
IPSOL: AN INTERIOR POINT SOLVER FOR

NONCONVEX OPTIMIZATION PROBLEMS

A DISSERTATION

SUBMITTED TO THE PROGRAM IN SCIENTIFIC COMPUTING AND

COMPUTATIONAL MATHEMATICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Kaustuv

December 2008

c© Copyright by Kaustuv 2009

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Walter Murray Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Michael Saunders

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Mukund Thapa

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

For years, the Systems Optimization Laboratory (SOL) has been a center for research

on large-scale nonlinear optimization. This research has given rise to reference solvers

MINOS, NPSOL and SNOPT. In this thesis we present IPSOL, a prototype solver for

general nonlinear optimization problem. IPSOL differs from the earlier (SOL) non-convex

solvers in two ways. First, it uses second-derivative information, and second, it uses a barrier

formulation to handle inequality constraints. Together, these features enable IPSOL to solve

large-scale optimization problems efficiently.

IPSOL solves a sequence of equality-constrained log-barrier subproblems with decreas-

ing values µ until convergence is attained. The subproblems are solved by an augmented

Lagrangian SQP algorithm based on the theoretical framework developed by Murray and

Prieto in [MP95]. A null-space method is used to solve each QP subproblem. This frame-

work guarantees convergence to a second-order point when a direction of negative curvature

for the reduced Hessian is used in conjunction with a descent direction. IPSOL uses the

conjugate gradient algorithm to detect indefiniteness in the reduced Hessian and compute a

direction of negative curvature. This direction is improved by application of a few steps of

the Lanczos algorithm. A linesearch is then performed along the curve formed by a combi-

nation of the descent direction and the direction of negative curvature to get a steplength.

IPSOL has been prototyped in Matlab and tested on a subset of the CUTEr test prob-

lems. This thesis is focused on the algorithm and the details of implementation of IPSOL.

We also discuss its performance on the CUTEr test set and compare the results against the

current generation barrier solvers LOQO and IPOPT.

v

Acknowledgements

To all

vi

Contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 The Basic Problem . 1

1.2 A Few Approaches to Solving Problems with Inequalities 2

1.3 A Case for a Barrier Optimizer . 4

1.4 A Brief History of Barrier Methods . 6

1.4.1 First Era: The Original Log-Barrier Formulation 7

1.4.2 Second Era: The Primal Log-Barrier Formulation 8

1.4.3 The Primal-Dual Equations . 9

1.5 Similar Projects . 10

1.6 Outline of the Remaining Chapters . 10

2 Development of Equations and Initialization 11

2.1 Introduction . 11

2.2 Log-Barrier Problem Revisited . 11

2.2.1 One Sided Bounds and Free Variables 12

2.3 The Optimality Equations and Their Linearization 12

2.4 Overview of the Algorithm . 14

2.5 Selection of an Initial Point . 16

2.6 Presolving . 17

2.6.1 Fixed Variables . 17

2.6.2 Redundant Constraints . 17

2.7 Conclusion . 18

vii

3 Search Direction Computations 19

3.1 Introduction . 19

3.2 Scaling the Modified Primal-Dual System 20

3.3 ZT (H + D)Z Positive Definite, A Full-Rank 21

3.3.1 Computation of a Null-space Basis Z 23

3.3.2 Solving for a Particular Solution of Aδx = r2 26

3.3.3 Solving the Reduced Hessian System 26

3.3.4 Solving for the Dual Search Directions 27

3.3.5 Correctness of the Algorithm . 27

3.4 ZT (H + D)Z Indefinite, A Full-Rank . 27

3.4.1 Theoretical Framework . 29

3.4.2 Solution Strategy . 34

3.5 ZT (H + D)Z Indefinite, A Rank Deficient 36

3.6 Conclusion . 37

4 Merit Function Based Linesearch 38

4.1 Introduction . 38

4.2 Merit Functions and Linesearch Algorithms 38

4.3 Use of Augmented Lagrangian Merit Function in IPSOL 39

4.4 Linesearch Termination Criteria . 40

4.5 Intuition Behind the Linesearch Algorithm 42

4.6 Linesearch Algorithm . 43

4.6.1 Initialize the Interval of Uncertainty 43

4.6.2 Trial Step Generation . 44

4.6.3 Update the Interval of Uncertainty 45

4.7 Updating the Variables . 46

4.8 Conclusion . 46

5 Numerical Results 47

5.1 Introduction . 47

5.2 Decreasing µ from One Subproblem to Another 47

5.3 Termination Criteria . 48

5.4 IPSOL Interface to CUTEr Test-set . 49

5.5 Performance on CUTEr Small-Scale Problems 49

5.6 Performance on a Few CUTEr Large-Scale Problems 57

viii

5.7 Comparisons with IPOPT and LOQO . 58

6 Contributions and Future Research 61

A Overcoming the Temporary Incompatibility 63

A.1 L1 Elastic Variables . 63

Bibliography 66

ix

List of Tables

1.1 Current interior point solvers . 10

4.1 Representative merit functions for equality constrained problems 40

4.2 Types of intervals of uncertainty (αl, αu) . 43

5.1 Performance of IPSOL on 300 small problems from the CUTEr testset. . . 56

5.2 Performance of IPSOL on 42 large problems from the CUTEr testset. . . . 58

x

List of Figures

5.1 Performance of IPSOL vs LOQO . 59

5.2 Performance of IPSOL vs IPOPT . 60

xi

xii

Chapter 1

Introduction

1.1 The Basic Problem

The optimization problem of interest is

minimize
x∈Rn

f(x)

s.t. cE (x) = b

cl ≤ cI (x) ≤ cu

xl ≤ x ≤ xu,

(1.1)

where x ∈ Rn, f ∈ C2(Rn), f : Rn → R, cE ∈ C2(Rn), cE : Rn → RmE , and cI ∈ C2(Rn),

cI : Rn → RmI . The problem addressed in this thesis is that of developing an algorithm

(termed IPSOL) for finding a local minimizer of this class of problems. The main feature of

this algorithm is that it can be used to solve large-scale problems efficiently. The scale of an

optimization problem is defined in terms of the total number of variables and constraints.

It is also tied to the available computational infrastructure. At the time of writing, a

problem that has n ≥ 1000 and mE + mI ≥ 1000 is deemed large-scale. The efficiency

of an optimization algorithm is measured in terms of the work required to compute the

iterates or the number of function evaluations required to reach a sufficiently good estimate

of a local minimizer from a given initial point.

Many theoretical algorithms with proofs of convergence have been proposed for solving

(1.1). The proofs of convergence require that certain conditions hold at the solution. How-

ever, in practice, one or more of these assumptions may not be valid at the intermediate

iterates or even at the solution. An implementation algorithm should follow the theoretical

1

2 CHAPTER 1. INTRODUCTION

algorithm when the underlying assumptions hold, but at the same time be robust enough to

try and recover in case they breakdown. Moreover, an implementation needs to cope with

the consequences of finite-precision arithmetic and the limitations on the linear algebraic

operations that arise during the solution of large-scale problems. The challenge addressed

in the development of IPSOL was to adhere closely to a theoretical algorithm while address-

ing such issues. IPSOL bridges the gap between the proof of convergence of a theoretical

algorithm and its practical performance.

There are various mathematically equivalent formulations of (1.1). A very simple for-

mulation is

minimize
x∈Rn

f(x)

s.t. c(x) ≥ 0.
(1.2)

The formulation (1.2) can be obtained from (1.1) by a series of simple transformations and

vice versa. In this thesis, formulation (1.1) is chosen over the simpler formulation (1.2) for

ensuring computational efficiency of the algorithm.

The inequality constraints in (1.1) are relatively more difficult to handle than the equal-

ity constraints. An insight as to why this could be the case can be gained by looking at

the first-order optimality conditions of (1.1) [NW06]. These equations are expressed in

terms of the set of constraints active at a local optimizer. Choosing the subset of inequal-

ity constraints that are active at a solution is a combinatorial problem. This problem is

computationally difficult when the total number of variables and inequality constraints is

large.

In the next section, we describe a few approaches to solving optimization problems with

inequality constraints. IPSOL uses a barrier approach for this class of optimization problem.

In the subsequent section, we weigh the pros and cons of a barrier optimizer. Finally, we

close the chapter by giving a brief history of barrier methods and a quick overview of

optimizers using barrier approaches.

1.2 A Few Approaches to Solving Problems with Inequalities

As mentioned above, the presence of a large number of inequalities in an optimization

problem may make it difficult to solve. There have been a wide variety of approaches

proposed to solve this problem. For a comprehensive overview of these methods see [Mur74,

Sto75, HM79, Tap80, SL99, GMS02]. Two classes of methods are generally viewed as the

1.2. A FEW APPROACHES TO SOLVING PROBLEMS WITH INEQUALITIES 3

most efficient:

• Active-set approach: These methods make a sequence of estimates of the correct

active set. Most algorithms in this class solve the nonlinearly constrained problem

(1.1) using a sequence of inequality-constrained quadratic programming (IQP) sub-

problems. The constraints of each IQP subproblem are linearizations of the constraints

in the original problem, and the objective function of the subproblem is a quadratic

approximation to the Lagrangian function. The solution of the IQP subproblem re-

turns an independent set of constraints that are active at the IQP solution, which

may be interpreted as an estimate of the active set of (1.1). It can be shown that

the correct active set can be identified after a finite but potentially large number of

iterations. In the absence of inequality constraints, the subproblems are equality-

constrained quadratic programs (EQP). This approach of computing a solution of an

optimization problem by solving a sequence of quadratic programs is called Sequential

Quadratic Programming (SQP).

• Barrier / Interior point approach: Barrier methods were first introduced for

inequality constrained problems of the form (1.2). They require a feasible initial

point, and implicitly enforce the inequality constraints throughout. The inequality

constraints are removed and the objective function is modified such that the search

direction is biased to be directed away from the boundary. A sequence of such un-

constrained optimization problems converging to the original problem is created and

solved. Under suitable assumptions, it can be shown that the sequence of optimizers of

these modified problems converges to a solution of (1.2). If equality constraints were

present, they were removed by adding a penalty function to the objective. Again a se-

quence of unconstrained problems was solved. Current generation barrier algorithms

use computationally efficient formulations of this basic idea. However, these algo-

rithms converge to a solution by solving a sequence of nonlinear equality-constrained

problems. Moreover, in these formulations, even on the problems of form (1.2), fea-

sible iterates are no longer generated. So, in the strict sense, iterates are not in the

interior of the feasible region. In the remaining part of the thesis the terms “barrier”

and “interior point” would be used synonymously.

IPSOL uses a logarithmic barrier formulation to handle any inequalities in the problem.

In the next section, we take a look at the pros and cons of barrier methods for large-scale

optimization in comparison with traditional active-set approaches.

4 CHAPTER 1. INTRODUCTION

1.3 A Case for a Barrier Optimizer

As stated earlier, current algorithms for solving inequality-constrained optimization (1.1)

fall in two categories: active-set methods and barrier methods. Active-set algorithms for

nonlinear non-convex optimization are implemented in widely used general-purpose opti-

mization codes such as MINOS [MS78, MS82], SNOPT [GMS02, GMS05] and filterSQP

[FL02]. Barrier methods after their popularity in the 1960s went into decline, in part

because of their inefficiencies and the availability of new algorithms to solve constrained

optimization problems. Their re-emergence in the mid-1980s to solve LPs re-ignited interest

in barrier methods. It was now seen that by no longer requiring the methods to solve a

sequence of unconstrained problems, many of their deficiencies could be eliminated. More-

over, a clearer understanding of the ill-conditioned systems and how to circumvent them

was achieved. Since then, barrier methods have made a deep foray into the world of convex

optimization primarily because of the strong theoretical properties they offer [NN94] and

their observed performance, which is far better than that predicted by the theory. Their

adoption for nonconvex problems was slow because few of the theoretical results generalize

to this case. Regardless of the loss of strong theoretical justifications, barrier methods have

some attractive features:

+ An efficient active-set optimizer utilizes direct solvers to factorize the initial KKT

system. Subsequent systems, often differing from the previous one by a rank-1 matrix,

are solved by updating the factors of the previous system. Barrier methods need to

solve relatively few linear systems of fixed size (compared to very many systems of

smaller but varying size in case of active-set methods). The chosen solver can be

iterative in nature, which automatically leads to a two-fold advantage:

+ Since all iterative solvers rely on matrix-vector multiplications, they are relatively

easy to implement even in sparse cases.

+ Since the equations are of fixed size, their solution can be efficiently computed

using a distributed linear system solver.

+ Barrier methods require the Hessian of the Lagrangian. The use of the Hessian enables

convergence to points satisfying second-order optimality conditions. Methods based

on an explicit Hessian are more efficient in terms of the number of function evaluations.

Utilizing the explicit Hessian in barrier methods is a much simpler proposition than

it is for active-set methods. This is partly because when the Hessian is indefinite it

1.3. A CASE FOR A BARRIER OPTIMIZER 5

is easy to see whether a modification is needed and also how to make a modification

(see Chapter 3).

+ Active-set methods move from one working set to another and changes to the working

set are very minimal. Typically, one or two constraints are added or deleted between

successive working sets. In a large-scale case where there is a large number of working

sets possible, an active-set solver may have to process many working sets before a

correct active set is identified. An example to demonstrate this effect was first given

by Klee and Minty for the simplex method in [KM72], where it is shown that an

exponential number of active sets may be explored before an optimizer is found.

Terlaky et al. [DNT08] have shown that barrier methods follow much the same path

as simplex on the Klee-Minty examples. However, in practice, barrier algorithms

converge to a sufficiently good estimate of the solution in very few (usually ≤ 40)

iterations.

Barrier methods have some disadvantages:

– If the interior of the feasible region is empty, such as in mathematical programs

with complementarity constraints (MPCC), interior point mthods would not be able

to start [LPR96]. Fortunately, most problems arising out of physical sciences and

engineering have a non-empty interior.

– The vanilla versions of barrier algorithms assume that the Hessian is easily computed,

which might not be the case. Using an approximation to the Hessian can alleviate

this problem to some extent.

– The name ‘Interior Point’ is a misnomer. It suggests that all the iterates generated

are feasible, but most practical primal-dual implementations are in reality ‘Infeasible

Interior Point’ algorithms. They only ensure that bounds on variables are always

satisfied, while the constraints are satisfied only in the limit. Infeasible interior point

approaches give a faster converging algorithm, especially in the presence of highly

nonlinear constraints. The price paid is that if the algorithm is terminated prema-

turely, the final iterate might be infeasible, which might be of some concern to the

practitioners1.

1It should be noted that this particular trade-off is not limited to solvers based on interior point approaches
but shows up in most present day NLP solvers. However if the infeasibility of the iterates is of prime concern
then a solver based on Generalized Reduced Gradient (GRG) methods [LFR74], like CONOPT [Dru85],
should be considered.

6 CHAPTER 1. INTRODUCTION

– The biggest drawback of an interior point solver is its inability to make use of a good

initial starting point. The ideal starting point is equally away from all the boundaries

or is on the central path2. Worse starting points are those not on the central path and

close to a boundary of the inequality constraints. This is clearly a difficulty in many

applications such as design optimization that model real-life scenarios. Experienced

modelers often have a good idea of what the solution is going to look like. But this

initial guess is likely to be off the central path and near a boundary, and hence a bad

starting point.

– Closely related to the last difficulty is the issue of warm-starting a barrier method.

Often in real-life applications, a sequence of closely related optimization problems are

created and solved. All of these problems model the same physical phenomena but

differ from one another in terms of the values taken by one or more parameters. Un-

der mild assumptions it can be shown that the solution of an optimization problem

is a continuous function of the parameters of the problem. Consequently, a small

perturbation of the parameters leads to a small perturbation of the optimal solution.

Thus it is desirable to initialize the new optimization problem (with perturbed param-

eters) using the optimal solution of the original one. However, some of the inequality

constraints of the original problem are likely to be binding at its optimal solution.

Consequently, this optimal point may also be close to a boundary of the inequality

constraints of the perturbed optimization problem. This makes it a bad choice for

initializing a barrier algorithm on the perturbed problem.

On the whole, if restart is not an issue, barrier methods have no major drawbacks,

although their performance can be sensitive to the settings of various runtime parameters.

1.4 A Brief History of Barrier Methods

Perhaps no class of algorithms in the history of mathematical programming has a more

fascinating past than the barrier methods [Wri05]. Also known as interior-point methods

and potential methods, they first made their appearance in works of Frisch [Fri54, Fri55]

and Caroll [Car61]. Fiacco and McCormick [FM90] developed a comprehensive theory

about convergence properties of general barrier methods. This can be called the first era

2The central path for an optimization problem, say (1.6), is defined as the set of solutions for its log-barrier
problem (1.7). Under some assumptions it can be shown that solutions of (1.7) are continuous functions of
the parameter µ [FM90] and hence trace out a path as µ varies.

1.4. A BRIEF HISTORY OF BARRIER METHODS 7

of research in barrier methods and is discussed in section 1.4.1. However, the popularity

of these methods drastically dwindled in the years following the works of Lootsma [Loo69]

and Murray [Mur69, Mur71], who showed that the Hessian of the barrier subproblems is

ill-conditioned near the constraints.

The interest of the optimization community in Barrier methods was resurrected by

Karmarkar’s polynomial-time algorithm for linear programming [Kar84], which was formally

shown to be equivalent to Newton’s method applied to the log-barrier method [GMS+86].

This renewed effort was mostly directed at the study of theoretical properties and the

complexity of interior point methods for convex optimization [NN94] and the development

of algorithms for the same [Meh92].

1.4.1 First Era: The Original Log-Barrier Formulation

The original log-barrier formulation applied the logarithmic barrier function directly to the

inequality constraints. For example, in the absence of any equality constraints in (1.1), one

would reformulate it as the following unconstrained problem:

minimize
x∈Rn

f(x) − µ[eT ln(cI (x) − cl) + eT ln(cu − cI (x))

+eT ln(x − xl) + eT ln(xu − x)],
(1.3)

where e is a vector of 1s. (Terms involving infinite bounds are omitted.) Any equality

constraints were accounted for by putting them as a penalty in the objective function. This

reformulation of (1.1) as an unconstrained problem is similar to that proposed by Fiacco and

McCormick [FM90]. In the 1960s, software for unconstrained problems was available and

this approach enabled the state-of-the art unconstrained solvers to be applied to constrained

problems.

