
MINIMUM-RESIDUAL METHODS
FOR SPARSE LEAST-SQUARES

USING GOLUB-KAHAN BIDIAGONALIZATION

A DISSERTATION
SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL
ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David Chin-lung Fong
December 2011

This dissertation is online at: http://purl.stanford.edu/sd504kj0427

© 2011 by Chin Lung Fong. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/sd504kj0427

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Michael Saunders, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Margot Gerritsen

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Walter Murray

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

ABSTRACT

For 30 years, LSQR and its theoretical equivalent CGLS have been the
standard iterative solvers for large rectangular systems Ax = b and
least-squares problems min ‖Ax − b‖. They are analytically equivalent
to symmetric CG on the normal equation ATAx = ATb, and they reduce
‖rk‖monotonically, where rk = b−Axk is the k-th residual vector. The
techniques pioneered in the development of LSQR allow better algo-
rithms to be developed for a wider range of problems.

We derive LSMR, an algorithm that is similar to LSQR but exhibits
better convergence properties. LSMR is equivalent to applying MIN-

RES to the normal equation, so that the error ‖x∗ − xk‖, the resid-
ual ‖rk‖, and the residual of the normal equation ‖ATrk‖ all decrease
monotonically. In practice we observe that the Stewart backward error
‖ATrk‖/‖rk‖ is usually monotonic and very close to optimal. LSMR has
essentially the same computational cost per iteration as LSQR, but the
Stewart backward error is always smaller. Thus if iterations need to be
terminated early, it is safer to use LSMR.

LSQR and LSMR are based on Golub-Kahan bidiagonalization. Fol-
lowing the analysis of LSMR, we leverage the techniques used there to
construct algorithm AMRES for negatively-damped least-squares sys-
tems (ATA − δ2I)x = ATb, again using Golub-Kahan bidiagonaliza-
tion. Such problems arise in total least-squares, Rayleigh quotient it-
eration (RQI), and Curtis-Reid scaling for rectangular sparse matrices.
Our solver AMRES provides a stable method for these problems. AM-

RES allows caching and reuse of the Golub-Kahan vectors across RQIs,
and can be used to compute any of the singular vectors of A, given a
reasonable estimate of the singular vector or an accurate estimate of the
singular value.

v

ACKNOWLEDGEMENTS

First and foremost, I am extremely fortunate to have met Michael Saun-
ders during my second research rotation in ICME. He designed the op-
timal research project for me from the very beginning, and patiently
guided me through every necessary step. He devotes an enormous
amount of time and consideration to his students. Michael is the best
advisor that any graduate student could ever have.

Our work would not be possible without standing on the shoulder
of a giant like Chris Paige, who designed MINRES and LSQR together
with Michael 30 years ago. Chris gave lots of helpful comments on
reorthogonalization and various aspects of this work. I am thankful
for his support.

David Titley-Peloquin is one of the world experts in analyzing iter-
ative methods like LSQR and LSMR. He provided us with great insights
on various convergence properties of both algorithms. My understand-
ing of LSMR would be left incomplete without his ideas.

Jon Claerbout has been the most enthusiatic supporter of the LSQR

algorithm, and is constantly looking for applications of LSMR in geo-
physics. His idea of “computational success” aligned with our goal in
designing LSMR and gave us strong motivation to develop this algo-
rithm.

James Nagy’s enthusiasm in experimenting with LSMR in his latest
research also gave us much confidence in further developing and pol-
ishing our work. I feel truly excited to see his work on applying LSMR

to image processing.

AMRES would not be possible without the work that Per Christian
Hansen and Michael started. The algorithm and some of the applica-
tions are built on top of their insights.

I would like to thank Margot Gerritsen and Walter Murray for serv-
ing on both my reading and oral defense committees. They provided
many valuable suggestions that enhanced the completeness of the ex-
perimental results. I would also like to thank Eric Darve for chairing
my oral defense and Peter Kitanidis for serving on my oral defense

vi

committee and giving me objective feedback on the algorithm from a
user’s perspective.

I am also grateful to the team of ICME staff, especially Indira Choud-
hury and Brian Tempero. Indira helped me get through all the paper-
work, and Brian assembled and maintained all the ICME computers.
His support allowed us to focus fully on number-crunching.

I have met lots of wonderful friends here at Stanford. It is hard to ac-
knowledge all of them here. Some of them are Santiago Akle, Michael
Chan, Felix Yu, and Ka Wai Tsang.

Over the past three years, I have been deeply grateful for the love
that Amy Lu has brought to me. Her smile and encouragement enabled
me to go through all the tough times in graduate school.

I thank my parents for creating the best possible learning environ-
ment for me over the years. With their support, I feel extremely priv-
iledged to be able to fully devote myself to this intellectual venture.

I would like to acknowledge my funding, the Stanford Graduate
Fellowship (SGF). For the first half of my SGF, I was supported by the
Hong Kong Alumni Scholarship with generous contributions from Dr
Franklin and Mr Lee. For the second half of my SGF, I was supported
by the Office of Technology Licensing Fellowship with generous con-
tributions from Professor Charles H. Kruger and Ms Katherine Ku.

vii

CONTENTS

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 Problem statement . 1
1.2 Basic iterative methods . 2
1.3 Krylov subspace methods for square Ax = b 2

1.3.1 The Lanczos process 3
1.3.2 Unsymmetric Lanczos 7
1.3.3 Transpose-free methods 8
1.3.4 The Arnoldi process 9
1.3.5 Induced dimension reduction 10

1.4 Krylov subspace methods for rectangular Ax = b 11
1.4.1 The Golub-Kahan process 11

1.5 Overview . 13

2 A tale of two algorithms 15

2.1 Monotonicity of norms . 16
2.1.1 Properties of CG . 16
2.1.2 Properties of CR and MINRES 16

2.2 Backward error analysis 20
2.2.1 Stopping rule . 22
2.2.2 Monotonic backward errors 22
2.2.3 Other convergence measures 22

2.3 Numerical results . 23
2.3.1 Positive-definite systems 23
2.3.2 Indefinite systems 30

2.4 Summary . 32

3 LSMR 36

3.1 Derivation of LSMR . 37
3.1.1 The Golub-Kahan process 37

viii

3.1.2 Using Golub-Kahan to solve the normal equation 38
3.1.3 Two QR factorizations 38
3.1.4 Recurrence for xk 39
3.1.5 Recurrence for Wk and W̄k 39
3.1.6 The two rotations 40
3.1.7 Speeding up forward substitution 41
3.1.8 Algorithm LSMR 41

3.2 Norms and stopping rules 42
3.2.1 Stopping criteria 42
3.2.2 Practical stopping criteria 43
3.2.3 Computing ‖rk‖ 43
3.2.4 Computing ‖ATrk‖ 45
3.2.5 Computing ‖xk‖ 45
3.2.6 Estimates of ‖A‖ and cond(A) 45

3.3 LSMR Properties . 46
3.3.1 Monotonicity of norms 46
3.3.2 Characteristics of the solution on singular systems 48
3.3.3 Backward error . 49

3.4 Complexity . 50
3.5 Regularized least squares 50

3.5.1 Effects on ‖r̄k‖ . 51
3.5.2 Pseudo-code for regularized LSMR 52

3.6 Proof of Lemma 3.2.1 . 52

4 LSMR experiments 56

4.1 Least-squares problems . 56
4.1.1 Backward error for least-squares 56
4.1.2 Numerical results 59
4.1.3 Effects of preconditioning 61
4.1.4 Why does ‖E2‖ for LSQR lag behind LSMR? 71

4.2 Square systems . 72
4.3 Underdetermined systems 73
4.4 Reorthogonalization . 77

5 AMRES 82

5.1 Derivation of AMRES . 83
5.1.1 Least-squares subsystem 84
5.1.2 QR factorization 85
5.1.3 Updating W v

k . 85
5.1.4 Algorithm AMRES 86

ix

5.2 Stopping rules . 86
5.3 Estimate of norms . 86

5.3.1 Computing ‖r̂k‖ 86
5.3.2 Computing ‖Âr̂k‖ 86
5.3.3 Computing ‖x̂‖ . 88
5.3.4 Estimates of ‖Â‖ and cond(Â) 89

5.4 Complexity . 89

6 AMRES applications 90

6.1 Curtis-Reid scaling . 90
6.1.1 Curtis-Reid scaling using CGA 91
6.1.2 Curtis-Reid scaling using AMRES 92
6.1.3 Comparison of CGA and AMRES 94

6.2 Rayleigh quotient iteration 94
6.2.1 Stable inner iterations for RQI 97
6.2.2 Speeding up the inner iterations of RQI 100

6.3 Singular vector computation 107
6.3.1 AMRESR . 110
6.3.2 AMRESR experiments 110

6.4 Almost singular systems 113

7 Conclusions and future directions 115

7.1 Contributions . 115
7.1.1 MINRES . 115
7.1.2 LSMR . 117
7.1.3 AMRES . 117

7.2 Future directions . 118
7.2.1 Conjecture . 118
7.2.2 Partial reorthogonalization 118
7.2.3 Efficient optimal backward error estimates 119
7.2.4 SYMMLQ-based least-squares solver 119

Bibliography 120

x

LIST OF TABLES

1.1 Notation . 14

3.1 Storage and computational cost for various least-squares
methods . 50

4.1 Effects of diagonal preconditioning on LPnetlib matri-
ces and convergence of LSQR and LSMR on min ‖Ax− b‖ 67

4.2 Relationship between CG, MINRES, CRAIG, LSQR and LSMR 75

5.1 Storage and computational cost for AMRES 89

7.1 Comparison of CG and MINRES properties on an spd sys-
tem . 115

7.2 Comparison of LSQR and LSMR properties 117

xi

LIST OF FIGURES

2.1 Distribution of condition number for matrices used for
CG vs MINRES comparison 24

2.2 Backward and forward errors for CG and MINRES (1) . . 25
2.3 Backward and forward errors for CG and MINRES (2) . . 27
2.4 Solution norms for CG and MINRES (1) 28
2.5 Solution norms for CG and MINRES (2) 29
2.6 Non-monotonic backward error for MINRES on indefi-

nite system . 31
2.7 Solution norms for MINRES on indefinite systems (1) . . . 33
2.8 Solution norms for MINRES on indefinite systems (2) . . . 34

4.1 ‖rk‖ for LSMR and LSQR 60
4.2 ‖E2‖ for LSMR and LSQR 61
4.3 ‖E1‖, ‖E2‖, and µ̃(xk) for LSQR and LSMR 62
4.4 ‖E1‖, ‖E2‖, and µ̃(xk) for LSMR 63
4.5 µ̃(xk) for LSQR and LSMR 63
4.6 µ̃(xk) for LSQR and LSMR 64
4.7 ‖x∗ − x‖ for LSMR and LSQR 64
4.8 Convergence of ‖E2‖ for two problems in NYPA group . . 65
4.9 Distribution of condition number for LPnetlib matrices . 66
4.10 Convergence of LSQR and LSMR with increasingly good

preconditioners . 70
4.11 LSMR and LSQR solving two square nonsingular systems 74
4.12 Backward errors of LSQR, LSMR and MINRES on under-

determined systems . 78
4.13 LSMR with and without reorthogonalization of Vk and/or

Uk . 79
4.14 LSMR with reorthogonalized Vk and restarting 80
4.15 LSMR with local reorthogonalization of Vk 81

6.1 Convergence of Curtis-Reid scaling using CGA and AMRES 95
6.2 Improving an approximate singular value and singular

vector using RQI-AMRES and RQI-MINRES (1) 101

xii

6.3 Improving an approximate singular value and singular
vector using RQI-AMRES and RQI-MINRES (2) 102

6.4 Convergence of RQI-AMRES, MRQI-AMRES and MRQI-AMRES-

Ortho . 106
6.5 Convergence of RQI-AMRES, MRQI-AMRES and MRQI-AMRES-

Ortho for linear operators of varying cost. 106
6.6 Convergence of RQI-AMRES, MRQI-AMRES and MRQI-AMRES-

Ortho for different singular values 107
6.7 Convergence of RQI-AMRES and svds 108
6.8 Singular vector computation using AMRESR and MINRES 114

7.1 Flowchart on choosing iterative solvers 116

xiii

LIST OF ALGORITHMS

1.1 Lanczos process Tridiag(A, b) 3
1.2 Algorithm CG . 4
1.3 Algorithm CR . 6
1.4 Unsymmetric Lanczos process 7
1.5 Arnoldi process . 9
1.6 Golub-Kahan process Bidiag(A, b) 11
1.7 Algorithm CGLS . 13
3.1 Algorithm LSMR . 41
3.2 Computing ‖rk‖ in LSMR 44
3.3 Algorithm CRLS . 47
3.4 Regularized LSMR (1) . 53
3.5 Regularized LSMR (2) . 54
5.1 Algorithm AMRES . 87
6.1 Rayleigh quotient iteration (RQI) for square A 96
6.2 RQI for singular vectors for square or rectangular A . . . 96
6.3 Stable RQI for singular vectors 97
6.4 Modified RQI for singular vectors 103
6.5 Singular vector computation via residual vector 109
6.6 Algorithm AMRESR . 111

xiv

LIST OF MATLAB CODE

4.1 Approximate optimal backward error 58
4.2 Right diagonal preconditioning 59
4.3 Generating preconditioners by perturbation of QR 69
4.4 Criteria for selecting square systems 72
4.5 Diagonal preconditioning 73
4.6 Left diagonal preconditioning 76
6.1 Least-squares problem for Curtis-Reid scaling 91
6.2 Normal equation for Curtis-Reid scaling 92
6.3 CGA for Curtis-Reid scaling 93
6.4 Generate linear operator with known singular values . . 99
6.5 Cached Golub-Kahan process 104
6.6 Error measure for singular vector 112

xv

xvi

1
INTRODUCTION

The quest for the solution of linear equations is a long journey. The ear-
liest known work is in 263 AD [64]. The book Jiuzhang Suanshu (Nine
Chapters of the Mathematical Art) was published in ancient China with
a chapter dedicated to the solution of linear equations.1 The modern 1Procedures for solving

systems of three linear equa-
tions in three variables were
discussed.

study of linear equations was picked up again by Newton, who wrote
unpublished notes in 1670 on solving system of equations by the sys-
tematic elimination of variables [33].

Cramer’s Rule was published in 1750 [16] after Leibniz laid the
work for determinants in 1693 [7]. In 1809, Gauss invented the method
of least squares by solving the normal equation for an over-determined
system for his study of celestial orbits. Subsequently, in 1826, he ex-
tended his method to find the minimum-norm solution for underdeter-
mined systems, which proved to be very popular among cartographers
[33].

For linear systems with dense matrices, Cholesky factorization, LU
factorization and QR factorization are the popular methods for finding
solutions. These methods require access to the elements of matrix.

We are interested in the solution of linear systems when the matrix
is large and sparse. In such circumstances, direct methods like the ones
mentioned above are not practical because of memory constraints. We
also allow the matrix to be a linear operator defined by a procedure for
computing matrix-vector products. We focus our study on the class of
iterative methods, which usually require only a small amount of auxil-
iary storage beyond the storage for the problem itself.

1.1 PROBLEM STATEMENT

We consider the problem of solving a system of linear equations. In
matrix notation we write

Ax = b, (1.1)

where A is an m× n real matrix that is typically large and sparse, or is
available only as a linear operator, b is a real vector of length m, and x

is a real vector of length n.

1

2 CHAPTER 1. INTRODUCTION

We call an x that satisfies (1.1) a solution of the problem. If such
an x does not exist, we have an inconsistent system. If the system is
inconsistent, we look for an optimal x for the following least-squares
problem instead:

min
x
‖Ax− b‖2 . (1.2)

We denote the exact solution to the above problems by x∗, and ℓ de-
notes the number of iterations that any iterative method takes to con-
verge to this solution. That is, we have a sequence of approximate so-
lutions x0, x1, x2, . . . , xℓ, with x0 = 0 and xℓ = x∗. In Section 1.2 and
1.3 we review a number of methods for solving (1.1) when A is square
(m = n). In Section 1.4 we review methods that handle the general case
when A is rectangular, which is also the main focus of this thesis.

1.2 BASIC ITERATIVE METHODS

Jacobi iteration, Gauss-Seidel iteration [31, p510] and successive over-
relaxation (SOR) [88] are three early iterative methods for linear equa-
tions. These methods have the common advantage of minimal mem-
ory requirement compared with the Krylov subspaces methods that we
focus on hereafter. However, unlike Krylov subspace methods, these
methods will not converge to the exact solution in a finite number of
iterations even with exact arithmetic, and they are applicable to only
narrow classes of matrices (e.g., diagonally dominant matrices). They
also require explicit access to the nonzeros of A.

1.3 KRYLOV SUBSPACE METHODS FOR SQUARE Ax = b

Sections 1.3 and 1.4 describe a number of methods that can regard A as
an operator; i.e. only matrix-vector multiplication with A (and some-
times AT) is needed, but not direct access to the elements of A.2 Section2These methods are also

know as matrix-free iterative
methods. 1.3 focuses on algorithms for the case when A is square. Section 1.4 fo-

cuses on algorithms that handle both rectangular and square A. Krylov
subspaces of increasing dimensions are generated by the matrix-vector
products, and an optimal solution within each subspace is found at
each iteration of the methods (where the measure of optimality differs
with each method).

1.3. KRYLOV SUBSPACE METHODS FOR SQUARE AX = B 3

Algorithm 1.1 Lanczos process Tridiag(A, b)

1: β1v1 = b (i.e. β1 = ‖b‖2, v1 = b/β1)
2: for k = 1, 2, . . . do
3: w = Avk
4: αk = vTk wk

5: βk+1vk+1 = w − αkvk − βkvk−1

6: end for

1.3.1 THE LANCZOS PROCESS

In this section, we focus on symmetric linear systems. The Lanczos
process [40] takes a symmetric matrix A and a vector b, and generates
a sequence of Lanczos vectors vk and scalars αk, βk for k = 1, 2, . . .

as shown in Algorithm 1.1. The process can be summarized in matrix
form as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Hk (1.3)

with Vk =
(
v1 v2 · · · vk

)
and

Tk =




α1 β2

β2 α2
. . .

. βk

βk αk




, Hk =

(
Tk

βk+1e
T
k

)
.

An important property of the Lanczos vectors in Vk is that they lie
in the Krylov subspaceKk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}. At iter-
ation k, we look for an approximate solution xk = Vkyk (which lies in
the Krylov subspace). The associated residual vector is

rk = b−Axk = β1v1 −AVkyk = Vk+1(β1e1 −Hkyk).

By choosing yk in various ways to make rk small, we arrive at different
iterative methods for solving the linear system. Since Vk is theoreti-
cally orthonormal, we can achieve this by solving various subproblems

to make
Hkyk ≈ β1e1. (1.4)

Three particular choices of subproblem lead to three established
methods (CG, MINRES and SYMMLQ) [52]. Each method has a differ-
ent minimization property that suggests a particular factorization of
Hk. Certain auxiliary quantities can be updated efficiently without the

4 CHAPTER 1. INTRODUCTION

Algorithm 1.2 Algorithm CG

1: r0 = b, p1 = r0, ρ0 = rT0 r0
2: for k = 1, 2, . . . do
3: qk = Apk
4: αk = ρk−1/p

T
k qk

5: xk = xk−1 + αkpk
6: rk = rk−1 − αkqk
7: ρk = rTk rk
8: βk = ρk/ρk−1

9: pk+1 = rk + βkpk
10: end for

need for yk itself (which in general is completely different from yk+1).

With exact arithmetic, the Lanczos process terminates with k = ℓ

for some ℓ ≤ n. To ensure that the approximations xk = Vkyk improve
by some measure as k increases toward ℓ, the Krylov solvers minimize
some convex function within the expanding Krylov subspaces [27].

CG

CG was introduced in 1952 by Hestenes and Stiefel [38] for solving
Ax = b when A is symmetric positive definite (spd). The quadratic
form φ(x) ≡ 1

2x
TAx − bTx is bounded below, and its unique mini-

mizer solves Ax = b. CG iterations are characterized by minimizing
the quadratic form within each Krylov subspace [27], [46, §2.4], [84,
§§8.8–8.9]:

xk = Vkyk, where yk = argmin
y

φ(Vky). (1.5)

With b = Ax and 2φ(xk) = xT
kAxk − 2xTAxk, this is equivalent to

minimizing the function ‖x∗−xk‖A ≡ (x∗−xk)
TA(x∗−xk), known as

the energy norm of the error, within each Krylov subspace. A version of
CG adapted from van der Vorst [79, p42] is shown in Algorithm 1.2.

CG has an equivalent Lanczos formulation [52]. It works by deleting
the last row of (1.4) and defining yk by the subproblem Tkyk = β1e1.
If A is positive definite, so is each Tk, and the natural approach is to
employ the Cholesky factorization Tk = LkDkL

T
k . We define Wk and

zk from the lower triangular systems

LkW
T
k = V T

k , LkDkzk = β1e1.

1.3. KRYLOV SUBSPACE METHODS FOR SQUARE AX = B 5

It then follows that zk = LT
kyk and xk = Vkyk = WkL

T
k yk = Wkzk,

where the elements of Wk and zk do not change when k increases. Sim-
ple recursions follow. In particular, xk = xk−1 + ζkwk, where zk =(zk−1

ζk

)
and Wk =

(
Wk−1 wk

)
. This formulation requires one more

n-vector than the non-Lanczos formulation.

When A is not spd, the minimization in (1.5) is unbounded below,
and the Cholesky factorization of Tk might fail or be numerically un-
stable. Thus, CG cannot be recommended in this case.

MINRES

MINRES [52] is characterized by the following minimization:

xk = Vkyk, where yk = argmin
y
‖b−AVky‖. (1.6)

Thus, MINRES minimizes ‖rk‖ within the kth Krylov subspace. Since
this minimization is well-defined regardless of the definiteness of A,
MINRES is applicable to both positive definite and indefinite systems.
From (1.4), the minimization is equivalent to

min ‖Hkyk − β1e1‖2 .

Now it is natural to use the QR factorization

Qk

(
Hk β1e1

)
=

(
Rk zk

0 ζ̄k+1

)
,

from which we have Rkyk = zk. We define Wk from the lower trian-
gular system RT

k W
T
k = V T

k and then xk = Vkyk = WkRkyk = Wkzk =

xk−1 + ζkwk as before. (The Cholesky factor Lk is lower bidiagonal
but RT

k is lower tridiagonal, so MINRES needs slightly more work and
storage than CG.)

Stiefel’s Conjugate Residual method (CR) [72] for spd systems also
minimizes ‖rk‖ in the same Krylov subspace. Thus, CR and MINRES

must generate the same iterates on spd systems. We will use the two
algorithms interchangeably in the spd case to prove a number of prop-
erties in Chapter 2. CR is shown in Algorithm 1.3.

Note that MINRES is reliable for any symmetric matrix A, whereas
CR was designed for positive definite systems. For example it will fail

6 CHAPTER 1. INTRODUCTION

Algorithm 1.3 Algorithm CR

1: x0 = 0, r0 = b, s0 = Ar0, ρ0 = rT0s0, p0 = r0, q0 = s0
2: for k = 1, 2, . . . do
3: (qk−1 = Apk−1 holds, but not explicitly computed)
4: αk = ρk−1/‖qk−1‖2
5: xk = xk−1 + αkpk−1

6: rk = rk−1 − αkqk−1

7: sk = Ark
8: ρk = rTksk
9: βk = ρk/ρk−1

10: pk = rk + βkpk−1

11: qk = sk + βkqk−1

12: end for

on the following nonsingular but indefinite system:



0 1 1

1 2 1

1 1 1


x =



0

0

1


 .

In this case, r1 and s1 are nonzero, but ρ1 = 0 and CR fails after 1
iteration. Luenberger extended CR to indefinite systems [43; 44]. The
extension relies on testing whether αk = 0 and switching to a different
update rule. In practice it is difficult to judge whether αk should be
treated as zero. MINRES is free of such a decision (except when A is
singular and Ax = b is inconsistent, in which case MINRES-QLP [14; 13]
is recommended).

Since the pros and cons of CG and MINRES are central to the design
of the two new algorithms in this thesis (LSMR and AMRES), a more
in-depth discussion of their properties is given in Chapter 2.

SYMMLQ

SYMMLQ [52] solves the minimum 2-norm solution of an underdeter-
mined subproblem obtained by deleting the last 2 rows of (1.4):

min ‖yk‖ s.t. HT
k−1yk = β1e1.

This is solved using the LQ factorization HT
k−1Q

T
k−1 =

(
Lk−1 0

)
. A

benefit is that xk is computed as steps along a set of theoretically or-
thogonal directions (the columns of VkQ

T
k−1).

1.3. KRYLOV SUBSPACE METHODS FOR SQUARE AX = B 7

Algorithm 1.4 Unsymmetric Lanczos process
1: β1 = ‖b‖2, v1 = b/β1, δ1 = 0, v0 = w0 = 0, w1 = v1.
2: for k = 1, 2, . . . do
3: αk = wT

k Avk
4: δk+1vk+1 = Avk − αkvk − βkvk−1

5: w̄k+1 = ATwk − αkwk − δkwk−1

6: βk+1 = w̄T
k+1vk+1

7: wk+1 = w̄k+1/βk+1

8: end for

1.3.2 UNSYMMETRIC LANCZOS

The symmetric Lanczos process from Section 1.3.1 transforms a sym-
metric matrix A into a symmetric tridiagonal matrix Tk, and generates
a set of orthonormal3 vectors vk using a 3-term recurrence. If A is not 3Orthogonality holds

only under exact arith-
metic. In finite precision,
orthogonality is quickly lost.

symmetric, there are two other popular strategies, each of which sacri-
fices some properties of the symmetric Lanczos process.

If we don’t enforce a short-term recurrence, we arrive at the Arnoldi
process presented in Section 1.3.4. If we relax the orthogonality require-
ment, we arrive at the unsymmetric Lanczos process4, the basis of BiCG 4The version of unsym-

metric Lanczos presented
here is adapted from [35].and QMR. The unsymmetric Lanczos process is shown in Algorithm

1.4.

The scalars δk+1 and βk+1 are chosen so that ‖vk+1‖ = 1 and vTk+1wk+1 =

1. In matrix terms, if we define

Tk =




α1 β2

δ2 α2 β3

.

δk−1 αk−1 βk

δk αk




, Hk =

(
Tk

δk+1e
T
k

)
, H̄k =

(
Tk βk+1ek

)
,

then we have the relations

AVk = Vk+1Hk and ATWk = Wk+1H̄k. (1.7)

As with symmetric Lanczos, by defining xk = Vkyk to search for some
optimal solution within the Krylov subspace, we can write

rk = b−Axk = β1v1 −AVkyk = Vk+1(β1e1 −Hkyk).

For unsymmetric Lanczos, the columns of Vk are not orthogonal even

8 CHAPTER 1. INTRODUCTION

in exact arithmetic. However, we pretend that they are orthogonal,
and using similar ideas from Lanczos CG and MINRES, we arrive at the
following two algorithms by solving

Hkyk ≈ β1e1. (1.8)

BICG

BiCG [23] is an extension of CG to the unsymmetric Lanczos process.
As with CG, BiCG can be derived by deleting the last row of (1.8), and
solving the resultant square system with LU decomposition [79].

QMR

QMR [26], the quasi-minimum residual method, is the MINRES analog
for the unsymmetric Lanczos process. It is derived by solving the least-
squares subproblem min ‖Hkyk − β1e1‖ at every iteration with QR de-
composition. Since the columns of Vk are not orthogonal, QMR doesn’t
give a minimum residual solution for the original problem in the cor-
responding Krylov subspace, but the residual norm does tend to de-
crease.

1.3.3 TRANSPOSE-FREE METHODS

One disadvantage of BiCG and QMR is that matrix-vector multiplica-
tion by AT is needed. A number of algorithm have been proposed to
remove this multiplication. These algorithms are based on the fact that
in BiCG, the residual vector lies in the Krylov subspace and can be writ-
ten as

rk = Pk(A)b,

where Pk(A) is a polynomial of A of degree k. With the choice

rk = Qk(A)Pk(A)b,

where Qk(A) is some other polynomial of degree k, all the coefficients
needed for the update at every iteration can be computed without us-
ing the multiplication by AT [79].

CGS [66] is the extension of BiCG with Qk(A) ≡ Pk(A). CGS has been
shown to exhibit irregular convergence behavior. To achieve smoother
convergence, BiCGStab [78] was designed with some optimal polyno-
mial Qk(A) that minimizes the residual at each iteration.

1.3. KRYLOV SUBSPACE METHODS FOR SQUARE AX = B 9

Algorithm 1.5 Arnoldi process
1: βv1 = b (i.e. β = ‖b‖2, v1 = b/β)
2: for k = 1, 2, . . . , n do
3: w = Av
4: for i = 1, 2, . . . , k do
5: hik = wT vi
6: w = w − hikvi
7: end for
8: βk+1vk+1 = w
9: end for

1.3.4 THE ARNOLDI PROCESS

Another variant of the Lanczos process for an unsymmetric matrix A

is the Arnoldi process. Compared with unsymmetric Lanczos, which
preserves the tridiagonal property of Hk and loses the orthogonality
among columns of Vk, the Arnoldi process transforms A into an upper
Hessenberg matrix Hk with an orthogonal transformation Vk. A short-
term recurrence is no longer available for the Arnoldi process. All the
Arnoldi vectors must be kept to generate the next vector, as shown in
Algorithm 1.5.

The process can be summarized by

AVk = Vk+1Hk, (1.9)

with

Hk =




h11 h12 h1k

β2 h22 h2k

β3 h3k

. . .
...

...
βk hkk

βk+1




.

As with symmetric Lanczos, this allows us to write

rk = b−Axk = β1v1 −AVkyk = Vk+1(β1e1 −Hkyk),

and our goal is again to find approximate solutions to

Hkyk ≈ β1e1. (1.10)

Note that at the k-th iteration, the amount of memory needed to

10 CHAPTER 1. INTRODUCTION

store Hk and Vk is O(k2 + kn). Since iterative methods primarily fo-
cus on matrices that are large and sparse, the storage cost will soon
overwhelm other costs and render the computation infeasible. Most
Arnoldi-based methods adopt a strategy of restarting to handle this is-
sue, trading storage cost for slower convergence.

FOM

FOM [62] is the CG analogue for the Arnoldi process, with yk defined
by deleting the last row of (1.10) and solving the truncated system.

GMRES

GMRES [63] is the MINRES counterpart for the Arnoldi process, with yk

defined by the least-squares subproblem min ‖Hkyk − β1e1‖2. Like the
methods we study (CG, MINRES, LSQR, LSMR, AMRES), GMRES does not
break down, but it might require significantly more storage.

1.3.5 INDUCED DIMENSION REDUCTION

Induced dimension reduction (IDR) is a class of transpose-free methods
that generate residuals in a sequence of nested subspaces of decreasing
dimension. The original IDR [85] was proposed by Wesseling and Son-
neveld in 1980. It converges after at most 2n matrix-vector multiplica-
tions under exact arithmetic. Theoretically, this is the same complexity
as the unsymmetric Lanczos methods and the transpose-free methods.
In 2008, Sonneveld and van Gijzen published IDR(s) [67], an improve-
ment over IDR that takes advantage of extra memory available. The
memory required increases linearly with s, while the maximum num-
ber of matrix-vector multiplications needed becomes n+ n/s.

We note that in some informal experiments on square unsymmetric
systems Ax = b arising from a convection-diffusion-reaction problem
involving several parameters [81], IDR(s) performed significantly bet-
ter than LSQR or LSMR for some values of the parameters, but for cer-
tain other parameter values the reverse was true [82]. In this sense the
solvers complement each other.

1.4. KRYLOV SUBSPACE METHODS FOR RECTANGULAR AX = B 11

Algorithm 1.6 Golub-Kahan process Bidiag(A, b)

1: β1u1 = b, α1v1 = ATu1.
2: for k = 1, 2, . . . do
3: βk+1uk+1 = Avk − αkuk

4: αk+1vk+1 = ATuk+1 − βk+1vk.
5: end for

1.4 KRYLOV SUBSPACE METHODS FOR RECTANGULAR Ax = b

In this section, we introduce a number of Krylov subspace methods
for the matrix equation Ax = b, where A is an m-by-n square or rect-
angular matrix. When m > n, we solve the least-squares problem
min ‖Ax− b‖2. When m < n, we find the minimum 2-norm solution
minAx=b ‖x‖2. For any m and n, if Ax = b is inconsistent, we solve the
problem min ‖x‖ s.t. x = argmin ‖Ax− b‖.

1.4.1 THE GOLUB-KAHAN PROCESS

In the dense case, we can construct orthogonal matrices U and V to
transform

(
b A

)
to upper bidiagonal form as follows:

UT
(
b A

)(1
V

)
=




× ×

× . . .
. . . ×

×




⇒
(
b AV

)
= U

(
β1e1 B

)
,

where B is a lower bidiagonal matrix. For sparse matrices or linear
operators, Golub and Kahan [29] gave an iterative version of the bidi-
agonalization as shown in Algorithm 1.6.

After k steps, we have AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1,

where

Bk =




α1

β2 α2

.

βk αk

βk+1




, Lk+1 =
(
Bk αk+1ek+1

)
.

