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Abstract

Image restoration is the process of approximating an original image from an observed blurred
and noisy image. It is an inverse problem whose goal is to use the observed image and
any knowledge of the statistics of the noise and blur to produce an image that is better
in a quantitative sense. When the blurs are linear and spatially invariant, they can be
represented as a convolution in an integral equation. Discretizing the convolution produces
a large-scale algebraic system.

In the absence of information about noise, we can model the image restoration problem
as a nonnegatively constrained least squares problem (NNLS). We then find that enforcing
nonnegativity is computationally nontrivial, and that direct methods for NNLS problems
are not appropriate because of their high memory and work requirements. Expectation
Maximization (EM) methods have been used widely as iterative methods because they re-
quire moderate memory, but they converge slowly. Thus, faster iterative algorithms are
needed. We propose a primal-dual interior method for the NNLS problem, with an iter-
ative solver computing each search direction approximately. Primal-dual methods need a
moderate number of iterations regardless of the problem size. (There may be millions of
variables for a moderate size image.)

Observing that a large percentage of pixels in the original image are essentially zero, we
present some methods for taking advantage of sparsity in the solution of NNLS problems
by interior methods. We also explore the use of simplex-like nonlinear methods such as
the reduced-gradient method, which prove to work well for extremely sparse images (in
applications such as astronomy and signal decomposition). Numerical examples include a

satellite image and a star image obtained by the Hubble Space Telescope.
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Chapter 1
Introduction

In this chapter we discuss the image degradation process and the difference between local

filters and global filters. We also discuss the organization of the thesis.

1.1 What is Image Restoration?

Image restoration (or reconstruction) finds an approximation as close as possible in some
measure to the original image from a blurred and noisy image. The image restoration
problem is known as an ill-posed problem, because small changes in the data can cause
arbitrarily large changes in the results. The goal of our study is to provide a fast and
numerically stable algorithm to solve the image restoration problem.

An image is a two-dimensional light-intensity function, denoted by f(z,y), where the
value (or amplitude) of f at spatial coordinates (z, y) gives the intensity (brightness) of the
image at that point. The degradation process is modeled as a blurring operator H that,
together with an additive noise term 7(z,y), operates on an input image f(z,y) to produce
a degraded image g(z,y). Figure 1.1 shows the relationship between an input image f(z,y)
and the output image g(z,y) with blurring operator H and 7.

f(x,y)—= H —»@—» ax,y)

Figure 1.1: Image degradation process
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The blurring operation, which is linear and spatially invariant, can be expressed as a
convolution. Most image restoration methods are based on the convolution applied to the
whole image. In other words, image restoration can be viewed as the process of obtaining
an approximation of f(z,y), given g(z,y) and knowledge of the degradation in the form of
H, and possibly some information about the noise. Noise in imaging is usually additive or
multiplicative, but we deal only with additive noise. We can use one of the common noise
models (Gaussian, Laplacian and uniform) if we know the nature of the noise. We do not
assume any distribution of the noise in this thesis, but our least squares model is best suited
to Gaussian noise.

The image restoration problem can be modeled algebraically in several different ways
depending on the criteria used to measure the quality of the restored image and the avail-
ability of information about noise. When we express the image restoration problem as a
mathematical model, the algebraic system is so huge that direct methods would require
too much storage and time. Thus, previous studies have tried to develop efficient iterative
algorithms to find approximations to the original image [24, 33, 32, 48, 18, 4]. One realis-
tic mathematical model for image restoration is a nonnegatively constrained least squares
problem (the NNLS problem). The least squares model is justified by the fact that the least
squares estimator is unbiased and has minimum variance when the noises are uncorrelated
and all have zero means and the same variance [2, 25]. The least squares formulation with-
out nonnegativity constraints on the variables is much easier to solve compared to the one
with nonnegative constraints, but its solution is poor. Enforcing nonnegativity constraints
on solutions to least squares systems introduces a high computational load, although it is
not difficult to describe the mathematics.

Sparsity is inherent in certain cases, such as telescope images of the universe. We
observed that for some images, a huge number of pixel values in the image solution were
essentially zero, which means the original images are very sparse. We develop special

methods to take advantage of sparsity in images.

1.2 Local vs. Global Filter

Local filters, which includes the median filter, linear average filter, max filter, and min
filter, use information from the local neighborhood of a pixel to restore that pixel [17]. In
contrast, global filters use information from the entire image to restore each pixel. Most
image degradations have global effects; the blurring caused by optical limitations within

an imaging device has a point spread function (PSF), which is a blurred image of a single
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point source of light: The PSF is infinite in extent, and the power spectrum of additive noise
covers the entire frequency domain evenly. Therefore, local filters alone are not sufficient
to restore an image. Two widely used global filters are the inverse and the Wiener filter,
both of which can be described as an algebraic system that finds a solution using the whole
image. These filters have a disadvantage; they are quite slow. It takes several hours for a
moderate sized image on a reasonably fast machine to generate acceptable results. For this

reason, our study explores the use of fast iterative algorithms for global filters.

1.3 Measure of Image Quality

To compare results, we need a measure for image quality. However, image quality is highly
subjective—it depends on the person who is viewing the image. One widely used measure
is a residual norm or a mean squared error (MSE). One weakness of this measure is that
it depends strongly on the scaling of variables despite the fact that the image is invariant
to scaling. If we know the true solution as we do for test problems, we can compute the
relative error. The relative error avoids the sensitivity to scaling. We compare results for
the same image only because one image with a larger relative error may look better than
another image with a smaller relative error. We use the 2-norm of a residual vector, relative

error, and the distribution of the solution as the performance measure.

1.4 Organization of the Thesis

In Chapter 2, we review the degradation model through a matrix representation of a 2-D
convolution, where the blurring matrix H is Block Toeplitz with Toeplitz blocks (BTTB).
We focus on the computation of matrix-vector products Hz and H'y because they are
the essential part of iterative methods. We can do these matrix-vector operations very
efficiently using matrices that are Block Circulant with Circulant Blocks (BCCB), the
circulant extension of BTTB.

Chapter 3 covers the mathematical model for image restoration. First, we consider the
unconstrained least squares problem, which is known as an inverse filter. The inverse filter
works reasonably well if the noise is negligible. We briefly give some methods for establishing
an inverse filter. Then we discuss constrained image restoration, including nonnegatively
constrained image restoration and the Wiener filter.

In Chapter 4, we investigate different problems for nonnegatively constrained image
restoration. Nonnegative least squares (NNLS), maximum likelihood (ML) and Chebyshev
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problems are presented. We also study numerical methods for these problems.

Chapters 5, 6 and 7 discuss numerical methods for NNLS. First, Chapter 5 discusses the
scaled steepest descent (SSD) method in detail. The SSD method works well in the early
iterations, but the performance is very poor as iterations continue. By and large, SSD is
not recommended, but we can take advantage of the intermediate solutions from SSD for
the initial points for other methods that behave well near the solution.

In Chapter 6, we focus on primal-dual interior methods for problems with a separable
convex objective function. Our experience shows that interior methods, which give solutions
containing many small nonzero values, are especially good for gray-scale images, although
they work reasonably well for color images as well. We also present some numerical results
using PDSCO [41], which implements a primal-dual interior method for problems that have
a separable convex objective function and linear constraints.

Chapter 7 describes simplex-like methods for problems with nonlinear objective func-
tions. In particular, we applied the reduced-gradient method in MINOS [29, 30]. This
should work well for images arising from fields like astronomy, where the image is extremely
sparse and only a small number of nonzero values have an impact on the quality of the
image.

Chapter 8 covers ML, ¢;, and Chebyshev problems. The ML model has been widely
used in medical imaging, where Poisson noise is adequate. Chebyshev and ¢; approximation
are given as an alternative to least squares problems because they can be converted into
linear programs, for which interior methods are already established.

Chapter 9 summarizes numerical results on test problems and discusses advantages and
disadvantages of each method we cover in this dissertation.

Finally, Chapter 10 presents summaries and conclusions about our study, and a descrip-

tion of future work.



Chapter 2
Background

The background material in this chapter summarizes the approach described in the book
by Gonzalez [17]. We express the degradation model as a 2-D convolution in an integral
form first, then we discretize the 2-D convolution. The discretization boils down to a huge
algebraic system with a special structure. To handle the large-scale system, we treat the

coefficient matrix as an operator.

2.1 Degradation Model

To establish a model for the degradation of an image, we use the term image to refer
to a two-dimensional light-intensity function, denoted by f(z,y). As light is a form of
energy, f(z,y) should be nonnegative in reality. The degradation process is modeled as
an operator H together with a noise 7(z,y), which operate on an input image f(z,y) to
produce a degraded image g(z,y). The observed image, a blurred and noisy copy of f, can

be represented as
9(z,y) = H[f(z,y)] + n(z,y).

The operator H is linear if

Hlk1f1(z,y) + k2 fa(2,y)] = ki H [f1 (2, y)] + ke H[fa(2, )],

where k1 and ko are constants and fi(z,y) and fo(x,y) are any two input images. Linearity
means both additivity and homogeneity. Additivity means that if H is a linear operator,
the response to a sum of two inputs is equal to the sum of the two responses. Homogeneity
indicates that the response to a constant multiple of any input is equal to the response to

that input multiplied by the same constant. An operator H is said to be space (or position)
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invariant if
H[f(z —a,y — B)] = g(z — a,y — B)

for any f(z,y) and any « and . This definition states that the response at any point in
the image depends only on the value of the input at that point, not on the position of the
input. Our discussion is limited to a linear and space invariant H. The advantage of lin-
ear, space invariant processes is that they make the extensive tools of linear system theory
available for the solution of the image restoration problem. Even if nonlinear and space vari-
ant techniques are more general and usually more accurate, they introduce computational
difficulties.

We can now express the degradation process algebraically. We can write f(z,y) in the

following form using the impulse function ¢:

fzy) = //f(a,ﬁ) 5z — oy — ) da dp.
Then,

g(z,y) =H[[[ f(e, ) 5(x — o,y — B) dev dB] + (s, y)
= [[H[f(a,8) 6(z — a,y — B)] da dB + 1(z, ) (2.1)
= fff(aaﬂ) H[5($ - o,y _18)] do dﬁ‘l‘ﬂ(ﬂﬁay),

since H is a linear operator and f(«, ) is independent of z and y. The term

h(.’L‘, aayw@) :H[ 6(‘7"_0‘7?/_/6)] (22)

is called the impulse response of H. The impulse becomes a point of light, so h(z, a, y, () is
also called the point spread function (PSF). This name is based on the optical phenomenon
that occurs when the impulse corresponds to a point of light and an optical system responds
by blurring (spreading) the point, with the degree of blurring determined by the quality of
the optical device. Substituting (2.2) into (2.1) yields

9(z,y) = / / F(a,B) hiz, . B) da df + (s, y),

which is called a superposition (or Fredholm) integral of the first kind. It states that if the
response of H to an impulse is known, the response to any input f(«, 3) can be calculated

by means of the point spread function. In other words, a linear system H is completely
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characterized by its PSF. Since H is space invariant, we obtain

H[(S(.’L‘—a,y—ﬂ)] :h(l‘_aay_ﬁ)'

This indicates that the impulse response simply shifts with movements of the impulse and

does not change its shape. Thus, the linear degradation model becomes

g(z,y) = / / F(es ) iz — oy — ) da df + n(z, ), (2.3)

which is the convolution integral.
To be suitable for computer processing, an image function f(z,y) must be digitized both
spatially and in amplitude. Thus, we can approximate a continuous image f(z,y) by an

n X n matrix:

fa = | 1Y e 1
f(TL—l,O) f(n_]-al) f(n_172) f(n_lan_l)

Although the matrix can be rectangular depending on the sampling method, we use the
square matrix for simplicity. To make the mathematics easier, we represent an image as a

vector f € R" by stacking column by column:

f = vee(f(z,y)),

where the vec operation makes a matrix into a vector by stacking the columns of the matrix.
We discuss this process in detail in Section 2.3.1, where we treat z and y as either a discrete
or a continuous variable depending on the context. For more details about the degradation
process using the PSF, refer to Gonzalez [17] and Pratt [39].

2.2 2-D Discrete Convolution

Now we consider the discrete degradation model through discretization by formulating
f(z,y) and h(x,y) as discrete arrays of size of n X n as shown in (2.4). The discrete

version of the convolution

@) = [ [ £(0.6) ho — avy — §) dacdp
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is
n—1 n—1

g($,y) = Z Zf(a,ﬂ)h(x -,y _18)5

a=0 =0

where h(x,y) is considered to be periodic with period N = 2n —1 in the x and y directions.
That is,
h(z,y)=0 forn<z<N-lorn<y<N-1,

and

h(z,y) = h(z',y) whenever z =2z’ mod N,

h(z,y) = h(z,y’) whenever y =19 mod N,

where mod is the modulo operator. In matrix notation, ¢ = Hf, where f and g are

vectorized images and

[ Hy H., H., - H_,]
H, Hy H. -+ H_ppo
H=| H H, Hy --- H .43, (2.5)
_Hn—l Hn—2 T Hl HO i
Each block Hj is
[ n(0,5)  h(-1,5) A(-25) - A(-n+1,j)]
h(17 ) h’(O:J) h(_]-:J) h(_n+27.7)
; h(-1,5)
_h(n_17j) h(n_17.7) h(]al) h(07.7)

The first column of Hj is the j-th column of h(z, y) and H; is Toeplitz, that is, H; is constant
along its diagonals. H is called BTTB (block Toeplitz with Toeplitz blocks) because it is
Toeplitz blockwise and each block is Toeplitz. The Toeplitz property of H arises directly
from the space invariance of the degradation operator H from Section 2.1. The structure of
H is determined by the properties of the degradation operator H, and this structure plays

an important role in computing the matrix-vector product. For example, the convolution
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for 2 x 2 images can be written as follows:

Joo hoo h-i0 ho—1 h_i,—1| [foo
go| _ hio hoo hi—1 ho—1 fio
go1 h0,1 h—1,1 ho,o h—1,0 for

11 hipn  hoa higo ho,o fu

Here ho,o is the center of the given PSF. If the given PSF is not in this order, it must be
reordered so that hg is placed at the (1,1) position. Figure 2.1 shows the general nonzero
structure of H when the size of the image is 8 x 8. Each block is banded, as is the full BTTB
matrix itself. Kamm and Nagy [21] elaborate on the structure of banded BTTB matrices
from the PSF. We shall utilize the banded BT'TB nonzero pattern in this study.

Nonzero structure of H
0 T T T T

10 b

30

60

L
0 10 20 30 40 50 60
nz = 2304

Figure 2.1: General nonzero structure of a BTTB matrix H

Although the algebraic expression of the degradation model looks simple, a direct so-
lution to get f would incur a tremendous computational cost for images of practical size.
For example, if n = 256, H is of size 256 x 2562, i.e. 65536 x 65536. Saving H explic-
itly would require about 35 gigabytes if we store data as double precision floating-point

numbers. Thus, it is not practical to save H explicitly. Instead, we should rely on iterative
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methods in which H is regarded as an operator for obtaining products Hz and H”y cheaply

for arbitrary vectors z and y. However, the complexity of this problem can be reduced con-

siderably by taking advantage of an extended form of H that has circulant properties. We

can do the matrix-vector operations with the extended H quickly by using a discrete 2-D

Fourier transform and its inverse. We extend the discrete functions f(z,y) and h(z,y) to be

periodic with some period N. It is known that N > n+n—1 = 2n—1 to avoid interference

from adjacent periods [17]. We set N = 2n for convenience. For two digitized n X n images

f(z,y) and h(z,y), we form N x N periodic extensions f.(z,y) and he(z,y):

f(z,y)

fe(way) =
0

and similarly for he(z,

fe(z,y) = l

f(z,y)

Onxn

O’ILX’I’L

Onxn

0<zx<n
n<z<

y). In matrix notation,

] ) he(way) = [h(x’y)

—1 and 0<y<n—1
N —

n<y<N-1

Oan

OHX'FL
Onscn |

Since fe(z,y) and he(z,y) are periodic extensions, both fe(z,y) and he(z,y) are periodic

with period N in the z and y directions. That is,

fe(z,y) =
fe(z,y)

fe(z',y)
= fe(x,yl)

whenever

whenever

z=2" mod N,

y=1v mod N.