Any solution of the above problem is feasible for (1.1). The basic idea is that one starts

from an interior point of the feasible region of (1.1) and solves a sequence of subproblems

(1.3) with values of µk → 0 to get a solution of x∗ of (1.1).

It was shown by Lootsma [Loo69] and Murray [Mur69, Mur71] that the Hessian of the

objective of (1.3) becomes increasingly ill-conditioned near the boundary of the feasible

region and in particular in the neighborhood of the solution. Murray showed how the

search direction could be computed accurately. However, ill-conditioning of the Hessian has

other ramifications. For example, the quadratic rate of convergence of Newton’s method

is dependent on the Hessian being non-singular at the solution. Consequently, even the

8 CHAPTER 1. INTRODUCTION

theoretical algorithm has a poor rate of convergence. An additional difficulty in putting the

logarithmic barrier directly on the constraints is that it requires an initial point that satisfies

all the inequalities. This requirement may be stringent if the constraints are nonlinear.

1.4.2 Second Era: The Primal Log-Barrier Formulation

Both difficulties mentioned above are mitigated when the logarithmic barrier is applied

only to bound constraints. This insight led to a formulation that is now known as the

primal log-barrier formulation. We wish to point out two important aspects about this

development:

• This formulation was first developed for linear programs even though the original

log-barrier formulation works equally well for LP’s.

• Although the application of Newton’s method to this formulation is not marred by

numerical ill-conditioning, its practical performance remains unsatisfactory.

To develop the primal log-barrier formulation of (1.1), all general inequality constraints

in (1.1) are converted to equality constraints by the use of additional variables (called slack

variables). With this transformation, (1.1) becomes

minimize
x,s

f(x)

s.t. cE (x) − b = 0

cI (x) − s = 0

xl ≤ x ≤ xu

cl ≤ s ≤ cu.

(1.4)

With x = [x; s], l = [xl; cl], u = [xu; cu] and c(x) = [cE (x) − b; cI (x) − s] the equations

become

minimize
x

f(x)

s.t. c(x) = 0

l ≤ x ≤ u.

(1.5)

We introduce additional variables tl ∈ Rn+mI and tu ∈ Rn+mI that convert the bound

constraints into positivity constraints:

1.4. A BRIEF HISTORY OF BARRIER METHODS 9

minimize
x,tl,tu

f(x)

s.t. c(x) = 0

x − tl = l

−x − tu = −u

tl, tu ≥ 0.

(1.6)

Now introducing the barrier on the t’s we get the following barrier subproblem:

minimize
x,tl,tu

f(x) − µ[eT
l ln(tl) + eT

u ln(tu)]

s.t. c(x) = 0

x − tl = l

−x − tu = −u.

(1.7)

where el and eu are vectors of 1s. In the primal log-barrier approach, the above equality-

constrained problem is solved with decreasing values of µ to get a solution of (1.1). Applica-

tion of Newton’s method to the optimality conditions of (1.7) restricts the elements causing

ill-conditioning to be on the diagonal of the Hessian. Because of this special distribution of

elements causing ill-conditioning, it can be shown that the ill-conditioning is “benign” and

the Newton search directions can be computed accurately.

This reformulation does remove the effects of ill-conditioning in the original formula-

tion. However, the application of Newton’s method to the optimality conditions of (1.7)

is still marred by very slow convergence. The successive iterates of Newton’s method are

constructed by solving a quadratic approximation to (1.7) at the current iterate. Near any

active constraint, the logarithmic barrier terms are not well approximated by a quadratic

polynomial, leading to slow and inefficient progress of Newton’s method.

1.4.3 The Primal-Dual Equations

The extensive research that followed the re-discovery of barrier algorithms led to the dis-

covery of a simple alternative reformulation of the optimality equations for (1.7) [Meg89].

Application of Newton’s method to the resulting equations is much more efficient. For

the special case of linear programming, there are as many as six reformulations proposed

in [GMPS95]. For the nonlinear non-convex case, the computationally efficient reformula-

tion is called primal-dual equations. These equations are developed in chapter 2. Their

10 CHAPTER 1. INTRODUCTION

linearization is solved to compute a search direction at an iterate.

1.5 Similar Projects

Currently, several projects use barrier methods to solve general nonlinear non-convex pro-

grams. In Table 1.5 we give highlights of these projects. The published performances of

IPOPT and LOQO are used to benchmark the algorithm proposed in this thesis.

Solvers Algorithm Released

IPOPT [WB06] Primal-dual system with filter based linesearch 2000

KNITRO [BNW06] Trust-region 2001

LOQO [Van99] Primal-dual system with merit function based linesearch 1999

Table 1.1: Current interior point solvers

1.6 Outline of the Remaining Chapters

The basic equations that are solved to get the search directions are developed in chapter

2. Additionally, chapter 2 describes the strategy used to initialize the solver. Chapter 3 is

about the computational algorithm used to obtain the search directions from the equations

developed in chapter 2. Chapter 4 describes the Augmented Lagrangian based linesearch

algorithm for selecting a step along the computed search directions. Chapter 5 discusses

the strategy of reducing µ from one subproblem to another. It also notes various termi-

nation criteria for the subproblem and the overall problem. Chapter 5 also contains the

computational results of IPSOL on a subset of the CUTEr test set.

Chapter 2

Development of Equations and

Initialization

2.1 Introduction

In this chapter, we present an outline of IPSOL. We derive the set of equations that are

solved to get the search direction for the primal and dual variables. Then, a broad overview

of the entire algorithm is presented. Finally, the strategy used for initializing the solver and

the presolve phase are described. (The term “search direction” as used in the thesis refers

to the direction of descent in both primal and dual variables as well as to the direction of

negative curvature, provided one exists.)

2.2 Log-Barrier Problem Revisited

A barrier algorithm like IPSOL transforms the given optimization problem (1.1) into an

equality-constrained problem (1.7). This transformed problem is reproduced here for the

sake of completeness:

minimize
x,tl,tu

f(x) − µ[eT
l ln(tl) + eT

u ln(tu)]

s.t. c(x) = 0

x − tl = l

−x − tu = −u.

(2.1)

11

12 CHAPTER 2. DEVELOPMENT OF EQUATIONS AND INITIALIZATION

In IPSOL, the search directions are obtained by applying Newton’s method to the optimality

conditions associated with this problem.

2.2.1 One Sided Bounds and Free Variables

In (2.1), it is implicitly assumed that all the general inequality constraints are upper as

well as lower bounded. A similar assumption is made regarding the bounds on the decision

variables. In formulation (2.1), a one-sided bound (on the general constraints or on the

decision variables) is represented using ±∞ as the other bound. However, the inclusion of

∞ in the problem causes serious degradation in the performance of most algorithms, IPSOL

being no exception. A more computationally efficient log-barrier formulation that explicitly

includes the cases of one-sided bounds and free variables is:

minimize
x,tl,tu

f(x) − µ[eT
l ln(tl) + eT

u ln(tu)]

s.t. c(x) = 0 : y

Elx − tl = l : zl

−Eux − tu = −u : zu.

(2.2)

In this formulation El, Eu are matrices that extract a sub-vector out of a given vector and y,

zl, zu are the corresponding vectors of Lagrange multipliers of appropriate dimensions. The

bounds tl > 0 and tu > 0 are present implicitly. The Lagrangian of this equality-constrained

problem is defined as:

L (x, tl, tu, y, zl, zu) := f(x) − µ[eT
l ln(tl) + eT

u ln(tu)]

−yT c(x) − zT
l (Elx − tl − l) − zT

u (−Eux − tu + u).
(2.3)

2.3 The Optimality Equations and Their Linearization

The optimality equations for (2.2) are

−∇f(x) +∇c(x) y +ET
l zl −ET

u zu = 0 (L)

Tlzl = µel (pcl)

Tuzu = µeu (pcu)

c(x) = 0 (cons)

Elx −tl = l (low)

−Eux −tu = −u (upp),

(2.4)

2.3. THE OPTIMALITY EQUATIONS AND THEIR LINEARIZATION 13

where Tl,u = diag(tl,u) and el,u are unit vectors of appropriate dimensions. Again, the

conditions tl > 0 and tu > 0 are implicitly assumed and together with (pcl) and (pcu)

ensure that the logarithms are well defined1.

Linearization of the optimality conditions (2.4) at a point (x, tl, tu, y, zl, zu) gives rise to

the following Newton equations:























−∇2L ∇c(x) ET
l −ET

u

Zl Tl

Zu Tu

∇c(x)T

El −I

−Eu −I













































δx

δtl

δtu

δy

δzl

δzu























=























rL

rpcl

rpcu

rcons

rl

ru























. (2.5)

where Zl,u = diag(zl,u) and rL, rpcl, rpcu, rcons, rl, ru are residuals at the current iterate

of the equations (L), (pcl), (pcu), (cons), (l), (u) respectively. This large and unsymmetric

system, after elimination of δzl, δzu, δtl, δtu (in that order), is reduced to a much smaller

symmetric system2

[

−Hpd AT

A

] [

δx

δy

]

=

[

r1

r2

]

, (2.6)

where
Hpd = ∇2L + ET

l T−1
l ZlEl + ET

u T−1
u ZuEu

r1 = rL − ET
l T−1

l (rpcl + Zlrl) + ET
u T−1

u (rpcu + Zuru)

r2 = rcons

A = ∇c(x)T .

(2.7)

Equations (2.6) are referred to as the primal-dual system. The matrix Hpd is called the

primal-dual Hessian. It is composed of two parts, the regular Hessian of the Lagrangian,

∇2L , and the diagonal matrix ET
l T−1

l ZlEl + ET
u T−1

u ZuEu. This structure is of utmost

importance in the numerical computation of the search directions. This subtlety shall be

elaborated in chapter 3. In order to reduce the notational clutter, the following simpler

1The optimality equations (2.4) offer another view to motivate the barrier approach. With µ = 0, this
system of equation reduces to the optimality condition of the formulation (1.6). So, in effect a barrier
approach solves the optimality condition of the optimization problem after relaxing the complementarity
equations.

2The primary purpose of this reduction is to gain a computational edge. It is well known in the linear
algebra world that large unsymmetric systems are typically more difficult to solve than smaller symmetric
systems.

14 CHAPTER 2. DEVELOPMENT OF EQUATIONS AND INITIALIZATION

representation of (2.6) shall be used:

[

−(H + D) AT

A

] [

δx

δy

]

=

[

r1

r2

]

, (2.8)

where H = ∇2L and D = ET
l T−1

l ZlEl + ET
u T−1

u ZuEu. The algorithm to compute the

search directions using (2.8) is described in detail in chapter 3.

2.4 Overview of the Algorithm

IPSOL solves (2.2) with a sequence of decreasing values of µ until convergence is attained.

An overview of the algorithm is presented as Algorithm 1. The basic structure of the

algorithm involves major and minor iterations. At each major iteration, the value of µ is

held constant and the subproblem (2.2) is solved. Solving such a subproblem is itself an

iterative procedure, with the minor iterations of IPSOL being the iterations of the algorithm

used for solving (2.2). After each subproblem converges, and if the convergence criteria for

the overall problem is not satisfied, then the value of µ is decreased and another major

iteration is performed.

An equality-constrained program like (2.2) can be solved using a wide variety of ap-

proaches such as the Bound Constrained Lagrangian (BCL) approach [CGT92], Linearly

Constrained Lagrangian (LCL) approach [Rob72, FS05], Sequential Quadratic Program-

ming (SQP) [BT95], and the Generalized Reduced Gradient (GRG) approach [LFR74].

It is a widely accepted view amongst the present day optimization community that out

of these approaches, the SQP methods are most suited for a general large-scale nonlinear

optimization problem. SQP algorithms are very robust, especially in the presence of highly

nonlinear objective and constraints. SQP methods that use second-derivative information

generally require fewer function and gradient evaluations (than methods using just the

first derivatives), making them the method of choice for solving the subproblem (2.2).

The particular SQP method that is used in IPSOL to solve (2.2) is described in [MP95].

Murray and Prieto’s algorithm is a linesearch based second-derivative SQP method that

uses an augmented Lagrangian merit function to ensure global convergence. The algorithm

is designed for a problem with inequality constraints but can be used equally efficiently for an

equality-constrained problem like (2.1). The algorithm requires only an approximate solution

to the SQP subproblems. This feature of the algorithm is crucial for IPSOL, because at

any minor iteration IPSOL uses an iterative solver to compute a good approximation to the

2.4. OVERVIEW OF THE ALGORITHM 15

begin
Initialize µo, x0, y0, tl0 , tu0

, zl0 , zu0

[Section 2.5]

[Major Iterations]
while original problem is not converged [Section 5.3] do

Solve equality-constrained subproblem (2.2)

[Minor Iterations]
while subproblem is not converged [Section 5.3] do

Compute search directions using (2.6)
[Chapter 3]

Compute a step length to achieve a sufficient decrease in the augmented
Lagrangian merit function
[Chapter 4]

Update variables
[Chapter 4]

end

Initialize the new subproblem using the optimal value.
xk ← x∗, tlk ← t∗l , tuk

← t∗u
yk ← y∗, zlk ← z∗l , zuk

← z∗u
k ← k + 1

Decrease µ
[Section 5.2]

end

end

Algorithm 1: Overview of IPSOL

16 CHAPTER 2. DEVELOPMENT OF EQUATIONS AND INITIALIZATION

search direction.

2.5 Selection of an Initial Point

Nonconvex nonlinear programs (NCP) are generally characterized by the presence of mul-

tiple local minima. An NCP algorithm converges to a particular minimizer that, out of the

many possible ones, is greatly dictated by the choice of the initial point.

A complete description of a starting point requires specifying an initial value of the

barrier parameter µ0 and primal, dual, and slack variables ([x; y; zl; zu; tl; tu]). In an opti-

mization problem arising from a real-life application, primal variables often have a physical

or economic relevance. Many times, based on prior experience with the model, the user is

able to specify a good initial value for the primal variables. However, other variables that

lack any obvious physical or economic interpretation are usually not provided by the user.

For barrier algorithms, the ideal initial points are ones that lie on the central path.

In IPSOL, x is initialized to the user-provided value x0. In the absence of any input

from the user, x is initialized to a zero vector. A conservative initial value for µ is to set it

to a large number such as 103 to ensure that the initial search directions are strongly biased

away from the boundaries. However, this choice is computationally inefficient as the initial

iterations are not focused on reducing the value of the objective function. Additionally, it

may require a large number of major iterations to drive down µ to 0. A more aggressive

choice would be to set the initial µ close to 0 (such as 10−3). In this case, there is a danger

that the iterates prematurely converge to the boundaries and get stuck there. In IPSOL, µ is

initialized to be a multiple of ‖∇f(x0)‖∞. A steepest descent step in this case is dominated

by logarithmic repulsion, which keeps the iterates away from the boundaries. To prevent

the initial µ from getting too small or too large, we restrict it to be between a lower and

upper bound. In short, µ is initialized as

µ0 = max(κ1, min(κ2‖∇f(x0)‖∞, κ3)). (2.9)

The default value for κ1 is 0.1, and 10 for both κ2 and κ3, so µ0 ∈ [0.1, 10].

The slack variables are initialized as

tl0 = max(Elx0 − l,
√

µ0)

tu0
= max(u − Eux0,

√
µ0).

(2.10)

2.6. PRESOLVING 17

This choice will satisfy the bound constraint on a component of x iff the particular compo-

nent is at least
√

µ0 distance inside the bound. The possible failure of tl0 or tu0
to satisfy

(low) or (upp) in (2.4) is not of concern as these constraints get satisfied at any iteration

in which a unit step is taken. Furthermore, once these constraints are satisfied and search

directions are computed accurately, they continue to remain satisfied at all later iterates.

The dual variable z’s are all initialized to
√

µ0. Finally, y is initialized to the least squares

solution of the equation

∇c(x0) y = ∇f(x0) − ET
l zl0 + ET

u zu0
. (2.11)

2.6 Presolving

Presolving is a set of techniques applied to linear and bound constraints in the hope of

simplifying the problem being solved. For linear and quadratic programs, a wide variety of

techniques have been developed to reduce the number of variables and constraints as well

as to detect some kinds of infeasibility [Gon97, GT04]. For a general nonlinear program, we

just aim at reducing the number of redundancies in the problem, yielding an easier program

to solve.

2.6.1 Fixed Variables

Variables whose values are fixed are called fixed variables. Variables may be fixed by the

user to see the behavior of the model w.r.t to other variables. In optimal control problems,

variables are fixed to specify the initial or final state of the system. The presence of fixed

variables results in an empty interior, and may cause the interior point algorithms to fail.

IPSOL solves the problem in the subspace of the feasible region defined by treating the

fixed variables as constants.

2.6.2 Redundant Constraints

A constraint is redundant if its lower bound is −∞ and upper bound is ∞. These bounds

may be set by the user to see the performance of the model in the absence of these con-

straints. The presence of ±∞ in the bound vectors l, u makes the problem numerically

difficult to solve. However, the redundant constraints do not influence either the feasible

region or the solution set of the problem. So dropping them out of the problem definition,

18 CHAPTER 2. DEVELOPMENT OF EQUATIONS AND INITIALIZATION

as is internally done by IPSOL, is safe as it does not alter either the feasible region or the

solution set.

2.7 Conclusion

In this chapter, an overview of IPSOL was presented. The basic equations, which form

the core of the computation of the search direction, were derived. The choice used for

initializing the solver and the pre-solve phase was also described. In the next two chapters,

we describe the computation of the search direction and the linesearch algorithm. These

two are the critical building blocks for solving the subproblems (2.2).

