
A CONTINUATION APPROACH FOR SOLVING

NONLINEAR OPTIMIZATION PROBLEMS WITH

DISCRETE VARIABLES

a dissertation

submitted to the department of management science and engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Kien-Ming Ng

June 2002

c© Copyright by Kien-Ming Ng 2002

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Walter Murray
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Richard W. Cottle

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Michael A. Saunders

Approved for the University Committee on Graduate

Studies:

iii

iv

Abstract

A new approach to solving nonlinear optimization problems with discrete variables

using continuation methods is described. Our focus is on pure integer nonlinear

optimization problems with linear equality constraints (ILENP) but we show how

the technique can be extended to more general classes of problems such as those

involving linear inequality and mixed integer constraints.

We transform the ILENP into that of finding the global minimizer of a problem

with continuous variables over the unit hypercube. To reduce the difficulties caused

by the introduction of undesirable local minimizers, we employ a special class of

continuation methods, called smoothing methods. These methods deform the original

objective function into a function whose smoothness is controlled by a parameter. The

success of the approach depends on finding a good smoothing function. We show that

the logarithmic barrier function is ideal for the type of global optimization problem

that arises from transforming discrete problems of interest.

The continuous problems arising from the smoothed function are solved by a mod-

ified Newton method. Since there are only linear equality constraints, we just need

to solve the reduced Newton equations for each smoothing parameter. The conjugate

gradient algorithm is applied to this set of equations to obtain a descent direction

before applying linesearch procedures. When nonconvexity of the transformed objec-

tive function arises, it is necessary to obtain a good direction of negative curvature

for the linesearch procedures. Issues related to the implementation of the algorithm,

such as the termination criteria and the use of preconditioners, are also discussed.

We show the effectiveness of the approach by applying it to a number of real

v

problems and also test problems taken from the literature. These include the bi-

nary unconstrained quadratic problem, the frequency assignment problem and the

quadratic assignment problem. The results are compared to those from alternative

methods, indicating that the new approach is able to produce good-quality solutions

for diverse classes of nonlinear discrete optimization problems.

vi

Acknowledgements

I would like to take this chance to express my heartfelt gratitude to everyone who

has made it possible for me to successfully complete this thesis. First, I would like

to thank the Department of Engineering-Economic Systems and Operations Research

(EESOR) and its faculty for admitting me to the PhD. program in 1997, which opened

the door to my Ph.D. studies here at Stanford University.

I am deeply indebted to my advisor, Professor Walter Murray, for taking me as his

student and giving me all the motivation and guidance I needed in my research work.

His influence was instrumental to my academic performance, especially in making

me realize the importance of striking a proper balance between theory and practice

in my research. It amazes me how he is able to view research problems from many

perspectives, and develop a variety of new techniques to solve them. Because he is

never short of unique insights and creative ideas, it is always very enlightening to

have a conversation with him. I thank Professor Murray for all the feedback, support

and guidance he has given me in writing this thesis too.

I would also like to thank Professor Richard W. Cottle and Professor Michael A.

Saunders for taking on the responsibilities of being on both my dissertation reading

committee and my oral examination committee, and carefully proofreading my thesis

for errors in technical details, English grammar and style despite their busy schedules.

I am particularly grateful to Professor Saunders for taking the time to discuss my

research work with me, and for the many helpful suggestions he has given to improve

the efficiency of the computer programs that I wrote in the course of my research.

I am also grateful to Professor Cottle for all the opportunities he has given me to

work as his course assistant, and all the useful knowledge I have gained from these

vii

experiences.

In addition, I would like to thank both Professor Steven M. Gorelick and Pro-

fessor Gerd Infanger who also served on my oral examination committee, as well as

Professor B. Curtis Eaves and Professor Arthur F. Veinott, Jr. for their advice and

insights about my thesis research. I would also like to thank all the staff in both

the Department of EESOR and the Department of Management Science and Engi-

neering (MS&E) who assisted me with many administrative issues pertaining to my

research work. The funding from both departments, the National Science Foundation

Grant NSF CCR-9988205, the Office of Naval Research Grant N00014-96-1-0274, and

the General Motors Corporation have also been essential in supporting my research

financially.

The Systems Optimization Laboratory has been a great working environment,

and I particularly appreciate the friendship and many thought-provoking discussions

I have enjoyed with my colleagues Del Gatto Antonino, Erik Boman, Alexis Guillaume

Collomb, Angel-Victor de Miguel, Titus Dorstenstein, Maureen Doyle, Michael Fried-

lander, Byunggyoo Kim, Chih-Hung Lin, Heiko Pieper, Vinayak Vishnu Shanbhag

and Che-Lin Su. There are many more friends I have made at Stanford University

who gave me help and support but were not mentioned here. I would like to take this

opportunity to thank all of them.

My girlfriend Lee Hwei Yi has always provided me with inspiration and emotional

support since we met during my 4th year at Stanford University. I want to thank her

for giving me motivation and patiently waiting for me to complete my thesis.

Lastly, my parents’ love and constant encouragement has played a great role in

sustaining me through the rigours of my 5 years of Ph.D. studies. Despite the fact

that I am thousands of miles away from them, my welfare has always been uppermost

in their minds. I want to say a big thank you to them for all their sacrifices they have

made over the years in order to see me succeed in my quest for a career in academia.

viii

Contents

Abstract v

Acknowledgements vii

Notation xv

1 Introduction 1

1.1 How Discrete Variables Arise . 2

1.2 Linear Discrete Optimization Problems 5

1.2.1 Applications . 5

1.2.2 Techniques to Solve Linear Discrete Problems 8

1.2.2.1 Branch-and-Bound Methods 10

1.2.2.2 Cutting-Plane Methods 11

1.3 General Discrete Optimization Problems 12

1.3.1 The Evaluation of f(x) . 12

1.3.2 Reformulation to Nonlinear Binary Problems 14

1.3.3 Techniques To Solve Nonlinear Discrete Problems 16

1.3.3.1 Decomposition Methods 17

1.3.3.2 Branch-and-Reduce Methods 18

1.4 Outline Of Remaining Chapters . 19

2 A Continuation Approach 21

2.1 The KKT System . 23

2.2 Continuation Methods in Optimization 25

ix

2.3 Smoothing Methods . 27

2.3.1 Local Smoothing . 29

2.3.2 Global Smoothing . 32

3 Smoothing Algorithms 35

3.1 Logarithmic Smoothing . 35

3.1.1 Penalty Terms . 37

3.1.2 Description of the Algorithm 43

3.2 The Primal-Dual Method . 47

3.3 Convergence Analysis . 55

4 Linear Systems with Large Diagonal Elements 63

4.1 Linear Systems with Large Diagonal Elements 64

4.1.1 Sensitivity Analysis . 64

4.1.2 Computing x . 70

4.2 Reduced Hessian Systems . 71

4.2.1 Transformation to a Linear System with Large Diagonal Elements 72

4.2.2 Permutation of Variables . 73

4.3 Computing the Solution of Bx = bD 74

4.3.1 Conjugate Gradient Method 74

4.3.2 The Schur Complement Method 75

4.3.3 Block Gauss-Seidel Method 76

5 Algorithm Implementation and Details 77

5.1 Initial Iterate for Smoothing Algorithm 77

5.1.1 Analytic Center . 78

5.1.2 Relationship with Trajectory of Smoothing Algorithm 79

5.2 Using the Conjugate Gradient Method 81

5.2.1 Computing Z and Associated Operations 81

5.2.2 Obtaining the Search Direction 83

5.3 Linesearch . 85

5.4 Parameter Initialization and Update 86

x

6 Applications 91

6.1 Unconstrained Binary Quadratic Programming 92

6.1.1 Examples . 93

6.1.2 Numerical Results . 93

6.2 Frequency Assignment Problem . 101

6.2.1 Formulation of the Problem in Binary Variables 103

6.2.2 Transformation of the Problem 104

6.2.3 Reduced Hessian Matrix . 105

6.2.4 Numerical Results . 105

6.3 Quadratic Assignment Problem . 107

6.3.1 Equivalent Formulation . 108

6.3.2 Numerical Results . 108

6.4 Medical Decision-Making . 110

7 Extensions and Conclusions 115

7.1 More General Problems . 115

7.1.1 Adding Continuous Variables 116

7.1.2 Adding Linear Inequality Constraints 117

7.2 Conclusions . 119

Bibliography 121

xi

xii

List of Tables

5.1 Typical Ranges of parameters in smoothing algorithm 88

6.1 Platform and software used for numerical comparison 92

6.2 Objective values obtained for BQP test problems with 50 variables . . 94

6.3 Objective values obtained for BQP test problems with 100 variables . 95

6.4 Objective values obtained for BQP test problems with 250 variables . 95

6.5 Objective values obtained for BQP test problems with 500 variables . 96

6.6 Objective values obtained for BQP test problems with 1000 variables 96

6.7 Objective values obtained for BQP test problems with 2500 variables 97

6.8 Comparison of number of iterations required to solve BQP test prob-

lems with and without preconditioning 99

6.9 Comparison of computation time required to solve BQP test problems 101

6.10 Objective values obtained for FAP with Ericsson’s data set 106

6.11 Computation time needed for FAP with Ericsson’s data set 107

6.12 Objective values obtained for QAP test problems 110

6.13 Computation time needed for solving QAP test problems 110

6.14 Objective values obtained for cancer detection problem 113

6.15 Computation time needed for solving cancer detection problem 113

xiii

List of Figures

2.1 Difficulties in continuation paths . 23

2.2 Effect of smoothing . 28

2.3 Impact of local smoothing . 31

5.1 Trajectories of iterates of smoothing algorithm 89

6.1 Graph of iterations required for solving BQP test problems 100

6.2 Graph of computation time for solving BQP test problems 102

xiv

Notation

R set of all real numbers

Z set of all integers

Z+ set of all positive integers

e [1, 1, . . . , 1]T

x decision variables (an n-vector)

‖x‖ norm of x (2-norm unless otherwise stated)

‖A‖ norm of A (2-norm unless otherwise stated)

f(x) objective function (a scalar)

∇f gradient of f (a column vector)

∇2f Hessian of f (an n× n matrix)

Cn set of functions with continuous nth order derivatives

X,Diag(x) diagonal matrix with diagonal elements being vector x

diag(X) vector of the diagonal elements of square matrix X

A⊗ B Kronecker product of matrices A and B

vec(X) vector of length mn formed by columns of matrix X ∈ Rm×n

xv

xvi

Chapter 1

Introduction

Our interest is in nonlinear optimization problems in which some or all of the variables

are discrete. The most general form of the problem of interest to us may be stated as

Minimize f(x, y)

subject to g(x, y) = 0

h(x, y) ≤ 0

x ∈ D ⊂ Zp, y ∈ Rq,

(P1.1)

where f : Rp+q → R, g : Rp+q → Rm, h : Rp+q → Rl are assumed to be C2 functions,

and D is a bounded subset of Zp. The decision variables represented by x and y are

called discrete and continuous variables respectively.

If the variables x do not arise in (P1.1) so that it becomes a nonlinear optimiza-

tion problem with continuous variables only, then there is a plethora of algorithms to

solve the problem [BSS93, GMW81, NW99b]. The introduction of discrete variables

to (P1.1), even if it is a relatively small number when compared to the continuous

variables, makes it much harder to solve. In fact, there are few algorithms dealing

with such problems because of their inherent difficulty. Examples include algorithms

underlying the solver DICOPT in the software GAMS1, as well as the global opti-

mization solver BARON2. These algorithms are discussed later in this chapter.

1http://www.gams.com
2http://archimedes.scs.uiuc.edu/baron/baron.html

1

2 CHAPTER 1. INTRODUCTION

To focus on aspects of the algorithm pertaining to the inclusion of discrete vari-

ables, we study a subclass of (P1.1) in which all the variables are discrete and the

constraints are linear:

Minimize f(x)

subject to Ax = b

Cx ≤ d

x ∈ D ⊂ Zp.

(P1.2)

Here and in subsequent sections, we shall assume without a loss of generality that A

is of full rank. How the ideas we introduce may be extended to solve problems that

include continuous variables is discussed in Chapter 7. However, the class of problems

represented by (P1.2) is of interest in its own right and many practical problems are

of this form.

1.1 How Discrete Variables Arise

Discrete variables arise in many optimization problems, and they sometimes, but not

always, occur in conjunction with continuous variables. Unlike continuous variables,

discrete variables are of various types, and this distinction can be important. How

they arise in the problem can also vary. For example, if we have a function f(x), x ∈
Rn and say x1 ∈ {0, 1}, it may or may not be possible to evaluate f(x) unless

x1 ∈ {0, 1}. We shall examine these different characteristics later in this chapter.

A common reason for discrete variables occurring is when resources of interest have

to be measured in terms of integer quantities, such as the number of components to

be assembled in a production line, or the number of people to be assigned for certain

jobs. If a variable is defined to represent the amount of such resources to be used, it

follows that this variable is discrete.

Discrete variables may be introduced to facilitate the modeling process, such as

using binary or 0-1 variables (i.e., variables that can only take the values of 0 or 1)

to represent “yes–no” decisions. A classical example that employs binary variables in

this way is the knapsack problem. In this problem, there are n items that could be

1.1. HOW DISCRETE VARIABLES ARISE 3

placed into a knapsack. The jth item has weight wj and value cj. The objective is to

maximize the total value of the items placed in the knapsack subject to a constraint

that the weight of the items not exceed b. To formulate this problem, one can let xj

be the binary variable such that

xj =





1 if item j is placed in the knapsack,

0 otherwise.

Then the problem becomes the following

Maximize cTx

subject to wTx ≤ b

x ∈ {0, 1}n.

(P1.3)

Note that this is a special case of (P1.2).

It is also possible to use discrete variables to help model constraints that involve

logical conditions. For example, suppose we want x1 ≥ 0 ⇔ x2 ≤ 0, and also

x2 ≥ 0 ⇔ x1 ≤ 0. We can certainly introduce the constraint x1x2 ≤ 0 to represent

such a logical condition, but it may be desirable to preserve the linearity of the

optimization problem. To this end, we can instead include the two linear constraints

−M(1 − y) ≤ x1 ≤ My and −My ≤ x2 ≤ M(1 − y), where y is a binary variable

and M is a sufficiently large positive number that does not affect the feasibility of

the problem. By this definition of M , if y = 1, we will have x1 ≥ 0 and x2 ≤ 0, while

if y = 0, we will have x2 ≥ 0 and x1 ≤ 0.

Another common situation requiring integer variables is when the problem involves

set-up costs. As an example, consider a generator supplying electricity to a local

region with I nodes for T periods. Suppose at period t, the generator incurs a cost

of st when it is turned on, a cost of pt for producing electricity after it is turned on, a

cost of si for supplying electricity to node i after it is turned on, and a cost of dt for

shutting it down. For t ∈ {1, 2, . . . , T}, let xt, yt and zt denote the binary variables

4 CHAPTER 1. INTRODUCTION

such that

xt =





1 if generator is turned on in period t,

0 otherwise.

yt =





1 if generator is operating in period t,

0 otherwise,

zt =





1 if generator is shut down in period t,

0 otherwise.

If we let wit be variables that represent the percentage of the generator’s capacity ci

for node i ∈ {1, 2, . . . , I} that is used in period t, then the total costs incurred would

be
T∑

t=1

(stxt + ptyt + dtzt +
I∑

i=1

cisiwit). The objective is to minimize the total costs

subject to the constraints that the total demand, dt, for electricity in each period t be

met, i.e.,
I∑

i=1

ciwit ≥ dt. In order to ensure that wit > 0 only if yt is 1, we include the

constraint 0 ≤ wit ≤ yt for each i and each t. Thus if wit > 0, yt is forced to be 1 by

that constraint and the fact that it is binary. We can also impose other constraints

that would ensure a proper 0-1 value for each variable xt and zt whenever we have a

feasible vector. The formulation of this problem is summarized below:

Minimize
T∑

t=1

(stxt + ptyt + dtzt +
I∑

i=1

cisiwit)

subject to
I∑

i=1

ciwit ≥ dt

0 ≤ wit ≤ yt

xt ≥ yt − yt−1

zt ≥ yt−1 − yt

xt ≥ 0, zt ≥ 0, yt ∈ {0, 1}.

(P1.4)

To gain a better understanding of (P1.1), we first look at linear discrete optimiza-

tion problems. Considerable work has been done in that area, and it is helpful to

understand some of the common techniques used there.

1.2. LINEAR DISCRETE OPTIMIZATION PROBLEMS 5

1.2 Linear Discrete Optimization Problems

In many contexts, the term “integer programming” is used to describe linear discrete

optimization problems. Such problems can be expressed in the form (P1.1) with f , g

and h being linear. This means that the function f is of the form cTx+d for some real

column vector c and real number d, and the functions g and h are of the form Ax− b

for some real matrix A and real column vector b. This problem has been studied

intensively [NW99a, PR88, Sch98]. It is a reflection of the difficulty of even the linear

problem that it has proven necessary to develop a wide variety of algorithms to solve

various subclasses of (P1.1), some of which are discussed in the next section.

1.2.1 Applications

There are many applications involving linear discrete optimization [BW01, CNW02,

CSD01, HRS00, RS01, Shi00, TM99, Van01, VD02, YC02] and some of the problem

classes that have been studied extensively are:

1. Set Partitioning Problem: Given a finite set X and a family F of subsets

of X with a cost of cj associated with each element j of F , find a collection of

members of F that is a partition of X and has the minimal cost sum of these

members. Defining x to be a vector such that xj = 1 if member j of F is to

be included in the partition of X and 0 otherwise, we find that the problem

is of the form of (P1.1) with f(x) = cTx, where c = (cj)j∈F . Here A is a 0-1

matrix such that each row i corresponds to an element of X, and each column

j corresponds to an element of F , i.e., aij = 1 if i ∈ j and 0 otherwise. Also,

b = e, the vector of ones and D = {0, 1}|F|. Such problems arise frequently

in airline crew scheduling problems. In these problems, each row represents a

flight leg (takeoff and landing) that must be flown and each column represents

a round-trip shift, i.e., a sequence of flight legs beginning and ending at the

same base location and allowable under work regulations that an airline crew

might fly. Each assignment of a crew to a particular round-trip shift j will have

a certain cost cj, and the matrix A consists of elements aij that take the value

of 1 if flight leg i is on shift j and 0 otherwise.

6 CHAPTER 1. INTRODUCTION

2. Generalized Linear Assignment Problem: This class of problems involves

assigning n workers to n jobs in such a way that exactly one worker has to be

assigned to each job. Each worker i has a capacity bi, while each job j has a size

aij and a cost of cij when it is assigned to the ith worker. The aim is to find an

assignment of workers to jobs that minimizes the overall cost. Defining xij to

be 1 if the ith worker is assigned to the jth job and 0 otherwise, the problem

can be formulated as

Minimize
∑
i

∑
j

cijxij

subject to
∑
j

aijxij ≤ bi, for all i

∑
i

xij = 1, for all j

xij ∈ {0, 1}, for all i, j.

(P1.5)

3. Integer Network Flow Problem: Given a network G = (V,E), an arc flow

xij is a nonnegative real number associated with an arc aij ∈ E, where i, j ∈ V .

The flow that can pass through arc aij is constrained by an upper bound uij

and a lower bound lij. A node s ∈ V at which flow originates is called a source

while a node d ∈ V at which flow terminates is called a destination. The aim is

to minimize the total cost of shipment through the network. If we restrict xij

to take only integer values, and assuming the unit transport costs are cij and

are linear in xij, the problem can be formulated as

Minimize
∑

aij∈E

cijxij

subject to
∑

j:aij∈E

xij −
∑

j:aji∈E

xji = 0, for all i 6= s, d

xij ∈ Z+ ∩ [lij, uij], for all i, j.