We find the discrete formulation of the degraded model by discretizing the equation:

LR

||Pﬂ|2

he(z — o,y — B)-

For notational convenience, f and ¢ are overloaded and interpreted as either a vector or

a matrix of appropriate size depending on the context. This discrete convolution can be

expressed in the matrix-vector form g, = Cf., where f, g, and 7 are RV * vectors and

G

(&
C>

C 4

C_»

(&

C_nNy1
C_nN42
C nN+3|.

Co
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Each block Cj is a Toeplitz matrix

h(j,1)

11
h(—N +1,7)]
h(=N +2,7)
h(0, 5)

The first column of C} is the j-th column of h(z,y). Each partition of C is a Toeplitz matrix

Cj in (2.6). We can simplify the notation using the periodic property of the extended images.

Thus, C becomes

Co Cn-1
Ci Co
cC=| Ci
|Cn-1 Cn-2
where each block C; is
[ B(0,5)  h(N-1,5)
h(1,j) h(0, 5)
AN = 1,5) h(N = 2,)
For example, we consider 2 x 2 images:
f(0,0) f(0,1) 0 0
P E ORI
¢ 0 0o 0 o|
0 0 0 0

Cn-2
Cn-1
Co

C1

h(N —1,j)
"0, )

o
Cs
(s, (2.7)
6
h(1,5)]
h(2, j)
h(3,4) (2.8)

S O O O
o O o O
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Using vector notation, they can be written as follows:

foo 900
flO gio
0 0
0 0
fo1 go1
fi1 911
0 0
f |0 |0
e=lolw 9= |0 |
0 0
0 0
0 0
0 0
0 0
0 0
L 0 Jd L 0 .
and
[hoo 0 0 hig O O O 0 O 0O 0 0 hoy O 0 hi]
hio hoo 0 0 0 0 0 0 0 0 0 0 hi1  hoi 0 0
0 hio hoo 0 0 0 0 0 0 0 0 0 0 hi11  hoi 0
0 0 hio hoo 0 0 0 0 0 0 0 0 0 0 hi1  hoi
ho1 0 0 hi1  hoo 0 0 hio 0 0 0 0 0 0 0 0
hi1  hoi 0 0 hio hoo 0 0 0 0 0 0 0 0 0 0
0 hi1  ho1 0 0 hio hoo 0 0 0 0 0 0 0 0 0
C _ 0 0 h11  hoi 0 0 hio hoo 0 0 0 0 0 0 0 0
0 0 0 0 ho1 0 0 hi11  hoo 0 0 hio 0 0 0 0
0 0 0 0 hi1  hoi 0 0 hio hoo 0 0 0 0 0 0
0 0 0 0 0 hi1  hoi 0 0 hio hoo 0 0 0 0 0
0 0 0 0 0 0 hi1  ho1 0 0 hio hoo 0 0 0 0
0 0 0 0 0 0 0 0 ho1 0 0 hi1  hoo 0 0 hio
0 0 0 0 0 0 0 0 hi11  hoi 0 0 hio hoo 0 0
0 0 0 0 0 0 0 0 0 hir hor O 0 hio hoo O
L O 0 0 0 0 0 0 0 0 0 hir hor O 0 hio hoo
The sparsity of the matrix C is % = % assuming that every element of h(z,y)

is nonzero, which is true in practice. The elements of each column of C; are identical
to those of the previous column, but are shifted one position to the right and wrapped
around. Such a matrix is called circulant and denoted by C; = circ(first column of C;) =
circ(he(0,7), he(1,7), he(2,7), ..., he(N—1,7)). The matrix C is called a block circulant with
circulant blocks, abbreviated BCCB, which means that it is circulant blockwise and each
block is a circulant matrix. BCCB is not necessarily circulant. The hgo element should
be the center of the PSF as in the BTTB case. If the center is not located in the (1,1)
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position, we shift the extended matrix circularly so that the center of the PSF is in the
(1,1) position. This must be done in order to get the spectrum correct. Figure 2.2 shows
the general nonzero structure of BCCB when the size of the image is 8 x 8. A further,

more extensive discussion of BTTB and BCCB matrices may be found in Vogel [47].

Nonzero structure of BCCB

50

100

150

200

250

L L
100 150
nz = 16384

Figure 2.2: General nonzero structure of a BCCB matrix C

2.3 Matrix-Vector Product

In the previous section, we modeled the degradation process as ¢ = Hf +7. No matter what
criteria we use to find the approximation of f from the observed g, the key computational
operation is matrix-vector multiplication Hz and H”y for arbitrary vectors z and y. We

provide an efficient way of computing the matrix-vector product using Cz and Cly.
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2.3.1 Kronecker Product and the vec Operator

Let A and B be m x n and p X ¢ matrices, respectively. Then the Kronecker (or tensor)

product of A and B is the mp x ng matrix defined by

anB ai2B --- a1,B
ang ang e a2 B
amlB asz .- amnB

where a;; is the (i, j) element of A. Some useful properties of the Kronecker product are in
Appendix B. The vec operator maps R™*™ to R™", stacking the columns of a matrix in a
vector:

T
VEC(A) = [an ar ... Qm1 G2 a2 ... Qm2 ... amn] .

The mat operator defines the inverse of vec, and the vec (mat) operators reshape matrix

(vector) into vector (matrix), respectively. From these definitions,

mat(vec(4)) = A for matrix A,
vec(mat(z))

( z for vector z,
(A® B) vec(X) = vec(BXAT),

for any matrix X of appropriate size.

2.3.2 Fourier Matrix

In this section we explain the Fourier matrix that represents the Fourier transform, and in
the next section discuss the diagonalization of BCCB matrices through Fourier transform.
Let w be the N-th root of 1:

27 2 o 2
w = exp (—]W> = cos (N) — jsin (N) ,

where j = v/—1. We define the Fourier matrix of order N as

e J2muv/N

Fy(u,v) = /N

0<u,v<(N-1),
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and using the definition of w, we can write Fiy as

1 1 1 e 1
) 1 w w? .- wN 1
Fy=——]|1 w wh w2(V-1)
VN
1 wN-1 2(N-1) . ,(N-1(N-1)
Since the sequence w*, k= 0,1,..., is periodic with period N, Fy reduces to
[ 1 1 1]
) 1 w w? D T
Fy=—|1 w o' - V7?2 2.9
VN (29)

w w P w

A discrete Fourier transform (DFT), denoted by F, of a vector f € R" is

=

[F(F)i = fo e P2MVN 5 =0,1,2,...,(N = 1).

3
I

v

This DFT can be written as a matrix-vector product using the Fourier matrix Fy:
F(f)=Fnf.
We can then see that Fy and Fx* are symmetric:
Fy = Fy", Fy* = (Fy*)T =Fy.
The important property is that F is unitary, i.e.
FN*Fy =FyFy*=1 or Fy '=Fy*=F.

The superscript * denotes matrix conjugate transpose, Fy* = ET. The DFT of a vector
with NV entries can be computed using a fast Fourier transform (FFT) algorithm with com-

plexity O(N logyN), and similarly for the inverse FFT. This is a significant gain compared
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with O(N?) for large N. The two-dimensional Fourier transform is represented by

N—-1N—
ik = Z Z eI (u/N+ko/N) G e = 0,1,2,..., (N — 1).

The 2-D DFT is equivalent to applying the 1-D DFT to the columns and then the rows of
the matrix. The Fourier transform of a 2-D image f(z,y) can then be expressed using the

Kronecker product of Fy:
(FN ® FN) vec(f) = vec(FN f FNT) = vec(FN f FN).

Since Fiy f Fy is the 2-D DFT of f(z,y), it follows that mat((Fx ® Fy) vec(f)) is equiv-
alent to the 2-D DFT of f(z,y).

2.3.3 Diagonalization of Block Circulant Matrix

Any circulant matrix C, denoted by circ(c) = circ(cg,cy,--.,cn-1), can be diagonalized

by the Fourier matrix [10]:
C = Fx™* diag(\) Fy, (2.10)
where Fy is the Fourier matrix of order N and
A=F (VNe) =vNFye.

The components of A are the eigenvalues of C' and the columns of Fy* are the corresponding

eigenvectors.

From (2.10), each circulant block in (2.8) is decomposed using the Fourier matrix Fiy:
Cr = FN" A F,
where Ay is a diagonal matrix composed of eigenvalues of each circulant block Cl:

A, =F (\/]V - first column of Ck) =F (\/Jv Ckel> .

Now we consider the eigendecomposition of BCCB C. The matrix C is diagonalized as
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follows [10]:
C:(FN®FN)*A(FN®FN), (2.11)

where A = SV HON® @ Ag), Qn = diag(l,w,w?,...,wN"1). The diagonal elements of
diagonal matrix A can be expressed in terms of the elements of a 2-D Fourier transform of
he(z,y), H(u,v) [17]:

diag(A) = NF(vec(h.)) = N(Fy ® Fy)vec(he). (2.12)
The first N elements are H(0,0), H(1,0), ..., H(N — 1,0); the next, H(0,1), H(1,1),
...,H(N—1,1); and so on, with the last N diagonal elements being H(0, N—1), H(1, N—1),

.., H(N — 1, N — 1) multiplied by N. The diagonal matrix containing the eigenvalues, A,
is the 2-D DFT of h.(z,y) with a constant.

2.3.4 Cost of Matrix-Vector Computation

Now we show how we can compute Hf efficiently by making use of
Cfe= (FN®FN)*A(FN®FN)fea fe = vec(fe(z,y))
in the following four steps.

(1) fo = (Fy ® Fy)f. is a vectorized version of the 2-D DFT of f.(z,v).

(2) Let A = Af., The vector X is computed as A = Af. = X.* f., where the operator .x is

the elementwise product of two vectors.
(3) fo= (Fy ® Fy)*X is the inverse 2-D DFT of X.
(4) Apply mat(f,) and extract the leading n x n sub-block from the extended output.

Similarly, we can compute
C'f=C"f=(FN®FN)"N(Fy®Fn)f

efficiently as well. From the fact that C is a real matrix, C* = C* holds.
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To get the computational cost of direct computation Hf for arbitrary f, we start with

an example of 4 x 4 images. We denote the j-th column of f by f;. Thus, Hf becomes

Hy 0 0 07T[fo Hy fo
Hf = Hi Hy 0 0] [fn| _ Hifo+ Hof1
Hy, Hy Hy O] |fe Hyfo+H fi + Hof-

H; Hy, Hy Hy] [fs Hsfo+ Hofi + Hi fo + Ho f3

and it requires 14+2+43+4 = (4-5)/2 = 10 block multiplications. Each block multiplication

hoj 0 0 0| |for hoj for
Hify = hij hoj 0 O | |fir _ hyj for + hok for
haj hi; hoj 0 | | for haj for, + hak for + hor fox
hsj haj hi; hojl Lfsk hs;j for + hak for + hir for + hok for

requires 1 + 2+ 3+ 4 = (4-5)/2 = 10 multiplications. In general, Hf needs 1 + 2 +
3+---+n =mn-(n+1)/2 block multiplications, and one block multiplication requires
1+2+3+4---4+n=mn-(n+1)/2 multiplications. Therefore, the total work of the direct
computation is O(n*/4) overall. On the other hand, the total amount of work using Cf,
is O(N?logy(N)) because O(N?logy(N)) is needed for each 2-D DFT and we use one 2-D
DFT and one inverse 2-D DFT. Computing the eigenvalue matrix A requires the 2-D DFT
because eigenvalues are obtained from the 2-D DFT of h. However, since we compute this

only once before starting the main algorithm, the computation is negligible.

2.3.5 Some Properties of BCCB

In addition to the block circulant property, C has some important properties.

(1) Each row (column) sum is > , Z?Zl hij = 1. Thus, CTe = e, Ce = e. Furthermore,

each element is nonnegative; hence C is doubly stochastic.
(2) CT = C* because C is a real matrix.

(3) C is a normal matrix, i.e., CI'C = CC?. Hence, C is unitarily diagonalizable:
C=F*AF, F*'F=1.

(4) c'c = cc? = Cc*C = (F*A*F)(F*AF) = F*(A*A)F. Hence, CTC is also a
BCCB matrix.

(5) C = F*AF is not symmetric. C = F*AF # C1 = C* = F*A*F.
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(6) C could be singular.
(7) C~!= F*A~'F if C is nonsingular.

The first property derives from the fact that the PSF can be scaled such that the sum of
all elements of the PSF is one. Furthermore, the sum of every row (column) in C*'C is also

one because CTCe = CTe = e and CCTe = Ce = e. To prove that C is normal, we find

CTC = (F*A*F)(F*AF) = F*AA*F,
CCT = (F*AF)(F*A*F) = F*A*AF.

It is obvious that A*A = AA* holds because A and A* are diagonal.

2.4 Test Problems

As test problems, we have two 256 x 256 color images provided by James Nagy. We refer
to them as the star image and the satellite image. In addition, we have a smaller version of
the satellite image of size 64 x 64. We use these three images throughout this dissertation to
test and compare image restoration methods. The basic information about the test images
is summarized in Table 2.1. In the next three sections, we present the true and degraded
images. The blurred images are degraded by a spatially invariant point spread function,

and also contain both Gaussian and Poisson noise.

Star | Satellite | Small Satellite
# of nonzeros | 470 6596 605
sparsity 0.0072 | 0.1006 0.1477

Table 2.1: The number of nonzeros and sparsity of images
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2.4.1 Star Image

The star image is extremely sparse and each nonzero represents a star in our galaxy. The
nonzeros are well separated and have no interdependency among them. Details are described

in Nagy and website [32, 45]. The true and degraded images are shown in Figure 2.3.

True Image Blurred Image

50 50

100 . 100
150

150

200 200

250
50 100 150 200 250 50 100 150 200 250

250

Figure 2.3: True and blurred image of star data

The distribution of pixels in the true and observed images is shown in Table 2.2.

True Image | Observed Image
[ le+04 , 1le+05) 5 0
[ le+03 , 1let+04) 84 5
[ 100 , 1e+03) 381 695
[ 10 100 ) 0 6549
[ 1, 10 ) 0 34080
[ 0.1 , 1) 0 8401
[ 0.01 , 0.1) 0 921
[ 0.001 |, 0.01) 0 0
[ 0 , le—04) 65066 0

Table 2.2: Distribution of true and blurred image of star data



2.4. TEST PROBLEMS

2.4.2 Satellite Image

Unlike the star image, the center of the satellite image is full of nonzeros representing the
body of the satellite and axes. The pixels are clustered together. Details can be found
in [33, 18]. The true and degraded images are shown in Figure 2.4. The distribution of

pixel values for the true and observed images is shown in Table 2.3.

True Image
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200 250

Blurred Image
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50 100 150 200 250

Figure 2.4: True and blurred image of satellite data

True Image | Observed Image
[ 0.001 |, 0.01) 0 0
[ 0.0001 , 0.001) 4881 254
[ 1le—05 , 0.0001) 1701 21018
[ le—06 , 1le—05) 67 37562
[ 1le—07 , 1e—06) 29 6700
[ 1le—08 , 1e—07) 0 2
[ 1le—09 , 1e—08) 0 0
[ 0 , 1le—09) 58858 0

Table 2.3: Distribution of true and blurred image of satellite data
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2.4.3 Small Satellite Image

The smaller version of the satellite image is obtained by extracting a 64 x 64 subimage from
the center of the satellite image in Section 2.4.2. This image is mainly used for testing and
comparing restoration methods before we give extensive computational results in Chapter 9.
The true and degraded images are shown in Figure 2.5. The distribution of pixels is shown

in Table 2.4.