12 CHAPTER 1. INTRODUCTION

This is equivalent to what would be generated by the symmetric Lanc-
zos process with matrix ATA and starting vector ATb. The Lanczos
vectors Vk are the same, and the Lanczos tridiagonal matrix satisfies
Tk = BT

k Bk. With xk = Vkyk, the residual vector rk can be written as

rk = b−AVkyk = β1u1 − Uk+1Bkyk = Uk+1(β1e1 −Bkyk),

and our goal is to find an approximate solution to

Bkyk ≈ β1e1. (1.11)

CRAIG

CRAIG [22; 53] is defined by deleting the last row from (1.11), so that
yk satisfies Lkyk = β1e1 at each iteration. It is an efficient and reliable
method for consistent square or rectangular systems Ax = b, and it
is known to minimize the error norm ‖x∗ − xk‖ within each Krylov
subspace [51].

LSQR

LSQR [53] is derived by solving min ‖rk‖ ≡ min ‖β1e1 −Bkyk‖ at each
iteration. Since we are minimizing over a larger Krylov subspace at
each iteration, this immmediately implies that ‖rk‖ is monotonic for
LSQR.

LSMR

LSMR is derived by minimizing
∥∥ATrk

∥∥ within each Krylov subspace.
LSMR is a major focus in this thesis. It solves linear systems Ax = b and
least-squares problems min ‖Ax − b‖2, with A being sparse or a linear
operator. It is analytically equivalent to applying MINRES to the normal
equation ATAx = ATb, so that the quantities ‖ATrk‖ are monotonically
decreasing. We have proved that ‖rk‖ also decreases monotonically. As
we will see in Theorem 4.1.1, this means that a certain backward error
measure (the Stewart backward error ‖ATrk‖/‖rk‖) is always smaller
for LSMR than for LSQR. Hence it is safer to terminate LSMR early.

CGLS

LSQR has an equivalent formulation named CGLS [38; 53], which doesn’t
involve the computation of Golub-Kahan vectors. See Algorithm 1.7.55This version of CGLS

is adapted from [53].

1.5. OVERVIEW 13

Algorithm 1.7 Algorithm CGLS

1: r0 = b, s0 = ATb, p1 = s0
2: ρ0 = ‖s0‖2, x0 = 0
3: for k = 1,2,. . . do
4: qk = Apk
5: αk = ρk−1/‖qk‖2
6: xk = xk−1 + αkpk
7: rk = rk−1 − αkqk
8: sk = ATrk
9: ρk = ‖sk‖2

10: βk = ρk/ρk−1

11: pk+1 = sk + βkpk
12: end for

1.5 OVERVIEW

Chapter 2 compares the performance of CG and MINRES on various
symmetric problems Ax = b. The results suggested that MINRES is
a superior algorithm even for solving positive definite linear systems.
This provides motivation for LSMR, the first algorithm developed in
this thesis, to be based on MINRES. Chapter 3 focuses on a mathemat-
ical background of constructing LSMR, the derivation of a computa-
tionally efficient algorithm, as well as stopping criteria. Chapter 4 de-
scribes a number of numerical experiments designed to compare the
performance of LSQR and LSMR in solving overdetermined, consistent,
or underdetermined linear systems. Chapter 5 derives an iterative al-
gorithm AMRES for solving the negatively damped least-squares prob-
lem. Chapter 6 focuses on applications of AMRES to Curtis-Reid scal-
ing, improving approximate singular vectors, and computing singular
vectors when the singular value is known. Chapter 7 summarizes the
contributions of this thesis and gives a summary of interesting prob-
lems available for future research.

The notation used in this thesis is summarized in Table 1.1.

14 CHAPTER 1. INTRODUCTION

Table 1.1 Notation
A matrix, sparse matrix or linear operator
Aij the element of matrix A in i-th row and j-th col-

umn
b, p, r, t, u, v, x, y, . . . vectors
k subscript index for iteration number. E.g. xk is

the approximate solution generated at the k-th
iteration of an iterative solver such as MINRES.
In Chapters 3 to 6, k represents the number of
Golub-Kahan bidiagonalization iterations.

q subscript index for RQI iteration number, used in
Section 6.2.

ck, sk non-identity elements (ck sk
−sk ck) in a Givens rota-

tion matrix
Bk bidiagonal matrix generated at the k-th step of

Golub-Kahan bidiagonalization.
Greek letters scalars
‖ · ‖ vector 2-norm or the induced matrix 2-norm.
‖ · ‖F Frobenius norm
‖x‖A energy norm of vector x with repect to positive

definite matrix A:
√
xTAx

cond(A) condition number of A
ek k-th column of an identity matrix
1 a vector with all entries being 1.
R(A) range of matrix A.
N(A) null space of matrix A.
A ≻ 0 A is symmetric positive definite.
x∗ the unique solution to a nonsingular square sys-

tem Ax = b, or more generally the pseudoinverse
solution of a rectangular system Ax ≈ b.

2
A TALE OF TWO ALGORITHMS

The conjugate gradient method (CG) [38] and the minimum residual
method (MINRES) [52] are both Krylov subspace methods for the iter-
ative solution of symmetric linear equations Ax = b. CG is commonly
used when the matrix A is positive definite, while MINRES is generally
reserved for indefinite systems [79, p85]. We reexamine this wisdom
from the point of view of early termination on positive-definite sys-
tems. This also serves as the rationale for why MINRES is chosen as the
basis for the development of LSMR.

In this Chapter, we study the application of CG and MINRES to real
symmetric positive-definite (spd) systems Ax = b, where A is of di-
mension n × n. The unique solution is denoted by x∗. The initial ap-
proximate solution is x0 ≡ 0, and rk ≡ b − Axk is the residual vector
for an approximation xk within the kth Krylov subspace.

From Section 1.3.1, we know that CG and MINRES use the same in-
formation Vk+1 and Hk to compute solution estimates xk = Vkyk within
the Krylov subspace Kk(A, b) ≡ span{b, Ab,A2b, . . . , Ak−1b} (for each
k). It is commonly thought that the number of iterations required will
be similar for each method, and hence CG should be preferable on spd
systems because it requires less storage and fewer floating-point op-
erations per iteration. This view is justified if an accurate solution
is required (stopping tolerance τ close to machine precision ǫ). We
show that with looser stopping tolerances, MINRES is sure to terminate
sooner than CG when the stopping rule is based on the backward error
for xk, and by numerical examples we illustrate that the difference in
iteration numbers can be substantial.

Section 2.1 describes a number of monotonic convergence proper-
ties that make CG and MINRES favorable iterative solvers for linear sys-
tems. Section 2.2 introduces the concept of backward error and how it
is used in designing stopping rules for iterative solvers, and the reason
why MINRES is more favorable for applications where backward error
is important. Section 2.3 compares experimentally the behavior of CG

and MINRES in terms of energy norm error, backward error, residual
norm, and solution norm.

15

16 CHAPTER 2. A TALE OF TWO ALGORITHMS

2.1 MONOTONICITY OF NORMS

In designing iterative solvers for linear equations, we often gauge con-
vergence by computing some norms from the current iterate xk. These
norms1 include ‖xk−x∗‖, ‖xk−x∗‖A, ‖rk‖. An iterative method might1For any vector x, the en-

ergy norm with repect to spd
matrix A is defined as

‖x‖A =
√
xTAx.

sometimes be stopped by an iteration limit or a time limit. It is then
highly desirable that some or all of the above norms converge mono-
tonically.

It is also desirable to have monotonic convergence for ‖xk‖. First,
some applications such as trust-region methods [68] depend on that
property. Second, when convergence is measure by backward error
(Section 2.2), monotonicity in ‖xk‖ (together with monotonicity in ‖rk‖)
gives monotonic convergence in backward error. More generally, if
‖xk‖ is monotonic, there cannot be catastrophic cancellation error in
stepping from xk to xk+1.

2.1.1 PROPERTIES OF CG

A number of monotonicity properties have been found by various au-
thors. We summarize them here for easy reference.

Theorem 2.1.1. [68, Thm 2.1] For CG on an spd system Ax = b, ‖xk‖ is

strictly increasing.

Theorem 2.1.2. [38, Thm 4:3] For CG on an spd system Ax = b, ‖x∗−xk‖A
is strictly decreasing.

Theorem 2.1.3. [38, Thm 6:3] For CG on an spd system Ax = b, ‖x∗ − xk‖
is strictly decreasing.

‖rk‖ is not monotonic for CG. Examples are shown in Figure 2.4.

2.1.2 PROPERTIES OF CR AND MINRES

Here we prove a number of monotonicity properties for CR and MIN-

RES on an spd system Ax = b. Some known properties are also in-
cluded for completeness. Relations from Algorithm 1.3 (CR) are used
extensively in the proofs. Termination of CR occurs when rk = 0 for
some index k = ℓ ≤ n (⇒ ρℓ = βℓ = 0, rℓ = sℓ = pℓ = qℓ = 0, xℓ = x∗,
where Ax∗ = b). Note: This ℓ is the same ℓ at which the Lanczos process
theoretically terminates for the given A and b.

Theorem 2.1.4. The following properties hold for Algorithm CR:

2.1. MONOTONICITY OF NORMS 17

(a) qTi qj = 0 (0 ≤ i, j ≤ ℓ− 1, i 6= j)

(b) rTi qj = 0 (0 ≤ i, j ≤ ℓ− 1, i ≥ j + 1)

(c) ri 6= 0⇒ pi 6= 0 (0 ≤ i ≤ ℓ− 1)

Proof. Given in [44, Theorem 1].

Theorem 2.1.5. The following properties hold for Algorithm CR on an spd

system Ax = b:

(a) αi > 0 (i = 1, . . . , ℓ)

(b) βi > 0 (i = 1, . . . , ℓ− 1)

βℓ = 0

(c) pTi qj > 0 (0 ≤ i, j ≤ ℓ− 1)

(d) pTi pj > 0 (0 ≤ i, j ≤ ℓ− 1)

(e) xT
i pj > 0 (1 ≤ i ≤ ℓ, 0 ≤ j ≤ ℓ− 1)

(f) rTi pj > 0 (0 ≤ i, j ≤ ℓ− 1)

Proof. (a) Here we use the fact that A is spd. Since ri 6= 0 for 0 ≤ i ≤
ℓ− 1, we have for 1 ≤ i ≤ ℓ,

ρi−1 = rTi−1si−1 = rTi−1Ari−1 > 0 (A ≻ 0) (2.1)

αi = ρi−1/‖qi−1‖2 > 0,

where qi−1 6= 0 follows from qi−1 = Api−1 and Theorem 2.1.4 (c).

(b) For 1 ≤ i ≤ ℓ− 1, we have

βi = ρi/ρi−1 > 0, (by (2.1))

and rℓ = 0 implies βℓ = 0.

(c) For any 0 ≤ i, j ≤ ℓ− 1, we have

Case I: i = j

pTi qi = pTi Api > 0 (A ≻ 0)

where pi 6= 0 from Theorem 2.1.4 (c). Next, we prove the cases
where i 6= j by induction.

18 CHAPTER 2. A TALE OF TWO ALGORITHMS

Case II: i− j = k > 0

pTi qj = pTi qi−k = rTi qi−k + βip
T
i−1qi−k

= βip
T
i−1qi−k (by Thm 2.1.4 (b))

> 0,

where βi > 0 by (b)2 and pTi−1qi−k > 0 by induction as (i− 1)− (i−2Note that i− j = k > 0
implies i ≥ 1.

k) = k − 1 < k.

Case III: j − i = k > 0

pTi qj = pTi qi+k = pTi Api+k

= pTi A(ri+k + βi+kpi+k−1)

= qTi ri+k + βi+kp
T
i qi+k−1

= βi+kp
T
i qi+k−1 (by Thm 2.1.4 (b))

> 0,

where βi+k = βj > 0 by (b) and pTi qi+k−1 > 0 by induction as
(i+ k − 1)− i = k − 1 < k.

(d) Define P ≡ span{p0, p1, . . . , pℓ−1} and Q ≡ span{q0, . . . , qℓ−1} at
termination. By construction, P = span{b, Ab, . . . , Aℓ−1b} and Q =

span{Ab, . . . , Aℓb} (since qi = Api). Again by construction, xℓ ∈ P ,
and since rℓ = 0 we have b = Axℓ ⇒ b ∈ Q. We see that P ⊆ Q. By
Theorem 2.1.4(a), {qi/‖qi‖}ℓ−1

i=0 forms an orthonormal basis forQ. If
we project pi ∈ P ⊆ Q onto this basis, we have

pi =

ℓ−1∑

k=0

pTi qk
qTk qk

qk,

where all coordinates are positive from (c). Similarly for any other
pj . Therefore pTi pj > 0 for any 0 ≤ i, j < ℓ.

(e) By construction,

xi = xi−1 + αipi−1 = · · · =
i∑

k=1

αkpk−1 (x0 = 0)

Therefore xT
i pi > 0 by (d) and (a).

2.1. MONOTONICITY OF NORMS 19

(f) Note that any ri can be expressed as a sum of qi:

ri = ri+1 + αi+1qi

= · · ·
= rl + αlql−1 + · · ·+ αi+1qi

= αlql−1 + · · ·+ αi+1qi.

Thus we have

rTi pj = (αlql−1 + · · ·+ αi+1qi)
T pj > 0,

where the inequality follows from (a) and (c).

We are now able to prove our main theorem about the monotonic
increase of ‖xk‖ for CR and MINRES. A similar result was proved for
CG by Steihaug [68].

Theorem 2.1.6. For CR (and hence MINRES) on an spd system Ax = b, ‖xk‖
is strictly increasing.

Proof. ‖xi‖2 − ‖xi−1‖2 = 2αix
T
i−1pi−1 + pTi−1pi−1 > 0, where the last

inequality follows from Theorem 2.1.5 (a), (d) and (e). Therefore ‖xi‖ >
‖xi−1‖.

The following theorem is a direct consequence of Hestenes and Stiefel
[38, Thm 7:5]. However, the second half of that theorem, ‖x∗−xCG

k−1‖ >
‖x∗ − xMINRES

k ‖, rarely holds in machine arithmetic. We give here an
alternative proof that does not depend on CG.

Theorem 2.1.7. For CR (and hence MINRES) on an spd system Ax = b, the

error ‖x∗ − xk‖ is strictly decreasing.

Proof. From the update rule for xk, we can express x∗ as

x∗ = xl = xl−1 + αlpl−1

= · · ·
= xk + αk+1pk + · · ·+ αlpl−1 (2.2)

= xk−1 + αkpk−1 + αk+1pk + · · ·+ αlpl−1. (2.3)

20 CHAPTER 2. A TALE OF TWO ALGORITHMS

Using the last two equalities above, we can write

‖x∗ − xk−1‖2 − ‖x∗ − xk‖2

= (xl − xk−1)
T (xl − xk−1)− (xl − xk)

T (xl − xk)

= 2αkp
T
k−1(αk+1pk + · · ·+ αlpl−1) + α2

kp
T
k−1pk−1

> 0,

where the last inequality follows from Theorem 2.1.5 (a), (d).

The following theorem is given in [38, Thm 7:4]. We give an alter-
native proof here.

Theorem 2.1.8. For CR (and hence MINRES) on an spd system Ax = b, the

energy norm error ‖x∗ − xk‖A is strictly decreasing.

Proof. From (2.2) and (2.3) we can write

‖xl − xk−1‖2A − ‖xl − xk‖2A
= (xl − xk−1)

TA(xl − xk−1)− (xl − xk)
TA(xl − xk)

= 2αkp
T
k−1A(αk+1pk + · · ·+ αl−1pl−1) + α2

kp
T
k−1Apk−1

= 2αkq
T
k−1(αk+1pk + · · ·+ αl−1pl−1) + α2

kq
T
k−1pk−1

> 0,

where the last inequality follows from Theorem 2.1.5 (a), (c).

The following theorem is available from [52] and [38, Thm 7:2], and
is the characterizing property of MINRES. We include it here for com-
pleteness.

Theorem 2.1.9. For MINRES on any system Ax = b, ‖rk‖ is decreasing.

Proof. This follows immediately from (1.6).

2.2 BACKWARD ERROR ANALYSIS

“The data frequently contains uncertainties due to measure-
ments, previous computations, or errors committed in stor-
ing numbers on the computer. If the backward error is no
larger than these uncertainties then the computed solution
can hardly be criticized — it may be the solution we are
seeking, for all we know.” Nicholas J. Higham, Accuracy

and Stability of Numerical Algorithms (2002)

2.2. BACKWARD ERROR ANALYSIS 21

For many physical problems requiring numerical solution, we are
given inexact or uncertain input data. Examples include model estima-
tion in geophysics [45], system identification in control theory [41], and
super-resolution imaging [80]. For these problems, it is not justifiable
to seek a solution beyond the accuracy of the data [19]. Computation
time may be wasted in the extra iterations without yielding a more de-
sirable answer [3]. Also, rounding errors are introduced during com-
putation. Both errors in the original data and rounding errors can be
analyzed in a common framework by applying the Wilkinson principle,
which considers any computed solution to be the exact solution of a
nearby problem [10; 25]. The measure of “nearby” should match the er-
ror in the input data. The design of stopping rules from this viewpoint
is an important part of backward error analysis [4; 39; 48; 61].

For a consistent linear system Ax = b, there may be uncertainty in
A and/or b. From now on we think of xk coming from the kth iteration
of one of the iterative solvers. Following Titley-Peloquin [75] we say
that xk is an acceptable solution if and only if there exist perturbations E
and f satisfying

(A+ E)xk = b+ f,
‖E‖
‖A‖ ≤ α,

‖f‖
‖b‖ ≤ β (2.4)

for some tolerances α ≥ 0, β ≥ 0 that reflect the (preferably known)
accuracy of the data. We are naturally interested in minimizing the
size of E and f . If we define the optimization problem

min
ξ,E,f

ξ s.t. (A+ E)xk = b+ f,
‖E‖
‖A‖ ≤ αξ,

‖f‖
‖b‖ ≤ βξ

to have optimal solution ξk, Ek, fk (all functions of xk, α, and β), we
see that xk is an acceptable solution if and only if ξk ≤ 1. We call ξk the
normwise relative backward error (NRBE) for xk.

With rk = b − Axk, the optimal solution ξk, Ek, fk is shown in [75]
to be given by

φk =
β‖b‖

α‖A‖‖xk‖+ β‖b‖ , Ek =
(1− φk)

‖xk‖2
rkx

T
k , (2.5)

ξk =
‖rk‖

α‖A‖‖xk‖+ β‖b‖ , fk = −φkrk. (2.6)

(See [39, p12] for the case β = 0 and [39, §7.1 and p336] for the case
α = β.)

22 CHAPTER 2. A TALE OF TWO ALGORITHMS

2.2.1 STOPPING RULE

For general tolerances α and β, the condition ξk ≤ 1 for xk to be an
acceptable solution becomes

‖rk‖ ≤ α‖A‖‖xk‖+ β‖b‖, (2.7)

the stopping rule used in LSQR for consistent systems [53, p54, rule S1].

2.2.2 MONOTONIC BACKWARD ERRORS

Of interest is the size of the perturbations to A and b for which xk is an
exact solution of Ax = b. From (2.5)–(2.6), the perturbations have the
following norms:

‖Ek‖ = (1− φk)
‖rk‖
‖xk‖

=
α‖A‖‖rk‖

α‖A‖‖xk‖+ β‖b‖ , (2.8)

‖fk‖ = φk‖rk‖ =
β‖b‖‖rk‖

α‖A‖‖xk‖+ β‖b‖ . (2.9)

Since ‖xk‖ is monotonically increasing for CG and MINRES (when A

is spd), we see from (2.5) that φk is monotonically decreasing for both
solvers. Since ‖rk‖ is monotonically decreasing for MINRES (but not for
CG), we have the following result.

Theorem 2.2.1. Suppose α > 0 and β > 0 in (2.4). For CR and MINRES

(but not CG), the relative backward errors ‖Ek‖/‖A‖ and ‖fk‖/‖b‖ decrease

monotonically.

Proof. This follows from (2.8)–(2.9) with ‖xk‖ increasing for both solvers
and ‖rk‖ decreasing for CR and MINRES but not for CG.

2.2.3 OTHER CONVERGENCE MEASURES

Error ‖x∗−xk‖ and energy norm error ‖x∗−xk‖A are two possible mea-
sures of convergence. In trust-region methods [68], some eigenvalue
problems [74], finite element approximations [1], and some other ap-
plications [46; 84], it is desirable to minimize ‖x∗ − xk‖A, which makes
CG a sensible algorithm to use.

We should note that since x∗ is not known, neither ‖x∗ − xk‖ nor
‖x∗−xk‖A can be computed directly from the CG algorithm. However,
bounds and estimates have been derived for ‖x∗−xk‖A [9; 30] and they
can be used for stopping rules based on the energy norm error.

2.3. NUMERICAL RESULTS 23

An alternative stopping criterion is derived for MINRES by Calvetti
et al. [8] based on an L-curve defined by ‖rk‖ and cond(Hk).

2.3 NUMERICAL RESULTS

Here we compare the convergence of CG and MINRES on various spd
systems Ax = b and some associated indefinite systems (A− δI)x = b.
The test examples are drawn from the University of Florida Sparse
Matrix Collection (Davis [18]). We experimented with all 26 cases for
which A is real spd and b is supplied. We compute the condition num-
ber for each test matrix by finding the largest and smallest eigenvalue
using eigs(A,1,’LM’) and eigs(A,1,’SM’) respectively. For this test
set, the condition numbers range from 1.7E+03 to 3.1E+13.

Since A is spd, we applied diagonal preconditioning by redefining
A and b as follows: d = diag(A), D = diag(1./sqrt(d)), A ← DAD,
b ← Db, b ← b/‖b‖. Thus in the figures below we have diag(A) = I

and ‖b‖ = 1. With this preconditioning, the condition numbers range
from 1.2E+01 to 2.2E+11. The distribution of condition number of the
test set matrices before and after preconditioning is shown in Figure
2.1.

The stopping rule used for CG and MINRES was (2.7) with α = 0

and β = 10−8 (that is, ‖rk‖ ≤ 10−8‖b‖ = 10−8).

2.3.1 POSITIVE-DEFINITE SYSTEMS

In defining backward errors, we assume for simplicity that α > 0 and
β = 0 in (2.4)–(2.6), even though it doesn’t match the choice α = 0 and
β = 10−8 in the stopping rule. This gives φk = 0 and ‖Ek‖ = ‖rk‖/‖xk‖
in (2.8). Thus, as in Theorem 2.2.1, we expect ‖Ek‖ to decrease mono-
tonically for CR and MINRES but not for CG.

We also compute ‖x∗−xk‖ and ‖x∗−xk‖A at each iteration for both
algorithms, where x∗ is obtained by MATLAB’s backslash function A\b,
which uses a sparse Cholesky factorization of A [12].

In Figure 2.2 and 2.3, we plot ‖rk‖/‖xk‖, ‖x∗ − xk‖, and ‖x∗ − xk‖A
for CG and MINRES for four different problems. For CG, the plots con-
firm the properties in Theorem 2.1.2 and 2.1.3 that ‖x∗− xk‖ and ‖x∗−
xk‖A are monotonic. For MINRES, the plots confirm the properties in
Theorem 2.2.1, 2.1.8, and 2.1.7 that ‖rk‖/‖xk‖, ‖x∗−xk‖, and ‖x∗−xk‖A
are monotonic.

24 CHAPTER 2. A TALE OF TWO ALGORITHMS

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Matrix ID

C
o
n
d
(A

)

CG vs MINRES test set

original

preconditioned

Figure 2.1: Distribution of condition number for matrices used for CG
vs MINRES comparison, before and after diagonal preconditioning

Figure 2.2 (left) shows problem Schenk_AFE_af_shell8 with A of
size 504855×504855 and cond(A) = 2.7E+05. From the plot of backward
errors ‖rk‖/‖xk‖, we see that both CG and MINRES converge quickly at
the early iterations. Then the backward error of MINRES plateaus at
about iteration 80, and the backward error of CG stays about 1 order of
magnitude behind MINRES. A similar phenomenon of fast convergence
at early iterations followed by slow convergence is also observed in the
energy norm error and 2-norm error plots.

Figure 2.2 (right) shows problem Cannizzo_sts4098 with A of size
19779×19779 and cond(A) = 6.7E+03. MINRES converges slightly faster
in terms of backward error, while CG converges slightly faster in terms
of energy norm error and 2-norm error.

Figure 2.3 (left) shows problem Simon_raefsky4 with A of size 19779×
19779 and cond(A) = 2.2E+11. Because of the high condition number,
both algorithms hit the 5n iteration limit that we set. We see that the
backward error for MINRES converges faster than for CG as expected.
For the energy norm error, CG is able to decrease over 5 orders of mag-
nitude while MINRES plateaus after a 2 orders of magnitude decrease.

2.3. NUMERICAL RESULTS 25

0 200 400 600 800 1000 1200 1400
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

iteration count

lo
g
(|

|r
||
/|
|x

||
)

Name:Schenk_AFE_af_shell8, Dim:504855x504855, nnz:17579155, id=11

CG

MINRES

0 50 100 150 200 250 300 350 400 450
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

(|
|r

||
/|
|x

||
)

Name:Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=13

CG

MINRES

0 200 400 600 800 1000 1200 1400
−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
||
x

k
 −

 x
* ||

A

Schenk_AFE_af_shell8, Dim:504855x504855, nnz:17579155, id=11

CG

MINRES

0 50 100 150 200 250 300 350 400 450
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
||
x

k
 −

 x
* ||

A

Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=13

CG

MINRES

0 200 400 600 800 1000 1200 1400
−5

−4

−3

−2

−1

0

1

2

iteration count

lo
g
||
x

k
 −

 x
* ||

Schenk_AFE_af_shell8, Dim:504855x504855, nnz:17579155, id=11

CG

MINRES

0 50 100 150 200 250 300 350 400 450
−7

−6

−5

−4

−3

−2

−1

0

1

2

iteration count

lo
g
||
x

k
 −

 x
* ||

Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=13

CG

MINRES

Figure 2.2: Comparison of backward and forward errors for CG and MINRES solving two
spd systems Ax = b.
Top: The values of log10(‖rk‖/‖xk‖) are plotted against iteration number k. These values
define log10(‖Ek‖) when the stopping tolerances in (2.7) are α > 0 and β = 0. Middle: The
values of log10 ‖xk − x∗‖A are plotted against iteration number k. This is the quantity that
CG minimizes at each iteration. Bottom: The values of log10 ‖xk − x∗‖.
Left: Problem Schenk_AFE_af_shell8, with n = 504855 and cond(A) = 2.7E+05.
Right: Cannizzo_sts4098, with n = 19779 and cond(A) = 6.7E+03.

26 CHAPTER 2. A TALE OF TWO ALGORITHMS

For both the energy norm error and 2-norm error, MINRES reaches a
lower point than CG for some iterations. This must be due to numeri-
cal error in CG and MINRES (a result of loss of orthogonality in Vk).

Figure 2.3 (right) shows problem BenElechi_BenElechi1 with A of
size 245874 × 245874 and cond(A) = 1.8E+09. The backward error of
MINRES stays ahead of CG by 2 orders of magnitude for most iterations.
Around iteration 32000, the backward error of both algorithms goes
down rapidly and CG catches up with MINRES. Both algorithms exhibit
a plateau on energy norm error for the first 20000 iterations. The error
norms for CG start decreasing around iteration 20000 and decreases
even faster after iteration 30000.

Figure 2.4 shows ‖rk‖ and ‖xk‖ for CG and MINRES on two typical
spd examples. We see that ‖xk‖ is monotonically increasing for both
solvers, and the ‖xk‖ values rise fairly rapidly to their limiting value
‖x∗‖, with a moderate delay for MINRES.

Figure 2.5 shows ‖rk‖ and ‖xk‖ for CG and MINRES on two spd
examples in which the residual decrease and the solution norm in-
crease are somewhat slower than typical. The rise of ‖xk‖ for MINRES is
rather more delayed. In the second case, if the stopping tolerance were
β = 10−6 rather than β = 10−8, the final MINRES ‖xk‖ (k ≈ 10000)

would be less than half the exact value ‖x∗‖. It will be of future inter-
est to evaluate this effect within the context of trust-region methods for
optimization.

WHY DOES ‖rk‖ FOR CG LAG BEHIND MINRES?

It is commonly thought that even though MINRES is known to mini-
mize ‖rk‖ at each iteration, the cumulative minimum of ‖rk‖ for CG

should approximately match that of MINRES. That is,

min
0≤i≤k

‖rCG
i ‖ ≈ ‖rMINRES

k ‖.

However, in Figure 2.2 and 2.3 we see that ‖rk‖ for MINRES is of-
ten smaller than for CG by 1 or 2 orders of magnitude. This phe-
nomenon can be explained by the following relations between ‖rCG

k ‖
and ‖rMINRES

k ‖ [76; 35, Lemma 5.4.1]:

‖rCG
k ‖ =

‖rMINRES
k ‖√

1− ‖rMINRES
k ‖2/‖rMINRES

k−1 ‖2
. (2.10)

2.3. NUMERICAL RESULTS 27

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

iteration count

lo
g
(|

|r
||
/|
|x

||
)

Name:Simon_raefsky4, Dim:19779x19779, nnz:1316789, id=7

CG

MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(|

|r
||
/|
|x

||
)

Name:BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

CG

MINRES

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1

2

3

4

5

iteration count

lo
g
||
x

k
 −

 x
* ||

A

Simon_raefsky4, Dim:19779x19779, nnz:1316789, id=7

CG

MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
||
x

k
 −

 x
* ||

A

BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

CG

MINRES

0 1 2 3 4 5 6 7 8 9 10

x 10
4

4

5

6

7

8

9

10

iteration count

lo
g
||
x

k
 −

 x
* ||

Simon_raefsky4, Dim:19779x19779, nnz:1316789, id=7

CG

MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−5

−4

−3

−2

−1

0

1

2

iteration count

lo
g
||
x

k
 −

 x
* ||

BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

CG

MINRES

Figure 2.3: Comparison of backward and forward errors for CG and MINRES solving two
spd systems Ax = b.
Top: The values of log10(‖rk‖/‖xk‖) are plotted against iteration number k. These values
define log10(‖Ek‖) when the stopping tolerances in (2.7) are α > 0 and β = 0. Middle: The
values of log10 ‖xk − x∗‖A are plotted against iteration number k. This is the quantity that
CG minimizes at each iteration. Bottom: The values of log10 ‖xk − x∗‖.
Left: Problem Simon_raefsky4, with n = 19779 and cond(A) = 2.2E+11.
Right: BenElechi_BenElechi1, with n = 245874 and cond(A) = 1.8E+09.

28 CHAPTER 2. A TALE OF TWO ALGORITHMS

0 0.5 1 1.5 2 2.5 3

x 10
4

−10

−8

−6

−4

−2

0

2

iteration count

lo
g
||
r|

|

Name:Simon_olafu, Dim:16146x16146, nnz:1015156, id=6

CG

MINRES

0 50 100 150 200 250 300 350 400 450
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
||
r|

|

Name:Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=13

CG

MINRES

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

5

iteration count

||
x
||

Name:Simon_olafu, Dim:16146x16146, nnz:1015156, id=6

CG

MINRES

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

iteration count

||
x
||

Name:Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=13

CG

MINRES

Figure 2.4: Comparison of residual and solution norms for CG and MINRES solving two spd
systems Ax = b with n = 16146 and 4098.
Top: The values of log10 ‖rk‖ are plotted against iteration number k. Bottom: The values
of ‖xk‖ are plotted against k. The solution norms grow somewhat faster for CG than for
MINRES. Both reach the limiting value ‖x∗‖ significantly before xk is close to x.

2.3. NUMERICAL RESULTS 29

0 200 400 600 800 1000 1200 1400
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
||
r|

|

Name:Schmid_thermal1, Dim:82654x82654, nnz:574458, id=14

CG

MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

||
r|

|

Name:BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

CG

MINRES

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

iteration count

||
x
||

Name:Schmid_thermal1, Dim:82654x82654, nnz:574458, id=14

CG

MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

10

20

30

40

50

60

70

80

iteration count

||
x
||

Name:BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

CG

MINRES

Figure 2.5: Comparison of residual and solution norms for CG and MINRES solving two spd
systems Ax = b with n = 82654 and 245874. Sometimes the solution norms take longer to
reach the limiting value ‖x‖.
Top: The values of log10 ‖rk‖ are plotted against iteration number k. Bottom: The values of
‖xk‖ are plotted against k. Again the solution norms grow faster for CG.

30 CHAPTER 2. A TALE OF TWO ALGORITHMS

From (2.10), one can infer that if ‖rMINRES
k ‖ decreases a lot between

iterations k−1 and k, then ‖rCG
k ‖would be roughly the same as ‖rMINRES

k ‖.
The converse also holds, in that ‖rCG

k ‖will be much larger than ‖rMINRES
k ‖

if MINRES is almost stalling at iteration k (i.e., ‖rMINRES
k ‖ did not de-

crease much relative to the previous iteration). The above analysis was
pointed out by Titley-Peloquin [76] in comparing LSQR and LSMR. We
repeat the analysis here for CG vs MINRES and extend it to demonstrate
why there is a lag in general for large problems.

With a residual-based stopping rule, CG and MINRES stop when

‖rk‖ ≤ β‖r0‖.

When CG and MINRES stop at iteration ℓ, we have

ℓ∏

k=1

‖rk‖
‖rk−1‖

=
‖rℓ‖
‖r0‖

≈ β.

Thus on average, ‖rMINRES
k ‖/‖rMINRES

k−1 ‖ will be closer to 1 if ℓ is large.
This means that for systems that take more iterations to converge, CG

will lag behind MINRES more (a bigger gap between ‖rCG
k ‖ and ‖rMINRES

k ‖).