Chapter 3

Search Direction Computations

3.1 Introduction

An approximate solution of the barrier subproblem (2.1) for a specific choice of µ is obtained

by generating a sequence of approximations. The elements of this sequence are obtained by

approximately solving the primal-dual equations (2.8), which for reference are noted here:

[

−(H + D) AT

A

] [

δx

δy

]

=

[

r1

r2

]

. (3.1)

These equations may require modification. We show later how to detect the need for a

modification and what modifications to make. The existence and uniqueness of the solution

of (3.1) are guaranteed under a few assumptions on the matrices involved.

Theorem 3.1. Let Z be a basis for the null space for the constraint matrix A. If A has

full row rank and the reduced Hessian ZT (H + D)Z is positive definite then the solution of

the modified primal-dual system (3.1) exists and is unique.

Proof. The proof can be found in textbooks such as [NW06].

The presence of rank deficiency in A can cause the above system to be inconsistent, while

indefiniteness in the reduced Hessian can lead to search directions seeking a maximizer or

a saddle point rather than a minimizer.

In the neighborhood of a non-degenerate solution, the assumptions in the above theorem

are satisfied. However, this might not be the case outside this region. The challenge

in solving the modified primal-dual system is to detect a possible rank deficiency and/or

19

20 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

indefiniteness and to modify the system, in case it is detected. Further, in order to permit

a superlinear rate of convergence, the systems should not be modified in the neighborhood

of a solution.

The aim of the following sections is to explain the detection/modification algorithm

that has been implemented in IPSOL. In order to avoid conceptual clutter, the exposition

proceeds by analyzing the algorithm on a sequence of increasingly difficult cases.

Section 3.2 discusses the need for scaling (3.1) and various scaling strategies used in

IPSOL. Section 3.3 is about solving the scaled modified primal-dual system by the reduced

Hessian approach. In particular, there is detailed discussion for efficient computation of

a null-space basis for the constraint matrix A. Section 3.4 details the regularizations and

strategies used in case indefiniteness is detected in the reduced Hessian. Finally, section 3.5

is about the detection of rank deficiency in A and the regularizations used overcome it.

3.2 Scaling the Modified Primal-Dual System

Irrespective of the linear algebraic properties of the matrices H and A, (3.1) has elements of

widely varying magnitude. This primarily comes from the entries of the diagonal matrix D.

As µ → 0, D has some elements O(µ) and others O
(

1
µ

)

. Poor scaling of the problem can

also arise within the matrices H and/or A, preventing accurate computation of (δx, δy).

To reduce the consequences of poor scaling, the matrices H, D and A are scaled in

an attempt to make all non-zero elements of the primal-dual matrix of similar magnitude

(ideally O(1)). Although H, D, and A change every minor iteration, we rescale them

every major iteration. The scaling strategy used in IPSOL is a modification of the classical

p-norm scaling, with the modification ensuring that the scaling matrices are symmetric.

Algorithm 2 is the pseudo-code representation of this scaling procedure.

Clearly, the p-norm scaling requires that individual elements of the matrices be available

for the computation of various norms. This requirement is easily satisfied for matrices A

and D, that are assumed to be explicitly given. However, there may be cases in which H is

available only as an operator for multiplication with a vector. It should be noted that the

norm-based scaling algorithms require a ballpark estimate of the p-norms. The algorithm

of Chen and Demmel [CD00] can be used to estimate the 2-norms of the rows of the H.

This procedure is stated in Algorithm 3. IPSOL offers scaling in the 1, 2 and inf norms.

The default option is to scale the system in the 1-norm. At this point we would like to

point out that IPSOL does not require an explicit representation of H, either for this or for

3.3. ZT (H + D)Z POSITIVE DEFINITE, A FULL-RANK 21

any other computation. Any implicit representation which allows for efficient matrix-vector

multiplications is acceptable.

Algorithm: scaleprimal-dual

Input: H ∈ ℜn×n, D ∈ ℜn×n, A ∈ ℜm×n

Output: Diagonal matrices S1 ∈ ℜn×n
++ and S2 ∈ ℜm×m

++

begin

Initialization.
S1 = In×n

S2 = Im×m

Iteratively computing the scalings.
for t = 1 to iterMax do

Scale the matrices using current scaling factors.
H = S1HS1

D = S1DS1

A = S2AS1

Compute scalings for the current matrices.
for i = 1 to n do σ1(i) = ‖(‖H(i, :)‖p, D(i, i), ‖A(:, i)‖p)‖p

for i = 1 to m do σ2(i) = ‖A(i, :)‖p

Update the scaling matrices.
for i = 1 to n do if σ1(i) 6= 0 then S1(i, i) = S1(i, i)/

√

σ1(i)
for i = 1 to m do if σ2(i) 6= 0 then S2(i, i) = S2(i, i)/

√

σ2(i)

end

return S1, S2

end

Algorithm 2: Computing the symmetric scaling factors of the primal-dual matrix

3.3 ZT (H + D)Z Positive Definite, A Full-Rank

In this and the subsequent sections, we assume that the matrices have been scaled as described

in section 3.2. The scaling matrices will not be mentioned explicitly.

The solution method in this case reduces to the classical reduced Hessian approach,

which can be algorithmically described as follows:

1. Compute a null-space basis Z for A

(section 3.3.1 and Algorithm 4 or 5).

22 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

Algorithm: est2Norm

Input: H ∈ ℜn×n and the number of trials τ
Output: h ∈ ℜn

+, an estimate of the 2-norms of the rows of H

begin

Initialization.
est = Oτ×n

Sampling loop.
for t = 1 to τ do

Generate a random vector e with entries being 1 or −1 with equal probability.
e = randn(n, 1)
e = (e > 0) − (e ≤ 0)

Estimate 2-norms of the rows of H for this iteration.
est(t, :) = abs(He)′

end

Take the root mean square of the estimates
for i = 1 to n do h(i) = ‖est(:,i)‖2√

τ

return h
end

Algorithm 3: Demmel and Chen’s algorithm to estimate the 2-norms of rows of a
matrix given in operator form.

3.3. ZT (H + D)Z POSITIVE DEFINITE, A FULL-RANK 23

2. Solve for a particular solution of Aδxπ = r2

(section 3.3.2 and Algorithm 6).

3. Solve the positive definite reduced Hessian system

ZT (H + D)Zδxη = −ZT (r2 + (H + D)δxπ)

(section 3.3.3).

4. Set δx = Zδxη + δxπ.

5. Solve for the search direction δy using AT δy = r2 + (H + D)δx

(section 3.3.4 and Algorithm 7).

The following sections describe implementation details for this procedure.

3.3.1 Computation of a Null-space Basis Z

Given a rectangular matrix A, its null-space basis Z can be computed by a variety of well

known linear algebra techniques. All these techniques represent a trade-off between sparsity

and numerical stability. For example, one may compute a QR factorization of AT to get

an orthogonal basis. The main problem with this approach is that even if the ordering

strategies achieve sparsity in the factor R, the factor Q (which is a basis for the range of

AT) is likely to be dense. An implicit representation of Q via Householder matrices is of

similar sparsity to R if m = n, but it starts becoming dense as n − m increases (Theorem

1 and 3 in [GNP97]). Matlab’s null command uses dense SVD by default to get an

orthogonal basis of the null space. The basis so obtained is again dense. Additionally, this

method is computationally expensive and can be ignored for our purposes.

A computationally cheaper alternative is to use LU decomposition of A or AT to get a

sparse implicit representation of null-space basis. The basis so computed is not orthogonal,

but this turns out not to be an issue in optimization when second derivatives are available.

We ensure that Z is well-conditioned regardless of the condition of A. It should be noted that

Z will be implicitly represented as a product of a few sparse matrices. This representation

is memory efficient and allows for easy multiplication of a vector with either Z or ZT .

In LU decomposition, there are two goals to be met – sparsity of the factors and their

numerical stability. Both are affected by row and column ordering the matrix being factored.

Ordering requirements for sparsity and stability are often conflicting, making the overall

factorization difficult. In IPSOL, sparsity in the factors is promoted by a row reordering of

the matrix A, while columns are permuted during the course of LU factorization to ensure

24 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

numerical stability. As explained below, the issue of stability can further be treated by

observing that in the computation of a null-space basis all we need is either the L or U

factor but not both. We are able to ensure that one of these factors is well-conditioned.

Two Variants of LU Factorization

Let A ∈ ℜm×n, with m < n, then either of the two variants of LU factorization of A can be

used to compute a matrix Z such that AZ = 0:

• Fat LU technique: Perform LU on the “fat” matrix A:

PAQ = L1 [U1 U2], (3.2)

where P and Q are permutations, and define the null space to be

Z = Q

[

−U−1
1 U2

I

]

. (3.3)

• Skinny LU technique: Perform LU on the “skinny” matrix AT :

PAT Q =

[

L1

L2

]

U1, (3.4)

where P and Q are permutations, and define the null space to be

Z = P T

[

−L−T
1 LT

2

I

]

. (3.5)

P and Q both effect stability and sparsity.

From a theoretical stance, it might seem like a repetition to label the above two tech-

niques as being different but the subtle point is that from an implementation point of view

their numerical performances are not the same. A close observation of the techniques reveal

that the fat technique uses the U factor to compute Z while the skinny technique relies only

on the L factor. The older sparse lu routine in Matlab tries to keep L well-conditioned

irrespective of the condition of A. It is U that reflects the condition of A. In view of

this observation, clearly the skinny-LU is desirable. It should further be noted that the

UMFPACK lu command in Matlab yields L and U factors that spread the condition

3.3. ZT (H + D)Z POSITIVE DEFINITE, A FULL-RANK 25

number of A across both the factors. The UMFPACK lu is unsatisfactory because to find

a “good” Z, we need to reflect the condition of A either in L or in U . LUSOL [GMW87] is

another sparse LU package that is suitable for null-space computations. It is likely to give

a sparser Z because it finds P and Q as it goes. For maximum sparsity, threshold partial

pivoting controls the condition of L (but not U); it can be used on AT . Better stability and

rank-revealing properties are provided by threshold rook pivoting, which can be used on A

or AT .

Algorithm: computeZ

Input: A ∈ ℜm×n with m < n and rank(A) = m
Output: Z ∈ ℜn×(n−m) such that AZ = 0

begin

Compute a row permutation of A to reduce fill-in of the LU factors.
q = colamd(AT)

Perform LU-factorization after permuting the rows.
The columns of A are permuted in-situ for stability in factors.
[L, U, P] = lu(A(q, :)T)

Extract relevant factors.
L1 = L(1 : m, 1 : m)
L2 = L(m + 1 : n, 1 : m)

Implicitly store Z in terms of P, L1 and L2.

return Z
end

Algorithm 4: Computation of a null-space basis

An alternative way of computing the null-space matrix is discovered by observing that

the presence of slacks gives A the following special structure:

A =

[

AI −I

AE O

]

, (3.6)

where AI is the constraint matrix associated with inequality constraints and AE with

equality constraints. A null space of A is

Z =

[

ZE

AI ZE

]

, (3.7)

26 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

where ZE is a null space basis for the equality constraint matrix AE . This approach requires

LU factorization of the smaller matrix AE .

Algorithm: computeZcheaper

Input: AE ∈ ℜmE×n with mE < n and rank(AE) = mE

Input: AI ∈ ℜmI ×n

Output: Z ∈ ℜ(n+mI)×mE

begin

Compute a null-space basis (Algorithm 4).
ZE = computeZ(AE)

Implicitly store Z in terms of AI and ZE .

return Z
end

Algorithm 5: Computation of a cheap null-space basis matrix

3.3.2 Solving for a Particular Solution of Aδx = r2

Null-space computation proceeds by factoring the constraint matrix A (Algorithm 4). These

same factors can be used trivially to get a particular solution δxπ of the equation Aδx = r2

(Algorithm 6).

Algorithm: computePrt

Input: P, L, U, Q factors of A ∈ ℜm×n (LU = PAT Q)
Input: r2 ∈ ℜm, the residual of the constraint equations
Output: δxπ such that Aδxπ = r2

begin

Extract triangular portion of L.
L1 = L(1 : m, 1 : m)

Use back substitution to solve the following system
vT L1U = rT

2 Q
δxπ = P T [v; O(n−m)×1]

return δxπ

end

Algorithm 6: Computation of a particular solution of Aδx = r2

3.3. ZT (H + D)Z POSITIVE DEFINITE, A FULL-RANK 27

3.3.3 Solving the Reduced Hessian System

Under the positive definiteness assumption of the reduced Hessian, the system ZT (H +

D)Zδxη = −ZT (r2 + (H + D)δxπ) can be solved by direct methods like the Cholesky

factorization or by iterative methods like the conjugate gradient method (CG) [HS52]. The

following observations about the reduced Hessian system are strong enough to tilt the

balance in favor of CG1.

• The reduced Hessian ZT HZ is typically dense, even though individually Z and H

might be sparse. Its explicit formation requires large amounts of memory and time.

• In many cases the Hessian H might be available only as an operator for forming

matrix-vector products Hv.

• The desired accuracy in the solution varies across the subproblems. Initially IPSOL

solves subproblems coarsely/incompletely, but later as we approach the solution, the

accuracy required is much greater.

The CG method is well documented [MS06] and at this stage of exposition can be used

as a black-box to compute the solution of system mentioned above to a desired level of

accuracy.

3.3.4 Solving for the Dual Search Directions

Null-space computation proceeds by factoring the constraint matrix A (Algorithm 4). The

same factors can be used trivially to get a particular solution of the over-determined but

compatible system AT δy = r1 + (H + D)δx (Algorithm 7).

3.3.5 Correctness of the Algorithm

By construction, the vectors δx and δy satisfy (3.1). Further, in view of the assumptions of

Theorem 3.1, these equations have a unique solution. Thus δx and δy are the unique solu-

tions of (3.1). (Of course, different approximations to δx lead to different approximations

to δy.)

1This choice is in stark contrast with active-set based optimizers, in which direct solvers are a norm.
In an active-set method, successive systems are closely related. The matrix of the current system differs
from the next one by a low rank (often rank 1) update and hence the new system can be solved extremely
efficiently by updating the factors of the current matrix.

28 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

Algorithm: computeDy

Input: P, L, U, Q factors of A ∈ ℜm×n (PAT Q = LU)
Input: r ∈ ℜn

Output: δy ∈ ℜm

begin

Extract the triangular portion of the L-factor
L1 = L(1 : m, 1 : m)

Use back substitution to solve the following system,
r = Pr
L1Uv = r(1 : m)
δy = Qv

return δy
end

Algorithm 7: Solving AT δy = r to compute the search direction for the dual variable
y

3.4 ZT (H + D)Z Indefinite, A Full-Rank

For a non-convex optimization problem, the indefiniteness of the reduced Hessian ZT (H +

D)Z is not known a priori but detected during the course of solving the reduced Hessian

system. Indefiniteness of the reduced Hessian is a reflection of indefiniteness of H. If

indefiniteness is detected, the Hessian is suitably modified to ensure positive definiteness of

the reduced Hessian. The modified primal-dual system is solved with this modified Hessian.

Conceptually, the simplest Hessian modification is addition of a positively scaled identity

matrix to the original Hessian:

H̄ = H + µθI. (3.8)

The eigenvalues of H̄ and H are related by a positive shift:

λ(H̄) = λ(H) + µθ, (3.9)

and so λmin(H̄) > λmin(H). The Hessian modification (3.8) would arise naturally if the

objective function f(x) were replaced by f(x) + 1
2µθ‖x‖2

2.

IPSOL starts every search direction computation with the Hessian (3.8) and this Hessian

is further modified when ZT (H+µθI+D)Z is judged to be indefinite. The modified Hessian

3.4. ZT (H + D)Z INDEFINITE, A FULL-RANK 29

is now taken to be

H̄ = H + µθI + σZ(ZT Z)−2ZT + γAT A. (3.10)

By appropriately choosing the parameter σ, it is possible to make the reduced Hessian

ZT H̄Z positive definite (Theorem 3.2), thereby ensuring the existence of a unique solution

to the modified primal-dual system equation:

[

−(H̄ + D) AT

A

] [

δx

δy

]

=

[

r1

r2

]

. (3.11)

The parameter γ is chosen to ensure that δxT H̄δx is sufficiently positive (Theorem 3.3 and

3.4). We show in Theorem 3.4 that choosing γ is trivial.

3.4.1 Theoretical Framework

Existence and uniqueness of the solution of the modified primal-dual system

The following theorem guarantees that for a suitable parameter σ, ZT (H̄ +D)Z ≻ 0. Since

A is already assumed to have full rank, (3.11) has a unique solution with that value of σ.

Theorem 3.2. Let Z be a null-space basis for A. If the Hessian H is modified as in (3.10),

then ∀θ ≥ 0 there exists a σ ≥ 0 such that ZT (H̄ + D)Z ≻ 0.

Proof. Notice that ZT (H̄ + D)Z = ZT (H + D + µθI)Z + σI. Thus by setting

σ =

{

−λmin(H + µθI + D) + ǫ if indefiniteness is detected

0 otherwise
(3.12)

for some ǫ > 0 it is ensured that ZT (H̄ + D)Z ≻ 0.

An advantage of choosing σ as in (3.12) is that for positive-definite systems the contri-

bution of the term Z(ZT Z)−2Z in H̄ is zero. However, in view of the contingencies arising

out of Theorem 3.4, σ is sometimes chosen as

σ =

{

−λmin(H + µθI + D) + ǫ if indefiniteness is detected

ǫ otherwise
(3.13)

for some ǫ > 0. With this choice of σ, the term Z(ZT Z)−2ZT in H̄ (3.10) is always non-

zero, thereby making the search direction computations costlier. However, it is only in rare

30 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

cases that a search direction defined with σ as in (3.12) would fail to satisfy the inequality

δxT H̄δx ≥ ǫ‖δx‖2
2. (3.14)

Consequently, the computationally cheaper choice (3.12) is tried first in the implementation.

Only if the resulting search direction δx fails to satisfy (3.14) is δx recomputed with σ as

in (3.13).

