution of the system (3.3). Conversely, by Theorem 2.8, it is easy

to check that for each k = 1, . . . , K, the vector (xk∗, y∗) is a strongly stationary

point, and hence, B-stationary point (by Theorem 2.6) for the MPEC(x−k∗) (3.1).

As a result, the vector (x∗, y∗) is a B-stationary point of the EPEC (3.2). �

3.2 Algorithms for Solving EPECs

To date, algorithms specifically designed for solving EPECs have not been devel-

oped in the literature. The approaches used by researchers in engineering fields to

solve EPECs fall into the category of Diagonalization methods [4, 5, 22, 25, 49],

which mainly rely on NLP solvers, or more appropriately, MPEC algorithms to

solve one MPEC at a time and cyclicly repeat the same procedure for every

MPEC until an equilibrium point is found. In the remainder of this section, we

first describe two types of diagonalization method: nonlinear Jacobi and nonlin-

ear Gauss-Seidel, and briefly discuss their convergence. We then present a new

method called the sequential nonlinear complementarity (SNCP) algorithm for

solving EPECs. This new method is based on simultaneously relaxing the com-

plementarity constraints in each MPEC, and solves EPECs by solving a sequence

of nonlinear complementarity problems. We also establish the convergence of the

SNCP algorithm.

3.2.1 Diagonalization methods

Diagonalization methods [8, 45] were originally proposed to solve variational in-

equality problems. In [20], Harker applied a diagonalization (or nonlinear Jacobi)

algorithm, to find a solution to a variational inequality formulation of the Nash

equilibrium problem in an oligopolistic market.
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Because of their conceptual simplicity and ease of implementation, diagonal-

ization methods using NLP solvers have been natural choices for engineers and

applied economists to solve EPEC models [4, 5] arising in deregulated electricity

markets. In [22] and [49], MPEC algorithms (a penalty interior point algorithm in

the former reference and a smoothing algorithm in the latter) are used in diagonal-

ization methods to solve EPEC models. Below, we describe two diagonalization

methods: nonlinear Jacobi and nonlinear Gauss-Seidel. The framework of the

diagonalization methods presented here follows the one given in Hu [25].

The nonlinear Jacobi method for the EPEC (3.2) is described as follows:

Step 0. Initialization.

Choose a starting point (x(0), y(0)) = (x1, (0), . . . , xK, (0), y(0)), the maxi-

mum number of outer iterations J , and an accuracy tolerance ε > 0.

Step 1. Loop over every MPEC.

Suppose the current iteration point of (x, y) is (x( j), y( j)). For each k =

1, . . . , K, the MPEC(x̄−k,(j)) is solved (using NLP solvers or MPEC al-

gorithms) while fixing x̄−k,(j) = (x1, ( j), . . . , xk−1, ( j), xk+1, ( j), . . . , xK, ( j)).

Denote the x-part of the optimal solution of MPEC(x̄−k) by xk, ( j+1).

Step 2. Check convergence.

Let (x( j+1)) = (x1, ( j+1), . . . , xK, ( j+1)). If j < J , then increase j by one

and repeat Step 1. Otherwise, stop and check the accuracy tolerance:

if ‖xk, ( j+1) − xk, ( j)‖ < ε for k = 1, . . . , K, then accept and report the

solution (xJ , yJ) ; otherwise, output “No equilibrium point found”.

Note that the nonlinear Jacobi method does not use the most recently avail-

able information when computing xk, ( j+1). For example, x1, ( j) is used in the

calculation of x2, ( j+1), even though the vector, x1, ( j+1) is known. If we revise the

nonlinear Jacobi method so that we always use the new information, then we have

another diagonalization method, the Gauss–Seidel method. Hence, the framework

of the nonlinear Gauss–Seidel method for the EPEC (3.2) is the same as nonlinear
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Jacobi, except that in Step 1., we have

x̄−k,(j) = (x1, ( j+1), . . . , xk−1, ( j+1), xk+1, ( j), . . . , xK, ( j)).

The multi-firm algorithm proposed in [22] belongs to this category.

To solve each MPEC in Step 1 of diagonalization methods, one can solve

the equivalent NLP (2.8) suggested by Fletcher and Leyffer [13] using off-the-

shelf NLP solvers. For each k = 1, . . . , K, the equivalent NLP formulation of

MPEC(x̄−k,(j)) is

minimize fk(xk, y; x̄−k,(j))

subject to gk(xk, y; x̄−k,(j)) ≤ 0,

hk(xk, y; x̄−k,(j)) = 0,

G(xk, y; x̄−k,(j)) ≥ 0,

H(xk, y; x̄−k,(j)) ≥ 0,

G(xk, y; x̄−k,(j)) ◦ H(xk, y; x̄−k,(j)) ≤ 0.

(3.4)

We denote the above equivalent NLP of the k-th MPEC by NLPk(x̄−k,(j)).

The following theorem states the convergence of diagonalization methods based

on solving equivalent NLPs.

Theorem 3.3. Let {(x(j), y(j))} be a sequence of solutions generated by a diag-

onalization (nonlinear Jacobi or nonlinear Gauss-Seidel) method, in which each

MPEC is reformulated and solved as an equivalent NLP (3.4). Suppose the se-

quence {(x(j), y(j))} converges to (x∗, y∗) as j → ∞. If, for each k = 1, . . . , K,

the MPEC-LICQ holds at (xk∗, y∗) for MPEC(x−k∗), then (x∗, y∗) is B-stationary

for the EPEC (3.2).

Proof. From Theorem 2.6 applied to the MPEC(x−k∗) for each k = 1, . . . , K,

the point (xk∗, y∗) is a B-stationary point, and hence, the point (x∗, y∗) is a B-

stationary point for the EPEC (3.2). �
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3.2.2 Sequential NCP method

We propose a new method for solving EPECs. Instead of solving an EPEC by

cyclicly using an MPEC-based approach, our approach simultaneously relaxes the

complementarity system in each MPEC(x̄−k) to

G(xk, y; x̄−k) ≥ 0, H(xk, y; x̄−k) ≥ 0,

G(xk, y; x̄−k) ◦ H(xk, y; x̄−k) ≤ te,
(3.5)

and finds an equilibrium solution (x∗(t), y∗(t)) = (x1∗(t), . . . , xK∗(t), y∗(t)) of the

following regularized NLPs, denoted as Regk(x̄−k; t) for t > 0:

minimize fk(xk, y; x̄−k)

subject to gk(xk, y; x̄−k) ≤ 0, (λg, k)

hk(xk, y; x̄−k) = 0, (λh, k)

G(xk, y; x̄−k) ≥ 0, (λG, k)

H(xk, y; x̄−k) ≥ 0, (λH, k)

G(xk, y; x̄−k) ◦ H(xk, y; x̄−k) ≤ te, (λGH, k)


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k = 1, . . . , K, (3.6)

where, given x−k∗(t) as the input parameter, (xk∗(t), y∗(t)) is a stationary point

of the k-th regularized NLP, Regk(x−k∗(t); t).

Let Lk(xk, y, λk; t) denote the Lagrangian function for the Regk(x̄−k; t). If

(x∗(t), y∗(t)) is an equilibrium solution of (3.6) and LICQ holds at (x∗(t), y∗(t))

for each Regk(x−k∗(t); t), k = 1, . . . , K, then (x∗(t), y∗(t)) is a solution of the

following mixed nonlinear complementarity problem, obtained by combining the
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first-order KKT system of each Regk(x−k∗(t); t) in (3.6):

∇xkLk(xk, y, λk; t) = 0

∇yLk(xk, y, λk; t) = 0

hk(xk, y; x−k) = 0,

0 ≥ gk(xk, y; x−k) ⊥ λg, k ≥ 0,

0 ≤ G(xk, y; x−k) ⊥ λG, k ≥ 0,

0 ≤ H(xk, y; x−k) ⊥ λH, k ≥ 0,

0 ≤ te − G(xk, y; x−k) ◦ H(xk, y; x−k) ⊥ λGH, k ≥ 0,
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k = 1, . . . , K.

(3.7)

For convenience, we denote the above system by NCP(t).

While Scholtes’s regularized scheme for MPECs can be described as solving

an MPEC by solving a sequence of nonlinear programs (NLPs), our method is

to solve an EPEC by solving a sequence of nonlinear complementarity problems

(NCPs).

The following theorem states the convergence of the sequential NCP algorithm.

Theorem 3.4. Let {tν} be a sequence of positive scalars tending to zero. De-

note (xν , yν) as a solution to NCP(tν) (3.7) and let {(xν , yν)} converge to (x∗, y∗)

as tν → 0. Furthermore, assume, for each k = 1, . . . , K and for every ν, the

point (xk
ν , yν) satisfies the second-order optimality conditions of Regk(x−k

ν ; tν). If,

for each k = 1, . . . , K, the MPEC-LICQ and the ULSC hold at (xk∗, y∗) for

MPEC(x−k∗), then (x∗, y∗) is B-stationary for the EPEC (3.2).

Proof. For each k = 1, . . . , K, the point (xk
ν , yν) satisfies the second-order opti-
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mality condition of Regk(x−k
ν ; tν):

minimize fk(xk, y; x−k
ν )

subject to gk(xk, y; x−k
ν ) ≤ 0, hk(xk, y; x−k

ν ) = 0,

G(xk, y; x−k
ν ) ≥ 0, H(xk, y; x−k

ν ) ≥ 0,

G(xk, y; x−k
ν ) ◦ H(xk, y; x−k

ν ) ≤ tν e,

and as tν → 0+, we have x−k
ν → x−k∗, and (xk

ν , yν) → (xk∗, y∗). Since the MPEC-

LICQ and the ULSC hold at (xk∗, y∗) for MPEC(x̄−k), by Theorem 2.11, the

point (xk∗, y∗) is B-stationary for each k = 1, . . . , K. It follows that (x∗, y∗) is a

B-stationary point for the EPEC (3.2). �

3.3 Implementation and Numerical Comparison

To compare the numerical performance of EPEC algorithms, we develop a Mat-

lab program, EPECgen, to randomly generate EPEC test problems with known

solutions. The number of MPECs within a generated EPECs can be arbitrary

and is determined by the user. Furthermore, each MPEC is generated by the

Qpecgen [27] program and has the following form:

maximize
(xk,y)

1
2
(xk, y)TP k (xk, y) + (ck)Txk + (dk)Ty

subject to Gkxk + Hky + ak ≤ 0,

xk ≥ 0,

0 ≤ y ⊥ Nkxk +
K
∑

i=1,i6=k

N i x̄i + My + q ≥ 0,


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k = 1, . . . , K,

(3.8)

where the data for the i-th MPEC is given by the following generated vectors

and matrices: P k ∈ R (nk+m)×(nk+m), ck ∈ Rnk , dk ∈ Rm, Gk ∈ R lk×nk , Hk ∈

R lk×m, ak ∈ R lk , Nk ∈ Rm×nk , M ∈ Rm×m, and q ∈ Rm. As stated in [27],

the user has the freedom to control different properties of these MPEC and their
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solutions; for example, dimension of the problem, condition number of the matrix

P k, convexity of the objective function (whether P k is positive semidefinite or

not), and so on.

We have implemented the diagonalization methods and the sequential NCP

algorithm on randomly generated EPECs consisting of two MPECs. For diagonal-

ization methods, each MPEC is reformulated as an equivalent nonlinear program

(2.8) and solved with TOMLAB/SNOPT [23, 24]. For the SNCP method, one

can solve the complementarity system NCP(t) (3.7) as a set of constraints in an

optimization problem with a constant objective function such as 0. However, such

a naive implementation will result in numerical instabilities when t is small, be-

cause the set of Lagrange multipliers is unbounded for each MPEC. To stabilize

the SNCP method, we minimize the sum of components in λGH and use TOM-

LAB/SNOPT to solve the sequence of optimization problems

with t = 1, 10−1, . . . , 10−15:

minimize eTλGH

subject to NCP(t) (3.7).
(3.9)

Table 3.1 summarizes the parameters used to generate the EPEC test prob-

lems. For the definition of these input parameters for each MPEC, see [27].