2.3.2 INDEFINITE SYSTEMS

A key part of Steihaug’s trust-region method for large-scale uncon-
strained optimization [68] (see also [15]) is his proof that when CG is
applied to a symmetric (possibly indefinite) system Ax = b, the solu-
tion norms ‖x1‖, . . . , ‖xk‖ are strictly increasing as long as pTjApj > 0

for all iterations 1 ≤ j ≤ k. (We are using the notation in Algorithm
1.3.)

From our proof of Theorem 2.1.5, we see that the same property
holds for CR and MINRES as long as both pTjApj > 0 and rTjArj > 0

for all iterations 1 ≤ j ≤ k. Since MINRES might be a useful solver
in the trust-region context, it is of interest now to offer some empirical
results about the behavior of ‖xk‖when MINRES is applied to indefinite
systems.

First, on the nonsingular indefinite system



2 1 1

1 0 1

1 1 2


x =



0

1

1


 , (2.11)

2.3. NUMERICAL RESULTS 31

1 1.5 2 2.5 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration number

||
x

k
||

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Iteration number

||
r k

||
 /

 |
|x

k
||

Figure 2.6: For MINRES on indefinite problem (2.11), ‖xk‖ and the back-
ward error ‖rk‖/‖xk‖ are both slightly non-monotonic.

MINRES gives non-monotonic solution norms, as shown in the left plot
of Figure 2.6. The decrease in ‖xk‖ implies that the backward errors
‖rk‖/‖xk‖may not be monotonic, as illustrated in the right plot.

More generally, we can gain an impression of the behavior of ‖xk‖
by recalling from Choi et al. [14] the connection between MINRES and
MINRES-QLP. Both methods compute the iterates xM

k = Vky
M
k in (1.6)

from the subproblems

yMk = arg min
y∈Rk

‖Hky − β1e1‖ and possibly Tℓy
M
ℓ = β1e1,

where k = ℓ is the last iteration. When A is nonsingular or Ax = b

is consistent (which we now assume), yMk is uniquely defined for each
k ≤ ℓ and the methods compute the same iterates xM

k (but by differ-
ent numerical methods). In fact they both compute the expanding QR
factorizations

Qk

[
Hk β1e1

]
=

[
Rk tk

0 φk

]
,

(with Rk upper tridiagonal) and MINRES-QLP also computes the or-
thogonal factorizations RkPk = Lk (with Lk lower tridiagonal), from
which the kth solution estimate is defined by Wk = VkPk, Lkuk = tk,
and xM

k = Wkuk. As shown in [14, §5.3], the construction of these quan-
tities is such that the first k− 3 columns of Wk are the same as in Wk−1,
and the first k − 3 elements of uk are the same as in uk−1. Since Wk

has orthonormal columns, ‖xM
k ‖ = ‖uk‖, where the first k− 2 elements

of uk are unaltered by later iterations. As shown in [14, §6.5], it means
that certain quantities can be cheaply updated to give norm estimates

32 CHAPTER 2. A TALE OF TWO ALGORITHMS

in the form

χ2 ← χ2 + µ̂2
k−2, ‖xM

k ‖2 = χ2 + µ̃2
k−1 + µ̄2

k,

where it is clear that χ2 increases monotonically. Although the last two
terms are of unpredictable size, ‖xM

k ‖2 tends to be dominated by the
monotonic term χ2 and we can expect that ‖xM

k ‖ will be approximately

monotonic as k increases from 1 to ℓ.
Experimentally we find that for most MINRES iterations on an indef-

inite problem, ‖xk‖ does increase. To obtain indefinite examples that
were sensibly scaled, we used the four spd (A, b) cases in Figures 2.4–
2.5, applied diagonal scaling as before, and solved (A − δI)x = b with
δ = 0.5 and where A and b are now scaled (so that diag(A) = I). The
number of iterations increased significantly but was limited to n.

Figure 2.7 shows log10 ‖rk‖ and ‖xk‖ for the first two cases (where
A is the spd matrices in Figure 2.4). The values of ‖xk‖ are essentially

monotonic. The backward errors ‖rk‖/‖xk‖ (not shown) were even
closer to being monotonic.

Figure 2.7 shows the values of ‖xk‖ for the first two cases (MINRES

applied to (A − δI)x = b, where A is the spd matrices used in Fig-
ure 2.4 and δ = 0.5 is large enough to make the systems indefinite).
The number of iterations increased significantly but again was limited
to n. These are typical examples in which ‖xk‖ is monotonic as in the
spd case.

Figure 2.8 shows ‖xk‖ and log10 ‖rk‖ for the second two cases (where
A is the spd matrices in Figure 2.5). The left example reveals a defi-
nite period of decrease in ‖xk‖. Nevertheless, during the n = 82654

iterations, ‖xk‖ increased 83% of the time and the backward errors
‖rk‖/‖xk‖ decreased 91% of the time. The right example is more like
those in Figure 2.8. During n = 245874 iterations, ‖xk‖ increased 83%
of the time, the backward errors ‖rk‖/‖xk‖ decreased 91% of the time,
and any nonmonotonicity was very slight.

2.4 SUMMARY

Our experimental results here provide empirical evidence that MINRES

can often stop much sooner than CG on spd systems when the stopping
rule is based on backward error norms ‖rk‖/‖xk‖ (or the more general
norms in (2.8)–(2.9)). On the other hand, CG generates iterates xk with
smaller ‖x∗−xk‖A and ‖x∗−xk‖, and is recommended in applications

2.4. SUMMARY 33

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Simon_olafu, Dim:16146x16146, nnz:1015156, id=32

iteration count

lo
g

||
r|

|

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−2.5

−2

−1.5

−1

−0.5

0

Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=39

iteration count

lo
g
||
r|

|

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

4

5

6

7

8

9

Simon_olafu, Dim:16146x16146, nnz:1015156, id=32

iteration count

||
x
||

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

Cannizzo_sts4098, Dim:4098x4098, nnz:72356, id=39

iteration count

||
x
||

Figure 2.7: Residual norms and solution norms when MINRES is applied to two indefinite
systems (A− δI)x = b, where A is the spd matrices used in Figure 2.4 (n = 16146 and 4098)
and δ = 0.5 is large enough to make the systems indefinite.
Top: The values of log10 ‖rk‖ are plotted against iteration number k for the first n iterations.
Bottom left: The values of ‖xk‖ are plotted against k. During the n = 16146 iterations, ‖xk‖
increased 83% of the time and the backward errors ‖rk‖/‖xk‖ (not shown here) decreased
96% of the time.
Bottom right: During the n = 4098 iterations, ‖xk‖ increased 90% of the time and the back-
ward errors ‖rk‖/‖xk‖ (not shown here) decreased 98% of the time.

34 CHAPTER 2. A TALE OF TWO ALGORITHMS

0 1 2 3 4 5 6 7 8 9

x 10
4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Schmid_thermal1, Dim:82654x82654, nnz:574458, id=40

iteration count

lo
g
||
r|

|

0 0.5 1 1.5 2 2.5

x 10
5

−3

−2.5

−2

−1.5

−1

−0.5

0

BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=48

iteration count

lo
g
||
r|

|

0 1 2 3 4 5 6 7 8 9

x 10
4

0

50

100

150

200

250

300

350

400

Schmid_thermal1, Dim:82654x82654, nnz:574458, id=40

iteration count

||
x
||

0 0.5 1 1.5 2 2.5

x 10
5

0

50

100

150

200

250

300

350

400

BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=48

iteration count

||
x
||

Figure 2.8: Residual norms and solution norms when MINRES is applied to two indefinite
systems (A−δI)x = b, where A is the spd matrices used in Figure 2.5 (n = 82654 and 245874)
and δ = 0.5 is large enough to make the systems indefinite.
Top: The values of log10 ‖rk‖ are plotted against iteration number k for the first n iterations.
Bottom left: The values of ‖xk‖ are plotted against k. There is a mild but clear decrease
in ‖xk‖ over an interval of about 1000 iterations. During the n = 82654 iterations, ‖xk‖
increased 83% of the time and the backward errors ‖rk‖/‖xk‖ (not shown here) decreased
91% of the time.
Bottom right: The solution norms and backward errors are essentially monotonic. During
the n = 245874 iterations, ‖xk‖ increased 88% of the time and the backward errors ‖rk‖/‖xk‖
(not shown here) decreased 95% of the time.

2.4. SUMMARY 35

where these quantities should be minimized.
For full-rank least-squares problems min ‖Ax− b‖, the solver LSQR

[53; 54] is equivalent to CG on the (spd) normal equation ATAx = ATb.
This suggests that a MINRES-based algorithm for least-squares may
share the same advantage as MINRES for symmetric systems, especially
in the case of early termination. LSMR is designed on such a basis. The
derivation of LSMR is presented in Chapter 3. Numerical experiments
in Chapter 4 show that LSMR has more good properties than our origi-
nal expectation.

Theorem 2.1.5 shows that MINRES shares a known property of CG:
that ‖xk‖ increases monotonically when A is spd. This implies that
‖xk‖ is monotonic for LSMR (as conjectured in [24]), and suggests that
MINRES might be a useful alternative to CG in the context of trust-
region methods for optimization.

3
LSMR

We present a numerical method called LSMR for computing a solution
x to the following problems:

Unsymmetric equations: minimize ‖x‖2 subject to Ax = b

Linear least squares (LS): minimize ‖Ax− b‖2

Regularized least squares: minimize

∥∥∥∥∥

(
A

λI

)
x−

(
b

0

)∥∥∥∥∥
2

where A ∈ R
m×n, b ∈ R

m, and λ ≥ 0, with m ≤ n or m ≥ n. The matrix
A is used as an operator for which products of the form Av and ATu

can be computed for various v and u. (If A is symmetric or Hermitian
and λ = 0, MINRES [52] or MINRES-QLP [14] are applicable.)

LSMR is similar in style to the well known method LSQR [53; 54] in
being based on the Golub-Kahan bidiagonalization of A [29]. LSQR is
equivalent to the conjugate-gradient (CG) method applied to the nor-
mal equation (ATA+λ2I)x = ATb. It has the property of reducing ‖rk‖
monotonically, where rk = b− Axk is the residual for the approximate
solution xk. (For simplicity, we are letting λ = 0.) In contrast, LSMR is
equivalent to MINRES applied to the normal equation, so that the quan-
tities ‖ATrk‖ are monotonically decreasing. We have also proved that
‖rk‖ is monotonically decreasing, and in practice it is never very far
behind the corresponding value for LSQR. Hence, although LSQR and
LSMR ultimately converge to similar points, it is safer to use LSMR in
situations where the solver must be terminated early.

Stopping conditions are typically based on backward error: the norm
of some perturbation to A for which the current iterate xk solves the
perturbed problem exactly. Experiments on many sparse LS test prob-
lems show that for LSMR, a certain cheaply computable backward error
for each xk is close to the optimal (smallest possible) backward error.
This is an unexpected but highly desirable advantage.

OVERVIEW

Section 3.1 derives the basic LSMR algorithm with λ = 0. Section 3.2
derives various norms and stopping criteria. Section 3.3.2 discusses

36

3.1. DERIVATION OF LSMR 37

singular systems. Section 3.4 compares the complexity of LSQR and
LSMR. Section 3.5 derives the LSMR algorithm with λ ≥ 0. Section 3.6
proves one of the main lemmas.

3.1 DERIVATION OF LSMR

We begin with the Golub-Kahan process Bidiag(A, b) [29], an iterative
procedure for transforming

(
b A

)
to upper-bidiagonal form

(
β1e1 Bk

)
.

The process was introduced in 1.4.1. Since it is central to the develop-
ment of LSMR, we will restate it here in more detail.

3.1.1 THE GOLUB-KAHAN PROCESS

1. Set β1u1 = b (that is, β1 = ‖b‖, u1 = b/β1) and α1v1 = ATu1.

2. For k = 1, 2, . . . , set

βk+1uk+1 = Avk − αkuk

αk+1vk+1 = ATuk+1 − βk+1vk. (3.1)

After k steps, we have

AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1,

where we define Vk =
(
v1 v2 . . . vk

)
, Uk =

(
u1 u2 . . . uk

)
,

and

Bk =




α1

β2 α2

.

βk αk

βk+1




, Lk+1 =
(
Bk αk+1ek+1

)
.

Now consider

ATAVk = ATUk+1Bk = Vk+1L
T
k+1Bk = Vk+1

(
BT

k

αk+1e
T
k+1

)
Bk

= Vk+1

(
BT

kBk

αk+1βk+1e
T
k

)
. (3.2)

38 CHAPTER 3. LSMR

This is equivalent to what would be generated by the symmetric Lanc-
zos process with matrix ATA and starting vector ATb,1 and the columns1For this reason we de-

fine β̄k ≡ αkβk below. of Vk lie in the Krylov subspace Kk(A
TA,ATb).

3.1.2 USING GOLUB-KAHAN TO SOLVE THE NORMAL EQUATION

Krylov subspace methods for solving linear equations form solution
estimates xk = Vkyk for some yk, where the columns of Vk are an ex-
panding set of theoretically independent vectors.22In this case, Vk and

also Uk are theoretically or-
thonormal. For the equation ATAx = ATb, any solution x has the property of

minimizing ‖r‖, where r = b − Ax is the corresponding residual vec-
tor. Thus, in the development of LSQR it was natural to choose yk to
minimize ‖rk‖ at each stage. Since

rk = b−AVkyk = β1u1 − Uk+1Bkyk = Uk+1(β1e1 −Bkyk), (3.3)

where Uk+1 is theoretically orthonormal, the subproblem minyk
‖β1e1−

Bkyk‖ easily arose. In contrast, for LSMR we wish to minimize ‖ATrk‖.
Let β̄k ≡ αkβk for all k. Since ATrk = ATb−ATAxk = β1α1v1−ATAVkyk,
from (3.2) we have

ATrk = β̄1v1 − Vk+1

(
BT

kBk

αk+1βk+1e
T
k

)
yk = Vk+1

(
β̄1e1 −

(
BT

kBk

β̄k+1e
T
k

)
yk

)
,

and we are led to the subproblem

min
yk

‖AT rk‖ = min
yk

∥∥∥∥∥β̄1e1 −
(

BT
kBk

β̄k+1e
T
k

)
yk

∥∥∥∥∥ . (3.4)

Efficient solution of this LS subproblem is the heart of algorithm LSMR.

3.1.3 TWO QR FACTORIZATIONS

As in LSQR, we form the QR factorization

Qk+1Bk =

(
Rk

0

)
, Rk =




ρ1 θ2

ρ2
. . .
. . . θk

ρk




. (3.5)

3.1. DERIVATION OF LSMR 39

If we define tk = Rkyk and solve RT
kqk = β̄k+1ek, we have qk =

(β̄k+1/ρk)ek = ϕkek with ρk = (Rk)kk and ϕk ≡ β̄k+1/ρk. Then we per-
form a second QR factorization

Q̄k+1

(
RT

k β̄1e1

ϕke
T
k 0

)
=

(
R̄k zk

0 ζ̄k+1

)
, R̄k =




ρ̄1 θ̄2

ρ̄2
. . .
. . . θ̄k

ρ̄k




. (3.6)

Combining what we have with (3.4) gives

min
yk

‖AT rk‖ = min
yk

∥∥∥∥∥β̄1e1 −
(
RT

kRk

qTk Rk

)
yk

∥∥∥∥∥ = min
tk

∥∥∥∥∥β̄1e1 −
(

RT
k

ϕke
T
k

)
tk

∥∥∥∥∥

= min
tk

∥∥∥∥∥

(
zk

ζ̄k+1

)
−
(
R̄k

0

)
tk

∥∥∥∥∥ . (3.7)

The subproblem is solved by choosing tk from R̄ktk = zk.3 3Since every element of
tk changes in each iteration,
it is never constructed ex-
plicitly. Instead, the recur-
rences derived in the follow-
ing sections are used.

3.1.4 RECURRENCE FOR xk

Let Wk and W̄k be computed by forward substitution from RT
k W

T
k =

V T
k and R̄T

k W̄
T
k = WT

k . Then from xk = Vkyk, Rkyk = tk, and R̄ktk =

zk, we have x0 ≡ 0 and

xk = WkRkyk = Wktk = W̄kR̄ktk = W̄kzk = xk−1 + ζkw̄k.

3.1.5 RECURRENCE FOR Wk AND W̄k

If we write

Vk =
(
v1 v2 · · · vk

)
, Wk =

(
w1 w2 · · · wk

)
,

W̄k =
(
w̄1 w̄2 · · · w̄k

)
, zk =

(
ζ1 ζ2 · · · ζk

)T
,

an important fact is that when k increases to k+1, all quantities remain
the same except for one additional term.

The first QR factorization proceeds as follows. At iteration k we
construct a plane rotation operating on rows l and l + 1:

Pl =




Il−1

cl sl

−sl cl

Ik−l


 .

40 CHAPTER 3. LSMR

Now if Qk+1 = Pk . . . P2P1, we have

Qk+1Bk+1 = Qk+1

(
Bk αk+1ek+1

βk+2

)
=



Rk θk+1ek

0 ᾱk+1

βk+2


 ,

Qk+2Bk+1 = Pk+1



Rk θk+1ek

0 ᾱk+1

βk+2


 =



Rk θk+1ek

0 ρk+1

0 0


 ,

and we see that θk+1 = skαk+1 = (βk+1/ρk)αk+1 = β̄k+1/ρk = ϕk.
Therefore we can write θk+1 instead of ϕk.

For the second QR factorization, if Q̄k+1 = P̄k . . . P̄2P̄1 we know
that

Q̄k+1

(
RT

k

θk+1e
T
k

)
=

(
R̄k

0

)
,

and so

Q̄k+2

(
RT

k+1

θk+2e
T
k+1

)
= P̄k+1



R̄k θ̄k+1ek

c̄kρk+1

θk+2


 =



R̄k θ̄k+1ek

ρ̄k+1

0


 . (3.8)

By considering the last row of the matrix equation RT
k+1W

T
k+1 = V T

k+1

and the last row of R̄T
k+1W̄

T
k+1 = WT

k+1 we obtain equations that define
wk+1 and w̄k+1:

θk+1w
T
k + ρk+1w

T
k+1 = vTk+1,

θ̄k+1w̄
T
k + ρ̄k+1w̄

T
k+1 = wT

k+1.

3.1.6 THE TWO ROTATIONS

To summarize, the rotations Pk and P̄k have the following effects on
our computation:

(
ck sk

−sk ck

)(
ᾱk

βk+1 αk+1

)
=

(
ρk θk+1

0 ᾱk+1

)

(
c̄k s̄k

−s̄k c̄k

)(
c̄k−1ρk ζ̄k

θk+1 ρk+1

)
=

(
ρ̄k θ̄k+1 ζk

0 c̄kρk+1 ζ̄k+1

)
.

3.1. DERIVATION OF LSMR 41

Algorithm 3.1 Algorithm LSMR

1: (Initialize)

β1u1 = b α1v1 = ATu1 ᾱ1 = α1 ζ̄1 = α1β1 ρ0 = 1 ρ̄0 = 1

c̄0 = 1 s̄0 = 0 h1 = v1 h̄0 = 0 x0 = 0

2: for k = 1, 2, 3 . . . do
3: (Continue the bidiagonalization)

βk+1uk+1 = Avk − αkuk, αk+1vk+1 = ATuk+1 − βk+1vk

4: (Construct and apply rotation Pk)

ρk =
(
ᾱ2
k + β2

k+1

) 1
2 ck = ᾱk/ρk sk = βk+1/ρk (3.9)

θk+1 = skαk+1 ᾱk+1 = ckαk+1 (3.10)

5: (Construct and apply rotation P̄k)

θ̄k = s̄k−1ρk ρ̄k =
(
(c̄k−1ρk)

2 + θ2k+1

) 1
2

c̄k = c̄k−1ρk/ρ̄k s̄k = θk+1/ρ̄k (3.11)
ζk = c̄k ζ̄k ζ̄k+1 = −s̄k ζ̄k (3.12)

6: (Update h, h̄ x)

h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

xk = xk−1 + (ζk/(ρkρ̄k))h̄k

hk+1 = vk+1 − (θk+1/ρk)hk

7: end for

3.1.7 SPEEDING UP FORWARD SUBSTITUTION

The forward substitutions for computing w and w̄ can be made more
efficient if we define hk = ρkwk and h̄k = ρkρ̄kw̄k. We then obtain the
updates described in part 6 of the pseudo-code below.

3.1.8 ALGORITHM LSMR

Algorithm 3.1 summarizes the main steps of LSMR for solving Ax ≈ b,
excluding the norms and stopping rules developed later.

42 CHAPTER 3. LSMR

3.2 NORMS AND STOPPING RULES

For any numerical computation, it is impossible to obtain a result with
less relative uncertainty than the input data. Thus, in solving linear
systems with iterative methods, it is important to know when we have
arrived at a solution with the best level of accuracy permitted, in order
to terminate before we waste computational effort.

Sections 3.2.1 and 3.2.2 discusses various criteria used in stopping
LSMR at the appropriate number of iterations. Sections 3.2.3, 3.2.4, 3.2.5
and 3.2.6 derive efficient ways to compute ‖rk‖, ‖AT rk‖, ‖xk‖ and es-
timate ‖A‖ and cond(A) for the stopping criteria to be implemented
efficiently. All quantities require O(1) computation each iteration.

3.2.1 STOPPING CRITERIA

With exact arithmetic, the Golub-Kahan process terminates when either
αk+1 = 0 or βk+1 = 0. For certain data b, this could happen in practice
when k is small (but is unlikely later because of rounding error). We
show that LSMR will have solved the problem at that point and should
therefore terminate.

When αk+1 = 0, with the expression of ‖AT rk‖ from section 3.2.4,
we have

‖AT rk‖ = |ζ̄k+1| = |s̄k ζ̄k| = |θk+1ρ̄
−1
k ζ̄k| = |skαk+1ρ̄

−1
k ζ̄k| = 0,

where (3.12), (3.11), (3.10) are used. Thus, a least-squares solution has
been obtained.

When βk+1 = 0, we have

sk = βk+1ρ
−1
k = 0. (from (3.9)) (3.13)

β̈k+1 = −skβ̈k = 0. (from (3.19), (3.13)) (3.14)

β̇k = c̃−1
k

(
β̃k − s̃k(−1)ks(k)ck+1β1

)
(from (3.30))

= c̃−1
k β̃k (from (3.13))

= ρ̇−1
k ρ̃kβ̃k (from (3.20))

= ρ̇−1
k ρ̃k τ̃k (from Lemma 3.2.1)

= τ̇k. (from (3.26), (3.27)) (3.15)

By using (3.21) (derived in Section 3.2.3), we conclude that ‖rk‖ = 0

from (3.15) and (3.14), so the system is consistent and Axk = b.

3.2. NORMS AND STOPPING RULES 43

3.2.2 PRACTICAL STOPPING CRITERIA

For LSMR we use the same stopping rules as LSQR [53], involving di-
mensionless quantities ATOL, BTOL, CONLIM:

S1: Stop if ‖rk‖ ≤ BTOL‖b‖+ ATOL‖A‖‖xk‖

S2: Stop if ‖AT rk‖ ≤ ATOL‖A‖‖rk‖

S3: Stop if cond(A) ≥ CONLIM

S1 applies to consistent systems, allowing for uncertainty in A and b

[39, Theorem 7.1]. S2 applies to inconsistent systems and comes from
Stewart’s backward error estimate ‖E2‖ assuming uncertainty in A; see
Section 4.1.1. S3 applies to any system.

3.2.3 COMPUTING ‖rk‖

We transform R̄T
k to upper-bidiagonal form using a third QR factoriza-

tion: R̃k = Q̃kR̄
T
k with Q̃k = P̃k−1 . . . P̃1. This amounts to one addi-

tional rotation per iteration. Now let

t̃k = Q̃ktk, b̃k =

(
Q̃k

1

)
Qk+1e1β1. (3.16)

Then from (3.3), rk = Uk+1(β1e1 −Bkyk) gives

rk = Uk+1

(
β1e1 −QT

k+1

(
Rk

0

)
yk

)

= Uk+1

(
β1e1 −QT

k+1

(
tk

0

))

= Uk+1

(
QT

k+1

(
Q̃T

k

1

)
b̃k −QT

k+1

(
Q̃T

k t̃k

0

))

= Uk+1Q
T
k+1

(
Q̃T

k

1

)(
b̃k −

(
t̃k

0

))
.

Therefore, assuming orthogonality of Uk+1, we have

‖rk‖ =
∥∥∥∥∥b̃k −

(
t̃k

0

)∥∥∥∥∥ . (3.17)

44 CHAPTER 3. LSMR

Algorithm 3.2 Computing ‖rk‖ in LSMR

1: (Initialize)

β̈1 = β1 β̇0 = 0 ρ̇0 = 1 τ̃−1 = 0 θ̃0 = 0 ζ0 = 0

2: for the kth iteration do
3: (Apply rotation Pk)

β̂k = ckβ̈k β̈k+1 = −skβ̈k (3.19)

4: (If k ≥ 2, construct and apply rotation P̃k−1)

ρ̃k−1 =
(
ρ̇2k−1 + θ̄2k

) 1
2

c̃k−1 = ρ̇k−1/ρ̃k−1 s̃k−1 = θ̄k/ρ̃k−1 (3.20)

θ̃k = s̃k−1ρ̄k ρ̇k = c̃k−1ρ̄k

β̃k−1 = c̃k−1β̇k−1 + s̃k−1β̂k β̇k = −s̃k−1β̇k−1 + c̃k−1β̂k

5: (Update t̃k by forward substitution)

τ̃k−1 = (ζk−1 − θ̃k−1τ̃k−2)/ρ̃k−1 τ̇k = (ζk − θ̃k τ̃k−1)/ρ̇k

6: (Form ‖rk‖)

γ = (β̇k − τ̇k)
2 + β̈2

k+1, ‖rk‖ =
√
γ (3.21)

7: end for

The vectors b̃k and t̃k can be written in the form

b̃k =
(
β̃1 · · · β̃k−1 β̇k β̈k+1

)T

t̃k =
(
τ̃1 · · · τ̃k−1 τ̇k

)T
. (3.18)

The vector t̃k is computed by forward substitution from R̃T
k t̃k = zk.

Lemma 3.2.1. In (3.17)–(3.18), β̃i = τ̃i for i = 1, . . . , k − 1.

Proof. Section 3.6 proves the lemma by induction.

Using this lemma we can estimate ‖rk‖ from just the last two ele-
ments of b̃k and the last element of t̃k, as shown in (3.21).

Algorithm 3.2 summarizes how ‖rk‖may be obtained from quanti-
ties arising from the first and third QR factorizations.

3.2. NORMS AND STOPPING RULES 45

3.2.4 COMPUTING ‖ATrk‖

From (3.7), we have ‖ATrk‖ = |ζ̄k+1|.

3.2.5 COMPUTING ‖xk‖

From Section 3.1.4 we have xk = VkR
−1
k R̄−1

k zk. From the third QR
factorization Q̃kR̄

T
k = R̃k in Section 3.2.3 and a fourth QR factorization

Q̂k(Q̃kRk)
T = R̂k we can write

xk = VkR
−1
k R̄−1

k zk = VkR
−1
k R̄−1

k R̄kQ̃
T
k z̃k

= VkR
−1
k Q̃T

k Q̃kRkQ̂
T
k ẑk = VkQ̂

T
k ẑk,

where z̃k and ẑk are defined by forward substitutions R̃T
k z̃k = zk and

R̂T
k ẑk = z̃k. Assuming orthogonality of Vk we arrive at the estimate
‖xk‖ = ‖ẑk‖. Since only the last diagonal of R̃k and the bottom 2 × 2

part of R̂k change each iteration, this estimate of ‖xk‖ can again be
updated cheaply. The pseudo-code, omitted here, can be derived as in
Section 3.2.3.

3.2.6 ESTIMATES OF ‖A‖ AND COND(A)

It is known that the singular values of Bk are interlaced by those of A
and are bounded above and below by the largest and smallest nonzero
singular values of A [53]. Therefore we can estimate ‖A‖ and cond(A)

by ‖Bk‖ and cond(Bk) respectively. Considering the Frobenius norm
of Bk, we have the recurrence relation

‖Bk+1‖2F = ‖Bk‖2F + α2
k + β2

k+1.

From (3.5)–(3.6) and (3.8), we can show that the following QLP factor-
ization [71] holds:

Qk+1BkQ̄
T
k =

(
R̄T

k−1

θ̄ke
T
k−1 c̄k−1ρk

)

(the same as R̄T
k except for the last diagonal). Since the singular val-

ues of Bk are approximated by the diagonal elements of that lower-
bidiagonal matrix [71], and since the diagonals are all positive, we
can estimate cond(A) by the ratio of the largest and smallest values
in {ρ̄1, . . . , ρ̄k−1, c̄k−1ρk}. Those values can be updated cheaply.

46 CHAPTER 3. LSMR

3.3 LSMR PROPERTIES

With x∗ denoting the pseudoinverse solution of min ‖Ax− b‖, we have
the following theorems on the norms of various quantities for LSMR.

3.3.1 MONOTONICITY OF NORMS

A number of monotonic properties for LSQR follow directly from the
corresponding properties for CG in Section 2.1.1. We list them here
from completeness.

Theorem 3.3.1. ‖xk‖ is strictly increasing for LSQR.

Proof. LSQR on min ‖Ax − b‖ is equivalent to CG on ATAx = ATb. By
Theorem 2.1.1, ‖xk‖ is strictly increasing.

Theorem 3.3.2. ‖x∗ − xk‖ is strictly decreasing for LSQR.

Proof. This follows from Theorem 2.1.2 for CG.

Theorem 3.3.3. ‖x∗ − xk‖ATA = ‖A(x∗ − xk)‖ = ‖r∗ − rk‖ is strictly

decreasing for LSQR.

Proof. This follows from Theorem 2.1.3 for CG.

We also have the characterizing property for LSQR [53].

Theorem 3.3.4. ‖rk‖ is strictly decreasing for LSQR.

Next, we prove a number of monotonic properties for LSMR. We
would like to emphasize that LSMR has all the above monotonic prop-
erties that LSQR enjoys. In addition, ‖ATrk‖ is monotonic for LSMR.
This gives LSMR a much smoother convergence behavior in terms of
the Stewart backward error, as shown in Figure 4.2.

Theorem 3.3.5. ‖ATrk‖ is monotonically decreasing for LSMR.

Proof. From Section 3.2.4 and (3.12), ‖ATrk‖ = |ζ̄k+1| = |s̄k||ζ̄k| ≤ |ζ̄k| =
‖ATrk−1‖.

Theorem 3.3.6. ‖xk‖ is strictly increasing for LSMR on min ‖Ax− b‖ when

A has full column rank.

Proof. LSMR on min ‖Ax− b‖ is equivalent to MINRES on ATAx = ATb.
When A has full column rank, ATA is symmetric positive definite. By
Theorem 2.1.6, ‖xk‖ is strictly increasing.

3.3. LSMR PROPERTIES 47

Algorithm 3.3 Algorithm CRLS

1: x0 = 0, r̄0 = ATb, s0 = ATAr̄0, ρ0 = r̄T0s0, p0 = r̄0, q0 = s0
2: for k = 1, 2, . . . do
3: αk = ρk−1/‖qk−1‖2
4: xk = xk−1 + αkpk−1

5: r̄k = r̄k−1 − αkqk−1

6: sk = ATAr̄k
7: ρk = r̄Tksk
8: βk = ρk/ρk−1

9: pk = r̄k + βkpk−1

10: qk = sk + βkqk−1

11: end for

Theorem 3.3.7. The error ‖x∗ − xk‖ is strictly decreasing for LSMR on

min ‖Ax− b‖ when A has full column rank.

Proof. This follows directly from Theorem 2.1.7 for MINRES.

Theorem 3.3.8. ‖x∗ − xk‖ATA = ‖r∗ − rk‖ is strictly decreasing for LSMR

on min ‖Ax− b‖ when A has full column rank.

Proof. This follows directly from Theorem 2.1.8 for MINRES.

Since LSMR is equivalent to MINRES on the normal equation, and CR

is a non-Lanczos equivalent of MINRES, we can apply CR to the normal
equation to derive a non-Lanczos equivalent of LSMR, which we will
call CRLS. We start from CR (Algorithm 1.3) and apply the substitutions
A→ ATA, b→ ATb. Since rk in CR would correspond to ATrk in CRLS,
we rename rk to r̄k in the algorithm to avoid confusion. With these
substitutions, we arrive at Algorithm 3.3.

In CRLS, the residual rk = b − Axk is not computed. However, we
know that r0 = b0 and that rk satisfies the recurrence relation:

rk = b−Axk = b−Axk−1 − αkApk−1 = rk−1 − αkApk−1. (3.22)

Also, as mentioned, we define

r̄k = ATrk. (3.23)

Let ℓ denote the iteration at which LSMR terminates; i.e. ATrℓ = r̄ℓ = 0

and xℓ = x∗. Then Theorem 2.1.4 for CR translates to the following.

48 CHAPTER 3. LSMR

Theorem 3.3.9. These properties hold for Algorithm CRLS:

(a) qTi qj = 0 (0 ≤ i, j ≤ ℓ− 1, i 6= j)

(b) rTi qj = 0 (0 ≤ i, j ≤ ℓ− 1, i ≥ j + 1)

(c) r̄i 6= 0⇒ pi 6= 0 (0 ≤ i ≤ ℓ− 1)

Also, Theorem 2.1.5 for CR translates to the following.