Ensuring sufficient descent and sufficient negative curvature

The following theorems provide a guideline for choosing a scalar γ in (3.10) so that the

solution δx of (3.11) is such that δxT (H̄ + D)δx is positive and bounded away from zero.

Theorem 3.3. The δx component of the solution of the modified primal-dual system (3.11)

is independent of the parameter γ.

Proof. The proof is by construction. Since A has full row rank, the equation Aδx = r2 is

consistent. Let δxπ be a particular solution of this system, which can clearly be chosen

independent of γ. Also, notice that the reduced Hessian is independent of γ:

ZT (H̄ + D)Z = ZT (H + µθI + σZ(ZT Z)−2ZT + γAT A + D)Z

= ZT (H + µθI + σZ(ZT Z)−2ZT + D)Z

= ZT (H + µθI + D)Z + σI.

Thus, the null-space component δxη is also independent of γ. Hence, δx = δxπ + δxη is

independent of γ.

Theorem 3.4. If the δx component of the solution of the modified primal-dual system (3.11)

is computed with σ chosen as in (3.13) then there exists a γ ≥ 0 such that δx satisfies the

inequality δxT (H̄ + D)δx ≥ ǫ‖δx‖2
2.

Proof. In view of the last theorem, δx is independent of γ. Consider two cases.

1. Case r2 = 0: In this case, δxπ = 0 as A has full rank and δxπ satisfies Aδxπ = 0. The

solution δx just consists of a component in the null space of the constraint matrix:

3.4. ZT (H + D)Z INDEFINITE, A FULL-RANK 31

δx = δxη = Zp for some vector p. Then

δxT (H̄ + D)δx = δxT
η (H̄ + D)δxη

= pT ZT (H + µθI + σZ(ZT Z)−2ZT + γAT A + D)Zp

= pT ZT (H + µθI + D + σI)Zp

= δxT (H + µθI + D + σI)δx

≥ (λmin(H + µθI + D) + σ)‖δx‖2
2.

Defining σ as in (3.13) ensures that λmin(H + µθI + D)+ σ ≥ ǫ and the result follows

immediately. Hence, γ = 0 is suitable for this case.

2. Case r2 6= 0: Since Aδx = r2, in this case δxT AT Aδx = ‖r2‖2
2.

δxT (H̄ + D)δx = δxT (H + µθI + σZ(ZT Z)−2ZT + γAT A + D)δx

= δxT (H + D + µθI + σZ(ZT Z)−2ZT)δx + γ‖r2‖2
2

Clearly, setting

γ = min

(

0,
ǫ‖δx‖2

2 − δxT (H + D + µθI + σZ(ZT Z)−2ZT)δx

‖r2‖2
2

)

is a satisfactory choice.

The next theorem helps in finding a good direction of negative curvature.

Theorem 3.5. If the CG method detects indefiniteness in the reduced Hessian system

ZT (H + µθI + D)Zp = ZT (r1 + (H + µθI + D))δxπ

then its current approximation to p is a direction of sufficient negative curvature for the

original reduced Hessian ZT (H + D)Z.

Proof. Let α
cg
k denote the step at the kth CG iteration and pk be the associated ap-

proximation to p. If CG detects indefiniteness at the kth iteration, it terminates with

pk that satisfies the inequality pT
k (ZT (H + µθI + D)Z)pk < 0. It is easy to see that

pT
k ZT (H + D)Zpk < −µθ‖pk‖2

2. Thus pk is a direction of sufficient negative curvature of

the unmodified system.

32 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

The last theorem also suggests how to detect indefiniteness in a symmetric linear system

of equations. In view of the conclusions of Theorem 3.5, the CG method can be modified

as described in Algorithm 8.

Efficient computation of Z(ZT Z)−2ZT with δx and δxπ

Using the Hessian modification described in (3.10) to solve the modified primal-dual sys-

tem (3.11) by a null-space approach involves multiplication of the vectors δx and δxπ by

Z(ZT Z)−2ZT , where δxπ is a particular solution of Aδx = r2. The following theorems show

that these multiplications can be done efficiently without computing Z(ZT Z)−2ZT .

Theorem 3.6. Let A ∈ ℜm×n (m < n) be a full-rank matrix. A vector δx ∈ ℜn is a

minimum-norm solution of Ax = b iff it is orthogonal to the null space of A.

Proof. The if part: the minimum-norm solution of Ax = b is given in closed form as

δx⊥ = AT (AAT)−1b. Let Z be a null-space basis for A. The result follows from observing

that ZT δx⊥ = ZT AT (AAT)−1b = 0.

An obvious way of constructing the minimum-norm solution is to run LSQR [PS82]

on the system of equations Aδx = r2, but if A were ill-conditioned then the convergence

would be slow. The following result makes this process more efficient if Z is available and

is calculated using LU factors of A.

Theorem 3.7. Let Z be a null-space basis for a full-rank matrix A ∈ ℜm×n (m < n).

If Z is computed using LU factors of A (Algorithm 4) then the minimum-norm solution

of Aδx = r2 can be efficiently computed by two back-solves and by solving a least squares

problem involving Z.

Proof. Since the LU factors of A are readily available, they can be used to construct a

particular solution of Aδxπ = r2 by back substitution (see Algorithm 6). This solution

can be decomposed into a component lying in the null space of A (say δx‖) and another

component lying perpendicular to this null space δx⊥):

δxπ = δx‖ + δx⊥ = δx‖ + Zp.

Hence,

ZT δxπ = ZT (δx⊥ + Zp) = ZT Zp.

3.4. ZT (H + D)Z INDEFINITE, A FULL-RANK 33

Algorithm: Modified Conjugate Gradient

Input: A ∈ SRn×n, b ∈ Rn

Output: x, dn, lcgFail

begin

r1 = b
β1 = 0
x1 = 0
lcgFail = false
dn = []

for k = 1, 2, . . . do

Computation of the search directions.
γk = rT

k rk

βk = γk/γk−1

pk = rk + βkpk−1

vk = Apk

Determination of the step length.
σk = pT

k vk

α
cg
k = γk/σk

Detection of indefiniteness in A.
if α

cg
k ≤ 0 then
dn = pk

lcgFail = true
break

end

Update of the iterates.
xk+1 = xk + α

cg
k pk

rk+1 = rk − α
cg
k vk

end

x = xk

end

return x, dn, lcgFail

Algorithm 8: Modified Conjugate Gradient

34 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

So, the vector p is a solution of ZT Zp = ZT δxπ or the least squares problem,

min
p

‖Zp − δxπ‖2,

which can be solved by LSQR. Then δx⊥ = δxπ−Zp by the above theorem is the minimum-

norm solution of the equation Aδx = r2.

Since Z is likely to be well-conditioned even if A is not, the above solution procedure is

more efficient than directly running LSQR on Aδx = r2. In view of the above results, by

cheaply modifying a given particular solution δxπ to a minimum-norm solution, we ensure

that the expression Z(ZT Z)−2ZT δxπ reduces to zero. This is the idea behind Algorithm 9.

Algorithm: orthogonalizePrt

Input: A ∈ ℜm×n with m < n and rank(A) = m
Input: Z ∈ ℜn×(n−m) null-space matrix of A (AZ = 0).
Input: r2 ∈ ℜm the constraint residual.
Input: δxπ ∈ ℜn, any particular solution of Aδx = r2

Output: δx⊥ the minimum-norm solution of Aδx = r2

begin

Use LSQR to get a least square solution of the equation
Zp = δxπ

Purge δxπ of the component lying in the null-space of A:
δx⊥ = δxπ − Zp

return δx⊥
end

Algorithm 9: Constructing the minimum-norm solution of Aδx = r2

If the particular solution is so chosen, then the following theorem shows how to compute

Z(ZT Z)−2ZT δx, where δx is a solution of (3.11).

Theorem 3.8. Let Z be a null-space basis for a full rank matrix A ∈ ℜm×n (m < n).

The vector v = Z(ZT Z)−2ZT δx can be computed efficiently by solving a minimum-norm

problem involving ZT .

3.4. ZT (H + D)Z INDEFINITE, A FULL-RANK 35

Proof. The solution δx can be decomposed as δx = δx⊥ + Zp. Then

v = Z(ZT Z)−2ZT δx

= Z(ZT Z)−2ZT (δx⊥ + Zp)

= Z(ZT Z)−1p,

which is the minimum-norm solution of ZT v = p.

3.4.2 Solution Strategy

With the above theoretical tools in place, the algorithm can be stated as follows.

1. Compute a null-space basis Z for A

(section 3.3.1 and Algorithm 4 or 5).

2. Solve for a particular solution of Aδxπ = r2

(section 3.3.2 and Algorithm 6).

3. Attempt to solve the possibly indefinite system

ZT (H + µθI + D)Zp = −ZT (r2 + (H + µθI + D)δxπ)

(section 3.3.3 and Algorithm 8).

4. If indefiniteness is not detected in the above system, set δx = Zp + δxπ. Otherwise,

• Compute σ, an estimate of the minimum eigenvalue of ZT (H + µθI + D)Z.

• Compute δx⊥

(Theorem 3.7 and Algorithm 9).

• Attempt to solve the possibly indefinite system

(ZT (H + µθI + D)Z + σI)p = −ZT (r2 + (H + µθI + D)δx⊥)

(section 3.3.3 and Algorithm 8).

• Set δx = Zp + δx⊥.

5. Compute γ to ensure δxT (H̄ + D)δx is sufficiently positive

(Theorem 3.4).

6. Compute v = Z(ZT Z)−2ZT δx by solving for the minimum-norm solution of ZT v = p

(Theorem 3.8).

36 CHAPTER 3. SEARCH DIRECTION COMPUTATIONS

7. Solve for the dual search direction by solving the compatible system

AT δy = r2 + (H + µθI + D + γAT A)δx + σv

(section 3.3.4 and Algorithm 7).

The direction of negative curvature computed by Algorithm 8 may not be a good one.

However, it may be improved by application of a few steps of the Lanczos algorithm. For

positive definite systems, it can be shown that the conjugate gradient algorithm is a memory

efficient formulation of the Lanczos algorithm [MS06]. In this case, the sequence of iter-

ates generated from either algorithm be obtained from the other. In the implementation,

one may store the necessary information to switch seamlessly from the conjugate gradient

algorithm to the Lanczos algorithm, in case indefinitenes is detected. This avoids losing

the information about the subspace explored so far. However, this approach defeats the

purpose of having a memory efficient formulation of Lanczos algorithm. As a compromise,

we store the Lanczos vectors and the tridiagonal system for the first few conjugate gradient

iterations.

3.5 ZT (H + D)Z Indefinite, A Rank Deficient

In the simplest case, rank deficiency in A can arise because of an accidental duplication of

one or more constraints. A rank-deficient constraint matrix A can give rise to the following

difficulties:

• The presence of rank deficiency in the active constraint matrix in a neighborhood

of a local minimizer violates the assumptions under which the first-order optimality

conditions hold. The Lagrange multipliers at such a minimizer are unbounded. A

near rank deficiency in a neighborhood of a solution gives rise to large dual variable

steps that may result in a poor rate of convergence.

• Rank deficiency in A at an intermediate iterate can additionally give rise to an incom-

patibility in the primal-dual system (3.11). In this case there is no solution to (3.11),

causing a complete breakdown of the search direction algorithm.

Rank deficiency in A can be detected during the computation of its null-space basis

(Algorithm 4). The LU factorization of a (near) rank deficient A has (small) zero elements

on the diagonal of the U factor. The indices of columns with Ujj ≈ 0 correspond to

3.6. CONCLUSION 37

the permuted indices of the dependent constraints in A. By the addition of elastic slack-

variables in these constraints the constraint matrix is made full rank and the solution

strategy proceeds without modification as described in last section. The modified primal-

dual system of equations with elastic variables is derived in Appendix A.

In an interior point method, even with elastic variables, rank deficiency can show up

near a non-degenerate solution. The scaling procedure described in section 3.2 can introduce

ill-conditioning in A while improving the overall condition of the primal-dual matrix. This

case can be remedied in part by observing that near a minimizer with rank-deficient active

constraints, δx → 0 and δy → ∞. This motivates computing δx⊥ and δy as solutions of the

regularized least squares problems

min
δxπ

‖r2 − Aδxπ‖2
2 + ‖δxπ‖2

2, and (3.15)

min
δy

‖r1 + (H̄ + D)δx − AT δy‖2
2 + µ‖δy‖2

2, (3.16)

while δxη is obtained from the usual reduced Hessian system. Both these regularized least

squares problems can be stably solved by LSQR. With these modifications, the algorithm

described in the last section does not break down in the presence of rank deficient con-

straints.

3.6 Conclusion

Once δx and δy (and possibly dn) have been computed, they can be used trivially to compute

search directions for the remaining variables:

δtlk = Elδxlk − rl

δtuk
= −Euδxuk

− ru

dntlk = Eldn

dntuk
= −Eudn

δzlk = (rpcl − zlk . ∗ δtlk)/tlk

δzuk
= (rpcu − zuk

. ∗ δtuk
)/tuk

.

(3.17)

In the next chapter, we describe how to perform a linesearch along this set of search

directions to decide how far to move along these directions.

Chapter 4

Merit Function Based Linesearch

4.1 Introduction

The search directions given by the algorithm in chapter 3 dictate the direction to move along.

An arbitrary step taken in that direction may result in a diverging sequence. Linesearch

algorithms define a step along the search directions that ensures global convergence of the

algorithm from an arbitrary starting point. The other globalization approach in use today

is the trust-region approach [CGT00]. In trust-region algorithms, the search direction and

the step-length computations are combined into one. In either of these approaches, the

goodness of the steps is determined by the use of a merit function or by a filter method

[FGL+02]. This chapter explores the issues of merit functions together with the step-length

algorithm.

4.2 Merit Functions and Linesearch Algorithms

SQP algorithms are infeasible point algorithms. The intermediate iterates generated by

them need not satisfy nonlinear constraints. The role of a merit function is to ensure a

balance between infeasibility reduction and optimality, thereby ensuring global convergence.

Merit functions are a weighted sum of the constraint infeasibility and the objective function

values. The weight on infeasibility is called a penalty parameter, denoted by ρ. As stated

above, they are used to evaluate the “goodness” of steps along the search direction. A

linesearch algorithm is used to choose a step that gives a “sufficient decrease” in the value

of the merit function. The topic of merit functions has been well-researched in the field of

nonlinear optimization. The choice of a particular merit function together with the rules

38

4.3. USE OF AUGMENTED LAGRANGIAN MERIT FUNCTION IN IPSOL 39

for updating the merit-penalty parameter has a significant impact on the performance of

an SQP implementation. A good merit function should have the following characteristics:

• Exactness: A merit function is said to be exact if for finite (but possibly large) values

of the penalty parameter every (local) minimizer of the original optimization problem

is also a (local) minimizer of the merit function1.

• Differentiability: Differentiability enables us to construct a surrogate of the merit

function using simple continuous functions. This surrogate may be used to get a

good approximation of a local minimizer of the merit function during the linesearch

procedure. Absence of differentiability forces the linesearch algorithm to rely on naive

and inefficient backtracking procedures.

• Fast rate of convergence: A necessary and sufficient condition for superlinear conver-

gence of Newton’s method is that unit steps (or steps converging to unit steps) be

taken in the vicinity of the solution. There are merit function that can reject unit

steps in close vicinity of a solution (e.g., the l1 merit function), thereby hindering

the superlinear rate of convergence. This effect was first brought to light by Maratos

[MM79] and hence named after him. Unit steps in the neighborhood of the solution

are more challenging for log-barrier methods than they are for active-set methods. In

barrier methods, a change is made to a variable even if it is very close to a bound. In

active-set methods, the same variable would be on its bound and the search direction

in that variable would be zero.

A few representative merit functions for equality-constrained problems are listed in Table

4.1. The last example is the augmented Lagrangian merit function.

4.3 Use of Augmented Lagrangian Merit Function in IPSOL

In IPSOL, the augmented Lagrangian merit function is used. This merit function does a

search in both the primal and dual variables, is differentiable, and does not suffer from

the Maratos effect. Further, its successful use in SNOPT [GMS02, GMS05] establishes

its worth in practice. It is for these reasons that this merit function was chosen for this

project. The augmented Lagrangian merit function is used to ensure global convergence of

1It should be noted that the converse of this statement is not true. Irrespective of the value of the
penalty function, a merit function may have one or more (local) minimizers that are infeasible for the
original optimization problem.

40 CHAPTER 4. MERIT FUNCTION BASED LINESEARCH

Merit function Nature Analytic properties Maratos Effect

f(x) + ρ‖cE (x)‖1 Exact [Pie69] Non-differentiable at points
that are feasible w.r.t. any set
of constraints.

Yes [MM79]

f(x) + ρ‖cE (x)‖2 Exact Non-differentiable at points
that are feasible w.r.t. all
constraints.

-

f(x) + ρ
2‖cE (x)‖2

2 Inexact C1-differentiable at all points. -

f(x) − yT cE (x) + ρ
2‖cE (x)‖2

2 Inexact C1-differentiable at all points. No

Table 4.1: Representative merit functions for equality constrained problems

the equality-constrained problem (2.2) for a fixed value of µ. The augmented Lagrangian

of (2.2) is defined as 2

ML (x, tl, tu, y, zl, zu) := f(x) − µ[eT
l ln(tl) + eT

u ln(tu)]

−yT c(x) − zT
l (Elx − tl − l) − zT

u (−Eux − tu + u)

+ρ(‖c(x)‖2
2 + ‖Elx − tl − l‖2

2 + ‖ − Eux − tu + u‖2
2).

(4.1)

The search directions derived in the last chapter might not be directions of descent for

the augmented Lagrangian merit function. However, it is always possible to make them

a direction of descent for a sufficiently large but finite value of ρ [MP95]. For details of

optimally selecting and updating ρ, please see [Eld92].