Table 3.1

Input parameters.

(n1, n2) (8, 10) (first
¯
deg1, first

¯
deg2) (1, 1)

m 15 second
¯
deg 3

(l1, l2) (8, 8) (mix
¯
deg1, mix

¯
deg2) (1, 1)

Table 3.3 gives the random seeds used to generate each test problem and the

objective function values of MPECs at generated solutions for each test prob-

lem. Numerical results for the methods SNCP, nonlinear Gauss-Seidel (with

ε = 1.0e−6), and nonlinear Jacobi (with ε = 1.0e−6) on generated test prob-

lems are shown in Tables 5.4–5.6. To investigate the impact of the accuracy

tolerance ε on the performance of diagonalization methods, we ran the nonlin-

ear Gauss-Seidel and nonlinear Jacobi methods on the same test problems with
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lower tolerance ε = 1.0e−4, and give the numerical results in Table 3.7–3.8. The

notation used in these tables is explained in Table 3.2.

Table 3.2

Notation used for numerical results.

P Problem number.

random
¯
seed The random seed used to generate each EPEC problem.

Time Total time (in seconds) needed by the termination of algorithms.

Out Iter # of outer iterations required by diagonalization methods.

Maj Iter # of major iterations.

f1∗ The obj val of MPEC1 at the found solution (x1∗, y∗).

f2∗ The obj val of MPEC2 at the found solution (x2∗, y∗).

f1gen The obj val of MPEC1 at the generated solution (x1
gen, ygen).

f2gen The obj val of MPEC2 at the generated solution (x2
gen, ygen).

Norm The 2-norm of the difference vector between the found solution
(x1∗, x2∗, y∗) and the generated solution (x1

gen, x2
gen, ygen).

flag1 = 0 if the algorithm finds an equilibrium point;
= 1 if the algorithm is terminated by reaching the iteration limit;
= 2 if the SNCP is terminated by the infeasibility message.

flag2 = 0 if cycling behavior is not observed for diagonalization methods;
= 1 if cycling behavior is observed for diagonalization methods.

Table 3.3

Information on test problems.

P random
¯
seed f1gen f2gen

1 2.0e+5 −23.4844 22.8737

2 3.0e+5 −9.7748 −10.7219

3 4.0e+5 −16.7669 −4.6330

4 5.0e+5 −9.6054 −0.8600

5 6.0e+5 −46.9213 −11.1220

6 7.0e+5 −1.8838 −6.1389

7 8.0e+5 −14.9793 −12.1478

8 9.0e+5 −5.7299 −19.3843

9 1.0e+6 7.0672 −19.1931

10 1.1e+6 −3.2355 −17.3311
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Table 3.4

Numerical results for SNCP method (Major Iteration limit = 120).

P Maj Iter T f1∗ f2∗ Norm flag1

1 120 127.9 −23.4844 22.8739 2.70e−4 1

2 75 69.0 −9.7749 −10.7219 7.06e−5 0

3 45 48.4 −16.7669 −4.6330 6.48e−5 0

4 68 73.1 −9.6052 −0.8600 1.57e−3 0

5 80 72.9 −46.9213 −11.1220 4.70e−13 0

6 120 83.9 −1.8839 −6.1393 1.15e−3 1

7 75 71.8 −14.9790 −12.1477 4.03e−4 0

8 120 126.7 −5.7300 −19.3844 1.08e−4 1

9 54 52.6 7.0672 −19.1930 1.68e−4 0

10 72 68.0 −3.2363 −17.3301 2.04e−3 0

Table 3.5

Numerical results for nonlinear Gauss-Seidel method (J = 30, ε = 1.0e−6).

P Out Iter Maj Iter Time f1∗ f2∗ Norm flag1 flag2

1 30 619 96.3 −23.4844 22.8737 1.23e−4 1 0

2 26 821 114.8 −9.7805 −10.7263 6.25e−3 0 0

3 30 903 133.7 −16.7672 −4.6327 6.06e−4 1 0

4 19 1340 232.3 −9.6044 −0.8601 4.67e−3 0 0

5 7 118 17.8 −46.9213 −11.1221 1.02e−4 0 0

6 30 508 73.8 −1.7661 −6.1783 1.18e−1 1 0

7 11 1076 191.0 −14.9807 −12.1489 1.80e−3 0 0

8 30 320 61.8 −5.7228 −19.3929 1.00e−2 1 0

9 9 189 29.4 7.0672 −19.1930 7.24e−5 0 0

10 15 170 30.6 −3.2265 −17.3179 1.50e−2 0 0



3.3 Implementation and Numerical Comparison 31

Table 3.6

Numerical results for nonlinear Jacobi method (J = 30, ε = 1.0e−6).

P Out Iter Maj Iter Time f1∗ f2∗ Norm flag1 flag2

1 30 695 104.8 −23.4844 22.8738 1.25e−4 1 0

2 30 1036 138.2 −9.7756 −10.7262 4.34e−3 1 1

3 30 807 104.6 −16.7668 −4.6327 4.24e−4 1 1

4 30 703 94.6 −9.6031 −0.8601 6.21e−3 1 1

5 30 375 69.2 −46.9213 −11.1221 6.06e−5 1 1

6 30 819 103.6 −1.8837 −6.1672 3.91e−2 1 1

7 30 667 94.0 −14.9790 −12.1494 2.30e−3 1 1

8 30 847 108.2 −5.7314 −19.3929 6.85e−3 1 1

9 30 624 97.6 7.0672 −19.1930 5.56e−5 1 1

10 30 766 98.7 −3.2819 −17.3179 4.76e−2 1 1

Table 3.7

Numerical results for nonlinear Gauss-Seidel method (J = 30, ε = 1.0e−4).

P Out Iter Maj Iter Time f1∗ f2∗ Norm flag1 flag2

1 5 134 17.9 −23.4844 22.8738 1.25e−4 0 0

2 4 152 24.5 −9.7805 −10.7263 6.24e−3 0 0

3 5 149 19.1 −16.7672 −4.6327 6.68e−4 0 0

4 6 149 20.2 −9.6044 −0.8601 4.71e−3 0 0

5 5 100 14.4 −46.9213 −11.1220 1.02e−4 0 0

6 30 508 73.8 −1.7661 −6.1783 1.15e−1 1 0

7 6 130 18.0 −14.9807 −12.1489 1.80e−3 0 0

8 17 299 47.0 −5.7228 −19.3929 1.00e−2 0 0

9 7 187 27.3 7.0672 −19.1930 7.42e−5 0 0

10 7 149 20.8 −3.2265 −17.3179 1.49e−2 0 0
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Table 3.8

Numerical results for nonlinear Jacobi method (J = 30, ε = 1.0e−4).

P Out Iter Maj Iter Time f1∗ f2∗ Norm flag1 flag2

1 10 257 36.8 −23.4844 22.8738 1.26e−4 0 0

2 30 1036 138.2 −9.7756 −10.7262 4.34e−3 1 1

3 30 807 104.6 −16.7668 −4.6327 4.24e−4 1 1

4 30 703 94.6 −9.6054 −0.8600 6.21e−3 1 1

5 8 155 23.6 −46.9213 −11.1220 6.14e−5 0 0

6 30 819 103.6 −1.8837 −6.1672 3.91e−2 1 1

7 30 667 94.0 −14.9790 −12.1494 2.30e−3 1 1

8 30 847 108.2 −5.7314 −19.3929 6.85e−3 1 1

9 30 624 97.6 7.0672 −19.1930 5.56e−5 1 1

10 30 766 98.7 −3.2819 −17.3179 4.76e−2 1 1

3.3.1 Discussion of numerical results

From the numerical results, we have the following observations.

• The SNCP algorithm solves 7 test problems and is terminated for reaching

the major iteration limit for 3 test problems. However, the vectors returned

by SNCP method for those three test problems are close to the generated

solutions with “Norm” of order 1.0e−4. It takes around one second to

perform one major iteration. The number of major iterations for each of the

7 solved problem is consistently between 40 and 80.

• With ε = 1.0e−6, the nonlinear Gauss-Seidel method solves 7 test problems

and is terminated for reaching the outer iteration limit for 4 test problems.

However, with ε = 1.0e−4, the nonlinear Gauss-Seidel method succeeds

in solving 9 test problems within at most 7 outer iterations. In fact, we

observe that the nonlinear Gauss-Seidel method only needs a few (4 or 5)

outer iterations to reach an accuracy of 1.0e−3 or 1.0e−4, and then makes

slow progress to achieve higher accuracy of 1.0e−5 or 1.0e−6. Note that the

cycling behavior is not observed for the nonlinear Gauss-Seidel method on

any test problem.
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• The results in Table 3.6 show that for each test problem, the nonlinear Ja-

cobi method is terminated for reaching the outer iteration limit, although

the solution vector returned is close to the generated solution. Surprisingly,

the cycling behavior is observed for 9 out of the 10 problems, and the di-

agonalization method fails when cycling occurs. Even with lower accuracy

(ε = 1.0e−4), the nonlinear Jacobi method solves only two test problems.

This observation suggests that the nonlinear Jacobi method has difficulty

achieving high accuracy and is less reliable.

• The comparison of “Norm” for the SNCP algorithm and the nonlinear

Gauss-Seidel method seems to suggest that the SNCP algorithm is able

to reach the generated solution (x1
gen, x

2
gen, ygen) more accurately than the

nonlinear Gauss-Seidel method. The fact that all these methods return a so-

lution close to the generated solution (x1
gen, x

2
gen, ygen) seems to indicate that

the generated solution is isolated or locally unique. Further investigation of

the properties of the generated solutions is needed.

• With the accuracy tolerance ε = 1.0e−6, it is difficult to say which method,

SNCP or nonlinear Gauss-Seidel, is more efficient. However, it is clear that

both methods outperform the nonlinear Jacobi method. If a user is willing

to accept lower accuracy, e.g., ε = 1.0e−2 or ε = 1.0e−4, the nonlinear

Gauss-Seidel method can be very efficient.
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Chapter 4

Forward-Spot Market Model

Allaz and Vila [1] presented a forward market model with identical Cournot

duopolists. They showed that even with certainty and perfect foresight, forward

trading can improve market efficiency. Each of the producers will sell forward so

as to make them worse off and make consumers better off than would be the case

if the forward market did not exist. This phenomenon is similar to that of the

prisoners’ dilemma.

In the forward market model mentioned above, the inverse demand function is

affine and the producers have the same linear cost function. Hence, one can solve

for a Nash equilibrium of the forward market in closed form; see [1]. However,

it is not clear that a Nash equilibrium would exist if the producers had non-

identical cost functions. Indeed, one can construct a simple example of Cournot

duopolists with nonidentical linear cost functions for which the Allaz-Vila ap-

proach is not valid. If fact, the two-period forward market model belongs to a

new class of mathematical programs called Equilibrium Problems with Equilib-

rium Constraints (EPECs), where each player solves a nonconvex mathematical

program with equilibrium constraints (MPEC) [33], and a Nash equilibrium for an

EPEC may not exist because of the nonconvexity in each player’s problem. Pang

and Fukushima [47] give a simple numerical example of such a case.

We observe that the mathematical structure of the two-period forward market

model is similar to that of the multiple leader Stackelberg model analyzed by

Sherali [59]. The similarity becomes evident when new variables are introduced

for spot market sales. An immediate result is that we are able to adapt the

analysis in [59] to establish the existence of a forward market equilibrium for M

producers with nonidentical linear cost functions.