Theorem 3.3.10. These properties hold for Algorithm CRLS on a least-squares

system min ‖Ax− b‖ when A has full column rank:

(a) αi > 0 (i = 1, . . . , ℓ)

(b) βi > 0 (i = 1, . . . , ℓ− 1)

βℓ = 0

(c) pTi qj > 0 (0 ≤ i, j ≤ ℓ− 1)

(d) pTi pj > 0 (0 ≤ i, j ≤ ℓ− 1)

(e) xT
i pj > 0 (1 ≤ i ≤ ℓ, 0 ≤ j ≤ ℓ− 1)

(f) r̄Ti pj > 0 (0 ≤ i ≤ ℓ− 1, 0 ≤ j ≤ ℓ− 1)

Theorem 3.3.11. For CRLS (and hence LSMR) on min ‖Ax− b‖ when A has

full column rank, ‖rk‖ is strictly decreasing.

Proof.

‖rk−1‖2 − ‖rk‖2 = rTk−1rk−1 − rTk rk

= 2αkr
T
k Apk−1 + α2

kp
T
k−1A

TApk−1 by (3.22)

= 2αk(A
Trk)

T pk−1 + α2
k‖Apk−1‖2

> 2αk(A
Trk)

T pk−1 by Thm 3.3.9 (c)

and Thm 3.3.10 (a)

= 2αkr̄
T
k pk−1 by (3.23)

≥ 0,

where the last inequality follows from Theorem 3.3.10 (a) and (f), and
is strict except at k = ℓ. The strict inequality on line 4 requires the fact
that A has full column rank. Therefore we have ‖rk−1‖ > ‖rk‖.

3.3.2 CHARACTERISTICS OF THE SOLUTION ON SINGULAR SYSTEMS

The least-squares problem min ‖Ax− b‖ has a unique solution when A

has full column rank. If A does not have full column rank, infinitely

3.3. LSMR PROPERTIES 49

many points x give the minimum value of ‖Ax − b‖. In particular, the
normal equation ATAx = ATb is singular but consistent. We show that
LSQR and LSMR both give the minimum-norm LS solution. That is, they
both solve the optimization problem min ‖x‖2 such that ATAx = ATb.
Let N(A) and R(A) denote the nullspace and range of a matrix A.

Lemma 3.3.12. If A ∈ R
m×n and p ∈ R

n satisfy ATAp = 0, then p ∈ N(A).

Proof. ATAp = 0⇒ pTATAp = 0⇒ (Ap)TAp = 0⇒ Ap = 0.

Theorem 3.3.13. LSQR returns the minimum-norm solution.

Proof. The final LSQR solution satisfies ATAxLSQR
ℓ = ATb, and any other

solution x̂ satisfies ATAx̂ = ATb. With p = x̂ − xLSQR
ℓ , the difference

between the two normal equations gives ATAp = 0, so that Ap = 0 by
Lemma 3.3.12. From α1v1 = ATu1 and αk+1vk+1 = ATuk+1 − βk+1vk

(3.1), we have v1, . . . , vℓ ∈ R(AT). With Ap = 0, this implies pTVℓ = 0,
so that

‖x̂‖22 − ‖xLSQR
ℓ ‖22 = ‖xLSQR

ℓ + p‖22 − ‖xLSQR
ℓ ‖22 = pTp+ 2pTxLSQR

ℓ

= pTp+ 2pTVℓy
LSQR
ℓ

= pTp ≥ 0.

Corollary 3.3.14. LSMR returns the minimum-norm solution.

Proof. At convergence, αℓ+1 = 0 or βℓ+1 = 0. Thus β̄ℓ+1 = αℓ+1βℓ+1 =

0, which means equation (3.4) becomes min ‖β̄1e1−BT
ℓBℓyℓ‖ and hence

BT
ℓBℓyℓ = β̄1e1, since Bℓ has full rank. This is the normal equation for

min ‖Bℓyℓ − β1e1‖, the same LS subproblem solved by LSQR. We con-
clude that at convergence, yℓ = yLSQR

ℓ and thus xℓ = Vℓyℓ = Vℓy
LSQR
ℓ =

xLSQR
ℓ , and Theorem 3.3.13 applies.

3.3.3 BACKWARD ERROR

For completeness, we state a final desirable result about LSMR. The
Stewart backward error ‖ATrk‖/‖rk‖ for LSMR is always less than or
equal to that for LSQR. See Chapter 4, Theorem 4.1.1 for details.

50 CHAPTER 3. LSMR

Table 3.1 Storage and computational cost for various least-squares
methods

Storage Work
m n m n

LSMR p=Av, u x, v=ATu, h, h̄ 3 6
LSQR p=Av, u x, v=ATu,w 3 5
MINRES on ATAx=ATb p=Av x, v1, v2=ATp, w1, w2, w3 8

3.4 COMPLEXITY

We compare the storage requirement and computational complexity
for LSMR and LSQR on Ax ≈ b and MINRES on the normal equation
ATAx = ATb. In Table 3.1, we list the vector storage needed (excluding
storage for A and b). Recall that A is m × n and for LS systems m

may be considerably larger than n. Av denotes the working storage for
matrix-vector products. Work represents the number of floating-point
multiplications required at each iteration.

From Table 3.1, we see that LSMR requires storage of one extra vec-
tor, and also n more scalar floating point multiplication when com-
pared to LSQR. This difference is negligible compared to the cost of
performing Av and ATu multiplication for most problems. Thus, the
computational and storage complexity of LSMR is comparable to LSQR.

3.5 REGULARIZED LEAST SQUARES

In this section we extend LSMR to the regularized LS problem

min

∥∥∥∥∥

(
A

λI

)
x−

(
b

0

)∥∥∥∥∥
2

, (3.24)

where λ is a nonnegative scalar. If Ā =
(

A
λI

)
and r̄k = (b

0)− Āxk, then

ĀT r̄k = AT rk − λ2xk = Vk+1

(
β̄1e1 −

(
BT

kBk

β̄k+1e
T
k

)
yk − λ2

(
yk

0

))

= Vk+1

(
β̄1e1 −

(
RT

kRk

β̄k+1e
T
k

)
yk

)

3.5. REGULARIZED LEAST SQUARES 51

and the rest of the main algorithm follows the same as in the unregu-
larized case. In the last equality, Rk is defined by the QR factorization

Q2k+1

(
Bk

λI

)
=

(
Rk

0

)
, Q2k+1 ≡ PkP̂k . . . P2P̂2P1P̂1,

where P̂l is a rotation operating on rows l and l + k + 1. The effects of
P̂1 and P1 are illustrated here:

P̂1




α1

β2 α2

β3

λ

λ




=




α̂1

β2 α2

β3

0

λ




, P1




α̂1

β2 α2

β3

λ




=




ρ1 θ2

ᾱ2

β3

λ




.

3.5.1 EFFECTS ON ‖r̄k‖

Introduction of regularization changes the residual norm as follows:

r̄k =

(
b

0

)
−
(
A

λI

)
xk =

(
u1

0

)
β1 −

(
AVk

λVk

)
yk

=

(
u1

0

)
β1 −

(
Uk+1Bk

λVk

)
yk

=

(
Uk+1

Vk

)(
e1β1 −

(
Bk

λI

)
yk

)

=

(
Uk+1

Vk

)(
e1β1 −QT

2k+1

(
Rk

0

)
yk

)

=

(
Uk+1

Vk

)(
e1β1 −QT

2k+1

(
tk

0

))

=

(
Uk+1

Vk

)
QT

2k+1

(
Q̃T

k

1

)(
b̃k −

(
t̃k

0

))

with b̃k =
(

Q̃k

1

)
Q2k+1e1β1, where we adopt the notation

b̃k =
(
β̃1 · · · β̃k−1 β̇k β̈k+1 β̌1 · · · β̌k

)T
.

We conclude that

‖r̄k‖2 = β̌2
1 + · · ·+ β̌2

k + (β̇k − τk)
2 + β̈2

k+1.

52 CHAPTER 3. LSMR

The effect of regularization on the rotations is summarized as

(
ĉk ŝk

−ŝk ĉk

)(
ᾱk β̈k

λ

)
=

(
α̂k β́k

β̌k

)

(
ck sk

−sk ck

)(
α̂k β́k

βk+1 αk+1

)
=

(
ρk θk+1 β̂k

ᾱk+1 β̈k+1

)
.

3.5.2 PSEUDO-CODE FOR REGULARIZED LSMR

Algorithm 3.4 summarizes LSMR for solving the regularized problem
(3.24) with given λ. Our MATLAB implementation is based on these
steps.

3.6 PROOF OF LEMMA 3.2.1

The effects of the rotations Pk and P̃k−1 can be summarized as

R̃k =




ρ̃1 θ̃2
.

ρ̃k−1 θ̃k

ρ̇k




,

(
ck sk

−sk ck

)(
β̈k

0

)
=

(
β̂k

β̈k+1

)
,

(
c̃k s̃k

−s̃k c̃k

)(
ρ̇k−1 β̇k−1

θ̄k ρ̄k β̂k

)
=

(
ρ̃k−1 θ̃k β̃k−1

0 ρ̇k β̇k

)
,

where β̈1 = β1, ρ̇1 = ρ̄1, β̇1 = β̂1 and where ck, sk are defined in sec-
tion 3.1.6.

We define s(k) = s1 . . . sk and s̄(k) = s̄1 . . . s̄k. Then from (3.18) and
(3.6) we have R̃T

k t̃k = zk =
(
Ik 0

)
Q̄k+1ek+1β̄1. Expanding this and

(3.16) gives

R̃T
k t̃k =




c̄1

−s̄1c̄2
...

(−1)k+1s̄(k−1)c̄k




β̄1, b̃k =

(
Q̃k

1

)




c1

−s1c2
...

(−1)k+1s(k−1)ck

(−1)k+2s(k)




β1,

3.6. PROOF OF LEMMA 3.2.1 53

Algorithm 3.4 Regularized LSMR (1)
1: (Initialize)

β1u1 = b α1v1 = ATu1 ᾱ1 = α1 ζ̄1 = α1β1 ρ0 = 1 ρ̄0 = 1

c̄0 = 1 s̄0 = 0 β̈1 = β1 β̇0 = 0 ρ̇0 = 1 τ̃−1 = 0

θ̃0 = 0 ζ0 = 0 d0 = 0 h1 = v1 h̄0 = 0 x0 = 0

2: for k = 1, 2, 3, . . . do
3: (Continue the bidiagonalization)

βk+1uk+1 = Avk − αkuk αk+1vk+1 = ATuk+1 − βk+1vk

4: (Construct rotation P̂k)

α̂k =
(
ᾱ2
k + λ2

) 1
2 ĉk = ᾱk/α̂k ŝk = λ/α̂k

5: (Construct and apply rotation Pk)

ρk =
(
α̂2
k + β2

k+1

) 1
2 ck = α̂k/ρk sk = βk+1/ρk

θk+1 = skαk+1 ᾱk+1 = ckαk+1

6: (Construct and apply rotation P̄k)

θ̄k = s̄k−1ρk ρ̄k =
(
(c̄k−1ρk)

2 + θ2k+1

) 1
2

c̄k = c̄k−1ρk/ρ̄k s̄k = θk+1/ρ̄k

ζk = c̄k ζ̄k ζ̄k+1 = −s̄k ζ̄k

7: (Update h̄, x, h)

h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

xk = xk−1 + (ζk/(ρkρ̄k))h̄k

hk+1 = vk+1 − (θk+1/ρk)hk

8: (Apply rotation P̂k, Pk)

β́k = ĉkβ̈k β̌k = −ŝkβ̈k β̂k = ckβ́k β̈k+1 = −skβ́k

9: if k ≥ 2 then
10: (Construct and apply rotation P̃k−1)

ρ̃k−1 =
(
ρ̇2k−1 + θ̄2k

) 1
2

c̃k−1 = ρ̇k−1/ρ̃k−1 s̃k−1 = θ̄k/ρ̃k−1

θ̃k = s̃k−1ρ̄k ρ̇k = c̃k−1ρ̄k

β̃k−1 = c̃k−1β̇k−1 + s̃k−1β̂k β̇k = −s̃k−1β̇k−1 + c̃k−1β̂k

11: end if

54 CHAPTER 3. LSMR

Algorithm 3.5 Regularized LSMR (2)

12: (Update t̃k by forward substitution)

τ̃k−1 = (ζk−1 − θ̃k−1τ̃k−2)/ρ̃k−1 τ̇k = (ζk − θ̃k τ̃k−1)/ρ̇k

13: (Compute ‖r̄k‖)

dk = dk−1 + β̌2
k γ = dk + (β̇k − τ̇k)

2 + β̈2
k+1 ‖r̄k‖ =

√
γ

14: (Compute ‖ĀTr̄k‖, ‖xk‖, estimate ‖Ā‖, cond(Ā))

‖ĀTr̄k‖ = |ζ̄k+1| (section 3.2.4)
Compute ‖xk‖ (section 3.2.5)
Estimate σmax(Bk), σmin(Bk) and hence ‖Ā‖, cond(Ā) (section 3.2.6)

15: Terminate if any of the stopping criteria in Section 3.2.2 are satisfied.
16: end for

and we see that

τ̃1 = ρ̃−1
1 c̄1β̄1 (3.25)

τ̃k−1 = ρ̃−1
k−1((−1)ks̄(k−2)c̄k−1β̄1 − θ̃k−1τ̃k−2) (3.26)

τ̇k = ρ̇−1
k ((−1)k+1s̄(k−1)c̄kβ̄1 − θ̃k τ̃k−1). (3.27)

β̇1 = β̂1 = c1β1 (3.28)

β̇k = −s̃k−1β̇k−1 + c̃k−1(−1)k−1s(k−1)ckβ1 (3.29)

β̃k = c̃kβ̇k + s̃k(−1)ks(k)ck+1β1. (3.30)

We want to show by induction that τ̃i = β̃i for all i. When i = 1,

β̃1 = c̃1c1β1−s̃1s1c2β1 =
β1

ρ̃1
(c1ρ̄1−θ̄2s1c2) =

β1

ρ̃1

α1

ρ1

ρ21
ρ̄1

=
β̄1

ρ̃1

ρ1
ρ̄1

=
β̄1

ρ̃1
c̄1 = τ̃1

where the third equality follows from the two lines below:

c1ρ̄1 − θ̄2s1c2 = c1ρ̄1 − θ̄2s1
c1α2

ρ2
= ρ̄1 − θ̄2s1

α2

ρ2
=

α1

ρ1
(ρ̄1 −

1

ρ2
θ̄2s1α2)

ρ̄1 −
1

ρ2
θ̄2s1α2 = ρ̄1 −

1

ρ2
(s̄1ρ2)θ2 = ρ̄1 −

θ2
ρ̄1

θ2 =
ρ̄21 − θ22

ρ̄1
=

ρ21 + θ22 − θ22
ρ̄1

.

3.6. PROOF OF LEMMA 3.2.1 55

Suppose τ̃k−1 = β̃k−1. We consider the expression

s(k−1)ckρ̄
−1
k c̄2k−1ρ

2
kβ1 =

c̄k−1ρk
ρ̄k

(s(k−1)ck)c̄k−1ρkβ1

= c̄k
θ2 · · · θkα1

ρ1 · · · ρk
ρ1 · · · ρk−1

ρ̄1 · · · ρ̄k−1
ρkβ1 = c̄k

θ2
ρ̄1
· · · θk

ρ̄k−1
β̄1

= c̄ks̄1 · · · s̄k−1β̄1 = c̄ks̄
(k−1)β̄1. (3.31)

Applying the induction hypothesis on τ̃k = ρ̃−1
k

(
(−1)k+1s̄(k−1)c̄kβ̄1 − θ̃k τ̃k−1

)

gives

τ̃k = ρ̃−1
k

(
(−1)k+1s̄(k−1)c̄kβ̄1 − θ̃k

(
c̃k−1β̇k−1 + s̃k−1(−1)ks(k−1)ckβ1

))

= ρ̃−1
k θ̃k c̃k−1β̇k−1 + (−1)k+1ρ̃−1

k

(
s̄(k−1)c̄kβ̄1 − θ̃ks̃k−1s

(k−1)ckβ1

)

= ρ̃−1
k (ρ̄ks̃k−1)c̃k−1β̇k−1 + (−1)k+1ρ̃−1

k s(k−1)β1

(
ρ̇k c̃k−1ck − θ̄k+1skck+1

)

= c̃ks̃k−1β̇k−1 + (−1)k+1s(k−1)β1 (c̃k c̃k−1ck − s̃kskck+1)

= c̃k

(
−s̃k−1β̇k−1 + c̃k−1(−1)k+1s(k−1)ckβ1

)
+ s̃k(−1)k+1s(k)ck+1β1

= c̃kβ̇k + s̃k(−1)k+1s(k)ck+1β1 = β̃k

with the second equality obtained by the induction hypothesis, and the
fourth from

s̄(k−1)c̄kβ̄1 − θ̃ks̃k−1s
(k−1)ckβ1

= s(k−1)ckρ̄
−1
k c̄2k−1ρ

2
kβ1 − (s̃k−1ρ̄k)s̃k−1s

(k−1)ckβ1

= s(k−1)β1
ck
ρ̄k

(
c̄2k−1ρ

2
k − s̃2k−1ρ̄

2
k

)

= s(k−1)β1

(
ρ̇k c̃k−1ck − θ̄k+1skck+1

)
,

where the first equality follows from (3.31) and the last from

c̄2k−1ρ
2
k − s̃2k−1ρ̄

2
k =

(
ρ̄2k − θ2k+1

)
− s̃2k−1ρ̄

2
k

= ρ̄2k(1− s̃2k−1)− θ2k+1 = ρ̄2k c̃
2
k−1 − θ2k+1,

ck
ρ̄k

ρ̄2k c̃
2
k−1 = ρ̄k c̃

2
k−1ck = ρ̇k c̃k−1ck,

ck
ρ̄k

θ2k+1 =
θk+1

ρ̄k
θk+1ck =

θk+1ρk+1

ρ̄k
skαk+1

ck
ρk+1

= θ̄k+1skck+1.

By induction, we know that τ̃i = β̃i for i = 1, 2, From (3.18), we see
that at iteration k, the first k − 1 elements of b̃k and t̃k are equal.

4
LSMR EXPERIMENTS

In this chapter, we perform numerous experiments comparing the con-
vergence of LSQR and LSMR. We discuss overdetermined systems first,
then some square examples, followed by underdetermined systems.
We also explore ways to speed up convergence using extra memory by
reorthogonalization.

4.1 LEAST-SQUARES PROBLEMS

4.1.1 BACKWARD ERROR FOR LEAST-SQUARES

For inconsistent problems with uncertainty in A (but not b), let x be any
approximate solution. The normwise backward error for x measures the
perturbation to A that would make x an exact LS solution:

µ(x) ≡ min
E
‖E‖ s.t. (A+ E)T (A+ E)x = (A+ E)T b. (4.1)

It is known to be the smallest singular value of a certain m × (n + m)

matrix C; see Waldén et al. [83] and Higham [39, pp392–393]:

µ(x) = σmin(C), C ≡
[
A ‖r‖

‖x‖

(
I − rrT

‖r‖2

)]
. (4.2)

Since it is generally too expensive to evaluate µ(x), we need to find
approximations.

APPROXIMATE BACKWARD ERRORS E1 AND E2

In 1975, Stewart [69] discussed a particular backward error estimate
that we will call E1. Let x∗ and r∗ = b−Ax∗ be the exact LS solution and
residual. Stewart showed that an approximate solution x with residual
r = b − Ax is the exact LS solution of the perturbed problem min ‖b −
(A+ E1)x‖, where E1 is the rank-one matrix

E1 =
exT

‖x‖2 , ‖E1‖ =
‖e‖
‖x‖ , e ≡ r − r∗, (4.3)

56

4.1. LEAST-SQUARES PROBLEMS 57

with ‖r‖2 = ‖r∗‖2 + ‖e‖2. Soon after, Stewart [70] gave a further im-
portant result that can be used within any LS solver. The approximate
x and a certain vector r̃ = b − (A + E2)x are the exact solution and
residual of the perturbed LS problem min ‖b− (A+ E2)x‖, where

E2 = −rrTA

‖r‖2 , ‖E2‖ =
‖ATr‖
‖r‖ , r = b−Ax. (4.4)

LSQR and LSMR both compute ‖E2‖ for each iterate xk because the
current ‖rk‖ and ‖ATrk‖ can be accurately estimated at almost no cost.
An added feature is that for both solvers, r̃ = b − (A + E2)xk = rk

because E2xk = 0 (assuming orthogonality of Vk). That is, xk and rk

are theoretically exact for the perturbed LS problem (A+ E2)x ≈ b.

Stopping rule S2 (section 3.2.2) requires ‖E2‖ ≤ ATOL‖A‖. Hence
the following property gives LSMR an advantage over LSQR for stop-
ping early.

Theorem 4.1.1. ‖ELSMR
2 ‖ ≤ ‖ELSQR

2 ‖.

Proof. This follows from ‖ATrLSMR
k ‖ ≤ ‖ATrLSQR

k ‖ and ‖rLSMR
k ‖ ≥ ‖rLSQR

k ‖.

APPROXIMATE OPTIMAL BACKWARD ERROR µ̃(x)

Various authors have derived expressions for a quantity µ̃(x) that has
proved to be a very accurate approximation to µ(x) in (4.1) when x is
at least moderately close to the exact solution x̂. Grcar, Saunders, and
Su [73; 34] show that µ̃(x) can be obtained from a full-rank LS problem
as follows:

K =


 A

‖r‖
‖x‖I


 , v =


r

0


 , min

y
‖Ky−v‖, µ̃(x) = ‖Ky‖/‖x‖,

(4.5)
and give MATLAB Code 4.1 for computing the “economy size” sparse
QR factorization K = QR and c ≡ QTv (for which ‖c‖ = ‖Ky‖) and
thence µ̃(x). In our experiments we use this script to compute µ̃(xk) for
each LSQR and LSMR iterate xk. We refer to this as the optimal backward
error for xk because it is provably very close to the true µ(xk) [32].

58 CHAPTER 4. LSMR EXPERIMENTS

MATLAB Code 4.1 Approximate optimal backward error
1 [m,n] = size(A);

2 r = b - A*x;

3 normx = norm(x);

4 eta = norm(r)/normx;

5 p = colamd(A);

6 K = [A(:,p); eta*speye(n)];

7 v = [r; zeros(n,1)];

8 [c,R] = qr(K,v,0);

9 mutilde = norm(c)/normx;

DATA

For test examples, we have drawn from the University of Florida Sparse
Matrix Collection (Davis [18]). Matrices from the LPnetlib group and
the NYPA group are used for our numerical experiments.

The LPnetlib group provides data for 138 linear programming prob-
lems of widely varying origin, structure, and size. The constraint ma-
trix and objective function may be used to define a sparse LS problem
min ‖Ax−b‖. Each example was downloaded in MATLAB format, and a
sparse matrix A and dense vector b were extracted from the data struc-
ture via A = (Problem.A)’ and b = Problem.c (where ’ denotes trans-
pose). Five examples had b = 0, and a further six gave ATb = 0. The
remaining 127 problems had up to 243000 rows, 10000 columns, and
1.4M nonzeros in A. Diagonal scaling was applied to the columns of[
A b

]
to give a scaled problem min ‖Ax− b‖ in which the columns of

A (and also b) have unit 2-norm. LSQR and LSMR were run on each of
the 127 scaled problems with stopping tolerance ATOL = 10−8, gener-
ating sequences of approximate solutions {xLSQR

k } and {xLSMR
k }. The it-

eration indices k are omitted below. The associated residual vectors are
denoted by r without ambiguity, and x∗ is the solution to the LS prob-
lem, or the minimum-norm solution to the LS problem if the system
is singular. This set of artificially created least-squares test problems
provides a wide variety of size and structure for evaluation of the two
algorithms. They should be indicative of what we could expect when
using iterative methods to estimate the dual variables if the linear pro-
grams were modified to have a nonlinear objective function (such as
the negative entropy function

∑
xj log xj).

The NYPA group provides data for 8 rank-deficient least-squares prob-
lems from the New York Power Authority. Each problem provides a

4.1. LEAST-SQUARES PROBLEMS 59

MATLAB Code 4.2 Right diagonal preconditioning
1 % scale the column norms to 1
2 cnorms = sqrt(sum(A.*A,1));

3 D = diag(sparse(1./cnorms));

4 A = A*D;

matrix Problem.A and a right-hand side vector Problem.b. Two of the
problems are underdetermined. For the remaining 6 problems we com-
pared the convergence of LSQR and LSMR on min ‖Ax − b‖ with stop-
ping tolerance ATOL = 10−8. This set of problems contains matrices
with condition number ranging from 3.1E+02 to 5.8E+11.

PRECONDITIONING

For this set of test problems, we apply a right diagonal preconditioning
that scales the columns of A to unit 2-norm. (For least-squares systems,
a left preconditioner will alter the least-squares solution.) The precon-
ditioning is implemented with MATLAB Code 4.2.

4.1.2 NUMERICAL RESULTS

Observations for the LPnetlib group:

1. ‖rLSQR‖ is monotonic by design. ‖rLSMR‖ is also monotonic (as
predicted by Theorem 3.3.11) and nearly as small as ‖rLSQR‖ for
all iterations on almost all problems. Figure 4.1 shows a typical
example and a rare case.

2. ‖x‖ is monotonic for LSQR (Theorem 3.3.1) and for LSMR (The-
orem 3.3.6). With ‖r‖ monotonic for LSQR and for LSMR, ‖E1‖
in (4.3) is likely to appear monotonic for both solvers. Although
‖E1‖ is not normally available for each iteration, it provides a
benchmark for ‖E2‖.

3. ‖ELSQR
2 ‖ is not monotonic, but ‖ELSMR

2 ‖ appears monotonic al-
most always. Figure 4.2 shows a typical case. The sole exception
for this observation is also shown.

4. Note that Benbow [5] has given numerical results comparing a
generalized form of LSQR with application of MINRES to the cor-
responding normal equation. The curves in [5, Figure 3] show the
irregular and smooth behavior of LSQR and MINRES respectively

60 CHAPTER 4. LSMR EXPERIMENTS

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

iteration count

||
r|

|

Name:lp greenbeb, Dim:5598x2392, nnz:31070, id=631

LSQR

LSMR

0 10 20 30 40 50 60 70 80 90
0.988

0.99

0.992

0.994

0.996

0.998

1

iteration count

||
r|

|

Name:lp woodw, Dim:8418x1098, nnz:37487, id=702

LSQR

LSMR

Figure 4.1: For most iterations, ‖rLSMR‖ is monotonic and nearly as small as ‖rLSQR‖. Left: A
typical case (problem lp_greenbeb). Right: A rare case (problem lp_woodw). LSMR’s residual
norm is significantly larger than LSQR’s during early iterations.

in terms of ‖ATrk‖. Those curves are effectively a preview of the
left-hand plots in Figure 4.2 (where LSMR serves as our more re-
liable implementation of MINRES).

5. ‖ELSQR
1 ‖ ≤ ‖ELSQR

2 ‖ often, but not so for LSMR. Some examples
are shown on Figure 4.3 along with µ̃(xk), the accurate estimate
(4.5) of the optimal backward error for each point xk.

6. ‖ELSMR
2 ‖ ≈ µ̃(xLSMR) almost always. Figure 4.4 shows a typical

example and a rare case. In all such “rare” cases, ‖ELSMR
1 ‖ ≈

µ̃(xLSMR) instead!

7. µ̃(xLSQR) is not always monotonic. µ̃(xLSMR) does seem to be
monotonic. Figure 4.5 gives examples.

8. µ̃(xLSMR) ≤ µ̃(xLSQR) almost always. Figure 4.6 gives examples.

9. The errors ‖x∗−xLSQR‖ and ‖x∗−xLSMR‖ decrease monotonically
(Theorem 3.3.2 and 3.3.7), with the LSQR error typically smaller
than for LSMR. Figure 4.7 gives examples. This is one property
for which LSQR seems more desirable (and it has been suggested
[57] that for LS problems, LSQR could be terminated when rule S2
would terminate LSMR).

4.1. LEAST-SQUARES PROBLEMS 61

0 100 200 300 400 500 600 700 800 900 1000
−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp pilot ja, Dim:2267x940, nnz:14977, id=657

LSQR

LSMR

0 20 40 60 80 100 120
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp sc205, Dim:317x205, nnz:665, id=665

LSQR

LSMR

Figure 4.2: For most iterations, ‖ELSMR
2 ‖ appears to be monotonic (but ‖ELSQR

2 ‖ is not). Left:
A typical case (problem lp_pilot_ja). LSMR is likely to terminate much sooner than LSMR
(see Theorem 4.1.1). Right: Sole exception (problem lp_sc205) at iterations 54–67. The ex-
ception remains even if Uk and/or Vk are reorthogonalized.

For every problem in the NYPA group, both solvers satisfied the stop-
ping condition in fewer than 2n iterations. Much greater fluctuations
are observed in ‖ELSQR

2 ‖ than ‖ELSMR
2 ‖. Figure 4.8 shows the conver-

gence of ‖E2‖ for two problems. Maragal_5 has the largest condition
number in the group, while Maragal_7 has the largest dimensions. ‖ELSMR

2 ‖
converges with small fluctuations, while ‖ELSQR

2 ‖ fluctuates by as much
as 5 orders of magnitude.

We should note that when cond(A) ≥ 108, we cannnot expect any
solver to compute a solution with more than about 1 digit of accuracy.
The results for problem Maragal_5 are therefore a little difficult to in-
terpret, but they illustrate the fortunate fact that LSQR and LSMR’s es-

timates of ‖ATrk‖/‖rk‖ do converge toward zero (really ‖A‖ǫ), even if
the computed vectors ATrk are unlikely to become so small.

4.1.3 EFFECTS OF PRECONDITIONING

The numerical results in the LPnetlib test set are generated with every
matrix A diagonally preconditioned (i.e., the column norms are scaled
to be 1). Before preconditioning, the condition numbers range from
2.9E+00 to 7.2E+12. With preconditioning, they range from 2.7E+00 to
3.4E+08. The condition numbers before and after preconditioning are
shown in Figure 4.9.

62 CHAPTER 4. LSMR EXPERIMENTS

0 200 400 600 800 1000 1200 1400 1600
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(B

a
c
k
w

a
rd

 E
rr

o
r

fo
r

L
S

Q
R

)

Name:lp cre a, Dim:7248x3516, nnz:18168, id=609

E2

E1

Optimal

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(B

a
c
k
w

a
rd

 E
rr

o
r

fo
r

L
S

Q
R

)

Name:lp pilot, Dim:4860x1441, nnz:44375, id=654

E2

E1

Optimal

0 200 400 600 800 1000 1200 1400 1600
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(B

a
c
k
w

a
rd

 E
rr

o
r

fo
r

L
S

M
R

)

Name:lp cre a, Dim:7248x3516, nnz:18168, id=609

E2

E1

Optimal

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(B

a
c
k
w

a
rd

 E
rr

o
r

fo
r

L
S

M
R

)

Name:lp pilot, Dim:4860x1441, nnz:44375, id=654

E2

E1

Optimal

Figure 4.3: ‖E1‖, ‖E2‖, and µ̃(xk) for LSQR (top figures) and LSMR (bottom figures). Top left:
A typical case. ‖ELSQR

1 ‖ is close to the optimal backward error, but the computable ‖ELSQR
2 ‖

is not. Top right: A rare case in which ‖ELSQR
2 ‖ is close to optimal. Bottom left: ‖ELSMR

1 ‖ and
‖ELSMR

2 ‖ are often both close to the optimal backward error. Bottom right: ‖ELSMR
1 ‖ is far

from optimal, but the computable ‖ELSMR
2 ‖ is almost always close (too close to distinguish

in the plot!). Problems lp_cre_a (left) and lp_pilot (right).

4.1. LEAST-SQUARES PROBLEMS 63

0 50 100 150 200 250
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(B

a
c
k
w

a
rd

 E
rr

o
r

fo
r

L
S

M
R

)

Name:lp ken 11, Dim:21349x14694, nnz:49058, id=638

E2

E1

Optimal

0 10 20 30 40 50 60 70 80 90
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(B

a
c
k
w

a
rd

 E
rr

o
r

fo
r

L
S

M
R

)

Name:lp ship12l, Dim:5533x1151, nnz:16276, id=688

E2

E1

Optimal

Figure 4.4: Again, ‖ELSMR
2 ‖ ≈ µ̃(xLSMR) almost always (the computable backward error es-

timate is essentially optimal). Left: A typical case (problem lp_ken_11). Right: A rare case
(problem lp_ship12l). Here, ‖ELSMR

1 ‖ ≈ µ̃(xLSMR)!

0 100 200 300 400 500 600 700 800 900
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration count

lo
g

(O
p

ti
m

a
l
B

a
c
k
w

a
rd

 E
rr

o
r)

Name:lp maros, Dim:1966x846, nnz:10137, id=642

LSQR

LSMR

0 200 400 600 800 1000 1200 1400 1600
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(O

p
ti
m

a
l
B

a
c
k
w

a
rd

 E
rr

o
r)

Name:lp cre c, Dim:6411x3068, nnz:15977, id=611

LSQR

LSMR

Figure 4.5: µ̃(xLSMR) seems to be always monotonic, but µ̃(xLSQR) is usually not. Left: A
typical case for both LSQR and LSMR (problem lp_maros). Right: A rare case for LSQR, typical
for LSMR (problem lp_cre_c).