True Image Blurred Image

o) 20 30 40 50 60

Figure 2.5: True and blurred image of small satellite data

True Image | Observed Image
[ le+04 , 1le+05) 264 0
[ le+03 , 1let+04) 265 1162
[ 100 , 1e+03) 69 1963
[ 10 100 ) 5 971
[ 1, 10 ) 2 0
[ 0.1 1) 0 0
[ 0 , 1le—01) 0 0

Table 2.4: Distribution of true and blurred image of small satellite



Chapter 3

Mathematical Model

In this chapter, we examine the algebraic approach to image restoration using optimization
techniques. The idea is to find an f that optimizes a criterion of performance with or without
some constraints. A criterion of performance is hard to define because image quality is not
only highly subjective, but also strongly dependent on the given application. We use the
2-norm of a residual vector and the distribution of the solution as the performance measure.
To describe the algorithm, we interchangeably use A, z, and b for H, f, and g respectively

since A, z, and b are more familiar notation.

3.1 Unconstrained Image Restoration

When we have no a priori information about noise, a meaningful criterion function is to
seek an approximation f such that Hf approximates g in a least squares sense. Thus, we
want to find f such that

Inll* = llg — Hf|I* (3.1)

is minimized. This is an unconstrained large-scale least squares problem and the coefficient
matrix H is BTTB as shown in (2.5).

3.1.1 Inverse Filter

Now we introduce the inverse filter from the algebraic viewpoint. If H has full column rank,

the least-squares solution of (3.1) gives the estimate

f=@TH) H . (3.2)

23



24 CHAPTER 3. MATHEMATICAL MODEL

If H is square and nonsingular, f = H™'g. If we assume that f(z,) and g(z,y) are periodic
with n in addition to space invariance, then BT'TB in (2.5) becomes BCCB of size n? x n2.

As noted in (2.11) of section 2.3.3, H is decomposed using a Fourier matrix:
H = F*AF,

where F = (F,, ® F,) and F), is the n x n Fourier matrix. Hence, we have f = F*A"'Fg.
Premultiplying both sides by F' yields

Ff=A'Fqy. (3.3)
Using the Fourier transform,
~ G(u,v)
F — 2\
(u,v) H(u,v)’

where Fg corresponds to G(u,v) and A~! corresponds to H(u,v). This approach is called
an jnverse filter because H(u,v) is considered a “filter” function that multiplies F'(u,v)
to produce the transform of the degraded image g(z,y). Computational difficulties arise
if H(u,v) vanishes or becomes very small in any region of interest in the u-v plane. The
more serious difficulty is encountered in the presence of noise. From the fact that G(u,v) =

H(u,v)F(u,v) + N(u,v), v
F(u,v) = F(u,v) + HEZ:Z;

This indicates that if H(u,v) is small compared to N(u,v), the term N(u,v)/H (u,v) dom-
inates the restoration result. In practice, H(u,v) drops off rapidly as a function of distance
from the origin of the u-v plane. However, the noise term usually becomes smaller at a
much slower rate. The quality of the restored image is usually poor unless noise is negligi-
ble. Using either (3.2) and (3.3) requires an H that has full rank. If H is rank deficient, we

have to resort to iterative methods where we do not assume full rank.

3.1.2 Conjugate Gradient Method

One of the main iterative methods for large-scale least squares problem is a form of the
conjugate gradient (CG) method. This method was originally developed for solving sym-
metric positive definite linear systems (Hestenes and Stiefel [19]). Each iteration requires
only one matrix-vector multiplication, plus a small number of inner products. The storage

requirements are also very modest, since the vectors are reused. Hestenes and Stiefel gave a
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reliable form of CG that is applicable to least squares problems (Freund, Golub, and Nachti-
gal [14]). We refer to this method as CGLS. It is mathematically equivalent to applying CG
to the normal equations H' Hf = H” g, but without forming H” H explicitly and without
forming products HT(Hy) For a detailed formulation of CG for the least squares problem,
we refer the reader to Bjorck [2]. For the least squares problem min||Az — b||2, CGLS is as

follows:
rg = b — A.TQ
po = so = Al'rg
70 = ||s0]®
for k =0,1,2,... while 7y, > tol compute
qx = Apg
2
ar = i/ ll gkl

Tk+1 = Tk + Pk

Th+1 = Tk — Qg

k1 = ATrp

Ver1 = sk ll?

Br = Ye+1/Vk

P+1 = Sk+1 + Bkpr
end

The convergence rate of CGLS depends on the distribution of singular values of A (eigen-
values of AT A). When these values are in a small number of clusters, then CG converges
quickly to a good approximate solution.

In the context of image restoration, the crucial drawback of the pure CG approach is
that it does not always produce a nonnegative solution. Early iterations may result in
solutions with large negative values and they remain as the iterations proceed [34]. In some

applications, the quality of the image is severely damaged by negative elements.

3.1.3 Preconditioned Conjugate Gradient Method

To make CGLS more useful, some form of preconditioning may be used. A preconditioned

conjugate gradient method (PCGLS) solves

min%ymize llg — (HCil)yHQ, Cf=uy, (3.4)
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where C should be chosen so that HC~! has a more favorable spectrum than H, and Cf = y
and CTg = z are easily solved for arbitrary y and z. The description of the PCGLS method

for min ||Az — b||2 is as follows:

Ty = b— AJ?O
po = so = C~1(ATry)

Yo = |Is0]?

for k=0,1,2,... while v, > tol compute
ty =C 'py
Qe = Aty
ar =/ llax

Tk+1 = Tk + QgPk

Th+1 = Tk — Qkgk

skp1 = O T (ATry41)

Vet = |lsk4a]?

Br = Ye+1/Vk

Pk+1 = Sk+1 + BkPk
end

The choice of an appropriate preconditioner depends on the trade-off between the gain
in the convergence rate and the increased cost that results from applying the preconditioner.
Many different choices have been proposed [2] for the general case, and some preconditioners
based on the block Toeplitz structure of H have been developed. Chan [6] introduced the
optimal circulant preconditioner, which is the closest circulant matrix in the Frobenius
norm. Chan and Olkin [7] extend this to the block case, that is, they compute a BCCB
matrix C' minimizing |H — C||r. Systems involving C and CT are easily solved using the
block circulant property of C. The BCCB approximation works well when the unknown
true solution is almost periodic. If this is not the case, the performance of BCCB can

degrade.

The approximate inverse preconditioner using the properties of H has been proposed [33].
One simple preconditioner is the diagonal preconditioner. As we will see in Chapter 6, the
diagonal elements of AT A are easy to compute. The optimal Kronecker product approxi-
mation was proposed by Kamm and Nagy [21]. The optimal Kronecker approximation finds
n X n matrices Ay and By, that minimize |H — )" Ay ® Bg||r- The optimal Ay and By are

banded Toeplitz matrices as well.
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3.2 Constrained Image Restoration

As a natural extension from the unconstrained restoration, we consider some constrained
least squares problems. First, if we have some knowledge about the noise, we can use this

information to find a good estimate for f by solving

minifmize 1QfII?

(3.5)

subject to |lg —Hf|* = ||n|%,

where @ is a linear operator on f defining a performance criterion. This formulation provides
considerable flexibility in the restoration process because it yields different solutions for

different choices of Q). The solution of (3.5) is given by
f=@\"H+1QTQ) BTy, (3.6)

where 7y is a Lagrange multiplier. The proof is given in [17].

Problem (3.5) is equivalent to the least squares problem

(,f@) a @

The approach is known as Tikhonov regularization [47].

min

2

3.2.1 Wiener Filter

The Wiener filter is a solution to the dilemma of the inverse filter discussed in Section 3.1.1.
It provides a least squares estimate of an object from its blurred image when the noise is

additive and independent of the image. We define
Q"Q=R; 'Ry, (3:8)
where R; and R, are the correlation matrices of f and 7 defined by
Ry =E(ff"), Ry=E(m").

Since the correlation is defined by expectation, it follows that Ry and R, are real symmetric
matrices. The Fourier transform of these correlations is the power spectrum (or spectral
density) of f(z,y) and n(z,y), denoted by Sf(u,v) and S,(u,v). We can choose Ry and R,
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to be approximate block-circulant matrices, and then Ry and R, can be diagonalized by
F = F, ® F, as we do with H. From (3.6) and (3.8),

f=HTH+~R; R, 'H .
If we assume that f(z,y) and g(z,y) are periodic with n with Ry = F*AfF and R, =
F*A,F,
f = (F*A*"AF +yF*A; 'A,F) ' F*A*Fy.
Multiplying both sides by F' and performing some manipulations gives

Ff=(A"A+vA; 'A) ' A*Fy.

When we rewrite this in terms of 2-D Fourier transforms,

~ H*(u,v)
F(u,v) = G(u,v
o) [|H(u,v)\2 +7[5n(u,v)/5f(u,v)]] )
_ [ |H (,0) ] Gl
[H(“a“) |H (4, 0)[* + 1Sy (u,0)/ S (u, 0)] (o)

where |H(u,v)|> = H*(u,v)H(u,v). When = 1, it is called the Wiener filter. If ~
is variable, this expression is called a parametric Wiener filter. In the absence of noise,

Sy(u,v) = 0, this reduces to the ideal inverse filter. Thus, the Wiener filter is expressed as

1 |H (u,v)|? ]
Wu,v) = . 3.9
(u,v) [H(U,U) |I{(u,'u)‘2 —|—’y[Sn(u,’U)/Sf(u,’U)] (3.9

From (3.9), it follows that

(1) W(u,v) ~ m

comes an inverse filter when the signal to noise ratio is much greater than |H (u,v)| 2.

S
if H(u,v) # 0 and S—f > |H(u,v)| % that is, the Wiener filter be-
n

(2) W(u,v) =0 if |H(u,v)| = 0 or % & |H (u,v)| 2.
n

Clearly, the Wiener filter will give a better approximation than the inverse filter because
we use the noise information. However this does not enforce nonnegativity. When noise

information is not available, we consider the nonnegatively constrained problem.
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3.2.2 Nonnegatively Constrained Image Restoration

In the unconstrained formulation, we can obtain negative values for some elements of the
solution f, which diminishes the quality of an image. It is reasonable to formulate the
degradation model as a nonnegatively constrained image restoration because the image
is nonnegative from the fact that it is one form of energy. We establish an attractive
model, a nonnegatively constrained least squares (NNLS) problem, by adding nonnegativity

constraints to the least squares formulation:

minifmize lg —Hf|?

subject to f > 0.

We discuss NNLS and other formulations in detail in Chapter 4.



Chapter 4

Nonnegatively Constrained Image

Restoration

Although the inverse filter is a meaningful criterion of performance when we have no infor-
mation about the noise, the quality of the output is susceptible to the noise and to negative
elements. As we have seen, the Wiener filter provides the solution to the problems posed by
the inverse filter, but it requires some information about noise (such as correlation) and it
does not produce nonnegative solutions. As a remedy, we formulate the image restoration
problem as a nonnegatively constrained least squares problem. In this chapter, we examine

the possibilities of problem formulation and the numerical methods for each problem.

4.1 Choice of Problem

4.1.1 NNLS

The unconstrained least squares estimate has a sound statistical justification behind our
intuition. In fact, the least squares estimate is optimal without any assumptions that the
random noise follows a particular distribution [2]. We only assume that the random variables
n; are uncorrelated and all have zero means and the same variance, that is, E(n) = 0,%X =
021, where X is the covariance matrix. If the random noises 7; follow a normal distribution,

we have the following property.

Theorem 4.1.1 The least squares estimate is the mazimum likelihood estimate when the

random noise variables n; follow a normal distribution.

30
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Proof. Under the assumption that the noise variables n; follow a normal distribution, the

likelihood function is

1 1 -1
- = —3n-0)x"(n-0)
= e 2
f(n) PRESTIE
_ 1 o L(b-A2)S 1 (b Ag)

(2m)"/2 |51/

where |X| is the determinant of . We use E(n) = 0 in the first equation. Since ¥ = o1,
maximizing the likelihood function f(n) is equivalent to minimizing the 2-norm of the
residual vector, ||b — Az|>. Therefore, computing a least squares estimate is identical to
obtaining a maximum likelihood estimate when the noise variables 7; are independent and

identically distributed random variables having normal distribution. |

However, the least squares estimate must be constrained because images are nonnega-

tive. Therefore, we use the NNLS problem:

minimize f(z) = 3||b — Az|?
mize f(z) = [lb — Aa| "

subject to x > 0.

The gradient of f(z) is Vf(z) = AT(Az — b) and the KKT optimality conditions for (4.1)

are

z
Vi(z
Vi(z) z

AVARAY

(4.2)

The problem reduces to finding a nonnegative = that satisfies (Az — b)TAx = 0. Handling
nonnegativity constraints is computationally nontrivial because we are dealing with expen-
sive nonlinear equations. An equivalent, but more tractable, formulation of NNLS using

the residual variable p = b — Ax is as follows:

C e . 1.7
minimize sp’ p
P 2 (4.3)
subject to Az +p=10b, x>0.

The advantage of this formulation is that we have a simple and separable objective function

with linear and nonnegativity constraints. We delve into this formulation in Chapters 5-7.
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4.1.2 ML

The maximum likelihood (ML) model assumes the noise has a Poisson distribution. It has
been widely used in image reconstruction arising from medical imaging such as positron
emission tomography [34]. The problem formulation using the mazimum likelihood function

J(z) is as follows:

miniwmize J(x) = (Az), — > bilog (Ax),

subject to x > 0.

(4.4)

Again we can introduce variables s = Ax to obtain a linearly constrained formulation:

. . . T _ 3 3
mu;l’rsmze e''s—> b;ilogs; (4.5)
subject to Az —s=0, z,s>0

The justification for using a maximum likelihood function comes from the statistical prop-
erties of the random noise, which are related to the Poisson noise. If we assume that

E(b) = Az and b; are independently Poisson distributed, then the likelihood is written as

" (Ax).bie—(Az)i
Prob(b|Az) = [ %
3 7.

The ML criterion is formed by taking the log of the likelihood:

n
log Prob(b|Az) = Z(bi log (Az); — (Az); — log(b;)) )
i=1
Ignoring the constant term and putting a minus sign to convert to minimization, we obtain
J(z) = Y (Az); — > bilog (Az), as an objective function. Another interpretation of the
Poisson model for the ML objective function is found in [20]. Chapter 8 covers the ML

formulation in detail.

4.1.3 Chebyshev and /; Approximation

In solving a least squares problem, we minimize the 2-norm of a residual vector as a per-

formance measure. As alternative measures, we can use the ¢; and ¢;nfty norm. The /;
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approximation formulation is

minimize |b— Az||,
T

subject to z > 0,

and the /., formulation is

minimize ||b— Az||
T

subject to z > 0.

Both problems can be transformed into a linear program (LP) by introducing additional
variables. Since A is an operator, we must apply iterative methods that do not require
an explicit A. For both the NNLS and LP formulations, we make use of an interior-point
method, in which each search direction is computed by an iterative least squares solver
similar to CGLS. The drawback of these #; and Chebyshev formulations is that they do not
have the statistical justification that the least squares formulation does. We discuss both

formulations in Chapter 8.