The remainder of this chapter is organized as follows. In the next section,
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we give a general formulation for the two-period forward market model with M

producers. In Section 4.2, we reformulate the forward market equilibrium model

by introducing new variables on spot market sales. Assuming that the inverse

demand function is affine and allowing the producers to have nonidentical linear

cost functions, we establish the existence of a forward market equilibrium. In

Section 4.3, we use the sequential nonlinear complementarity (SNCP) algorithm

proposed in Chapter 3 to compute a forward market Nash equilibrium for a three-

producer example.

4.1 The Two-Period Forward Market Model

We use the following notation throughout this chapter:

M : number of producers,

fi : producer i’s forward sales in the first period,

Qf : the total forward sales in the first period,

xi : the production of producer i in the second period,

si : producer i’s spot sales in the second period,

Qs : the total spot sales in the second period,

ci(·) : the cost function of producer i,

ui(·) : the payoff function of producer i from the spot market in the second

period,

πi(·) : the overall profit function of producer i,

pf(·) : the forward price (or inverse demand function) in the first period,

p(·) : the spot price (or inverse demand function) in the second period.

4.1.1 The production game

Given the producers’ forward position vector f = (f1, . . . , fM), the producers are

playing a Cournot game in production quantities in the second period. For each

i = 1, . . . , M , producer i, assuming the production quantities x−i = (xj)
M
j=1, j 6=i of
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the other producers are fixed at x̄−i, chooses the nonnegative production quantity

xi to maximize the payoff function in the second period:

[ui(f1, . . . , fM)](xi, x̄−i) = p

(

xi +

M
∑

j=1, j 6=i

x̄j

)

(xi − fi) − ci(xi). (4.1)

Indeed, if the producer i has already sold fi in the forward market, it can only

sell quantity (xi − fi) in the spot market. The vector of production quantities

x∗ = (x∗
1, . . . , x

∗
M) is said to be a Nash-Cournot equilibrium for the production

game, if for each i = 1, . . . , M , x∗
i solves

maximize
xi≥fi

{

p(xi +
M
∑

j=1, j 6=i

x∗
j )(xi − fi) − ci(xi)

}

. (4.2)

Accordingly, we use x(f) = (x1(f), . . . , xM(f)) to denote a Nash-Cournot produc-

tion equilibrium x∗ corresponding to the forward position vector f .

4.1.2 Forward market equilibrium

In the first period, the producers are playing a Cournot game in forward quantities.

Assuming the forward position of other producers are fixed, producer i chooses

his forward position fi(≥ 0) to maximize the overall profit function:

πi(fi, f̄−i) = pf

(

fi +

M
∑

j=1, j 6=i

f̄j

)

(fi) + [ui(fi, f̄−i)](x(fi, f̄−i))

= p

(

M
∑

j=1

xj(fi, f̄−i)

)

(xi(fi, f̄−i)) − ci(xi(fi, f̄−i)),

(4.3)

since pf

(

fi +
∑M

j=1, j 6=i f̄j

)

= p
(

∑M
j=1 xj(fi, f̄−i)

)

under perfect foresight.

A vector f ∗ = (f ∗
1 , . . . , f ∗

M) is said to be a forward market equilibrium if for

i = 1, . . . , M , f ∗
i solves

maximize
fi≥0

{

p

(

M
∑

j=1

xj(fi, f
∗
−i)

)

(

xi(fi, f
∗
−i)
)

− ci

(

xi(fi, f
∗
−i)
)

}

. (4.4)
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Moreover, x(f ∗) = (xj(f
∗
j , f ∗

−j, ))
M
j=1 is a Nash-Cournot equilibrium for the pro-

duction game corresponding to the forward equilibrium f ∗, as defined in (4.2).

4.2 Existence of a Forward Market Equilibrium

In [1], Allaz and Vila showed that one can solve for the forward market Nash

equilibrium in closed form when demand and cost functions are affine and the

producers have the same cost function, i.e., ci(xi) = cxi, for i = 1, . . . , M . In

particular, in the case of Cournot duopolists, and the demand function p(q) =

a − q, with 0 < c < a, the unique forward market equilibrium outcome is

x1 = x2 =
2(a − c)

5
; f1 = f2 =

a − c

5
; p = c +

a − c

5
.

The purpose of this chapter is to establish an existence theorem for the forward

market equilibrium when the M producers have nonidentical linear cost functions.

Since the producers would only produce what they can sell, the production quan-

tity equals the sum of forward sales and spot market sales. We then introduce

new variable si for producer i’s spot market sales and replace xi by fi + si in the

model of the production game to obtain the following equivalent formulation:

[ui(f1, . . . , fM)](si, s̄−i) = p

(

si +

M
∑

j=1, j 6=i

s̄j +

M
∑

j=1

fj

)

(si) − ci(si + fi). (4.5)

With the new variables si, we can define the spot market equilibrium. In

particular, given a vector of forward positions f ∈ RM , a vector of spot market

sales s∗ ∈ RM is said to be a spot market equilibrium if for each i = 1, . . . , M , s∗i

solves

maximize
si≥0

{

p

(

si +

M
∑

j=1, j 6=i

s∗j +

M
∑

j=1

fj

)

(si) − ci(si + fi)

}

. (4.6)

Similarly, we use s(f) = (s1(f), . . . , sM(f)) to denote the spot market equilibrium

given the forward position f .

Lemma 4.1. Given the forward sales f , if a vector s(f) is a spot market equi-

librium, then x(f) = s(f) + f is a Nash equilibrium for the production game and



4.2 Existence of a Forward Market Equilibrium 39

vice versa.

Proof. This is clear. �

Following Lemma 4.1, an equivalent formulation for the forward market equi-

librium (4.4) is as follows. A vector f ∗ = (f ∗
1 , . . . , f ∗

M) is said to be a forward

market equilibrium if for i = 1, . . . , M , f ∗
i solves

maximize
fi≥0

p

(

fi +

M
∑

j=1, j 6=i

f ∗
j +

M
∑

j=1

sj(fi, f
∗
−i)

)

(fi + si(fi, f
∗
−i))

−ci(fi + si(fi, f
∗
−i)).

(4.7)

We observe that the spot and forward market equilibrium models ((4.6) and

(4.7)) are similar to the multiple-leader Stackelberg model analyzed by Sherali [59].

The intuition is that in the forward market, every producer is a leader, while in the

spot market, every producer becomes a follower, implementing his best response,

given every producer’s forward position in the first period. The two differences

between the forward-spot market model and the multiple-leader Stackelberg model

are:

(i) the cost function of a producer in the forward-spot market model is a func-

tion of both forward and spot sales;

(ii) each producer’s revenue in the first period includes the spot market sales

si(fi, f
∗
−i) from the second period.

It turns out that these two differences are problematic. For (i), in contrast to

the case in [59], the spot market sales s(f) can not be simplified to a function of

total forward sales Qf =
∑M

j=1 fj only; this is due to the fj term in the cost func-

tion ci(·). Hence, the aggregate spot market reaction curve Qs(f) =
∑M

i=1 si(f)

is a function of the forward sales f , and in general, can not be reduced to a func-

tion of the total forward market sales, Qf , a variable in R1. The aggregate spot

market sales, Qs, being a function of total forward market sales only, is crucial in

the analysis. Below, we show that the aggregate spot market sales Qs is indeed

a function of the aggregate forward market sales Qf when the inverse demand

function is affine and producers’ cost functions are linear.
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Assumption 4.2. We assume that the inverse demand function is p(z) := a− bz

for z ≥ 0 with a, b > 0, and for each i = 1, . . . , M , producer i’s cost function is

ci(z) := ciz with ci > 0.

Remark. Since the producers are maximizing their profits, and p(z) < 0 for all

z > a/b, Assumption 4.2 also implies that no producer will produce more than

a/b units.

Proposition 4.3. Let Assumption 4.2 hold. Given producers’ forward sales f ,

the spot market sales si(f), for i = 1, . . . , M and the aggregate spot market sales

Qs(f) can be simplified to a function of Qf , and denoted as si(Qf ) and Qs(Qf )

respectively.

Proof. Substitute p(z) = a − bz, ci(z) = ciz, and Qf =
∑M

j=1 fj into (4.6); then

producer i’s profit maximization problem in the spot market equilibrium model

becomes

maximize
si≥0

{

−cifi −

[

b

(

M
∑

j=1, j 6=i

s∗j + Qf

)

+ ci − a

]

si − bs2
i

}

. (4.8)

Since the objective function in (4.8) is strictly concave, the spot equilibrium s∗

exists and is unique. Furthermore, it must satisfy the (necessary and sufficient)

KKT conditions:

0 ≤ si ⊥ b

(

M
∑

j=1

sj + Qf

)

+ ci − a + bsi ≥ 0, i = 1, . . . , M. (4.9)

Since fi does not appear explicitly in (4.9) and s∗i is unique, we can denote s∗i

as si(Qf) for each i = 1, . . . , M . Consequently, the aggregate spot market sales

Qs =
∑M

i=1 si(Qf ) is a function of the total forward sales Qf and is denoted as

Qs(Qf ). �

Define I(Qf ) := {i : si(Qf) > 0} and let |I(Qf )| be the cardinality of index

set I(Qf ). Let s+
i (Qf) and Q+

s (Qf ) denote the right-hand derivatives of si(Qf )

and Qs(Qf), respectively. The following theorem states the properties of si(Qf )

and Qs(Qf) corresponding to the forward sales Qf .
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Theorem 4.4. Suppose Assumption 4.2 holds and let Qf be the aggregate forward

sales. For each i = 1, . . . , M , the spot market sales si(Qf ) and the aggregate spot

market sales Qs(Qf) satisfy the following properties for each Qf > 0:

(i) for i = 1, . . . , M , each si(Qf ) is a continuous, nonnegative, decreasing,

piecewise linear concave function in {Qf ≥ 0 : si(Qf ) > 0} with

s+
i (Qf) =











−1

|I(Qf )| + 1
< 0 if i ∈ I(Qf ),

0 otherwise;

(4.10)

(ii) the aggregate spot sales Qs(Qf) is a continuous, nonnegative, decreasing,

piecewise linear convex function in Qf for {Qf ≥ 0 : Qs(Qf ) > 0} with

Q+
s (Qf) =











−|I(Qf )|

|I(Qf )| + 1
< 0 if Qs(Qf ) > 0,

0 if Qs(Qf ) = 0;

(4.11)

(iii) the function T (Qf ) = Qf +Qs(Qf) is an increasing, piecewise linear convex

function in Qf ≥ 0.

Proof. Notice that with the inverse demand function p(·) and cost function ci(·)

stated in Assumption 4.2, the objective function in (4.8) for the spot market equi-

librium model is identical to the oligopolistic market equilibrium model studied

in [40], except for an extra constant term cifi in (4.8). However, adding a constant

to the objective function will not change the optimal solution. Indeed, we solve

the same KKT system (4.9) for the equilibrium solutions of these two models.