64 CHAPTER 4. LSMR EXPERIMENTS

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(O

p
ti
m

a
l
B

a
c
k
w

a
rd

 E
rr

o
r)

Name:lp pilot, Dim:4860x1441, nnz:44375, id=654

LSQR

LSMR

0 50 100 150
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(O

p
ti
m

a
l
B

a
c
k
w

a
rd

 E
rr

o
r)

Name:lp standgub, Dim:1383x361, nnz:3338, id=693

LSQR

LSMR

Figure 4.6: µ̃(xLSMR) ≤ µ̃(xLSQR) almost always. Left: A typical case (problem lp_pilot).
Right: A rare case (problem lp_standgub).

0 10 20 30 40 50 60 70 80 90
−7

−6

−5

−4

−3

−2

−1

0

1

2

iteration count

lo
g
||
x

k
 −

 x
* |

Name:lp ship12l, Dim:5533x1151, nnz:16276, id=688

LSQR

LSMR

0 10 20 30 40 50 60 70
−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
||
x

k
 −

 x
* |

Name:lp pds 02, Dim:7716x2953, nnz:16571, id=649

LSQR

LSMR

Figure 4.7: The errors ‖x∗ − xLSQR‖ and ‖x∗ − xLSMR‖ seem to decrease monotonically, with
LSQR’s errors smaller than for LSMR. Left: A nonsingular LS system (problem lp_ship12l).
Right: A singular system (problem lp_pds_02). LSQR and LSMR both converge to the
minimum-norm LS solution.

4.1. LEAST-SQUARES PROBLEMS 65

0 500 1000 1500 2000 2500 3000 3500 4000
−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
(E

2
)

Name:NYPA.Maragal 5, Dim:4654x3320, nnz:93091, id=182

LSQR

LSMR

0 500 1000 1500 2000 2500
−7

−6

−5

−4

−3

−2

−1

0

iteration count
lo

g
(E

2
)

Name:NYPA.Maragal 5, Dim:4654x3320, nnz:93091, id=182

LSQR

LSMR

0 2000 4000 6000 8000 10000 12000 14000
−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:NYPA.Maragal 7, Dim:46845x26564, nnz:1200537, id=184

LSQR

LSMR

0 1000 2000 3000 4000 5000 6000 7000
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:NYPA.Maragal 7, Dim:46845x26564, nnz:1200537, id=184

LSQR

LSMR

Figure 4.8: Convergence of ‖E2‖ for two problems in NYPA group using LSQR and LSMR.
Upper: Problem Maragal_5.

Left: No preconditioning applied. cond(A)=5.8E+11. If the iteration limit had been n
iterations, the final LSQR point would be very poor.

Right: Right diagonal preconditioning applied. cond(A)=2.6E+12.
Lower: Problem Maragal_7.

Left: No preconditioning applied. cond(A)=1.4E+03.
Right: Right diagonal preconditioning applied. cond(A)=4.2E+02.

The peaks for LSQR (where it would be undesirable for LSQR to terminate) correspond to
plateaus for LSMR where ‖E2‖ remains the smallest value so far, except for slight increases
near the end of the LSQR peaks.

66 CHAPTER 4. LSMR EXPERIMENTS

0 20 40 60 80 100 120 140
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Matrix ID

C
o

n
d

(A
)

LPnetlib matrices

original

preconditioned

Figure 4.9: Distribution of condition number for LPnetlib matrices. Di-
agonal preconditioning reduces the condition number in 117 out of 127
cases.

To illustrate the effect of this preconditioning on the convergence
speed of LSQR and LSMR, we solve each problem min ‖Ax − b‖ from
the LPnetlib set using the two algorithms and summarize the results
in Table 4.1. Both algorithms use stopping rule S2 in Section 3.2.2 with
ATOL=1E-8, or a limit of 10n iterations.

In Table 4.1, we see that for systems that converge quickly, the ad-
vantage gained by using LSMR compared with LSQR is relatively small.
For example, lp_osa_60 (Row 127) is a 243246 × 10280 matrix. LSQR

converges in 124 iterations while LSMR converges in 122 iterations. In
contrast, for systems that take many iterations to converge, LSMR usu-
ally converges much faster than LSQR. For example, lp_cre_d (Row
122) is a 73948× 8926 matrix. LSQR takes 19496 iterations, while LSMR

takes 9259 iterations (53% fewer).

4.1. LEAST-SQUARES PROBLEMS 67

Table 4.1: Effects of diagonal preconditioning on LPnetlib

matrices†† and convergence of LSQR and LSMR on min ‖Ax− b‖

Original A Diagonally preconditioned A

ID name m n nnz σi = 0∗ Cond(A) kLSQR† kLSMR† Cond(A) kLSQR† kLSMR†

1 720 lpi_itest6 17 11 29 0 1.5E+02 5 5 8.4E+01 7 7
2 706 lpi_bgprtr 40 20 70 0 1.2E+03 21 21 1.2E+01 19 19
3 597 lp_afiro 51 27 102 0 1.1E+01 22 22 4.9E+00 21 21
4 731 lpi_woodinfe 89 35 140 0 2.9E+00 17 17 2.8E+00 17 17
5 667 lp_sc50b 78 50 148 0 1.7E+01 41 41 9.1E+00 36 36
6 666 lp_sc50a 78 50 160 0 1.2E+01 38 38 7.6E+00 34 34
7 714 lpi_forest6 131 66 246 0 3.1E+00 21 21 2.8E+00 19 19
8 636 lp_kb2 68 43 313 0 5.1E+04 150 147 7.8E+02 128 128
9 664 lp_sc105 163 105 340 0 3.7E+01 68 68 2.2E+01 58 58

10 596 lp_adlittle 138 56 424 0 4.6E+02 61 61 2.5E+01 39 39
11 713 lpi_ex73a 211 193 457 5 4.5E+01 99 96 3.5E+01 85 84
12 669 lp_scagr7 185 129 465 0 6.0E+01 80 80 1.7E+01 60 59
13 712 lpi_ex72a 215 197 467 5 5.6E+01 101 98 4.5E+01 89 88
14 695 lp_stocfor1 165 117 501 0 7.3E+03 107 105 1.8E+03 263 238
15 603 lp_blend 114 74 522 0 9.2E+02 186 186 1.1E+02 118 118
16 707 lpi_box1 261 231 651 17 4.6E+01 28 28 2.1E+01 24 24
17 665 lp_sc205 317 205 665 0 1.3E+02 122 122 7.6E+01 102 101
18 663 lp_recipe 204 91 687 0 2.1E+04 4 4 5.4E+02 4 4
19 682 lp_share2b 162 96 777 0 1.2E+04 516 510 7.5E+02 331 328
20 700 lp_vtp_base 346 198 1051 0 3.6E+07 557 556 1.9E+04 1370 1312
21 641 lp_lotfi 366 153 1136 0 6.6E+05 149 146 1.4E+03 386 386
22 681 lp_share1b

‡ 253 117 1179 0 1.0E+05 1170 1170 6.2E+02 482 427
23 724 lpi_mondou2 604 312 1208 1 4.2E+01 151 147 2.5E+01 119 116
24 711 lpi_cplex2 378 224 1215 1 4.6E+02 105 102 9.9E+01 81 80
25 606 lp_bore3d 334 233 1448 2 4.5E+04 782 681 1.2E+02 265 263
26 673 lp_scorpion 466 388 1534 30 7.4E+01 159 152 3.4E+01 116 115
27 709 lpi_chemcom 744 288 1590 0 6.9E+00 40 39 5.0E+00 35 35
28 729 lpi_refinery 464 323 1626 0 5.1E+04 2684 1811 6.2E+01 113 113
29 727 lpi_qual 464 323 1646 0 4.8E+04 2689 1828 6.3E+01 121 120
30 730 lpi_vol1 464 323 1646 0 4.8E+04 2689 1828 6.3E+01 121 120
31 703 lpi_bgdbg1 629 348 1662 0 9.5E+00 44 43 1.1E+01 53 52
32 668 lp_scagr25 671 471 1725 0 5.9E+01 155 147 1.7E+01 97 95
33 678 lp_sctap1 660 300 1872 0 1.7E+02 364 338 1.8E+02 334 327
34 608 lp_capri 482 271 1896 0 8.1E+03 1194 1051 3.8E+02 453 451
35 607 lp_brandy 303 220 2202 27 6.4E+03 665 539 1.0E+02 208 208
36 635 lp_israel 316 174 2443 0 4.8E+03 351 325 9.2E+03 782 720
37 629 lp_gfrd_pnc 1160 616 2445 0 1.6E+05 84 73 3.7E+04 270 210
38 601 lp_bandm 472 305 2494 0 3.8E+03 2155 1854 4.6E+01 196 187
39 621 lp_etamacro 816 400 2537 0 6.0E+04 568 186 9.2E+01 171 162
40 704 lpi_bgetam 816 400 2537 0 5.3E+04 536 186 9.2E+01 171 162
41 728 lpi_reactor 808 318 2591 0 1.4E+05 85 85 5.0E+03 151 149
42 634 lp_grow7 301 140 2612 0 5.2E+00 31 30 4.4E+00 28 28
43 670 lp_scfxm1 600 330 2732 0 2.4E+04 1368 1231 1.4E+03 547 470
44 623 lp_finnis 1064 497 2760 0 1.1E+03 328 327 7.7E+01 279 275
45 620 lp_e226 472 223 2768 0 9.1E+03 591 555 3.0E+03 504 437
46 598 lp_agg 615 488 2862 0 6.2E+02 159 154 1.1E+01 35 35
47 725 lpi_pang 741 361 2933 0 2.9E+05 350 247 3.7E+01 125 111
48 692 lp_standata 1274 359 3230 0 2.2E+03 144 141 6.6E+02 140 139
49 674 lp_scrs8 1275 490 3288 0 9.4E+04 1911 1803 1.4E+02 356 338
50 693 lp_standgub 1383 361 3338 1 2.2E+03 144 141 6.6E+02 140 139
51 602 lp_beaconfd 295 173 3408 0 4.4E+03 254 254 2.1E+01 64 63
52 683 lp_shell 1777 536 3558 1 4.2E+01 88 85 1.1E+01 43 42
53 694 lp_standmps 1274 467 3878 0 4.2E+03 286 255 6.6E+02 201 201
54 691 lp_stair 614 356 4003 0 5.7E+01 122 115 3.4E+01 95 94
55 617 lp_degen2 757 444 4201 2 9.9E+01 264 250 3.5E+01 151 146
56 685 lp_ship04s 1506 402 4400 42 1.1E+02 103 100 5.1E+01 75 75
57 699 lp_tuff 628 333 4561 31 1.1E+06 1021 1013 8.2E+02 648 642
58 599 lp_agg2 758 516 4740 0 5.9E+02 184 175 5.2E+00 31 31
59 600 lp_agg3 758 516 4756 0 5.9E+02 219 208 5.1E+00 32 31
60 655 lp_pilot4 1123 410 5264 0 4.2E+05 1945 1379 1.2E+02 195 190
61 726 lpi_pilot4i 1123 410 5264 0 4.2E+05 2081 1357 1.2E+02 195 191
62 671 lp_scfxm2 1200 660 5469 0 2.4E+04 2154 1575 3.1E+03 975 834
63 604 lp_bnl1 1586 643 5532 1 3.4E+03 1394 1253 1.4E+02 285 278
64 632 lp_grow15 645 300 5620 0 5.6E+00 35 35 4.9E+00 33 32
65 653 lp_perold 1506 625 6148 0 5.1E+05 5922 3173 4.6E+02 706 619
66 684 lp_ship04l 2166 402 6380 42 1.1E+02 77 76 6.1E+01 67 67
67 622 lp_fffff800 1028 524 6401 0 1.5E+10 2064 1161 1.2E+06 5240 5240

Continued on next page. . .

68 CHAPTER 4. LSMR EXPERIMENTS

Original A Diagonally preconditioned A

ID name m n nnz σi = 0∗ Cond(A) kLSQR† kLSMR† Cond(A) kLSQR† kLSMR†

68 628 lp_ganges 1706 1309 6937 0 2.1E+04 219 216 3.3E+03 161 160
69 687 lp_ship08s 2467 778 7194 66 1.6E+02 169 169 4.9E+01 116 116
70 662 lp_qap8 1632 912 7296 170 1.9E+01 8 8 6.6E+01 8 8
71 679 lp_sctap2 2500 1090 7334 0 1.8E+02 639 585 1.7E+02 450 415
72 690 lp_sierra 2735 1227 8001 10 5.0E+09 87 74 1.0E+05 146 146
73 672 lp_scfxm3 1800 990 8206 0 2.4E+04 2085 1644 1.4E+03 1121 994
74 633 lp_grow22 946 440 8252 0 5.7E+00 39 38 5.0E+00 35 35
75 689 lp_ship12s 2869 1151 8284 109 8.7E+01 135 134 4.2E+01 89 88
76 637 lp_ken_07 3602 2426 8404 49 1.3E+02 168 168 3.8E+01 98 98
77 658 lp_pilot_we 2928 722 9265 0 5.3E+05 5900 3503 6.1E+02 442 246
78 696 lp_stocfor2 3045 2157 9357 0 2.8E+04 430 407 2.6E+03 1546 1421
79 680 lp_sctap3 3340 1480 9734 0 1.8E+02 683 618 1.7E+02 503 465
80 625 lp_fit1p 1677 627 9868 0 6.8E+03 81 81 1.9E+04 500 427
81 642 lp_maros

‡ 1966 846 10137 0 1.9E+06 8460 7934 1.8E+04 6074 3886
82 594 lp_25fv47 1876 821 10705 1 3.3E+03 5443 4403 2.0E+02 702 571
83 614 lp_czprob 3562 929 10708 0 8.8E+03 114 110 2.9E+01 29 29
84 710 lpi_cplex1 5224 3005 10947 0 1.7E+04 89 79 1.7E+02 53 53
85 686 lp_ship08l 4363 778 12882 66 1.6E+02 123 123 6.5E+01 103 103
86 659 lp_pilotnov

¶ 2446 975 13331 0 3.6E+09 164 343 1.4E+03 1622 1180
87 624 lp_fit1d 1049 24 13427 0 4.7E+03 61 61 2.4E+01 28 28
88 657 lp_pilot_ja 2267 940 14977 0 2.5E+08 7424 950 1.5E+03 1653 1272
89 605 lp_bnl2 4486 2324 14996 0 7.8E+03 1906 1333 2.6E+02 452 390
90 611 lp_cre_c 6411 3068 15977 87 1.6E+04 20109 12067 4.6E+02 1553 1333
91 688 lp_ship12l 5533 1151 16276 109 1.1E+02 106 104 5.9E+01 82 81
92 649 lp_pds_02 7716 2953 16571 11 4.0E+02 129 124 1.2E+01 69 67
93 609 lp_cre_a 7248 3516 18168 93 2.1E+04 20196 11219 4.9E+02 1591 1375
94 717 lpi_gran

‡ 2525 2658 20111 586 7.2E+12 26580 20159 3.4E+08 22413 11257
95 708 lpi_ceria3d 4400 3576 21178 0 7.3E+02 57 56 2.3E+02 224 213
96 613 lp_cycle

‡ 3371 1903 21234 28 1.5E+07 19030 19030 2.7E+04 2911 2349
97 595 lp_80bau3b 12061 2262 23264 0 5.7E+02 119 111 6.9E+00 43 42
98 618 lp_degen3 2604 1503 25432 2 8.3E+02 1019 969 2.5E+02 448 414
99 630 lp_greenbea 5598 2392 31070 3 4.4E+03 2342 2062 4.3E+01 277 251

100 631 lp_greenbeb 5598 2392 31070 3 4.4E+03 2342 2062 4.3E+01 277 251
101 718 lpi_greenbea 5596 2393 31074 3 4.4E+03 2148 1860 4.3E+01 239 221
102 615 lp_d2q06c

‡ 5831 2171 33081 0 1.4E+05 21710 15553 4.8E+02 1825 1548
103 619 lp_dfl001 12230 6071 35632 13 3.5E+02 937 848 1.0E+02 363 353
104 702 lp_woodw 8418 1098 37487 0 4.7E+04 557 553 3.3E+01 81 81
105 616 lp_d6cube 6184 415 37704 11 1.1E+03 174 169 2.5E+01 52 52
106 660 lp_qap12 8856 3192 38304 398 3.9E+01 8 8 3.9E+01 8 8
107 654 lp_pilot 4860 1441 44375 0 2.7E+03 1392 1094 5.0E+02 592 484
108 638 lp_ken_11 21349 14694 49058 121 4.6E+02 498 491 7.8E+01 220 207
109 627 lp_fit2p 13525 3000 50284 0 4.7E+03 73 73 5.0E+04 3276 1796
110 650 lp_pds_06 29351 9881 63220 11 5.4E+01 197 183 1.7E+01 100 97
111 705 lpi_bgindy 10880 2671 66266 0 6.7E+02 366 358 1.1E+03 377 356
112 701 lp_wood1p 2595 244 70216 1 1.6E+04 53 53 1.4E+01 25 25
113 697 lp_stocfor3 23541 16675 72721 0 4.5E+05 832 801 3.6E+03 3442 3096
114 656 lp_pilot87 6680 2030 74949 0 8.1E+03 896 751 5.7E+02 297 170
115 661 lp_qap15 22275 6330 94950 632 5.5E+01 8 8 5.6E+01 8 8
116 639 lp_ken_13 42659 28632 97246 169 4.5E+02 471 462 7.4E+01 205 204
117 716 lpi_gosh 13455 3792 99953 2 5.6E+04 3236 1138 4.2E+03 3629 1379
118 651 lp_pds_10 49932 16558 107605 11 5.6E+02 223 208 1.8E+01 120 115
119 626 lp_fit2d 10524 25 129042 0 1.7E+03 55 55 2.8E+01 29 29
120 645 lp_osa_07 25067 1118 144812 0 1.9E+03 105 105 2.4E+03 72 72
121 652 lp_pds_20 108175 33874 232647 87 7.3E+01 323 283 3.3E+01 177 165
122 612 lp_cre_d 73948 8926 246614 2458 9.9E+03 19496 9259 2.7E+02 1218 1069
123 610 lp_cre_b 77137 9648 260785 2416 6.8E+03 14761 7720 1.9E+02 1112 966
124 646 lp_osa_14 54797 2337 317097 0 9.9E+02 120 120 8.8E+02 73 73
125 640 lp_ken_18 154699 105127 358171 324 1.2E+03 999 957 1.6E+02 422 398
126 647 lp_osa_30 104374 4350 604488 0 6.0E+03 116 115 1.2E+03 77 77
127 648 lp_osa_60 243246 10280 1408073 0 2.1E+03 124 122 2.3E+04 82 82

∗ Number of columns in A that are not independent.
†† We are using A = problem.A’; b = problem.c; to construct the least-squares problem min ‖Ax − b‖.
† Denotes the number of iterations that LSQR or LSMR takes to converge with a tolerance of 10−8.
‡ For problem lp_maros, lpi_gran, lp_d2q06c, LSQR hits the 10n iteration limit without preconditioning. For

problem lp_share1b, lp_cycle, both LSQR and LSMR hit the 10n iteration limit without preconditioning. Thus
the number of iteration that these five problems take to converge doesn’t represent the relative improvement
provided by LSMR.

¶ Problem lp_pilotnov is compatible (‖rk‖ → 0). Therefore LSQR exhibits faster convergence than LSMR. More
examples for compatible systems are given in Section 4.2 and 4.3.

4.1. LEAST-SQUARES PROBLEMS 69

MATLAB Code 4.3 Generating preconditioners by perturbation of QR
1 % delta is the chosen standard deviation of Gaussian noise

2 randn(’state’ ,1);

3 R = qr(A);

4 [I J S] = find(R);

5 Sp = S.*(1+delta*randn(length(S), 1));

6 M = sparse(I,J,Sp);

Diagonal preconditioning almost always reduces the condition num-
ber of A. For most of the examples, it also reduces the number of itera-
tions for LSQR and LSMR to converge. With diagonal preconditioning,
the condition number of lp_cre_d reduces from 9.9E+03 to 2.7E+02.
The number of iterations for LSQR to converge is reduced to 1218 and
that for LSMR is reduced to 1069 (12% less than that of LSQR). Since the
preconditioned system needs fewer iterations, there is less advantage
in using LSMR in this case. (This phenomenon can be explained by (4.7)
in the next section.)

To further illustrate the effect of preconditioning, we construct a
sequence of increasingly better preconditioners and investigate their
effect on the convergence of LSQR and LSMR. The preconditioners are
constructed by first performing a sparse QR factorization A = QR, and
then adding Gaussian random noise to the nonzeros of R. For a given
noise level δ, we use MATLAB Code 4.3 to generate the preconditioner.

Figure 4.10 illustrates the convergence of LSQR and LSMR on prob-
lem lp_d2q06c (cond(A) = 1.4E+05) with a number of preconditioners.
We have a total of 5 options:

• No preconditioner

• Diagonal preconditioner from MATLAB Code 4.2

• Preconditioner from MATLAB Code 4.3 with δ = 0.1

• Preconditioner from MATLAB Code 4.3 with δ = 0.01

• Preconditioner from MATLAB Code 4.3 with δ = 0.001

From the plots in Figure 4.10, we see that when no preconditioner is
applied, both algorithms exhibit very slow convergence and LSQR hits
the 10n iteration limit. The backward error for LSQR lags behind LSMR

by at least 1 order of magnitude at the beginning, and the gaps widen
to 2 orders of magnitude toward 10n iterations. The backward error for
LSQR fluctuates significantly across all iterations.

70 CHAPTER 4. LSMR EXPERIMENTS

0 0.5 1 1.5 2 2.5

x 10
4

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

iteration count

lo
g
(E

2
)

Name:lp d2q06c, Dim:5831x2171, nnz:33081, id=102

LSQR

LSMR

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp d2q06c, Dim:5831x2171, nnz:33081, id=102

LSQR

LSMR

0 200 400 600 800 1000 1200 1400
−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

(E
2

)

Name:lp d2q06c, Dim:5831x2171, nnz:33081, id=102

LSQR

LSMR

0 5 10 15 20 25 30 35 40 45
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

(E
2

)

Name:lp d2q06c, Dim:5831x2171, nnz:33081, id=102

LSQR

LSMR

1 2 3 4 5 6 7 8 9 10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

(E
2

)

Name:lp d2q06c, Dim:5831x2171, nnz:33081, id=102

LSQR

LSMR

Figure 4.10: Convergence of LSQR and LSMR with increasingly good preconditioners.
log ‖E2‖ is plotted against iteration number. LSMR shows an advantage until the precon-
ditioners is almost exact. Top: No preconditioners and diagonal preconditioner. Bottom:
Exact preconditioner with noise levels of 10%, 1% and 0.1%.

When diagonal preconditioning is applied, both algorithms take
less than n iterations to converge. The backward errors for LSQR lag
behind LSMR by 1 order of magnitude. There is also much less fluctu-
ation in the LSQR backward error compared to the unpreconditioned
case.

For the increasingly better preconditioners constructed with δ = 0.1,
0.01 and 0.001, we see that the number of iterations to convergence
decreases rapidly. With better preconditioners, we also see that the
gap between the backward errors for LSQR and LSMR becomes smaller.
With an almost perfect preconditioner (δ = 0.001), the backward error
for LSQR becomes almost the same as that for LSMR at each iteration.
This phenomenon can be explained by (4.7) in the next section.

4.1. LEAST-SQUARES PROBLEMS 71

4.1.4 WHY DOES ‖E2‖ FOR LSQR LAG BEHIND LSMR?

David Titley-Peloquin, in joint work with Serge Gratton and Pavel Ji-
ranek [76], has performed extensive analysis of the convergence be-
havior of LSQR and LSMR for least-square problems. These results are
unpublished at the time of writing. We summarize two key insights
from their work to provide a more complete picture on how these two
algorithms perform.

The residuals ‖rLSQR
k ‖, ‖rLSMR

k ‖ and residuals for the normal equa-
tion ‖ATrLSQR

k ‖, ‖ATrLSMR
k ‖ for LSQR and LSMR satisfy the following

relations [76], [35, Lemma 5.4.1]:

‖rLSMR
k ‖2 = ‖rLSQR

k ‖2 +
k−1∑

j=0

‖ATrLSMR
k ‖4

‖ATrLSMR
j ‖4 (‖r

LSQR
j ‖2 − ‖rLSQR

j+1 ‖2) (4.6)

‖ATrLSQR
k ‖ = ‖ATrLSMR

k ‖√
1− ‖ATrLSMR

k ‖2/‖ATrLSMR
k−1 ‖2

. (4.7)

From (4.6), one can infer that ‖rLSMR
k ‖ is much larger than ‖rLSQR

k ‖
only if both

• ‖rLSQR
j ‖2 ≪ ‖rLSQR

j+1 ‖2 for some j < k

• ‖ATrLSMR
j ‖4 ≈ ‖ATrLSMR

j+1 ‖4 ≈ · · · ≈ ‖ATrLSMR
k ‖4

happened, which is very unlikely in view of the fourth power [76]. This
explains our observation in Figure 4.1 that ‖rLSMR

k ‖ rarely lags behind
‖rLSQR

k ‖. In cases where ‖rLSMR
k ‖ lags behind in the early iterations, it

catches up very quickly.

From (4.7), one can infer that if ‖ATrLSMR
k ‖ decreases a lot between

iterations k−1 and k, then ‖ATrLSQR
k ‖ would be roughly the same as

‖ATrLSMR
k ‖. The converse also holds, in that ‖ATrLSQR

k ‖ will be much
larger than ‖ATrLSMR

k ‖ if LSMR is almost stalling at iteration k (i.e.,
‖ATrLSMR

k ‖ did not decrease much relative to the previous iteration)
[76]. This explains the peaks and plateaus observed in Figure 4.8.

We have a further insight about the difference between LSQR and
LSMR on least-squares problem that take many iterations. Both solvers
stop when

‖AT rk‖ ≤ ATOL‖A‖‖rk‖.

72 CHAPTER 4. LSMR EXPERIMENTS

MATLAB Code 4.4 Criteria for selecting square systems
1 ids = find(index.nrows > 100000 & ...

2 index.nrows < 200000 & ...

3 index.nrows == index.ncols & ...

4 index.isReal == 1 & ...

5 index.posdef == 0 & ...

6 index.numerical_symmetry < 1);

Since ‖r∗‖ is often O(‖r0‖) for least-squares, and it is also safe to as-
sume ‖AT r0‖/(‖A‖‖r0‖) = O(1), we know that they will stop at itera-
tion l, where

l∏

k=1

‖AT rk‖
‖AT rk−1‖

=
‖AT rl‖
‖AT r0‖

≈ O(ATOL).

Thus on average, ‖ATrLSMR
k ‖/‖ATrLSMR

k−1 ‖ will be closer to 1 if l is large.
This means that the larger l is (in absolute terms), the more LSQR will
lag behind LSMR (a bigger gap between ‖ATrLSQR

k ‖ and ‖ATrLSMR
k ‖).

4.2 SQUARE SYSTEMS

Since LSQR and LSMR are applicable to consistent systems, it is of in-
terest to compare them on an unbiased test set. We used the search
facility of Davis [18] to select a set of square real linear systems Ax = b.
With index = UFget, the criteria in MATLAB Code 4.4 returned a list of
42 examples. Testing isfield(UFget(id),’b’) left 26 cases for which b

was supplied.

PRECONDITIONING

For each linear system, diagonal scaling was first applied to the rows of[
A b

]
and then to its columns using MATLAB Code 4.5 to give a scaled

problem Ax = b in which the columns of
[
A b

]
have unit 2-norm.

In spite of the scaling, most examples required more than n iter-
ations of LSQR or LSMR to reduce ‖rk‖ satisfactorily (rule S1 in sec-
tion 3.2.2 with ATOL = BTOL = 10−8). To simulate better precon-
ditioning, we chose two cases that required about n/5 and n/10 iter-
ations. Figure 4.11 (left) shows both solvers reducing ‖rk‖ monotoni-
cally but with plateaus that are prolonged for LSMR. With loose stop-
ping tolerances, LSQR could terminate somewhat sooner. Figure 4.11

4.3. UNDERDETERMINED SYSTEMS 73

MATLAB Code 4.5 Diagonal preconditioning
1 % scale the row norms to 1
2 rnorms = sqrt(sum(A.*A,2));

3 D = diag(sparse(1./rnorms));

4 A = D*A;

5 b = D*b;

6 % scale the column norms to 1
7 cnorms = sqrt(sum(A.*A,1));

8 D = diag(sparse(1./cnorms));

9 A = A*D;

10 % scale the 2 norm of b to 1
11 bnorm = norm(b);

12 if bnorm ~= 0

13 b = b./bnorm;

14 end

(right) shows ‖ATrk‖ for each solver. The plateaus for LSMR corre-
spond to LSQR gaining ground with ‖rk‖, but falling significantly back-
ward by the ‖ATrk‖measure.

COMPARISON WITH IDR(s) ON SQUARE SYSTEMS

Again we mention that on certain square parameterized systems, the
solvers IDR(s) and LSQR or LSMR complement each other [81; 82] (see
Section 1.3.5).

4.3 UNDERDETERMINED SYSTEMS

In this section, we study the convergence of LSQR and LSMR when ap-
plied to an underdetermined system Ax = b. As shown in Section 3.3.2,
LSQR and LSMR converge to the minimum-norm solution for a singular
system (rank(A) < n). The solution solves minAx=b ‖x‖2.

As a comparison, we also apply MINRES directly to the equation
AATy = b and take x = ATy as the solution. This avoids multiplication
by ATA in the Lanczos process, where ATA is a highly singular operator
because A has more columns than rows. It is also useful to note that this
application of MINRES is mathematically equivalent to applying LSQR

to Ax = b.

Theorem 4.3.1. In exact arithmetic, applying MINRES to AATy = b and

setting xk = ATyk generates the same iterates as applying LSQR to Ax = b.

74 CHAPTER 4. LSMR EXPERIMENTS

0 0.5 1 1.5 2 2.5

x 10
4

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

||
r|

|

Name:Hamm.hcircuit, Dim:105676x105676, nnz:513072, id=542

LSQR

LSMR

0 0.5 1 1.5 2 2.5

x 10
4

−12

−10

−8

−6

−4

−2

0

iteration count

lo
g

||
A

T
r|

|

Name:Hamm.hcircuit, Dim:105676x105676, nnz:513072, id=542

LSQR

LSMR

0 2000 4000 6000 8000 10000 12000
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g

||
r|

|

Name:IBM EDA.trans5, Dim:116835x116835, nnz:749800, id=1324

LSQR

LSMR

0 2000 4000 6000 8000 10000 12000
−12

−10

−8

−6

−4

−2

0

iteration count

lo
g

||
A

T
r|

|

Name:IBM EDA.trans5, Dim:116835x116835, nnz:749800, id=1324

LSQR

LSMR

Figure 4.11: LSQR and LSMR solving two square nonsingular systems Ax = b: problems
Hamm/hcircuit (top) and IBM_EDA/trans5 (bottom). Left: log10 ‖rk‖ for both solvers, with
prolonged plateaus for LSMR. Right: log10 ‖ATrk‖ (preferable for LSMR).

4.3. UNDERDETERMINED SYSTEMS 75

Table 4.2 Relationship between CG, MINRES, CRAIG, LSQR and LSMR

CRAIG ≡ CG on AATy = b, x = ATy
LSQR ≡ CG on ATAx = ATb

≡ MINRES on AATy = b, x = ATy
LSMR ≡ MINRES on ATAx = ATb

Proof. It suffices to show that the two methods are solving the same
subproblem at every iteration. Let xMINRES

k and xLSQR
k be the iterates

generated by MINRES and LSQR respectively. Then

xMINRES
k = AT argminy∈Kk(AAT,b)

∥∥b−AATy
∥∥

= argminx∈Kk(ATA,ATb) ‖b−Ax‖

= xLSQR
k .

The first and third equality comes from the subproblems that MINRES

and LSQR solve. The second equality follows from the following map-
ping from points in Kk(AAT, b) to Kk(A

TA,ATb):

f : Kk(AAT, b)→ Kk(A
TA,ATb), f(y) = ATy,

and from the fact that for any point x ∈ Kk(A
TA,ATb), we can write

x = γ0A
Tb+

k∑

i=1

γi(A
TA)i(ATb)

for some scalars {γi}ki=0. Then the point

y = γ0b+

k∑

i=1

γi(AAT)ib

would be a preimage of x under f .

This relationship, as well as some other well known ones between
CG, MINRES, CRAIG, LSQR and LSMR, are summarized in Table 4.2.

BACKWARD ERROR FOR UNDERDETERMINED SYSTEMS

A linear system Ax = b is ill-posed if A is m-by-n and m < n, because
the system has an infinite number of solutions (or none). One way to
define a unique solution for such a system is to choose the solution

76 CHAPTER 4. LSMR EXPERIMENTS

MATLAB Code 4.6 Left diagonal preconditioning
1 % scale the row norms to 1
2 rnorms = sqrt(full(sum(A.*A,2)));

3 rnorms = rnorms + (rnorms == 0); % avoid division by 0
4 D = diag(sparse(1./rnorms));

5 A = D*A;

6 b = D*b;

x with minimum 2-norm. That is, we want to solve the optimization
problem

min
Ax=b

‖x‖2.