4.2 Choice of Method

4.2.1 SSD (Scaled Steepest Descent) Method

One popular algorithm for handling the ML criterion is the expectation maximization (EM)
method, which solves the mazimum likelihood function formulation (4.4). The EM method
was originally developed by Dempster et al. [12] and proposed for PET (Positron Emission
Tomography) by Shepp and Vardi [44] and Lange and Carson [5]. Kaufman [22, 23] applied
EM algorithms to least squares, and the penalized least squares problem. To derive a nu-
merical algorithm for (4.4), Hanke, Nagy, and Vogel [18] use an approach that transforms
the constrained minimization problem into an unconstrained problem using the parameter-
ization = = €* elementwise [18]. Using the chain rule, the gradient of J(z) with respect to
z:
V.J(x) = XV, T (x) = XATY YAz —b) = XAT (e — Y 1b),

where y = Az, Y = diag(y), and X = diag(z). Using the energy conservation relation,
ATe = e, we obtain
V.J(z) =z — XATY b
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By setting V,J(z) = 0, we obtain the fixed point iteration
zpi1 = XpATY, b, X = diag(ak), Yy = diag(Axy).

The EM algorithm is a scaled steepest descent (SSD) approach that elegantly handles the
nonnegativity constraints of the problem. Indeed, we can think of this method as the
steepest descent method with the distance of each element to the nonnegativity constraint
used as the scale factor. Many variants of the EM algorithm are called EM-like or EM-type
algorithms [23]. One advantage of the EM method is that it is very easy to implement
from the fixed point relationship, but it converges rather slowly. One critical disadvantage
is that some elements of y = Az could be very small, resulting in the failure of the EM in
some instances. Another weakness comes from the assumption ATe = e. To be precise, the
PSF is scaled so that A has, approximately, a conservation of energy property, but ATe = e
holds only for pixels that are away from the boundary (that is, close to the center of the
image). If some important pixels are located around the boundary, this method would not
generate a high quality image.

We can also apply this technique (z = e?) to the least squares problem
f(z) = §llb— Az|*
to enforce the nonnegativity of . Then we have
V.f(z) = XV,f(z) = XAT (Az —b), X = diag(z).
Setting V, f(z) = 0 gives us the KKT conditions (4.2). This is discussed further in Chap-
ter 5.

4.2.2 Methods for Quadratic Programs

By definition of the 2-norm, we may rewrite NNLS (4.1) as the following quadratic program
(QP):

minimize 1zTAT Az — (ATb)Tm
x (4.6)
subject to z > 0.

In other words, a nonnegatively constrained least squares problem is a QP whose Hessian is a

positive semidefinite matrix AT A. The dual active set method for QP with a positive definite
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matrix was proposed by Goldfarb and Idnani [15]. This method uses the QR factorization
of A or the Cholesky factorization of AT A, which requires an explicit A. Boland proposed
an extension for the positive semidefinite case, which also needs A explicitly [3]. In our
study, A is an operator and is not given as an explicit form. These methods are therefore

not applicable.

4.2.3 Methods for LCP

Since AT A is positive semidefinite, the program (4.6) is equivalent to the linear comple-

mentarity problem (LCP):

r > 0
g+Mz > 0 (4.7)
z(g+ Mz) = 0,

where M = AT A and ¢ = —AT'b. Note that the KKT conditions (4.2) are the same as (4.7).
The NNLS problem can therefore be solved by any one of the large number of algorithms
designed for LCP. In particular, active-set methods [9, 31] can be used for this purpose.
Portugal, Judice and Vicente [38] have proposed block principal pivoting methods for the
solution of large-scale strictly convex quadratic programs with nonnegativity constraints.
An active-set method can be regarded as a single principal pivoting algorithm.

Separately, various interior methods have been proposed in [37] and elsewhere. However,
most implementations of active-set methods and interior methods assume A or AT A is
available explicitly, whereas in our case it is just an operator. Thus, many algorithms for

LCP are not applicable.

4.2.4 Primal-Dual Interior Approach

Primal-dual interior point methods have been widely used to solve nonlinear problems [50].
We develop a primal-dual interior point method to tackle NNLS problem (4.3), where the
objective function is separable and the constraints are linear with nonnegative bounds on
z. We call this method PDSCO (Primal-Dual Barrier Method for Separable Convex Ob-
jectives). It is especially suitable when the output is a gray-scale image, where a particular
value being exactly “zero” or close to zero is immaterial. The approach is also suitable be-
cause slight inaccuracies below the gray-scale threshold are inconsequential, but obtaining
an image rapidly is a concern. For color images, the quality of the output is not as good as

for gray-scale images, but images are reconstructed in an excellent way within a moderate
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number of iterations. PDSCO [41] is implemented in MATLAB and solves more general

problems of the form

minimize ¢(z) + l||’)’f/lU||2 + alHQ
. p 2 2 (4.8)

subject to Az +dp=0b, z>0,

where ¢(x) is a smooth separable function. From the separability of the objective function,
the Hessian is a diagonal matrix that is easy to handle and store. In addition to this advan-
tage, there is no computation of A” A. PDSCO can also be applied to the ML formulation
(4.5) as described in Chapter 8.

4.2.5 Reduced-Gradient Method

The reduced-gradient method is designed for nonlinear programs with linear constraints

and bounds:

minimize F(z)
T

subject to Gx = h
[ <z <u,

where G is m x n matrix, m < n. The implementation in MINOS [29, 30] is designed for
problems in which G is a general sparse matrix. A sparse basis package is used to generate
search directions in the null space of the active-constraint matrix, and the associated reduced
Hessian is approximated by a dense quasi-Newton method.

MINOS would be applicable to formulation (4.3) if A were a sparse matrix, but instead
we apply it to the bound-constrained formulation (4.6), for which objective and its gradient
can be evaluated efficiently even if A is an operator.

The main motivation for using MINOS comes from the fact that for certain applications
such as astronomy, the true images are very sparse (only a few hundred pixels have nonzero
values). Since the performance of this algorithm is based on the number of nonzeros in the
solution, the sparser the image the better. Also, if the image size is moderate (say 64 x 64
or less), the reduced gradient method should be efficient regardless of how sparse the image
is.

MINOS can also be applied to the ML formulation (4.4). We investigate this further in
Chapter 8.



Chapter 5

NNLS using SSD

The scaled steepest descent (SSD) method is one of methods that can enforce nonnegativity.
In this chapter, we apply SSD method to problem NNLS. Kaufman [23] introduced the same
algorithm for NNLS and called it EM-LS, which has a bounded line search. Saad [40] and
Nagy [34] called the same algorithm the modified residual norm steepest descent method
(MRNSD). The SSD method for the maximum likelihood function is discussed in Chapter 8.

5.1 SSD Method

As in Nagy [34], we can enforce the nonnegativity of z by applying the transformation

z = e*(zj = €% for all j). Thus we have the constrained problem

minimize ||Az — b||,>
g (5.1)

subject to x = €7,

which becomes the unconstrained problem
min (2) = [l 4e* = b],”
We can express the gradient of f(z) in terms of z = e?*:
9(2) = V.f(2) = XV f(2) = XAT (Az —b),
where X = diag(z).

37
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The steepest descent method is

Zk+1 = 2k — Oég(zk)
= Iy = e?k—ag(zk) = 1y - e 9(k) (5.2)
= Tp1 ~ Tp(l—agzy) = o — aXpg(zi),

where « is a positive steplength chosen by a line search to give a reduction in the objective

function. Now we develop an iterative method of the form

where p(*) = — X, AT (Az®) — b) and the steplength oy, is chosen to maintain nonnegativity
as well as reduce the objective. Basically, this is the same as the steepest descent approach
applied to the unconstrained least squares problem, min || Az —b||?, but we scale the steepest

descent direction by X} and have an upper bound on «ay in the line search. We describe
the SSD method as follows:

Scale b such that ||b||oc =1

=20 >0

g=AT(Az —b)

for k=0,1,2,...
X = diag(x)
p=—Xyg
v=-g"p
u= Ap
0 =v/ulu
« = min(f, StepTol * min,, <o (—z;/p;)) , Steptol = 0.99
=+ ap
z= ATy
g=g+az

end

where 6 is the minimum of f along the direction p (from the fact that df(z + ap)/0a =

p'Vf(z+ ap) =0), and o maintains the nonnegativity of .

The convergence rate of the steepest descent method for minimizing a function f(z)
depends on the condition of the Hessian of f. Luenberger [26] gives an analysis of steepest

descent for a quadratic function without constraints and this illustrates all the important
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convergence characteristics of steepest descent. Let

f(iL') = ECCTQ.’L' - waa

where @) is a symmetric positive definite matrix. The unique minimizer x* satisfies Qx* = b.

Introducing the function

1
for computational convenience, we have E(z) = f(z) + ~z*7 Qz*, which differs from f(z)

by a constant. We wish to analyze the diagonally scaled steepest descent method,
Ty1 = zf — ag Dy,

where g, = Qzy — b and D is a diagonal positive definite scaling matrix. The optimal

steplength oy, can be found by differentiating f(z) — D~ 'g;) with respect to a, leading to

9t Dgi

o = R 22|
9 DQDg;,

We obtain the relationship between E(zyy1) and E(zy) from the following theorem.

Theorem 5.1.1

R 9% Dgk .
Blzr) {1 (ngDQDgw(g,ZQ—lgk)}E( k- (5:3)

Proof. The proof is by direct computation and similar to the proof without diagonal

scaling [26]. By setting yx = = — z*, we have

BE(zy) — BE(zp4) _ 20,957 DQuyy, — a2gt DQDgy,

E(zy) vl Quy
Using g = Qy we have
E(zpi1) — E(zr) _ gt Dgy,
E(zy) (97 DQDgy) (91 Q' gk)
and the result follows. |

Theorem 5.1.2 The convergence rate of the diagonally scaled steepest descent method for

a quadratic function is linear.
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Proof. In order to obtain a bound on the rate of convergence, we let z, = D'/2g; in (5.3).

Now we have
zgzk

(z;fRzk) (z,{R_lzk) ’

9k Dy _
(9F DQDgy)(9F Q' gk)

where R = D'/2QD'/? is symmetric positive definite and the diagonals of D are positive.

From the Kantorovich inequality [26],

_ sz 2k 4Bb

9% Dak _ S
(2f Rzp)(2f R'2) — (B +1)°

(97 DQDgy) (9t Q' )

where b and B are the smallest and the largest eigenvalues of R. Then, we have

Blons) < {1 oo | Bla) = @—;,’j)QE(xk).

We denote the smallest and largest eigenvalues of @ by a and A, respectively. Then we

have the following relationship between b, B and a, A:

B = |Rl: =

b = 1 =
1R="l2

a1 A

qn a,

1DQl2
1
TD=1QT]

(5.4)

< [|D|l2]|Qll2
1
Z TR

where g1 and ¢, are the largest and the smallest eigenvalues of D. From this, we have the

following relationship:
B—-b kp—1 _kalkp—1

B—I-b_K,B-I-l_K,A/FaD—}—l

K,

where K4 = A/a, kg = B/b, kp = q1/q, > 1 are condition numbers of A, B, and D,
respectively. Thus, E(zy,1) < K2E(z}) as required. [ |

We can generalize the above analysis of quadratic problems to the nonquadratic case.
For details, see [26]. In practice the method of steepest descent usually progresses quite
well during the early iterations, but becomes very slow as the solution is approached. The
SSD method also suffers in this way, as shown in Table 5.1, Table 5.2, and Figure 5.1.

Error z* Z20 2100 Z500 21000 22000
||b — Az|]2 | 18283 | 8062.64 | 3164.17 | 1872.26 | 1751.19 | 1700.38
W 0 0.43651 | 0.436345 | 0.479107 | 0.492015 | 0.505763

2

Table 5.1: Absolute and relative error of SSD restored images




5.1. SSD METHOD 41

x* | Observed | x99 | T100 | T500 | T1000 | T2000
[ le+04 , 1e405 ) 264 0 214 245 252 248 247
[ le+03 , 1le404) 265 1162 512 339 282 274 274
[ 100 , 1e+03) 69 1963 | 1286 634 375 281 237
[ 10 100 ) 5 971 | 2084 | 2877 | 2015 | 1659 | 1314
[ 1, 10)| 2 0| 0| 11167 1344 | 1067
[ 01, ] 0 01 0] 0] 5] 284 649
[ 0.01 0.1) 0 0 0 0 0 6 257
[ 0.001 , 0.01) 0 0 0 0 0 0 42
[ 0.0001 , 0.001 ) 0 0 0 0 0 0 7
[ le—05 , 0.0001) 0 0 0 0 0 0 2
[ 0, 1e—05) | 3491 0ol 0] 0] 0] 0] 0

Table 5.2: Distribution of true image and SSD restored images

The slow convergence is verified by the decrease in the 2-norm of the residual vector
in Table 5.1. One unexpected fact is that the relative error worsens as iterations proceed.
This is perhaps because x* is not the true least squares solution and the more iterations we
go, the more pixels having small values we have. The slow convergence is also verified by
the distribution of solutions in Table 5.2, where z; is the solution after j iterations. In these
solutions, the number of pixels in the first two layers determine the quality of the image
as we see in the true case. Comparing the distributions of z109, 500, 1000 and z2pg0, we
observe that there is no noticeable difference among them and that the pixels having small
values are growing as iterations proceed.

The SSD restored images are shown in Figure 5.1. The image resolution does not
improve significantly after 100 iterations. In x9999, we can see the axes around the satellite
relatively clearly, but the satellite in the center does not look as good as the satellite in

Z100- More iterations do not necessarily improve the quality of the solution.
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True Image Blurred Image

10 20 30 40 50 60 10 20 30 40 50 60
MRNSD Restoration (20) MRNSD Restoration (100)

10 20 30 40 50 60 10 20 30 40 50 60
MRNSD Restoration (500) MRNSD Restoration (2000)

Figure 5.1: Solutions from SSD method after various numbers of iterations



Chapter 6

NNLS using PDSCO

In this chapter, we discuss a numerical method for solving the nonnegative least squares

problem NNLS. We state the problem in terms of the residual vector p:

e . 1.7
minimize 5p P
ap 2 (6.1)
subject to Az +p=10, x>0.

Here we have a separable convex objective function and linear constraints. We now explain
the PDSCO algorithm (Primal-Dual barrier method, Separable Convex Objective) to solve
a perturbed form of (6.1).

6.1 PDSCO

Most of our discussion applies to regularized problems of the form

c 1 2 L 12
minimize 5||yz||* + 5 |||

z,p 2 2 (6.2)

subject to Az +dp=0b, z2>0,

where § = 1 for the NNLS problem and the specified scalar « is typically small. (For
regularized linear programs, § would also be small. Section 6.6 provides a further discussion

of regularization.) This problem is a convex quadratic program. The dual problem is

maximize 'y — 3dyl|* — 3]lvz|?
'Y, 2 (6.3)
subject to ATy +2z=~%z, 2>0.

43
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PDSCO uses many of the techniques developed earlier for linear programs. In particular, it
uses a primal-dual interior method (Megiddo [28]). The distinguishing feature is that the
search directions are converted to linear least-squares problems and solved by a conjugate
gradient (CG) type iterative method (LSQR), with early termination at all stages. Intro-
ducing the barrier function —u };logz; into the objective of (6.2) leads to the nonlinear

equations defining the central trajectory:

Az + 6%y = b
ATy+ 2 = %z (6.4)
XZe = e,

where 4 is a barrier parameter (¢ > 0), X = diag(z), Z = diag(z), =,z > 0, and e is
a vector of ones. If z*(u), y*(u), and z*(u) are the solution of (6.4), then z*(u) — z*,
v () = y*,2*(u) — 2" as p — 0 [13]. In practice, p is reduced to a certain level (for
example, 1078), below which it does not decrease. The primal-dual algorithm uses Newton’s

method to obtain search directions for (6.4) from equations of the form

AAz + %Ay = r = b— Az — 6%y
Az +ATAy+ Az = t = %0 — ATy —2 (6.5)
ZAz+ XAz = v = pe— XZe.