4.4 Linesearch Termination Criteria

The merit function is not minimized along a specific search direction. Instead, an approxi-

mation to a minimizer is obtained by satisfying certain termination criteria. How tight the

criteria are made depends on the effort to evaluate the problem functions. Given a merit

functions (and/or their gradients) and a descent direction, inexact linesearch algorithms are

designed to give a step-length along the descent direction at which there occurs a “sufficient

decrease” in the merit function. Additionally, these algorithms ensure that the steps taken

are not arbitrarily close to zero so that reasonable progress is made toward the solution.

Such conditions guarantee convergence to a stationary point of the merit function for a wide

2We wish to point out that SNOPT does not include linear or bound constraints as a part of the defi-
nition of the augmented Lagrangian merit function. In SNOPT, the initial point is chosen to satisfy these
constraints and subsequent steps ensure that they remain satisfied. In IPSOL, the initial point may not
satisfy these constraints (please see section 2.5)

4.4. LINESEARCH TERMINATION CRITERIA 41

variety of search directions.

These requirements are articulated in terms of a variety of line-search termination cri-

teria, an elaborate discussion of which maybe found in [OR70]. If

φ(α) ≡ ML (x + αδx, tl + αδtl, tu + αδtu, y + αδpy, zl + αδzl, zu + αδzu) (4.2)

then some of the well known termination criteria can be written as follows.

• Armijo condition [Arm66]: Let α0 be the maximum permissible trial step. Ter-

mination occurs at a trial step α = βα0 if

φ(α) − φ(0) ≤ βα0φ
′(0) (4.3)

for some chosesn β ∈ (0, 1). This condition prevents the steps from being too large.

Since φ′(0) < 0, a sufficiently small value of β clearly satisfies the equation for any α0.

• Strong Wolfe conditions: Given two constants σ and η s.t. 0 < σ ≤ η < 1, this

termination criterion is satisfied by α if the following conditions hold:

φ(α) ≤ φ(0) + σαφ′(0)

|φ′(α)| ≤ η|φ′(0)|.
(4.4)

The first condition ensures a limit on the size of the step, while the second condition

is usually the one that governs how the step is chosen. If η is small, the step can be

made arbitrarily close to a minimizer. In the literature, the first condition is called

the sufficient-decrease condition while the second one is referred to as the curvature

condition. Moré and Thuente have described an algorithm for finding a step satisfying

these conditions [MT94].

• 1D-Gamma conditions [GMSW79]: A simple modification to the Strong Wolfe

conditions simplifies the step-length algorithm. The modification is to accept the

maximum permissible step if it satisfies the sufficient decrease condition:

φ(αmax) ≤ φ(0) + σαmaxφ
′(0)

OR

φ(α) ≤ φ(0) + σαφ′(0)

|φ′(α)| ≤ η|φ′(0)|

(4.5)

42 CHAPTER 4. MERIT FUNCTION BASED LINESEARCH

The set of values of α satisfying these conditions is denoted by Γ1D(σ, η). These con-

ditions are not satisfactory at a saddle-point where φ′(0) = 0 and there is a direction

of negative curvature.

• 2D-Gamma conditions [FM93]: 1D-Gamma conditions are easily extended to the

case when second derivative information is used and we have a direction of negative

curvature. In this case

φ(α) ≡ ML (x + α2δx + αdn, y + α2δpy, tl + α2δtl + αdntl, tu + α2δtu + αdntl,

zl + α2δzl, zu + α2δzu).

(4.6)

– if φ′′(0) ≥ 0, use the 1D gamma conditions (4.5).

– else if φ′′(0) < 0, use the following conditions, which are essentially the 1D-

gamma conditions modified to incorporate second-derivative information of φ:

φ(αmax) ≤ φ(0) + σ[αmaxφ
′(0) + 1

2α2
maxφ

′′(0)]

OR

φ(α) ≤ φ(0) + σ[αφ′(0) + 1
2α2φ′′(0)]

|φ′(α)| ≤ η|φ′(0) + αφ′′(0)|

(4.7)

The set of values of α satisfying these conditions is denoted by Γ2D(σ, η).

There exist minor variations on each of these conditions, like the Armijo-Goldstein

conditions and the Weak Wolfe conditions [Wol69, Wol71].

4.5 Intuition Behind the Linesearch Algorithm

In IPSOL, we use the 1D and 2D Gamma conditions. As mentioned, their key advantage

over the Wolfe conditions is that our linesearch algorithm is conceptually much simpler than

that of Moré and Thuente [MT94].

The underlying intuition is based on the observation that the curvature condition is

satisfied by any local minimizer of φ(α). Using this observation, it is trivial to show that an

interval [αl, αu] at whose endpoints φ(α) satisfies conditions 1A or 1B in Table 4.2 contains

a point α ∈ Γ1D(σ, η). Similarly, an interval [αl, αu] at whose endpoints φ(α) satisfies

conditions 2A or 2B contains a point α ∈ Γ2D(σ, η).

The proposed linesearch algorithm is based on finding a sequence of such nested intervals.

4.6. LINESEARCH ALGORITHM 43

Type A interval of uncertainty Type B interval of uncertainty

1A. φ(0) + σαuφ′(0) ≤ φ(αu) 1B. φ′(αu) ≥ 0
φ(αl) ≤ φ(0) + σαlφ

′(0) φ(αl) ≤ φ(0) + σαlφ
′(0)

φ′(αl) ≤ ηφ′(0) ≤ 0 φ′(αl) ≤ ηφ′(0) ≤ 0

2A. φ(0) + σ[αuφ′(0) + 1
2α2

uφ′′(0)] ≤ φ(αu) 2B. φ′(αu) ≥ 0
φ(αl) ≤ φ(0) + σ[αlφ

′(0) + 1
2α2

l φ
′′(0)] φ(αl) ≤ φ(0) + σ[αlφ

′(0) + 1
2α2

l φ
′′(0)]

φ′(αl) ≤ η[φ′(0) + αlφ
′′(0)] ≤ 0 φ′(αl) ≤ η[φ′(0) + αlφ

′′(0)] ≤ 0

Table 4.2: Types 1A or 1B guarantee the existence of an interior point α satisfying (4.5)
while types 2A or 2B guarantee the existence of an interior point α of (4.7).

4.6 Linesearch Algorithm

A broad overview of the linesearch algorithm is stated below.

• Initialize the interval of uncertainty: If an initial step α = 1 satisfies the sufficient

decrease condition, it is accepted, else the initial interval of uncertainty is set to [0,

1]. In this case, [0, 1] is an interval of type A.

• Trial step generation: Using safeguarded polynomial or special interpolation, a

trial step αtrial ∈ [αl, αu] is generated.

• Update the interval of uncertainty: Given an interval [αl, αu], replace either αl

or αu with the trial step αtrial, so that the new interval is either of type A or B.

The last two steps are repeated until a suitable step is found. This entire process is

expressed in Algorithm 10. An elaborate discussion of each of these steps is given in the

following subsections.

4.6.1 Initialize the Interval of Uncertainty

The Dennis-Moré theorem [NW06] states that a sufficient condition for asymptotic su-

perlinear convergence of a nonlinear optimization algorithm is that the asymptotic steps

approximate the pure Newton steps. Thus, the initial trial step is always chosen to be of

44 CHAPTER 4. MERIT FUNCTION BASED LINESEARCH

Input: φ(∗), αmax

Output: α∗

begin
αtrial ← min(1, αmax)
if αtrial gives sufficient descent then

α∗ ← αtrial

else
[αl, αu] ← [0, αtrial]
αtrial ← Safeguarded Interpolation
while αtrial ∈ Γ(σ, η) do

[αl, αu] ← Update the Interval of Uncertainty
αtrial ← Safeguarded Interpolation

end

α∗ ← αtrial

end

return α∗
end

Algorithm 10: Linesearch

unit length. If it satisfies the sufficient decrease condition, we accept it. By definition, this

step is not small, so there is no need to enforce the curvature condition. However, this step

may fail to satisfy the sufficient-decrease conditions. In this case we initialize the interval of

uncertainty as [0, 1]. This interval is guaranteed to have an α ∈ Γ1D(σ, η) or α ∈ Γ2D(σ, η).

4.6.2 Trial Step Generation

Given an interval [αl, αu] guaranteed to contain an α ∈ Γ(σ, η), the process generates an

α∗ ≈ α. The approximation can be generated in any of the following ways.

• Bisection: The approximation to α is taken as the mid-point of the interval of

uncertainty [αl, αu]. Repeated application of bisection is guaranteed to reduce the

length of the interval of uncertainty to a given level in a finite number of iterations,

but the total number of iterations might end up being large.

• Polynomial interpolation: If the merit function is well behaved, then a polynomial

is often a good local approximation to it. In this approach one uses the function and

derivative information available at the end points of the interval of uncertainty to

construct a local polynomial approximation of the merit function. This approximation

4.6. LINESEARCH ALGORITHM 45

is usually a quadratic or cubic polynomial, whose minimizer is easy to find. This

minimizer lies in the interval [αl, αu] and is taken as an approximation to α.

• Special interpolation: This is a generalization of the polynomial interpolation

method to cases where the merit function is affected by logarithmic singularities in

the merit function. This method is polynomial interpolation but with the addition

of a logarithmic singularity to the polynomial interpolant. This singularity is added

for approximating the logarithmic singularity in the merit function. An extensive

discussion of these methods maybe found in [MW94].

Safeguarded interpolation combines a guaranteed method (like bisection) with a fast

converging method (like interpolation) to get the best of both worlds.

4.6.3 Update the Interval of Uncertainty

It should be noted that the linesearch iteration starts out with an initial interval of type

A. Depending on the slope and value of function φ at αtrial, we replace one end-point of

the current interval with either αl or αu in such a way that the resulting interval has at

least one α ∈ Γ(σ, η). Algorithm 11 takes an interval of type A or B and returns a nested

interval of either type A or type B.

Input: φ(∗), αl, αu, αtrial

Requires: [αl, αu] is an interval of type A or B.
Requires: αtrial is such that either the sufficient descent or the curvature condition
is violated at it.
Output: αl, αu

begin
if αtrial does not give sufficient descent then

αu ← αtrial

else if φ′(αtrial) ≥ 0 then
αu ← αtrial

else
αl ← αtrial

end
return αl, αu

end

Algorithm 11: Update the Interval of Uncertainty

46 CHAPTER 4. MERIT FUNCTION BASED LINESEARCH

4.7 Updating the Variables

The three steps of the linesearch algorithm are performed until a suitable step-length sat-

isfying the appropriate descent and curvature conditions is found. This step-length is used

to update the variables. If second derivatives are not being used then variables are updated

as

xk+1 = xk + α∗δxk

yk+1 = yk + α∗δyk

tlk+1
= tlk + α∗δtlk

tuk+1
= tuk

+ α∗δtuk

zlk+1
= zlk + α∗δzlk

zuk+1
= zuk

+ α∗δzuk
,

(4.8)

otherwise they are updated as

xk+1 = xk + α∗2δxk + α∗dn

yk+1 = yk + α∗2δyk

tlk+1
= tlk + α∗2δtlk + α∗dntlk

tuk+1
= tuk

+ α∗2δtuk
+ α∗dntuk

zlk+1
= zlk + α∗2δzlk

zuk+1
= zuk

+ α∗2δzuk
.

(4.9)

4.8 Conclusion

This chapter concludes the algorithmic description of IPSOL. In the next chapter we present

the performance of the software on a set of test problemss.

Chapter 5

Numerical Results

5.1 Introduction

IPSOL has been implemented in Matlab. This chapter summarizes the performance of

IPSOL on a subset of the CUTEr test problem set [GOT03]. IPSOL’s performance is also

compared to that of the commercial optimizer LOQO [Van99] and open source optimizer

IPOPT [WB06].

The choice of the initial point was described in section 2.5. The strategy for decreasing

µ from one subproblem to another is described in section 5.2. Section 5.3 describes the

various termination criteria used in IPSOL. The interface of IPSOL to the CUTEr test

environment is outlined in section 5.5. The performance of IPSOL on small and large-scale

problems is presented in sections 5.5 and 5.6 respectively. Finally, in section 5.7 IPSOL’s

performance is compared with the two solvers mentioned above.

5.2 Decreasing µ from One Subproblem to Another

IPSOL monotonically decreases µ from one subproblem to the other (each major iteration).

It can be shown that near the solution,

‖x∗(µ) − x∗‖2 ∼ O(µ) [FM90]. (5.1)

Thus, for ensuring the quadratic convergence of the sequence {x∗(µk)}, the sequence {µk}
should also quadratically converge to zero. Away from the solution, µ may be decreased

47

48 CHAPTER 5. NUMERICAL RESULTS

linearly. The overall update rule is

µk+1 =

{

µ2
k if µk < θ

βµk otherwise.

The default value for θ is 10−2 while for β it is 1
10 .

5.3 Termination Criteria

All the termination criteria in IPSOL are expressed in terms of the inf-norm of the normal-

ized residuals of equations (2.4). The normalization is done by dividing the actual residuals

by the primal and the dual variables:

r̄L = rL

(1+‖x‖∞)

r̄pcl =
rpcl

(1+‖y‖∞)

r̄pcu =
rpcu

(1+‖y‖∞)

r̄cons = rcons

(1+‖x‖∞)

r̄l = rl

r̄u = ru.

(5.2)

The subproblems are terminated when the following conditions are met:

‖r̄L‖∞ ≤ α1µ

‖r̄pcu; r̄pcl‖∞ ≤ α2µ

‖r̄cons‖∞ ≤ α3µ

‖r̄l; r̄u‖∞ ≤ α4µ

ZT (H̄ + D)Z ≻ −β.

(5.3)

The default value for α1 and α2 is 0.5 and the default value for α3 and α4 is 0.1. The

default value for β is 10−4. The first four criteria ensure that the normalized residuals have

been sufficiently decreased. The last condition ensures that there are no strong directions

of negative curvature remaining to be explored. The algorithm is terminated when

µ < τ (5.4)

and the corresponding subproblem converges. The default value of τ is 10−5. The La-

grangian and complementarity equations are purely mathematical constructs. On the other

5.4. IPSOL INTERFACE TO CUTER TEST-SET 49

hand, the constraints often represent real-life bounds on decision variables and conditions.

For example, the constraints may represent limitations on some resources, and so the user

expects the final solution to satisfy them. Thus, it is desirable to have a final solution that

satisfies the bound and constraint equations more accurately than the other equations. It

is for this reason that the convergence criteria for the bound and constraint equations is

somewhat more stringent than that for the other equations.

5.4 IPSOL Interface to CUTEr Test-set

CUTEr [GOT03] is the de-facto testing environment for production level codes. It is the

successor to CUTE (acronym for Constrained and Unconstrained Test Environment), which

was created for testing the nonlinear optimizer LANCELOT [CGT92]. CUTEr provides

APIs in FORTRAN and Matlab to enable an optimizer to link easily to a collection of

about 1000 test problems. These test problems come from academic research as well as

from industrial applications, and their number is continuously growing.

The FORTRAN API has been extensively used to create interfaces for a number of

state-of-the-art solvers like SNOPT, MINOS, IPOPT and KNITRO. The Matlab API of

CUTEr, however, is experimental in nature. The current beta release of CUTEr (aptly

named CUTEr revisited) fixes quite a few of the bugs of the original CUTEr Matlab

API. Additionally, it also relaxes the memory limitations, which were caused by interfacing

Matlab to FORTRAN 77 code. IPSOL uses the Matlab API from this beta version of

CUTEr to construct an interface for the test problems.

Also, it should be noted that CUTEr and IPSOL use different sign conventions for the

dual variables. For IPSOL, the Hessian of the Lagrangian at an iterate (x, y) is evaluated

as ∇2L (x, y) = ∇2f − ∑

i yi∇2ci, where ci is a general constraint. However, CUTEr’s

Matlab function ”sphess” computes it as ∇2L (x, y) = ∇2f +
∑

i yi∇2ci. So, the sign of

dual variables is reversed when they are passed from IPSOL to CUTEr.

5.5 Performance on CUTEr Small-Scale Problems

To improve the robustness of the algorithm and to identify and fix bugs, IPSOL was first run

on a set of 302 small problems from CUTEr. All these problems have less than 100 variables

and constraints. The small size of the problems allowed rapid re-runs of the optimizer on

the problem set, thereby permitting a quick debugging. We wish to emphasize that even

though these problems are small in size, they are numerically quite complex. The chosen

50 CHAPTER 5. NUMERICAL RESULTS

problems include the famous Hock and Schittkowski collection [HS81] and the problems

used by Moguerza and Prieto in [MP03]. The results of the final runs are presented in

detail in Table 5.1. The names of the columns of Table 5.1 are described below.

• Problem: The name of the problem as given in the CUTEr test set. For example,

the 13th problem from the Hock and Schittkowski collection is named HS13. The

problems where IPSOL fails to converge are marked by a star appended to their

name.

• # var: Dimension of the primal variable in the original problem. This number is

directly obtained by querying CUTEr and does not include the slacks introduced by

IPSOL.

• # constr: Total number of equality and inequality constraints in the problem. In

terms of problem (1.1), m = mE + mI .

• # iter: Total number of iterations to satisfy the convergence criteria. This is the

sum total of minor iterations across all the subproblems.

• objective: Objective value at the final iterate.

• Lagrangian residual: Maximum unnormalized residual in the Lagrangian equations,

‖rL‖∞.

• infeasibility: Maximum unnormalized residual in the general constraints, ‖rcons‖∞.