For any approximate solution x to above problem, the normwise back-

ward error is defined as the norm of the minimum perturbation to A

such that x is a solution of the perturbed optimization problem:

η(x) = min
E
‖E‖ s.t. x = argmin(A+E)x=b‖x‖.

Sun and Sun [39] have shown that this value is given by

η(x) =

√
‖r‖22
‖x‖22

+ σ2
min(B), B = A

(
I − xxT

‖x‖22

)
.

Since it is computationally prohibitive to compute the minimum singu-
lar value at every iteration for the backward error, we will use ‖r‖/‖x‖
as an approximate backward error in the following analysis.11Note that this estimate

is a lower bound on the true
backward error. In contrast,
the estimates E1 and E2

for backward error in least-
squares problems are upper
bounds.

PRECONDITIONING

For underdetermined systems, a right preconditioner on A will alter
the minimum-norm solution. Therefore, only left preconditioners are
applicable. In the following experiments, we do a left diagonal precon-
ditioning on A by scaling the rows of A to unit 2-norm; see MATLAB

Code 4.6.

DATA

For testing underdetermined systems, we use sparse matrices from the
LPnetlib group (the same set of data as in Section 4.1).

Each example was downloaded in MATLAB format, and a sparse
matrix A and dense vector b were extracted from the data structure

4.4. REORTHOGONALIZATION 77

via A = Problem.A and b = Problem.b Then we solve an underdeter-
mined linear system minAx=b ‖x‖2 with both LSQR and LSMR. MINRES

is also used with a change of variable to a form equivalent to LSQR as
described above.

NUMERICAL RESULTS

The experimental results showed that LSMR converges almost as quickly
as LSQR for underdetermined systems. The approximate backward er-
rors for four different problems are shown in Figure 4.12. In only a
few cases, LSMR lags behind LSQR for a number of iterations. Thus we
conclude that LSMR and LSQR are equally good for finding minimum
2-norm solutions for underdetermined systems.

The experimental results also confirmed our earlier derivation that
MINRES on AATy = b and x = ATy is equivalent to LSQR on Ax =

b. MINRES exhibits the same convergence behavior as LSQR, except
in cases where they both take more than m iterations to converge. In
these cases, the effect of increased condition number of AAT kicks in
and slows down MINRES in the later iterations.

4.4 REORTHOGONALIZATION

It is well known that Krylov-subspace methods can take arbitrarily
many iterations because of loss of orthogonality. For the Golub-Kahan
bidiagonalization, we have two sets of vectors Uk and Vk. As an exper-
iment, we implemented the following options in LSMR:

1. No reorthogonalization.

2. Reorthogonalize Vk (i.e. reorthogonalize vk with respect to Vk−1).

3. Reorthogonalize Uk (i.e. reorthogonalize uk with respect to Uk−1).

4. Both 2 and 3.

Each option was tested on all of the over-determined test problems
with fewer than 16K nonzeros. Figure 4.13 shows an “easy” case in
which all options converge equally well (convergence before signifi-
cant loss of orthogonality), and an extreme case in which reorthogonal-
ization makes a large difference.

Unexpectedly, options 2, 3, and 4 proved to be indistinguishable in
all cases. To look closer, we forced LSMR to take n iterations. Option 2
(with Vk orthonormal to machine precision ǫ) was found to be keeping

78 CHAPTER 4. LSMR EXPERIMENTS

0 20 40 60 80 100 120 140
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(|

|r
||
 /
 |
|x

||
)

Name:U lp pds 10, Dim:16558x49932, nnz:107605, id=418

LSQR

MINRES

LSMR

0 20 40 60 80 100 120 140 160 180
−12

−10

−8

−6

−4

−2

0

2

iteration count

lo
g

(|
|r

||
 /

 |
|x

||
)

Name:U lp standgub, Dim:361x1383, nnz:3338, id=350

LSQR

MINRES

LSMR

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−8

−6

−4

−2

0

2

iteration count

lo
g
(|

|r
||
 /
 |
|x

||
)

Name:U lp israel, Dim:174x316, nnz:2443, id=336

LSQR

MINRES

LSMR

0 200 400 600 800 1000 1200 1400
−10

−8

−6

−4

−2

0

2

iteration count

lo
g
(|

|r
||
 /
 |
|x

||
)

Name:U lp fit1p, Dim:627x1677, nnz:9868, id=380

LSQR

MINRES

LSMR

Figure 4.12: The backward errors ‖rk‖/‖xk‖ for LSQR, LSMR and MINRES on four different
underdetermined linear systems to find the minimum 2-norm solution. Upper left: The
backward errors for all three methods converge at a similar rate. Most of our test cases ex-
hibit similar convergence behavior. This shows that LSMR and LSQR perform equally well
for underdetermined systems. Upper right: A rare case where LSMR lags behind LSQR sig-
nificantly for some iterations. This plot also confirms our earlier derivation that this spe-
cial version of MINRES is theoretically equivalent to LSQR, as shown by the almost identical
convergence behavior. Lower left: An example where all three algorithms take more than
m iterations. Since MINRES works with the operator AAT, the effect of numerical error is
greater and MINRES converges slower than LSQR towards the end of computation. Lower
right: Another example showing that MINRES lags behind LSQR because of greater numeri-
cal error.

4.4. REORTHOGONALIZATION 79

0 10 20 30 40 50 60 70 80 90
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp ship12l, Dim:5533x1151, nnz:16276, id=688

NoOrtho

OrthoU

OrthoV

OrthoUV

0 500 1000 1500 2000 2500 3000
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lpi gran, Dim:2525x2658, nnz:20111, id=717

NoOrtho

OrthoU

OrthoV

OrthoUV

Figure 4.13: LSMR with and without reorthogonalization of Vk and/or Uk. Left: An easy case
where all options perform similarly (problem lp_ship12l). Right: A helpful case (problem
lp_gran).

Uk orthonormal to at least O(
√
ǫ). Option 3 (with Uk orthonormal) was

not quite as effective but it kept Vk orthonormal to at least O(
√
ǫ) up to

the point where LSMR would terminate when ATOL =
√
ǫ.

This effect of one-sided reorthogonalization has also been pointed
out in [65].

Note that for square or rectangular A with exact arithmetic, LSMR

is equivalent to MINRES on the normal equation (and hence to CR [44]
and GMRES [63] on the same equation). Reorthogonalization makes the
equivalence essentially true in practice. We now focus on reorthogonal-
izing Vk but not Uk.

Other authors have presented numerical results involving reorthog-
onalization. For example, on some randomly generated LS problems
of increasing condition number, Hayami et al. [37] compare their BA-
GMRES method with an implementation of CGLS (equivalent to LSQR

[53]) in which Vk is reorthogonalized, and find that the methods require
essentially the same number of iterations. The preconditioner chosen
for BA-GMRES made that method equivalent to GMRES on ATAx = ATb.
Thus, GMRES without reorthogonalization was seen to converge essen-
tially as well as CGLS or LSQR with reorthogonalization of Vk (option
2 above). This coincides with the analysis by Paige et al. [55], who
conclude that MGS-GMRES does not need reorthogonalization of the
Arnoldi vectors Vk.

80 CHAPTER 4. LSMR EXPERIMENTS

0 100 200 300 400 500 600 700 800 900
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp maros, Dim:1966x846, nnz:10137, id=642

NoOrtho
Restart5

Restart10
Restart50

FullOrtho

0 500 1000 1500 2000 2500 3000 3500
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp cre c, Dim:6411x3068, nnz:15977, id=611

NoOrtho
Restart5

Restart10
Restart50

FullOrtho

Figure 4.14: LSMR with reorthogonalized Vk and restarting. Restart(l) with l = 5, 10, 50 is
slower than standard LSMR with or without reorthogonalization. NoOrtho represents LSMR
without reorthogonalization. Restart5, Restart10, and Restart50 represents LSMR with Vk

reorthogonalized and with restarting every 5, 10 or 50 iterations. FullOrtho represents LSMR
with Vk reorthogonalized without restarting. Problems lp_maros and lp_cre_c.

RESTARTING

To conserve storage, a simple approach is to restart the algorithm every
l steps, as with GMRES(l) [63]. To be precise, we set

rl = b−Axl, min ‖A∆x− rl‖, xl ← xl +∆x

and repeat the same process until convergence. Our numerical test in
Figure 4.14 shows that restarting LSMR even with full reorthogonal-
ization (of Vk) may lead to stagnation. In general, convergence with
restarting is much slower than LSMR without reorthogonalization. Re-
starting does not seem useful in general.

LOCAL REORTHOGONALIZATION

Here we reorthogonalize each new vk with respect to the previous l

vectors, where l is a specified parameter. Figure 4.15 shows that l = 5

has little effect, but partial speedup was achieved with l = 10 and 50
in the two chosen cases. There is evidence of a useful storage-time
tradeoff. It should be emphasized that the potential speedup depends
strongly on the computational cost of Av and ATu. If these are cheap,
local reorthogonalization may not be worthwhile.

4.4. REORTHOGONALIZATION 81

0 50 100 150 200 250 300 350 400 450
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g
(E

2
)

Name:lp fit1p, Dim:1677x627, nnz:9868, id=625

NoOrtho
Local5
Local10
Local50
FullOrtho

0 200 400 600 800 1000 1200 1400
−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g
(E

2
)

Name:lp bnl2, Dim:4486x2324, nnz:14996, id=605

NoOrtho
Local5
Local10
Local50
FullOrtho

Figure 4.15: LSMR with local reorthogonalization of Vk. NoOrtho represents LSMR without
reorthogonalization. Local5, Local10, and Local50 represent LSMR with local reorthogonal-
ization of each vk with respect to the previous 5, 10, or 50 vectors. FullOrtho represents LSMR
with reorthogonalized Vk without restarting. Local(l) with l = 5, 10, 50 illustrates reduced
iterations as l increases. Problems lp_fit1p and lp_bnl2.

5
AMRES

In this chapter we describe an efficient and stable iterative algorithm
for computing the vector x in the augmented system

(
γI A

AT δI

)(
s

x

)
=

(
b

0

)
, (5.1)

where A is a rectangular matrix, γ and δ are any scalars, and we define

Â =

(
γI A

AT δI

)
, x̂ =

(
s

x

)
, b̂ =

(
b

0

)
. (5.2)

Our algorithm is called AMRES, for Augmented-system Minimum RES-
idual method. It is derived by formally applying MINRES [52] to the
augmented system (5.1), but is more economical because it is based on
the Golub-Kahan bidiagonalization process [29] and it computes esti-
mates of just x (excluding s).

Note that Â includes two scaled identity matrices γI and δI in the
(2,2)-block. When γ and δ have opposite sign (e.g., γ = σ, δ = −σ), (5.1)
is equivalent to a damped least-squares problem

min

∥∥∥∥∥

(
A

σI

)
x−

(
b

0

)∥∥∥∥∥
2

≡ (ATA+ σ2I)x = ATb

(also known as a Tikhonov regularization problem). CGLS, LSQR or
LSMR may then be applied. They require less work and storage per
iteration than AMRES, but the number of iterations and the numeri-
cal reliability of all three algorithms would be similar (especially for
LSMR).

AMRES is intended for the case where γ and δ have the same sign
(e.g., γ = δ = σ). An important application is for the solution of “neg-
atively damped normal equations” of the form

(ATA− σ2I)x = ATb, (5.3)

82

5.1. DERIVATION OF AMRES 83

which arise from both ordinary and regularized total least-squares (TLS)
problems, Rayleigh quotient iteration (RQI) and Curtis-Reid scaling.
These equations do not lend themselves to an equivalent least-squares
formulation. Hence, there is a need for algorithms specially tailored
to the problem. We note in passing that there is a formal least-squares
formulation for negative shifts:

min

∥∥∥∥∥

(
A

iσI

)
x−

(
b

0

)∥∥∥∥∥
2

, i =
√
−1,

but this doesn’t lead to a convenient numerical algorithm for large-
scale problems.

For small enough values of σ2, the matrix ATA − σ2I is positive
definite (if A has full column rank), and this is indeed the case with or-
dinary TLS problems. However, for regularized TLS problems (where
σ2 plays the role of a regularization parameter that is not known a pri-

ori and must be found by solving system (5.3) for a range of σ-values),
there is no guarantee that ATA−σ2I will be positive definite. With a mi-
nor extension, CGLS may be applied with any shift [6] (and this could
often be the most efficient algorithm), but when the shifted matrix is
indefinite, stability cannot be guaranteed.

AMRES is reliable for any shift, even if ATA−σ2I is indefinite. Also,
if σ happens to be a singular value of A (extreme or interior), AMRES

may be used to compute a corresponding singular vector in the manner
of inverse iteration,1 as described in detail in Section 6.3. 1Actually, by solving a

singular least-squares prob-
lem, as in Choi [13].

5.1 DERIVATION OF AMRES

If the Lanczos process Tridiag(Â, b̂) were applied to the matrix and rhs
in (5.1), we would have

T̂2k =




γ α1

α1 δ β2

β2 γ α2

.

βk γ αk

αk δ




,

V̂2k =

(
u1 u2 . . . uk

v1 v2 . . . vk

)
, (5.4)

84 CHAPTER 5. AMRES

and then T̂2k+1, V̂2k+1 in the obvious way. Because of the structure of
Â and b̂, the scalars αk, βk and vectors uk, vk are independent of γ and
δ, and it is more efficient to generate the same quantities by the Golub-
Kahan process Bidiag(A, b). To solve (5.1), MINRES would solve the
subproblems

min
∥∥∥Ĥkyk − β1e1

∥∥∥ , Ĥk =






 T̂k

α k+1

2

eTk


 (k odd)


 T̂k

β k
2
+1e

T
k


 (k even)

5.1.1 LEAST-SQUARES SUBSYSTEM

If γ = δ = σ, a singular value of A, the matrix Â is singular. In general
we wish to solve minx̂ ‖Âx̂− b̂‖, where x̂ may not be unique. We define
the k-th estimate of x̂ to be x̂k = V̂kŷk, and then

r̂k ≡ b̂− Âx̂k = b̂− ÂV̂kŷk = V̂k+1

(
β1e1 − Ĥkŷk

)
. (5.5)

To minimize the residual r̂k, we perform a QR factorization on Ĥk:

min ‖r̂k‖ = min ‖β1e1 − Ĥkŷk‖

= min

∥∥∥∥∥Q
T
k+1

((
zk

ζ̄k+1

)
−
(
Rk

0

)
ŷk

)∥∥∥∥∥ (5.6)

= min

∥∥∥∥∥

(
zk

ζ̄k+1

)
−
(
Rk

0

)
ŷk

∥∥∥∥∥, (5.7)

where
zTk = (ζ1, ζ2, . . . , ζk), Qk+1 = Pk · · ·P2P1, (5.8)

with Qk+1 being a product of plane rotations. At iteration k, Pl denotes
a plane rotation on rows l and l + 1 (with k ≥ l):

Pl =




Il−1

cl sl

−sl cl

Ik−l


 .

5.1. DERIVATION OF AMRES 85

The solution ŷk to (5.7) satisfies Rkŷk = zk. As in MINRES, to allow a
cheap iterative update to x̂k we define Ŵk to be the solution of

RT
k Ŵ

T
k = V̂ T

k , (5.9)

which gives us
x̂k = V̂kŷk = ŴkRkŷk = Ŵkzk. (5.10)

Since we are interested in the lower half of x̂k = (sk
xk

), we write Ŵk as

Ŵk =

(
Wu

k

W v
k

)
, Wu

k =
(
wu

1 wu
2 · · · wu

k

)
, W v

k =
(
wv

1 wv
2 · · · wv

k

)
.

Then (5.10) can be simplified as xk = W v
k zk = xk−1 + ζkw

v
k .

5.1.2 QR FACTORIZATION

The effects of the first two rotations in (5.8) are shown here:

(
c1 s1

−s1 c1

)(
γ α1

α1 δ β2

)
=

(
ρ1 θ1 η1

ρ̄2 θ̄2

)
, (5.11)

(
c2 s2

−s2 c2

)(
ρ̄2 θ̄2

β2 γ α2

)
=

(
ρ2 θ2 η2

ρ̄3 θ̄3

)
. (5.12)

Later rotations are shown in Algorithm AMRES.

5.1.3 UPDATING W v
k

Since we are only interested in W v
k , we can extract it from (5.9) to get

RT
k (W

v
k)

T =





(
0 v1 0 v2 · · · v k−1

2

0
)T

(k odd)
(
0 v1 0 v2 · · · 0 v k

2

)T
(k even)

where the structure of the rhs comes from (5.4). Since RT
k is lower tridi-

agonal, the system can be solved by the following recurrences:

wv
1 = 0, wv

2 = v1/ρ2

wv
k =




(−ηk−2w

v
k−2 − θk−1w

v
k−1)/ρk. (k odd)

(v k
2
− ηk−2w

v
k−2 − θk−1w

v
k−1)/ρk. (k even)

86 CHAPTER 5. AMRES

If we define hk = ρkw
v
k , then we arrive at the update rules in step 7

of Algorithm 5.1, which saves 2n floating point multiplication for each
step of Golub-Kahan bidiagonalization compared with updating wv

k .

5.1.4 ALGORITHM AMRES

Algorithm 5.1 summarizes the main steps of AMRES, excluding the
norm estimates and stopping rules developed later. As usual, β1u1 = b

is shorthand for β1 = ‖b‖, u1 = b/β1 (and similarly for all αk, βk).

5.2 STOPPING RULES

Stopping rules analogous to those in LSQR [53] are used for AMRES.
Three dimensionless quantities are needed: ATOL, BTOL, CONLIM.
The first stopping rule applies to compatible systems, the second rule
applies to incompatible systems, and the third rule applies to both.

S1: Stop if ‖rk‖ ≤ BTOL‖b‖+ ATOL‖A‖‖xk‖
S2: Stop if ‖ÂT r̂k‖ ≤ ‖Â‖‖r̂k‖ATOL

S3: Stop if cond(A) ≥ CONLIM

5.3 ESTIMATE OF NORMS

5.3.1 COMPUTING ‖r̂k‖

From (5.7), it’s obvious that ‖r̂k‖ = |ζ̄k+1|.

5.3.2 COMPUTING ‖Âr̂k‖

Starting from (5.5) and using (5.6), we have

Âr̂k = ÂV̂k+1

(
β1e1 − Ĥkŷk

)
= V̂k+2Hk+1

(
β1e1 − Ĥkŷk

)

= V̂k+2Hk+1Q
T
k+1

((
zk

ζ̂k+1

)
−
(
Rk

0

)
ŷk

)

= V̂k+2Hk+1Q
T
k+1

(
0

ζ̂k+1

)
= V̂k+2




RT
k 0

θke
T
k ρ̄k+1

ηke
T
k θ̄k+1



(

0

ζ̂k+1

)

= ζ̂k+1V̂k+2







0

ρ̄k+1

θ̄k+1






= ζ̂k+1(ρ̄k+1v̂k+1 + θ̄k+1v̂k+2).

Therefore, ‖Âr̂k‖ = |ζ̂k+1|
∥∥∥
(
ρ̄k+1 θ̄k+1

)∥∥∥.

5.3. ESTIMATE OF NORMS 87

Algorithm 5.1 Algorithm AMRES

1: (Initialize)

β1u1 = b α1v1 = ATu1 ρ̄1 = γ θ̄1 = α1

ζ̄1 = β1 wv
−1 = ~0 wv

0 = ~0 x0 = ~0

η−1 = 0 η0 = 0 θ0 = 0

2: for l = 1, 2, 3 . . . do
3: (Continue the bidiagonalization)

βl+1ul+1 = Avl − αlul αl+1vl+1 = ATul+1 − βl+1vl

4: for k = 2l − 1, 2l do
5: (Setup temporary variables)

{
λ = δ α = αl β = βl+1 (k odd)
λ = γ α = βl+1 β = αl+1 (k even)

6: (Construct and apply rotation Pk)

ρk =
(
ρ̄2k + α2

) 1
2

ck = ρ̄k/ρk sk = α/ρk

θk = ckθ̄k + skλ ρ̄k+1 = −skθ̄k + ckλ

ηk = skβ θ̄k+1 = ckβ

ζk = ck ζ̄k ζ̄k+1 = −sk ζ̄k

7: (Update estimates of x)

hk =

{
−(ηk−2/ρk−2)hk−2 − (θk−1/ρk−1)hk−1 (k odd)
vl − (ηk−2/ρk−2)hk−2 − (θk−1/ρk−1)hk−1 (k even)

xk = xk−1 + (ζk/ρk)hk

8: end for
9: end for

88 CHAPTER 5. AMRES

5.3.3 COMPUTING ‖x̂‖

From (5.7) and 5.10, we know that x̂k = V̂kŷk and zk = Rkŷk. If we do
a QR factorization Q̃kR

T
k = R̃k and let tk = Q̃kŷk, we can write

zk = Rkŷk = RkQ̃
T
k Q̃kŷk = R̃T

k tk, (5.13)

giving x̂k = V̂kQ̃
T
k tk and hence ‖x̂k‖ = ‖tk‖, where ‖tk‖ is derived next.

For the QR factorizations (5.8) and (5.13), we write Rk and R̃k as

Rk =




ρ1 θ1 η1

ρ2 θ2 η2
.

ρk−2 θk−2 ηk−2

ρk−1 θk−1

ρk




,

R̃k =




ρ̃
(4)
1 θ̃

(2)
1 η̃

(1)
1

ρ̃
(4)
1 θ̃

(2)
1 η̃

(1)
1

.

ρ̃
(4)
k−2 θ̃

(2)
k−2 η̃

(1)
k−2

ρ̃
(3)
k−1 θ̃

(1)
k−1

ρ̃
(2)
k




,

where the upper index denotes the number of times that element has
changed during the decompositions. Also, Q̃k = (P̃kP̂k) · · · (P̃3P̂3)P̃2,
where P̂k and P̃k are constructed by changing the (k−2 : k)×(k−2 : k)

submatrix of Ik to




c̃
(1)
k s̃

(1)
k

1

−s̃(1)k c̃
(1)
k


 and



1

c̃
(2)
k s̃

(2)
k

−s̃(2)k c̃
(2)
k




respectively. The effects of these two rotations can be summarized as

(
c̃
(1)
k s̃

(1)
k

−s̃(1)k c̃
(1)
k

)(
ρ̃
(3)
k−2 θ̃

(1)
k−2

ηk−2 θk−1 ρk

)
=

(
ρ̃
(4)
k−2 θ̃

(2)
k−2 η̃

(1)
k−2

0 θ̇k−1 ρ̃
(1)
k

)

(
c̃
(2)
k s̃

(2)
k

−s̃(2)k c̃
(2)
k

)(
ρ̃
(2)
k−1

θ̇k−1 ρ̃
(1)
k

)
=

(
ρ̃
(3)
k−1 θ̃

(1)
k−1

0 ρ̃
(2)
k

)
.

5.4. COMPLEXITY 89

Let tk =
(
τ
(3)
1 . . . τ

(3)
k−2 τ

(2)
k−1 τ

(1)
k

)T
. We solve for tk by

τ
(3)
k−2 = (ζk−2 − η̃

(1)
k−4τ

(3)
k−4 − θ̃

(2)
k−3τ

(3)
k−3)/ρ̃

(4)
k−2

τ
(2)
k−1 = (ζk−1 − η̃

(1)
k−3τ

(3)
k−3 − θ̃

(2)
k−2τ

(3)
k−2)/ρ̃

(3)
k−1

τ
(1)
k = (ζk − η̃

(1)
k−2τ

(3)
k−2 − θ̃

(1)
k−1τ

(2)
k−1)/ρ̃

(2)
k

with our estimate of ‖x̂‖ obtained from

‖x̂k‖ = ‖tk‖ =
∥∥∥
(
τ
(3)
1 . . . τ

(3)
k−2 τ

(2)
k−1 τ

(1)
k

)∥∥∥ .

5.3.4 ESTIMATES OF ‖Â‖ AND COND(Â)

Using Lemma 2.32 from Choi [13], we have the following estimates of
‖Â‖ at the l-th iteration:

‖Â‖ ≥ max
1≤i≤l

(α2
i + δ2 + β2

i+1)
1
2 , (5.14)

‖Â‖ ≥ max
2≤i≤l

(β2
i + γ2 + α2

i)
1
2 . (5.15)

Stewart [71] showed that the minimum and maximum singular val-
ues of Ĥk bound the diagonal elements of R̃k. Since the extreme singu-
lar values of Ĥk estimate those of Â, we have an approximation (which
is also a lower bound) for the condition number of Â:

cond(Â) ≈
max(ρ̃

(4)
1 , . . . , ρ̃

(4)
k−2, ρ̃

(3)
k−1, ρ̃

(2)
k)

min(ρ̃
(4)
1 , . . . , ρ̃

(4)
k−2, ρ̃

(3)
k−1, ρ̃

(2)
k)

. (5.16)

5.4 COMPLEXITY

The storage and computational of cost at each iteration of AMRES are
shown in Table 5.1.

Table 5.1 Storage and computational cost for AMRES

Storage Work
m n m n

AMRES Av, u x, v, hk−1, hk 3 9
and the cost to compute products Av and ATu

6
AMRES APPLICATIONS

In this chapter we discuss a number of applications for AMRES. Section
6.1 describes its use for Curtis-Reid scaling, a commonly used method
for scaling sparse rectangular matrices such as those arising in linear
programming problems. Section 6.2 applies AMRES to Rayleigh quo-
tient iteration for computing singular vectors, and describes a modified
version of RQI to allow reuse of the Golub-Kahan vectors. Section 6.3
describes a modified version of AMRES that allows singular vectors to
be computed more quickly and reliably when the corresponding sin-
gular value is known.

6.1 CURTIS-REID SCALING

In linear programming problems, the constraint matrix is often pre-
processed by a scaling procedure before the application of a solver.
The goal of such scaling is to reduce the range of magnitudes of the
nonzero matrix elements. This may improve the numerical behavior of
the solver and reduce the number of iterations to convergence [21].

Scaling procedures multiply a given matrix A by a diagonal matrix
on each side:

Ā = RAC, R = diag(β−ri), C = diag(β−cj),

where A is m-by-n, β > 1 is an arbitrary base, and the vectors r =(
r1 r2 . . . rm

)T
and c =

(
c1 c2 . . . cn

)T
represent the scaling

factors in log-scale. One popular scaling objective is to make each non-
zero element of the scaled matrix Ā approximately 1 in absolute value,
which translates to the following system of equations for r and c:

|āij | ≈ 1 ⇒ β−ri |aij |β−cj ≈ 1

⇒ −ri + logβ |aij | − cj ≈ 0

Following the above objective, two methods of matrix-scaling have

90

6.1. CURTIS-REID SCALING 91

MATLAB Code 6.1 Least-squares problem for Curtis-Reid scaling
1 [m n] = size(A);

2 [I J S] = find(A);

3 z = length(I);

4 M = sparse([1:z 1:z]’, [I; J+m], ones(2*z,1));

5 d = log(abs(S));

been proposed in 1962 and 1971:

min
ri,cj

max
aij 6=0

| logβ |aij | − ri − cj | Fulkerson & Wolfe 1962 [28] (6.1)

min
ri,cj

∑

aij 6=0

(logβ |aij | − ri − cj)
2 Hamming 1971 [36] (6.2)

6.1.1 CURTIS-REID SCALING USING CGA

The closed-form solution proposed by Hamming is restricted to a dense
matrix A. Curtis and Reid extended Hamming’s method to general A
and designed a specialized version of CG (which we will call CGA) that
allows the scaling to work efficiently for sparse matrices [17]. Exper-
iments by Tomlin [77] indicate that Curtis-Reid scaling is superior to
that of Fulkerson and Wolfe. We may describe the key ideas in Curtis-
Reid scaling for matrices.

Let z be the number of nonzero elements in A. Equation (6.2) can
be written in matrix notation as

min
r,c

∥∥∥∥∥M
(
r

c

)
− d

∥∥∥∥∥ , (6.3)

where M is a z-by-(m + n) matrix and d is a z vector. Each row of M
corresponds to a nonzero Aij . The entire row is 0 except the i-th and
(j +m)-th column is 1. The corresponding element in d is log |Aij |. M
and d are defined by MATLAB Code 6.1.1 1In practice, matrix M

is never constructed because
it is more efficient to work
with the normal equation di-
rectly, as described below.

The normal equation for the least-squares problem (6.3),

MTM

(
r

c

)
= MTd,

can be written as (
D1 F

FT D2

)(
r

c

)
=

(
s

t

)
, (6.4)

92 CHAPTER 6. AMRES APPLICATIONS

MATLAB Code 6.2 Normal equation for Curtis-Reid scaling
1 F = (abs(A)>0);

2 D1 = diag(sparse(sum(F,2))); % sparse diagonal matrix
3 D2 = diag(sparse(sum(F,1))); % sparse diagonal matrix
4

5 abslog = @(x) log(abs(x));

6 B = spfun(abslog,A);

7 s = sum(B,2);

8 t = sum(B,1)’;

where F has the same dimension and sparsity pattern as A, with every
nonzero entry changed to 1, while D1 and D2 are diagonal matrices
whose diagonal elements represent the number of nonzeros in each
row and column of A respectively. s and t are defined by

Bij =




log |Aij | (Aij 6= 0)

0 (Aij = 0)
, si =

n∑

j=1

Bij , tj =

m∑

i=1

Bij .

The contruction of these submatrices is shown in MATLAB code 6.2.

Equation (6.4) is a consistent positive semi-definite system. Any
solution to this system would suffice for scaling perpose as they all
produce the same scaling.22It is obvious that

(

1

−1

)

is a null vector,

which follows directly from
the definition of F , D1 and
D2. If r and c solve (6.4),
then r + α1 and c − α1
are also solutions for any
α. This corresponds to
the fact that RAC and
(βαR)A(β−αC) give the
same scaled Ā.

Reid [60] developed a specialized version of CG on matrices with
Property A.3 It takes advantage of the sparsity pattern that appear when

3A matrix A is said to
have property A if there ex-
ist permutations P1, P2 such
that

PT
1 AP2 =

(

D1 E
F D2

)

,

where D1 and D2 are diago-
nal matrices [87].

CG is applied to matrices with Property A to reduce both storage and
work. Curtis and Reid [17] applied CGA to (6.4) to find the scaling for
matrix A. To compare the performance of CGA on (6.4) against AMRES,
we implemented the CGA algorithm as described in [17]. The imple-
mentation shown in MATLAB Code 6.3.

6.1.2 CURTIS-REID SCALING USING AMRES

In this section, we discuss how to transform equation (6.4) so that it can
be solved by AMRES.

First, we apply a symmetric diagonal preconditioning with

(
D

1
2

1

D
1
2

2

)

as the preconditioner. Then, with the definitions

r̄ = D
1
2

1 r, c̄ = D
1
2

2 c, s̄ = D
− 1

2

1 s, t̄ = D
− 1

2

2 t, C = D
− 1

2

1 FD
− 1

2

2 ,

6.1. CURTIS-REID SCALING 93

MATLAB Code 6.3 CGA for Curtis-Reid scaling. This is an implemen-
tation of the algorithm described in [17].

1 function [cscale, rscale] = crscaleCGA(A, tol)

2

3 % CRSCALE implements the Curtis-Reid scaling algorithm.
4 % [cscale, rscale, normrv, normArv, normAv, normxv, condAv] = crscale(A, tol);
5 %
6 % Use of the scales:
7 %
8 % If C = diag(sparse(cscale)), R = diag(sparse(rscale)),
9 % Cinv = diag(sparse(1./cscale)), Rinv = diag(sparse(1./rscale)),

10 % then Cinv*A*Rinv should have nonzeros that are closer to 1 in absolute value.
11 %
12 % To apply the scales to a linear program,
13 % min c’x st Ax = b, l <= x <= u,
14 % we need to define "barred" quantities by the following relations:
15 % A = R Abar C, b = R bbar, C cbar = c,
16 % C l = lbar, C u = ubar, C x = xbar.
17 % This gives the scaled problem
18 % min cbar’xbar st Abar xbar = bbar, lbar <= xbar <= ubar.
19 %
20 %
21 % 03 Jun 2011: First version.
22 % David Fong and Michael Saunders, ICME, Stanford University.
23

24 E = (abs(A)>0); % sparse if A is sparse
25 rowSumE = sum(E,2);

26 colSumE = sum(E,1);

27 Minv = diag(sparse(1./(rowSumE + (rowSumE == 0))));

28 Ninv = diag(sparse(1./(colSumE + (colSumE == 0))));

29 [m n] = size(A);

30 abslog = @(x) log(abs(x));

31 Abar = spfun(abslog,A);

32 % make sure sigma and tau are of correct size even if some entries of A are 1
33 sigma = zeros(m,1) + sum(Abar,2);

34 tau = zeros(n,1) + sum(Abar,1)’;

35

36 itnlimit = 100;

37 r1 = zeros(length(sigma),1);

38 r2 = tau - E’*(Minv*sigma);

39 c2 = zeros(length(tau),1);

40 c = c2; e1 = 0; e = 0; q2 = 1;

41 s2 = r2’*(Ninv*r2);

42

43 for t = 1:itnlimit

44 rm1 = r1; r = r2; em2 = e; em1 = e1;

45 q = q2; s = s2; cm2 = c; c = c2;

46 r1 = -(E*(Ninv*r) + em1 * rm1)/q;

47 s1 = r1’*(Minv*r1);

48 e = q * s1/s; q1 = 1 - e;

49 c2 = c + (Ninv*r + em1*em2*(c-cm2))/(q*q1);

50 cv(:,t+1) = c2;

51 if s1 < 1e-10; break; end

52

53 r2 = -(E’*(Minv*r1) + e * r)/q1;

54 s2 = r2’*(Ninv*r2);

55 e1 = q1*s2/s1; q2 = 1 - e1;

56 end

57

58 c = c2;

59 rho = Minv*(sigma - E*c);

60 gamma = c;

61 rscale = exp(rho); cscale = exp(gamma);

62 rmax = max(rscale); cmax = max(cscale);

63 s = sqrt(rmax/cmax);

64 cscale = cscale*s; rscale = rscale/s;

65 end % function crscale

94 CHAPTER 6. AMRES APPLICATIONS

(6.4) becomes (
I C

CT I

)(
r̄

c̄

)
=

(
s̄

t̄

)
,

and with ĉ = c̄− t̄, we get the form required by AMRES:

(
I C

CT I

)(
r̄

ĉ

)
=

(
s̄− Ct̄

0

)
.