In matrix notation,

A 52T 0 Az r
21 AT 1| |Ay| =
VA 0 X| |Az v

- H , (6.7)

where H = (X~'Z + %) and w = t — X ~'v. We may now eliminate Az from (6.7) and

solve for Ay, or vice versa.

o~
—

o

D
~

Eliminating Az gives us

—H AT
A 6%

Az
Ay
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6.1.1 Solve for Ay

By letting D = H /2 and Az = D3, we have an equivalent system:

s D
o= 7. (6.8)
Ay r/d
This is also equivalent to the least squares problem
DAT D
Ay — v
oI r/d

To solve (6.9) for Ay, we apply the iterative solver LSQR [36, 35]. Then we obtain Az and

Az from

—6I DAT
AD 61

min

' . (6.9)

g = ATAy
Az = D?*(qg—w)
XAz = v—ZAx.

When an explicit A is available, this method is attractive because computing a diagonal
preconditioner for (6.9) is easy. It is also preferred in cases where the dimension of Ay is
much less than that of Az, that is, A is fat (m < n). However, when A is available only as
an operator, it is too expensive to find the norms of the columns of DAT when D changes
at each iteration. Instead, we recommend solving for Az because we can obtain a diagonal

preconditioner without difficulty.

6.1.2 Solve for Az

When ¢ is not too small, we may eliminate Ay from (6.7) to obtain the least squares problem

(&) ()

where Az = Ds. LSQR is used to compute s, and we obtain Az, Ay and Az from

min

‘ , (6.10)

Ax = Ds
(r— AA.T)/(52
XAz = v—ZAz.

>
<
Il
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As shown in Section 6.5, diagonal preconditioning is easy if || A ;|| can be obtained efficiently
for all columns j.

The associated normal equations are equivalent to (ATA+ ?H)Az = ATr — 5%w.
When § = 1, this is the Newton equation for

. 2
min ||b— Az||” + 3||y=|* - ,uZlogwj

with Z satisfying Xz = pe. Johnson and Sofer deal with this system to compute Az [20],
applying the symmetric conjugate gradient (CG) method with the analogous diagonal pre-
conditioner.

We prefer solving the least squares problem (6.10) because LSQR tends to be more
reliable than CG on the normal equations, and because it returns useful information about

the accuracy of approximate solutions.

6.1.3 Algorithm

The main steps of PDSCO are as follows:

1. Set parameters: the feasibility tolerance FeaTol, the complementary gap tolerance

OptTol, the regularization parameter -y.
2. Initialize £ > 0, y, 2 > 0, and u > 0. Set k = 0.
3. (a) With X = diag(x) and Z = diag(z), set

r = b— Az — &%y,
t = Ylz—ATy—2,

v = ue— Xz,
D = (X'z+D7"
w = t—X o

(b) Obtain Az, Ay, Az from

AD T
5 —
61 —6Dw /||’
Az = Ds,

Ay = (r— AAz)/6,
Az = X Y(v—ZAx).

min
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¢) Calculate the primal and dual steplengths «,, oy and update the variables:
P

ap = StepTol X max{w:z+ aAz > 0}
ag = StepTol x max{a:z+ aAz > 0}
a = min(ep, aqg)

r = z+alz, y=y+alAy, z=z+alAz
p = max((1 — min(a, StepTol))u, fiast),

where s = 0.1 % OptTol.
4. Terminate if the following three conditions are satisfied:

(a) primal feasibility = ||r|| < FeaTol.
(b) dual feasibility = ||t|| < FeaTol.

(c) complementarity gap = ||v|| < OptTol.
5. k =k + 1. Repeat from Step 3.

For fuller discussion of PDSCO, see [41].

6.2 Starting Point

Some methods for image restoration converge rapidly during early iterations even if they
require thousands of iterations overall because they converge very slowly near the solution.
We use these methods to obtain a good initial estimate for other methods. These points
are called warm starting points, and they result in many fewer iterations than with the cold
starting points that we use by default. According to computational experience, the SSD
method shows fast convergence in the first few iterations. We use the output from SSD as
the starting point for other methods such as PDSCO. Since SSD gives x only, we need to
provide initial estimates for the dual variables y and z for PDSCO. The dual variable for
(6.2) satisfies 6y = p with § = 1 here. We therefore initialize y to be the initial residual

vector. The initial z comes from (6.4). Thus, we set

o = Zssd
Yo = b— Az (6.11)
20 = Yzo— ATyp.
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In interior methods, initial estimates near boundary values result in poor performance. We
set zg < max(zg, #) and 2y < max(zg, ), 0 = 0.1 in the experiments. For complementarity,
we then set [29]; = 1 for j such that [z(]; < 0.05. Our experience shows that a cold start
works as well as a warm start for interior methods, but a warm start is better for other

methods such as the reduced-gradient method.

6.3 Inexact Newton Methods

The Newton directions are defined by the system of equations (6.6). Although Newton’s
method converges rapidly from a sufficiently good starting point, solving a huge system
of linear equations at each iteration is very expensive. Therefore, we consider an inexact
Newton method [11], which solves the Newton equations approximately. For the nonlinear

equation F'(z) = 0, the k-th step of an inexact Newton method is zx11 = zx + asg, where

Flwg)se = —F(zk) + 15, p = [Irell/IF (zi)l| < g (6.12)

where {7} is a sequence of scalars. Taking 7y = 0 gives an exact Newton method. As long
as the sequence {7} is uniformly less than one, it can be shown that inexact methods are

locally convergent (Dembo, Eisenstat, and Steihaug [11]).

For problem (6.4), if we solve (6.9) inexactly for an approximate Ay, we may solve

I I||A t
7 7l = (6.13)
Z  X||Az v

to obtain Az = (Z +7?X) (v — X)) and Az = # + y?>Az. We now have an approximate

(Az, Ay, Az) that gives small residuals for two of the three equations in the Newton system
(6.6). The important ratio in (6.12) is

t— AT Ay

v

— 02Ay — AA
1(r, 2, )

We must ensure that this ratio is less than 1 for every major iteration. The residual vector
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in the numerator is

r—8Ay—AAx = r—82Ay— A(Z+72X) v — X(t — AT Ay))
= =62 Ay— AX'Z++20) X — X(t — ATAy))
r—62Ay — AD?X (v — X (t — AT Ay))
r— AD*(X~tv —t) — (AD?2AT + §21) Ay
= (r+ AD?w) — (AD?AT +6%1)Ay

o ) () () )

and a reliable estimate of ||r — 62Ay — AAz|| is returned as an output parameter arnorm
when LSQR is applied to problem (6.9).

Likewise, if we solve (6.10) to get an approximate Az, we may solve

k-

to get a (different) approximate (Az, Ay, Az) that also gives small residuals for two of the

r— AAzx

6.15
v— ZAzx ( )

equations in (6.6). The important ratio is now

It +y*Ar — ATAy — Az
I(r, 2, ) ’

(6.16)

where

t+72Ax — ATAy — Az = t++2Az— %AT(T — AAz) — X~ (v — ZAx)
= (HATA+ X1 Z 492D + (1 X o) - ATr/8?
= (1/6*)D7' (D' + DATA)Az + §>Dw — DA™r)

= (1/6*)D™' ((DATAD + §°I)s + >Dw — DA™r)

— (1/8%)D! ((DAT 1) ((‘Z)) s (_5’;)1”))) .

In this case, the parameter arnorm returns a reliable estimate of

e () - (7))

when LSQR is applied to problem (6.10). Unfortunately this does not include the effect of
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D~!. However, diagonal preconditioning has a separate (canceling) effect of its own. The

implemented test has performed as expected.

When Ay is computed by LSQR, we want p in (6.14) to be less than a certain level
(for example, 0.01) throughout the iterations for rapid convergence. If it is greater than
the pre-determined level but acceptable, we solve LSQR more accurately next iteration by
decreasing atol. If it is excessively large, then we continue computing the direction more

accurately with a decreased atol. In summary, we control this quantity as follows:

p <0.1 : accept the direction.
0.1 < p<0.5 : accept the direction and decrease atol.
p> 0.5 : recompute the direction with a decreased atol.

Similar tests are used when Az is computed by LSQR.

6.4 Scaling

Scaling means changing the units of measurement to improve the numerical stability of an
algorithm. The variables are transformed as T = Sz, where S = diag(s). The diagonal
elements are the scale values, which are positive: s1,...,$, > 0. Here we consider scaling

the following convex optimization problem:

minimize (z,y) = f(«) + |y’ + 5 1dy]”
subject to Az + 6%y = b,
x >0,

so that the scaled primal vector and dual vector are balanced in magnitude. Since we wish

to obtain ||Z||c & [|Z]|co & 1, we estimate 8 = |||/, { = ||2||cc and define
=0T, b=pb y=Cy, z2=(% ¢=09
for some @ to be chosen. Then the scaled objective ¥ becomes
7 = 168+ ool + ol
T gl W T g NPT T 91105

_ 1 S T S T S
= fBT) +Slvzl”+ S logl”,
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_ 8 <= & . 9 _ =2 T
here ¥ = —=, § = —=. The constraint Az + §°y = b becomes Az + 6 'y = b. We need
w Y NG 2 NG, - Y Y
to choose 0 so that % =9 = 6TC Hence we have
_ +_1 +_ P 25 B
0=pC T=4f8m), Vi=4Vi VF=Dvip (6.17)

We show the effectiveness of the scaling in Table 6.1 and 6.2, where the smaller version of
the satellite problem is being solved by PDSCO. The quantities shown are Pinf = log;((r),
Dinf = logo(t), Cinf = log;¢(v), center = %ﬁjg;, atol = tolerance for LSQR, LSQR
= the number of LSQR iterations, and Inexact is the p in (6.16). As we see, the scaled
problem stays more well-centered, and the total number of LSQR iterations for the unscaled

problem is 1152 compared with 538 iterations for the scaled problem.

Itn mu stepx stepz Pinf Dinf Cinf Objective  nf center atol LSQR Inexact
0 -99.0 -16.4  -0.1 1.1628407e+03 6.1
1 -1.0  1.000 1.000 -99.0 -16.4 -0.6 3.7294237e+02 1 2.9 -3.0 4 0.000
2 -2.0 1.000 0.772 -1.2 -5.0 -1.1  1.4544815e+02 1 74  -3.0 4 0.001
3 -2.6 1.000 0.623 -1.2 -4.5 -1.5  6.4472480e+01 1 14.7  -3.0 5 0.002
4 -3.1 1.000 0.524 -1.2 -4.4 -1.8  3.1500182e+-01 1 10.2  -3.0 7 0.001
5 -3.4 1.000 0.481 -1.2 -4.2  -2.1 1.5751985e+01 1 10.0 -3.0 7 0.002
6 -3.7 1.000 0.548 -1.4 -4.3 -24 6.7685852e+00 1 224  -3.0 9 0.002
7 -4.0 1.000 0.478 -1.4 -4.3 -2.7  3.3361734e+00 1 177 -3.0 12 0.002
8 -4.3  0.268 0.268 -1.5 -4.4 -2.8  2.3002228e+-00 2 123.5 -3.0 12 0.002
9 -4.4  1.000 0.423 -1.5 -4.2 -3.0  1.2764030e+00 1 28.7 -3.0 13 0.003
10 -4.7 0.203 0.203 -1.6 -4.3  -3.1 9.7557734e—01 2 223.7 -3.0 14 0.003
11 -4.8 0.254 0.254 -1.8 4.4 -3.2 7.0448354e—01 2 55.9 -3.0 15 0.002
12 -4.9  0.195 0.195 -1.8 -4.5 -3.3 5.5977188e—01 2 115.8 -3.0 17 0.003
13 -5.0 0.040 0.040 -1.9 -4.6 -3.3 5.3606613e—01 2 700.3 -3.0 18 0.002
14 -5.0 0.012 0.012 -1.9 -4.6 -3.4  5.2941648e—01 2 2298.5 -3.0 16 0.003
15 -5.0 0.002 0.002 -1.9 -4.6 -3.4 5.2823828e—01 2 22945.0 -3.0 17 0.004
16 -5.0 1.000 0.523 -1.9 -4.4 -3.7  2.8350268e—01 1 579 -4.0 35 0.000
17 -5.3  0.300 0.300 -2.1 -4.6 -3.8 2.0787815e—01 2 201.6 -4.0 35 0.000
18 -5.5  0.303 0.303 -2.2 -4.7  -4.0 1.5824250e—01 2 100.0 -4.0 39 0.000
19 -5.6 0.127 0.127 -2.3 -4.8 -4.0 1.4360172e—01 2 879.3 -4.0 42 0.000
20 -5.7 0.019 0.019 -2.3 -4.8 -4.0 1.4165271e—01 2 8629.3 -4.0 43 0.001
21 -5.7  0.002 0.002 -2.3 -4.8 -4.0 1.4140521e—01 2 86085.9 -4.0 44 0.001
22 -5.7 0.300 0.300 -2.5 -49 -4.2 1.1416731le—01 2 1145  -5.0 70 0.000
23 -5.9 0.436 0.436 -2.7 -5.2  -4.4  8.8369869e—02 2 39.1  -5.0 72 0.000
24 -6.0 0.296 0.296 -2.9 -5.3  -4.5 7.8042598e—02 2 352 -5.0 76 0.000
25 -6.0 0.451 0.451 -3.1 -5.6 -4.7  6.7655212e—02 2 46.8 -5.0 79 0.000
26 -6.0 0.393 0.393 -3.3 -5.8  -4.9 6.2502872e—02 2 18.2  -5.0 87 0.000
27 -6.0 0.436 0.436 -3.6 -6.1  -5.1 5.9002983e—02 2 16.8 -5.0 86 0.000
28 -6.0 0.432 0.432 -3.8 -6.3 -5.3 5.6951603e—02 2 11.9 -5.0 88 0.000
29 -6.0 0.562 0.562 -4.2 -6.7 -5.5 5.5383367e—02 2 124 -5.0 89 0.000
30 -6.0 1.000 1.000 -18.1 -19.3 -5.8 5.4072302e—02 1 55 -5.2 97 0.000
Total 1152

Table 6.1: Run without scaling (but with diagonal preconditioning)
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Itn mu stepx stepz  Pinf Dinf Cinf Objective  nf center atol LSQR Inexact
0 -0.8 -0.8 0.0 8.2674621e+02 6.1
1 -1.0 1.000 1.000 -16.0 -16.2 -0.5 3.5682884e+02 1 3.2 -3.0 4 0.000
2 -2.0 1.000 0.741 -1.2 -4.9 -1.0  1.4511449e-+02 1 8.1 -3.0 4 0.002
3 -2.6 1.000 0.625 -1.2 -4.5 -1.4 6.3273184e+01 1 15.7 -3.0 5 0.002
4 -3.0 1.000 0.517 -1.2 -4.3 -1.7  3.1201876e+01 1 109 -3.0 7 0.002
5 -3.3  1.000 0.484 -1.2 -4.1 -2.0  1.5472046e+01 1 10.1  -3.0 7 0.002
6 -3.6 1.000 0.550 -1.4 -4.2 -2.3  6.6149694e+00 1 172 -3.0 9 0.002
7 -4.0 1.000 0.487 -1.4 -4.2 -2.6  3.2095337e+00 1 16.6 -3.0 12 0.002
8 -4.3 1.000 0.287 -1.3 -4.0 -2.7  2.1518600e+00 1 131.3 -3.0 12 0.003
9 -4.4  0.137 0.137 -1.4 -4.1 -2.8  1.7747360e+00 2 230.3 -3.0 12 0.002
10 -4.5 1.000 0.353 -1.5 -4.0 -2.9  1.0579179e+00 1 1659.1  -3.0 13 0.002
11 -4.5 0.009 0.009 -1.5 -4.0 -2.9  1.0457302e+00 2 16459.2 -3.0 12 0.002
12 -4.5 1.000 0.608 -1.8 -4.2 -3.4  4.0730746e—01 1 49.6 -4.0 29 0.000
13 -4.9 1.000 0.478 -1.9 -4.4 -3.6  2.3352634e—01 1 23.5 -4.0 32 0.000
14 -5.2  1.000 0.366 -2.0 -4.3 -3.8  1.6254847e—01 1 176 -4.0 38 0.000
15 -5.4 1.000 0.335 -2.1 -4.4 -3.9  1.2124483e—01 1 21.9 -4.0 36 0.000
16 -5.5 1.000 0.545 -2.3 -4.6 -4.3  8.1647542e—02 1 12.0 -4.0 36 0.000
17 -5.9 1.000 0.418 -2.4 -4.8 -4.5 6.8841884e—02 1 10.1  -4.0 44 0.000
18 -6.0 1.000 0.473 -2.5 -4.9 -4.7  6.0947055e—02 1 12.7  -4.0 43 0.000
19 -6.0 1.000 0.455 -2.7 -5.1 -5.0  5.7341905e—02 1 12.7  -4.0 45 0.000
20 -6.0 1.000 0.457 -2.9 -5.3 -5.2  5.5540011e—02 1 10.6  -4.0 43 0.000
21 -6.0 1.000 0.612 -3.2 -5.5 -5.5  5.4360280e—02 1 23.1  -4.0 45 0.000
22 -6.0 1.000 1.000 -17.5 -19.3 -5.9  5.3686115e—02 1 24 -4.2 50 0.000
Total 538