For (i) and (ii), Sherali et al. [61] proved that for i = 1, . . . , M , si(Qf) and

Qs(Qf ) are continuous and nonnegative. For a fixed Qf , if I(Qf ) 6= ∅, then

Qs(Qf ) > 0 and from the KKT conditions (4.9), we have

b (Qs(Qf) + Qf) + ci − a + bsi(Qf ) = 0, ∀ i ∈ I(Qf ).
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Summing over i ∈ I(Qf ), we obtain

b|I(Qf )| (Qs(Qf) + Qf ) +
∑

i∈I(Qf )

ci − |I(Qf )|a + bQs(Qf ) = 0,

which gives

Qs(Qf ) =
|I(Qf )|a − b|I(Qf )|Qf −

∑

i∈I(Qf ) ci

b(|I(Qf )| + 1)
, (4.12)

and

si(Qf ) =
a − bQf +

∑

j∈I(Qf ) cj

b(|I(Qf )| + 1)
−

ci

b
, ∀ i ∈ I(Qf ). (4.13)

Taking the right-hand derivatives of Qs(Qf) and si(Qf) with respect to Qf , we

obtain

Q+
s (Qf ) =

−|I(Qf )|

|I(Qf )| + 1
< 0, if Qs(Qf) > 0, (4.14)

and

s+
i (Qf ) = −

1

|I(Qf )| + 1
< 0, if i ∈ I(Qf ). (4.15)

Now, suppose that si(Qf) = 0 and s+
i (Qf ) > 0 for some Qf ≥ 0. Then there

must exist a point Q̂f near Qf such that si(Q̂f ) > 0 and s+
i (Q̂f ) > 0; this leads

to a contradiction. Hence, if si(Qf) = 0, then s+
i (Qf) = 0, and si(Q̄f ) = 0 for all

Q̄f ≥ Qf . In other words, if it is not profitable for the producer i to sell in the

spot market for a given aggregate forward market sales Qf , then he will not be

active in the spot market for any aggregate forward sales Q̄f greater than Qf .

The same implication also holds for the aggregate spot market sales Qs(Qf ),

i.e., if Qs(Qf) = 0, then Q+
s (Qf ) = 0 and Qs(Q̄f ) = 0 for all Q̄f ≥ Qf .

Observe that Q1
f > Q2

f implies I(Q2
f ) ⊇ I(Q1

f ). Furthermore, for i = 1, . . . , M ,

we have
s+

i (Q2
f ) > s+

i (Q1
f), if I(Q2

f ) ⊃ I(Q1
f );

s+
i (Q2

f ) = s+
i (Q1

f), if I(Q2
f ) = I(Q1

f ).

This proves that for each i = 1, . . . , M , si(Qf ) is nonincreasing, piecewise linear

and concave in Qf ≥ 0. Similarly, we can establish that Q+
s (Qf) = 0 if Qs(Qf ) =

0 and Qs(Qf) is nonincreasing, piecewise linear and convex in Qf ≥ 0. This

completes the proof for (ii).
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For (iii), since T+(Qf ) = 1 + Q+
s (Qf) = 1

|I(Qf )|+1
> 0, the function T (Qf) is

increasing in Qf for Qf ≥ 0. �

Lemma 4.5. Let Assumption 4.2 hold. For all i = 1, . . . , M and any fixed vector

f̄−i = (f̄j)j 6=i, the objective function in (4.7) is strictly concave in fi. Furthermore,

there exists a unique optimal solution f ∗
i (f̄−i) for the problem (4.7), with 0 ≤

f ∗
i (f̄−i) ≤ a/b.

Proof. The proof closely follows the analysis of Lemma 1 in [59]. To ease the

notation, we define ȳi =
∑

j(f̄−i)j and

gi(fi, ȳi) = (a − fi − ȳi − Qs(fi + ȳi)) (fi + si(fi + ȳi))

− (cifi + cisi(fi + ȳi)) .
(4.16)

Then for a fixed vector ȳi, producer i’s profit maximization problem (4.7) can be

written as

maximize
fi≥0

{g(fi, ȳi)} . (4.17)

Let g+
i (fi, ȳ) denote the right-hand derivative of gi(fi, ȳ) with respect to fi. To

show that gi(fi, ȳ) is strictly concave in fi, it suffices to show that for any fi ≥ 0,

there exists a δ̄ > 0 such that g+
i (fi + δ, ȳ) < g+

i (fi, ȳ) for all 0 ≤ δ < δ̄.

Without loss of generality, we assume I(fi + ȳi) = {i : si(fi + ȳi) > 0} 6= ∅ at

a given point (fi, ȳi); the assertion of the lemma on strict concavity of gi(fi, ȳi)

(4.16) in fi is obvious when I(fi + ȳi) = ∅. We then choose

δ̄ := argmin{δ : I(fi + δ + ȳi) ⊂ I(fi + ȳi)}.

It is easy to verify that for all 0 ≤ δ < δ̄,

s+
i (fi + ȳi) = s+

i (fi + δ + ȳi), for i = 1, . . . , M,

and Q+
s (fi + ȳi) = Q+

s (fi + δ + ȳi).
(4.18)

Using T (Qf) = Qf +Qs(Qf ) and p(z) = a−bz to further simplify the notation,



44 Chapter 4 Forward-Spot Market Model

we obtain

g+
i (fi + δ, ȳ) − g+

i (fi, ȳ) = {ci(s
+
i (fi + ȳi) − s+

i (fi + δ + ȳi))}

+ {p(T (fi + δ + ȳi))(1 + s+
i (fi + δ + ȳi)) − p(T (fi + ȳi))(1 + s+

i (fi + ȳi))}

+ {p′(T (fi + δ + ȳi))T
+(fi + δ + ȳi) (fi + δ + si(fi + δ + ȳi))

− p′(T (fi + ȳi))T
+(fi + ȳi) (fi + si(fi + ȳi))}.

(4.19)

Consider each term {·} in (4.19) separately. Since s+
i (fi + ȳi) = s+

i (fi + δ + ȳi),

the first term {·} in (4.19) equals 0. Since p(z) is strictly decreasing and T (Qf)

is strictly increasing, the second term {·} in (4.19) is negative. Finally, since

p′(z) = −b < 0, T+(fi + ȳi) = T+(fi + δȳi) > 0, and

δ + si(fi + δ + ȳi) − si(fi + δ + ȳi) = δ(1 −
1

|I(fi + ȳi)|
) > 0,

the third term {·} in (4.19) is negative. This completes the proof that the objective

function in (4.7) is strictly concave in fi. Moreover, since no firm will produce

beyond a/b units (see the remark on Assumption 4.2), the optimal solution f ∗
i (f̄−i)

is unique with 0 ≤ f ∗
i (f̄−i) ≤ a/b. �

We are now ready to state the existence of the forward market equilibrium.

Theorem 4.6. If Assumption 4.2 holds, then there exists a forward market equi-

librium.

Proof. For a given vector f = (f1, . . . , fM), we define a point-to-point map

F (f) = (f ∗
1 (f−1), . . . , f

∗
M(f−M)).

In light of Lemma 4.5, f ∗
i (f−i) is the unique optimal solution of (4.7) for the

corresponding vector f−i for all i = 1, . . . , M . If we can show that the map F is

continuous, then by Brouwer’s fixed point theorem, it will have a fixed point on

the compact convex set C = {f : 0 ≤ fi ≤ a
b
, ∀i = 1, . . . , M}. Furthermore,

this fixed point is a forward market equilibrium.

To show F is continuous, it suffices to show that f ∗
i (f−i) is continuous for

i = 1, . . . , M . Consider a sequence {fk
−i} converging to f̄−i, and let fk

i denote
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f ∗
i (fk

−i) of (4.7) for the corresponding fixed vector fk
−i. Since the sequence fk

i is

contained in the interval [0, a
b
], there exists a convergent subsequence. Without

loss of generality, we assume the sequence {fk
i } converges to f̄i. It remains to

show that f ∗
i (f̄−i) = f̄i.

Choose any f̂i ≥ 0. Since fk
i is the optimal solution of (4.17), for a fixed vector

fk
−i, we have

gi(f
k
i ,
∑

j

(fk
−i)j) ≥ gi(f̂

k
i ,
∑

j

(fk
−i)j), ∀k,

where gi(·, ·) is defined in (4.16). As k → ∞, by the continuity of gi(·, ·), we obtain

gi(f̄i,
∑

j

(f̄−i)j) ≥ gi(f̂i,
∑

j

(f̄−i)j).

Since f̂i is chosen arbitrarily, the above inequality holds for any f̂i ≥ 0. This

implies that f̄i is an optimal solution of (4.7) for the corresponding f̄−i. It follows

that f̄i = f ∗
i (f̄−i), since from Lemma 4.5, the optimal solution is unique. This

completes the proof. �

4.3 An EPEC Approach for Computing a For-

ward Market Equilibrium

The computation of a forward market equilibrium involves solving a family of con-

cave maximization problems, as defined in (4.7). However, the objective functions

are nonsmooth in these problems because si(Qf ) is piecewise linear concave in Qf

on {Qf : si(Qf ) > 0}; see Theorem 4.4. One might encounter difficulties in solving

these nonsmooth problems with nonlinear programming solvers. An alternative to

avoid the nonsmooth objective functions is to formulate the forward market equi-

librium problem as an equilibrium problem with equilibrium constraints (EPEC).

Since we do not know the explicit representation of si as a function of Qf , we

return to the original formulation of the forward market equilibrium model (4.4)

and embed the necessary and sufficient KKT conditions for spot market equilib-

rium s∗ as a set of constraints in producer i’s profit maximization problem in the
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forward market:

maximize
(fi,s,θi)

(θi − ci)(fi + si)

subject to θi = a − b

(

fi + eTs +
∑

j 6=i

f̄j

)

,

0 ≤ s ⊥ c − θi e + bs ≥ 0,

fi ≥ 0,

(4.20)

where c = (c1, . . . , cM), f = (f1, . . . , fM), and e is a vector of all ones of the proper

dimension.

Observe that producer i’s profit maximization problem (4.20) is an MPEC

because it includes complementarity constraints

0 ≤ s ⊥ c − θi e + bs ≥ 0. (4.21)

Furthermore, each MPEC is parameterized by other producers’ forward sales f̄−i.

Following the notation in Chapter 3, we denote producer i’s maximization problem

by MPEC(f̄−i).

The problem of finding a forward market equilibrium solution is formulated as

an EPEC:
Find (f ∗, s∗, θ∗) such that for all i = 1, . . . , M,

(f ∗
i , s∗, θ∗i ) solves MPEC(f ∗

−i) (4.20).
(4.22)

The following theorem expresses the strong stationarity conditions for a so-

lution to the forward market equilibrium model (4.22) in which the i-th MPEC

takes the form of (4.20).

Theorem 4.7. Suppose (f ∗, s∗, θ∗) is a solution for the forward market equilib-

rium model (4.22). If for each i = 1, . . . , M , the MPEC-LICQ holds at a feasi-

ble point (f ∗
i , s∗) for the i-th MPEC (4.20), then (f ∗, s∗) is an EPEC strongly

stationary point. In particular, there exist vectors λ∗ = (λ1∗, . . . , λM∗) with
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λi∗ = (λf,i∗, λs,i∗, λc,i∗, λsc,i∗) such that (f ∗, s∗, λ∗) solves the system

−a + beT(f + s) + bfi + ci − λf,i − beTλc,i + bsTλsc,i = 0,

bfie − 2b[ei ◦ s] − λs, i − bλc, i + b [s ◦ λc, i]

+
[(

beT(f + s)e + c − ae + bs
)

◦ λsc, i
]

+ b(eeT+ I)[s ◦ λsc i] = 0,

0 ≤ fi ⊥ λf, i ≥ 0,

0 ≤ s ⊥ λs, i ≥ 0,

0 ≤ c −
(

a − b(eTf + eTs)
)

e + bs ⊥ λc, i ≥ 0,

0 ≤ −s ◦ c −
(

a − b(eTf + eTs)
)

e + bs, λsc, i ≥ 0,
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i = 1, . . . ,M.

(4.23)

Conversely, if (f ∗, x∗, λ∗) is a solution to the system (4.23), then (f ∗, x∗) is

an EPEC B(ouligand)-stationary point of the forward market equilibrium model

(4.22).