Problem # var # constr # iter objective Lagrangian residual infeasibility

1 AIRCRFTA 8 5 2 0.000000e+00 9.9e-09 3.8e-06

2 AIRCRFTB 8 0 10 2.752207e-10 3.7e-06 0.0e+00

3 AIRPORT 84 42 20 4.795270e+04 1.0e-06 4.0e-12

4 ALSOTAME 2 1 11 8.208611e-02 1.3e-07 0.0e+00

5 BIGGSC4 4 7 15 -2.449999e+01 6.2e-07 1.8e-15

6 BT1 2 1 16 -9.999973e-01 2.3e-07 2.7e-08

7 BT10 2 2 8 -1.000000e+00 3.2e-13 1.7e-14

8 BT11 5 3 6 8.248917e-01 6.6e-07 2.9e-08

9 BT12 5 3 4 6.188119e+00 1.9e-09 3.2e-13

10 BT13 5 1 44 9.999558e-07 4.8e-06 4.9e-06

11 BT2 3 1 11 3.256820e-02 8.9e-10 7.8e-10

12 BT3 5 3 1 4.093023e+00 4.0e-15 2.2e-16

13 BT4 3 2 5 -4.551055e+01 7.2e-08 3.9e-08

14 BT5 3 2 7 9.617152e+02 1.7e-10 2.4e-11

15 BT6 5 2 9 2.770448e-01 3.8e-08 2.0e-09

16 BT7 5 3 16 3.065000e+02 3.1e-09 6.3e-13

5.5. PERFORMANCE ON CUTER SMALL-SCALE PROBLEMS 51

Problem # var # constr # iter objective Lagrangian residual infeasibility

17 BT8 5 2 8 1.000015e+00 6.1e-11 1.5e-05

18 BT9 4 2 15 -1.000000e+00 1.7e-09 9.1e-11

19 CANTILVR 5 1 14 1.339957e+00 2.9e-09 8.2e-10

20 CB2 3 3 12 1.952226e+00 1.1e-07 1.1e-07

21 CB3 3 3 12 2.000003e+00 1.2e-08 2.8e-08

22 CHACONN1 3 3 10 1.952226e+00 1.1e-07 1.1e-07

23 CHACONN2 3 3 12 2.000003e+00 1.2e-08 2.8e-08

24 CONGIGMZ 3 5 19 2.800000e+01 2.2e-06 7.8e-06

25 CSFI1 5 4 20 -4.907520e+01 1.4e-06 1.0e-05

26 CSFI2 5 4 43 5.501761e+01 3.7e-06 2.7e-05

27 DALLASM 196 151 20 -4.819819e+04 7.1e-06 4.0e-13

28 DALLASS 46 31 21 -3.239322e+04 8.6e-06 7.1e-15

29 DECONVB 61 0 306 4.777552e-06 9.2e-06 0.0e+00

30 DECONVC 61 1 37 2.579186e-03 1.5e-06 4.2e-10

31 DEGENLPA 20 15 18 9.379951e-06 1.1e-04 4.0e-16

32 DEGENLPB 20 15 19 -2.138539e+02 1.9e-06 1.3e-15

33 DEMYMALO 3 3 14 -2.999997e+00 2.4e-08 2.3e-09

34 DENSCHNA 2 0 5 2.213698e-12 3.0e-06 0.0e+00

35 DENSCHNB 2 0 13 7.500085e-11 8.6e-11 0.0e+00

36 DENSCHNC 2 0 10 6.253553e-12 1.6e-09 0.0e+00

37 DENSCHND 3 0 36 4.612712e-11 1.1e-07 0.0e+00

38 DENSCHNE 3 0 10 1.173153e-20 2.2e-10 0.0e+00

39 DENSCHNF 2 0 6 3.906514e-13 7.0e-10 0.0e+00

40 DISC2 29 23 35 1.562502e+00 2.3e-10 8.2e-08

41 DIXCHLNG 10 5 9 2.471898e+03 3.4e-08 5.0e-14

42 DNIEPER 61 24 20 1.874401e+04 1.9e-05 2.5e-06

43 DUAL1 85 1 18 3.503789e-02 5.7e-08 4.7e-16

44 DUAL2 96 1 16 3.376385e-02 4.9e-09 0.0e+00

45 DUAL3 111 1 16 1.358550e-01 9.2e-09 3.1e-16

46 DUAL4 75 1 15 7.461191e-01 7.4e-09 3.2e-16

47 DUALC1 9 215 52 6.155251e+03 3.7e-06 6.8e-13

48 DUALC2* 7 229 49 3.551310e+03 6.9e-02 6.8e-13

49 DUALC5 8 278 30 4.272324e+02 7.4e-05 1.7e-13

50 DUALC8 8 503 49 1.830936e+04 2.4e-05 6.8e-13

51 EG1 3 0 13 -1.429306e+00 2.4e-08 0.0e+00

52 EG2 1000 0 3 -9.989474e+02 6.0e-09 0.0e+00

53 EIGMAXA 101 101 18 -9.999990e-01 4.7e-10 1.3e-10

54 EIGMAXB 101 101 14 -9.674354e-04 1.3e-11 2.7e-11

55 EIGMINA 101 101 14 -9.999990e-01 8.8e-11 3.4e-13

56 EIGMINB 101 101 13 4.903541e-01 2.1e-13 4.0e-13

57 ENGVAL2 3 0 16 1.398333e-11 8.2e-06 0.0e+00

58 EXPFITA 5 22 22 1.210894e-03 9.4e-06 2.7e-14

59 EXPFITB 5 102 26 5.131554e-03 3.3e-06 1.9e-14

60 EXTRASIM 2 1 9 1.000001e+00 2.2e-16 2.2e-16

61 FCCU 19 8 11 1.114911e+01 1.5e-09 3.6e-15

62 FLETCHER 4 4 11 1.952537e+01 1.0e-06 2.3e-12

63 GENHS28 10 8 1 9.271737e-01 1.6e-14 1.1e-16

64 GIGOMEZ1 3 3 14 -2.999997e+00 3.3e-08 9.1e-10

52 CHAPTER 5. NUMERICAL RESULTS

Problem # var # constr # iter objective Lagrangian residual infeasibility

65 GIGOMEZ2 3 3 12 1.952226e+00 1.1e-07 1.1e-07

66 GIGOMEZ3 3 3 12 2.000003e+00 1.2e-08 2.8e-08

67 GMNCASE1 175 300 13 2.670524e-01 1.7e-08 3.9e-16

68 GMNCASE4 175 350 13 5.946885e+03 1.8e-04 4.7e-09

69 GOFFIN 51 50 9 5.001983e-05 1.5e-14 1.3e-17

70 GOTTFR 2 2 6 0.000000e+00 1.2e-13 3.3e-13

71 GULF 3 0 26 1.849691e-03 4.4e-06 0.0e+00

72 HATFLDA 4 0 9 9.318289e-09 1.1e-08 0.0e+00

73 HATFLDB 4 0 14 5.576135e-03 4.5e-06 0.0e+00

74 HATFLDC 25 0 9 5.547757e-10 1.3e-09 0.0e+00

75 HATFLDD 3 0 29 1.416389e-07 3.6e-07 0.0e+00

76 HATFLDE 3 0 20 5.320425e-07 4.3e-07 0.0e+00

77 HATFLDF* 3 3 37 0.000000e+00 5.7e-09 7.2e-04

78 HATFLDG 25 25 11 0.000000e+00 3.3e-08 3.3e-12

79 HATFLDH 4 7 15 -2.449999e+01 2.0e-08 1.8e-15

80 HELIX 3 0 17 2.540510e-13 1.6e-07 0.0e+00

81 HILBERTA 2 0 1 8.748796e-28 1.3e-14 0.0e+00

82 HILBERTB 10 0 1 2.204630e-18 4.3e-09 0.0e+00

83 HIMMELBB 2 0 15 5.686084e-15 1.2e-06 0.0e+00

84 HIMMELBG 2 0 5 1.199005e-15 8.6e-08 0.0e+00

85 HIMMELBH 2 0 2 -1.000000e+00 3.7e-12 0.0e+00

86 HIMMELBI 100 12 14 -1.735569e+03 2.4e-07 2.2e-14

87 HIMMELBK 24 14 64 2.400881e-05 3.4e-10 4.3e-13

88 HIMMELP1 2 0 11 -5.173785e+01 1.0e-09 0.0e+00

89 HIMMELP2 2 1 15 -8.198042e+00 2.3e-10 2.9e-09

90 HIMMELP3 2 2 12 -8.198039e+00 2.3e-10 4.3e-10

91 HIMMELP4 2 3 16 -8.197662e+00 6.8e-10 2.1e-11

92 HIMMELP5 2 3 49 -2.855716e+01 7.6e-08 3.4e-11

93 HIMMELP6 2 5 17 -8.197560e+00 1.0e-10 4.7e-10

94 HONG 4 1 7 2.257109e+01 1.1e-08 1.1e-16

95 HS1 2 0 28 2.031988e-10 1.1e-06 0.0e+00

96 HS10 2 1 14 -9.999990e-01 1.4e-08 2.1e-08

97 HS100 7 4 29 6.806301e+02 3.2e-08 1.0e-09

98 HS100LNP 7 2 7 6.806301e+02 3.5e-09 9.1e-13

99 HS100MOD 7 4 23 6.972779e+02 3.2e-08 8.3e-11

100 HS101 7 5 56 1.809765e+03 9.4e-06 1.1e-11

101 HS102 7 5 110 9.118806e+02 9.3e-05 6.5e-10

102 HS103 7 5 107 5.436680e+02 5.8e-05 4.3e-10

103 HS104 8 5 15 3.951167e+00 2.6e-07 8.4e-09

104 HS105 8 1 32 1.044612e+03 5.8e-06 4.4e-17

105 HS106 8 6 23 7.050319e+03 6.6e-06 3.8e-10

106 HS107 9 6 10 5.055012e+03 4.5e-05 1.8e-13

107 HS108 9 13 24 -8.660194e-01 1.6e-06 2.3e-09

108 HS109* 9 10 36 5.415828e+03 1.8e-02 2.3e-10

109 HS11 2 1 6 -8.498462e+00 7.6e-07 8.3e-09

110 HS110 10 0 16 -4.577848e+01 6.4e-09 0.0e+00

111 HS111 10 3 12 -4.776111e+01 2.4e-06 1.2e-06

112 HS111LNP 10 3 11 -4.776109e+01 5.4e-08 2.6e-08

5.5. PERFORMANCE ON CUTER SMALL-SCALE PROBLEMS 53

Problem # var # constr # iter objective Lagrangian residual infeasibility

113 HS112 10 3 15 -4.776109e+01 2.6e-05 6.9e-17

114 HS113 10 8 17 2.430622e+01 2.0e-08 4.0e-08

115 HS114 10 11 39 -1.525877e+03 5.5e-07 6.3e-11

116 HS116 13 14 87 9.758752e+01 8.6e-05 5.0e-14

117 HS117 15 5 16 3.234869e+01 2.9e-07 1.8e-07

118 HS118 15 17 23 6.648205e+02 5.9e-09 5.8e-15

119 HS119 16 8 12 2.448997e+02 2.1e-06 7.5e-16

120 HS12 2 1 13 -3.000000e+01 6.7e-10 4.4e-10

121 HS13 2 1 16 4.341025e-06 1.9e-09 6.2e-13

122 HS14 2 2 9 1.393466e+00 1.2e-07 1.0e-08

123 HS15 2 2 22 3.065000e+02 1.4e-04 2.6e-13

124 HS16 2 2 17 2.500011e-01 2.0e-06 9.8e-09

125 HS17 2 2 15 1.000005e+00 1.0e-08 3.9e-08

126 HS18 2 2 18 5.021487e+00 1.7e-09 6.0e-08

127 HS19 2 2 14 -6.961814e+03 7.1e-07 4.2e-14

128 HS2 2 0 15 4.941230e+00 2.4e-07 0.0e+00

129 HS20 2 3 8 4.019873e+01 1.7e-05 1.4e-12

130 HS21 2 1 13 -9.996000e+01 1.5e-07 1.8e-15

131 HS21MOD 7 1 17 -9.595999e+01 2.7e-09 1.8e-15

132 HS22 2 2 12 1.000002e+00 1.5e-08 9.8e-09

133 HS23 2 5 12 2.000002e+00 1.7e-07 2.5e-08

134 HS24 2 3 10 -9.999981e-01 6.7e-07 8.9e-16

135 HS25 3 0 36 1.845683e-03 7.3e-08 0.0e+00

136 HS26 3 1 16 1.394579e-08 1.1e-07 1.6e-08

137 HS268 5 5 15 1.753361e-05 1.4e-06 3.6e-15

138 HS27 3 1 26 4.000000e-02 2.0e-09 1.5e-09

139 HS28 3 1 1 7.812130e-11 1.2e-14 2.2e-16

140 HS29 3 1 11 -2.262742e+01 1.1e-08 9.7e-11

141 HS3 2 0 9 1.000000e-06 3.3e-12 0.0e+00

142 HS30 3 1 14 1.000002e+00 1.2e-04 8.7e-14

143 HS31 3 1 7 6.000001e+00 4.1e-07 3.0e-10

144 HS32 3 2 14 1.000006e+00 2.0e-10 5.1e-09

145 HS33 3 2 12 -4.585783e+00 1.7e-07 3.9e-08

146 HS34 3 2 22 -8.340293e-01 1.5e-07 1.1e-06

147 HS35 3 1 5 1.111122e-01 2.2e-11 3.3e-17

148 HS35I 3 1 11 1.111122e-01 2.7e-11 4.8e-18

149 HS36 3 1 8 -3.300000e+03 1.2e-05 1.5e-15

150 HS37 3 2 9 -3.456000e+03 1.9e-09 1.8e-15

151 HS38 4 0 56 5.683077e-12 2.8e-07 0.0e+00

152 HS39 4 2 15 -1.000000e+00 1.7e-09 9.1e-11

153 HS3MOD 2 0 9 1.000000e-06 2.2e-12 0.0e+00

154 HS4 2 0 9 2.666669e+00 1.1e-09 0.0e+00

155 HS40 4 3 3 -2.500000e-01 2.7e-09 1.9e-10

156 HS41 4 1 10 1.925927e+00 5.4e-10 0.0e+00

157 HS42 4 2 3 1.385786e+01 3.1e-08 5.2e-09

158 HS43 4 3 11 -4.400000e+01 1.2e-08 4.9e-09

159 HS44 4 6 11 -1.300000e+01 4.0e-07 8.9e-16

160 HS44NEW 4 6 11 -1.300000e+01 4.0e-07 8.9e-16

54 CHAPTER 5. NUMERICAL RESULTS

Problem # var # constr # iter objective Lagrangian residual infeasibility

161 HS45 5 0 13 1.000005e+00 7.2e-08 0.0e+00

162 HS46 5 2 16 2.764619e-07 1.7e-07 1.4e-09

163 HS47 5 3 17 1.109930e-08 6.1e-08 1.1e-09

164 HS48 5 2 1 8.874685e-30 8.4e-15 4.4e-16

165 HS49 5 2 16 1.346928e-07 1.2e-07 0.0e+00

166 HS5 2 0 10 -1.913223e+00 1.4e-09 0.0e+00

167 HS50 5 3 8 2.907757e-11 2.2e-06 4.4e-16

168 HS51 5 3 1 1.163514e-12 1.1e-15 0.0e+00

169 HS52 5 3 1 5.326648e+00 3.6e-15 1.4e-17

170 HS53 5 3 6 4.093023e+00 3.9e-10 4.2e-17

171 HS54 6 1 18 -2.420045e-03 7.8e-07 3.6e-12

172 HS55 6 6 10 6.333335e+00 3.3e-08 4.4e-16

173 HS56 7 4 72 -3.456000e+00 2.5e-07 1.5e-08

174 HS57* 2 1 64 9.674067e+01 9.1e-02 5.4e-16

175 HS59 2 3 18 -7.802393e+00 8.5e-11 9.5e-10

176 HS6 2 1 4 2.249843e-10 4.5e-17 4.4e-15

177 HS60 3 1 8 3.256820e-02 2.9e-10 2.0e-11

178 HS61 3 2 6 -1.436461e+02 1.0e-10 1.6e-11

179 HS62 3 1 8 -2.627251e+04 5.0e-08 4.9e-17

180 HS63 3 2 16 9.617152e+02 5.2e-10 1.3e-10

181 HS64 3 1 21 6.299842e+03 1.5e-06 1.5e-13

182 HS65 3 1 18 9.535298e-01 1.5e-09 7.8e-09

183 HS66 3 2 18 5.181653e-01 3.1e-08 1.0e-07

184 HS67 3 14 119 -5.849476e+02 1.9e-06 2.3e-04

185 HS68 4 2 22 -9.204250e-01 3.7e-08 3.4e-10

186 HS69 4 2 15 -9.567129e+02 3.1e-05 1.4e-11

187 HS7 2 1 9 -1.732051e+00 6.7e-12 5.4e-12

188 HS70 4 1 28 7.501784e-03 6.6e-06 1.1e-08

189 HS71 4 2 11 1.701402e+01 8.0e-08 2.5e-07

190 HS72 4 2 17 7.276794e+02 1.6e-05 9.8e-19

191 HS73 4 3 11 2.989438e+01 2.2e-08 2.3e-08

192 HS74 4 5 13 5.126499e+03 1.0e-10 1.5e-12

193 HS75 4 5 14 5.174413e+03 1.1e-10 6.8e-13

194 HS76 4 3 10 -4.681816e+00 5.9e-08 3.0e-16

195 HS76I 4 3 11 -4.681816e+00 5.9e-08 2.1e-16

196 HS77 5 2 8 2.415051e-01 3.4e-08 2.6e-09

197 HS78 5 3 4 -2.919700e+00 1.8e-09 5.6e-12

198 HS79 5 3 4 7.877682e-02 5.3e-09 3.0e-09

199 HS8 2 2 4 -1.000000e+00 3.5e-16 1.4e-11

200 HS80 5 3 8 5.394985e-02 3.3e-09 2.5e-08

201 HS81 5 3 14 5.394984e-02 3.8e-07 2.0e-07

202 HS83 5 3 11 -3.066554e+04 3.3e-05 2.2e-14

203 HS84 5 3 40 -5.280335e+06 7.5e-05 8.7e-11

204 HS85 5 21 74 -1.723368e+00 3.9e-03 3.6e-11

205 HS86 5 10 17 -3.234867e+01 5.7e-07 7.1e-15

206 HS88 2 1 17 1.362658e+00 1.5e-06 3.3e-11

207 HS89* 3 1 20 1.362658e+00 1.5e-06 3.3e-11

208 HS9 2 1 3 -4.999844e-01 8.6e-06 5.7e-14

5.5. PERFORMANCE ON CUTER SMALL-SCALE PROBLEMS 55

Problem # var # constr # iter objective Lagrangian residual infeasibility

209 HS90 4 1 9 4.896777e-20 3.3e-10 0.0e+00

210 HS91 5 1 46 1.362658e+00 7.5e-07 3.2e-11

211 HS92 6 1 125 1.362658e+00 2.1e-06 2.7e-11

212 HS93 6 2 10 1.350760e+02 2.3e-07 8.8e-11

213 HS95 6 4 25 1.562522e-02 9.6e-06 3.4e-11

214 HS96 6 4 23 1.562514e-02 8.4e-06 1.1e-11

215 HS97 6 4 37 4.071252e+00 2.1e-05 2.0e-07

216 HS98 6 4 50 3.135815e+00 1.2e-04 1.1e-11

217 HS99 7 2 8 -8.310799e+08 1.2e-05 1.3e-10

218 HS99EXP 31 21 17 -1.143818e+12 1.2e-04 4.7e-09

219 HUBFIT 2 1 10 1.689450e-02 1.3e-09 4.1e-18

220 KIWCRESC 3 2 12 2.002198e-06 1.9e-08 4.4e-09

221 LAUNCH 25 28 96 9.005988e+00 1.2e-06 2.7e-08

222 LEAKNET 156 153 37 1.104214e+01 1.7e-08 6.3e-09

223 LIN 4 2 7 -1.757754e-02 1.8e-07 5.6e-17

224 LINSPANH 97 33 45 -7.701000e+01 3.6e-07 7.0e-13

225 LOADBAL 31 31 21 2.059975e+00 4.4e-10 9.2e-13

226 LOGHAIRY 2 0 51 1.823216e-01 9.0e-08 0.0e+00

227 LOGROS 2 0 24 7.640133e-11 2.9e-05 0.0e+00

228 LOOTSMA 3 2 12 1.414217e+00 1.7e-07 3.9e-08

229 LSNNODOC 5 4 11 1.231125e+02 3.6e-09 4.4e-16

230 LSQFIT 2 1 11 3.378799e-02 5.0e-08 2.4e-17

231 MADSEN 3 6 16 6.164342e-01 6.2e-07 3.2e-07

232 MAKELA1 3 2 37 -1.414212e+00 9.9e-09 9.9e-09

233 MAKELA2 3 3 12 7.200027e+00 7.0e-08 2.5e-09