Table 6.2: Run with scaling (and diagonal preconditioning)

6.5 Diagonal Preconditioners

In this section we seek preconditioners for systems (6.9)—(6.10) to accelerate the computation
of Ay and Az respectively. The simplest diagonal preconditioning requires the 2-norm of

each column of the matrices

DAT AD
and
0l 01

(where D changes at every iteration of the interior method). For the first system, the
norms can be found efficiently if A is available explicitly as a sparse matrix, but they are

impractical when A is an operator. However, for column 5 of the second system we have

2

AD
ej| = I1ADe; 2 + 8 = 3 || Aey|” + 82, (6.18)

iy

and from the structure of A and the PSF, ||Ae;|| can be easily computed. Thus, (6.10) is
preferable to (6.9) because we can compute the preconditioner easily. Table 6.3 shows the
run without preconditioner using the smaller satellite problem. Compared to Table 6.2 with

the diagonal preconditioner, the number of LSQR iterations increases from 538 to 763.
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Itn mu  stepx stepz Pinf Dinf Cinf Objective nf center atol LSQR Inexact
0 -0.8 -0.8 0.0 8.2674621le+02 6.1
1 -1.0 1.000 1.000 -16.0 -16.2 -0.5 3.5682878e+02 1 3.2 -3.0 4 0.000
2 -2.0 1.000 0.741 -1.2 -4.9 -1.0  1.4504864e+-02 1 8.1 -3.0 4 0.003
3 -2.6 1.000 0.635 -1.2 -4.5 -1.4  6.2266331e+4-01 1 15.5 -3.0 6 0.006
4 -3.0 1.000 0.514 -1.2 -4.3 -1.7  3.0934104e+01 1 11.6 -3.0 7 0.027
5 -3.3 1.000 0.516 -1.2 -4.1 -2.0 1.4513118e+01 1 11.6 -3.0 10 0.030
6 -3.7 1.000 0.554 -1.4 -4.1 -2.4  6.2262601e+-00 1 24.8 -3.0 12 0.041
7 -4.0 1.000 0.360 -1.3 -4.1 -2.6  3.7562774e+00 1 142.4  -3.0 15 0.070
8 -4.2 1.000 0.455 -1.4 -4.1 -2.8  1.8557507e+00 1 35.2  -3.0 17 0.064
9 -4.5 0.193 0.193 -1.5 -4.2 -2.9  1.4219929e+4-00 2 289.6 -3.0 17 0.116
10 -4.6 1.000 0.487 -1.6 -4.0 -3.2  7.0066193e—01 1 31.6 -4.0 30 0.018
11 -4.8 1.000 0.485 -1.8 -4.2 -3.5 3.6399419e—-01 1 19.6 -4.0 32 0.020
12 -5.1 1.000 0.430 -1.9 -4.3 -3.7  2.1896896e—01 1 8.4 -4.0 35 0.026
13 -5.4 1.000 0.323 -2.0 -4.3 -3.9  1.5785171e—01 1 8.0 -4.0 38 0.027
14 -5.5 1.000 0.386 -2.1 -4.4 -4.1  1.1103480e—01 1 13.4 -4.0 38 0.027
15 -5.8 1.000 0.480 -2.3 -4.6 -4.3  7.9964253e—02 1 45.8 -4.0 40 0.031
16 -6.0 1.000 0.437 -2.4 -4.8 -4.6  6.6948928e—02 1 48.9 -4.0 44 0.039
17 -6.0 1.000 0.423 -2.5 -4.9 -4.8  6.0623295e—02 1 43.6 -4.0 44 0.042
18 -6.0 0.102 0.102 -2.6 -5.0 -4.8  5.9754672e—02 2 396.8 -4.0 44 0.047
19 -6.0 0.116 0.116 -2.6 -5.0 -4.9  5.8910537e—02 2 444.0 -4.0 47 0.038
20 -6.0 1.000 0.464 -2.8 -5.2 -5.1 5.6315761e—02 1 40.1  -4.0 47 0.045
21 -6.0 1.000 0.649 -3.2 -5.5 -5.4  5.4568375e—02 1 8.8 -4.0 50 0.043
22 -6.0 1.000 0.985 -4.9 -7.2 -5.8  5.3712679e—02 1 7.9 -4.2 55 0.035
23 -6.0 1.000 1.000 -17.8 -19.3 -6.0 5.3676186e—02 1 1.1 -5.9 127 0.003
Total 763

Table 6.3: Run

6.6 Regularization

with scaling but without preconditioner

Regularization is a process that perturbs a problem a little to make it easier to solve.

Benefits include uniqueness of the solution and algorithmic simplicity. In practice, moderate

regularization of any problem produces most of the benefits. All regularization methods for

computing stable solutions to ill-posed problems involve a trade-off between the size of the

regularized solution and the quality of the fit that it provides to the given data.

Regularization is necessary with ill-posed problems because the (unregularized) naive

solution is completely dominated by contributions from data errors and rounding errors. If

too much regularization or damping is imposed on the solution, then it will not fit the given

data b properly, and the residual ||Az — b|| will be too large. Thus, the reconstruction is

too smooth. On the other hand, if too little regularization is imposed, reconstructions have

highly oscillatory artifacts that are due to noise amplification.

Several regularizations include:

e Tikhonov regularization: %o z|?.

e Entropy-type penalty term: a ) ; ; z;logz;,

x > 0.
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e The 1-norm: ||z||; (= e’z because of the nonnegativity of z).

The first two are discussed in Hanke [18] and the third is explained in Chen [8].

We use %||yz||? for our constrained least squares problem, which is basically the same
as Tikhonov regularization. The scalar 7 is called a regularization parameter. Choosing
the appropriate v for each problem is not trivial. Thus we determine the value of v by
computational experiments. In any case, 7 should be chosen so that the system (6.7) can
be solved more easily. In particular, we pick a value of 7 such that H = (X~1Z +~21) is
sufficiently removed from singularity. The typical value of v for an image restoration prob-
lem is 102 or 10~2. Regularization parameter selection methods are discussed extensively
in [47].

We present the effect of regularization by changing the value of y in Tables 6.4 and 6.5.
Despite the fact that the number of LSQR iterations increases drastically as y decreases,
the quality of the restored image does not improve. In fact, Table 6.5 shows that the quality

of the restored image degenerates if 7y is too small.

et [y=10""[y=10"% |y=10"3 | y=10"

Tterations 199 645 2827 9258
[b— Azl [ 18283.02 | 8242.89 | 1707.24 | 1646.65 | 1645.47
maxxz; | 19426.66 | 15494.93 | 21928.85 | 34054.35 | 39597.76
min z; 0.0 0.072 0.22 0.20 0.20

Table 6.4: Statistics for PDSCO restored images for each y

5 [ y=10"1 [ y=102]~v=10"3 | y=10"*
[ le+04 , 1le4+05) | 264 222 257 228 223
[ le+03 , 1le+04) | 265 538 270 248 236
[ 100 , 1e+03) 69 331 238 216 218
[ 10 100 ) 5 754 434 430 451
[ 1, 10) 2 1059 1880 1973 1966
[ 0.1 1) 0 1187 1017 1001 1002
[ 0.01 0.1) 0 0 0 0 0
[ 0.001 |, 0.01) 0 0 0 0 0
[ 0 , 1e03) | 3491 0 0 0 0

Table 6.5: Distribution of z* and restored images for different ~y

The restored images for each  are shown in Figure 6.1. The image with v = 102 looks

the best among them. The proper value of v is usually determined by experiment.
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True Image

10 20 30 40 50 60 10 20 30 40 50 60

Figure 6.1: True and PDSCO restoration for each ~
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6.7 Predictor-Corrector Method

Most implementations of interior methods for LP are based on Mehrotra’s predictor-corrector
algorithm [50]. This enhances the basic Newton search direction with a correction that has
been very successful in LP with direct solvers. Since it solves two linear systems with the
same matrix but different right-hand sides, the marginal cost is not great when we have
sparse factors of AD?AT + §2I or the KKT-type system (6.7).

In our case, we use an iterative solver because A is an operator and sparse factors are
not available. Since there are no factors to re-use, the total work to solve two linear systems
with different right-hand sides is twice as expensive as solving one linear system.

We find that predictor-corrector does help to reduce the number of iterations in general,
but perhaps not the total work. We show a predictor-corrector run for the smaller satellite
problem in Table 6.6. The infeasibilities decrease reasonably quickly, but the number of
LSQR iterations for the last several iterations is almost twice as many as for the run in
Table 6.2.

Itn mu stepx stepz Pinf Dinf Cinf Objective nf center atol LSQR Inexact
0 -1.1 0.0 -1.0 3.8463707e—01 10.0
1 -1.4 0706 0.709 -1.6 -0.5 -1.1 1.7371183e—01 1 39.7  -3.0 41 0.033
2 -1.8 0.884 0.512 -2.3 -0.8 -1.4 1.2935003e—01 1 7.7 -3.0 43 0.049
3 -2.4  1.000 0.416 -2.3 -1.0 -1.5  9.9007024e—02 1 122.8 -3.0 39 0.074
4 -2.8 1.000 0.190 -2.4 -1.1 -1.6  9.0619491e—02 1 131.6 -3.0 35 0.242
5 -2.9 1.000 0.051 -2.4 -1.2 -1.6 8.9042778e—02 1 835.7 -3.0 33 0.238
6 -2.9 1.000 0.006 -24 -1.2 -1.6 8.8917011le—02 1 5457.1 -3.0 33 0.240
7 -2.9 1.000 0.482 -2.6 -1.4 -1.9  7.3476884e—02 1 416.4 -4.0 78 0.031
8 -3.1  1.000 0.796 -3.3 -2.1 -2.6 6.2338762e—02 1 189.5 -4.0 78 0.036
9 -34 098 0611 -3.1 -25 -2.9 5.6486357e—02 1 28.8 -4.0 103 0.044
10 -3.9 1.000 0.645 -3.4 -3.0 -3.3 5.4050416e—02 1 244  -4.0 102 0.065
11 -4.3 1.000 0946 -5.2 -43 -3.9 5.3997211e—02 1 3.6 -4.0 64 0.007
12 -5.1  0.536 0.536 -5.6 -4.6 -4.3 5.3392333e—02 2 4.8 -4.9 81 0.019
13 -5.4 0393 0.393 -5.8 -4.8 -4.5 5.3101542e—02 2 9.5 -5.3 94 0.011
14 -5.6  0.280 0.280 -5.9 -4.9 -4.6  5.2946902e—02 2 14.1  -5.5 109 0.008
15 -5.8 0350 0.350 -6.1 -5.1 -4.8 5.2791394e—02 2 15,5 -5.6 115 0.006
16 -6.0 0305 0.305 -6.3 -5.3 -5.0 5.2684438e—02 2 156 -5.8 123 0.006
17 -6.0 0.280 0.280 -6.4 -5.4 -5.1 5.2607105e—02 2 209 -6.0 129 0.004
Total 1300

Table 6.6: Run using predictor-corrector algorithm

6.8 Two-level NNLS

Here we are still exploring the use of PDSCQ’s primal-dual interior method. Recall that the
search directions are computed iteratively using LSQR. For the first few search directions

the number of LSQR iterations is typically small, but as the NNLS solution is approached
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the iterations tend to become excessive. Table 6.7 shows the general pattern of a PDSCO

run. As p gets smaller, the LSQR iterations increase steadily and the last three iterations
account for about 70% of the total.

Itn mu stepx stepz Pinf Dinf Cinf Objective nf center atol LSQR Inexact
0 -0.2 -0.4 -0.1  3.7019139e+-04 8.3
1 -2.0 0.510 0.698 -0.6 -0.9 -0.5  2.4038080e+04 1 1711 -6.0 37 0.000
2 -2.0 0.866 0.586 -1.3 -1.3 -1.0 9.8315290e+03 1 174.5 -6.0 38 0.000
3 -2.0 0.972 0.555 -1.6 -1.7 -1.3  7.0197681e+403 1 85.3 -6.0 53 0.000
4 -2.4  0.944  0.708 -1.9 -2.2 -1.8  4.7594066e+-03 1 92.7 -6.0 67 0.001
5 -2.9 0.706 0.373 -1.9 -2.4 -2.0  3.7381865e+03 1 139.9 -6.0 102 0.003
6 -29 0.635 0.635 -2.3 -2.9 -2.3  3.4900512e+03 1 63.2 -6.0 123 0.003
7 -3.3 0.673 0.589 -2.6 -3.2 -2.6  3.1584890e+403 1 80.0 -6.0 139 0.013
8 -3.7  0.594  0.566 -2.9 -3.6 -2.9  2.9944344e+03 1 117.8  -6.0 172 0.034
9 -3.7 0.881 0.881 -3.4 -4.5 -3.4  2.8955504e+403 1 48.9 -6.0 236 0.079
10 -4.6  0.586 0.540 -3.4 -4.9 -3.6  2.8452653e+03 1 189.8 -6.0 280 0.193
11 -4.6  0.989 0.989 -4.1 -6.8 -4.2  2.8103661e+03 1 38.8 -7.0 465 0.059
12 -6.6  0.907 0.905 -4.1 -7.8 -4.7  2.8012345e+403 1 944.0 -7.0 833 0.397
13 -6.6  1.000 1.000 -4.8  -16.0 -5.3  2.8002690e4-03 1 36.3 -8.0 1392 0.108
14 -7.0 1.000 1.000 -6.2  -16.0 -5.9  2.8001970e+03 1 13.3  -9.0 2293 0.075
15 -7.0 1.000 1.000 -6.9 -16.0 -6.4  2.8001962e+03 1 3.8 -9.0 1861 0.089
Total 8091

Table 6.7: General pattern of PDSCO run

We therefore propose as a remedy a reduced least squares problem (with fewer rows and

columns but a more complex operator) by exploiting the following facts:

In some applications, such as astronomy, very few elements z; are nonzero. The star

image, for example, contains only 470 nonzeros out of 65536 pixels (see Table 2.1).

Most of the nonzeros are identified during the early the primal-dual iterations, when

LSQR requires very few iterations.

Once they are known, we can treat them as unconstrained because we expect that

they will be far away from zero at a solution.

The variables can be partitioned, and unconstrained least squares problems may be

solved in stages.