Proof. This is Theorem 3.2. �

In what follows, we apply the SNCP algorithm proposed in Chapter 3 to solve

the EPEC formulation for the forward market equilibrium model (4.22) for each

of the four scenarios. The SNCP algorithm finds a solution of the system (4.23),

if one exists.

4.3.1 An example with three producers

Consider the case with three producers in the market. The cost function of pro-

ducer i is

ci(z) = ciz, with (c1, c2, c3) = (2, 3, 4).

The inverse demand function is p(z) = 10 − z. We analyze the following four

scenarios:

(1) no producer contracts forward sales;
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(2) only one producer is allowed to contract forward sales;

(3) only two producers are allowed to contract forward sales;

(4) all three producers can participate in the forward market.

The computational results for each scenario are summarized in Table 4.2. The

notation used in that table is explained in Table 4.1.

Table 4.1

Notation used for computational results.

Cases List of producers allowed to sell in the forward market.

f = (f1, f2, f3) The vector of producers’ forward sales.

x = (x1, x2, x3) The vector of producers’ production quantities.

π = (π1, π2, π3) The vector of producers’ overall profits.

p The spot (and forward) price.

Table 4.2

Computational results on four scenarios.

Cases f x π p

No forward sales (0, 0, 0) (2.75, 1.75, 0.75) (7.563, 3.063, 0.563) 4.75

Only producer 1 (3, 0, 0) (5, 1, 0) (10, 1, 0) 4
Only producer 2 (0, 3, 0) (2, 4, 0) (4, 4, 0) 4
Only producer 3 (0, 0, 1) (2.5, 1.5, 1.5) (6.25, 2.25, 0.75) 4.5

Only producer 1 & 2 (2, 1, 0) (4, 2, 0) (8, 2, 0) 4
Only producer 1 & 3 (7/3, 0, 1/3) (40/9, 10/9, 1/3) (9.383, 1.235, 0.037) 4.111
Only producer 2 & 3 (0, 2.25, 0.25) (2.125, 3.375, 0.375) (4.516, 3.797, 0.047) 4.125

All producers (2, 1, 0) (4, 2, 0) (8, 2, 0) 4

We summarize some observations based on the computational results for the

four scenarios. First, we notice that allowing more producers to participate in

the forward market will not necessarily decrease the market clearing price. For

example, the price is 4 when only producer 2 is allowed to produce in the forward

market and it increases to 4.125 when producer 3 joins producer 2 to produce

in the forward market. In contrast to the outcome of the Cournot game, each

producer can increase production by being the only player in the forward market.

If the producers have the chance to sell forward, they can do so profitably. For

example, if only producer 1 is allowed to sell forward, he can increase his profit
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from 7.5625 (the profit in the Cournot game) to 10; if only producer 2 is allowed

to contract forward sales, producer 1 can increase his profit from 4 to 8 if he starts

selling in the forward market, and similarly for producer 3. This is similar to the

conclusion on the emergence of a forward market in [1] for the case of identical

producers. However, if all producers participate in the forward market, producer

1 is better off and producers 2 and 3 are worse off than would be the case if

the forward market did not exist; this phenomenon is in contrast to that of the

prisoners’ dilemma observed for the case of identical producers in [1].

Finally, the results suggest that the market is the most efficient (in terms of the

clearing price) when producers 2 and 3 both participate in the forward market,

in which case, producer 3 will not produce in the forward market even if he is

allowed to do so.

4.4 Conclusions

We have established the existence of a forward market equilibrium for the case of

M producers with nonidentical linear cost functions. We also proposed an EPEC

formulation for the forward market equilibrium model and applied a sequential

nonlinear complementarity algorithm to compute a forward market equilibrium.

The computational results suggest that if a producer has the chance to sell forward,

he can do so profitably. However, if all producers start selling forward contracts,

they are worse off and the consumers are better off than would be the case if

the forward market did not exist. This supplements Allaz and Vila’s results on

producers with identical linear cost functions.
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Chapter 5

Computation of

Moral-Hazard Problems

In this chapter, we study computational aspects of moral-hazard problems. In par-

ticular, we consider deterministic contracts as well as contracts with action and/or

compensation lotteries, and formulate each case as a mathematical program with

equilibrium constraints. We investigate and compare solution properties of the

MPEC approach to that of the linear programming (LP) approach with lotteries.

We propose a hybrid procedure that combines the best features of both. The

hybrid procedure obtains a solution that is, if not global, at least as good as an

LP solution. It also preserves the fast local convergence property by applying an

SQP algorithm to MPECs. The numerical results on an example show that the

hybrid procedure outperforms the LP approach in both computational time and

solution quality in terms of the optimal objective value.

5.1 Introduction

We study mathematical programming approaches to solve moral-hazard prob-

lems. More specifically, we formulate moral-hazard problems with finitely many

action choices, including the basic deterministic models and models with lotter-

ies, as mathematical programs with equilibrium constraints. One advantage of

using an MPEC formulation is that the size of resulting program is often orders

of magnitude smaller than the linear programs derived from the LP lotteries ap-

proach [50, 51]. This feature makes the MPEC approach an appealing alternative

when solving a large-scale linear program is computationally infeasible because of

limitations on computer memory or computing time.

51
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The moral-hazard model studies the relationship between a principal (leader)

and an agent (follower) in situations in which the principal can neither observe

nor verify an agent’s action. The model is formulated as a bilevel program, in

which the principal’s upper-level decision takes the agent’s best response to the

principal’s decision into account. Bilevel programs are generally difficult mathe-

matical problems, and much research in the economics literature has been devoted

to analyzing and characterizing solutions of the moral-hazard model (see Gross-

man and Hart [18] and the references therein). When the agent’s set of actions

is a continuum, an intuitive approach to simplifying the model is to assume the

agent’s optimal action lies in the interior of the action set. One then can treat the

agent’s problem as an unconstrained maximization problem and replace it by the

first-order optimality conditions. This is called the first-order approach in the eco-

nomics literature. However, Mirrlees [35, 36] showed that the first-order approach

may be invalid because the lower-level agent’s problem is not necessarily a concave

maximization program, and that the optimal solution may fail to be unique and

interior. Consequently, a sequence of papers [54, 19, 26] has developed conditions

under which the first-order approach is valid. Unfortunately, these conditions are

often more restrictive than is desirable.

In general, if the lower-level problem in a bilevel program is a convex minimiza-

tion (or concave maximization) problem, one can replace the lower-level problem

by the first-order optimality conditions, which are both necessary and sufficient,

and reformulate the original bilevel problem as an MPEC. This idea is similar

to the first-order approach to the moral-hazard problem with one notable differ-

ence: MPEC formulations include complementarity constraints. The first-order

approach assumes that the solution to the agent’s problem lies in the interior of

the action set, and hence, one can treat the agent’s problem as an unconstrained

maximization problem. This assumption may also avoid issues associated with

the failure of the constraint qualification at a solution. General bilevel programs

do not make an interior solution assumption. As a result, the complementarity

conditions associated with the Karush-Kuhn-Tucker multipliers for inequality con-

straints would appear in the first-order optimality conditions for the lower-level

program. MPECs also arise in many applications in engineering (e.g., transporta-

tion, contact problems, mechanical structure design) and economics (Stackelberg
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games, optimal taxation problems). One well known theoretical difficulty with

MPECs is that the standard constraint qualifications, such as the linear indepen-

dence constraint qualification and the Mangasarian-Fromovitz constraint qualifi-

cation, fail at every feasible point. A considerable amount of literature is devoted

to refining constraint qualifications and stationarity conditions for MPECs; see

Scheel and Scholtes [58] and the references therein. We also refer to the two-

volume monograph by Facchinei and Pang [11] for theory and applications of

equilibrium problems and to the monographs by Luo et al. [33] and Outrata et

al. [43] for more details on MPEC theory and applications.

The failure of the constraint qualification conditions means that the set of

Lagrange multipliers is unbounded and that conventional numerical optimiza-

tion software may fail to converge to a solution. Economists have avoided these

numerical problems by reformulating the moral-hazard problem as a linear pro-

gram involving lotteries over a finite set of outcomes. See Townsend [64, 65] and

Prescott [50, 51]. While this approach avoids the constraint qualification prob-

lems, it does so by restricting aspects of the contract, such as consumption, to a

finite set of possible choices even though a continuous choice formulation would

be economically more natural.

The purpose of this chapter is twofold: (1) to introduce to the economics

community the MPEC approach, or more generally, advanced equilibrium pro-

gramming approaches, to the moral-hazard problem; (2) to present an interesting

and important class of incentive problems in economics to the mathematical pro-

gramming community. Many incentive problems, such as contract design, optimal

taxation and regulation, and multiproduct pricing, can be naturally formulated as

an MPEC or an equilibrium problem with equilibrium constraints (EPEC). This

greatly extends the applications of equilibrium programming to one of the most

active research topics in economics in past three decades. The need for a global

solution for these economical problems provides a motivation for the optimization

community to develop efficient global optimization algorithms for MPECs and

EPECs.

The remainder of this chapter is organized as follows. In the next section,

we describe the basic moral-hazard model and formulate it as a mixed-integer

nonlinear program and as an MPEC. In Section 5.3, we consider moral-hazard
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problems with action lotteries, with compensation lotteries, and with a combi-

nation of both. We derive MPEC formulations for each of these cases. We also

compare the properties of the MPEC approach and the LP lottery approach. In

Section 5.4, we develop a hybrid approach that preserves the desired global so-

lution property from the LP lottery approach and the fast local convergence of

the MPEC approach. The numerical efficiency of the hybrid approach in both

computational speed and robustness of the solution is illustrated in an example

in Section 5.5.

5.2 The Basic Moral-Hazard Model

5.2.1 The deterministic contract

We consider a moral-hazard model in which the agent chooses an action from

a finite set A = {a1, . . . , aM}. The outcome can be one of N alternatives. Let

Q = {q1, . . . , qN} denote the outcome space, where the outcomes are dollar returns

to the principal ordered from smallest to largest.

The principal can only observe the outcome, not the agent’s action. However,

the stochastic relationship between actions and outcomes, which is often called a

production technology, is common knowledge to both the principal and the agent.

Usually, the production technology is exogenously described by the probability

distribution function, p(q | a), which presents the probability of outcome q ∈ Q

occurring given that action a is taken. We assume p(q | a) > 0 for all q ∈ Q and

a ∈ A; this is called the full-support assumption.

Since the agent’s action is not observable to the principal, the payment to the

agent is only based on the outcome observed by the principal. Let C ⊂ R be the

set of all possible compensations.

Definition 5.1. A compensation schedule c = (c(q1), . . . , c(qN)) ∈ RN is an agree-

ment between the principal and the agent such that c(q) ∈ C is the payoff to the

agent from the principal if outcome q ∈ Q is observed.

The agent’s utility u(x, a) is a function of the payment x ∈ R received from

the principal and of his action a ∈ A. The principal’s utility w(q−x) is a function
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over net income q − x for q ∈ Q. We let W (c, a) and U(c, a) denote the expected

utility to the principal and agent, respectively, of a compensation schedule c ∈ RN

when the agent chooses action a ∈ A, i.e.,

W (c, a) =
∑

q∈Q

p(q | a) w (q − c(q)) ,

U(c, a) =
∑

q∈Q

p(q | a) u (c(q), a) .
(5.1)

Definition 5.2. A deterministic contract (proposed by the principal) consists of

a recommended action a ∈ A to the agent and a compensation schedule c ∈ RN .

The contract has to satisfy two conditions to be accepted by the agent. The

first condition is the participation constraint. It states that the contract must give

the agent an expected utility no less than a required utility level U∗:

U(c, a) ≥ U∗. (5.2)

The value U∗ represents the highest utility the agent can receive from other ac-

tivities if he does not sign the contract.