234 MAKELA3 21 20 14 2.000082e-05 1.5e-10 9.7e-11

235 MAKELA4 21 40 9 4.000874e-05 2.8e-13 2.0e-18

236 MANCINO 100 0 9 1.464535e-12 3.3e-07 0.0e+00

237 MARATOS 2 1 3 -1.000000e+00 3.6e-09 1.6e-08

238 MARATOSB 2 0 670 -1.000000e+00 4.0e-06 0.0e+00

239 MATRIX2 6 2 17 4.945822e-06 6.9e-07 2.6e-07

240 MDHOLE 2 0 26 1.000000e-06 6.8e-11 0.0e+00

241 METHANB8 31 31 2 0.000000e+00 1.2e-07 1.0e-07

242 METHANL8 31 31 4 0.000000e+00 1.5e-11 3.7e-11

243 MEXHAT 2 0 27 -4.001000e-02 8.2e-06 0.0e+00

244 MIFFFLIN1 2 0 27 -4.001000e-02 8.2e-06 0.0e+00

245 MIFFFLIN2 2 0 27 -4.001000e-02 8.2e-06 0.0e+00

246 MINMAXBD 5 20 45 1.157066e+02 2.0e-09 9.3e-10

247 MINMAXRB 3 4 12 4.000008e-06 1.9e-10 4.6e-09

248 MISTAKE 9 13 32 -9.999960e-01 9.5e-06 1.2e-08

249 MRIBASIS 36 55 25 1.821790e+01 2.4e-06 4.1e-08

250 MWRIGHT 5 3 8 2.497881e+01 5.2e-07 1.9e-08

251 ODFITS 10 6 15 -2.379912e+03 2.6e-11 5.7e-14

252 OSBORNEA 5 0 20 5.716656e-05 8.8e-06 0.0e+00

253 OSBORNEB 11 0 8 4.013790e-02 6.0e-07 0.0e+00

254 PENTAGON 6 15 22 1.402783e-04 5.8e-07 4.4e-16

255 POLAK1 3 2 11 2.718284e+00 4.6e-08 1.0e-13

256 POLAK2 11 2 9 5.459815e+01 2.4e-12 5.2e-14

56 CHAPTER 5. NUMERICAL RESULTS

Problem # var # constr # iter objective Lagrangian residual infeasibility

257 POLAK3 12 10 20 5.933006e+00 1.9e-07 3.5e-07

258 POLAK4 3 3 17 3.975262e-06 2.0e-07 3.2e-07

259 POLAK5 3 2 10 5.000000e+01 1.1e-12 4.9e-15

260 POLAK6 5 4 58 -4.400000e+01 1.6e-08 4.7e-08

261 PRODPL0 60 29 23 5.879014e+01 1.8e-07 1.3e-09

262 PRODPL1 60 29 36 3.573900e+01 2.0e-06 6.8e-15

263 RK23 17 11 45 8.333826e-02 3.5e-08 9.8e-09

264 ROSENMMX 5 4 28 -4.400000e+01 1.6e-08 4.7e-08

265 S277-280 4 4 10 5.076196e+00 1.2e-08 5.6e-17

266 S308 2 0 8 7.731991e-01 4.2e-06 0.0e+00

267 S316-322 2 1 7 3.343146e+02 4.7e-11 1.5e-13

268 S368 8 0 19 -9.374971e-01 5.2e-08 0.0e+00

269 SWOPF 83 92 31 6.790999e-02 1.3e-08 1.6e-07

270 SYNTHES1 6 6 12 7.592894e-01 1.5e-08 7.4e-10

271 SYNTHES2 11 14 11 -5.543923e-01 6.3e-07 1.6e-08

272 SYNTHES3 17 23 13 1.508220e+01 3.8e-07 5.2e-09

273 TAME 2 1 4 0.000000e+00 2.2e-16 1.1e-16

274 TENBARS1 18 9 32 2.302549e+03 4.3e-07 2.7e-10

275 TENBARS2 18 8 31 2.302549e+03 6.7e-07 2.3e-10

276 TENBARS3 18 8 34 2.247129e+03 1.3e-06 1.3e-09

277 TENBARS4 18 9 35 3.697074e+02 2.6e-08 6.4e-08

278 TFI1 3 101 58 5.334689e+00 6.2e-09 9.2e-10

279 TFI2 3 101 16 6.490339e-01 2.4e-06 2.7e-16

280 TFI3 3 101 22 4.301161e+00 1.3e-06 1.5e-16

281 TRIGGER 7 6 19 0.000000e+00 1.2e-08 1.3e-13

282 TRIMLOSS 142 75 26 9.083943e+00 1.0e-08 4.1e-07

283 TRUSPYR1 11 4 18 1.122875e+01 8.5e-07 3.0e-11

284 TRUSPYR2 11 11 23 1.122875e+01 5.8e-05 1.3e-14

285 TRY-B 2 1 14 2.022836e-11 5.4e-10 2.4e-09

286 TWOBARS 2 2 11 1.508653e+00 1.9e-08 4.3e-09

287 WEEDS 3 0 39 2.587725e+00 1.4e-05 0.0e+00

288 WOMFLET 3 3 21 6.050001e+00 1.1e-08 3.3e-09

289 YFIT 3 0 52 5.783854e-03 1.8e-05 0.0e+00

290 YFITU 3 0 34 5.783396e-03 2.6e-05 0.0e+00

291 ZAMB2-10 270 96 24 -1.390128e+00 1.7e-08 9.7e-06

292 ZAMB2-11 270 96 20 -1.439861e+00 3.6e-08 1.3e-05

293 ZAMB2-8 138 48 26 -1.383525e-01 1.6e-08 1.1e-06

294 ZAMB2-9 138 48 23 -3.315925e-01 1.6e-09 2.4e-06

295 ZANGWIL2 2 0 1 -1.820000e+01 1.1e-11 0.0e+00

296 ZANGWIL3 3 3 1 0.000000e+00 4.1e-20 2.0e-14

297 ZECEVIC2 2 2 8 -4.124999e+00 2.6e-09 3.0e-17

298 ZECEVIC3 2 2 7 9.730945e+01 7.3e-10 7.1e-11

299 ZECEVIC4 2 2 10 7.557509e+00 6.4e-10 9.0e-11

300 ZY2 3 2 11 5.615102e+00 2.1e-08 2.0e-08

Table 5.1: Performance of IPSOL on 300 small problems from the CUTEr

testset.

5.6. PERFORMANCE ON A FEW CUTER LARGE-SCALE PROBLEMS 57

With the default parameters, IPSOL is able to solve 295 out of the 302 problems. HS57

solves with a larger starting value of the barrier parameter. However, this has not been

used as the aim here is to present the robustness and performance of IPSOL with its default

parameters.

The causes of failure for some of the problems are noted here.

• Severely ill-conditioned Hessian: HS109, HS85.

• Domain range error while evaluating the functions: DECONVNE (not listed).

• Non-smooth problem: HS87 (not listed).

5.6 Performance on a Few CUTEr Large-Scale Problems

IPSOL has been designed and carefully implemented to be used for solving large-scale

optimization problems. However the memory limitation of Matlab did limit the efforts to

test IPSOL on large problems. Table 5.2 contains the performance of IPSOL on 42 large-

scale problems. It should be noted that the average number of iterations is almost the same

as for the smaller test set.

Problem # var # constr # iter objective Lagrangian residual infeasibility

1 BRATU3D 4913 3375 3 0.000000e+00 5.6e-12 3.0e-09

2 CAMSHAPE 800 1603 58 -4.273018e+00 9.2e-06 3.3e-10

3 CATENA 3003 1000 25 -2.099583e+06 3.9e-05 2.4e-13

4 DALLASL 906 667 17 -2.026041e+05 1.8e-04 9.0e-13

5 DEGEN2 534 444 25 -3.944930e+03 1.4e-05 1.7e-14

6 DTOC1NA 5998 3996 8 4.138867e+00 3.7e-07 2.1e-10

7 DTOC1NB 5998 3996 9 7.138849e+00 5.2e-09 2.8e-11

8 DTOC1NC 5998 3996 5 3.519934e+01 1.5e-06 1.7e-08

9 DTOC1ND 5998 3996 6 4.760303e+01 1.5e-07 4.1e-09

10 EXPFITC 5 502 27 2.394353e-02 6.4e-07 3.0e-14

11 EXPLIN 1200 0 35 -7.192548e+07 3.8e-05 0.0e+00

12 EXPLIN2 1200 0 24 -7.199883e+07 4.8e-07 0.0e+00

13 EXPQUAD 1200 0 49 -3.684941e+09 4.5e-07 0.0e+00

14 GMNCASE2 175 1050 12 -9.943578e-01 2.9e-08 8.9e-16

15 GMNCASE3 175 1050 11 1.525230e+00 6.9e-08 4.4e-16

16 HAGER1 5001 2500 1 8.808343e-01 1.7e-12 2.6e-11

17 HAGER2 5001 2500 1 4.321334e-01 6.3e-12 1.8e-11

18 HAGER3 5001 2500 1 1.409828e-01 1.4e-12 2.1e-11

19 HAGER4 5001 2500 10 2.798288e+00 1.0e-11 4.8e-12

20 HELSBY 1408 1399 41 3.462518e+01 5.4e-06 7.6e-07

21 HET-Z 2 1002 16 1.000000e+00 5.7e-09 4.4e-16

22 LISWET1 2002 2000 26 7.223894e+00 4.3e-06 5.1e-16

23 LISWET10 2002 2000 30 9.898246e+00 7.8e-07 4.0e-16

58 CHAPTER 5. NUMERICAL RESULTS

Problem # var # constr # iter objective Lagrangian residual infeasibility

24 LISWET2 2002 2000 43 4.999258e+00 1.4e-05 2.7e-16

25 LISWET3 2002 2000 29 4.998007e+00 1.0e-06 2.4e-16

26 LISWET4 2002 2000 30 4.998130e+00 8.2e-07 3.7e-16

27 LISWET5 2002 2000 31 4.998060e+00 1.8e-06 8.0e-16

28 LISWET6 2002 2000 26 4.998110e+00 3.1e-06 2.0e-16

29 LISWET7 2002 2000 26 9.989716e+01 7.9e-05 2.1e-16

30 LISWET8 2002 2000 31 1.431324e+02 3.0e-06 3.8e-16

31 LISWET9 2002 2000 30 3.929222e+02 1.9e-05 1.8e-16

32 OET1 3 1002 17 5.382471e-01 1.4e-08 6.8e-16

33 OET2 3 1002 25 8.716620e-02 1.6e-07 1.7e-11

34 OET3 4 1002 13 7.185322e-03 6.3e-08 2.2e-15

35 OET4 4 1002 17 7.040527e-03 3.9e-06 6.7e-08

36 OET5 5 1002 36 2.838259e-03 4.5e-08 3.2e-09

37 OET6 5 1002 62 8.774781e-01 1.2e-03 4.9e-02

38 PENALTY1 1000 0 39 9.686178e-03 1.1e-06 0.0e+00

39 PROBPENL 500 0 6 3.974522e-07 2.3e-07 0.0e+00

40 READING1 4002 2000 54 -1.061640e-01 7.0e-03 4.8e-03

41 READING2 6003 4000 4 -4.454431e-03 2.7e-07 1.6e-13

42 READING3 4002 2001 31 -8.066820e-02 8.3e-03 4.0e-03

Table 5.2: Performance of IPSOL on 42 large problems from the CUTEr testset.

5.7 Comparisons with IPOPT and LOQO

In this section, the performance of IPOPT is compared with the well known non-convex

interior point solvers IPOPT and LOQO. These solvers have been in active use for over

a decade now and are continuously being improved. The number of iterations of IPOPT

on the small CUTEr test set (section 5.5) is compared with the number of iterations of

the other two solvers. The performance of the other two solvers was taken from [WB06].

The termination tolerance for LOQO was set to 10−6 while for IPOPT it was set to 10−8.

It should be noted that a direct comparison of the termination tolerances across various

solvers is not possible because of the different scaling involved in normalizing the residual.

However, these termination tolerances are in the ballpark of the termination tolerance

chosen for IPSOL. The comparisons are presented as histograms (Figure 5.1 and 5.2). The

performance of IPSOL is more often better than LOQO, but less often as good as IPOPT.

We believe this difference is largely due to the initialization and reduction strategies of the

barrier parameter µ [NWW05].

5.7. COMPARISONS WITH IPOPT AND LOQO 59

Ratio of num. of total iterations of IPSOL and LOQO

N
um

. o
f p

ro
bl

em
s

in
 th

e
bi

n

0

20

40

60

0.0 0.5 1.0 0.5 0.0

IPSOL better in 64 % problems.
LOQO better in 30 % problems.

Figure 5.1: The red histogram (on the right) is for the ratio of the number of iterations of
IPSOL to the number of iterations of LOQO. This histogram includes only those problems
from Table 5.1 for which IPSOL has a strictly lower iteration count than IPOPT. The blue
histogram is its counterpart for the problems where LOQO has a lower iteration count than
IPSOL.

60 CHAPTER 5. NUMERICAL RESULTS

Ratio of num. of total iterations of IPSOL and IPOPT

N
um

. o
f p

ro
bl

em
s

in
 th

e
bi

n

0

10

20

30

40

50

60

0.0 0.5 1.0 0.5 0.0

IPSOL better in 38 % problems.
IPOPT better in 50 % problems.

Figure 5.2: The red histogram (on the right) is for the ratio of the number of iterations of
IPSOL to the number of iterations of IPOPT. This histogram includes only those problems
from Table 5.1 for which IPSOL has a strictly lower iteration count than IPOPT. The blue
histogram is its counterpart for the problems where IPOPT has a lower iteration count than
IPSOL.

Chapter 6

Contributions and Future Research

In this thesis we proposed IPSOL, a method for solving large nonlinearly constrained opti-

mization problems. The method utilizes second derivatives and is based on the theoretical

framework of Murray and Prieto [MP95] to solve the subproblems (2.2). Their method has

the properties of global convergence and a quadratic rate of convergence. The proofs are

based on computing at each iteration a feasible step, a descent direction, and a direction

of negative curvature. How to compute such directions is not specified. Here we show one

way this may be done. A key step is to remove inequality constraints by using a barrier

formulation. Since the barrier subproblems have only equality constraints, the utilization

of second derivatives is considerably simplified, but still problematic. The key issue is to

identify when the linearized KKT conditions need to be modified (because they point to a

saddle point or a maximizer) and how to make a modification. Two other important issues

are addressed. The first is how to compute the required directions for large problems for

which the degrees of freedom may or may not be large. The second is how to regularize

the definition of these directions to cope with ill-conditioning in both the Jacobian of the

constraints and the reduced Hessian of the Lagrangian. While the barrier transformation

simplifies the computation of the required directions it exacerbates the condition issue. A

modification of the Lanczos algorithm is used to compute both the descent direction and

the direction of negative curvature.

The algorithm IPSOL has been prototyped in Matlab and has been tested on a subset

of CUTEr problems. While the optimizer is able to solve a large number of problems, it

fails to converge on a few cases. We briefly state the reasons of failure of IPSOL on a few

CUTEr problems and suggest possible solutions, which may be incorporated in a future

version of the solver to make it more robust.

61

62 CHAPTER 6. CONTRIBUTIONS AND FUTURE RESEARCH

• IPSOL uses a modification of the CG algorithm to compute search directions from the

reduced Hessian system (section 3.3.3). This algorithm, like any iterative algorithm,

has difficulty in solving severely ill-conditioned systems.

– Symptom: Merit function has a near zero derivative (∼ −10−12) at intermediate

iterates.