6.1.3 COMPARISON OF CGA AND AMRES

We now apply CGA and AMRES as described in the previous two sec-
tions to find the scaling vectors for Curtis-Reid scaling for some ma-
trices from the University of Florida Sparse Matrix Collection (Davis
[18]). At the k-th iteration, we compute the estimate r(k), c(k) from the
two algorithms, and use them to evaluate the objective function f(r, c)

from the least-squares problem in (6.2):

fk = f(r(k), c(k)) =
∑

aij 6=0

(loge |aij | − r
(k)
i − c

(k)
j)2. (6.5)

We take the same set of problems as in Section 4.1. The LPnetlib

group includes data for 138 linear programming problems. Each ex-
ample was downloaded in MATLAB format, and a sparse matrix A was
extracted from the data structure via A = Problem.A.

In Figure 6.1, we plot log10(fk − f∗) against iteration number k for
each algorithm. f∗, the optimal objective value, is taken as the mini-
mum objective value attained by running CGA or AMRES after some K

iterations. From the results, we see that CGA and AMRES exhibit similar
convergence behavior for many matrices. There are also several cases
where AMRES converges rapidly at the early iterations, which is impor-
tant as scaling vectors don’t need to be computed to high precision.

6.2 RAYLEIGH QUOTIENT ITERATION

In this section, we focus on algorithms that improve an approximate
singular value and singular vector. The algorithms are based on Rayleigh
quotient iteration. In the next section, we focus on finding singular vec-
tors when the corresponding singular value is known.

Rayleigh quotient iteration (RQI) is an iterative procedure devel-
oped by John William Strutt, third Baron Rayleigh, for his study on

6.2. RAYLEIGH QUOTIENT ITERATION 95

0 5 10 15 20 25 30 35 40
−10

−5

0

5

iteration count

lo
g
(f

(x
)−

f*)

Name:lpi_pilot4i, Dim:410x1123, nnz:5264, id=61

CurtisReid−CG

CurtisReid−AMRES

0 10 20 30 40 50 60
−10

−5

0

5

iteration count

lo
g
(f

(x
)−

f*)

Name:lp_grow22, Dim:440x946, nnz:8252, id=74

CurtisReid−CG

CurtisReid−AMRES

0 5 10 15 20 25 30 35 40
−10

−5

0

5

iteration count

lo
g
(f

(x
)−

f*)

Name:lp_sctap2, Dim:1090x2500, nnz:7334, id=71

CurtisReid−CG

CurtisReid−AMRES

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

4

iteration count

lo
g
(f

(x
)−

f*)

Name:lp_scfxm3, Dim:990x1800, nnz:8206, id=73

CurtisReid−CG

CurtisReid−AMRES

Figure 6.1: Convergence of CGA and AMRES when they are applied to the Curtis-Reid scaling
problem. At each iteration, we plot the different between the current value and the optimal
value for the objective function in (6.5). Upper left and lower left: Typical cases where CGA
and AMRES exhibit similar convergence behavior. There is no obvious advantage of choosing
one algorithm over the other in these cases. Upper Right: A less common case where AMRES
converges much faster than CGA at the earlier iterations. This is important because scaling
parameters doesn’t need to be computed to high accuracy for most applications. AMRES
could terminate early in this case. Similar convergence behavior was observed for several
other problems. Lower Right: In a few cases such as this, CGA converges faster than AMRES
during the later iterations.

96 CHAPTER 6. AMRES APPLICATIONS

Algorithm 6.1 Rayleigh quotient iteration (RQI) for square A

1: Given initial eigenvalue and eigenvector estimates ρ0, x0

2: for q = 1, 2, . . . do
3: Solve (A− ρq−1I)t = xq−1

4: xq = t/‖t‖
5: ρq = xT

q Axq

6: end for

Algorithm 6.2 RQI for singular vectors for square or rectangular A
1: Given initial singular value and right singular vector estimates

ρ0, x0

2: for q = 1, 2, . . . do
3: Solve for t in

(ATA− ρ2q−1I)t = xq−1 (6.6)

4: xq = t/‖t‖
5: ρq = ‖Axq‖
6: end for

the theory of sound [59]. The procedure is summarized in Algorithm
6.1. It improves an approximate eigenvector for a square matrix.

It has been proved by Parlett and Kahan [56] that RQI converges
for almost all starting eigenvalue and eigenvector guesses, although in
general it is unpredictable to which eigenpair RQI will converge. Os-
trowski [49] showed that for a symmetric matrix A, RQI exhibits lo-
cal cubic convergence. It has been shown that MINRES is preferable to
SYMMLQ as the solver within RQI [20; 86]. Thus, it is natural to use
AMRES, a MINRES-based solver, for extending RQI to compute singular
vectors.

In this section, we focus on improving singular vector estimates for
a general rectangular matrix A. RQI can be adapted to this task as in
Algorithm 6.2. We will refer to the iterations in line 2 as outer iterations,
and the iterations inside the solver for line 3 as inner iterations. The
system in line 3 becomes increasingly ill-conditioned as the singular
value estimate ρq converges to a singular value.

We continue our investigation by improving both the stability and
the speed of Algorithm 6.2. Section 6.2.1 focuses on improving stability
by solving an augmented system using AMRES. Section 6.2.2 improves
the speed by a modification to RQI that allows AMRES to reuse precom-
puted Golub-Kahan vectors in subsequent iterations.

6.2. RAYLEIGH QUOTIENT ITERATION 97

Algorithm 6.3 Stable RQI for singular vectors
1: Given initial singular value and right singular vector estimates

ρ0, x0

2: for q = 1, 2, . . . do
3: Solve for t in(

−ρq−1I A
AT −ρq−1I

)(
s
t̄

)
=

(
Axq−1

0

)

4: t = t̄− xq−1

5: xq = t/‖t‖
6: ρq = ‖Axq‖
7: end for

6.2.1 STABLE INNER ITERATIONS FOR RQI

Compared with Algorithm 6.2, a more stable alternative would be to
solve a larger augmented system. Note that line 3 in 6.2 is equivalent
to (

−ρq−1I A

AT −ρq−1I

)(
s

t

)
=

(
0

xq−1

)
.

If we applied MINRES, we would get a more stable algorithm with
twice the computational cost. A better alternative would be to convert
it to a form that could be readily solved by AMRES. Since the solution
will be normalized as in line 4, we are free to scale the right-hand side:

(
−ρq−1I A

AT −ρq−1I

)(
s

t

)
=

(
0

ρq−1xq−1

)
.

We introduce the shift variable t̄ = t+ xq−1 to obtain the system

(
−ρq−1I A

AT −ρq−1I

)(
s

t̄

)
=

(
Axq−1

0

)
, (6.7)

which is suitable for AMRES. This system has a smaller condition num-
ber compared with (6.6). Thus, we enjoy both the numerical stability of
the larger augmented system and the lower computational cost of the
smaller system. We summarize this approach in Algorithm 6.3.

TEST DATA

We describe procedures to construct a linear operator A with known
singular value and singular vectors. This method is adapted from [53].

98 CHAPTER 6. AMRES APPLICATIONS

1. For any m ≥ n and C ≥ 1, pick vectors satisfying

y(i) ∈ R
m, ‖y(i)‖ = 1, (1 ≤ i ≤ C)

z ∈ R
n, ‖z‖ = 1,

for constructing Householder reflectors. The parameter C repre-
sents the number of Householder reflectors that are used to con-
struct the left singular vectors of A. This allows us to vary the cost
of Av and ATu multiplications for experiments in Section 6.2.2.

2. Pick a vector d ∈ R
n whose elements are the singular values

of A. We have two different options for choosing them. In the
non-clustered option, adjacent singular values are separated by a
constant gap and form an arithmetic sequence. In the clustered
option, the smaller singular values cluster near the smallest one
and form an geometric sequence. The two options are as follows:

dj = σn + (σ1 − σn)
n− j

n− 1
, (Non-clustered)

dj = σn

(
σ1

σn

)n−j

n−1

, (Clustered)

where σ1 and σn are the largest and smallest singular values of A
and we have d1 = σ1 and dn = σn.

3. Define Y (i) = I − 2y(i)y(i)
T

, Z = ZT = I − 2zzT , where

D = diag(d), A =

(
l∏

i=1

Y (i)

)(
D

0

)
Z.

This procedure is shown in MATLAB code 6.4.

In each of the following experiments, we pick a singular value σ that
we would like to converge to, and extract the corresponding column v

from Z as the singular vector. Then we pick a random unit vector w

and a scalar δ to control the size of the perturbation that we want to
introduce into v. The approximate right singular vector for input to
RQI-AMRES and RQI-MINRES is then (v + δw). Since RQI is known to
converge always to some singular vector, our experiments are mean-
ingful only if δ is quite small.

6.2. RAYLEIGH QUOTIENT ITERATION 99

MATLAB Code 6.4 Generate linear operator with known singular val-
ues

1 function [Afun, sigma, v] ...

2 = getLinearOperator(m,n,sigmaMax, sigmaMin, p, cost, clustered)

3 % p: output the p-th largest singular value as sigma
4 % and the corresponding right singular vector as v

5 randn(’state’ ,1);

6 y = randn(m,cost);

7 for i = 1:cost

8 y(:,i) = y(:,i)/norm(y(:,i)); % normalize every column of y
9 end

10 z = randn(n,1); z = z/norm(z);

11 if clustered

12 d = sigmaMin * (sigmaMax/sigmaMin).^(((n-1):-1:0)’/(n-1));

13 else

14 d = sigmaMin + (sigmaMax-sigmaMin).*(((n-1):-1:0)’/(n-1));

15 end

16 ep = zeros(n,1); ep(p) = 1; v = ep - 2*(z’*ep)*z;

17 sigma = s(p); Afun = @A;

18

19 function w = A(x,trans)

20 w = x;

21 if trans == 1

22 w = w - 2*(z’*w)*z;

23 w = [d.*w; zeros(m-n,1)];

24 for i = 1:cost; w = w - 2*(y(:,i)’*w)*y(:,i); end

25 elseif trans == 2

26 for i = cost:-1:1; w = w - 2*(y(:,i)’*w)*y(:,i); end

27 w = d.*w(1:n);

28 w = w - 2*(z’*w)*z;

29 end

30 end

31 end

NAMING OF ALGORITHMS

By applying different linear system solvers in line 3 of Algorithms 6.2
and 6.3, we obtain different versions of RQI for singular vector compu-
tation. We refer to these versions by the following names:

• RQI-MINRES: Apply MINRES to line 3 of Algorithm 6.2.

• RQI-AMRES: Apply AMRES to line 3 of Algorithm 6.3.

• MRQI-AMRES4: Replace line 3 of Algorithm 6.3 by 4Details of MRQI-
AMRES are given in
Section 6.2.2(

−σI A

AT −σI

)(
s

xq+1

)
=

(
u

0

)
, (6.8)

100 CHAPTER 6. AMRES APPLICATIONS

where u is a left singular vector estimate, or u = Av if v is a right
singular vector estimate. AMRES is applied to this linear system.
Note that a further difference here from Algorithm 6.3 is that u is
the same for all q.

NUMERICAL RESULTS

We ran both RQI-AMRES and RQI-MINRES to improve given approxi-
mate right singular vectors of our constructed linear operators. The
accuracy5 of the new singular vector estimate ρq as generated by both5For the iterates ρq from

outer iterations that we want
to converge to σ, we use the
relative error |ρq − σ|/σ as
the accuracy measure.

algorithms is plotted against the cumulative number of inner iterations
(i.e. the number of Golub-Kahan bidiagonalization steps).

When the singular values of A are not clustered, we found that RQI-

AMRES and RQI-MINRES exhibit very similar convergence behavior as
shown in Figure 6.2, with RQI-AMRES showing improved accuracy for
small singular values.

When the singular values of A are clustered, we found that RQI-

AMRES converges faster than RQI-MINRES as shown in Figure 6.3.
We have performed the same experiments on larger matrices and

obtained similar results.

6.2.2 SPEEDING UP THE INNER ITERATIONS OF RQI

In the previous section, we applied AMRES to RQI to obtain a stable
method for refining an approximate singular vector. We now explore
a modification to RQI itself that allows AMRES to achieve significant
speedup. To illustrate the rationale behind the modification, we first
revisit some properties of the AMRES algorithm.

AMRES solves linear systems of the form

(
γI A

AT δI

)(
s

x

)
=

(
b

0

)

using the Golub-Kahan process Bidiag(A, b), which is independent of γ
and δ. Thus, if we solve a sequence of linear systems of the above form
with different γ, δ but A, b kept constant, any computational work in
Bidiag(A, b) can be cached and reused. In Algorithm 6.3, γ = δ = −ρq
and b = Axq−1. We now propose a modified version of RQI in which
the right-hand side is kept constant at b = Ax0 and only ρq is updated
each outer iteration. We summarize this modification in Algorithm 6.4,

6.2. RAYLEIGH QUOTIENT ITERATION 101

0 50 100 150 200 250
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,1,1,10,1,12,12,0,12)

RQI−AMRES

RQI−MINRES

0 100 200 300 400 500 600 700 800
−16

−14

−12

−10

−8

−6

−4

−2

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,120,1,10,1,12,12,0,12)

RQI−AMRES

RQI−MINRES

0 200 400 600 800 1000 1200 1400
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,280,1,10,1,12,12,0,12)

RQI−AMRES

RQI−MINRES

0 1000 2000 3000 4000 5000 6000
−15

−10

−5

0

5

10

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,300,1,10,1,12,16,0,12)

RQI−AMRES

RQI−MINRES

Figure 6.2: Improving an approximate singular value and singular vector for a matrix with
non-clustered singular values using RQI-AMRES and RQI-MINRES. The matrix A is con-
structed by the procedure of Section 6.2.1 with parameters m = 500, n = 300, C = 1, σ1 = 1,
σn = 10−10 and non-clustered singular values. The approximate right singular vector v+ δw
is formed with δ = 0.1.
Upper Left: Computing the largest singular value σ1. Upper Right: Computing a singular
value σ120 near the middle of the spectrum. Lower Left: Computing a singular value σ280

near the low end of the spectrum. Lower Right: Computing the smallest singular value
σ300. Here we see that the iterates ρq generated by RQI-MINRES fail to converge to precisions
higher than 10−8, while RQI-AMRES achieves higher precision with more iterations.

102 CHAPTER 6. AMRES APPLICATIONS

0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,2,1,10,1,12,12,1,12)

RQI−AMRES

RQI−MINRES

0 2000 4000 6000 8000 10000 12000
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,100,1,10,1,12,12,1,12)

RQI−AMRES

RQI−MINRES

0 1000 2000 3000 4000 5000 6000 7000 8000
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,120,1,10,3,12,12,1,8)

RQI−AMRES

RQI−MINRES

0 0.5 1 1.5 2 2.5 3

x 10
4

−1

0

1

2

3

4

5

6

Number of Inner Iterations

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(500,300,280,1,10,3,16,16,1,8)

RQI−AMRES

RQI−MINRES

Figure 6.3: Improving an approximate singular value and singular vector for a matrix with
clustered singular values using RQI-AMRES and RQI-MINRES. The matrix A is constructed by
the procedure of Section 6.2.1 with parameters m = 500, n = 300, C = 1, σ1 = 1, σn = 10−10

and clustered singular values. For the two upper plots, the approximate right singular vector
v + δw is formed with δ = 0.1. For the two lower plots, δ = 0.001.
Upper Left: Computing the second largest singular value σ2. We see that RQI-AMRES starts
to converge faster after the 1st outer iteration. The plot for σ1 is not shown here as σ1 is
well separated from the rest of the spectrum, and both algorithms converge in 1 outer iter-
ation, which is a fairly uninteresting plot. Upper Right: Computing a singular value σ100

near the middle of the spectrum. RQI-AMRES converges faster than RQI-MINRES. Lower Left:
Computing a singular value σ120 near the low end of the spectrum. Lower Right: Comput-
ing a singular value σ280 within the highly clustered region. RQI-AMRES and RQI-MINRES
converge but to the wrong σj .

6.2. RAYLEIGH QUOTIENT ITERATION 103

Algorithm 6.4 Modified RQI for singular vectors
1: Given initial singular value and right singular vector estimates

ρ0, x0

2: for q = 1, 2, . . . do
3: Solve for t in(

−ρq−1I A
AT −ρq−1I

)(
s
t̄

)
=

(
Ax0

0

)

4: t = t̄− x0

5: xq = t/‖t‖
6: ρq = ‖Axq‖
7: end for

which we refer to as MRQI-AMRES when AMRES is used to solve the
system on line 3.

CACHED GOLUB-KAHAN PROCESS

We implement a GolubKahan class (see MATLAB Code 6.5) to represent
the process Bidiag(A, b). The constructor is invoked by

1 gk = GolubKahan(A,b)

with A being a matrix or a MATLAB function handle that gives Ax =

A(x,1) and ATy = A(y,2). The scalars αk, βk and vector vk can be
retrieved by calling

1 [v_k alpha_k beta_k] = gk.getIteration(k)

These values will be retrieved from the cache if they have been com-
puted already. Otherwise, getIteration() computes them directly and
caches the results for later use.

REORTHOGONALIZATION

In Section 4.4, reorthogonalization is proposed as a method to speed
up LSMR. The major obstacle is the high cost of storing all the v vectors
generated by the Golub-Kahan process. For MRQI-AMRES, all such vec-
tors must be stored for reuse in the next MRQI iteration. Therefore the
only extra cost to perform reorthogonalization would be the comput-
ing cost of modified Gram-Schmidt (MGS). MGS is implemented as in
MATLAB Code 6.5. It will be turned on when the constructor is called
by GolubKahan(A,b,1).6 We refer to MRQI-AMRES with reorthogonal- 6Golub-Kahan(A,b)

and Golub-Kahan(A,b,0)

are the same. They return
a Golub-Kahan object
that does not preform
reorthogonalization.

ization as MRQI-AMRES-Ortho in the following plots.

104 CHAPTER 6. AMRES APPLICATIONS

MATLAB Code 6.5 Cached Golub-Kahan process
1 classdef GolubKahan < handle

2 % A cached implementation of Golub-Kahan bidiagonalization
3 properties

4 V; m; n; A; Afun; u; alphas; betas; reortho; tol = 1e-15;

5 kCached = 1; % number of cached iterations
6 kAllocated = 1; % initial size to allocate
7 end

8

9 methods

10 function o = GolubKahan(A, b, reortho)

11 % @param reortho=1 means perform reorthogonalization on o.V
12 if nargin < 3 || isempty(reortho), reortho = 0; end

13 o.A = A; o.Afun = A; o.reortho = reortho;

14 if isa(A, ’numeric’); o.Afun = @o.AfunPrivate; end

15 o.betas = zeros(o.kAllocated,1); o.betas(1) = norm(b);

16 o.alphas = zeros(o.kAllocated,1); o.m = length(b);

17 if o.betas(1) > o.tol

18 o.u = b/o.betas(1); v = o.Afun(o.u,2);

19 o.n = length(v); o.V = zeros(o.n,o.kAllocated);

20 o.alphas(1) = norm(v);

21 if o.alphas(1) > o.tol; o.V(:,1) = v/norm(o.alphas(1)); end

22 end

23 end

24

25 function [v alpha beta] = getIteration(o,k)

26 % @return v_k alpha_k beta_k for the k-th iteration of Golub-Kahan
27 while o.kCached < k

28 % doubling space for cache
29 if o.kCached == o.kAllocated

30 o.V = [o.V zeros(o.n, o.kAllocated)];

31 o.alphas = [o.alphas ;zeros(o.kAllocated,1)];

32 o.betas = [o.betas ;zeros(o.kAllocated,1)];

33 o.kAllocated = o.kAllocated * 2;

34 end

35

36 % bidiagonalization
37 o.u = o.Afun(o.V(:,o.kCached),1) - o.alphas(o.kCached)*o.u;

38 beta = norm(o.u); alpha = 0;

39 if beta > o.tol;

40 o.u = o.u/beta;

41 v = o.Afun(o.u,2) - beta*o.V(:,o.kCached);

42 if o.reortho == 1

43 for i = 1:o.kCached; vi = o.V(:,i); v = v - (v’*vi)*vi; end

44 end

45 alpha = norm(v);

46 if alpha > o.tol; v = v/alpha; o.V(:,o.kCached+1) = v; end

47 end

48 o.kCached = o.kCached + 1;

49 o.alphas(o.kCached) = alpha; o.betas(o.kCached) = beta;

50 end

51 v = o.V(:,k); alpha = o.alphas(k); beta = o.betas(k);

52 end

53

54 function out = AfunPrivate(o,x,trans)

55 if trans == 1; out = o.A*x; else out = o.A’*x; end

56 end

57 end

58 end

6.2. RAYLEIGH QUOTIENT ITERATION 105

NUMERICAL RESULTS

We ran RQI-AMRES, MRQI-AMRES and MRQI-AMRES-Ortho to improve
given approximate right singular vectors of our constructed linear op-
erators. The accuracy7 of each new singular value estimate ρq gener- 7For the outer iteration

values ρq that we want to
converge to σ, we use the rel-
ative error |ρq − σ|/σ as the
accuracy measure.

ated by the three algorithms at each outer iteration is plotted against
the cumulative time (in seconds) used.

In Figure 6.4, we see that MRQI-AMRES takes more time than RQI-

AMRES for the early outer iterations because of the cost of allocating
memory and caching the Golub-Kahan vectors. For subsequent itera-
tions, more cached vectors are used and less time is needed for Golub-
Kahan bidiagonalization. MRQI-AMRES overtakes RQI-AMRES starting
from the third outer iteration. In the same figure, we see that reorthogo-
nalization significantly improves the convergence rate of MRQI-AMRES.
With orthogonality preserved, MRQI-AMRES-Ortho converges faster than
RQI-AMRES even at the first outer iteration.

In Figure 6.5, we compare the performance of the three algorithms
when the linear operator has different multiplication cost. For opera-
tors with very low cost, RQI-AMRES converges faster than the cached
methods. The extra time used for caching outweighs the benefits of
reusing cached results. As the linear operator gets more expensive,
MRQI-AMRES and MRQI-AMRES-Ortho outperforms RQI-AMRES as fewer
expensive matrix-vector products are needed in the subsequent RQIs.

In Figure 6.6, we compare the performance of the three algorithms
for refining singular vectors corresponding to various singular values.
For the large singular values (which are well separated from the rest
of the spectrum), RQI converges in very few iterations and there is not
much benefit from caching. For the smaller (and more clustered) sin-
gular values, caching saves the multiplication time in subsequent RQIs
and therefore MRQI-AMRES and MRQI-AMRES-Ortho converge faster than
RQI-AMRES. As the singular values become more clustered, the inner
solver for the linear system suffers increasingly from loss of orthogo-
nality. In this situation, reorthogonalization greatly reduces the num-
ber of Golub-Kahan steps and therefore MRQI-AMRES-Ortho converges
much faster than MRQI-AMRES.

Next, we compare RQI-AMRES with the MATLAB svds function. svds
performs singular vector computation by calling eigs on the augmented
matrix

(
0 A
AT 0

)
, and eigs in turn calls the Fortran library ARPACK to

perform symmetric Lanczos iterations. svds does not accept a linear

106 CHAPTER 6. AMRES APPLICATIONS

0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,10,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

Figure 6.4: Improving an approximate singular value and singular vec-
tor for a matrix using RQI-AMRES, MRQI-AMRES and MRQI-AMRES-
Ortho. The matrix A is constructed by the procedure of Section 6.2.1
with parameters m = 5000, n = 3000, C = 10, σ1 = 1, σn = 10−10

and clustered singular values. We perturbed the right singular vector
v corresponding to the singular value σ500 to be the starting approxi-
mate singular vector. MRQI-AMRES lags behind RQI-AMRES at the early
iterations because of the extra cost in allocating memory to store the
Golub-Kahan vectors, but it quickly catches up and converges faster
when the cached vectors are reused in the subsequent iterations. MRQI-
AMRES with reorthogonalization converges much faster than without
reorthogonalization. In this case, reorthogonalization greatly reduces
the number of inner iterations for AMRES, and the subsequent outer
iterations are basically free.

0 2 4 6 8 10 12 14 16 18 20
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,1,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 5 10 15 20 25 30
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,5,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,10,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,20,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 20 40 60 80 100 120
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,50,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

C = 1 C = 5 C = 10 C = 20 C = 50

Figure 6.5: Convergence of RQI-AMRES, MRQI-AMRES and MRQI-AMRES-Ortho for linear op-
erators of varying cost. The matrix A is constructed as in Figure 6.4 except for the cost C,
which is shown below each plot. C increases from left to right. When C = 1, the time re-
quired for caching the Golub-Kahan vectors outweighs the benefits of being able to reuse
them later. When the cost C goes up, the benefit of caching Golub-Kahan vectors outweighs
the time for saving them. Thus MRQI-AMRES converges faster than RQI-AMRES.

6.3. SINGULAR VECTOR COMPUTATION 107

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−16

−14

−12

−10

−8

−6

−4

−2

Time (s)

lo
g

||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,1,10,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−16

−14

−12

−10

−8

−6

−4

−2

Time (s)

lo
g

||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,50,10,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−16

−14

−12

−10

−8

−6

−4

−2

Time (s)

lo
g

||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,300,10,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,500,20,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

0 50 100 150 200 250 300
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(5000,3000,700,10,10,1,12,12,1,12,1)

RQI−AMRES

MRQI−AMRES

MRQI−AMRES−Ortho

σ1 σ50 σ300 σ500 σ700

Figure 6.6: Convergence of RQI-AMRES, MRQI-AMRES and MRQI-AMRES-Ortho for different
singular values. The matrix A is constructed as in Figure 6.4.
σ1, σ50: For the larger singular values, both MRQI-AMRES and MRQI-AMRES-Ortho converge
slower than RQI-AMRES as convergence for RQI is very fast and the extra time for caching
the Golub-Kahan vectors outweighs the benefits of saving them.
σ300, σ500: For the smaller and more clustered singular values, RQI takes more iterations to
converge and the caching effect of MRQI-AMRES and MRQI-AMRES-Ortho makes them con-
verge faster than RQI-AMRES.
σ700: As the singular value gets even smaller and less separated, RQI is less likely to converge
to the singular value we want. In this example, RQI-AMRES converged to a different singular
value. Also, clustered singular values lead to greater loss of orthogonality, and therefore
RQI-AMRES-Ortho converges much faster than RQI-AMRES.

operator (function handle) as input. We slightly modified svds to al-
low an operator to be passed to eigs, which finds the eigenvectors cor-
responding to the largest eigenvalues for a given linear operator.8 8eigs can find eigenval-

ues of a matrix B close to
any given λ, but if B is
an operator, the shift-and-
invert operator (B − λI)−1

must be provided.

Figure 6.7 shows the convergence of RQI-AMRES and svds comput-
ing three different singular values near the large end of the spectrum.
When only the largest singular value is needed, the algorithms con-
verge at about the same rate. When any other singular value is needed,
svds has to compute all singular values (and singular vectors) from the
largest to the one required. Thus svds takes significantly more time
compared to RQI-AMRES.

6.3 SINGULAR VECTOR COMPUTATION

In the previous section, we explored algorithms to refine an approxi-
mate singular vector. We now focus on finding a singular vector corre-
sponding to a known singular value.

Suppose σ is a singular value of A. If a nonzero

(
u

v

)
satisfies

(
−σI A

AT −σI

)(
u

v

)
=

(
0

0

)
, (6.9)

then u and v would be the corresponding singular vectors. The inverse

108 CHAPTER 6. AMRES APPLICATIONS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(10000,6000,1,1,10,0.5,12,12,1,12,2)

RQI−AMRES

SVDS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(10000,6000,5,1,10,0.5,12,12,1,12,2)

RQI−AMRES

SVDS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−16

−14

−12

−10

−8

−6

−4

−2

0

Time (s)

lo
g
||
(ρ

k
 −

 σ
)/
σ

||

rqi(10000,6000,20,1,10,0.5,12,12,1,12,2)

RQI−AMRES

SVDS

σ1 σ5 σ20

Figure 6.7: Convergence of RQI-AMRES and svds for the largest singular values. The matrix
A is constructed by the procedure of Section 6.2.1 with parameters m = 10000, n = 6000,
C = 1, σ1 = 1, σn = 10−10 and clustered singular values. The approximate right singular
vector v + δw is formed with δ = 10−1/2 ≈ 0.316.
σ1: For the largest singular value and corresponding singular vector, RQI-AMRES and svds

take similar times.
σ5: For the fifth largest singular value and corresponding singular vector, svds (and hence
ARPACK) has to compute all five singular values (from the largest to fifth largest), while RQI-
AMRES computes the fifth largest singular value directly. Therefore, RQI-AMRES takes less
time than svds.
σ20: As svds needs to compute the largest 20 singular values, it takes significantly more time
than RQI-AMRES.

iteration approach to finding the null vector is to take a random vector
b and solve the system

(
−σI A

AT −σI

)(
s

x

)
=

(
b

0

)
. (6.10)

Whether a direct or iterative solver is used, we expect the solution
(
s
x

)

to be very large, but the normalized vectors u = s/‖s‖, v = x/‖x‖ will
satisfy (6.9) accurately and hence be good approximations to the left
and right singular vectors of A.

As noted in Choi [13], it is not necessary to run an iterative solver
until the solution norm becomes very large. If one could stop the solver
appropriately at a least-squares solution, then the residual vector of
that solution would be a null vector of the matrix. Here we apply this
idea to singular vector computation.

For the problem min ‖Ax− b‖, if x is a solution, we know that the
residual vector r = b−Ax satisfies ATr = 0. Therefore r is a null vector
for AT .

6.3. SINGULAR VECTOR COMPUTATION 109

Algorithm 6.5 Singular vector computation via residual vector
1: Given matrix A, and singular value σ
2: Find least-squares solution for the singular system:

3: min

∥∥∥∥
(
b
0

)
−
(
−σI A
AT −σI

)(
s
x

)∥∥∥∥

4: Compute
(
u
v

)
=

(
b
0

)
−
(
−σI A
AT −σI

)(
s
x

)

5: Output u, v as the left and right singular vectors

Thus, if s and x solve the singular least-squares problem

min

∥∥∥∥∥

(
b

0

)
−
(
−σI A

AT −σI

)(
s

x

)∥∥∥∥∥ , (6.11)

then the corresponding residual vector

(
u

v

)
=

(
b

0

)
−
(
−σI A

AT −σI

)(
s

x

)
(6.12)

would satisfy (6.9). This gives us Av = σu and ATu = σv as required.
Therefore u, v are left and right singular vectors corresponding to σ.
We summarize this procedure as Algorithm 6.5.

The key to this algorithm lies in finding the residual to the least-
squares system accurately and efficiently. An obvious choice would be
applying MINRES to (6.11) and computing the residual from the solu-
tion returned by MINRES.

AMRES solves the same problem (6.11) with half the computational
cost by computing x only. However, this doesn’t allow us to construct
the residual from x. We therefore developed a specialized version of
AMRES, called AMRESR, that directly computes the v part of the resid-
ual vector (6.12) without computing x or s. The u part can be recovered
from v using σu = Av.

If σ is a repeated singular value, the same procedure can be fol-
lowed using a new random b that is first orthogonalized with respect
to v.

110 CHAPTER 6. AMRES APPLICATIONS

6.3.1 AMRESR

To derive an iterative update for r̂k, we begin with (5.5):

r̂k = V̂k+1

(
β1e1 − Ĥkŷk

)

= V̂k+1Q
T
k+1

((
zk

ζ̄k+1

)
−
(
Rk

0

)
ŷk

)

= V̂k+1Q
T
k+1(ζ̄k+1ek+1).

By defining pk = V̂k+1Q
T
k+1ek+1, we continue with

pk = V̂k+1Q
T
k+1ek+1.

= V̂k+1

(
QT

k

1

)

Ik−1

ck −sk
sk ck


 ek+1

=
(
V̂kQ

T
k v̂k+1

)



0

−sk
ck




= −skV̂kQ
T
k ek + ckv̂k+1

= −skpk−1 + ckv̂k+1.

With r̂k ≡
(
ruk
rvk

)
and pk ≡

(
puk
pvk

)
, we can write an update rule for pvk:

pv0 = 0, pvk =




−skpvk−1 + ckv k+1

2

(k odd)

−skpvk−1 (k even)

where the separation of two cases follows from (5.4) and

rvk = ζ̄k+1p
v
k (6.13)

can be used to output rvk when AMRESR terminates. With the above
recurrence relations for pvk, we summarize AMRESR in Algorithm 6.6.

6.3.2 AMRESR EXPERIMENTS

We compare the convergence of AMRESR versus MINRES to find singu-
lar vectors corresponding to a known singular value.