After a few primal-dual iterations, we effectively have the problem

minimize
T1,T2

2 (40 22) ()

subject to zo > 0,

Z2

—b

2

(6.19)
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where A; has many rows, but few columns (a tall matrix), and where z; and zy are the

partitions of z satisfying ||z2|| < ||z1||. We can afford to compute a dense QR factorization

YT R
QA = (ZT) A = (0) ; (6.20)

where Householder transformations allow both Y and Z to be represented in the same
storage as Aj. Details about Householder transformations can be found in [16]. If A; is
extremely sparse, we could also use the sparse QR factorization of Matstoms and Adlers [27,

1], which maintains sparsity in both @ and R. Problem (6.19) becomes

R YTA2 I . YTb
0 ZTA2 i) ZTb

subject to zo > 0,

2
e 1
minimize —
T1,T2 2

(6.21)

which is solved by the reduced problem

minimize L[| 27455 — Z78|°
2 (6.22)
subject to xo > 0,

followed by Rz1 = YT (b — Agzy). Problem (6.22) has fewer rows and columns but a more
complex operator ZTA;. We can now restart the primal-dual method on (6.22), knowing
that

o [IZ7b]] < [Ibll-
o [lzoll < ]l

e Early primal-dual iterations will identify the largest elements of zo with relatively few
LSQR iterations, in the same way that early iterations on the full problem identify

Z1.
e We can solve the second level problem with a loose tolerance.

This process could be repeated if necessary, giving a multi-level procedure for computing
the important elements of z in “batches”, with each batch requiring few LSQR iterations.
The storage required grows linearly with the number of large elements in z. Since we do

not wish to store A and Q explicitly, we show how to compute the products Yv, Zw, ZTy,
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YTy, Ayze and ALy for arbitrary vectors v, w, x5 and y:

- ol
- ole-o ()

Yy = (I O)Qy

7y = (0 I)Qy

Aoz = (41 A) (;) — A (i)
A%yzz(OJ)(j?)yz(OI)Mﬂﬂ
The right-hand side b may be expressed as
b=Yby + Zby.

Given @, we can determine by and bz by forming @b, since

YT by
Qb= T (Yby + sz) = . (6.23)
Z bz
Conversely, given by and bz, b is obtained as follows:
Qr | =[v z] || =Yby+2bs=0.
bz bz

From the orthogonality of (), we obtain
1QBlI* = [Iblf* = [[Y 0] + | Z7b]|* = [[by|* + ||z |
and, using || Z7b||2 < ||b||?, we have

1Y Fol? = [[p]1* — |27 0] ~ ||b]>.

In practice, A1 contains a huge number of small values, so we can suppress values smaller

than a pre-determined tolerance and work with approximate QR factors: A4; ~ 4; = QR.
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We then recover z; by solving

minimize ||[A;R~ly—b ||2, Rz =y,
y

where b = b — Ayzs. We can also obtain an approximation of A; using the singular values
of A; if they are clustered well [16].

For the sparse QR factorization, we have to consider the ordering of the given matrix
A to reduce the fill-in. Since the size of A; for some images is tremendous, sparse-matrix
technology must be employed. The important thing is to choose an adequate tolerance for
A;. From the distribution of the PSF, we can judge the cutoff value. For example, 10™* is
a good cutoff value for the star image.

The results of the two-level method for the star image are given in Table 6.8 and Fig-
ure 6.2. They show that the two-level method allows us to detect many important pixels
that we cannot recover with a single application of PDSCO unless we solve the single prob-
lem to high accuracy. The number of pixels whose value is between 100 and le+3 increases

from 315 to 354, which shows more stars in the two-level restored image.

z* | Single | Two-level
[ le+04 , 1le+05) 5 4 5
[ 1le+03 , 1le+04) 84 85 85
[ 100 , 1e+03) 381 315 354
[ 10 , 100 ) 0 454 1774
[ 1, 10) 0 | 36002 2116
[ 0.1 , 1) 0 | 28676 2099
[ 0.01 0.1) 0 0 41542
[ 0.001 |, 0.01) 0 0 17539
[ 0.0001 , 0.001) 0 0 19
[ 0 , 1le—04) | 65066 0 0

Table 6.8: Distribution of single and two-level restoration for star image

The two-level method also produces a better solution in terms of the 2-norm of the
residual vector and the range of the pixels values, as shown in Table 6.9.

Note that we drop the nonnegativity constraints z; > 0 in (6.21) by assuming that we
guess a correct set of variables for z; that really are far from zero at a solution. They
are uniquely defined for any zo. Hence, we must check that the computed z; is really
nonnegative. If not, we may have to re-do the procedure with more conservative decisions

on how to choose A;. However, the negative elements may be negligibly small, as shown
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Figure 6.2: Use of two-level method
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¥ Single | Two-level
||b— Azx|2 | 539.58 552.40 504.95
max 31651.06 | 31229.29 | 31247.55
min T 0.0 0.12 -84.25

Table 6.9: Statistics of single and two-level restored images

in Table 6.9. Only three pixels are negative in the two-level restoration, but they hardly
have an impact on the quality of image. By re-doing with a more conservative z1, we could
obtain a nonnegative x1, but this is not necessary in our experiment.

We also show the effectiveness of the two-level method in terms of optimality tolerance.
Table 6.10 shows the results of a single run for each optimality tolerance and a two-level
run with 107°. For the single run with 10~7, the number of LSQR iterations and running
time are almost double those with 10~3. On the other hand, the second level can be solved
loosely and the total number of LSQR iterations is quite small. The increase in running
time is due to the QR factorization of A;, whose dimension is 65536 x 105.

x* Single (OptTol) Two-level (OptTol)

10° [ 106 | 1077 SSD, then 10 °

[ let4d , 1letdh) 5 4 4 4 5
[ let3 |, let+d) 84 85 86 86 85
[ 100 , let3)| 381 | 315| 349 | 353 354
[ 10 , 100) 0| 454] 938 1453 1774
[ 1, 10) 0| 36002 | 3530 | 1983 2116
[ 01 , 1) 0 | 28676 | 59779 | 4621 2099
[ 1le—=2 , 0.1) 0 0| 850 56416 41542
[ le=3 , le—2) 0 0 0] 620 17539
[ le—4 , le-3) 0 0 0 0 19

| 0 , le—4)[65066 | 0 | 0 | 0] 0 |

LSQR itns 215 | 349 | 431 151
b — Az 552 506 499 504
Time (sec) 806 | 1244 | 1508 1282

Table 6.10: Distribution of single and two-level restored images. A; is 65536 x 105.

The two-level method is especially suited to basis pursuit de-noising (BPDN) problems,
where the solution is very sparse and A has many more columns than rows [8]. The perfor-
mance is shown in Table 6.11 on data from Wavelab, developed by Donoho et al. [49]. In

most cases, the two-level approach finds the sparse solution within fewer iterations.
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Problem n ny | Single (itns) | Two-level (itns)
example 1 | 22528 | 11 82 50
example 2 | 2048 1 26 28
example 3 | 2048 | 13 512 280
example 4 | 4096 | 36 738 277
example 5 | 2048 | 1 373 301
example 6 | 4096 | 9 2564 137

Table 6.11: LSQR itns with single and two-level run on BPDN examples
n = dimension of z, n; = dimension of

Figures 6.3-6.5 show the single and two-level restored images for examples 1, 3, and 4.
For example 1, the two-level restored image has a fat tail, but single restoration does not.
As shown in Table 6.12, two-level restoration has smaller residual norm and the range of
restored values of two-level restoration is closer to that of the original signal. Similarly for

examples 3 and 4.

¥ Single | Two-level

o — a2 | 0 | 125774 | 6.9939
maxz; | 12.1977 | 9.3923 | 13.7092
minz; | -8.6250 | -6.0482 | -7.7836

¥ Single | Two-level

2% — 2] 0 7.8823 | b5.7358
maxz; | 19.0088 | 18.9563 | 19.0055
minz; | -7.3111 | -7.1306 | -7.4500

¥ Single | Two-level

[z* — ]|z 0 5.6289 | 5.4015
maxz; | 13.0502 | 13.6215 | 13.6610
minz; | 0.17799 | 0.8963 | 0.8276

Table 6.12: Statistics of single and two-level restored images (BPDN examples 1, 3, 4)
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Figure 6.3: Single solver and two-level solver (example 1)
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(a) Signal: Blocks (b) Noisy Blocks, SNR =7
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Figure 6.4: Single solver and two-level solver (example 3)
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(a) Signal: Cusp (b) Noisy Cusp, SNR =3
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Figure 6.5: Single solver and two-level solver (example 4)



Chapter 7

NNLS using MINOS

In this chapter, we review the reduced-gradient method that has been implemented in
MINOS and explain how to exploit MINOS to solve the NNLS problem. The usage of
MINOS for the ML problem is discussed in Chapter 8.

7.1 MINOS

MINOS is a software package for solving large-scale optimization problems. It is especially
effective for linear programs and for problems with a nonlinear objective function and sparse
linear constraints, such as quadratic programs (Murtagh and Saunders [29]). MINOS can
also process large numbers of nonlinear constraints (Murtagh and Saunders [35]). The non-
linear functions should be smooth but need not be convex. For linear programs, MINOS
uses a sparse implementation of the primal simplex method. For nonlinear objective func-
tions (and linear constraints), MINOS uses a reduced-gradient method with quasi-Newton

approximations to the reduced Hessian. To solve the NNLS problem

minimize F(z) = 3o — Az|? + 3||vz|?
T

subject to z > 0,

we need a subroutine funobj to compute the objective function F(z) and its gradient
VF(z):

r = b— Az
F(z) = sllrl® + 5lvz)?
VF(z) = —ATr++2z.

67
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The amount of work done by funobj is two matrix-vector products, Az and A”r, which is
the same amount of work per iteration as for LSQR in Chapter 6. Since MINOS must have
at least one constraint and our formulation does not have any, we must create a dummy

constraint: —oo < el'z < co. Adding a slack variable, we have ez 4+ s = 0, which becomes
Bz + Szxs+ Nzy =0,

where B = 1. The slack variable for this constraint becomes the single “basic” variable
throughout. At each stage, zg, a set of “superbasic” variables, is free to move (along with
the basic variables) and the remaining “nonbasic” variables are held fixed (usually on their
bound).

Just as we do with PDSCO, we can use the solution from other methods as a starting
point for MINOS. Here we use the solution from SSD. Let S = {j; gd(j) > z.} and
N = {j; zsq(j) < z.} be index sets for the superbasic and nonbasic variables, where z.. is

a cutoff value. We set z. = 0.1 - max(x4s4) for our test. We then set

3:(0)(5) = mssd(S)a
O(N) = o.

7.2 Computational Results

We use MINOS through TOMLAB, which is a general-purpose MATLAB environment for
optimization research [46]. Table 7.1 shows the general pattern of a MINOS run on the
star image, where nsb is the number of superbasic variables, nobj is the number of times
subroutine funobj has been called to evaluate the nonlinear objective function and gradient,
and rg is the 2-norm of reduced-gradient. For images in which only a small percentage of
the pixels are significant, the reduced-gradient method should work well (for moderate-sized
images). However, the reduced-gradient method updates only a few variables at a time, and
it works with a dense triangular matrix as large as the number of superbasic variables. As
a result, it might not be a good method when the total number of nonzero pixels is more
than one or two thousand.

Table 7.2 shows the distribution of MINOS and PDSCO restorations. By comparing
the number of pixels in the second and third bin, we notice that MINOS is able to recover
more important pixels than PDSCO with the two-level method, and the residual norm is
a little better. Figure 7.1 compares the two restorations. More computational results on
other data sets are presented in Chapter 9 with other methods for NNLS and ML.
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Itn rg ninf sinf Objective LU  nobj nsb  cond(H)
1 2.0E-03 0 0.000E+00  2.88818088E-02 1 8 429  1.0E4-00

2 1.2E-03 0 0.000E+400 2.42483751E-02 1 11 429  1.0E+00

3 7.8E-04 0 0.000E+00 2.33768748E-02 1 14 429 1.1E+00

4 -1.1E-03 0 0.000E+00  2.32912899E-02 1 16 434 1.1E400

5 5.2E-04 0 0.000E+00  2.30449551E-02 1 19 434  2.3E4-00

6 -9.4E-04 0 0.000E400 2.28824677E-02 1 22 439  3.4E+00

7 5.1E-04 0 0.000E+00  2.28179334E-02 1 24 439  3.8E400

8 2.7E-04 0 0.000E400 2.27412858E-02 1 27 439  8.8E+00

9 -8.1E-04 0 0.000E+00 2.26328623E-02 1 30 444 8.9E4-00
10 3.5E-04 0 0.000E+00 2.26073087E-02 1 32 444  9.3E4-00
292 -1.0E-04 0 0.000E+400 2.01542866E-02 1 754 1188 2.8E401
293 3.1E-05 0 0.000E+00 2.01513552E-02 1 757 1188 2.8E+01
294 -1.0E-04 0 0.000E+400 2.01506263E-02 1 760 1193 2.8E401
295 4.9E-05 0 0.000E+00  2.01484693E-02 1 762 1193 2.8E+01
296 -1.0E-04 0 0.000E+00 2.01456274E-02 1 765 1198 2.8E+01
297 3.4E-05 0 0.000E400 2.01453559E-02 1 767 1198 2.8E401
298 -1.0E-04 0 0.000E+00 2.01433250E-02 1 770 1201 2.8E+01
299 4.6E-05 0 0.000E+00  2.01432504E-02 1 772 1201 2.8E+01
300 -1.0E-04 0 0.000E400 2.01403794E-02 1 775 1206 2.8E401

Table 7.1: General pattern of MINOS run on star image

z* | PDSCO | MINOS
[ le+04 , 1le+05) 5 4 4
[ 1le+03 , 1let+04) 84 85 87
[ 100 , 1e+03) 381 315 324
[ 10 100 ) 0 454 15
[ 1, 10) 0 36002 0
[ 0.1 , 1) 0 28676 0
[ 0.01 , 0.1) 0 0 0
[ 0.001 |, 0.01) 0 0 0
[ 0.0001 , 0.001) 0 0 0
[ 0 , le—04) | 65066 0 65106
Iterations 215 500
Residual 539.58 552.40 | 537.36

Table 7.2: Distribution of PDSCO and MINOS restorations of star image
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Figure 7.1: PDSCO and MINOS restoration



Chapter 8

ML, /1 and Chebyshev

Approximation

This chapter covers the maximum likelihood (ML) formulation discussed in Section 4.1.2.
The ML model is used extensively in medical imaging, where assuming the Poisson property
of the noise is appropriate. Hence it is meaningful to have a fast and efficient method for
the ML model. We also investigate the possibility of £; and Chebyshev approximation as

an alternative to the least squares model.

8.1 ML using SSD

Recalling the ML model

minimmize J(z) =) (Az), — > bilog (Ax),

subject to z > 0,

(8.1)

we derive the gradient of J(z) with respect to z using the elementwise parameterization

x = e? and the chain rule:
V.J(z) = XV, J(z) = XATY 1 (Az —b),
where y = Az, Y = diag(y) and X = diag(z). By assuming A”e = e, we have
V.J(z)=XAT(e—Y b)) =2 - XATY b

71
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Finally, we obtain the fixed point iteration by setting V,J(z) = 0:
wpi1 = XpATY, b, Xy = diag(ag), Vi = diag(yx).

In spite of the ease of implementation from the fixed point relationship, this SSD method

converges very slowly. In addition, SSD has the following disadvantages:
e Some elements of ¥ can be very small, causing failure of SSD in some instances.
e The assumption A”e = e holds only for pixels that are away from the boundary.

In fact, there is a tradeoff between the improvement in resolution of the image and the extra
cost of obtaining a better image. In medical imaging, slightly better resolution does not
help improve the accuracy of diagnosis. This might justify the SSD method if the first few
iterations are good enough. Indeed, the first few iterations SSD produces are often not bad.
This is one of the reasons that SSD has been widely used in medical imaging. However, it
is not true for all applications, where slight improvement is worth extra cost. Because of
these drawbacks of SSD, we resort to PDSCO and MINOS as alternatives.