– Example cases: HS109.

– Proposed solution: Keep a direct solver like the modified Cholesky factorization

as an option for severely ill-conditioned problems.

• In a few cases, the default choice of the initial point (section 2.5) is not good with

respect to the scale of the problem. As a consequence, the initial search direction

typically has one or more disproportionately large components. This direction may

result in a very small αmax, thereby hindering progress towards the solution.

– Symptom: Maximum permissible step is very small (∼ 10−3).

– Example case: ROBOTARM.

– Proposed solution: Construct an algorithm to artificially scale down any dispro-

portionally large component(s). The challenge is to be able to do this without

affecting the overall convergence of the algorithm.

• An optimization problem may have functions whose domain of definition is restricted

(say sin−1(x)). A user may express this restriction on the domain by placing bounds

on x. However, IPSOL is an infeasible interior point method and does not restrict x

to respect bounds at intermediate iterates.

– Symptom: Linesearch evaluation at trial point results in NAN/INFs.

– Example case: DECONVNE.

– Proposed solution: The user should be given an option to indicate whether the

functions involved in the optimization problem are defined on a restricted do-

main. In this case, the user should also explicitly bound the variables in this

domain. IPSOL should respect such bounds by using an alternative log barrier

formulation wherein the logarithms are directly put on x− l or u−x rather than

on the slack variables tl,u.

Finally, a more dynamic strategy for initializing and updating µ is worth exploring, as

it possibly holds the key to improving the performance of the solver.

Appendix A

Overcoming the Temporary

Incompatibility

In the presence of rank deficiency in the Jacobian, the system (2.6) may be incompatible.

It is possible that this incompatibility is temporary and the problem is feasible and has

a solution. Variables are added to the optimization problems to overcome this temporary

incompatibility of the system. The addition of these variables has the effect of relaxing the

constraints, thereby helping the solver overcome temporary incompatibility.

A.1 L1 Elastic Variables

In this approach, when rank deficiency is detected in the Jacobian (section 3.5), the objective

function is modified by the addition of an L1 penalty for the infeasibilities. At such an

iterate, the following optimization is (conceptually) solved:

minimize
x,v,w

f(x) + γeT (v + w)

s.t. c(x) + v − w = 0

Elx ≥ l

Eux ≤ u

v, w ≥ 0

. (A.1)

63

64 APPENDIX A. OVERCOMING THE TEMPORARY INCOMPATIBILITY

The addition of of variables tl, tu and barrier terms leads to the problem

minimize
x,tl,tu,v,w

f(x) − µ[eT
l ln(tl) + eT

u ln(tu) + eT
v ln(tv) + eT

wln(tw)] +γ(eT
v v + eT

ww)

s.t. c(x) + v − w = 0 : y

Elx − tl = l : zl

−Eux − tu = −u : zu

v − tv = 0 : zv

−w − tw = 0 : zw,

(A.2)

whose optimality conditions are

−∇f(x) +∇c(x) y +ET
l zl −ET

u zu = 0 (Lx)

y − γe +zv = 0 (Lv)

−y − γe −zw = 0 (Lw)

TlZlel = µel (pcl)

TuZueu = µeu (pcu)

TvZvev = µev (pcv)

TwZwew = µew (pcw)

c(x) +v −w = 0 (cons)

Elx −tl = l (low)

−Eux −tu = −u (upp)

v −tv = 0 (v)

−w −tw = 0 (w).

.

(A.3)

A.1. L1 ELASTIC VARIABLES 65

The application of Newton’s method to these nonlinear equations leads to the following

linearized equations:























































−∇2L ∇c(x) ET
l −ET

u

I I

−I −I

Zl Tl

Zu Tu

Zv Tv

Zw Tw

∇c(x)T I −I

El

−Eu

I −I

−I −I













































































































δx

δv

δw

δtl

δtu

δtv

δtw

δy

δzl

δzu

δzv

δzw























































=























































rLx

rLv

rLw

rpcl

rpcu

rpcv

rpcw

rc

rl

ru

rv

rw























































.

(A.4)

We can eliminate δzl, δzu, δzv, δzw, δtl, δtu, δtv, δtw (in that order) to obtain a much smaller

system












−H ∇c(x)

−T−1
v Zv I

−T−1
w Zw −I

∇c(x)T I −I

























δx

δv

δw

δy













=













r1

r2

r3

rc













, (A.5)

where
H = ∇2L + ET

l T−1
l ZlEl + ET

u T−1
u ZuEu

r1 = rLx
− ET

l T−1
l (rpcl + Zlrl) + ET

u T−1
u (rpcu + Zuru)

r2 = rLv
− T−1

v (rpcv + Zvrv)

r3 = rLw
+ T−1

w (rpcw + Zwrw).

(A.6)

The elastic variables need to be initialized to a positive value. This problem of initializing

elastic variables is similar to that of restarting an interior point method. An improper ini-

tialization can lead to a slow rate of convergence. As of this writing, restarting a nonlinear

interior point method is not well understood and so we do not use introduce the elastic

variable midway through the solution. A conservative but computationally expensive al-

ternative is to let the elastic variables always be present in the problem. In this case they

become part of the problem definition and are easily incorporated in IPSOL.

Bibliography

[Arm66] Larry Armijo. Minimization of functions having Lipschitz continuous first par-

tial derivatives. Pacific J. Math., 16:1–3, 1966.

[BNW06] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. KNITRO: An inte-

grated package for nonlinear optimization. In Large-scale Nonlinear Optimiza-

tion, volume 83 of Nonconvex Optimization and Its Applications, pages 35–59.

Springer, New York, 2006.

[BT95] Paul T. Boggs and Jon W. Tolle. Sequential quadratic programming. In Acta

Numerica, 1995, Acta Numer., pages 1–51. Cambridge Univ. Press, Cambridge,

1995.

[Car61] Charles W. Carroll. The created response surface technique for optimizing

nonlinear, restrained systems. Operations Res., 9:169–185, 1961.

[CD00] Tzu-Yi Chen and James W. Demmel. Balancing sparse matrices for computing

eigenvalues. In Proceedings of the International Workshop on Accurate Solution

of Eigenvalue Problems (University Park, PA, 1998), volume 309, pages 261–

287, 2000.

[CGT92] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. LANCELOT: A

Fortran package for large-scale nonlinear optimization (release A), volume 17 of

Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1992.

[CGT00] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-region

Methods. MPS/SIAM Series on Optimization. Society for Industrial and Ap-

plied Mathematics (SIAM), Philadelphia, PA, 2000.

66

BIBLIOGRAPHY 67

[DNT08] Antoine Deza, Eissa Nematollahi, and Tamas Terlaky. How good are interior

point methods? Klee-Minty cubes tighten iteration-complexity bounds. Math.

Program., 113(1):1–14, 2008.

[Dru85] Arne Drud. CONOPT: a GRG code for large sparse dynamic nonlinear opti-

mization problems. Math. Programming, 31(2):153–191, 1985.

[Eld92] Samuel K. Eldersveld. Large-Scale Sequential Quadratic Programming Algo-

rithms. PhD thesis, Stanford University, 1992.

[FGL+02] Roger Fletcher, Nicholas I. M. Gould, Sven Leyffer, Philippe L. Toint, and

Andreas Wächter. Global convergence of a trust-region SQP-filter algorithm

for general nonlinear programming. SIAM J. Optim., 13(3):635–659 (electronic)

(2003), 2002.

[FL02] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty

function. Math. Program., 91(2, Ser. A):239–269, 2002.

[FM90] Anthony V. Fiacco and Garth P. McCormick. Nonlinear Programming: Se-

quential Unconstrained Minimization Techniques, volume 4 of Classics in Ap-

plied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, second edition, 1990.

[FM93] Anders Forsgren and Walter Murray. Newton methods for large-scale linear

equality-constrained minimization. SIAM J. Matrix Anal. Appl., 14(2):560–

587, 1993.

[Fri54] K. R. Frisch. Principles of linear programming - with particular reference to

the double gradient form of the logarithmic potential method. Technical report,

University Institute of Economics, Oslo, Norway, October 1954.

[Fri55] K. R. Frisch. The logarithmic potential method of convex programming. Tech-

nical report, University Institute of Economics, Oslo, Norway, May 1955.

[FS05] Michael P. Friedlander and Michael A. Saunders. A globally convergent linearly

constrained Lagrangian method for nonlinear optimization. SIAM J. Optim.,

15(3):863–897 (electronic), 2005.

68 BIBLIOGRAPHY

[GMPS95] Philip E. Gill, Walter Murray, Dulce B. Ponceleón, and Michael A. Saunders.

Primal-dual methods for linear programming. Math. Programming, 70(3, Ser.

A):251–277, 1995.

[GMS+86] Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Mar-

garet H. Wright. On projected Newton barrier methods for linear programming

and an equivalence to Karmarkar’s projective method. Math. Programming,

36(2):183–209, 1986.

[GMS02] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: an SQP

algorithm for large-scale constrained optimization. SIAM J. Optim., 12(4):979–

1006 (electronic), 2002.

[GMS05] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: an SQP

algorithm for large-scale constrained optimization. SIAM Rev., 47(1):99–131

(electronic), 2005.

[GMSW79] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright.

Two steplength algorithms for numerical optimization. Technical Report SOL

79-25, Systems Optimization Laboratory, Stanford University, 1979.

[GMW87] Philip E. Gill, Walter Murray, and Margaret H. Wright. Maintaining LU factors

of a general sparse matrix. Linear Algebra Appl., 88/89:239–270, 1987.

[GNP97] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. Separators and struc-

ture prediction in sparse orthogonal factorization. Linear Algebra Appl., 262:83–

97, 1997.

[Gon97] Jacek Gondzio. Presolve analysis of linear programs prior to applying an interior

point method. INFORMS J. Comput., 9(1):73–91, 1997.

[GOT03] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr and

SifDec: A constrained and unconstrained testing environment, revisited. ACM

Trans. Math. Software, 29(4):373–394, 2003.

[GT04] Nick Gould and Philippe L. Toint. Preprocessing for quadratic programming.

Math. Program., 100(1, Ser. B):95–132, 2004.

[HM79] Shih P. Han and Olvi L. Mangasarian. Exact penalty functions in nonlinear

programming. Math. Programming, 17(3):251–269, 1979.

BIBLIOGRAPHY 69

[HS52] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for

solving linear systems. J. Research Nat. Bur. Standards, 49:409–436 (1953),

1952.

[HS81] Willi Hock and Klaus Schittkowski. Test examples for nonlinear programming

codes, volume 187 of Lecture Notes in Economics and Mathematical Systems.

Springer-Verlag, Berlin, 1981.

[Kar84] Narendra K. Karmarkar. A new polynomial-time algorithm for linear program-

ming. Combinatorica, 4(4):373–395, 1984.

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In

Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif.,

1969; dedicated to the memory of Theodore S. Motzkin), pages 159–175. Aca-

demic Press, New York, 1972.

[LFR74] Leon S. Lasdon, Richard L. Fox, and Margery W. Ratner. Nonlinear optimiza-

tion using the generalized reduced gradient method. Rev. Française Automat.

Informat. Recherche Opérationnelle Sér. Verte, 8(V-3):73–103, 1974.

[Loo69] F. A. Lootsma. Hessian matrices of penalty functions for solving constrained-

optimization problems. Philips Res. Rep., 24:322–330, 1969.

[LPR96] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical Programs with

Equilibrium Constraints. Cambridge University Press, Cambridge, 1996.

[Meg89] Nimrod Megiddo. Pathways to the optimal set in linear programming. Progress

in Mathemtical Progrmming, pages 131–158, 1989.

[Meh92] Sanjay Mehrotra. On the implementation of a primal-dual interior point

method. SIAM J. Optim., 2(4):575–601, 1992.

[MM79] D. Q. Mayne and N. Maratos. A first order, exact penalty function algorithm

for equality constrained optimization problems. Math. Programming, 16(3):303–

324, 1979.

[MP95] Walter Murray and Francisco J. Prieto. A second-derivative method for non-

linearly constrained optimization. Technical Report SOL 95-3, Systems Opti-

mization Laboratory, Stanford University, 1995.

70 BIBLIOGRAPHY

[MP03] Javier M. Moguerza and Francisco J. Prieto. An augmented Lagrangian

interior-point method using directions of negative curvature. Math. Program.,

95(3, Ser. A):573–616, 2003.

[MS78] Bruce A. Murtagh and Michael A. Saunders. Large-Scale linearly constrained

optimization. Math. Programming, 14(1):41–72, 1978.

[MS82] Bruce A. Murtagh and Michael A. Saunders. A projected Lagrangian algorithm

and its implementation for sparse nonlinear constraints. Math. Programming

Stud., (16):84–117, 1982. Algorithms for constrained minimization of smooth

nonlinear functions.

[MS06] Gérard Meurant and Zdeněk Strakoš. The Lanczos and conjugate gradient

algorithms in finite precision arithmetic. Acta Numer., 15:1–71, 2006.

[MT94] Jorge J. Moré and David J. Thuente. Line search algorithms with guaranteed

sufficient decrease. ACM Trans. Math. Software, 20(3):286–307, 1994.

[Mur69] Walter Murray. An algorithm for constrained minimization. Optimization,

pages 247–258, 1969.

[Mur71] Walter Murray. Analytical expressions for the eigenvalues and eigenvectors of

the Hessian matrices of barrier and penalty functions. J. Optimization Theory

Appl., 7:189–196, 1971.

[Mur74] Frederic H. Murphy. A class of exponential penalty functions. SIAM J. Control,

12:679–687, 1974.

[MW94] Walter Murray and Margaret H. Wright. Line search procedures for the loga-

rithmic barrier function. SIAM J. Optim., 4(2):229–246, 1994.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms

in convex programming, volume 13 of SIAM Studies in Applied Mathematics.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

1994.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series

in Operations Research and Financial Engineering. Springer, New York, second

edition, 2006.

BIBLIOGRAPHY 71

[NWW05] Jorge Nocedal, Andreas Wächter, and Richard A. Waltz. Adaptive barrier

strategies for nonlinear interior methods. Technical Report RC 23563, IBM

T.J. Watson Research Center, Yorktown, USA, 2005.

[OR70] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations

in Several Variables. Academic Press, New York, 1970.

[Pie69] Tomasz Pietrzykowski. An exact potential method for constrained maxima.

SIAM J. Numer. Anal., 6:299–304, 1969.

[PS82] Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse

linear equations and sparse least squares. ACM Trans. Math. Softw., 8(1):43–

71, 1982.

[Rob72] Stephen M. Robinson. A quadratically-convergent algorithm for general non-

linear programming problems. Math. Programming, 3:145–156, 1972.

[SL99] X. L. Sun and D. Li. Logarithmic-exponential penalty formulation for integer

programming. Appl. Math. Lett., 12(7):73–77, 1999.

[Sto75] David R. Stoutemyer. Analytical optimization using computer algebraic ma-

nipulation. ACM Trans. Math. Software, 1:147–164, 1975.

[Tap80] Richard A. Tapia. On the role of slack variables in quasi-Newton methods

for constrained optimization. In Numerical Optimisation of Dynamic Systems,

pages 235–246. North-Holland, Amsterdam, 1980.

[Van99] Robert J. Vanderbei. LOQO: an interior point code for quadratic programming.

Optim. Methods Softw., 11/12(1-4):451–484, 1999. Interior point methods.

[WB06] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming. Math.

Program., 106(1, Ser. A):25–57, 2006.

[Wol69] Philip Wolfe. Convergence conditions for ascent methods. SIAM Rev., 11:226–

235, 1969.

[Wol71] Philip Wolfe. Convergence conditions for ascent methods. II. Some corrections.

SIAM Rev., 13:185–188, 1971.

72 BIBLIOGRAPHY

[Wri05] Margaret H. Wright. The interior-point revolution in optimization: history,

recent developments, and lasting consequences. Bull. Amer. Math. Soc. (N.S.),

42(1):39–56 (electronic), 2005.

	Abstract
	Acknowledgements
	Introduction
	The Basic Problem
	A Few Approaches to Solving Problems with Inequalities
	A Case for a Barrier Optimizer
	A Brief History of Barrier Methods
	First Era: The Original Log-Barrier Formulation
	Second Era: The Primal Log-Barrier Formulation
	The Primal-Dual Equations

	Similar Projects
	Outline of the Remaining Chapters

	Development of Equations and Initialization
	Introduction
	Log-Barrier Problem Revisited
	One Sided Bounds and Free Variables

	The Optimality Equations and Their Linearization
	Overview of the Algorithm
	Selection of an Initial Point
	Presolving
	Fixed Variables
	Redundant Constraints

	Conclusion

	Search Direction Computations
	Introduction
	Scaling the Modified Primal-Dual System
	 ZT(H+D)Z Positive Definite, A Full-Rank
	Computation of a Null-space Basis Z
	Solving for a Particular Solution of Ax = r2
	Solving the Reduced Hessian System
	Solving for the Dual Search Directions
	Correctness of the Algorithm

	ZT(H+D)Z Indefinite, A Full-Rank
	Theoretical Framework
	Solution Strategy

	ZT(H+D)Z Indefinite, A Rank Deficient
	Conclusion

	Merit Function Based Linesearch
	Introduction
	Merit Functions and Linesearch Algorithms
	Use of Augmented Lagrangian Merit Function in IPSOL
	Linesearch Termination Criteria
	Intuition Behind the Linesearch Algorithm
	Linesearch Algorithm
	Initialize the Interval of Uncertainty
	Trial Step Generation
	Update the Interval of Uncertainty

	Updating the Variables
	Conclusion

	Numerical Results
	Introduction
	Decreasing from One Subproblem to Another
	Termination Criteria
	IPSOL Interface to CUTEr Test-set
	Performance on CUTEr Small-Scale Problems
	Performance on a Few CUTEr Large-Scale Problems
	Comparisons with IPOPT and LOQO

	Contributions and Future Research
	Overcoming the Temporary Incompatibility
	L1 Elastic Variables

	Bibliography