(P1.6)

4. Shortest Path Problem: Assume that we have the same network G as in the

Integer Network Flow Problem. A path P is defined to be a sequence of nodes

1.2. LINEAR DISCRETE OPTIMIZATION PROBLEMS 7

i1, . . . , in in V , such that aikik+1
∈ E for each k = 1, . . . , n − 1, and ik 6= il for

k 6= l. The length of a path P is defined as the sum of lengths of arcs in P ,

i.e., l(P) =
∑

aij∈P cij. The problem is to find a path P ∗ in G from s to d such

that the length of this path is minimized, i.e., l(P ∗) = minP{l(P)}, where the

minimum is taken over all paths P in G from s to d. Defining xij to be 1 if arc

aij is part of the shortest path and 0 otherwise, the problem can be formulated

as

Minimize
∑

aij∈E

cijxij

subject to
∑

asj∈E

xsj = 1, for all j

subject to
∑

j:aij∈E

xij −
∑

j:aji∈E

xji = 0, for all i 6= s, d

xij ∈ {0, 1}, for all i, j such that aij ∈ E.

(P1.7)

For certain classes of linear discrete optimization problems, a relaxation of (P1.1)

without the constraint x ∈ D may have an optimal solution vector x∗ ∈ D; i.e., the

optimal solution to the relaxed (P1.1) problem may be the optimal solution to the

original (P1.1) problem. (we do not rely on such a property, but of course always

welcome its occurrence.) The term “relaxation” has been defined in many contexts

related to linear discrete optimization (see e.g., [NW99a]), but it can be extended to

the following definition when general optimization problems are considered.

Definition 1.1. Given an optimization problem P defined by min{f(x) : x ∈ X},
the optimization problem R defined by min{f̄(x) : x ∈ Y } is said to be a relaxation

of P if and only if X ⊂ Y and f̄(x) ≤ f(x) for all x ∈ X.

One important class of linear discrete optimization problems in which the optimal

solution to the relaxation of (P1.1) gives the optimal solution to the original problem

8 CHAPTER 1. INTRODUCTION

is

Minimize cTx + d

subject to Ax = b

x ≥ 0

x ∈ D ⊂ Zn,

(P1.8)

where the matrix A is unimodular as defined below.

Definition 1.2. A matrix A ∈ Zm×n is said to be totally unimodular if and only if

det(B) = ±1 for every nonsingular square submatrix B of A.

For completeness, the following theorem is stated and proved (see e.g., [VD68]):

Theorem 1.1. In problem (P1.8), assume that A is totally unimodular, b ∈ Zn and

Zn ∩ {x : Ax = b, x ≥ 0} ⊂ D. If x∗ is an optimal basic feasible solution to (P1.8)

without the constraint x ∈ D, then x∗ is also the optimal solution to (P1.8).

Proof. Note that (P1.8) without the constraint x ∈ D is a linear program and if x∗

is an optimal basic feasible solution of this problem, then x∗ = B−1b, where B is a

matrix formed from m columns of A that are linearly independent and such that

cN − cBB
−1N ≥ 0.

Consider the adjoint matrix of B, adj(B), which is the transposed matrix of cofactors

of A. Each entry of adj(B) is formed from the determinants of square submatrices of

B. Since any square submatrix of B is also a square submatrix of A, we find by the

totally unimodular property of A that adj(B) ∈ Zn×n and det(B) = 1 or −1. This

implies that x∗ = B−1b = 1
det(B)

adj(B)b ∈ Zn. Since x∗ is feasible, we have Ax∗ = b,

x∗ ≥ 0 and hence x∗ ∈ Zn ∩ {x : Ax = b}, i.e., x∗ ∈ D. Thus, x∗ is also an optimal

solution to (P1.8).

1.2.2 Techniques to Solve Linear Discrete Problems

Though discrete optimization problems have finite or countable feasible points, they

are not necessarily easier than continuous optimization problems. Indeed, they are

1.2. LINEAR DISCRETE OPTIMIZATION PROBLEMS 9

usually considerably harder. A reflection of the degree of difficulty to solve problem

(P1.8) can be seen from the large number of special algorithms that have been devel-

oped to solve special categories of problems (such as those described earlier), rather

than a single all-purpose algorithm. To understand the effort required to solve dis-

crete optimization problems, it is useful to employ the terminology used in complexity

theory, which is described below informally.

A decision problem is one that returns an answer of “yes” or “no” for its solution.

An algorithm is said to be polynomially bounded if there exists a polynomial function

p such that for each input of size n, the algorithm terminates after at most p(n) steps.

A decision problem is said to be in the class P if it can be solved by a polynomially

bounded algorithm. The class NP refers to decision problems whose solutions can

be verified in time that is polynomial in the size of the input. A problem L1 is said to

be polynomial-time reducible to problem L2 if there is a mapping f from the inputs

of L1 to the inputs of L2 such that f can be computed in polynomial-time, and the

answer to L1 on input x is yes if and only if the answer to L2 on input f(x) is yes. A

problem L is NP-hard if for any problem L′ ∈ NP, L′ is polynomial-time reducible

to L. If problem L is NP-hard and L ∈ NP, then L is NP-complete. Though

P ⊂ NP, it is still an open question whether P = NP, which is equivalent to asking

if there is some NP-complete problem that can be solved by a polynomially bounded

algorithm.

Most of the discrete optimization problems are NP-hard or NP-complete, even

if they are linear problems. As an example, it is shown in [PS82, page 358] that

the problem of determining if Z ∩ {Ax = b, x ≥ 0} 6= ∅ is NP-complete. Solving

such optimization problems can be difficult because of the complexity involved. Since

there is a finite set of possible solutions, one possibility is simply to examine all such

solutions, i.e., perform an exhaustive enumeration of all the solutions. However, if

we have m binary decision variables, we might have to perform up to 2m function

evaluations to determine the optimal solution by enumeration. So for a problem with a

modest size of 1000 binary decision variables, it would require at least millions of years

for a computer that can execute 1015 operations per second to find the optimal solution

by enumeration. Though one can probably eliminate some enumeration possibilities

10 CHAPTER 1. INTRODUCTION

by clever observation (such as the branch-and-bound method to be discussed below),

even a radical reduction may still leave an untenable number of choices. Also, there are

specialized algorithms to solve certain types of linear discrete optimization problems,

like the airline crew scheduling problem. However, the algorithms are combinatorial

in nature and also require a vast amount of computational effort for large problems.

For simplicity, we only consider problem (P1.8). We also assume that D ⊂ {0, 1}n.

It is explained in the next section why making this assumption on D does not result

in any loss of generality. Two general techniques for solving (P1.8) are branch-and-

bound and cutting-plane methods.

1.2.2.1 Branch-and-Bound Methods

In this approach, the feasible region is systematically partitioned into subdomains and

such a partitioning process can be represented by a tree with each node representing

a subproblem. The simplest way to partition the feasible region is to consider the

two subproblems when a particular variable xj = 0 and xj = 1 respectively. These

subproblems generated by the partition are used to determine bounds on the objective

function and also for updating the best objective value obtained so far. To be more

specific, upper and lower bounds are being generated at different levels and nodes of

the tree throughout the whole branch-and-bound process, until the upper and lower

bounds differ by an acceptable tolerance.

First note that if a subset of the variables are allowed to be continuous, then

the optimal objective of this subproblem will be a lower bound on the solution of

the original discrete problem. Also, if no feasible solution exists for the relaxation

of a subproblem, then no feasible solution exists for the subproblem itself. Once a

feasible solution is known, this yields an upper bound to the required solution. These

observations are used in a systematic way in the branch-and-bound method. In the

event that the subproblems are infeasible, the trees using these subproblems as the

root nodes will be discarded. Similarly, if the subproblems obtained are shown to have

objective values or bounds that are not as good as the best known objective values

or upper bounds, they are also discarded. Otherwise, one continues with further

partitioning to obtain new but smaller subproblems for determination of new bounds

1.2. LINEAR DISCRETE OPTIMIZATION PROBLEMS 11

or objective value. The whole process is repeated until all the possible partitions have

been carried out and an optimal solution is obtained, or if the upper and lower bounds

of all partitions considered fall within a prespecified tolerance. When picking the

list of candidate subproblems to be considered, it is desirable to make the selection

in such a way as to reduce the gap between the upper and lower bounds quickly.

Thus, a branch-and-bound algorithm could be considered as an enumerative method

where intelligent choices are made to reduce the amount of work required. For an

early survey and discussion of branch-and-bound methods, see [LW66] and [Mit70].

Different branch-and-bound algorithms vary in the choice of variables for partitioning

with the purpose of discarding more non-optimal subproblems at an early stage.

Like other enumerative methods, the method can be terminated after at least one

feasible solution has been found. While this may not be provably optimal, it may

nonetheless be of value, e.g., in providing bounds on the optimal objective values.

1.2.2.2 Cutting-Plane Methods

The basic idea behind cutting-plane methods is to add constraints to the problem so

that if it is solved as a continuous problem, a discrete solution is obtained.

One first solves for the continuous relaxation problem min{f(x) : Ax = b, 0 ≤ x ≤
e} using the simplex method. If an x′ ∈ {0, 1}n is obtained, then we are done. If not,

then an additional linear constraint is imposed on the region {Ax = b, 0 ≤ x ≤ e}
to prevent x′ from being obtained as an optimal solution of the new problem, and

yet not eliminating any feasible point in {0, 1}n. This new problem is also solved

by the simplex method and the process repeated if necessary until an x′ ∈ {0, 1}n is

obtained or it is concluded that the original problem is infeasible. As an example of

a cut, suppose the simplex method is applied to the continuous relaxation problem

min{f(x) : Ax = b, 0 ≤ x ≤ e}, obtaining the optimal tableau

xi = gi0 +
∑

j∈N

gij(−xj), i ∈ B, (1.1)

where B and N are the basic and non-basic variables in the optimal tableau respec-

tively. Assume that xk is fractional for some k ∈ B. Define N1 = {j ∈ N : fkj < fk0},

12 CHAPTER 1. INTRODUCTION

where fkj represents the fractional part of gkj, then one possible cut can be defined

by
∑

j∈N1

min

{
fkj

fk0
,
1 − fkj

1 − fk0

}
xj ≥ 1. (1.2)

The first cutting-plane method was developed by Gomory [Gom58] and the cut

(1.2) is attributed to him. However, because of the slow convergence to integer

solutions, pure cutting-plane algorithms are rarely practical. Typically, branch-and-

bound algorithms are combined with the cutting-plane approach in which a small

number of efficient cuts are added to the problems at the nodes of the branch-and-

bound tree. Such methods are known as the branch-and-cut methods and a recent

survey can be found in [Mit99].

1.3 General Discrete Optimization Problems

Although many discrete optimization problems are linear, there is also an abundance

of practical problems that are in the form of (P1.1) with f : Rn → R nonlinear. As

an example, consider the linear assignment problem discussed earlier. It may turn

out that one needs to factor in nonlinear costs in the objective function, making the

problem nonlinear. A well-known nonlinear discrete optimization problem is that of

the quadratic assignment problem. A discussion of applications of nonlinear discrete

optimization problems is given in Chapter 7.

It may not always be a disadvantage if we have to deal with nonlinear discrete

optimization problems. This is because we can always transform such problems into

other manageable nonlinear problems. While the same idea may be applied to linear

discrete optimization problems, it comes at a possible loss of any advantages to the

original problem being linear.

1.3.1 The Evaluation of f(x)

A requirement of the approach we advocate is that it be possible to evaluate f(x)

at non-integer values of x. For linear functions and many nonlinear functions, that

1.3. GENERAL DISCRETE OPTIMIZATION PROBLEMS 13

is always true. However, there are functions for which it is not true. For example,

suppose

f(x) =

x10∑

i=0

ci(x)

for some functions ci(x). If we assign a non-integer value to x10 this expression has

no meaning. Instead, we define a function f̄(x) such that f̄(x) = f(x) when x is an

integer. In the above case, we can define

f̄(x) ≡
bx10c∑

i=0

ci(x) + (x10 − bx10c)cbx10c+1.

While the above transformation results in f̄(x) being continuous, it lacks continu-

ous differentiability, which are crucial to the methods we wish to apply. However,

the transformation is satisfactory if x10 ∈ [0, 1] and this emphasizes a reason for

transforming the problem into one with binary variables only.

Integer variables may be used to control a choice. For example if x7 = 1, then

carry out decision A; if x7 = 2, then carry out decision B and so on. Such statements

can sometimes be replaced by additional constraints and the introduction of binary

variables.

How to reformulate the problem with continuous variables may also be deduced

by altering the physics of the model. For example, consider the distillation problem

described in [GMW81]. Suppose x5 ∈ {1, 2, . . . , 6} is the tray number of the input

feed in the distillation column. We could consider a new model in which x5 is replaced

by a set of continuous variables x5,i = 1, 2, . . . , 6, where x5,i is the proportion of the

feed going into tray i. Another example is the frequency assignment problem we

discuss later. The standard model assumes a station transmitting on one frequency

(from a limited set of frequencies) and the aim is to minimize interference due to

stations using the same frequency. We could instead allow a station to broadcast on

all frequencies with the variables being the percentage for a given frequency. In both

cases we need to force the solution to comply with the real situation. However, at

points other than the solution, there is a physical interpretation of the variables. Note

14 CHAPTER 1. INTRODUCTION

that in both these cases, the number of continuous variables is considerably greater

than the number of discrete variables.

1.3.2 Reformulation to Nonlinear Binary Problems

Though problems with only binary variables are the simplest form of discrete prob-

lems, they are very important because any discrete problem with bounded variables

can always be transformed into a binary problem. More specifically, problems with

constraints xi ∈ Si, where Si is a finite set of integers, can always be transformed to

an equivalent problem with binary variables.

Without a loss of generality, consider the example of an integer variable x bounded

by 0 and u. We can then use the substitution

x =

k∑

i=0

2iui,

where k = b ln u
ln 2

c and ui are new binary variables to be introduced. Thus, we effectively

remove the integer variable x and replace it with k + 1 binary variables. This is

probably the best way to introduce the minimal number of binary variables possible

in place of integer variables with an upper and lower bound. See [LB66] for more

details about such a transformation.

In the event that Si is a finite set of increasing but not necessarily consecutive

integers say {n1, n2, n3, . . . , nki
}, we may introduce undesired representations of x and

extra binary variables by assuming that n1 ≤ x ≤ nki
and using the above approach,

especially if nki
is very large. Instead, we can introduce ki binary variables as in the

knapsack problem and define them as follows:

yj =





1 if xi = nj

0 otherwise,

for j = 1, 2, . . . , ki. We will also have to include the constraint eTy = 1. Such

additional constraints do not necessarily make the problem harder to solve since they

1.3. GENERAL DISCRETE OPTIMIZATION PROBLEMS 15

are of a special structure.

Although we can convert all the bounded integer variables in this way, it may

be thought a disadvantage to introduce such a large number of additional variables.

However, although the problems are larger, they contain a lot of structure. The basic

data defining the problem has not increased. For example, the size of the Hessian of

the objective function may increase by a factor of ten (hence the number of elements

increases by a factor of hundred) but the number of nonzero elements is likely to

remain constant. Consequently, the increase in size is irrelevant if sparse technology

is used.

Another concern about such a transformation is that information might be lost.

For example, xi may represent the number of satellites used in interferometric images.

The greater the number of satellites used, the better the image obtained but the

greater the costs. If 7 is the optimal choice, it is likely that 6 and 8 are good choices

compared to say 20. This information may be lost if we transform the problem by

the following introduction of binary variables

yj =





1 if xi = j

0 otherwise.

For example, suppose the good solution with y6 = 1 and yj = 0 for j 6= 6 is obtained.

In searching for an improvement, setting y20 = 1 and yj = 0 for j 6= 20 will seem just

as likely to improve the solution as setting y7 = 1 and yj = 0 for j 6= 7, or setting

y5 = 1 and yj = 0 for j 6= 5. So, the information that reflects the better choices

of consecutive numbers of satellites used is lost by such a transformation. However,

there are problems in which there is no relevance to the order of the integers (such

problems are likely to be harder to solve). For example, consider the frequency

assignment problem in which one of 4 frequences has to be assigned to 20 stations.

Suppose the optimal solution is to assign frequency 1 to the first 10 stations, frequency

2 to the 11th–14th stations, frequency 3 to the 15th–17th stations, and frequency 4

to the 18th–20th stations. There is no reason to suppose assigning frequency 3 to

the 20th station is better than frequency 4. Thus, the optimal solution could well

16 CHAPTER 1. INTRODUCTION

have been to assign frequency 1 to the first 10 stations, frequency 2 to the 11th–14th

stations, frequency 4 to the 15th–17th stations, and frequency 3 to the 18th–20th

stations, and there is no difference to distinguish between these two solutions, or any

other solutions obtained by re-ordering the frequencies. Indeed in such problems, we

can re-order the variables without impacting the problem. So for some problems,

there is no loss of information by transforming them to one with binary variables,

while for others, care may need to be exercised to avoid a loss of information.

Sometimes, it is also possible to handle the transformation to binary variables

efficiently. Using the satellite example again, it may be that only a window of 5

binary variables, say y4 to y8 need be considered when searching for an improvement

to a current solution of y6 = 1 and yj = 0 for j 6= 6. If the search produces a new

solution of y7 = 1 and yj = 0 for j 6= 7, then we can consider the new window

of binary variables y5 to y9. This will be more efficient than considering all the

binary variables yi for every i each time. Thus, if we had a special algorithm that

deals with binary decision variables efficiently and care is exercised to avoid loss of

information in transforming the original problem into one with binary variables, it

is worthwhile performing the transformation. For simplicity of discussion, we only

consider problems with binary variables subsequently, unless otherwise stated.

1.3.3 Techniques To Solve Nonlinear Discrete Problems

An obvious approach to solving nonlinear discrete problems is to generalize the two

methods discussed for solving the linear discrete problem (see e.g., [GR85]). Note that

both these approaches capitalize on the existence of fast algorithms to solve the con-

tinuous problem. We utilize the same idea. However, we do not generalize either the

branch-and-bound or the cutting-plane algorithm. There is an inherent difficulty in

generalizing the branch-and-bound (and hence the branch-and-cut) method because

it critically depends on the uniqueness of the solution. For convex problems, this

would not be an issue but we are interested in developing algorithms for nonconvex

problems.

The degree of difficulty introduced by having a nonlinear objective may be gauged

1.3. GENERAL DISCRETE OPTIMIZATION PROBLEMS 17

from the following problem:

Minimize f(x)

subject to 0 ≤ x ≤ e

x ∈ {0, 1}n.

(P1.9)

When f(x) is linear, cutting planes are unnecessary because the bound constraints

define all possible integer solutions. If the problem is solved as a continuous one (i.e.,

dropping the integrality constraints), it is trivial to ensure that an integral solution

is obtained. Indeed, the appropriate vertex of the feasible region may be found by

examining the coefficients of the objective. When f(x) is nonlinear, the problem

is nontrivial. Solving the problem as a continuous one no longer assures an integer

solution. The very rationale behind a pure cutting plane method is therefore no longer

valid. However, the idea of using cutting planes within other algorithms is still valid.

What this example illustrates is the difficulty of obtaining a discrete solution when

solving a continuous problem with a nonlinear objective function f(x), and also the

inherent limitations of generalizing the techniques for linear problems to nonlinear

problems.