Second, the contract must be incentive compatible to the agent; it has to

provide incentives for the agent not to deviate from the recommended action. In

particular, given the compensation schedule c, the recommended action a must be

optimal from the agent’s perspective by maximizing the agent’s expected utility

function. The incentive compatibility constraint is given as follows:

a ∈ argmax{U(c, a) : a ∈ A}. (5.3)

For a given U∗, a feasible contract satisfies the participation constraint (5.2)

and the incentive compatibility constraint (5.3). The objective of the principal is

to find an optimal deterministic contract, a feasible contract that maximizes his

expected utility. A mathematical program for finding an optimal deterministic
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contract (c∗, a∗) is

maximize
(c,a)

W (c, a)

subject to U(c, a) ≥ U∗,

a ∈ argmax{U(c, a) : a ∈ A}.

(5.4)

Since there are only finitely many actions in A, the incentive compatibility

constraint (5.3) can be presented as the following set of inequalities:

U(c, a) ≥ U(c, ai), for i = 1, . . . , M. (5.5)

These constraints ensure that the agent’s expected utility obtained from choosing

the recommendation action is no worse than that from choosing other actions.

Replacing (5.3) by the set of inequalities (5.5), we have an equivalent formulation

of the optimal contract problem:

maximize
(c,a)

W (c, a)

subject to U(c, a) ≥ U∗,

U(c, a) ≥ U(c, ai), for i = 1, . . . , M,

a ∈ A = {a1, . . . , aM}.

(5.6)

5.2.2 A mixed-integer NLP formulation

The optimal contract problem (5.6) can be formulated as a mixed-integer nonlinear

program. Associated with each action ai ∈ A, we introduce a binary variable

yi ∈ {0, 1}. Let y = (y1, . . . , yM) ∈ RM and let eM denote the vector of all ones

in RM . The mixed-integer nonlinear programming formulation for the optimal
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contract problem (5.6) is

maximize
(c,y)

W (c,
M
∑

i=1

aiyi)

subject to U(c,
M
∑

i=1

aiyi) ≥ U∗,

U(c,

M
∑

i=1

aiyi) ≥ U(c, aj), ∀ j = 1, . . . , M,

eT
My = 1,

yi ∈ {0, 1} ∀ i = 1, . . . , M.

(5.7)

The above problem has N nonlinear variables, M binary variables, one linear

constraint and (M + 1) nonlinear constraints. To solve a mixed-integer nonlinear

program, one can use MINLP [12], BARON [55] or other solvers developed for

this class of programs. For (5.7), since the agent will choose one and only one

action, the number of possible combinations on the binary vector y is only M .

One then can solve (5.7) by solving M nonlinear programs with yi = 1 and the

other yj = 0 in the i-th nonlinear program, as Grossman and Hart suggested

in [18] for the case where the principal is risk averse. They further point out

that each nonlinear program is a convex program if the agent’s utility function

u(x, a) can be written as G(a) + K(a)V (x), where (1) V is a real-valued, strictly

increasing, concave function defined on some open interval I = (I, Ī) ⊂ R; (2)

limx→I V (x) = −∞; (3) G, K are real-valued functions defined on A and K is

strictly positive; (4) u(x, a) ≥ u(x, â) ⇒ u(x̂, a) ≥ u(x̂, â), for all a, â ∈ A, and

x, x̂ ∈ I. The above assumption implies that the agent’s preferences over income

lotteries are independent of his action.

5.2.3 An MPEC formulation

In general, a mixed-integer nonlinear program is a difficult optimization problem.

Below, by considering a mixed-strategy reformulation of the incentive compati-

bility constraints for the agent, we can reformulate the optimal contract problem

(5.6) as a mathematical program with equilibrium constraints (MPEC); see [33].
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For i = 1, . . . , M , let δi denote the probability that the agent will choose action

ai. Then, given the compensation schedule c, the agent chooses a mixed strategy

profile δ∗ = (δ∗1, . . . , δ
∗
M) ∈ RM such that

δ∗ ∈ argmax

{

M
∑

k=1

δkU(c, ak) : eT
M δ = 1, δ ≥ 0

}

. (5.8)

Observe that the agent’s mixed-strategy problem (5.8) is a linear program, and

hence, its optimality conditions are necessary and sufficient.

The following lemma states the relationship between the optimal pure strategy

ai and the optimal mixed strategy δ∗. To ease the notation, we define

U(c) = (U(c, a1), . . . , U(c, aM)) ∈ RM ,

W (c) = (W (c, a1), . . . , W (c, aM)) ∈ RM .
(5.9)

Lemma 5.3. Given a compensation schedule c̄ ∈ RN , the agent’s action ai ∈ A

is optimal for problem (5.3) iff there exists an optimal mixed strategy profile δ∗

for problem (5.8) such that

δ∗i > 0,

M
∑

k=1

δ∗k U(c̄, ak) = U(c̄, ai),

eT
Mδ∗ = 1, δ∗ ≥ 0.

Proof. If ai is an optimal action of (5.3), then let δ∗ = ei, the i-th column of the

identity matrix of order M . It is easy to verify that all the conditions for δ∗ are

satisfied. Conversely, if ai is not an optimal solution of (5.3), then there exists an

action aj such that U(c̄, aj) > U(c̄, ai). Let δ̃ = ej . Then δ̃TU(c) = U(c̄, aj) >

U(c̄, ai) = δ∗TU(c). We have a contradiction. �

An observation following from Lemma 5.3 is stated below.

Lemma 5.4. Given a compensation schedule c ∈ RN , a mixed strategy profile δ
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is optimal for the linear program (5.8) iff

0 ≤ δ ⊥
(

δTU(c)
)

eM − U(c) ≥ 0, eT
Mδ = 1. (5.10)

Proof. This follows from the optimality conditions and the strong duality theorem

for the LP (5.8). �

Substituting the incentive compatibility constraint (5.5) by the system (5.10)

and replacing W (c, a) and U(c, a) by δTW (c) and δTU(c), respectively, we derive

an MPEC formulation of the principal’s problem (5.6):

maximize
(c,δ)

δTW (c)

subject to δTU(c) ≥ U∗,

eT
Mδ = 1,

0 ≤ δ ⊥
(

δTU(c)
)

eM − U(c) ≥ 0.

(5.11)

To illustrate the failure of constraint qualification at any feasible point of an

MPEC, we consider the feasible region F1 = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, xy = 0}.

At the point (x̄, ȳ) = (0, 2), the first constraint x ≥ 0 and the third constraint

xy = 0 are binding. The gradients of the binding constraints at (x̄, ȳ) are (1, 0)

and (2, 0), which are dependent. It is easy to verify that the gradient vectors of

the binding constraints are indeed dependent at other feasible points.
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Figure 5.1 The feasible region F1 = {(x, y) |x ≥ 0, y ≥ 0, xy = 0}.
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The following theorem states the relationship between the optimal solutions

for the principal-agent problems (5.6) and the corresponding MPEC formulation

(5.11).

Theorem 5.5. If (c∗, δ∗) is an optimal solution for the MPEC (5.11), then

(c∗, a∗
i ), where i ∈ {j : δ∗j > 0}, is an optimal solution for the problem (5.6).

Conversely, if (c∗, a∗
i ) is an optimal solution for the problem (5.6), then (c∗, ei) is

an optimal solution for the MPEC (5.11).

Proof. The statement follows directly from Lemma 5.4. �

The MPEC (5.11) has (N + M) variables, 1 linear constraint, 1 nonlinear

constraint, and M complementarity constraints. Hence, the size of the problem

grows linearly in the number of the outcomes and actions. As we will see in

Section 5.4, this feature is the main advantage of using the MPEC approach

rather than the LP lotteries approach.

5.3 Moral-Hazard Problems with Lotteries

In this section, we study moral-hazard problems with lotteries. In particular, we

consider action lotteries, compensation lotteries, and a combination of both. For

each case, we first give definitions for the associated lotteries and then derive the

nonlinear programming or MPEC formulation.

5.3.1 The contract with action lotteries

Definition 5.6. A contract with action lotteries is a probability distribution over

actions, π(a), and a compensation schedule c(a) = (c(q1, a), . . . , c(qN , a)) ∈ RN for

all a ∈ A. The compensation schedule c(a) is an agreement between the principal

and the agent such that c(q, a) ∈ C is the payoff to the agent from the principal if

outcome q ∈ Q is observed and the action a ∈ A is recommended by the principal.

In the definition of a contract with action lotteries, the compensation schedule

c(a) is contingent on both the outcome and the agent’s action. Given this defi-

nition, one might raise the following question: if the principal can only observe
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the outcome, not the agent’s action, is it reasonable to have the compensation

schedule c(a) contingent on the action chosen by the agent? After all, the prin-

cipal does not know which action is implemented by the agent. One economic

justification is as follows. Suppose that the principal and the agent sign a total of

M contracts, each with different recommended action a ∈ A and compensation

schedule c(a) as a function of the recommended action, a. Then, the principal

and the agent would go to an authority or a third party to conduct a lottery with

probability distribution function π(a) on which contract would be implemented

on that day. If the i-th contract is drawn from the lottery, then the third party

would inform both the principal and the agent that the recommended action for

that day is ai with the compensation schedule c(ai).

Arnott and Stiglitz [3] use ex ante randomization for action lotteries. This

terminology refers to the situation that a random contract occurs before the rec-

ommended action is chosen. They demonstrate that the action lotteries will result

in a welfare improvement if the principal’s expected utility is nonconcave in the

agent’s expected utility. However, it is not clear what sufficient conditions would

be needed for the statement in the assumption to be true.

5.3.2 An NLP formulation with star-shaped feasible re-

gion

When the principal proposes a contract with action lotteries, the contract has to

satisfy the participation constraint and the incentive compatibility constraints.

In particular, for a given contract (π(a), c(a))a∈A, the participation constraint

requires the agent’s expected utility to be at least U∗:

∑

a∈A

π(a)U(c(a), a) ≥ U∗. (5.12)

For any recommended action a with π(a) > 0, it has to be incentive compatible

with respect to the corresponding compensation schedule c(a) ∈ RN . Hence, the

incentive compatibility constraints are

∀ a ∈ {â : π(â) > 0} : a = argmax{U(c(a), ã) : ã ∈ A}, (5.13)
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or equivalently,

if π(a) > 0, then U(c(a), a) ≥ U(c(a), ai), for i = 1, . . . , M. (5.14)

However, we do not know in advance whether π(a) will be strictly positive at

an optimal solution. One way to overcome this difficulty is to reformulate the

solution-dependent constraints (5.14) as:

∀ a ∈ A : π(a)U(c(a), a) ≥ π(a)U(c(a), ai), for i = 1, . . . , M, (5.15)

or in a compact presentation,

π(a) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ (a, ã( 6= a)) ∈ A×A. (5.16)

Finally, since π(·) is a probability distribution function, we need

∑

a∈A

π(a) = 1,

π(a) ≥ 0, ∀ a ∈ A.

(5.17)

The principal chooses a contract with action lotteries that satisfies participa-

tion constraint (5.12), incentive compatibility constraints (5.16), and the prob-

ability measure constraint (5.17) to maximize his expected utility. An optimal

contract with action lotteries (π∗(a), c∗(a))a∈A is then a solution to the following

nonlinear program:

maximize
∑

a∈A

π(a)W (c(a), a)

subject to
∑

a∈A

π(a)U(c(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

∀ (a, ã( 6= a)) ∈ A×A : π(a) (U(c(a), a) − U(c(a), ã)) ≥ 0,

π(a) ≥ 0, ∀ a ∈ A.