8.2 ML using PDSCO

Our formulation with regularization is

minimize J(z,7,p) = e’ — 3 bilogri + z|vzl® + llyrl* + 3ol

m”"’p

subject to Az —r + dp = 0, (8.2)
z,r > 0.

The gradient and the Hessian of J(z,r,p) are

2

VTpr(z,mp) = ( T )

e — BR e+ 2r

2
vl 0
;2\7307"37,7‘, - ’
o(@mp) ( 0 BR2+72I>
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where B = diag(b), and R = diag(r) = diag(Az). The nonlinear equations defining the

central trajectory in the interior method are p = § y and

Az —r+8%y = 0

ATy+ 2 = 52z
w—y = e— BR le++%r (8.4)
XZe = pe
RWe = pe,

where z and w are dual variable corresponding to x and r and y is the barrier parameter.

We solve this system of equations by Newton’s method as discussed in Chapter 6:

~I &I 0 0] [Az T

—y2I 0 AT 1 of |Ar t
0 —-BR?2-92T -1 0 I||Ay|=|t], (8.5)

Z 0 0 X 0 Az 1

| O w 0 0 R| |Aw] | V2 |

where 7 =1 — Az — 0%y, t1 =722 — ATy —2,ty =e— BR 'e+~7*r+y —w, v; = pe — Xz,

and v9 = pye — Rw. This reduces to

—-H, 0 AT [Az wy
0 —Hy —I| |[Ar| = |wa], (8.6)
A —I 62| |Ay T

where H, = X1z + ’yQI, Hy = BR™2 + ")’QI + R_1W, wy =1t — X_l’Ul, wo = tg — R_l'UQ,
Az = X"Y(vy — ZAz), Aw = R~!(vy — WAr). Eliminating Az and Ar gives

D1AT D1’LU1
min Dy, | Ay— | —Dywsy |||, (8.7)
Ly 7/

where D? = H;'!, D3 = H; .

For some %, b; can be negative because the observed image is corrupted by random noise,
which could have negative values depending on the statistical property (distribution) of the
noise. If the noise has big negative values as in normal distributions, then b = Az + 7 can be
negative as well. Thus, BR™2 can contain negative elements, which implies V27, ,(z,,p)
in (8.3) is not positive definite. All the methods based on the positivity of b might be
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seriously flawed. However, a remedy is possible in our case if we assume Ae = e. From the
model we have Az +n = b. We add ae (o > 0) to both sides so that right-hand side is

nonnegative. Then, A(z+ ae)+n = b+ ae because of Ae = e. From the change of variable,
AT+n=b, T> ae. (8.8)

The SSD method cannot be applied to this problem with lower bounds because it is based
on the parameterization x = e?, which makes x nonnegative. However, the interior method

can be easily modified to handle general bounds [42, 43].

8.3 ML using MINOS

We can also apply MINOS to the ML formulation, similarly to its use in Chapter 7:

minimize J(z) = Y (Ax); — 3 bslog (A=), + bllyz? s9)
subject to x > 0. .
8.4 Chebyshev and ¢; Approximation
We can convert the ¢; approximation formulation
minimize ||b— Az||,
x (8.10)
subject to z >0
into an LP as follows:
minimize el (u + v)
T, U,V
subject to Az —u+v = b, (8.11)
z,u,v > 0,
where z € R™, u,v € R™. We can also transform the oco-norm formulation
minimize ||b— Az
@ = (8.12)
subject to = >0
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the following LP:

minimize z
T,U,v,2

subject to Az +u —ze = b, (8.13)

Ax — v+ ze =D,

T, u,v,z > 0,

where z is a scalar and z, u,v € R™. In the solution from the ¢; approximation, Az has a few
large deviations from b, which damages the restored image severely because the quality of
images depends on the range of pixel values. On the other hand, Chebyshev approximation
(8.12) finds the solution where Az deviates from b by a small amount componentwise.
Therefore it makes more sense in image restoration. The distributions of each restoration

are shown in Table 8.1. As we see, 1 restoration has a wide range of values.

True | Observed | #; Approx. | Chebyshev
[ le+04 , 1le+05) | 264 0 230 252
[ le+03 , 1le4+04) | 265 1162 243 322
[ 100 , 1e+03) 69 1963 247 2086
[ 10 , 100 ) 5 971 235 1436
[ 1, 10 ) 2 0 1056 0
[ 0.1 1) 0 0 2085 0
[ 0.01 0.1) 0 0 0 0
[ 0.001 , 0.01) 0 0 0 0
[ 0 , 1le—03) | 3491 0 0 0

Table 8.1: Distribution of #; and Chebyshev restoration

We present the different residual norms in Table 8.2, where z*, z', and z*° are the
true solution, #; restoration, and Chebyshev restoration. However, in both restorations,
PDSCO required many LSQR iterations compared with its performance on the NNLS or
ML formulations.

Figure 8.1 shows the restored images from #; and Chebyshev approximation. As ex-

pected, Chebyshev restoration looks better than ¢; restoration.
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2-norm l-norm | oco-norm
b— Ax* | 18283.02 | 616639.14 | 1436.40
b— Az' | 1913.31 | 64075.21 | 311.21
b— Ax™> 4694.88 | 277542.75 133.15
Iterations 432 6188 2042

Table 8.2: Different norms of residuals

True Image Blurred Image

10 20 30 40 50 60 10 20 30 40 50 60

1-norm Restoration co—norm Restoration

10 20 30 40 50 60 10 20 30 40 50 60

Figure 8.1: Chebyshev and #; restoration



Chapter 9
Computational Results

In this chapter, we present some numerical results and compare each restoration method
introduced in this dissertation. We give results from SSD, PDSCO, and MINOS applied
to NNLS (4.3), and results from PDSCO applied to ML (4.5). The other methods SSD,
MINOS for ML, Chebyshev and £; approximation are excluded because their performance

is poor.

9.1 Comparison of the Smaller Satellite Image

Figure 9.1 and Table 9.1 show the restored images of the smaller version of satellite example
from each method. Tt is hard to see the difference clearly by looking at the pictures in black
and white. The images are in color on the computer screen, which allows us to differentiate
them easily. By appearance, the PDSCO, MINOS, and ML restorations look good. Three
methods (SSD, PDSCO, and MINOS) solve the NNLS problem and PDSCO solves the ML

model using an interior method.

As pointed out in Chapter 5, SSD works reasonably well at the beginning, but does not
make much progress towards the solution after that. The restoration after two thousand

iterations is not as good as the PDSCO restoration.

For this example, PDSCO with the two-level method and MINOS show very good
performance in terms of the number of iterations and the distribution of the solution.
PDSCO on the ML model takes more than twice as many LSQR iterations for the same

optimality tolerance, but the restored image itself looks good.

7
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True Image Blurred Image

0 20 30 40 50 60 10 20 30 40 50 60
SSD Restoration (1000 itns) PDSCO Restoration (538 itns)

10 20 30 40 5 60 10 20 30 40 5 60
MINOS Restoration (500 itns) ML Restoration (1395 itns)

10 20 30 40 50 60 10 20 30 40 50 60

Figure 9.1: Restored images of the smaller version of satellite image
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True | SSD | PDSCO | MINOS | ML
[ let04 , 1et05) | 264 | 247 257 250 | 261
[ 1et03 , 1let04)| 265 | 274 258 263 | 274
[ 100 , 1e+03) 69 | 237 183 99 | 297
[ 10 ,  100) 5| 1314 3308 1| 2466
[ 1, 10) 2 | 1067 90 0| 798
[ 01 1) 0| 649 0 0
[ 001 , 0.1) 0] 257 0 0
[ 0001 , 0.01) 0] 42 0 0
[ 0.0001 , 0.001) 0 7 0 0
[ 1e—05 , 0.0001) 0 2 0 0
[ 0 , 1le—05) | 3491 0 0| 3474 0
Tterations 2000 538 500 | 1395
Residual 18283 | 1700 1781 1722 | 2138

Table 9.1: Distribution of true and restored images of smaller version of satellite example

9.2 Comparison of Satellite Image

To see the difference in performance of each method, we do the same tests on the original
satellite image, which is four times bigger than the smaller version. Figure 9.2 and Table 9.2
show the restored images of the satellite image for each restoration method. In this example,
PDSCO and ML restoration are good by appearance. The PDSCO restoration looks better
than SSD and MINOS for NNLS. MINOS has difficulties in handling many nonzeros. In
the recovered image, some bright pixels are located close to the boundary, and even in the
center of the recovered image, many pixels are separated. PDSCO with the two-level method
shows very good performance in terms of the number of iterations and the distribution of
the solution. ML restoration looks a little blurry and the exact shape is not recovered even

though the color in the body looks acceptable.

9.3 Comparison of Star Image

The above two examples have many nonzeros in the images, but the star image is very
sparse. Figure 9.3 and Table 9.3 show the restored star images for each restoration method.
In this example, the PDSCO and MINOS restorations look good. Their NNLS restorations
look better than SSD’s. For the ML model, the image quality is reasonable, but PDSCO

requires many LSQR iterations.
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True SSD | PDSCO | MINOS ML
[ 1le+03 , 1let+04) 5572 5157 5403 5523 5589
[ 100 , 1e+03) 1024 6005 2869 0 5473
[ 10 100 ) 82 18366 3653 0 22796
[ 1, 10 ) 2 25399 12333 1 31678
[ 0.1 1) 0 10478 41278 0 0
[ 0.01 , 0.1) 0 131 0 0 0
[ 0001 |, 0.01) 0 0 0 0 0
[ 0.0001 , 0.001) 0 0 0 0 0
[ le—05 , 0.0001) 0 0 0 0 0
[ 0 , 1le—05) 58858 0 0 60012 0
Tterations 500 431 1000 584
Residual 10122.4 | 10123.3 | 9983.25 | 10122.3 | 10076.7

Table 9.2: Distribution of true and restored images of satellite example

True SSD | PDSCO | MINOS ML
[ le+04 , 1e405) 5 4 4 4 4
[ 1le+03 , 1let+04) 84 86 85 87 81
[ 100 , 1le+03) 381 348 315 324 371
[ 10 , 100 ) 0 854 454 15 1004
[ 1, 10 ) 0 5559 36002 1| 17936
[ 01 , 1) 0| 17201 28676 0| 46140
[ 00l , 01) 0 | 22600 0 0 0
[ 0.001 |, 0.01) 0| 13502 0 0 0
[ 0.0001 , 0.001) 0 4131 0 0 0
[ 1le—05 ., 0.0001 ) 0 843 0 0 0
[ 0 , 1le—05) | 65066 408 0 65106 0
Iterations 1000 215 500 7130
Residual 539.58 | 501.02 552.40 | 537.36 | 931.53

Table 9.3: Distribution of true and restored images of star problem
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True Image
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SSD Restoration (500 itns)
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5 100 150 200 250
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Blurred Image
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PDSCO Restoration (431 itns)
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ML Restoration (584 itns)

50
100
150
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250

5 100 150 200 250

Figure 9.2: Restored images of the satellite image
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True Image Blurred Image
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Figure 9.3: Restored images of the star image



Chapter 10

Conclusions and future research

In this chapter, we present an overview of the dissertation and discuss its contributions.

We also discuss new research directions.

10.1 Summary

In this dissertation, we have studied numerical optimization methods for image restoration
with nonnegativity constraints. There are several formulations for image restoration and the
appropriate model is chosen to match the application. Two major models are nonnegative
least squares (NNLS) and maximum likelihood (ML). Our formulations are slightly different
from the original least squares problem and ML model with nonnegativity constraints. By
change of variables, our models have separable objective functions with linear equalities and
nonnegativity constraints.

We have developed a primal-dual interior approach for image restoration. The method
can be applied to NNLS and ML with different formulations. Many useful computational
techniques are included in our implementation, PDSCO. One of the main features is an
inexact Newton’s method based on the iterative solver LSQR. The advantage of the inexact
method is that the computational work can be reduced by controlling the accuracy of the
iterative solver. In addition, regularization, scaling, preconditioning, warm and hot start,
and predictor-corrector features have been implemented and evaluated on sparse images
and Basis Pursuit (BP) de-noising problems.

The reduced-gradient method is an alternative approach. It is especially good for sparse
images and problems with inherently sparse solutions. BP de-noising problems are prime
examples.

For NNLS, we have developed a two-level method for use with PDSCO. The idea is that
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early primal-dual iterations identify the largest elements of x with relatively few LSQR
iterations. Using QR factors of a few columns of A that correspond to the large elements
of z, we can reduce the original problem to a slightly smaller problem. We then apply
PDSCO to the reduced problem, needing only moderate accuracy to solve for the smaller

components of .

10.2 Future Research

Although many types of degradation can be approximated by linear and space invariant
processes, nonlinear and space variant techniques are more general and accurate. The
advantage of the linear space invariant approach is that extensive tools of linear systems
theory readily become available for the image restoration problem.

There are several directions for future research. The first is relaxation of the space
invariance of the blurring operator. Without space invariance, the matrix-vector product
cannot be done using the Fourier transform because we lose the Toeplitz property of H.
Thus, computing the matrix-vector multiplications Hz and H”y for arbitrary vectors z and
y will be very expensive. Because of the enormous size and density of H we must resort
to iterative methods, for which an efficient matrix-vector multiplication routine is critical.
Therefore, problem structure and other forms of sparsity must be exploited.

The second is extension to the nonlinear operator. Solving general nonlinear problems
is quite challenging in theory and practice, but there are some tractable nonlinear problems
such as those having convexity.

The next point is the utilization of noise information. As with the Wiener filter, we
should be able to get better images with noise information. There are some cases where the
noise distribution is known. New models that make use of the noise information can then
be considered.

Finally, it would be interesting to find other large-scale applications where NNLS solu-
tions are required. Solving large-scale NNLS is computationally demanding. The interior
methods we have developed show excellent performance under certain conditions, and they
apply to a broader range of objective functions. For example, PDSCO has already proved
remarkably efficient on extremely large problems of the form (6.2) in cases where the ob-

jective includes the entropy function ) ;% log z;.



Appendix A

List of Symbols

transpose of A

conjugate of A

conjugate transpose of A

i-th row of A

j-th column of A

Kronecker product of A and B

Hadamard (element by element) product of A and B
Fourier matrix (of order N)

2-D Fourier transform of f(z,y)

2-D Fourier transform of h(z,y)

matrix representing degradation model

the diagonal matrix with elements aq,...,a,

vector of diagonal elements of diagonal matrix A
diag(1,w,w?,...,w" 1), w = exp(27j/n), j = v/—1
1-norm of vector z

2-norm of vector z

vector of ones

j-th column of identity matrix

gradient of the real-valued function f

Hessian of the real-valued function f
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Appendix B

Properties of Kronecker Product

(1) (¢A)® B=A® (aB) =a(A® B), a is a scalar

(2) (A+B)C=(AC)+(BRC)

3) C®(A+B)=(CRA)+(C®B)

4) C®(A®B)=(C®A)RB

(5) (A® B)(C® D) = (AC ® BD); (C®D)(A® B) = (CA® DB)
(6) (A®B)=4A®B

(7) (Ao B)T = AT @ BT

8) (A® B)" = A* ® B*

(9) rank (A ® B) = rank(A) rank(B)

(10) Tr(A ® B) = Tr(A) Tr(B)

(11) (A®@B) '=A"1® B!

(12) det (A ® B) = det(A)"det(B)™, A is m x n matrix

(13) There exists a permutation matrix P such that (B ® A) = P*(A® B)P

(14) ¢(A ® B) = {p;v;}, where ¢p(A) = {ui}, ¢(B) = {v;}, and ¢(A) is the spectrum of A
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