Like the linear problem, there are also specialized algorithms to deal with certain

types of nonlinear discrete problems. As an example, there are many exact algorithms

to solve the quadratic assignment problem. However, it is hard or impossible to

generalize such algorithms. Below is a discussion of some of the methods that have

been proposed to handle more general nonlinear discrete problems, instead of special

types of nonlinear discrete problems.

1.3.3.1 Decomposition Methods

One approach to solving problems with a mixture of discrete and continuous vari-

ables is to use decomposition methods. However, such methods would need to make

use of available methods for solving pure integer or mixed-integer linear optimization

problems, as discussed in Section 1.2.2. As an example, the Generalized Benders

18 CHAPTER 1. INTRODUCTION

Decomposition method [Geo72] decomposes a mixed-integer nonlinear programming

problem into two problems that are solved iteratively – a pure integer linear mas-

ter problem and a nonlinear continuous subproblem. The nonlinear subproblem is

obtained by fixing the integer values and it optimizes the continuous variables to

give an upper bound to the original problem. On the other hand, the master prob-

lem optimizes for the new integer variables by imposing new constraints, such as the

Lagrangian dual formulation of the nonlinear problem. This master problem will

yield additional combinations of the integer variables for the subsequent nonlinear

subproblems, as well as estimate lower bounds to the original problem. Under con-

vexity assumptions, the master problems generate a sequence of lower bounds that is

monotonically increasing. The iterations terminate when the difference between the

upper bound and lower bound is smaller than a prespecified tolerance.

Another example of the decomposition approach is the Outer Approximation

Method [DG86], which has been implemented as the DICOPT solver in GAMS. It

is similar to the Generalized Benders Decomposition Method in that it also involves

solving alternately a master problem and a continuous nonlinear subproblem. The

main difference lies in the setup of the master problem. In outer approximation, the

master problems are generated by linearizations of the nonlinear constraints (using

Taylor series) at those points that are the optimal solutions of the nonlinear subprob-

lems, and so they are mixed-integer programming problems. Again, to ensure global

optimality or finite termination, some convexity assumptions are required.

There is no assurance a decomposition method will obtain a reasonable solution

to a nonconvex problem. Moreover, they need to solve master problems that increase

in the number of constraints as the iterations proceed. Since integer variables are

involved, the cost of solving the master problem may become prohibitive.

1.3.3.2 Branch-and-Reduce Methods

This class of methods also handles (P1.1) problems and it is of the branch-and-bound

type discussed earlier, i.e., it requires the construction of a relaxation of the original

problem that can be solved to optimality to produce a lower bound for the original

problem. Usually, the relaxation is constructed by enlarging the feasible region or

1.4. OUTLINE OF REMAINING CHAPTERS 19

using an underestimation of the objective function. The approach also includes range

contraction techniques like interval analysis and duality theory that systematically

reduce the feasible region to be considered, and incorporates branching schemes that

guarantee finite termination with the global optimal solution for certain types of

problems.

At each iteration, the search domain is partitioned and both upper and lower

bounds are obtained for each partition. The partitioning process continues until the

upper and lower bounds over all partitions differ by a prespecified tolerance. As in

branch-and-bound methods, the partitions that produce infeasible regions or regions

with poor objective values are discarded.

A more detailed description of the method can be found in [TS99]. The algorithm

has also been developed as a general-purpose global optimization system called the

Branch and Reduce Optimization Navigator (BARON) with modules that handle

different classes of problems. The manual for BARON can be found in [Sah00].

Like the branch-and-bound method, this algorithm may have the pitfall of going

through an unpredictably large number of iterations even though it has good branch-

ing schemes. This may pose a heavy computational burden because of the need to

solve the correspondingly large number of nonlinear relaxation problems. Moreover,

the construction of the relaxation problem may involve a convex underestimation of

the objective function that is highly inefficient in generating bounds.

1.4 Outline Of Remaining Chapters

The aim of this thesis is to find a generic approach to handling nonlinear discrete

optimization problems. The continuation approach that is adopted is described in

Chapter 2. The proposed algorithms and an analysis of their convergence are dis-

cussed in Chapter 3. Chapter 4 begins with an analysis of linear systems with large

diagonal elements, while Chapter 5 examines the implementation aspects of the al-

gorithm. Selected applications of the problems are discussed in Chapter 6, together

with the numerical results and comparison with methods described in Section 1.3.3

to show the practical performance of the continuation approach. Chapter 7 discusses

20 CHAPTER 1. INTRODUCTION

methods for extending the algorithm to solve more general classes of nonlinear discrete

optimization problems, before concluding with suggested future work.

Chapter 2

A Continuation Approach

Continuation methods arose as a way to solving systems of nonlinear equations [Dav53,

Was73]. The aim is to solve a difficult system of equations F (x) = 0 by first solv-

ing a simpler system of equations G(x) = 0. Here we assume that F,G ∈ C2 and

x ∈ Rn. In continuation methods, the procedure is to find the roots of a new function

H : Rn × [0, 1] → R, defined by

H(x, λ) = λF (x) + (1 − λ)G(x). (2.1)

This function has the obvious properties of H(x, 0) = G(x) and H(x, 1) = F (x).

The basic idea is to solve a sequence of problems, H(x, λ) = 0, for λ = λ0 < λ1 <

λ2 < · · · < λt = 1. Assuming that roots of G(x) are easy to find, it should be easy

to find an approximate root x0 of H for some initial value λ0. Given each starting

point xk that is an approximate root to the equation H(x, λk) = 0, one solves for

an approximate root xk+1 to the next equation H(x, λk+1) = 0, using an iterative

method such as Newton’s method. The continuation process stops when one reaches

λ = 1 with the root x̄ that satisfies F (x̄) = H(x̄, 1) = 0. The hope is to find a path P
parametrized by λ that begins with x0 and ends with the desired x̄, i.e., a trajectory

that can be described by {x(λ) : λ ∈ [0, 1]} with x(λ0) = x0 and x(1) = x̄. This path

is sometimes known as the zero curve as it passes through the roots of H(x, λ) = 0

as λ varies from 0 to 1. The existence of such paths can often be justified using the

21

22 CHAPTER 2. A CONTINUATION APPROACH

Implicit Function Theorem when certain assumptions are satisfied.

Theorem 2.1 (Implicit Function Theorem). Let f : X → Rm be a continuously

differentiable function, where X ⊂ Rm+1 is open. If (a, b) ∈ X is such that f(a, b) = 0

and rank of f ′(a, b) is m, then there exists a neighborhood N of (a, b) and a unique

continuously differentiable function g : N → Rm satisfying the conditions g(a) = b

and f(x, g(x)) = 0 for all x ∈ N .

This theorem means that under the assumptions stated in the theorem, there will

be a neighborhood of (a, b) where a unique zero curve of f is defined passing through

(a, b). Although this is only a theorem describing the local behavior of (a, b), we can

certainly apply the theorem to new points on the zero curve in order to extend it.

The addition of the function G(x) serves two purposes: it makes the combined

function better behaved and it ensures that there is a solution close to the initial

point. We can for example define G(x) = x− x0, where x0 is an initial point. In this

way, the combined function would tend to behave initially like a linear function with

one root in a small neighborhood of x0 when λ is sufficiently small. Many iterative

methods like Newton’s method converge quickly from a good initial point (one close

to the solution) but may converge slowly from a poor one. Thus, it is a virtue of

continuation methods to allow the choice of G(x) to control the path taken by the

iterates.

Despite the many advantages of continuation methods, numerical problems may

be encountered when P has turning points (i.e., ẋ = 0), or bifurcation points (i.e.,

rank of H ′ < n), or if P stops before λ reaches 1, or if P is unbounded (see Figure

2.1). A term used to describe continuation methods that overcome the impact of

turning or bifurcation points by allowing λ to both increase and decrease along P is

homotopy methods.

Definition 2.1. A homotopy is a continuous map from [0, 1] into a function space.

It can be easily verified that (2.1) is an example of a homotopy when F and G are

bounded in the function space containing them. There is also a class of homotopies

called probability-one homotopies [CMY78] known to be globally convergent, i.e., the

2.1. THE KKT SYSTEM 23

...
......................

.................
...............

..............
............
............
...........
...........
...........
..........
..........
..........
..........
..........
..........
.........
...

...
..................................

...........................
.......................

.....................
...................

.................
.................

................
...............

..............
..............
.............
............
............
............
............
...........
...........
...........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
......

...
.......................................

....................................
.................................

................................
.............................

............................
...........................

.........................
........................

.......................
......................

.....................
.....................

....................
...................

...................
..................

..................
.................

................
................

................
...............

...............
...........

..

..................
...................

....................
.....................

........................
..........................

...............................
..

...
.....................................

.............................
.......................

.....................
...................

.................
...............

...........

...

...
........

..

..
.......

..
........
................

..

..

.........
..
.........
..
........
...

0 1λ

Path is unbounded

Path stops before λ reaches 1

Bifurcation point

Turning point

Figure 2.1: Continuation paths running into difficulties.

zero curve P reaches a solution x̄ where H(x̄, 1) = 0 from any arbitrary starting point

x0 such that H(x0, 0) = 0. A discussion of these numerical continuation/homotopy

methods can be found in [AG90].

Before discussing how continuation methods can be applied to optimization, we

need to review the Karush-Kuhn-Tucker (KKT) conditions.

2.1 The KKT System

Many algorithms for solving smooth optimization problems involve finding points that

satisfy the KKT conditions, which are first-order necessary conditions of optimality,

when a certain constraint qualification holds. As an example, consider the nonlinear

24 CHAPTER 2. A CONTINUATION APPROACH

programming problem

Minimize f(x)

subject to g(x) ≤ 0,
(P2.1)

where f : Rn → R, g : Rn → Rm, and f, g ∈ C2. The KKT conditions can be written

as

∇f(x) + ∇g(x)Tu = 0

g(x) ≤ 0

u ≥ 0

g(x)Tu = 0,

(2.2)

where u ∈ Rm.

The full statement of the theorem involving the KKT conditions for optimality

requires certain constraint qualification assumptions to be satisfied. Two constraint

qualifications for problem (P2.1) are defined below.

Definition 2.2. The linear independence constraint qualification (LICQ) is said to

be satisfied for g at a solution x̄ of (P2.1) if the vectors ∇gi(x̄) for i ∈ A are linearly

independent, where A = {i : gi(x̄) = 0}.

Definition 2.3. The Arrow-Hurwicz-Uzawa constraint qualification (AHUCQ) is said

to be satisfied for g at a solution x̄ of (P2.1) if the inequalities

JW (x̄)z > 0

JV (x̄)z ≥ 0

have a solution z ∈ Rn, where W = {i : gi(x̄) = 0, gi is concave at x̄}, V = {i :

gi(x̄) = 0, gi is not concave at x̄} and JW (x̄), JW (x̄) are matrices denoting the rows

of the Jacobian of g at x̄ with respect to W and V respectively.

The KKT Theorem for the first-order necessary conditions of optimality can now

be stated.

2.2. CONTINUATION METHODS IN OPTIMIZATION 25

Theorem 2.2. Let X be an open set in Rn and F = {x ∈ X : g(x) ≤ 0} be non-

empty. Let x̄ be a local minimizer of min
x∈F

f(x) and suppose either LICQ or AHUCQ

is satisfied at x̄. Then there exists a ū ∈ Rm such that (x̄, ū) solves (2.2).

Under certain convexity assumptions, the necessary conditions for optimality are

also the sufficient conditions for optimality. There are also similar second-order nec-

essary and sufficient conditions for optimality. See [Man69, BSS93] for more details

and proofs of the conditions for optimality.

2.2 Continuation Methods in Optimization

In general, a KKT system, i.e., the system of equations and inequalities arising out

of the KKT conditions, may be difficult to solve. But it is possible to rewrite such

a system as an equivalent nonlinear system of equations. For example, the comple-

mentarity conditions g(x) ≤ 0, u ≥ 0, uTg(x) = 0 in (2.2) can be replaced by the

equivalent system of equations [Man76]

C(x, u) = 0,

where Ci(x, u) = −|ui + gi(x)|3 + u3
i − (gi(x))

3 for i ∈ {1, 2, . . . , l}.
The resulting equations or other equations arising out of the KKT system may be

highly nonlinear. However, continuation methods are well-suited for handling such

difficult systems of equations, and even the need to have a good starting solution to

part of the KKT system is not critical. Moreover, the sparsity of the system can be

preserved when continuation methods are applied to solve the system.

To make use of the above approach, Watson [Wat00] suggested applying continua-

tion methods to the first-order necessary conditions for optimality, which are sufficient

for convex functions. To that end, he proved the following two theorems. Note that

his approach is closely related to the proximal-point method, where one solves the

problem min
x∈Rn

F (x) by solving Pk : min
x∈Rn

F (x)+ γk(x−xk)
T(x−xk) iteratively with xk

being the solution to problem Pk−1, k ≥ 1 and x0 = a.

Theorem 2.3 ([Wat00]). Let f : Rn → R be a C3 convex function with a minimizer

26 CHAPTER 2. A CONTINUATION APPROACH

at x̃ and M ∈ R such that ‖x̃‖ ≤M . Then for almost all a, ‖a‖ < M , there is a zero

curve P of the homotopy map

Ha(x, λ) = λ∇f(x) + (1 − λ)(x− a),

along which the Jacobian matrix DHa(x, λ) has full rank, starting from (x0, λ0) =

(0, a) and having an accumulation point (x̄, 1), where x̄ solves

Minimize
x∈Rn

f(x). (P2.2)

If the Hessian matrix ∇2f(x̄) is nonsingular, then P has finite arc length.

Theorem 2.4 ([Wat00]). Let f : Rn → R and g : Rn → Rm be C3 convex func-

tions with g satisfying the Arrow-Hurwicz-Uzawa constraint qualification at every so-

lution of the problem min{f(x) : g(x) ≤ 0}, and assume that the the feasible re-

gion {x : g(x) ≤ 0} is nonempty and bounded. Let a = (x0, b0, c0), Ha(x, u, λ) =

H(x0, b0, c0, x, u, λ) be defined by

H(x0, b0, c0, x, u, λ) =

(
λ
[
∇f(x) + ∇g(x)Tu

]
+ (1 − λ)(x− x0)

K(x, u, λ, b0, c0)

)
,

where

Ki(x, u, λ, b
0, c0) = −|(1 − λ)b0i − gi(x) − ui|3 +

(
(1 − λ)b0i − gi(x)

)3

+u3
i − (1 − λ)c0i , i = 1, . . . , m,

and u0 be uniquely defined by the system K(x0, u0, 0, b0, c0) = 0. Then for almost

all x0 ∈ Rn, almost all b0 ∈ Rm such that b0 > 0 and g(x0) − b0 < 0, and almost

all c0 ∈ Rm with c0 > 0, there exists a zero curve P of Ha(x, u, λ) starting from

(x0, u0, 0), along which the Jacobian matrix DHa(x, u, λ) has rank n + m, reaching

a point (x̄, ū, 1), where x̄ solves the problem min{f(x) : g(x) ≤ 0}. If the rank of

DHa(x̄, ū, λ) is n+m, then P has finite arc length.

Though Watson has shown similar results for nonconvex programming problems,

2.3. SMOOTHING METHODS 27

the additional assumptions required are restrictive. If we are interested in satisfying

second-order as well as first-order optimality conditions, the situation is considerably

more complex. There is also a major objection to solving the KKT system directly,

namely we could get a local maximum or saddle point instead. Even without attempts

to satisfy second-order conditions directly, methods that “minimize” favor better

stationary points.

Other examples of applying continuation methods to certain optimization prob-

lems such as complementarity problems can be found in [Kan97, KMM93, KMN91,

ZL01]. In [SS92], there is also a description of applying continuation methods to a

global optimization problem, with the aim of finding a trajectory P that would pass

through all stationary points of the problem.

2.3 Smoothing Methods

In general, the presence of several local minima in an optimization problem makes

the search for the global minimum very difficult. The fewer the local minima, the

more likely it is that an algorithm will find the global minimum. Thus, in the choice

of continuation methods applied to such problems, we would like to transform the

original problem with many local minima into one that has fewer local minima or

even just one local mimimum, obtaining a global optimization problem that is easier

to solve (see Figure 2.2). Obviously we wish to eliminate poor local minima. Con-

sequently, our use of continuation methods is not only to make the initial problem

easier to solve (because the initial point is better and/or the initial function is better

behaved) but we also wish to reduce the number of solutions. We may then solve the

original problem by solving a sequence of problems in the same spirit as continuation

and homotopy methods. We term such continuation methods smoothing methods and

they can be categorized into two types: local or global smoothing.

In the subsequent discussion, we consider functions of the form

F (x, µ) = f(x) + µg(x),

28 CHAPTER 2. A CONTINUATION APPROACH

...
..................
..............
............
..........
.........
.........
......
.....
......
.......
........
............
...

................
.............
..........
..........
.........
........
.......
.......
.......
......
......
......
......
......
.....
.....
.....
.....
......
......
.......
.......
........
.........
...........
.................
...

.............
..........
.........
........
........
.......
........
...

..............
...........
.........
........
.......
.......
......
......
......
.....
.....
...

...

..
.......

..
........
................

...

.. ..
...........

........
.......
...
........
...
...........

...........
.....................
........

..........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........
...........
..........
....
........
..........
.

Original Problem

Smoothed Problem

Figure 2.2: Effect of smoothing the original optimization problem.

2.3. SMOOTHING METHODS 29

where f and g are real-valued functions on Rn and µ ≥ 0. It may be observed that

the mapping H : [0, 1] → C2, where H(µ) is the function such that

[H(µ)](x) =
1

1 + µ
F (x, µ), (2.3)

is a homotopy as defined earlier.

2.3.1 Local Smoothing

Some approaches address specific categories of problem, such as the objective function

being noisy or having a local variation that creates many local minimizers. Noise in

the evaluation of a function arises in several ways. One common cause is that to

evaluate the objective function requires the solution of a complex numerical problem

such as the solution of a partial differential equation, or involves a statistical process

that is iterative in nature. In such cases evaluating the objective accurately is either

expensive or impractical. When a simulation is required to obtain the objective values,

then provided sufficient trials are performed, the objective would not be noisy but the

number of such trials might be astronomically large. One approach to solving “noisy”

problems is to smooth the local variation. This can sometimes be done directly by

modifying the model. For example, one approach to finding edges in images is to

minimize a potential function (see [Sch01]). In such problems the original pixel images

can be replaced by a sequence of “smoothed” images by some suitable mapping of the

pixels. The same idea may be applied generically, for example, using a convolution

in which the function is replaced by a function call with a multiple integral (see

[MW97]):

F (x, µ) =
1

πn/2

∫

Rn

f(x + µu)e−‖u‖2

du.

The obvious aim is to remove poor local minimizers and retain good ones. This and

similar approaches are not simply trying to remove tiny local variations, but in some

instances can even be used to remove more significant but nonetheless poor local

minimizers. It might be useful to define formally what we mean by a “significant”

minimizer. Consider a local minimizer (or stationary point) x̄. Let S be the set of

30 CHAPTER 2. A CONTINUATION APPROACH

points such that if x ∈ S, then there exists a solution to

ẋ(t) = −∇f(x(t)),

such that x(0) ∈ S and limt→∞ x(t) = x̄ and the curve x̄(t) is continuous. Let VS be

the volume of S. The “significance” of a minimizer is a function of the size of VS.

In a bounded region, VS is related to the probability that a random initial point will

converge to x̄.