6.3. SINGULAR VECTOR COMPUTATION 111

Algorithm 6.6 Algorithm AMRESR

1: (Initialize)

β1u1 = b α1v1 = ATu1 ρ̄1 = γ θ̄1 = α1

ζ̄1 = β1 pv0 = 0

2: for l = 1, 2, 3 . . . do
3: (Continue the bidiagonalization)

βl+1ul+1 = Avl − αlul αl+1vl+1 = ATul+1 − βl+1vl

4: for k = 2l − 1, 2l do
5: (Setup temporary variables)

{
λ = δ, α = αl, β = βl+1 (k odd)
λ = γ, α = βl+1, β = αl+1 (k even)

6: (Construct and apply rotation Qk+1,k)

ρk =
(
ρ̄2k + α2

) 1
2

ck = ρ̄k/ρk sk = α/ρk

θk = ckθ̄k + skλ ρ̄k+1 = −skθ̄k + ckλ

ηk = skβ θ̄k+1 = ckβ

ζk = ck ζ̄k ζ̄k+1 = −sk ζ̄k

7: (Update estimate of p)

pvk =

{
−skpk−1 + ckv k+1

2

(k odd)

−skpk−1 (k even)

8: end for
9: end for

10: (Compute r for output)

rvk = ζ̄k+1p
v
k

112 CHAPTER 6. AMRES APPLICATIONS

MATLAB Code 6.6 Error measure for singular vector
1 function err = singularVectorError(v)

2 v = v/norm(v);

3 Av = Afun(v,1); % Afun(v,1) = A*v;
4 u = Av/norm(Av);

5 err = norm(Afun(u,2) - sigma*v); % Afun(v,2) = A’*u;
6 end

TEST DATA

We use the method of Section 6.2.1 to construct a linear operator.

METHODS

We compare three methods for computing a singular vector correspond-
ing to known singular value σ, where σ is taken as one of the di above.
We first generate a random m vector b using randn(’state’,1) and b

= randn(m,1). Then we apply one of the following methods:

1. Run AMRESR on (6.10). For each k in Algorithm 6.6, Compute rvk
by (6.13) at each iteration and take vk = rvk as the estimate of the
right singular vector corresponding to σ.

2. Inverse iteration: run MINRES on (ATA − σ2I)x = ATb. For the
lth MINRES iteration (l = 1, 2, 3, . . .), set k = 2l take vk = xl as the
estimate of the right singular vector. (This makes k the number
of matrix-vector products for each method.)

MEASURE OF CONVERGENCE

For the vk from each method, we measure convergence by
∥∥ATuk − σvk

∥∥
(with uk = Avk/‖Avk‖) as shown in MATLAB Code 6.6. This measure
requires two matrix-vector products, which is the same complexity as
each Golub-Kahan step. Thus it is too expensive to be used as a prac-
tical stopping rule. It is used solely for the plots to analyze the conver-
gence behavior. In practice, the stopping rule would be based on the
condition estimate (5.16).

NUMERICAL RESULTS

We ran the experiments described above on rectangular matrices of size
24000× 18000. Our observations are as follows:

6.4. ALMOST SINGULAR SYSTEMS 113

1. AMRESR always converge faster than MINRES. AMRESR reaches
a minimum error of about 10−8 for all test examples, and then
starts to diverge. In contrast, MINRES is able to converge to sin-
gular vectors of higher precision than AMRESR. Thus, AMRESR is
more suitable for applications where high precision of the singu-
lar vectors is not required.

2. The gain in convergence speed depends on the position of the
singular value within the spectrum. From Figure 6.8, there is
more improvement for singular vectors near either end of the
spectrum, and less improvement for those in the middle of the
spectrum.

6.4 ALMOST SINGULAR SYSTEMS

Björck [6] has derived an algorithm based on Rayleigh-quotient itera-
tion for computing (ordinary) TLS solutions. The algorithm involves
repeated solution of positive definite systems (ATA − σ2I)x = ATb by
means of a modified/extended version of CGLS (called CGTLS) that is
able to incorporate the shift. A key step in CGTLS is computation of

δk = ‖pk‖22 − σ2‖qk‖22.

Clearly we must have σ < σmin(A) for the system to be positive defi-
nite. However, this condition cannot be guaranteed and a heuristic is
adopted to repeat the computation with a smaller value of σ [6, (4.5)].
Another drawback of CGTLS is that it depends on a complete Cholesky
factor of ATA. This is computed by a sparse QR of A, which is some-
times practical when A is large. Since AMRES handles indefinite sys-
tems and does not depend on a sparse factorization, it is applicable in
more situations.

114 CHAPTER 6. AMRES APPLICATIONS

0 200 400 600 800 1000 1200 1400
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of A
T
 u and Av

||
A

T
u
 −

 σ
 v

||

amresrPlots(24000,18000,1,9,13,1)

AMRESR

AMRESR (Cont.)

MINRES

0 1000 2000 3000 4000 5000 6000 7000
−12

−10

−8

−6

−4

−2

0

Number of A
T
 u and Av

||
A

T
u
 −

 σ
 v

||

amresrPlots(24000,18000,100,9,14,1)

AMRESR

AMRESR (Cont.)

MINRES

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of A
T
 u and Av

||
A

T
u
 −

 σ
 v

||

amresrPlots(24000,18000,9000,8,14,1)

AMRESR

AMRESR (Cont.)

MINRES

0 1 2 3 4 5 6 7

x 10
4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of A
T
 u and Av

||
A

T
u
 −

 σ
 v

||

amresrPlots(24000,18000,18000,8,21,1)

AMRESR

AMRESR (Cont.)

MINRES

Figure 6.8: Convergence of AMRESR and MINRES for computing singular vectors corre-
sponding to a known singular value as described in Section 6.3.2 for a 24000× 18000 matrix.
The blue (solid) curve represents where AMRESR would have stopped if there were a suit-
able limit on the condition number. The green (dash) curve shows how AMRESR will diverge
if it continues beyond this stopping criterion. The red (dash-dot) represents the convergence
behavior of MINRES. The linear operator is constructed using the method of Section 6.2.1.
Upper Left: Computing the singular vector corresponding to the largest singular value σ1.
Upper Right: Computing the singular vector corresponding to the 100th largest singular
value σ100. Lower Left: Computing the singular vector corresponding to a singular value in
the middle of the spectrum σ9000. Lower Right: Computing the singular vector correspond-
ing to the smallest singular value σ18000.

7
CONCLUSIONS AND FUTURE DIRECTIONS

7.1 CONTRIBUTIONS

The main contributions of this thesis involve three areas: providing a
better understanding of the popular MINRES algorithm; development
and analysis of LSMR for least-squares problems; and development and
applications of AMRES for the negatively-damped least-squares prob-
lem. We summarize our findings for each of these areas in the next
three sections.

Chapters 1 to 4 discussed a number of iterative solvers for linear
equations. The flowchart in Figure 7.1 helps decide which methods to
use for a particular problem.

7.1.1 MINRES

In Chapter 2, we proved a number of properties for MINRES applied
to a positive definite system. Table 7.1 compares these properties with
known ones for CG. MINRES has a number of monotonic properties that
can make it more favorable, especially when the iterative algorithm
needs to be terminated early.

In addition, our experimental results show that MINRES converges
faster than CG in terms of backward error, often by as much as 2 orders
of magnitude (Figure 2.2). On the other hand, CG converges somewhat
faster than MINRES in terms of both ‖xk − x∗‖A and ‖xk − x∗‖ (same
figure).

Table 7.1 Comparison of CG and MINRES properties on an spd system

CG MINRES
‖xk‖ ր [68, Thm 2.1] ր (Thm 2.1.6)

‖x∗ − xk‖ ց [38, Thm 4:3] ց (Thm 2.1.7) [38, Thm 7:5]
‖x∗ − xk‖A ց [38, Thm 6:3] ց (Thm 2.1.8) [38, Thm 7:4]
‖rk‖ not-monotonic ց [52] [38, Thm 7:2]

‖rk‖/‖xk‖ not-monotonic ց (Thm 2.2.1)
րmonotonically increasing
ցmonotonically decreasing

115

116 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

Ax = b

A square A = AT A ≻ 0
want to

minimize

CG

noisy
data

A
singular MINRES

min ‖xk‖
needed

MINRES-
QLP

AT

available

BiCG
QMR
LSQR

BiCGStab
IDR(s)

GMRES

shape of
A

LSQR

LSMR

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

unsure

‖xk − x∗‖ or ‖xk − x∗‖A

‖rk‖ or ‖rk‖
‖xk‖

Yes

No

Yes

No
A = fat

A = tall

Figure 7.1: Flowchart on choosing iterative solvers

7.1. CONTRIBUTIONS 117

Table 7.2 Comparison of LSQR and LSMR properties

LSQR LSMR
‖xk‖ ր (Thm 3.3.1) ր (Thm 3.3.6)
‖xk − x∗‖ ց (Thm 3.3.2) ց (Thm 3.3.7)
‖ATrk‖ not-monotonic ց (Thm 3.3.5)
‖rk‖ ց (Thm 3.3.4) ց (Thm 3.3.11)
xk converges to minimum norm x∗ for singular systems

‖ELSQR
2 ‖ ≥ ‖ELSMR

2 ‖
րmonotonically increasing
ցmonotonically decreasing

7.1.2 LSMR

We presented LSMR, an iterative algorithm for square or rectangular
systems, along with details of its implementation, theoretical proper-
ties, and experimental results to suggest that it has advantages over
the widely adopted LSQR algorithm.

As in LSQR, theoretical and practical stopping criteria are provided
for solving Ax = b and min ‖Ax − b‖ with optional Tikhonov regu-
larization. Formulae for computing ‖rk‖, ‖ATrk‖, ‖xk‖ and estimating
‖A‖ and cond(A) in O(1) work per iteration are available.

For least-squares problems, the Stewart backward error estimate
‖E2‖ (4.4) is computable in O(1) work and is proved to be at least as
small as that of LSQR. In practice, ‖E2‖ for LSMR is smaller than that of
LSQR by 1 to 2 orders of magnitude, depending on the condition of the
given system. This often allows LSMR to terminate significantly sooner
than LSQR.

In addition, ‖E2‖ seems experimentally to be very close to the opti-

mal backward error µ(xk) at each LSMR iterate xk (Section 4.1.1). This
allows LSMR to be stopped reliably using rules based on ‖E2‖.

MATLAB, Python, and Fortran 90 implementations of LSMR are avail-
able from [42]. They all allow local reorthogonalization of Vk.

7.1.3 AMRES

We developed AMRES, an iterative algorithm for solving the augmented
system (

γI A

AT δI

)(
s

x

)
=

(
b

0

)
,

where γδ > 0. It is equivalent to MINRES on the same system and
is reliable even when

(
δI A
AT δI

)
is indefinite or singular. It is based on

118 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

the Golub-Kahan bidiagonalization of A and requires half the compu-
tational cost compared to MINRES. AMRES is applicable to Curtis-Reid
scaling; improving approximate singular vectors; and computing sin-
gular vectors from known singular values.

For Curtis-Reid scaling, AMRES sometimes exhibits faster conver-
gence compared to the specialized version of CG proposed by Curtis
and Reid. However, both algorithms exhibit similar performance on
many test matrices.

Using AMRES as the solver for inner iterations, we have developed
Rayleigh quotient-based algorithms (RQI-AMRES, MRQI-AMRES, MRQI-

AMRES-Ortho) that refine a given approximate singular vector to an ac-
curate one. They converge faster than the MATLAB svds function for
singular vectors corresponding to interior singular values. When the
singular values are clustered, or the linear operator A is expensive,
MRQI-AMRES and MRQI-AMRES-Ortho are more stable and converge
much faster than RQI-AMRES or direct use of MINRES within RQI.

For a given singular value, we developed AMRESR, a modified ver-
sion of AMRES, to compute the corresponding singular vectors to a pre-
cision of O(

√
ǫ). Our algorithm converges faster than inverse iteration.

If singular vectors of higher precision are needed, inverse iteration is
preferred.

7.2 FUTURE DIRECTIONS

Several ideas are highly related to the research in this thesis, but their
potential has not been fully explored yet. We summarize these direc-
tions below as a pointer for future research.

7.2.1 CONJECTURE

From our experiments, we conjecture that the optimal backward error
µ(xk) (4.1) and its approximate µ̃(xk) (4.5) decrease monotonically for
LSMR.

7.2.2 PARTIAL REORTHOGONALIZATION

Larsen [58] uses partial reorthogonalization of both Vk and Uk within
his PROPACK software for computing a set of singular values and vec-
tors for a sparse rectangular matrix A. This involves a smaller com-
putational cost compared to full reorthogonalization, as each vk or uk

7.2. FUTURE DIRECTIONS 119

does not need to perform an inner product with each of the previous
vi’s or ui’s. Similar techniques might prove helpful within LSMR and
AMRES.

7.2.3 EFFICIENT OPTIMAL BACKWARD ERROR ESTIMATES

Both LSQR and LSMR stop when ‖E2‖, an upper bound for the optimal
backward error that’s computable in O(1) work per iteration, is suffi-
ciently small. Ideally, an iterative algorithm for least-squares should
use the optimal backward error µ(xk) itself in the stopping rule. How-
ever, direct computation using (4.2) is more expensive than solving the
least-squares problem itself. An accurate approximation is given in
(4.5). This cheaper estimate involves solving a least-squares problem
at each iteration of any iterative solver, and thus is still not practical for
use as a stopping rule. It would be of great interest if a provably ac-
curate estimate of the optimal backward error could be found in O(n)

work at each iteration, as it would allow iterative solvers to stop pre-
cisely at the iteration where the desired accuracy has been attained.

More precise stopping rules have been derived recently by Arioli
and Gratton [2] and Titley-Peloquin et al. [11; 50; 75]. The rules allow
for uncertainty in both A and b, and may prove to be useful for LSQR,
LSMR, and least-squares methods in general.

7.2.4 SYMMLQ-BASED LEAST-SQUARES SOLVER

LSMR is derived to be a method mathematically equivalent to MINRES

on the normal equation, and thus LSMR minimizes ‖ATrk‖ for xk in the
Krylov subspace Kk(A

TA,ATb).
For a symmetric system Ax = b, SYMMLQ [52] solves

min
xk∈AKk(A,b)

‖xk − x∗‖

at the k-th iteration [47], [27, p65]. Thus if we derive an algorithm for
the least-squares problem that is mathematically equivalent to SYMMLQ

on the normal equation but uses Golub-Kahan bidiagonalization, this
new algorithm will minimize ‖xk − x∗‖ for xk in the Krylov subspace
ATAKk(A

TA,ATb). This may produce smaller errors compared to LSQR

or LSMR, and may be desirable in applications where the algorithm has
to be terminated early with a smaller error (rather than a smaller back-
ward error).

BIBLIOGRAPHY

[1] M. Arioli. A stopping criterion for the conjugate gradient algorithm in a finite element method framework. Nu-

merische Mathematik, 97(1):1–24, 2004. doi:10.1007/s00211-003-0500-y.

[2] M. Arioli and S. Gratton. Least-squares problems, normal equations, and stopping criteria for the conjugate gradi-
ent method. Technical Report RAL-TR-2008-008, Rutherford Appleton Laboratory, Oxfordshire, UK, 2008.

[3] M. Arioli, I. Duff, and D. Ruiz. Stopping criteria for iterative solvers. SIAM J. Matrix Anal. Appl., 13:138, 1992.
doi:10.1137/0613012.

[4] M. Arioli, E. Noulard, and A. Russo. Stopping criteria for iterative methods: applications to PDE’s. Calcolo, 38(2):
97–112, 2001. doi:10.1007/s100920170006.

[5] S. J. Benbow. Solving generalized least-squares problems with LSQR. SIAM J. Matrix Anal. Appl., 21(1):166–177,
1999. doi:10.1137/S0895479897321830.

[6] Å. Björck, P. Heggernes, and P. Matstoms. Methods for large scale total least squares problems. SIAM J. Matrix

Anal. Appl., 22(2), 2000. doi:10.1137/S0895479899355414.

[7] F. Cajori. A History of Mathematics. The MacMillan Company, New York, second edition, 1919.

[8] D. Calvetti, B. Lewis, and L. Reichel. An L-curve for the MINRES method. In Franklin T. Luk, editor, Ad-

vanced Signal Processing Algorithms, Architectures, and Implementations X, volume 4116, pages 385–395. SPIE, 2000.
doi:10.1117/12.406517.

[9] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari. Computable error bounds and estimates for the conjugate gradient
method. Numerical Algorithms, 25:75–88, 2000. doi:10.1023/A:1016661024093.

[10] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM, Philadelphia, 1996.
doi:10.1137/1.9780898719673.

[11] X.-W. Chang, C. C. Paige, and D. Titley-Péloquin. Stopping criteria for the iterative solution of linear least squares
problems. SIAM J. Matrix Anal. Appl., 31(2):831–852, 2009. doi:10.1137/080724071.

[12] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD, Supernodal
Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw., 35:22:1–22:14, October 2008.
doi:10.1145/1391989.1391995.

[13] S.-C. Choi. Iterative Methods for Singular Linear Equations and Least-Squares Problems. PhD thesis, Stanford University,
Stanford, CA, 2006.

[14] S.-C. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: a Krylov subspace method for indefinite or singular
symmetric systems. SIAM J. Sci. Comput., 33(4):00–00, 2011. doi:10.1137/100787921.

[15] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region Methods, volume 1. SIAM, Philadelphia, 2000.
doi:10.1137/1.9780898719857.

[16] G. Cramer. Introduction à l’Analyse des Lignes Courbes Algébriques. 1750.

120

http://dx.doi.org/10.1007/s00211-003-0500-y
http://dx.doi.org/10.1137/0613012
http://dx.doi.org/10.1007/s100920170006
http://dx.doi.org/10.1137/S0895479897321830
http://dx.doi.org/10.1137/S0895479899355414
http://dx.doi.org/10.1117/12.406517
http://dx.doi.org/10.1023/A:1016661024093
http://dx.doi.org/10.1137/1.9780898719673
http://dx.doi.org/10.1137/080724071
http://dx.doi.org/10.1145/1391989.1391995
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1137/1.9780898719857

7.2. FUTURE DIRECTIONS 121

[17] A. R. Curtis and J. K. Reid. On the automatic scaling of matrices for Gaussian elimination. J. Inst. Maths. Applics.,
10:118–124, 1972. doi:10.1093/imamat/10.1.118.

[18] T. A. Davis. University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/research/sparse/matrices.

[19] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. SIAM, Philadelphia, 1979.
doi:10.1137/1.9781611971811.

[20] F. A. Dul. MINRES and MINERR are better than SYMMLQ in eigenpair computations. SIAM J. Sci. Comput., 19(6):
1767–1782, 1998. doi:10.1137/S106482759528226X.

[21] J. M. Elble and N. V. Sahinidis. Scaling linear optimization problems prior to application of the simplex method.
Computational Optimization and Applications, pages 1–27, 2011. doi:10.1007/s10589-011-9420-4.

[22] D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra. Freeman, London, 1963.
doi:10.1007/BF01086544.

[23] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. Watson, editor, Numerical Analysis, volume
506 of Lecture Notes in Mathematics, pages 73–89. Springer, Berlin / Heidelberg, 1976. doi:10.1007/BFb0080116.

[24] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci.

Comput., 33:2950–2971, 2011. doi:10.1137/10079687X.

[25] V. Frayssé. The power of backward error analysis. Technical Report TH/PA/00/65, CERFACS, 2000.

[26] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems.
Numerische Mathematik, 60:315–339, 1991. doi:10.1007/BF01385726.

[27] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. Acta Numerica, 1:57–100, 1992.
doi:10.1017/S0962492900002245.

[28] D. R. Fulkerson and P. Wolfe. An algorithm for scaling matrices. SIAM Review, 4(2):142–146, 1962.
doi:10.1137/1004032.

[29] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. J. of the Society for

Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2):205–224, 1965. doi:10.1137/0702016.

[30] G. H. Golub and G. A. Meurant. Matrices, moments and quadrature II; How to compute the norm of the error in
iterative methods. BIT Numerical Mathematics, 37:687–705, 1997. doi:10.1007/BF02510247.

[31] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, third edition,
1996.

[32] S. Gratton, P. Jiránek, and D. Titley-Péloquin. On the accuracy of the Karlson-Waldén estimate of the backward
error for linear least squares problems. Submitted for publication (SIMAX), 2011.

[33] J. F. Grcar. Mathematicians of Gaussian elimination. Notices of the AMS, 58(6):782–792, 2011.

[34] J. F. Grcar, M. A. Saunders, and Z. Su. Estimates of optimal backward perturbations for linear least squares prob-
lems. Report SOL 2007-1, Department of Management Science and Engineering, Stanford University, Stanford, CA,
2007. 21 pp.

[35] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997. doi:10.1137/1.9781611970937.

[36] R. W. Hamming. Introduction to Applied Numerical Analysis. McGraw-Hill computer science series. McGraw-Hill,
1971.

[37] K. Hayami, J.-F. Yin, and T. Ito. GMRES methods for least squares problems. SIAM J. Matrix Anal. Appl., 31(5):
2400–2430, 2010. doi:10.1137/070696313.

http://dx.doi.org/10.1093/imamat/10.1.118
http://www.cise.ufl.edu/research/sparse/matrices
http://dx.doi.org/10.1137/1.9781611971811
http://dx.doi.org/10.1137/S106482759528226X
http://dx.doi.org/10.1007/s10589-011-9420-4
http://dx.doi.org/10.1007/BF01086544
http://dx.doi.org/10.1007/BFb0080116
http://dx.doi.org/10.1137/10079687X
http://dx.doi.org/10.1007/BF01385726
http://dx.doi.org/10.1017/S0962492900002245
http://dx.doi.org/10.1137/1004032
http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.1007/BF02510247
http://dx.doi.org/10.1137/1.9781611970937
http://dx.doi.org/10.1137/070696313

122 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

[38] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the

National Bureau of Standards, 49(6):409–436, 1952.

[39] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, second edition, 2002.
doi:10.1137/1.9780898718027.

[40] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral
operators. J. Res. Nat. Bur. Standards, 45:255–282, 1950.

[41] L. Ljung. System Identification: Theory for the User. Prentice Hall, second edition, January 1999.

[42] LSMR. Software for linear systems and least squares. http://www.stanford.edu/group/SOL/software.html.

[43] D. G. Luenberger. Hyperbolic pairs in the method of conjugate gradients. SIAM J. Appl. Math., 17:1263–1267, 1969.
doi:10.1137/0117118.

[44] D. G. Luenberger. The conjugate residual method for constrained minimization problems. SIAM J. Numer. Anal., 7
(3):390–398, 1970. doi:10.1137/0707032.

[45] W. Menke. Geophysical Data Analysis: Discrete Inverse Theory, volume 45. Academic Press, San Diego, 1989.

[46] G. A. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations, volume 19
of Software, Environments, and Tools. SIAM, Philadelphia, 2006.

[47] J. Modersitzki, H. A. Van der Vorst, and G. L. G. Sleijpen. Differences in the effects of rounding errors
in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl., 22(3):726–751, 2001.
doi:10.1137/S0895479897323087.

[48] W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with given error bounds for
coefficients and right-hand sides. Numerische Mathematik, 6:405–409, 1964. doi:10.1007/BF01386090.

[49] A. M. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic
roots and vectors. I. Archive for Rational Mechanics and Analysis, 1(1):233–241, 1957. doi:10.1007/BF00298007.

[50] P. Jiránek and D. Titley-Péloquin. Estimating the backward error in LSQR. SIAM J. Matrix Anal. Appl., 31(4):2055–
2074, 2010. doi:10.1137/090770655.

[51] C. C. Paige. Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal., 11(1):197–209,
1974. doi:10.1137/0711019.

[52] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12
(4):617–629, 1975. doi:10.1137/0712047.

[53] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM

Trans. Math. Softw., 8(1):43–71, 1982. doi:10.1145/355984.355989.

[54] C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations and least-squares problems. ACM

Trans. Math. Softw., 8(2):195–209, 1982. doi:10.1145/355993.356000.

[55] C. C. Paige, M. Rozloznik, and Z. Strakos. Modified Gram-Schmidt (MGS), least squares, and backward stability of
MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1):264–284, 2006. doi:10.1137/050630416.

[56] B. N. Parlett and W. Kahan. On the convergence of a practical QR algorithm. Information Processing, 68:114–118,
1969.

[57] V. Pereyra, 2010. Private communication.

[58] PROPACK. Software for SVD of sparse matrices. http://soi.stanford.edu/~rmunk/PROPACK/.

http://dx.doi.org/10.1137/1.9780898718027
http://www.stanford.edu/group/SOL/software.html
http://dx.doi.org/10.1137/0117118
http://dx.doi.org/10.1137/0707032
http://dx.doi.org/10.1137/S0895479897323087
http://dx.doi.org/10.1007/BF01386090
http://dx.doi.org/10.1007/BF00298007
http://dx.doi.org/10.1137/090770655
http://dx.doi.org/10.1137/0711019
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1145/355993.356000
http://dx.doi.org/10.1137/050630416
http://soi.stanford.edu/~rmunk/PROPACK/

7.2. FUTURE DIRECTIONS 123

[59] B. J. W. S. Rayleigh. The Theory of Sound, volume 2. Macmillan, 1896.

[60] J. K. Reid. The use of conjugate gradients for systems of linear equations possessing “Property A”. SIAM J. Numer.

Anal., 9(2):325–332, 1972. doi:10.1137/0709032.

[61] J. L. Rigal and J. Gaches. On the compatibility of a given solution with the data of a linear system. J. ACM, 14(3):
543–548, 1967. doi:10.1145/321406.321416.

[62] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems. Mathematics of Computation, 37
(155):pp. 105–126, 1981. doi:10.2307/2007504.

[63] Y. Saad and M. H. Schultz. GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear
systems. SIAM J. Sci. and Statist. Comput., 7(3):856–869, 1986. doi:10.1137/0907058.

[64] K. Shen, J. N. Crossley, A. W. C. Lun, and H. Liu. The Nine Chapters on the Mathematical Art: Companion and Commen-

tary. Oxford University Press, New York, 1999.

[65] H. D. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidiagonalization process with appli-
cations. SIAM J. Sci. Comput., 21(6):2257–2274, 2000. doi:10.1137/S1064827597327309.

[66] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 10:36–52,
1989. doi:10.1137/0910004.

[67] P. Sonneveld and M. B. van Gijzen. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric
systems of linear equations. SIAM J. Sci. Comput., 31:1035–1062, 2008. doi:10.1137/070685804.

[68] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal., 20
(3):626–637, 1983. doi:10.1137/0720042.

[69] G. W. Stewart. An inverse perturbation theorem for the linear least squares problem. SIGNUM Newsletter, 10:39–40,
1975. doi:10.1145/1053197.1053199.

[70] G. W. Stewart. Research, development and LINPACK. In J. R. Rice, editor, Mathematical Software III, pages 1–14.
Academic Press, New York, 1977.

[71] G. W. Stewart. The QLP approximation to the singular value decomposition. SIAM J. Sci. Comput., 20(4):1336–1348,
1999. ISSN 1064-8275. doi:10.1137/S1064827597319519.

[72] E. Stiefel. Relaxationsmethoden bester strategie zur lösung linearer gleichungssysteme. Comm. Math. Helv., 29:
157–179, 1955. doi:10.1007/BF02564277.

[73] Z. Su. Computational Methods for Least Squares Problems and Clinical Trials. PhD thesis, SCCM, Stanford University,
Stanford, CA, 2005.

[74] Y. Sun. The Filter Algorithm for Solving Large-Scale Eigenproblems from Accelerator Simulations. PhD thesis, Stanford
University, Stanford, CA, 2003.

[75] D. Titley-Péloquin. Backward Perturbation Analysis of Least Squares Problems. PhD thesis, School of Computer Science,
McGill University, Montreal, PQ, 2010.

[76] D. Titley-Peloquin. Convergence of backward error bounds in LSQR and LSMR. Private communication, 2011.

[77] J. A. Tomlin. On scaling linear programming problems. In Computational Practice in Mathematical Program-

ming, volume 4 of Mathematical Programming Studies, pages 146–166. Springer, Berlin / Heidelberg, 1975.
doi:10.1007/BFb0120718.

[78] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric
linear systems. SIAM J. Sci. Comput., 13(2):631–644, 1992. doi:10.1137/0913035.

http://dx.doi.org/10.1137/0709032
http://dx.doi.org/10.1145/321406.321416
http://dx.doi.org/10.2307/2007504
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/S1064827597327309
http://dx.doi.org/10.1137/0910004
http://dx.doi.org/10.1137/070685804
http://dx.doi.org/10.1137/0720042
http://dx.doi.org/10.1145/1053197.1053199
http://dx.doi.org/10.1137/S1064827597319519
http://dx.doi.org/10.1007/BF02564277
http://dx.doi.org/10.1007/BFb0120718
http://dx.doi.org/10.1137/0913035

124 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

[79] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge, first
edition, 2003. doi:10.1017/CBO9780511615115.

[80] S. J. van der Walt. Super-resolution Imaging. PhD thesis, Stellenbosch University, Cape Town, South Africa, 2010.

[81] M. B. van Gijzen. IDR(s) website. http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

[82] M. B. van Gijzen. Private communication, Dec 2010.

[83] B. Waldén, R. Karlson, and J.-G. Sun. Optimal backward perturbation bounds for the linear least squares problem.
Numerical Linear Algebra with Applications, 2(3):271–286, 1995. doi:10.1002/nla.1680020308.

[84] D. S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics. Wiley, Hoboken, NJ, third
edition, 2010.

[85] P. Wesseling and P. Sonneveld. Numerical experiments with a multiple grid and a preconditioned Lanczos type
method. In Reimund Rautmann, editor, Approximation Methods for Navier-Stokes Problems, volume 771 of Lecture

Notes in Mathematics, pages 543–562. Springer, Berlin / Heidelberg, 1980. doi:10.1007/BFb0086930.

[86] F. Xue and H. C. Elman. Convergence analysis of iterative solvers in inexact Rayleigh quotient iteration. SIAM J.

Matrix Anal. Appl., 31(3):877–899, 2009. doi:10.1137/080712908.

[87] D. Young. Iterative methods for solving partial difference equations of elliptic type. Trans. Amer. Math. Soc, 76(92):
111, 1954. doi:10.2307/1990745.

[88] D. M. Young. Iterative Methods for Solving Partial Difference Equations of Elliptic Type. PhD thesis, Harvard University,
Cambridge, MA, 1950.

http://dx.doi.org/10.1017/CBO9780511615115
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
http://dx.doi.org/10.1002/nla.1680020308
http://dx.doi.org/10.1007/BFb0086930
http://dx.doi.org/10.1137/080712908
http://dx.doi.org/10.2307/1990745

	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Basic iterative methods
	Krylov subspace methods for square Ax=b
	The Lanczos process
	Unsymmetric Lanczos
	Transpose-free methods
	The Arnoldi process
	Induced dimension reduction

	Krylov subspace methods for rectangular Ax=b
	The Golub-Kahan process

	Overview

	A tale of two algorithms
	Monotonicity of norms
	Properties of CG
	Properties of CR and MINRES

	Backward error analysis
	Stopping rule
	Monotonic backward errors
	Other convergence measures

	Numerical results
	Positive-definite systems
	Indefinite systems

	Summary

	LSMR
	Derivation of LSMR
	The Golub-Kahan process
	Using Golub-Kahan to solve the normal equation
	Two QR factorizations
	Recurrence for xk
	Recurrence for Wk and k
	The two rotations
	Speeding up forward substitution
	Algorithm LSMR

	Norms and stopping rules
	Stopping criteria
	Practical stopping criteria
	Computing "026B30D rk"026B30D
	Computing "026B30D ATrk"026B30D
	Computing "026B30D xk"026B30D
	Estimates of "026B30D A"026B30D and cond(A)

	LSMR Properties
	Monotonicity of norms
	Characteristics of the solution on singular systems
	Backward error

	Complexity
	Regularized least squares
	Effects on "026B30D k"026B30D
	Pseudo-code for regularized LSMR

	Proof of Lemma 3.2.1

	LSMR experiments
	Least-squares problems
	Backward error for least-squares
	Numerical results
	Effects of preconditioning
	Why does "026B30D E2"026B30D for LSQR lag behind LSMR?

	Square systems
	Underdetermined systems
	Reorthogonalization

	AMRES
	Derivation of AMRES
	Least-squares subsystem
	QR factorization
	Updating Wvk
	Algorithm AMRES

	Stopping rules
	Estimate of norms
	Computing "026B30D 3mu-r"0362-r-k"026B30D
	Computing "026B30D 3mu-r"0362-r-k"026B30D
	Computing "026B30D 2.8mu-x"0362-x-"026B30D
	Estimates of "026B30D "026B30D and cond()

	Complexity

	AMRES applications
	Curtis-Reid scaling
	Curtis-Reid scaling using CGA
	Curtis-Reid scaling using AMRES
	Comparison of CGA and AMRES

	Rayleigh quotient iteration
	Stable inner iterations for RQI
	Speeding up the inner iterations of RQI

	Singular vector computation
	AMRESR
	AMRESR experiments

	Almost singular systems

	Conclusions and future directions
	Contributions
	MINRES
	LSMR
	AMRES

	Future directions
	Conjecture
	Partial reorthogonalization
	Efficient optimal backward error estimates
	SYMMLQ-based least-squares solver

	Bibliography