(5.18)
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The nonlinear program (5.18) has (N ∗M + M) variables and (M ∗ (M − 1) + 2)

constraints. In addition, its feasible region is highly nonconvex because of the

last two sets of constraints in (5.18). As shown in Figure 5.2, the feasible region

F2 = {(x, y) | xy ≥ 0, x ≥ 0} is the union of the first quadrant and the y-axis.

Furthermore, the standard nonlinear programming constraint qualification fails

to hold at every point on the y-axis.
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Figure 5.2 The feasible region F2 = {(x, y) |xy ≥ 0, x ≥ 0}.

5.3.3 MPEC formulations

Below, we introduce an MPEC formulation for the star-shaped problem (5.18).

We first show that constraints of a star-shaped set Z1 = {z ∈ Rn | gi(z) ≥

0, gi(z) hi(z) ≥ 0, i = 1, . . . , m} can be rewritten as complementarity constraints

if we introduce additional variables.

Proposition 5.7. A point z is in Z1 = {z ∈ Rn | gi(z) ≥ 0, gi(z) hi(z) ≥ 0, i =

1, . . . , m} iff there exists an s such that (z, s) is in Z2 = {(z, s) ∈ Rn+m | 0 ≤

g(z) ⊥ s ≥ 0, h(z) ≥ −s}.

Proof. Suppose that z is in Z1. If gi(z) > 0, choose si = 0; if gi(z) = 0, choose

si = −hi(z). Then (z, s) is in Z2. Conversely, if (z, s) is in Z2, then gi(z)hi(z) ≥

gi(z)(−si) = 0 for all i = 1, . . .m. Hence, the point z is in Z1. �
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Following Proposition 5.7, we introduce a variable s(a, ã) for each pair (a, ã) ∈

A × A for the incentive compatibility constraints in (5.18). We then obtain the

following MPEC formulation with variables (π(a), c(a), s(a, ã))(a,ã)∈A×A for the

optimal contract with action lottery problem:

maximize
∑

a∈A

π(a)W (c(a), a)

subject to
∑

a∈A

π(a)U(c(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

∀ (a, ã( 6= a)) ∈ A×A : U(c(a), a) − U(c(a), ã) + s(a, ã) ≥ 0,

∀ (a, ã( 6= a)) ∈ A×A : 0 ≤ π(a) ⊥ s(a, ã) ≥ 0.

(5.19)

Allowing the compensation schedules to be dependent on the agent’s action will

increase the principal’s expected utility; see Theorem 5.8 below. The difference

between the optimal objective value of the NLP (5.18) (or the MPEC(5.19)) and

that of the MPEC (5.11) characterizes the principal’s improved welfare from using

an optimal contract with action lotteries.

Theorem 5.8. The principal prefers an optimal contract with action lotteries to

an optimal deterministic contract. His expected utility from choosing an optimal

contract with action lotteries will be at least as good as that from choosing an

optimal deterministic contract.

Proof. This is clear. �

5.3.4 The contract with compensation lotteries

Definition 5.9. For any outcome q ∈ Q, a randomized compensation c̃(q) is a

random variable on the set of compensations C with a probability measure F (·).

Remark If the set of compensations C is a closed interval [c, c̄] ∈ R, then the

measure of c̃(q) is a cumulative density function (cdf) F : [c, c̄] → [0, 1] with

F (c) = 0 and F (c̄) = 1. In addition, F (·) is nondecreasing and right-continuous.
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To simplify the analysis, we assume that every randomized compensation c̃(q)

has finite support.

Assumption 5.10 (Finite support for randomized compensation.). For

all q ∈ Q, the randomized compensation c̃(q) has finite support over an unknown

set {c1(q), c2(q), . . . , cL(q)} with a known L.

An immediate consequence of Assumption 5.10 is that we can write c̃(q) = ci(q)

with probability pi(q) > 0 for all i = 1, . . . , L and q ∈ Q. In addition, we have
∑L

i=1 pi(q) = 1 for all q ∈ Q. Notice that both (ci(q))
L
i=1 ∈ RL and (pi(q))

L
i=1 ∈ RL

are endogenous variables and will be chosen by the principal.

Definition 5.11. A compensation lottery is a randomized compensation schedule

c̃ = (c̃(q1), . . . , c̃(qN )) ∈ RN , in which c̃(q) is a randomized compensation satisfying

Assumption 5.10 for all q ∈ Q.

Definition 5.12. A contract with compensation lotteries consists of a recom-

mended action a to the agent and a randomized compensation schedule

c̃ = (c̃(q1), . . . , c̃(qN )) ∈ RN .

Let cq = (ci(q))
L
i=1 ∈ RL and pq = (pi(q))

L
i=1 ∈ RL. Given that the outcome

q is observed by the principal, we let w(cq, pq) denote the principal’s expected

utility with respect to a randomized compensation c̃(q), i.e.,

w(cq, pq) = IE w(q − c̃(q)) =

L
∑

i=1

pi(q)w(q − ci(q)).

With a randomized compensation schedule c̃ and a recommended action a, the

principal’s expected utility then becomes

IE W (c̃, a) =
∑

q∈Q

p(q | a)

(

L
∑

i=1

pi(q)w(q − ci(q))

)

=
∑

q∈Q

p(q | a)w(cq, pq). (5.20)

Similarly, given a recommended action a, we let u(cq, pq, a) denote the agent’s

expected utility with respect to c̃(q) for the observed outcome q:

u(cq, pq, a) = IE u(c̃(q), a) =
L
∑

i=1

pi(q)u(ci(q), a).
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The agent’s expected utility with a randomized compensation schedule c̃ and a

recommended action a is

IE U(c̃, a) =
∑

q∈Q

p(q | a)

(

L
∑

i=1

pi(q)u(ci(q), a)

)

=
∑

q∈Q

p(q | a)u(cq, pq, a). (5.21)

To further simply to notation, we use cQ = (cq)q∈Q and pQ = (pq)q∈Q to

denote the collection of variables cq and pq, respectively. We also let W(cQ, pQ, a)

denote the principal’s expected utility IE W (c̃, a) as defined in (5.20), and similarly,

U(cQ, pQ, a) for IE U(c̃, a) as in (5.21).

An optimal contract with compensation lotteries (c∗Q, p∗Q, a∗) is a solution to

the following problem:

maximize W(cQ, pQ, a)

subject to U(cQ, pQ, a) ≥ U∗,

U(cQ, pQ, a) ≥ U(cQ, pQ, ai), ∀ i = 1, . . . , M,

a ∈ A = {a1, . . . , aM}.

(5.22)

Define

W(cQ, pQ) = (W(cQ, pQ, a1), . . . ,W(cQ, pQ, aM)) ∈ RM ,

U(cQ, pQ) = (U(cQ, pQ, a1), . . . ,U(cQ, pQ, aM)) ∈ RM .

Following the derivation as in Section 2, we can reformulate the program for an

optimal contract with compensation lotteries (5.22) as a mixed-integer nonlinear
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program with decision variables (cQ, pQ) and y = (yi)
M
i=1:

maximize W(cQ, pQ,
M
∑

i=1

aiyi)

subject to U(cQ, pQ,
M
∑

i=1

aiyi) ≥ U∗,

U(cQ, pQ,

M
∑

i=1

aiyi) ≥ U(cQ, pQ, aj), ∀ j = 1, . . . , M,

eT
My = 1,

yi ∈ {0, 1} ∀ i = 1, . . . , M,

(5.23)

Similarly, the MPEC formulation with decision variables (cQ, pQ) and δ ∈ RM

is
maximize δTW(cQ, pQ)

subject to δTU(cQ, pQ) ≥ U∗,

eT
Mδ = 1,

0 ≤ δ ⊥
(

δTU(cQ, pQ)
)

eM −U(cQ, pQ) ≥ 0.

(5.24)

Arnott and Stiglitz [3] call the compensation lotteries ex post randomization;

this refers to the situation where the random compensation occurs after the rec-

ommended action is chosen or implemented. They show that if the agent is risk

averse and his utility function is separable, and if the principal is risk neutral,

then the compensation lotteries are not desirable.

5.3.5 The contract with action and compensation lotteries

Definition 5.13. A contract with action and compensation lotteries is a prob-

ability distribution over actions, π(a), and a randomized compensation schedule

c̃(a) = (c̃(q1, a), . . . , c̃(qN , a)) ∈ RN for every a ∈ A. The randomized compen-

sation schedule c(a) is an agreement between the principal and the agent such

that c̃(q, a) ∈ C is a randomized compensation to the agent from the principal if

outcome q ∈ Q is observed and the action a ∈ A is recommended by the principal.
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Assumption 5.14. For every action a ∈ A, the randomized compensation sched-

ule c̃(q, a) satisfies the finite support assumption (Assumption 5.10) for all q ∈ Q.

With Assumption 5.14, the notation cq(a), pq(a), cQ(a), pQ(a) is analogous to

what we have defined in Section 5.3.1 and 5.3.2. Without repeating the same

derivation process described earlier, we give the star-shaped formulation with

variables (π(a), cQ(a), pQ(a))a∈A for the optimal contract with action and com-

pensation lotteries problem:

maximize
∑

a∈A

π(a)W(cQ(a), pQ(a), a)

subject to
∑

a∈A

π(a)U(cQ(a), pQ(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

∀ (a, ã) ∈ A×A : π(a) (U(cQ(a), pQ(a), a) −U(cQ(a), pQ(a), ã)) ≥ 0,

π(a) ≥ 0.

(5.25)

Following the derivation in Section 5.3.3, an equivalent MPEC formulation is

with variables (π(a), cQ(a), pQ(a), s(a, ã))(a,ã)∈A×A:

maximize
∑

a∈A

π(a)W(cQ(a), pQ(a), a)

subject to
∑

a∈A

π(a)U(cQ(a), pQ(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

∀ (a, ã) ∈ A×A : U(cQ(a), pQ(a), a) − U(cQ(a), pQ(a), ã) ≥ −s(a, ã),

∀ (a, ã) ∈ A×A : 0 ≤ π(a) ⊥ s(a, ã) ≥ 0.

(5.26)

5.3.6 Linear programming approximation

Townsend [64, 65] was among the first to use linear programming techniques to

solve static incentive constrained problems. Prescott [50, 51] further apply linear

programming specifically to solve moral-hazard problems. A solution obtained by
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the linear programming approach is an approximation to a solution to the MPEC

(5.26). Instead of treating cQ(a) as unknown variables, one can construct a grid

Ξ with elements ξ to approximate the set C of compensations. By introducing

probability measures associated with the action lotteries on A and compensation

lotteries on Ξ, one can then approximate a solution to the moral-hazard problem

with lotteries (5.26) by solving a linear program. More specifically, the principal

chooses probability distributions π(a), and π(ξ| q, a) over the set of actions A,

the set of outcomes Q, and the compensation grid Ξ. One then can reformulate

the resulting nonlinear program as a linear program with decision variables π =

(π(ξ, q, a))ξ∈Ξ,q∈Q,a∈A:

maximize(π)

∑

ξ,q,a

w(q − ξ)π(ξ, q, a)

subject to
∑

ξ,q,a

u(ξ, a)π(ξ, q, a) ≥ U∗,

∀ (a, ã) ∈ A×A :
∑

ξ,q

u(ξ, a)π(ξ, q, a) ≥
∑

ξ,q

u(ξ, ã)
p(q|ã)

p(q|a)
π(ξ, q, a)

∀ (q̃, ã) ∈ Q×A :
∑

ξ

π(ξ, q̃, ã) = p(q̃|ã)
∑

ξ,q

π(ξ, q, ã),

∑

ξ,q,a

π(ξ, q, a) = 1,

π(ξ, q, a) ≥ 0 ∀ (ξ, q, a) ∈ Ξ ×Q×A.