Such approaches usually have a parameter that can be adjusted to vary the degree

of smoothing, the basic idea being first to minimize (perhaps approximately) a very

smooth function and then to use that solution as an initial point for a function not

quite so smooth. The use of the word “smooth” for a function f in this context means

it has few roots for the equation ∇f = 0. The hope is that for large values of the

smoothing parameter only the best or better minimizers are preserved.

It is not difficult to show that the approach advocated in [MW97] and similar

approaches can fail to find the global minimizer even on simple one-dimensional func-

tions. For example, consider the function

f(x) = x2(x + 2)2(x− 2 − 0.3)(x− 2 + 0.3).

When the initial smoothing parameter is chosen to make the function unimodal, it

can be shown that the minimizer found for the original problem of minimizing f is

independent of the choice of initial point. Unfortunately, the minimizer found is not

the global minimizer. Even if the initial point is the global minimizer, the method

will still find a local minimizer for the original problem. Figure 2.3 shows the original

function and the smoothed function for three values of the smoothing parameter.

It can be seen from the figures that regardless of the choice of initial point, the

middle minimizer is always found. It is instructive to see why the approach fails

since intuitively the global minimizer ought not to be destroyed by the process. The

difficulty arises for functions with the property that

lim
α→∞

f(x+ αp) = ∞

2.3. SMOOTHING METHODS 31

−3 −2 −1 0 1 2 3

−5

0

5

10

15

20

25

30

λ=0

−3 −2 −1 0 1 2 3

−5

0

5

10

15

20

25

30

λ=1

−3 −2 −1 0 1 2 3

−5

0

5

10

15

20

25

30

λ=0.7

−3 −2 −1 0 1 2 3

−5

0

5

10

15

20

25

30

λ=0.5

Figure 2.3: The impact of local smoothing as the parameter µ, which controls the
degree of smoothing, is adjusted.

for some direction p that passes through a global (or good) minimizer, after which

the function is monotonically increasing. The large values of f(x) on one side of the

minimizer remove the good minimizer in favor of minimizers that are more “interior”.

In other words, minimizers on the edge of the space in which minimizers lie are more

adversely impacted by smoothing than those that are interior.

Another limitation of this type of approach arises from the dimension in which the

smoothing is required being equal to the number of optimization variables. This may

result in the computation of the smoothed function being expensive. In the case of the

image problem the smoothing is applied only in two dimensions and is independent

of the number of optimization variables. Moreover, the smoothing is done a small

number of times and is not dependent on the number of iterations required by the

optimization algorithm. It is often the case that the objective function is composed

32 CHAPTER 2. A CONTINUATION APPROACH

of several functions, only one of which is noisy. Morever, the function that is noisy

might only have a range that lies in a subspace of the real line. For such problems, it

is better to address the issue at the modeling level rather than within an algorithm.

In summary, local smoothing may be useful in eliminating tiny local minimizers

even when there are large numbers of them. They are less useful if they also remove

significant minimizers. Furthermore, the method can only be applied if the objective

has favorable properties that allow efficient computation of the smoothed function.

2.3.2 Global Smoothing

The basic idea of global smoothing is to add a strictly convex function to the original

objective, i.e.,

F(x, µ) = f(x) + µΦ(x),

where Φ is a strictly convex function. If Φ is chosen to have a Hessian that is

sufficiently positive definite for all x, i.e., the eigenvalues of this Hessian are uniformly

bounded away from zero, it implies that for µ large enough, F(x, µ) is strictly convex.

For completeness, a proof of this assertion is included below, and similar results can

be found, for example, in [Ber95, Lemma 3.2.1].

Theorem 2.5. Suppose f : [0, 1]n → R is a C2 function and Φ : X → R is a C2

function such that the minimum eigenvalue of ∇2Φ(x) is greater than ε for all x ∈ X,

where X ⊂ [0, 1]n and ε is a positive number. Then there exists a real M > 0 such

that if µ > M , then f + µΦ is a strictly convex function on X.

Proof. Let {λi(H(x)) : i = 1, 2, . . . , n} denote the set of eigenvalues of a matrix

function H(x). Since f is a C2 function, ∇2f(x) is continuous function of x and

hence, its eigenvalues λi(∇2f(x)) are also continuous functions of x for all i. As

[0, 1]n is a compact subset of Rn, λi(∇2f(x)) is bounded on [0, 1]n for all i, i.e., there

exists L > 0 such that

|λi(∇2f(x))| ≤ L

2.3. SMOOTHING METHODS 33

for all i and x ∈ [0, 1]n. Thus, for any d ∈ Rn such that ‖d‖ = 1,

|dT∇2f(x)d| ≤ L (2.4)

for all x ∈ [0, 1]n. The Hessian of f + µΦ is ∇2f(x) + µ∇2Φ(x), x ∈ X. Define M to

be L/ε. If µ > M , then for any d ∈ Rn such that ‖d‖ = 1,

dT(∇2f(x) + µΦ(x))d = dT∇2f(x)d+ µdT∇2Φ(x)d

≥ −L + µλmin(∇2Φ(x))‖d‖2 (by (2.4))

≥ −L + µε

> −L +
L

ε
ε = 0.

This implies that the Hessian of f + µΦ is positive definite for all x ∈ X and hence

f + µΦ is strictly convex on X.

Consequently, for µ sufficiently large, any local minimizer of F(x, µ) is also the

unique global minimizer. Typically the minimizer of Φ(x) is known or is easy to find

and hence minimizing F(x, µ) for large µ is also easy. As in continuation methods,

the basic idea is to solve the problem for a decreasing sequence of µ starting with a

large value and ending with one close to zero. The solution x(µk) of minx F(x, µk) is

used as the starting point of minx F(x, µk+1).

The idea behind global smoothing is similar to that of local smoothing, namely,

the hope is that by adding µΦ(x) to f(x), poor local minimizers will be eliminated.

There are, however, important differences between global and local smoothing. A

key one is that local smoothing does not guarantee that the function is unimodal for

a sufficiently large value of the smoothing parameter (although it can sometimes be

the case). The algorithm in [MW97] gives an example; we see that if the algorithm is

applied to the function cos(x), one will get a multiple of cos(x). Hence, the number

of minimizers of the smoothed function has not been reduced.

It is easy to appreciate that the global smoothing approach is largely independent

of the initial estimate of a solution, since if the initial function is unimodal, the choice

of initial point is irrelevant to the minimizer found. When µ is decreased and the

34 CHAPTER 2. A CONTINUATION APPROACH

subsequent functions have several minimizers, the old solution is used as the initial

point. Consequently, which minimizer is found is predetermined. Independence of

the choice of initial point may be viewed as both a strength and a weakness. What is

happening is that any initial point is being replaced by a point close to the minimizer

of Φ(x). An obvious concern is that convergence will then be to the minimizer closest

to the minimizer of Φ(x). The key to the success of this approach is to choose Φ(x)

to have a minimizer that is not close to any of the minimizers of f(x). This may not

seem to be an easy task, but it does have a solution for constrained problems. If it is

known that the minimizers are on the edge of the feasible region (e.g., with concave

objective functions), then the “center of the feasible region” may be viewed as being

removed from all of them. We show later that global optimization problems arising

from the transformation of discrete problems have this characteristic.

Chapter 3

Smoothing Algorithms

In this chapter, we consider two global smoothing algorithms for nonlinear discrete

optimization problems. To simplify the discussion, we consider the nonlinear binary

optimization problem

Minimize f(x)

subject to Ax = b

x ∈ {0, 1}n

(P3.1)

and its relaxation

Minimize f(x)

subject to Ax = b

0 ≤ x ≤ e,

(P3.2)

where A ∈ Rm×n and x ∈ Rn.

3.1 Logarithmic Smoothing

The smoothing function, Φ(x), is defined to be

Φ(x) ≡ −
n∑

j=1

ln xj −
n∑

j=1

ln(1 − xj). (3.1)

35

36 CHAPTER 3. SMOOTHING ALGORITHMS

This function is clearly well-defined when 0 < x < e. If any value of xj is 0 or 1,

we have Φ(x) = ∞, which implies we can dispense with the bounds on x to get the

following transformed problem:

Minimize f(x) − µ
n∑

j=1

[ln xj + ln(1 − xj)]

subject to Ax = b,

(P3.3)

where µ > 0 is the smoothing parameter. When a linesearch algorithm starts with

an initial point 0 < x0 < e, then all iterates generated by the linesearch also satisfy

this property, provided care is taken in the linesearch to ensure that the maximum

step taken is within the bounds 0 < x < e.

The function Φ(x) is a logarithmic barrier function and is used with barrier meth-

ods (see [FM68]) to eliminate inequality constraints from a problem. In fact, (P3.3)

is sometimes known as the barrier subproblem for (P3.2). Our use of this barrier

function is not to eliminate the constraints but because a barrier function appears to

be an ideal smoothing function. Elimination of the inequality constraints is a useful

bonus. It also enables us to draw upon the extensive theoretical and practical results

concerning barrier methods.

A key property of the barrier term is that for x > 0, Φ(x) is strictly convex. If µ

is large enough, the function f + µΦ will also be strictly convex.

Lemma 3.1. If f : [0, 1]n → R is a C2 function and Φ is as defined in (3.1), then

there exists a real M > 0 such that if µ ≥ M , then f+µΦ is a strictly convex function

on (0, 1)n.

Proof. Let X = (0, 1)n and ε = 8. Observe that the Hessian of Φ(x) for x ∈ X is a

diagonal matrix with the jth diagonal entry being 1
x2

j
+ 1

(1−xj)2
. This function has a

minimum at xj = 1
2
, which implies that every diagonal entry of ∇2Φ(x) is at least 8.

Thus λmin(∇2Φ(x)) ≥ ε and the desired result follows from Theorem 2.5.

Corollary 3.1. Suppose the assumptions in Lemma 3.1 hold and that the set {x :

Ax = b} ∩ (0, 1)n is non-empty. Then problem (P3.3) has a solution x∗(µ) ∈ (0, 1)n.

3.1. LOGARITHMIC SMOOTHING 37

Also, there exists an M > 0 such that for all µ > M , the solution to problem (P3.3)

is unique.

Proof. First we show the existence of x∗(µ) for any µ > 0. Define X = [1
4
, 3

4
]n ∩

{x : Ax = b}. Since X is a compact set and f + µΦ is a continuous function

on X, where Φ is as defined in (3.1), there exist real numbers L and U such that

L ≤ f(x) + µΦ(x) ≤ U for all x ∈ X. Since f(x) + µΦ(x) → ∞ as xj → 0+ or

xj → 1−, there exists an ε > 0 such that for all x ∈ ((0, ε]∪ [1− ε, 1))n∩{x : Ax = b},

f(x) + µΦ(x) > U. (3.2)

Also, ε must be < 1
4
. Define X1 = [ε, 1 − ε]n ∩ {x : Ax = b}. Again by continuity

of f + µΦ on the compact set X1, there exists z ∈ X1 such that f(z) + µΦ(z) ≤
f(x) + µΦ(x) for all x ∈ X1. Moreover, f(z) + µΦ(z) ≤ U as X ⊂ X1. By (3.2),

f(z) + µΦ(z) < f(x) + µΦ(x) for all x ∈ (0, 1)n\X1. Thus, z is the required x∗(µ).

The uniqueness of x∗(µ) for sufficiently large µ follows from Lemma 3.1 and the

convexity of the feasible region of (P3.3).

Consequently, (P3.3) always has a unique solution for a sufficiently large value of

µ, regardless of the nonconvexity of f(x). In fact, by Theorem 8 of [FM68], under

the assumptions already imposed on (P3.2), if x∗(µ) is a solution to (P3.3), then

there exists a solution x∗ to (P3.2) such that limµ↘0 x
∗(µ) = x∗. Moreover, x∗(µ)

is a continuously differentiable curve. The general procedure of the barrier-function

method is to solve the problem (P3.3) approximately for a sequence of decreasing

values of µ. Note that if x∗ ∈ {0, 1}n, then we need not solve (P3.3) for µ very small

because the rounded solution for a modestly small value of µ should be adequate. In

fact, it would be sufficient to obtain a solution x̄(µ) such that ‖x̄(µ)−x∗(µ)‖ = O(µ).

3.1.1 Penalty Terms

In the case that fractional solutions are obtained for problem (P3.3) with no clear-cut

rounding, i.e., the variables are not close to zero or one, extra penalty terms can be

added to the objective to ensure a 0–1 solution. One way of doing so is to introduce

38 CHAPTER 3. SMOOTHING ALGORITHMS

the term ∑

j∈J

xj(1 − xj), (3.3)

with a penalty parameter γ > 0, where J is the index set of the variables that are

judged to require forcing to a bound. The problem then becomes

Minimize F (x) , f(x) − µ
n∑

j=1

[ln xj + ln(1 − xj)] + γ
∑
j∈J

xj(1 − xj)

subject to Ax = b.

(P3.4)

In general, it is possible to show that under suitable assumptions, the penalty

function introduced this way is “exact” in the sense that the following two problems

have the same minimizers for a sufficiently large value of the penalty parameter γ:

Minimize g(x)

subject to Ax = b

x ∈ {0, 1}n

(P3.5)

and

Minimize g(x) + γ
n∑

j=1

xj(1 − xj)

subject to Ax = b

0 ≤ x ≤ e.

(P3.6)

For completeness, a proof is shown next.

Theorem 3.1. Let g : [0, 1]n → R be a C1 function and consider the two problems

(P3.5) and (P3.6) with the feasible region of (P3.5) being non-empty. Then there

exists M > 0 such that for all γ > M , problems (P3.5) and (P3.6) have the same

minimizers.

Proof. Let b(l) for l = 1, 2, . . . , 2n denote the elements of the set {0, 1}n, and Bl denote

the set {y ∈ [0, 1]n : ‖y − b(l)‖ < 1
4
}. Suppose x ∈ Bk for some k. Then for indices j

3.1. LOGARITHMIC SMOOTHING 39

in which b
(k)
j = 0, we have xj = |xj − b

(k)
j | ≤ ‖x− b(k)‖ ≤ 1

4
, so that

|xj − b
(k)
j | = xj ≤ 2xj(1 − xj). (3.4)

Similarly, for indices j in which b
(k)
j = 1, we have 1−xj ≤ |xj − b(k)

j | ≤ ‖x− b(k)‖ ≤ 1
4
,

i.e., xj ≥ 3
4
, so that

|xj − b
(k)
j | = 1 − xj ≤ 2xj(1 − xj). (3.5)

By Taylor’s theorem, there exists some vector ξ ∈ [0, 1]n such that g(x) = g(b(k))+

(∇g(ξ))T(x− b(k)). Since ∇g(x) is continuous on the compact set [0, 1]n, there exists

some constant m0 > 0 such that

g(b(k)) − g(x) ≤ |g(x) − g(b(k))|

= |(∇g(ξ))T(x− b(k))|

≤ m0‖x− b(k)‖

= m0

√√√√
n∑

j=1

(xj − b
(k)
j)2

≤ m0

n∑

j=1

|xj − b
(k)
j |

≤ 2m0

n∑

j=1

xj(1 − xj) (from (3.4) and (3.5)).

So if γ > 2L,

g(b(k)) ≤ g(x) + γ

n∑

j=1

xj(1 − xj)

for x ∈ Bk.

Suppose x ∈ X where X = [0, 1]n\(∪2n

l=1Bl). By the continuity of
∑n

j=1 xj(1− xj)

and g on the compact set X, there exist constants m1 and m2 such that g(x) ≥ m1

and
∑n

j=1 xj(1 − xj) ≥ m2 for all x ∈ X. In particular, m2 > 0 since x 6= b(l) for all

40 CHAPTER 3. SMOOTHING ALGORITHMS

l. This implies that for all x ∈ X,

g(x) + γ

n∑

j=1

xj(1 − xj) ≥ m1 + γm2

≥ g(b(l))

for all l if γ ≥ m3−m1

m2
, where m3 = maxl g(b

(l)). Thus, if γ > max{2L, m3−m1

m2
}, we

have m3 ≤ g(x) + γ
∑n

j=1 xj(1 − xj) for all x ∈ [0, 1]n. Letting

l′ = arg min
l:Ab(l)=b

g(b(l))

(the value of the minimum is finite because the feasible region of (P3.5) is non-empty)

and M = max{2m0,
m3−m1

m2
}, we also have

g(b(l
′)) + γ

n∑

j=1

b
(l′)
j (1 − b

(l′)
j) = g(b(l

′))

≤ g(x) + γ

n∑

j=1

xj(1 − xj)

for all x ∈ [0, 1]n ∩ {x : Ax = b} if γ > M . The theorem follows from the observation

that b(l
′) is the minimizer of both problems (P3.5) and (P3.6).

The idea of using penalty methods for discrete optimization problems is not new

(see e.g., [Bor88]). However, to use the logarithmic smoothing function in combination

with the penalty terms to form a path towards a local minimizer is a novel application

of continuation methods for discrete optimization. It is not sufficient to introduce only

the penalty terms and hope to obtain the global minimizer by solving the resulting

problem, because many undesired stationary points may be introduced in the process.

This flaw also applies to the process of transforming a discrete optimization problem

into a global optimization problem simply by replacing the discrete requirements of

the variables with a nonlinear constraint, such as replacing the integrality of the

3.1. LOGARITHMIC SMOOTHING 41

variables x ∈ {0, 1, . . . , u} by the constraint

u∏

i=0

(x− i) = 0. (3.6)

The likelihood is that every possible combination of integer variables is a local min-

imizer of the transformed problem. Hence, it may be extremely difficult to find the

global minimizer for a problem with constraints of the form (3.6). To illustrate the

danger of using the penalty function alone and the benefit of using a smoothing

function, consider the following example.

Example 3.1. Consider the problem min {x2 : x ∈ {0, 1}}. It is clear that the global

minimizer is given by x∗ = 0. If the problem is transformed to min{x2 + γx(1− x)},
where γ > 0 is the penalty parameter, then the solution of the first-order optimality

conditions without factoring in the boundary points x = 0, 1 is given by x∗(γ) =
γ

2(γ−1)
> 1

2
. A rounding of this x∗(γ) for any positive value of γ would have produced

the wrong solution of x∗ = 1. This difficulty arises partly because an undesired

maximizer was introduced by the penalty function. On the other hand, if the problem

is transformed to min{x2−µ log x−µ log(1−x)+γx(1−x)}, where µ > 0 is the barrier

parameter, then solving the first-order optimality conditions without considering the

boundary points x = 0, 1 for say γ = 10 and µ = 10 and 1 gives the solutions lying

in [0, 1] as x∗(µ, γ) = 0.3588 and 0.1072 respectively. Thus, rounding of x∗(µ, γ) in

these cases will give the correct global minimizer of x∗ = 0. In fact, a trajectory of

x∗(µ, 10) can be obtained such that x∗(µ, 10) → x∗ as µ↘ 0.

Theorem 3.2. Let x(γ, µ) be any local minimizer of (P3.4). Then lim
γ→∞

lim
µ→0

xj(γ, µ) =

0 or 1 for j ∈ J .

Proof. Let γ > 0. We can rewrite the objective function in (P3.4) as

F (x) = fγ(x) − µ
n∑

j=1

[ln xj + ln(1 − xj)],

42 CHAPTER 3. SMOOTHING ALGORITHMS

where fγ(x) = f(x) + γ
∑
j∈J

xj(1 − xj). Also, let x(γ) be a minimizer of

Minimize fγ(x)

subject to Ax = b

0 ≤ x ≤ e.

(P3.7)

From the discussion at the beginning of this section (replacing f with fγ), we know

that

lim
µ→0

x(γ, µ) = x(γ). (3.7)

Observe that (P3.7) becomes a sequence of penalty subproblems for (P3.1) when we

use γ as the penalty parameter. By Theorem 3.1, we know that xj(γ) ∈ {0, 1} for γ

sufficiently large, so that xj(γ) → 0 or 1 as γ → ∞ for each j ∈ J . From (3.7), we

get the desired conclusion that lim
γ→∞

lim
µ→0

xj(γ, µ) = 0 or 1 for j ∈ J .

Note that extreme ill-conditioning arising out of γ → ∞ is avoided because we do

not need γ to be arbitrarily large as in the case of inexact penalty methods. In fact,

a modestly large value of γ is sufficient to indicate whether a variable is converging

to 0 or 1. A danger of the nonconvex terms arising in the objective function (usually

from (P3.5)) is that we are likely to introduce local minimizers at the feasible integer

points, and more significantly, saddle points at interior points. It is clearly critical

that a method be used that will not converge to a saddle point.

Example 3.2. Let f(x1, x2) = (x1 − 0.6)2 +(
√

2− 1.2)x2, A = 0, b = 0, µ = 0.1, and

γ = 1. The stationary point of the function, (x1, x2) = (1√
2
, 1√

2
), is a saddle point

because ∇2F (1√
2
, 1√

2
) =

1

5

[
2
√

2 + 4 0

0 2
√

2 − 6

]
is indefinite.

If the number of variables outstanding is not large, an alternative to forcing in-

tegrality by the penalty function is to examine all possible remaining combinations.

Another possibility is to use the solution obtained as an initial point in an alternative

method, perhaps fixing the variables that are already integral. Note that even if no

term is used to force integrality, many variables of (P3.3) may be 0 or 1 at an optimal

3.1. LOGARITHMIC SMOOTHING 43

point. For example, if f(x) is concave with a strictly negative definite Hessian, then

there will be at least n active constraints, implying that there has to be at least n−m
variables being 0 or 1.

We have in effect replaced the hard problem of an integer discrete optimization

problem by what at first appearance is an equally hard problem of finding a global

minimizer for a problem with continuous variables and a large number of local minima.

The basis for our optimism that this is not the case lies in how we can utilize the

parameters µ and γ and try to obtain a global minimizer, or at least a good local

minimizer of the composite objective function. Note that the term xj(1− xj) attains

its maximum at xj = 1
2

and that the logarithmic barrier term attains its minimum at

the same point. Consequently, at this point, the gradient is given solely by f(x). In

other words, which vertex looks most attractive from the perspective of the objective

is the direction we tilt regardless of the value of µ or γ. Starting at a neutral point

and slowly imposing integrality is a key idea in the approach we advocate.

Also, note that provided µ is sufficiently large compared to γ, the problem will

have a unique and hence global solution x∗(µ, γ), which is a continuous function of µ

and γ. The hope is that the global or at least a good minimizer of (P3.1) is the one

connected by a continuous trajectory to x∗(µ, γ) for µ large and γ small.

Even if a global minimizer is not identified, we hope to obtain a good local mini-

mizer and perhaps combine this approach with traditional methods.

3.1.2 Description of the Algorithm

Since the continuous problems of interest may have many local minimizers and saddle

points, first-order methods are inadequate as they are only assured of converging to

points satisfying first-order optimality conditions. It is therefore imperative that

second-order methods be used in the algorithm. Any second-order method that is

assured of converging to a solution of the second-order optimality conditions must

explicitly or implicitly compute a direction of negative curvature for the reduced

Hessian matrix. A key feature of our approach is a very efficient second-order method

for solving the continuous problem.

44 CHAPTER 3. SMOOTHING ALGORITHMS

We may solve (P3.4) for a specific choice of µ and γ by starting at a feasible point

and generating a descent direction, if one exists, in the null space of A. Let Z be a

matrix with columns that form a basis for the null space of A. Then AZ = 0 and

the rank of Z is n − m. If x0 is any feasible point so that we have Ax0 = b, the

feasible region can be described as {x : x = x0 + Zy, y ∈ Rn−m}. Also, if we let

φ be the restriction of F to the feasible region, the problem becomes the following

unconstrained problem:

Minimize
y∈Rn−m

φ(y). (P3.8)

Since the gradient of φ is ZT∇F (x), it is straightforward to obtain a stationary point

by solving the equation ZT∇F (x) = 0. This gradient is referred to as the reduced

gradient. Likewise, the reduced Hessian, i.e., the Hessian of φ, is ZT∇2F (x)Z.

For small or moderately-sized problems, a variety of methods may be used (see

e.g., [GM74, FGM95]). Here, we investigate the case where the number of variables is

large. This is because transforming the original problem to one with 0-1 variables may

increase the number of variables considerably. For example, if we have 100 variables

each of which can take 20 values, the number of 0-1 variables of the transformed

problem may be more than 2000.

One approach to solving the problem is to use a linesearch method, such as the

truncated-Newton method (see [DS83]) we are adopting, in which the descent di-

rection and a direction of negative curvature are computed. Instead of using the

index set J for the definition of F in our discussion, we let γ be a vector of penalty

parameters with zero values for those xi such that i 6∈ J , and Γ = Diag(γ).

The first-order optimality conditions for (P3.4) may be written as

∇f − µXge+ Γ (e− 2x) + ATλ = 0

Ax = b,
(3.8)

where Xg = Diag(xg), (xg)i = 1
xi

− 1
1−xi

, i = 1, . . . , n, and λ corresponds to the

Lagrange multiplier of the constraint Ax = b. Applying Newton’s method directly,

we obtain the system

3.1. LOGARITHMIC SMOOTHING 45

[
H AT

A 0

][
4x
4λ

]
=

[
−∇f + µXge− Γ (e− 2x) − ATλ

b− Ax

]
, (3.9)

where H = ∇2f + µXH − 2 Γ and XH= Diag(xH), (xH)i = 1
x2

i
+ 1

(1−xi)2
.

Assuming that x0 satisfies Ax0 = b, the second equation A4x = 0 implies that

4x = x0 +Zy for some y. Substituting this into the first equation and premultiplying

both sides by ZT, we obtain

ZTHZy = ZT(−∇f + µXge− Γ (e− 2x)). (3.10)

To obtain a descent direction in this method, we first attempt to solve (3.10), or

from the definition of F (x), the equivalent reduced-Hessian system

ZT∇2F (xl)Zy = −ZT∇F (xl), (3.11)

by the conjugate gradient method, where xl is the lth iterate. Generally, Z may be

a large matrix, especially if the number of linear constraints is small. Thus, even

though ∇2F (xl) is likely to be a sparse matrix, ZT∇2F (xl)Z may be a large dense

matrix. The virtue of the conjugate gradient method is that the explicit reduced

Hessian need not be formed. There may be specific problems where the structure of

∇2F and Z does allow the matrix to be formed. Under such circumstances alternative

methods such as those based on Cholesky factorization may also be applicable. Since

we are interested in developing a method for general application we have pursued the

conjugate gradient approach.

In the process of solving (3.11) with the conjugate gradient algorithm (see [GV96],

[Bom99]), we may determine that ZT∇2F (xl)Z is indefinite for some l. In such a case,

we shall obtain a negative curvature direction q such that

qTZT∇2F (xl)Zq < 0.

This negative curvature direction is used to ensure that the iterates do not converge

to a saddle point. Also, the objective is decreased along this direction. In practice,

46 CHAPTER 3. SMOOTHING ALGORITHMS

the best negative curvature direction is Zq, where q is an eigenvector correspond-

ing to the smallest eigenvalue of ZT∇2F (xl)Z. Computing q is usually difficult but

fortunately unnecessary. A good direction of negative curvature will suffice and ef-

ficient ways of computing such directions within a modified-Newton algorithm are

described in [Bom99]. The descent direction in such modified-Newton algorithms

can be obtained using factorization methods (e.g., [FM93]), or by solving differential

equations [Del00]. In any case, it is essential to compute both a descent direction

and a direction of negative curvature (when one exists). One possibility that we may

encounter is that the conjugate gradient algorithm may terminate with a direction

q such that qTZT∇2F (xl)Zq = 0. In that case, we may have to use other iterative

methods such as the Lanczos method to obtain a direction of negative curvature.

If we let p be a suitable combination of the negative curvature direction q with

a descent direction, the convergence of the iterates is still ensured with the search

direction Zp. The next iterate xl+1 is thus defined by xl + αlZp, where αl is being

determined using a line search. The iterations will be performed until ZT∇F (xl) is

sufficiently close to 0 and ZT∇2F (xl)Z is positive semi-definite. Also, as the current

iterate xl may still be some distance away from the actual optimal solution we are

seeking, and since we do not necessarily use an exact solution of (3.11) to get the

search direction, we only need to solve (3.11) approximately.

Note that we do not make use of the information provided by λ or solve for

4λ in (3.9). Such a method is known as the primal logarithmic barrier method

in the literature of interior point methods. However, in the next section, we shall

reformulate problem (P3.3) as one that could make use of the Lagrange multiplier

information, and the resulting method is known as the primal-dual logarithmic barrier

method. Since both methods ultimately produce iterates that converge to the same

limit points, we focus our attention on the primal logarithmic barrier method in this

thesis.

3.2. THE PRIMAL-DUAL METHOD 47

A summary of the primal algorithm is shown on the next page. Certain implemen-

tation issues of this algorithm need to be addressed. For example, barrier methods

with a conjugate gradient algorithm are generally not successful without proper pre-

conditioning. Such matters are dealt with in Chapters 4 and 5.

3.2 The Primal-Dual Method

Primal-dual methods (see e.g., [Wri97]) have been used to solve linear and nonlinear

programming problems with much success. In this section, we use a similar approach

to deal with our problem. We introduce variables sj , 1− xj and again let γ being a

vector of penalty parameters with zero values for those xj with j 6∈ J , so that problem

(P3.4) becomes

Minimize F (x, s) , f(x) − µ
n∑

j=1

[ln xj + ln(sj)] +
n∑

j=1

γjxjsj

subject to Ax = b

x + s = e.

(P3.9)

The first-order optimality conditions can then be written as

∇f(x) − µX−1e + Γ s+ ATλ+ π = 0

−µS−1e+ Γ x + π = 0

Ax = b

x + s = e,

(3.12)

where X = Diag(x), S = Diag(s), Γ = Diag(γ), and λ and π correspond to the

Lagrange multipliers of constraints Ax = b and x + s = e respectively. The direct

approach is to apply Newton’s method to these equations as in the previous section.

However, it can be observed that the first two equations of (3.12) are highly nonlinear,

implying that Newton’s method may perform poorly. The key idea of the primal-dual

approach is to alter these equations.

48 CHAPTER 3. SMOOTHING ALGORITHMS

Algorithm 3.1: Primal Logarithmic Barrier Smoothing

Set εF = tolerance for function evaluation,

εµ = tolerance for barrier/penalty value,

M = maximum penalty value,

N = iteration limit for applying Newton’s method,

θµ = reduction ratio for barrier parameter,

θγ = reduction ratio for penalty parameter,

µ0 = initial barrier parameter,

γ0 = initial penalty parameter,

r = any feasible starting point.

Set γ = γ0,

µ = µ0.

while γ < M or µ > εµ

Set x0 = r.

for l = 0, 1, . . . , N

if ‖ZT∇F (xl)‖ < εFµ

Set xN = xl, l = N .

Check if xN is a direction of negative curvature.

else

Apply conjugate gradient algorithm to

[ZT∇2F (xl)Z]y = −ZT∇F (xl).

Obtain pl as a combination of directions of descent and

negative curvature.

Perform a linesearch to determine αl and set xl+1 = xl + αlZpl.

end if

end for

Set r = xN ,

µ = θµµ,

γ = γ
θγ

.

end while

3.2. THE PRIMAL-DUAL METHOD 49

If we introduce variables ψ = µX−1e and φ = µS−1e, an equivalent system is

given by

∇f(x) − ψ + Γ s+ ATλ+ π = 0

−φ+ Γ x+ π = 0

Ax = b

x+ s = e

Xψ = µe

Sφ = µe.

(3.13)

These equations are much less nonlinear than (3.12), especially in the neighborhood

of xj = 0 or sj = 0.

The primal-dual method is the application of Newton’s method to (3.13). Thus,

we get the Newton search direction (4x,4s,4ψ,4φ,4λ,4π) as the solution to the

following set of equations:




∇2f(x) Γ −I 0 AT I

Γ 0 0 −I 0 I

A 0 0 0 0 0

I I 0 0 0 0

Ψ 0 X 0 0 0

0 Φ 0 S 0 0







4x
4s
4ψ
4φ
4λ
4π




=




r1

r2

r3

r4

r5

r6




, (3.14)

where Ψ = Diag(ψ), Φ = Diag(φ), and




r1

r2

r3

r4

r5

r6




≡




ψ − Γ s−∇f − ATλ− π

φ− Γ x− π

b− Ax

e− x− s

µe−Xψ

µe− Sφ




.

50 CHAPTER 3. SMOOTHING ALGORITHMS

This can be reduced to first solving the system

[
H1 AT

A 0

][
4x
4λ

]
=

[
u

r3

]
, (3.15)

where

H1 = ∇2f +X−1Ψ + S−1Φ − 2 Γ

u = r1 − r2 − Γ r4 + S−1Φ r4 +X−1r5 − S−1r6.

The rest of the Newton directions can then be obtained by the following formulas:

4s = r4 −4x

4ψ = X−1[r5 − Ψ4x]

4φ = S−1[Φ4x + r6 − Φ r4]

4π = r2 + [S−1Φ − Γ]4x+ S−1[r6 − Φ r4].

To get the desired search direction, we can make use of the conjugate gradient

algorithm on (3.15) to obtain a descent direction or negative curvature direction. A

suitable combination of the descent direction and negative curvature directions will

then be used. More precisely, we first apply the null-space approach described in

Section 3.1. Letting Z be the null-space matrix of A and x0 be any point such that

Ax0 = r3, we find that 4x = x0 +Zy for some y. Substituting this into the top part

of (3.15) and premultiplying both sides by ZT, we get

ZTH1Zy = ZTu− ZTH1w, (3.16)

where y could be determined using a conjugate gradient method. After the corre-

sponding 4x is obtained, 4λ can then be obtained from

AT4λ = u−H14x.

3.2. THE PRIMAL-DUAL METHOD 51

If r3 = 0, then x0 = 0 would be suitable and we have

ZTH1Zy = ZTu. (3.17)

From the definitions of u and r1, . . . , r6, we find that

ZTu = ZT(−∇f + µX−1e− Γs− µS−1e+ Γx + S−1Φr4)

= ZT(−∇f + µX−1e− Γs− µS−1e+ Γx)
(3.18)

if we also have r4 = 0, i.e., x+ s = e.

Now, the null-space matrix for the linear equations in (P3.9) is Z̄ =

[
Z

−Z

]
, where

Z is the null-space matrix for A. The corresponding reduced Hessian system is

Z̄T∇2F (xl, sl)Z̄w = −Z̄T∇F (xl, sl), (3.19)

and on dropping the xl and sl notation, we find the right-hand side (rhs) is

−Z̄T∇F = −
[
ZT − ZT

] [∇xF

∇sF

]

= −ZT∇xF + ZT∇sF

= ZT(−∇f + µX−1e− Γs− µS−1e+ Γx).

(3.20)

It follows that (3.18) and (3.20) have the same rhs and consequently, the direction

obtained from the primal-dual procedure is assured of being a descent direction for

F (x, s). However, any direction of negative curvature obtained is with respect to

H1 and not H. But this is not really a difficulty if we have a direction of sufficient

negative curvature for H1, as seen in the following result.

Theorem 3.3. Let the optimality conditions in equations (3.8) and (3.13) be sat-

isfied by χ∗(µ) = (x̃∗(µ), λ̃∗(µ)) and ζ∗(µ) = (x∗(µ), s∗(µ), ψ∗(µ), φ∗(µ), λ∗(µ), π∗(µ))

respectively. Also, let {µk}∞k=1 be a sequence of positive numbers such that lim
k→∞

µk = 0,

52 CHAPTER 3. SMOOTHING ALGORITHMS

and {χ(µk)}∞k=1 and {ζ(µk)}∞k=1 be two sequences of iterates such that

lim
k→∞

‖χ(µk) − χ∗(µk)‖ → 0 (3.21)

lim
k→∞

‖ζ(µk) − ζ∗(µk)‖ → 0. (3.22)

Suppose d satisfies ‖d‖ = 1 and

dTZTH1(ζ(µ))Zd ≤ −α (3.23)

for some α > 0 and all k. Then there exist β and K > 0 such that for all k ≥ K,

dTZTH(χ(µk))Zd ≤ −β. (3.24)

Proof. Since the optimality conditions in (3.8) and (3.13) are equivalent, we have

x̃∗(µ) = x∗(µ) and λ̃∗(µ) = λ∗(µ). Note that by (3.22),

lim
k→∞

ψi(µk)

xi(µk)
= lim

k→∞

ψ∗
i (µk)

x∗i (µk)
= lim

k→∞

µk

(x∗i (µk))2
= lim

k→∞

µk

(x̃∗i (µk))2
. (3.25)

If we let I1 be the index set such that

lim
k→∞

ψi(µk)

xi(µk)
→ ∞ for i ∈ I1, (3.26)

then (3.25) implies that

lim
k→∞

µk

(x̃∗i (µk))2
→ ∞ for i ∈ I1. (3.27)

Similarly, (3.22) implies that

lim
k→∞

φi(µk)

si(µk)
= lim

k→∞

φ∗
i (µk)

s∗i (µk)
= lim

k→∞

µk

(s∗i (µk))2
= lim

k→∞

µk

(1 − x∗i (µk))2

= lim
k→∞

µk

(1 − x̃∗i (µk))2
.

(3.28)

3.2. THE PRIMAL-DUAL METHOD 53

Therefore, if I2 is the index set such that

lim
k→∞

φi(µk)

si(µk)
→ ∞ for i ∈ I2, (3.29)

then

lim
k→∞

µk

(1 − x̃∗i (µk))2
→ ∞ for i ∈ I2. (3.30)

Let I = I1 ∪ I2 and J = IC . Without loss of generality, assume the variables x are

permuted such that d = [dI , dJ]. Then

dTZTH1(ζ(µk))Zd = (Zd)T[∇2f(x(µk)) − 2Γ + (X(µk))
−1Ψ(µk)

+ (S(µk))
−1Φ(µk)]Zd

= (Zd)T
(
∇2f(x(µk)) − 2Γ

)
Zd+ (Zd)T

I DI(µk)(Zd)I

+ (Zd)T
JDJ(µk)(Zd)J ,

where (X(µk))
−1Ψ(µk) + (S(µk))

−1Φ(µk) =

[
DI(µk) 0

0 DJ(µk)

]
. Since DI(µk) is

a diagonal matrix with diagonal elements converging to ∞ as k → ∞, the term

(Zd)T
I DI(µk)(Zd)I will also converge to ∞ if (Zd)I 6= 0. By the continuity of

∇2f(x(µk)) − 2Γ in the compact set [0, 1]n and the definition of J , the expression

(Zd)T (∇2f(x(µk)) − 2Γ)Zd+ (Zd)T
JDJ(Zd)J is bounded for ‖d‖ = 1. Since d must

satisfy (3.23), this implies that (Zd)I = 0. Note that Zd 6= 0 from (3.23). Let

X̃H(µk) =

[
D̃I(µk) 0

0 D̃J(µk)

]
.