(5.27)

Note that the above linear program has (|Ξ|∗N ∗M) variables and (M ∗(N +M−

1) + 2) constraints. The size of the linear program will grow enormously when

one chooses a fine grid. For example, if there are 50 actions, 40 outputs, and

500 compensations, then the linear program has one million variables and 4452

constraints. It will become computationally intractable because of the limitation

on computer memory, if not the time required. On the other hand, a solution of

the LP obtained from a coarse grid will not be satisfactory if an accurate solution is

needed. Prescott [51] points out that the constraint matrix of the linear program

(5.27) has block angular structure. As a consequence, one can apply Dantzig-

Wolfe decomposition to the linear program (5.27) to reduce the computer memory

and computational time. Recall that the MPEC (5.11) for the optimal contract
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problem has only (N + M) variables and M complementarity constraints with

one linear constraint and one nonlinear constraint. Even with the use of the

Dantzig-Wolfe decomposition algorithm to solve LP (5.27), choosing the “right”

grid is still an issue. With the advances in both theory and numerical methods

for solving MPECs in the last decade, we believe that the MPEC approach has

greater advantages in solving a much smaller problem and in obtaining a more

accurate solution.

The error from discretizing set of compensations C is characterized by the

difference between the optimal objective value of LP (5.27) and that of MPEC

(5.26).

Theorem 5.15. The optimal objective value of MPEC (5.26) is at least as good

as that of LP (5.27).

Proof. It is sufficient to show that given a feasible point of LP (5.27), one can

construct a feasible point for MPEC (5.26) with objective value equal to that of

the LP (5.27).

Let π = (π(ξ, q, a))ξ∈Ξ,q∈Q,a∈A be a given feasible point of LP (5.27). Let

π(a) =
∑

ξ∈Ξ,q∈Q

π(ξ, q, a).

For every q ∈ Q and a ∈ A, we define

S(q, a) := {ξ ∈ Ξ | π(ξ, q, a) > 0},

Lq(a) := |S(q, a)|,

cq(a) := (ξ)ξ∈S(q,a)

pq(a) := (π(ξ, q, a))ξ∈S(q,a)

It is easy to check that π(a), cq(a) and pa(a) is a feasible for MPEC (5.26).

Furthermore, its objective value is the same as that of π for the LP (5.27). �
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5.4 A Hybrid Approach toward Global Solution

One reason that nonconvex programs are not popular among economists is the

issue of the need for global solutions. While local search algorithms for solving

nonconvex programs have fast convergence properties near a solution, they are

designed to find a local solution. Algorithms for solving MPECs are no excep-

tion. One heuristic in practice is to solve the same problem with several different

starting points. It then becomes a trade-off between the computation time and

the quality of the “best” solution found.

Linear programming does not suffer from the global solution issue. However, to

obtain an accurate solution to a moral-hazard problem via the linear programming

approach, one needs to use a very fine compensation grid. This often leads to large-

scale linear programs with millions of variables and tens or hundreds of thousands

of constraints, which might require excessive computer memory or time.

Certainly, there is a need to develop a global optimization method with fast

local convergence for MPECs. Below, we propose a hybrid approach combining

both MPECs and linear programming approaches to find a global solution (or at

least better than the LP solution) of an optimal contract problem. The motivation

for this hybrid method comes from the observation that the optimal objective value

of the LP approach from a coarse grid could provide a lower bound on the optimal

objective value of the MPEC as well as a good guess on the final recommended

action a∗. We can then use this information to exclude some undesired local

minimizers and to provide a good starting point when we solve the MPEC (5.11).

This heuristic procedure toward a global solution of the MPEC (5.11) leads to the

following algorithm.



72 Chapter 5 Computation of Moral-Hazard Problems

A hybrid method for the optimal contract problem as MPEC (5.11)

Step 0: Construct a coarse grid Ξ over the compensation interval.

Step 1: Solve the LP (5.27) for the given grid Ξ.

Step 2:











































(2.1) : Compute p(a) =
∑

ξ∈Ξ

∑

q∈Q

π(ξ, q, a), ∀ a ∈ A;

(2.2) : Compute IE[ξ(q)] =
∑

ξ∈Ξ

ξπ(ξ, q, a), ∀ q ∈ Q;

(2.3) : Set initial point c0 = (IE[ξ(q)])q∈Q and δ0 = (p(a))a∈A;

(2.4) : Solve the MPEC (5.11) with starting point (c0, δ0).

Step 3: Refine the grid and repeat Step 1 and Step 2.

Remark If the starting point from an LP solution is close to the optimal solution

of the MPEC (5.11), then the sequence of iterates generated by an SQP algorithm

converges Q-quadratically to the optimal solution. See Proposition 5.2 in Fletcher

et al. [14].

One can also develop similar procedures to find global solutions for opti-

mal contract problems with action and/or compensation lotteries. However, the

MPECs for contracts with lotteries are much more numerically challenging prob-

lems than the MPEC (5.11) for deterministic contracts.

5.5 An Example and Numerical Results

To illustrate the use of the mixed-integer nonlinear program (5.7), the MPEC

(5.11) and the hybrid approaches, and to understand the effect of discretizing

the set of compensations C, we only consider problems of deterministic contracts

without lotteries. We consider a two-outcome example in Karaivanov [29]. Before

starting the computational work, we summarize in Table 5.1 the problem charac-

teristics of various approaches to computing the optimal deterministic contracts.
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Table 5.1

Problem characteristics of various approaches.

MINLP (5.7) MPEC (5.11) LP (5.27)

Regular Variables N N + M |Ξ| ∗ N ∗ M

Binary Variables M – –

Constraints M + 2 2 M ∗ (N + M − 1) + 2

Complementarity Const. – M –

Example 1: No Action and Compensation Lotteries

Assume the principal is risk neutral with utility w(q − c(q)) = q − c(q), and the

agent is risk averse with utility

u(c(q), a) =
c1−γ

1 − γ
+ κ

(1 − a)1−δ

1 − δ
.

Suppose there are only two possible outcomes, e.g., a coin-flip. If the desirable

outcome (high sale quantities or high production quantities) happens, then the

principal receives qH = $3; otherwise, he receives qL = $1. For simplicity, we

assume that the set of actions A consists of M equally-spaced effort levels within

the closed interval [0.01, 0.99]. The production technology for the high outcome

is described by p(q = qH |a) = aα with 0 < α < 1. Note that since 0 and 1

are excluded from the action set A, the full-support assumption on production

technology is satisfied.

The parameter values for the particular instance we solve are given in Table

5.2.

Table 5.2

The value of parameters used in Example 1.

γ κ δ α U∗ M

0.5 1 0.5 0.7 1 10

We solve this problem first as a mixed-integer nonlinear program (5.7) and

then as an MPEC (5.11). For the LP lotteries approach, we start with 20

grid points in the compensation grid (we evenly discretize the compensation

set C into 19 segments) and then increase the size of the compensation grid to

50, 100, 200, . . . , 5000.
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We submitted the corresponding AMPL programs to the NEOS server [42].

The mixed-integer nonlinear programs were solved using the MINLP solver [12] on

the computer host newton.mcs.anl.gov. To obtain fair comparisons between the

LP, MPEC, and hybrid approaches, we chose SNOPT [17] to solve the associated

mathematical programs. The AMPL programs were solved on the computer host

tate.iems.northwestern.edu.

Table 5.3 gives the solutions returned by the MINLP solver to the mixed-

integer nonlinear program (5.7). We use y = 0 and y = eM as starting points. In

both cases, the MINLP solver returns a solution very quickly. However, it is not

guaranteed to find a global solution.

Table 5.3

Solutions of the MINLP approach.

Starting Regular Binary Constraints Solve Time Objective
Point Variables Variables (in sec.) Value

y = 0 2 10 12 0.01 1.864854251

y = eM 2 10 12 0.00 1.877265189

For solving the MPEC (5.11), we try two different starting points to illustrate

the possibility of finding only a local solution. The MPEC solutions are given in

Table 5.4 below.

Table 5.4

Solutions of the MPEC approach with two different starting points.

(22 variables and 10 complementarity constraints)

Starting Read Time Solve Time # of Major Objective
Point (in sec.) (in sec.) Iterations Value

δ = 0 0 0.07 45 1.079621424

δ = eM 0 0.18 126 1.421561553

The solutions for the LP lottery approach with different compensation grids

are given in Table 5.5. Notice that the solve time increases faster than the size of

the grid when |Ξ| is of order 105 and higher, while the number of major iterations

only increases about 3 times when we increase the grid size 250 times (from |Ξ| =

20 to |Ξ| = 5000).
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Table 5.5

Solutions of the LP approach with 8 different compensation grids.

# of Read Time Solve Time # of Objective
|Ξ| Variables (in sec.) (in sec.) Iterations Value

20 400 0.01 0.03 31 1.876085819

50 1000 0.02 0.06 46 1.877252488

100 2000 0.04 0.15 53 1.877252488

200 4000 0.08 0.31 62 1.877254211

500 10000 0.21 0.73 68 1.877263962

1000 20000 0.40 2.14 81 1.877262184

2000 40000 0.83 3.53 71 1.877260460

5000 100000 2.19 11.87 101 1.877262793

Finally, for the hybrid approach, we first use the LP solution from a com-

pensation grid with |Ξ| = 20 to construct a starting point for the MPEC (5.11).

As one can see in Table 5.6, with a good starting point, it takes SNOPT only

0.01 seconds to find a solution to the example formulated as the MPEC (5.11).

Furthermore, the optimal objective value is higher than that of the LP solution

from a fine compensation grid with |Ξ| = 5000.

Table 5.6

Solutions of the hybrid approach for Example 1.

LP Read Time Solve Time # of Objective
|Ξ| (in sec.) (in sec.) Iterations Value

20 0.01 0.03 31 1.876085819

MPEC Read Time Solve Time # of Major Objective
Starting Point (in sec.) (in sec.) Iterations Value

δ6 = 1, δi(6=6) = 0 0.02 0.01 13 1.877265298
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5.6 Conclusions and Future Work

The purpose of this chapter is to introduce the MPEC approach and apply it to

moral-hazard problems. We have presented MPEC formulations for optimal de-

terministic contract problems and optimal contract problems with action and/or

compensation lotteries. We also formulated the former problem as a mixed-integer

nonlinear program. To obtain a global solution, we have proposed a hybrid proce-

dure that combines the LP lottery and the MPEC approaches. In this procedure,

the LP solution from a coarse compensation grid provides a good starting point for

the MPEC. We can then apply specialized MPEC algorithms with fast local con-

vergence rate to obtain a solution. In a numerical example, we have demonstrated

that the hybrid method is more efficient than using only the LP lottery approach,

which requires the solution of a sequence of large-scale linear programs. Although

we cannot prove that the hybrid approach will guarantee to find a global solution,

it always finds one better than the solution from the LP lottery approach. We

plan to test the numerical performance of the hybrid procedure on other examples

such as the bank regulation example in [50] and the two-dimensional action choice

example in [51].

One can extend the MPEC approach to single-principal multiple-agent prob-

lems without any difficulty. For multiple-principal multiple-agent models [41], it

can be formulated as an equilibrium problem with equilibrium constraint. We will

investigate these two topics in our future research.

Another important topic we plan to explore is the dynamic moral-hazard prob-

lem; see Phelan and Townsend [48]. In the literature, dynamic programming is

applied to solve this model. We believe that there is an equivalent nonlinear

programming formulation. Analogous to the hybrid procedure proposed in Sec-

tion 4, an efficient method to solve this dynamic model is to combine dynamic

programming and nonlinear programming.
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