By (3.25) and (3.28), there exists K1 > 0 such that for k ≥ K1,

‖DJ(µk) − D̃J(µk)‖ <
α

4‖Zd‖2
. (3.31)

54 CHAPTER 3. SMOOTHING ALGORITHMS

By (3.21) and (3.22) again, we find that

lim
k→∞

xi(µk) = lim
k→∞

x∗i (µk) = lim
k→∞

x̃∗i (µk) = lim
k→∞

x̃i(µk),

so that the finiteness of the limits implies that

lim
k→∞

(xi(µk) − x̃i(µk)) = 0.

Then by the continuity of ∇2f over [0, 1]n, there exists K2 > 0 such that for all

k ≥ K2,

‖∇2f(x(µk)) −∇2f(x̃(µk))‖ ≤ α

4‖Zd‖2
. (3.32)

Therefore, (3.31), (3.32) and (Zd)I = 0 implies that for k ≥ K = max{K1, K2},

dTZTH(χ(µk))Zd = (Zd)T (H(χ(µk)) −H1(ζ(µk)))Zd+ (Zd)TH1(ζ(µk))Zd

≤ (Zd)T[∇2f(x(µk)) − 2Γ + (X(µk))
−1Ψ(µk) + (S(µk))

−1Φ(µk)

−∇2f(x̃(µk)) + 2Γ − X̃H(µk)]Zd− α

= (Zd)T
(
∇2f(x(µk)) −∇2f(x̃(µk))

)
Zd

+ (Zd)T
I (DI(µk) − D̃I(µk))(Zd)I

+ (Zd)T
J (DJ(µk) − D̃J(µk))(Zd)J − α

≤ ‖Zd‖2‖∇2f(x(µk)) −∇2f(x̃(µk))‖

+ ‖Zd‖2‖DJ(µk) − D̃J(µk)‖ − α

≤ α

4
+
α

4
− α

= −α
2
.

Thus, d satisfies (3.24) with β =
α

2
.

In primal-dual methods, it is necessary to measure the progress of the iterates

(xl, λl, sl, ψl, φl, πl) towards satisfying both feasibility and optimality conditions by

means of a merit function, M . For purposes of convergence analysis discussed in the

3.3. CONVERGENCE ANALYSIS 55

next section, we define the merit function to be

M(x, s, ψ, φ) = max

{∥∥∥∥∥Z̄
T

[
∇f(x) + Γ s− ψ

Γ x− φ

]∥∥∥∥∥ , ‖Xψ − µe‖, ‖Sφ− µe‖

}
.

We can also define the merit function to be the objective function

M(x, s) = f(x) − µ

n∑

j=1

[ln xj + ln sj] +

n∑

j=1

γjxjsj,

if the iterates are feasible. Otherwise, if we start the smoothing algorithm from any

infeasible point, the merit function could be

M(x, s, ρ1, ρ2) = f(x) − µ

n∑

j=1

[ln xj + ln sj] +

n∑

j=1

γjxjsj

+ρ1‖Ax− b‖1 + ρ2‖x+ s− e‖1,

where ρ1 and ρ2 are fixed positive numbers.

A summary of the primal-dual algorithm is given on the next page.

3.3 Convergence Analysis

We have mentioned earlier that the local minima of the barrier subproblems intro-

duced by the smoothing algorithm will lead to the local minimum of the following

problem:

Minimize F (x, s) , f(x) +
n∑

j=1

γjxjsj

subject to Ax = b

x+ s = e

(x, s) ≥ 0.

(P3.10)

In addition, we will show that given iterates satisfying the first- and second-order

optimality conditions for the barrier subproblems of (P3.10), we will have a limit point

56 CHAPTER 3. SMOOTHING ALGORITHMS

Algorithm 3.2: Primal-Dual Logarithmic Barrier Smoothing

Set εF = tolerance for function evaluation,

εµ = tolerance for barrier/penalty value,

M = maximum norm for penalty matrix,

N = iteration limit for applying Newton’s method,

θµ = reduction ratio for barrier parameter,

θγ = reduction ratio for penalty parameter,

µ0 = initial barrier parameter,

Γ0 = diagonal matrix with initial penalty parameters as diagonal entries,

r = any feasible starting point.

Set γ = γ0,

µ = µ0.

while ‖Γ‖ < M or µ > εµ

Set (x0, λ0, s0, ψ0, φ0, π0) = r.

for l = 0, 1, . . . , N

if M(xl, sl) < εFµ

Set xN = xl, λN = λl, sN = sl, ψN = ψl, φN = φl, πN = πl, l = N .

Check if xN is a direction of negative curvature.

else

Apply conjugate gradient algorithm to following equation

[ZTH1(xl, λl, sl, ψl, φl, πl)Z]y = −ZTu(xl, λl, sl, ψl, φl, πl).

Obtain 4x,4λ,4s,4ψ,4φ,4π.

Perform a linesearch to determine αl and set xl+1 = xl + αl4x.
Update λl+1, sl+1, ψl+1, φl+1 and πl+1.

end if

end for

Set r = (xN , λN , sN , ψN , φN , πN),

µ = θµµ,

Γ = 1
θγ

Γ.

end while

3.3. CONVERGENCE ANALYSIS 57

of these iterates that also satisfy the first- and second-order optimality conditions

of (P3.10). In practice, we need to terminate an algorithm prior to satisfying the

optimality conditions exactly. Consequently, we need to study the convergence of

such a sequence of iterates.

We begin by considering the convergence properties of the iterates that do satisfy

the optimality conditions of the barrier subproblems.

Lemma 3.2. Let ζ(µ) = (x(µ), s(µ), ψ(µ), φ(µ), λ(µ), π(µ)) be a vector satisfying the

optimality conditions (3.13), and {µk}∞k=1 be a sequence of positive numbers such that

lim
k→∞

µk = 0. Also, assume that there exists a vector (x̄, s̄, λ̄, π̄) satisfying the following

set of optimality conditions of problem (P3.10) with (x̄, s̄) > 0:

∇f(x) − ψ + Γ s+ ATλ+ π = 0 (3.33)

−φ+ Γ x+ π = 0 (3.34)

Ax = b (3.35)

x+ s = e (3.36)

Xψ = 0 (3.37)

Sφ = 0. (3.38)

Then the sequence {ζ(µk)}∞k=1 is bounded.

Proof. From (3.13), we have for each k,

∇f(x(µk)) − ψ(µk) + Γ s(µk) + ATλ(µk) + π(µk) = 0 (3.39)

−φ(µk) + Γ x(µk) + π(µk) = 0 (3.40)

Ax(µk) = b (3.41)

x(µk) + s(µk) = e (3.42)

X(µk)ψ(µk) = µke (3.43)

S(µk)φ(µk) = µke. (3.44)

Since x(µk), s(µk) ∈ (0, 1)n for all k, we find that ‖(x(µk), s(µk))‖ < K1 for some

K1 > 0.

58 CHAPTER 3. SMOOTHING ALGORITHMS

From (3.35), (3.36), (3.41) and (3.42), we have

[
A 0

I I

][
x(µk) − x̄

s(µk) − s̄

]
=

[
0

0

]
. (3.45)

Also, from (3.33), (3.34), (3.39) and (3.40), we obtain

[
∇f(x(µk)) −∇f(x̄) + Γ(s(µk) − s̄)

Γ(x(µk) − x̄)

]
+

[
A 0

I I

]T [
λ(µk) − λ̄

π(µk) − π̄

]
−

[
ψ(µk) − ψ̄

φ(µk) − φ̄

]
=

[
0

0

]
.

(3.46)

Premultiplying both sides of (3.46) by

[
x(µk) − x̄

s(µk) − s̄

]T

and using (3.37), (3.38), (3.43)–

(3.45), we get

(x(µk) − x̄)T(∇f(x(µk)) −∇f(x̄) + Γ(s(µk) − s̄)) + (s(µk) − s̄)TΓ(x(µk) − x̄)

= (x(µk) − x̄)T(ψ(µk) − ψ̄) + (s(µk) − s̄)T(φ(µk) − φ̄)

= 2nµk − x̄Tψ(µk) − x(µk)ψ̄ − s̄Tφ(µk) − s(µk)φ̄.

This implies that for each j,

0 ≤ x̄jψj(µk) ≤ x̄Tψ(µk) + s̄Tφ(µk) (by nonnegativity of x̄, s̄, ψ(µk), φ(µk))

≤ L1,

where L1 > 0 is such that L1 ≥ |2nµk − (x(µk)− x̄)Tψ(µk)+(s(µk)− s̄)Tφ(µk)| for all

k by continuity of ∇f over the compact set [0, 1]n that contains the vectors x̄, x(µk),

s̄, and s(µk). Thus, if L2 = minl x̄l > 0, we have for all j

ψj(µk) ≤
L1

L2

,

i.e., ‖ψ(µk)‖ < K2 for some K2 > 0. Likewise, ‖φ(µk)‖ < K3 for some K3 > 0. From

(3.40),

π(µk) = φ(µk) − Γ x(µk). (3.47)

3.3. CONVERGENCE ANALYSIS 59

Since the rhs of (3.47) is bounded for all k, we also have ‖π(µk)‖ < K4 for some

K4 > 0. It remains to prove that λ(µk) is bounded for all k. Observe from (3.39)

that

ATλ(µk) = −∇f(x(µk)) + ψ(µk) − Γ s(µk) − π(µk),

so that

‖λ(µk)‖ = ‖(AAT)−1(−∇f(x(µk)) + ψ(µk) − Γ s(µk) − π(µk))‖

≤ ‖(AAT)−1‖‖ −∇f(x(µk)) + ψ(µk) − Γ s(µk) − π(µk)‖.

Again, the boundedness of the rhs implies that ‖λ(µk)‖ < K5 for some K5 > 0.

Lemma 3.3. Suppose the assumptions of Lemma 3.2 hold. Then there exists a limit

point ζ∗ of the sequence {ζ(µk)}∞k=1 that satisfies the optimality conditions (3.33)–

(3.38).

Proof. The boundedness of the sequence {ζ(µk)}∞k=1 from Lemma 3.2 implies that it

has a limit point ζ∗ = (x∗, s∗, ψ∗, φ∗, λ∗, µ∗), i.e., there is a subsequence K such that

lim
k→∞
k∈K

ζ(µk) = ζ∗. (3.48)

Taking limits as k → ∞, k ∈ K on both sides of (3.39)–(3.44) and using (3.48) gives

the desired result.

Corollary 3.2. Suppose the assumptions of Lemma 3.2 hold. If ζ(µk) satisfies both

the first- and second-order optimality conditions of problem (P3.9), then there exists

a limit point ζ∗ satisfying the first- and second-order optimality conditions of problem

(P3.10).

Proof. From Lemma 3.3, it suffices to show that the minimum eigenvalue of the

reduced Hessian with respect to ζ∗ is nonnegative. But this follows from the continuity

of the reduced Hessian, the nonnegativity of the minimum eigenvalue of the reduced

Hessian with respect to ζ(µk), and (3.48).

60 CHAPTER 3. SMOOTHING ALGORITHMS

Now we consider the case when the set of iterates only satisfy the optimality

conditions of the barrier subproblems approximately.

Lemma 3.4. Suppose {ζ̄(µk)}∞k=1 is a set of iterates generated by Algorithm 3.2.

Then as k → ∞, ζ̄(µk) satisfies the conditions

∇f(x̄(µk)) − ψ̄(µk) + Γ s̄(µk) + ATλ̄(µk) + π̄(µk) = O(µk) (3.49)

−φ̄(µk) + Γ x̄(µk) + π̄(µk) = O(µk) (3.50)

Ax̄(µk) = b (3.51)

x̄(µk) + s̄(µk) = e (3.52)

X̄(µk)ψ̄(µk) = O(µk)e (3.53)

S̄(µk)φ̄(µk) = O(µk)e. (3.54)

Proof. Clearly, (3.51) and (3.52) hold because we are starting with a feasible iterate.

From the termination criteria of Algorithm 3.2, we have

Z̄T

[
∇f(x̄(µk) + Γ s̄(µk) − ψ̄

Γ x̄(µk) − φ̄

]
= O(µk)e (3.55)

ψ̄(µk) − µkX̄(µk)
−1e = O(µk)e (3.56)

φ̄(µk) − µkS̄(µk)
−1e = O(µk)e, (3.57)

where Z̄ is the null-space matrix of

[
A 0

I I

]
. Then

Z̄T

[
∇f(x̄(µk)) − ψ̄(µk) + Γ s̄(µk) + ATλ̄(µk) + π̄(µk)

−φ̄(µk) + Γ x̄(µk) + π̄(µk)

]

= Z̄T



[
∇f(x̄(µk)) − ψ̄(µk) + Γ s̄(µk)

−φ̄(µk) + Γ x̄(µk)

]
+

[
A 0

I I

]T [
λ̄(µk)

π̄(µk)

]


= Z̄T

[
∇f(x̄(µk) + Γ s̄(µk) − ψ̄

Γ x̄(µk) − φ̄

]
= O(µk) (by (3.55)).

3.3. CONVERGENCE ANALYSIS 61

This implies (3.49) and (3.50). On the other hand, multiplying both sides of (3.56)

by X(µk), we obtain

X̄(µk)ψ̄(µk) − µke = O(µk)X(µk)e

= O(µk)e,

since x(µk) ∈ [0, 1]n. This gives us (3.53), and we can similarly obtain (3.54) from

(3.57).

Corollary 3.3. Suppose {ζ̄(µk)}∞k=1 is a set of iterates generated by Algorithm 3.2

with the minimum eigenvalue of the reduced Hessian with respect to ζ̄(µk) being non-

negative for all k. Let ζ̄ be a limit point of {ζ̄(µk)}∞k=1. Then ζ̄ satisfies the optimality

conditions (3.33)–(3.38), and the minimum eigenvalue of the reduced Hessian with

respect to ζ̄ is nonnegative.

Proof. The first part follows from Lemma 3.4 by taking the limits of both sides of

(3.49)–(3.54) with respect to the relevant subsequence K of {ζ̄(µk)}∞k=1. Thus,

lim
k→∞
k∈K

‖ζ̄(µk) − ζ̄‖ = 0. (3.58)

Let the null-space matrix of A be denoted by Z. The reduced Hessian with respect

to ζ̄(µk) is then given by

ZT(∇2f(x̄(µk)) + X̄(µk)
−1Ψ̄(µk) + S̄(µk)

−1Φ̄(µk) − 2Γ)Z

= ZT(∇2f(x̄(µk)) +O(µk)I − 2Γ)Z (using (3.54) and (3.55))

= ZT(∇2f(x̄(µk)) − 2Γ)Z +O(µk)I

→ ZT(∇2f(x̄) − 2Γ)Z,

as k → ∞, k ∈ K, using (3.58). Since the minimum eigenvalue of the reduced

Hessian with respect to ζ̄(µk) is nonnegative for all k, this implies that the minimum

eigenvalue of ZT(∇2f(x̄) − 2Γ)Z is also nonnegative, by continuity.

Corollary 3.3 implies that any of the limit points of the set of iterates generated

62 CHAPTER 3. SMOOTHING ALGORITHMS

by Algorithm 3.2 will satisfy both the first- and second-order optimality conditions

under suitable assumptions on the termination criteria of the algorithm. We could

have weakened the assumption in Corollary 3.3 so that the minimum eigenvalue of

the reduced Hessian is only required to be ≥ −θµk for some constant θ > 0 and

still get the same result. However, this is not necessary because the positivity of the

eigenvalues of the reduced Hessian of the barrier terms will result in the minimum

eigenvalue of the entire reduced Hessian matrix being positive.

Also, as ζ̄ may not be unique, different convergent subsequences of the iterates

{ζ̄(µk)}∞k=1 may lead to different ζ̄ satisfying the optimality conditions. This agrees

with the observation that the iterates of {ζ̄(µk)}∞k=1 only satisfy the optimality condi-

tions of the barrier subproblems approximately and may potentially produce different

trajectories.

Chapter 4

Analysis of Linear Systems with

Large Diagonal Elements

In the process of obtaining the iterates of the smoothing algorithms, we must solve

reduced Hessian systems to determine the direction of descent for each linesearch. The

computation involved in solving such systems of equations can be so significant that

it warrants a more detailed analysis. Though these systems are linear, the diagonal

elements could have varying orders of magnitude and perhaps cause ill-conditioning

of the system.

Before analyzing such systems and their perturbation effects, we review briefly

the methods used for solving a general square linear system Ax = b. Basically, these

can be divided into direct and iterative methods. The direct methods include those

that perform operations to change the entries of A or to factorize A into a product of

matrices, with the resulting modified linear system(s) being easier to solve, and would

lead to an exact solution of Ax = b. An example is the LU factorization method,

where A is factorized into the product of a lower triangular matrix L and an upper

triangular matrix U , with the diagonal of either L or U comprised of ones only. The

solution of Ax = b then involves solving the simpler systems Ly = b and Ux = y. If A

is known to be positive definite, it is possible to obtain A = LU with U = LT, and the

algorithms to determine the nonzero elements of L are called Cholesky factorization

methods.

63

64 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

Iterative methods on the other hand produce a sequence of vectors that approxi-

mate the actual solution to Ax = b. Usually, the entries of A are unchanged, except

with preconditioning (discussed below) or the splitting of A into an appropriate sum

of matrices. Also, the operations involved in an iterative method may only include

matrix-vector multiplications. This makes iterative methods more attractive than

direct methods when A is large, especially if an exact solution to Ax = b is not

critical. A widely used iterative method is the conjugate gradient algorithm. It can

be described as a class of methods that generate a sequence of mutually conjugate

vectors with respect to A, i.e., if this sequence of vectors is denoted by {rn}N
n=1 for

some positive integer N , then rT
i Arj = 0 for i 6= j.

The performance of iterative methods can be improved by preconditioning. For

example, if A is symmetric, we would seek a positive definite matrix C such that C ≈
A in some sense, where systems involving C can be solved more easily. The iterative

method is (conceptually) applied to the “better behaved” system C−1/2AC−1/2y =

C−1/2b, and x is recovered from C1/2x = y.

4.1 Linear Systems with Large Diagonal Elements

Consider a square system of equations Ax = b in which A is symmetric and has some

large diagonal elements. This arises for example when we are solving the reduced

Hessian system with variables approaching their bounds. In Section 4.2, we discuss

how to deal with the reduced Hessian system in further detail. For the time being,

we focus on the sensitivity analysis of symmetric linear systems with large diagonal

elements and how to compute a solution x to these systems.

4.1.1 Sensitivity Analysis

In general, the accuracy to which Ax = b, can be solved deteriorates as the condition

number of A increases. For a perturbation 4b in b, the perturbation to the solution

is bounded according to
‖4x‖
‖x‖

≤ κ(A)
‖4b‖
‖b‖

, (4.1)

4.1. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS 65

where κ(A) is the condition number of A (see [GV96]). Likewise, for a perturbation

4A in A, we have
‖4x‖
‖x‖ ≤ κ(A)

‖4A‖
‖A‖ . (4.2)

A characterization of this analysis is the assumption that the elements of 4A are

similar, so that a bound in terms of ‖4A‖ is satisfactory. Consequently, when κ(A)

is large, the bound for the relative perturbation in x will also be large. A feature of this

perturbation analysis is that the perturbation in an individual element of x depends

on ‖x‖ and not on the magnitude of the individual element. Consequently, when the

vector x has some elements that are extremely small, their relative perturbations may

be extremely large. Note that the sensitivity analysis yields upper bounds. It can be

shown that 4b and 4A exist for which the bounds are tight. However, for some 4b
and 4A, the bounds may be unduly pessimistic.

When the ill-conditioning in A is due solely to some large diagonal elements, a

more refined analysis is possible. Consider splitting A as a sum of a diagonal matrix

DA and a matrix MA whose diagonal elements are zero, i.e., A = DA +MA. Now we

would consider the perturbed system as

(DA +MA + 4DA + 4MA)(x+ 4x) = b + 4b (4.3)

and assume that 4MA, the perturbation in the off-diagonal elements of A, is small

compared to ‖MA‖.

What we require is an analysis to derive similar results to (4.1) and (4.2), but in

terms of ‖4MA‖ and ‖4DA‖. A way of achieving this is by scaling the rows and

columns of A.

Let us assume that the rows and columns of A are reordered so that A has nonin-

creasing diagonal elements, i.e., ai,i ≥ ai+1,i+1 for each i. We can then partition these

diagonal elements into two vectors, d̄ and d̃, where d̄ includes the large diagonals, i.e.,

|d̄j| � 1 for each j. Let D̄ = Diag(d̄). Then the matrix

D =

[
D̄ 0

0 I

]

66 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

is a suitable preconditioner for the matrix A. Define

B ≡ D−1/2AD−1/2 =

[
B1 C

CT B2

]
.

Since ‖D̄‖ is large, the submatrix B1 will be “close” to an identity matrix because it

has unit diagonal elements and its off-diagonal elements are of order 1/
√
d̄id̄j. Thus,

we can write B1 as I + E, where ‖E‖ � 1. The submatrix C would also have small

elements as they would be of order 1/
√
d̄i.

Thus, an alternative definition of x is x = D−1/2y, where y is defined by

By = bD, bD = D− 1
2 b, B =

[
I + E C

CT B2

]
. (4.4)

It follows from the structure of B that it is well-conditioned if B2 is well-conditioned,

even if the large diagonals cause A to appear ill-conditioned.

We can now obtain a new sensitivity analysis of (4.3) by analyzing (4.4). Con-

sidering the equation (B + 4B)(y + 4y) = bD + 4bD and comparing with equation

(4.3) gives

4B = D−1/2(4DA + 4MA)D−1/2 (4.5)

4bD = D−1/24b. (4.6)

After canceling the term By = bD and ignoring the small term 4B4y, we obtain

B4y + 4By ≈ 4bD, i.e.,

[
B1 C

CT B2

][
4ȳ
4ỹ

]
+

[
4B1 4C
4CT 4B2

][
ȳ

ỹ

]
≈
[
4b̄D
4b̃D

]
,

where appropriate partitions are introduced for vectors y and bD (as well as other

vectors of interest in the subsequent discussion).

4.1. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS 67

The above equations can be rewritten as

(I + E)4ȳ + C4ỹ + 4B1ȳ + 4Cỹ ≈ 4b̄D
CT4ȳ +B24ỹ + 4CTȳ + 4B2ỹ ≈ 4b̃D.

Let ε = 1
‖D‖ ; this is a small positive quantity because of the large diagonal elements

of D. Since b̄D = D̄−1/2b̄, ‖b̄D‖ ≤ ε1/2‖b̄‖ is also small and 4b̄D even smaller.

Also, let 4D = δ‖D‖ and ‖4M‖ = θ, where δ, θ > 0. Then (4.5) implies that

‖4B‖ ≤ ‖D−1/2‖(‖4DA‖+‖4MA‖)‖D−1/2‖ ≤ δ+θε, which is also a small quantity.

From B4y + 4By ≈ 4bD, we can conclude that the entries in 4ȳ must be small

too. This means that terms like E4ȳ, 4B1ȳ, C
T4ȳ and 4CTȳ are small and may

be ignored to give the following system:

4ȳ + C4ỹ + 4Cỹ ≈ 4b̄D
B24ỹ + 4B2ỹ ≈ 4b̃D.

Assuming that B2 is nonsingular, we may solve for 4ȳ and 4ỹ to obtain:

4ȳ ≈ 4b̄D −4Cỹ − C4ỹ (4.7)

4ỹ ≈ B−1
2 (4b̃D −4B2ỹ). (4.8)

From (4.8), we have

‖4ỹ‖ ≤ γ1‖B−1
2 ‖(‖4b̃D‖ + ‖4B2‖‖ỹ‖),

where γ1 ≈ 1.

Since ‖B−1
2 ‖ =

κ(B2)

‖B2‖
and

1

‖ỹ‖ ≤ γ2
‖B2‖
‖b̃D‖

(because b̃D = CTȳ + B2ỹ ≈ B2ỹ),

where γ2 ≈ 1, we get

‖4ỹ‖
‖ỹ‖ ≤ γ1κ(B2)

(
γ2

‖4b̃D‖
‖b̃D‖

+
‖4B2‖
‖B2‖

)
. (4.9)

68 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

Taking note that x̃ = ỹ and 4x̃ = 4ỹ, we conclude that

‖4x̃‖
‖x̃‖ ≤ γ1κ(B2)

(
γ2

‖4b̃D‖
‖b̃D‖

+
‖4B2‖
‖B2‖

)
, (4.10)

which is independent of κ(A) and is a much sharper bound than that given by general

analysis.

From (4.7), we know that for each i,

4ȳi ≈ 4(b̄D)i −4Ciỹ − Ci4ỹ,

where Ci is the ith row of C. Thus,

|4ȳi| ≤ γ3(|4(b̄D)i| + ‖4Ci‖‖ỹ‖ + ‖Ci‖‖4ỹ‖), (4.11)

where γ3 ≈ 1.

Now, it is sufficient to consider the case (b̄D)i 6= 0 for each i, since this is usually

what we begin with. In fact, we will see later that this case holds for the systems

of interest. Even if the magnitude of (b̄D)i is very small, we can always deflate the

system with appropriate substitutions. Thus, in the subsequent analysis, we shall

always assume that (b̄D)i 6= 0 for each i.

If ‖C‖ is small enough such that 2‖Ci‖‖ỹ‖ ≤ |(b̄D)i| for each i, i.e., ‖Ci‖‖ỹ‖ ≤
|(b̄D)i| − ‖Ci‖‖ỹ‖, then

1

|(b̄D)i| − ‖Ciỹ‖
≤ 1

|(b̄D)i| − ‖Ci‖‖ỹ‖
≤ 1

‖Ci‖‖ỹ‖
. (4.12)

Also, 2‖Ciỹ‖ ≤ 2‖Ci‖‖ỹ‖ ≤ |(b̄D)i| gives |(b̄D)i| ≤ 2(|(b̄D)i| − ‖Ciỹ‖), or equivalently,

1

|(b̄D)i| − ‖Ciỹ‖
≤ 2

|(b̄D)i|
. (4.13)

Since b̄D = (I+E)ȳ+Cỹ ≈ ȳ+Cỹ, we have |ȳi| ≥ γ4(||(b̄D)i|−‖Ciỹ‖|) = γ4(|(b̄D)i|−

4.1. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS 69

‖Ciỹ‖), where γ4 ≈ 1, so that (4.12) and (4.13) implies

1

|ȳi|
≤ min

{
1

‖Ci‖‖ỹ‖
,

2

γ4|(b̄D)i|

}
. (4.14)

Thus, for ‖C‖ small enough, we have from (4.11) and (4.14) that

∣∣∣∣
4ȳi

ȳi

∣∣∣∣ ≤ 2γ5

∣∣∣∣
4(b̄D)i

(b̄D)i

∣∣∣∣+ γ3
‖4Ci‖
‖Ci‖

+ γ3
‖4ỹ‖
‖ỹ‖

, (4.15)

where γ5 = γ3

γ4
≈ 1. Using (4.9), we get, for each i in which (b̄D)i 6= 0,

∣∣∣∣
4ȳi

ȳi

∣∣∣∣ ≤ 2γ5

∣∣∣∣
4(b̄D)i

(b̄D)i

∣∣∣∣+ γ3
‖4Ci‖
‖Ci‖

+ γ6κ(B2)

(
γ2

‖4b̃D‖
‖b̃D‖

+
‖4B2‖
‖B2‖

)
, (4.16)

where γ6 = γ1γ3 ≈ 1. From the equation D1/2x = y, we have D̄1/2x̄ = ȳ, i.e.,√
d̄ix̄i = ȳi for each i. A perturbed system for the ith equation is

√
d̄i + 4d̄i (x̄i + 4x̄i) = ȳi + 4ȳi,

which on dividing by
√
d̄i gives

√
1 +

4d̄i

d̄i

(x̄i + 4x̄i) = x̄i +
4ȳi√
d̄i

.

Since we would expect

∣∣∣∣
4d̄i

d̄i

∣∣∣∣ to be much smaller than 1, we can approximate

√
1 +

4d̄i

d̄i

by 1 +
4d̄i

2d̄i

, so that the perturbed system becomes

(
1 +

4d̄i

2d̄i

)
(x̄i + 4x̄i) ≈ x̄i +

4ȳi√
d̄i

.

70 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

Canceling out the common term x̄i and ignoring the small quantity 4d̄i4x̄i, we get

4x̄i ≈ −1

2

4d̄i

d̄i

x̄i +
4ȳi√
d̄i

.

Therefore, ∣∣∣∣
4x̄i

x̄i

∣∣∣∣ ≤
γ7

2

∣∣∣∣
4d̄i

d̄i

∣∣∣∣+ γ7

∣∣∣∣
4ȳi

ȳi

∣∣∣∣ .

Using (4.16), we conclude that for each i,

∣∣∣∣
4x̄i

x̄i

∣∣∣∣ ≤
γ7

2

∣∣∣∣
4d̄i

d̄i

∣∣∣∣ + 2γ8

∣∣∣∣
4(b̄D)i

(b̄D)i

∣∣∣∣ + γ9
‖4Ci‖
‖Ci‖

+ γ10κ(B2)

(
γ2

‖4b̃D‖
‖b̃D‖

+
‖4B2‖
‖B2‖

)
,

(4.17)

where γ8 = γ5γ7 ≈ 1, γ9 = γ3γ7 ≈ 1 and γ10 = γ6γ7 ≈ 1.

As mentioned previously, the first term in the rhs of the inequality in (4.17) is

due to perturbation in d̄i and is not significant when compared to the other terms.

Also, from (4.10) and (4.17), we see that the relative perturbation of x now depends

on the condition number of B2.

4.1.2 Computing x

Once y is computed, we can easily compute x from the formula x = D−1/2y. In fact,

by the definition of D, we get

x̃i = ỹi and x̄i = ȳi/
√
d̄i

for each i.

The analyses done in the previous section can then be used to provide an estimate

of the perturbation that may arise in both x̃ and x̄ following perturbation in the

relevant submatrices of A.

4.2. REDUCED HESSIAN SYSTEMS 71

4.2 Reduced Hessian Systems

We may now consider the case when the matrix A discussed in the previous sections

is the reduced Hessian. In fact, we need to solve the reduced Hessian system

(ZTHZ)u = −ZTg, (4.18)

where H is the sum of the Hessian of the objective function ∇2F and the diagonal

term D arising from the Hessian of the barrier terms, and Z is a full rank matrix

whose columns span the null space of A.

A consequence of a variable being close to a bound (and this is inevitable) is that

the corresponding diagonal element of H is large. Unfortunately, while H may be ill-

conditioned in this way, that is not true of ZTHZ, which may be ill-conditioned but

is likely to have large off-diagonal elements. It is not easy to compare the condition

number of H with that of ZTHZ. For example, if H is singular and has rank n− 1,

ZTHZ may have full rank and be well-conditioned. But if H has n−m or less large

diagonal elements, then ZTHZ is likely to be ill-conditioned with condition number

similar to that of H.

Example 4.1. Consider the Hessian matrix H =




106 0 0

0 1 0

0 0 1


 and the linear con-

straint matrix A =
[
1 1 1

]
. A null-space matrix of A is given by Z =




−1 −1

1 0

0 1


.

Then ZTHZ =

[
106 + 1 106

106 106 + 1

]
and κ(ZTHZ) ≈ 2 × 106, which is of the same

order as κ(H) = 106. If H =




0 0 0

0 1 0

0 0 1


 with Z unchanged, then ZTHZ = I.

In the next section, we show that if H has large diagonal elements, Z may be

chosen such that the only large elements of ZTHZ are on the diagonal.

72 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

4.2.1 Transformation to a Linear System with Large Diago-

nal Elements

As discussed in Section 4.1 for the matrix A, we also split the reduced Hessian HZ ≡
ZTHZ into the sum of a diagonal matrix and another matrix with zero diagonal

elements. After performing a permutation of variables, we can write

HZ = DZ +MZ ,

where diag(M) = 0 and Di,i ≥ Di+1,i+1 for each i. We can further partition DZ into

two diagonal matrices D1 and D2, i.e.,

DZ =

[
D1 0

0 D2

]
,

where the elements of D1 are large and those of D2 are not. Because of the barrier

function in the objective, this partition tends to be reflective of which variables are

close to their bounds. However, there is no necessity to know or keep track of this

partition throughout the algorithm.

When the size of the reduced Hessian is less than the number of large elements

of the Hessian, the reduced Hessian is in general not ill-conditioned. Indeed it may

be diagonally dominant. Consequently, it is still worthwhile to apply a diagonal

preconditioner, such as

D =

[
D1 0

0 I

]

discussed extensively in the previous section.

If we used the above preconditioning matrices, the sensitivity analysis in Section

4.1.1 would apply to the reduced Hessian. Here, we find that for perturbations 4Z
and 4H in Z and H and ignoring second-order terms, we have

4DZ + 4MZ = 2ZTH4Z + ZT4HZ

4b = 4ZTg + ZT4g.

4.2. REDUCED HESSIAN SYSTEMS 73

For cases where Z is of a special structure and can be determined exactly, 4Z can be

set to 0. Also, we can estimate the values of 4g and 4H based on the information

obtained from the derivatives of the objective function.

4.2.2 Permutation of Variables

An issue that remains unaddressed is the effect of permuting variables on the reduced

system. To analyze the effect, we can apply the variable reduction technique, i.e.,

we first partition the matrix A into [B N], where B is nonsingular. A natural form

of Z is

[
−B−1N

I

]
. For example, in the case of an optimization problem with the

“assignment” constraints
n∑

j=1

xij = 1

for each i, A is usually of the form [e1, . . . , e1, e2, . . . , e2, . . . , em, . . . , em], where ei is

the ith column of Im. We can then choose B to be the identity matrix for this problem

with “assignment” constraints by picking ei for i = 1, . . . , m from the relevant columns

of A. Then

Z =

[
−I−1N

I

]
=




−e . . . 0
...

. . .
...

0 . . . −e
I . . . 0
...

. . .
...

0 . . . I




,

which, as we shall see, differs from the Z we use in Chapter 6 only by a permutation.

Consider permuting some columns of A so that we obtain the new matrix Ã =

[B̃ Ñ] = AP for some permutation matrix P . This permutation changes the Hessian

H to H̃ = PTHP . Letting Z̃ =

[
−B̃−1Ñ

I

]
be the new null-space matrix, we find

that A(PZ̃) = (AP)Z̃ = ÃZ̃ = 0, i.e., the columns of PZ̃ are in the null space of A.

Since the columns of Z form a basis of the null space of A, this means that PZ̃ = ZQ

for some nonsingular matrix Q. Note that Q can be obtained by using the formula

74 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

Q = IQ = ([0 I]Z)Q = [0 I](ZQ) = [0 I]PZ̃. Moreover,

QTZTHZQ = (ZQ)TH(ZQ)

= (PZ̃)THPZ̃

= Z̃TPTHPZ̃

= Z̃TH̃Z̃.

Pre-multiplying the original reduced system ZTHZy = −ZTg by QT, we find that

QTZTHZy = −QTZTg = (ZQ)Tg = −Z̃TPTg, and the above identity leads us to

the new reduced system Z̃TH̃Z̃ỹ = −Z̃Tg̃, where y = Qỹ and g = P g̃.

4.3 Computing the Solution of Bx = bD

As discussed previously, we wish to obtain a solution of Ax = b by first computing a

solution to the equation By = bD, i.e.,

[
B1 C

CT B2

][
ȳ

ỹ

]
=

[
b̄D

b̃D

]
. (4.19)

To solve (4.19), we can apply either direct methods such as the modified Cholesky

algorithms (see e.g., [GM74, FGM95]), or iterative methods such as the conjugate

gradient method. Here, the special structure of the matrices involved may make iter-

ative methods more attractive and we discuss them in greater detail in the following

sections.

4.3.1 Conjugate Gradient Method

Conjugate gradient (CG) methods tend to be effective in solving large-scale systems

if they are well-conditioned. Thus, it would be good to use D in the previous section

to precondition the system Ax = b. We can certainly compute the individual entries

of B and then apply the CG method directly to the equation By = bD, but in general,

a preconditioner D would be applied as in [GV96, page 354] using products with A

4.3. COMPUTING THE SOLUTION OF BX = BD 75

and solves with D (not D1/2).

Certainly, there are some properties of x̄ and ȳ that make them distinct from x̃

and ỹ (here, the partition of any vector z into

[
z̄

z̃

]
is as described in Section 4.1.1).

For example, we know that ȳ ≈ 0, and we get x̄ with even smaller entries than ȳ,

since x̄ = D̄−1/2ȳ and the diagonal elements in D̄ are large. Thus, it makes sense to

split the solving of (4.19) into two, i.e., one involving ȳ and the other involving ỹ, and

then apply algorithms such as the CG method to both separately. For example, the

bottom part of (4.19) can be written as B2ỹ ≈ b̃D because CTȳ ≈ 0. Thus, the CG

method can be applied to obtain a solution ỹ that is substituted into the top part of

(4.19) to give B1ȳ = b̄D − Cỹ. The CG method can then be applied again to this

system to obtain an approximate ȳ. The fact that ȳ ≈ 0 implies it is unnecessary

to solve for ȳ to any great accuracy. Different criteria may have to be applied to

terminate CG on the separate systems.

4.3.2 The Schur Complement Method

The splitting into two systems could also be done by using a Schur complement

approach with the above partition. Here, we reduce system (4.19) to the smaller

subsystem

Sỹ = bS,

where S = B2 − CTB−1
1 C is the Schur complement of B with respect to B1, and

bS = b̃D − CTB−1
1 b̄D. After solving for ỹ, we can obtain ȳ by solving

B1ȳ = b̄− Cỹ.

The subsystem Sỹ = bS may be easier to solve as S could be less ill-conditioned than

B and we can apply the conjugate gradient algorithm to this subsystem. Also, in the

situation that B1 = I + E where ‖E‖ � 1, we can approximate B−1
1 by I − E or

I−E+ 1
2
E2, and then apply iterative refinement procedures to correct the errors. This

is especially true for the reduced Hessian matrix when the majority of its diagonal

elements are large in magnitude, resulting in B2 being a smaller submatrix than B1,

76 CHAPTER 4. LINEAR SYSTEMS WITH LARGE DIAGONAL ELEMENTS

i.e., Sỹ = bS is then a smaller system to solve than the reduced Hessian system, and

yet B1 is sufficiently close to the identity matrix to approximate its inverse with I−E.

4.3.3 Block Gauss-Seidel Method

Another approach to splitting the system is to use the block Gauss-Seidel method.

We would first write the matrix B2 as M1 +M2, where M1 is diagonal and diag(M2)

= 0. Also, we have discussed earlier that B1 can be written as I + E. The block

Gauss-Seidel method would then entail solving the following equations iteratively:

x̄(k) = b̄D − Ex̄(k−1) − Cx̃(k−1)

M1x̃
(k) = b̃D − CTx̄(k) −M2x̃

(k−1),

where x̄(0) = b̄D and x̃(0) = b̃D.

In the event that ‖E‖ is very small, especially when we are in the later major

iterations of the reduced Hessian system, we can even set E to be the zero matrix in

the above algorithm.

Chapter 5

Algorithm Implementation and

Details

In this chapter, we discuss certain issues encountered during implementation of the

primal logarithmic barrier smoothing algorithm. These include the details of ob-

taining the initial iterate for the smoothing algorithm, the search direction, and the

steplength used for generating new iterates.

5.1 Initial Iterate for Smoothing Algorithm

In a logarithmic barrier algorithm, it is essential that an interior feasible point be

used as the initial iterate. However, not every interior feasible point is a good initial

iterate. If the initial penalty parameter γ0 is zero (or small as it usually is) and the

initial barrier parameter µ0 is large, there is no danger in picking any interior feasible

point to be the initial iterate. Nevertheless, it is inefficient to have the initial iterate

close to any of the constraint boundaries because the minimizer of the initial barrier

subproblem is likely to be far from the constraint boundary, and extra work would be

needed to converge to this minimizer. Thus, we need to choose an initial iterate that

is compatible with the penalty and barrier parameters, and preferably, an interior

point that is “neutral” to all the constraints in the feasible region.

As an example, if we have the feasible region S without any linear constraints

77

78 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

Ax = b, we would expect the “neutral” interior point to be 1
2
e because such a point

will be equally far from the boundaries xj = 0 or xj = 1. However, if we have a

linear constraint eTx = 1, then the “neutral point” ought to be 1
n
e for reasons we

now describe.

5.1.1 Analytic Center

A possible choice of such a “neutral” point is one whereby the product of all the

slack variables for the constraints {x : 0 ≤ x ≤ e} is maximized, subject to feasibility

constraints:

Maximize
n∏

j=1

xj(1 − xj)

subject to Ax = b

0 < x < e.

(P5.1)

This point is known in the literature as the analytic center of the feasible region S
(see e.g., [Ye97, Chapter 2]).

Problem (P5.1) can be converted into the following equivalent minimization prob-

lem by a logarithmic transformation of the objective function, where the constraints

0 < x < e are implicitly assumed:

Minimize −
n∑

j=1

[ln xj + ln(1 − xj)]

subject to Ax = b.

(P5.2)

Note that if A has full rank, then problem (P5.2) has a unique optimal solution, by

strict convexity of the objective function and the convexity of the feasible region. In

fact, this unique optimal solution, or equivalently, the analytic center of S, can be

obtained by solving the optimality conditions

ATλ = xg

Ax = b,
(5.1)

5.1. INITIAL ITERATE FOR SMOOTHING ALGORITHM 79

where (xg)i = 1
xi

− 1
1−xi

for all i and λ is the Lagrange multiplier of the constraint

Ax = b.

Example 5.1. Consider problem (P5.2) when there are no linear equality constraints.

Then it is clear that the optimal solution of (P5.2) is 1
2
e. On the other hand, suppose

A = eT and b = 1. It can be easily verified that the vector 1
n
e satisfies optimality

conditions (5.1) for this matrix A, and hence is the unique optimal solution to (P5.2).

5.1.2 Relationship with Trajectory of Smoothing Algorithm

The previous section indicates that the analytic center of the feasible region S appears

to be a reasonable point to be the initial iterate of the smoothing algorithm. There

are certainly other candidates for the initial iterate, such as the center of the ellipsoid

that can be inscribed in the feasible region S with the maximum volume. However,

we now show the relationship of the analytic center to the trajectory of the smoothing

algorithm with respect to the smoothing parameter µ.

Theorem 5.1. Suppose {x : Ax = b, 0 < x < e} 6= ∅, and x∗(µ), x∗ are the solutions

to problems (P3.3) and (P5.2) respectively. Then lim
µ→∞

x∗(µ) = x∗.

Proof. Let {µk}∞k=1 be any sequence such that lim
k→∞

µk = ∞, and let x̄ be a limit point

of the sequence {x∗(µk)}∞k=1. There must be at least one such limit point because x∗(µ)

is in the compact set [0, 1]n for all µ > 0.

Define Φ(x) = −
n∑

j=1

[ln xj + ln(1 − xj)]. Observe that x∗(µ) is the solution to the

problem

Minimize 1
1+µ

f(x) + µ
1+µ

Φ(µ)

subject to Ax = b,
(P5.3)

whose objective function differs from that of (P3.3) by the multiplicative constant
1

1+µ
. Thus

1

1 + µ
f(x∗(µ)) +

µ

1 + µ
Φ(x∗(µ)) ≤ 1

1 + µ
f(x∗) +

µ

1 + µ
Φ(x∗). (5.2)

80 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

Since f is continuous on [0, 1]n, there exists a positive constant L > 0 such that

|f(x)| ≤ L for all x ∈ [0, 1]n. Let ε > 0 and define M > max{L
ε
− 1, 1}. Then for all

k such that µk > M , we have L
1+µk

< ε, and hence

−ε +
µk

1 + µk
Φ(x∗(µk)) < − L

1 + µk
+

µk

1 + µk
Φ(x∗(µk))

≤ 1

1 + µk

f(x∗(µk)) +
µk

1 + µk

Φ(x∗(µk))

≤ 1

1 + µk
f(x∗) +

µk

1 + µk
Φ(x∗) (from (5.2))

≤ L

1 + µk

+
µk

1 + µk

Φ(x∗)

< ε +
µk

1 + µk

Φ(x∗).

Taking limits as k → ∞, we have

−ε + lim
k→∞

Φ(x∗(µk)) ≤ ε + Φ(x∗).

Since ε is an arbitrary positive number, we conclude that lim
k→∞

Φ(x∗(µk)) ≤ Φ(x∗).

Now, Φ(x∗) ≤ Φ(x∗(µ)) for all µ > 0 by optimality of x∗ in (P5.2). This implies that

Φ(x∗) ≤ lim
k→∞

Φ(x∗(µk)), and thus

lim
k→∞

Φ(x∗(µk)) = Φ(x∗). (5.3)

Since x∗ ∈ (0, 1)n, this implies that lim
k→∞

Φ(x∗(µk)) must be bounded. Therefore, by

continuity of Φ on (0, 1)n and (5.3),

Φ(x̄) = Φ(x∗).

Thus, x̄ = x∗ since x∗ is the unique minimizer to (P5.2). This shows that any limit

point of x∗(µk) is equal to x∗, so that lim
k→∞

x∗(µk) = x∗, and we can conclude that

lim
µ→∞

x∗(µ) = x∗.

We see that the analytic center of the feasible region is an ideal starting point for

5.2. USING THE CONJUGATE GRADIENT METHOD 81

the smoothing algorithm because it allows the iterates to be on the desired trajectory

{x∗(µ)} at an early stage of the algorithm. Finding the exact analytic center of the

feasible region S can be expensive and there are many efforts to deal with this issue

(see e.g., [GTP98], [Ye97, Chapter 3]). However, it is not crucial that we obtain the

exact analytic center of S and it suffices to start the smoothing algorithm with a large

barrier parameter µ and to approximate the analytic center from the iterate obtained

in the minor iterations of determining a vector satisfying the optimality conditions

for that value of µ. Moreover, for certain types of feasible region S, the analytical

center is known, as illustrated in Example 5.1.

5.2 Using the Conjugate Gradient Method

Some of the broad issues of applying the CG method to the reduced Hessian sys-

tem have been discussed in earlier chapters. We are interested here in the precise

algorithms used, the termination criteria involved, and how to obtain the search di-

rections.

The CG method used in the smoothing algorithm is shown on the next page. It

is different from standard CG methods in the sense that it can handle systems that

are indefinite, and has different termination criteria. It involves an adaptation of the

CG methods used in a truncated Newton method [DS83].

5.2.1 Computing Z and Associated Operations

In Section 4.2.2, we mentioned how to obtain the null-space matrix Z for the full-rank

matrix A ∈ Rm×n using the variable-reduction technique. Here, we discuss how we

perform such a partitioning of A into [B N], where B is nonsingular. It is worth

mentioning that a QR factorization could also be used to obtain Z. For example, if

we obtain AT = Q

[
R

0

]
using Householder transformations, where Q is an orthogonal

matrix and R is a nonsingular upper triangular matrix, then AQ = (QTAT)T = [RT 0]

and the last n−m columns of Q would be a null-space matrix for A.

82 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

Algorithm 5.1: CG method for ZTHZu = −ZTg.

Set ε = tolerance for indicating nonpositive curvature,

δ = tolerance for residual error,

N = iteration limit,

x0 = 0,

r0 = −ZTg,

p0 = r0.

for l = 0, 1, . . . , N

if pT
l Z

THZpl ≤ ε‖pl‖2

if l = 0

Set d1 = p0, d2 = 0.

else

Set d1 = xl, d2 = pl.

endif

elseif ‖rl‖ ≤ δ‖ZTg‖
Set l = N , d1 = xl, d2 = 0.

else

Set αl = ‖rl‖2

pT
l ZTHZpl

,

xl+1 = xl + αlpl,

rl+1 = rl − αlZ
THZpl,

βl = ‖rl+1‖2

‖rl‖2 ,

pl+1 = rl+1 + βlpl.

endif

end for

Output: d1, d2

When forming the partition [B N], we need to choose a partition of the Hessian ma-

trix H based on its diagonal dH . For example, if dH has elements with approximately

the same order of magnitude, then we can pick any linearly independent subset of

columns of A to form B, with the remaining columns of A for forming N . In the

5.2. USING THE CONJUGATE GRADIENT METHOD 83

situation when dH has elements with varying orders of magnitude, we can partition

the index set of dH into two sets D1 and D2 as in Section 4.2.1, such that i ∈ D1

would imply that (dH)i is large, while i ∈ D2 would imply that (dH)i is small. In

the case that |D1| < |D2|, we can pick any largest set of indices from D2 such that

the corresponding columns of A are linearly independent. If there is an insufficient

number of columns chosen to form B, we can pick the rest from D1 such that we

have the smallest magnitudes of (dH)i and the corresponding columns of A are lin-

early independent. The rest of the unpicked columns will then form N . Likewise

when |D1| ≥ |D2|, we will pick any largest linearly independent set of columns with

indices from D1 to form B, using indices of D2 with the largest magnitudes of (dH)i

if necessary, and the rest of the unpicked columns will form N .

With the appropriate partition for A, it may not be necessary to compute Z

for matrix-vector multiplications of the type ZTu or Zu. For example, ZTu can be

obtained as follows:

ZTu = [−NTB−T I]

[
uB

uN

]
= uN −NTw,

where BTw = uB. An LU factorization of B can usually exploit any special structure

that B might have. Even if Z is computed via QR factorization, it is also possible

to perform matrix-vector multiplications involving Z efficiently, without forming Z

explicitly.

5.2.2 Obtaining the Search Direction

In Algorithm 5.1, after we obtain d1 and d2, the search direction can be obtained as

a suitable linear combination of the two directions Zd1 and Zd2. There are many

ways of performing this linear combination. The search direction that is used for the

smoothing algorithm is

d = Zd1 + Zd2. (5.4)

However, we would also like to improve the quality of this search direction, especially

the direction of negative curvature Zd2, because we know from [DS83] that d1 satisfies

84 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

conditions of sufficient descent: gTZd1 ≤ −K1‖ZTg‖2 and ‖d1‖ ≤ K2‖ZTg‖, where

K1, K2 > 0. If we find in Algorithm 5.1 that there is a pl such that pT
l Z

THZpl ≤
ε‖pl‖2, we would like to enhance the direction of d2 = pl so that it is a good direction

of negative curvature, i.e., we would like a direction of negative curvature d̄2 that

satisfies

d̄T
2Z

THZd̄2 ≤ θλmin(Z
THZ), (5.5)

where θ ∈ (0, 1] and ‖d̄2‖ = 1. Algorithms that take a poor direction of negative

curvature d2 to obtain d̄2 satisfying (5.4) are discussed at length in [Bom99]. Two

such adapted algorithms are shown next, namely the modified Lanczos algorithm and

the coordinate search. The former algorithm makes use of a tridiagonal matrix close

to ZTHZ in order to get a good approximation to the eigenvector corresponding to

λmin(Z
THZ), while the latter is based on the Rayleigh criterion, i.e., minimizing the

Rayleigh quotient:

Minimize
x 6=0

xTZTHZx

xTx
. (P5.4)

Algorithm 5.2: Enhancing given direction of negative curvature d2 of

ZTHZ by modified Lanczos method.

Set x0 = d2,

q0 = 0,

β0 = ‖x0‖2.

for l = 1, 2, . . . , n

Set ql = xl−1/βl−1,

xl = ZTHZql − βl−1ql−1,

αl = qT
l xl,

xl = xl − αlql,

βl = ‖xl‖.
end for

5.3. LINESEARCH 85

Algorithm 5.3: Enhancing given direction of negative curvature d2 of

A = ZTHZ by coordinate search.

Set x = d2,

µ = xTAx,

β = ‖x‖2.

for l = n, n− 1, . . . , 2, 1, 2, . . . , n− 2, n− 1, . . .

Set γ = xTA•,l.

Solve (Allxl − γ)α2 + (Allβ − µ)α + (γβ − µxl) = 0 to obtain α1, α2.

Setµi = µ+ 2αixl + α2
iAll, i = 1, 2,

βi = β + 2αixl + α2
i , i = 1, 2,

I = arg min {µi/βi | i = 1, 2},
µ = µ+ 2αIxl + α2

IAll,

β = β + 2αIxl + α2
I ,

xl = xl + αI .

end for

5.3 Linesearch

Here we shall assume that the search direction d is given by (5.5). It is then essential

to find a good steplength α to determine the next iterate x + αd, with respect to

the objective function F (x) = f(x) + µΦ(x). There are certain conditions that α

must satisfy in order to be a reasonable steplength. The foremost quantity required

is the maximum steplength achievable in the feasible region, αmax. This is because

a unit steplength from the iterate x may make the next iterate x + αd /∈ S, where

S= {x : Ax = b, 0 < x < e} is the feasible region.

It is also necessary to ensure that certain sufficient decrease conditions are satisfied

by the steplength, such as the following set of conditions (see [FM93]):

F (x+ αd) ≤ F (x) + µα∇F (x+ αd)Td and

|∇F (x+ αd)Td| ≤ η|∇F (x)Td| or α = αmax,
(5.6)

86 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

if dT∇2F (x)d ≥ 0, and

F (x+ αd) ≤ F (x) + µ
(
α∇F (x+ αd)Td+ 1

2
α2dT∇2F (x)d

)
and

|∇F (x+ αd)Td| ≤ η|∇F (x)Td+ αdT∇2F (x)d| or α = αmax,
(5.7)

if dT∇2F (x)d < 0, where µ ∈ (0, 1
2
) and η ∈ [µ, 1).

There are steplength procedures to find an α that satisfies the above conditions

(see [GMSW79, MS79]). There are also special procedures, such as interpolation

methods (see [MW94]) that can deal with the barrier terms in the objective or merit

function used in the linesearch more effectively. However, we wish to determine the

quality of the solutions obtained by the smoothing algorithm, independent of the

linesearch procedures. Thus, only a simple backtracking algorithm is used for the

smoothing algorithm and this amounts to obtaining an α that satisfies (5.6) only.

This has proved adequate for conducting numerical tests on the algorithm.

5.4 Parameter Initialization and Update

The initialization and update of the parameters used in the smoothing algorithm,

especially the barrier parameter µ, can influence the quality of the solution obtained.

We have already seen that the analytic center is an ideal iterate to begin with and

in the event of computational difficulty of obtaining the exact analytic center, the

initialization of µ to a large value would produce an iterate that has a good chance

of being approximately the analytic center. Also, it is helpful to reduce µ gradually,

as we would like the iterates to follow a trajectory from the starting point to a good

local or even global minimizer of the original problem.

To illustrate better, consider the problem

Minimize −(x1 − 1)2 − (x2 − 1)2 − 0.1(x1 + 2x2 − 2)

subject to xj ∈ {0, 2}, j = 1, 2,
(P5.5)

which, after the introduction of the smoothing function, becomes the transformed

problem on the next page:

5.4. PARAMETER INITIALIZATION AND UPDATE 87

Algorithm 5.4: Backtracking algorithm for determining steplength.

Set x = current iterate of smoothing algorithm,

d = search direction for x

N = iteration limit for backtracking

θ1 = fraction of steplength not exceeding boundary

θ2 = reduction ratio in backtracking.

for k = 1, 2, . . . , n

if dk > 0

Set βk = 1−xk

dk
.

elseif dk < 0

Set βk = −xk

dk
.

else

Set βk = ∞.

end if

end for

Set α = θ1 min{mink βk, 1}.
for l = 1, 2, . . . , N

if F (x+ αd) > F (x) + µα∇F (x+ αd)Td

Set α = θ2α.

end if

end for

Minimize −(x1 − 1)2 − (x2 − 1)2 − 0.1(x1 + 2x2 − 2)

−µ(ln x1 + ln(2 − x1) + ln x2 + ln(2 − x2)).
(P5.6)

It can easily be verified that the global (and hence local) minimum to (P5.5) is given

by (x∗1, x
∗
2) = (2, 2). However, there are also three other local minima given by (0,0),

(0,2) and (2,0).

Figure 5.1 shows the contour graph of the objective function in (P5.5), as well

88 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

as different trajectories arising from the smoothing algorithm. It can be seen that

initializing µ with a large value in this case leads to a trajectory of iterates converging

to the global minimum. However, if the initial µ had been a smaller value, there is a

risk that a trajectory leading to a local (but not global) minimum would be obtained.

Also, a large reduction of µ could also cause the path of iterates to switch from one

trajectory to another.

We see that it helps to be conservative in the choice of the initial parameters

as well as the updating of the parameters. Though more computational time may

be needed, we have a better chance of obtaining a trajectory that leads to a good

quality solution to the original problem. Typical ranges of the parameters used in

the smoothing algorithm are summarized below.

Table 5.1: Typical ranges of parameters of smoothing algorithm.

Parameter Range
Initial barrier parameter, µ0 10 − 1000
Final barrier parameter, µN 10−4 − 1
Barrier parameter reduction, θµ 0.1 − 0.999
Initial penalty parameter, γ0 0 − 10
Final penalty parameter, γN 10 − 105

Penalty parameter increment, θγ 0.1 − 0.9

5.4. PARAMETER INITIALIZATION AND UPDATE 89

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

µ=100

µ=0.7

µ=0.01 µ=0.01

µ=0.7

µ=0.01

µ=0.7
µ=0.7

µ=0.01

Figure 5.1: Trajectories taken by iterates of smoothing algorithm.

90 CHAPTER 5. ALGORITHM IMPLEMENTATION AND DETAILS

Chapter 6

Applications

While we can demonstrate convergence of the smoothing algorithm to an integer so-

lution, we have yet to show whether it is a good integer solution. To do this, we study

the performance of the algorithm on problems whose optimal or best known solution

is available. We also solve a number of real problems and compare the smoothing

algorithm to the solution found by alternative methods. Many such problems are

known in the literature to be NP-hard or NP-complete as discussed in Section 1.2.2.

One of the simpler classes of discrete optimization problems with nonlinear ob-

jective function is that of the unconstrained binary quadratic problem. Extensive

numerical results and performance comparisons for various algorithms in this class

are presented in Section 6.1. In fact, since this class of problems is sufficiently simple

without complications arising from the objective function or the constraints, these

numerical results could serve as a basis for deciding whether certain implementation

procedures are favorable or not to the smoothing algorithm.

A nonlinear discrete problem that has linear constraints is the assignment of fre-

quencies in a cellular network. In Section 6.2, we formulate the problem mathe-

matically and give numerical results from applying the algorithm to this problem

using real-world data. In Section 6.3, we look at another type of assignment prob-

lem that has been studied extensively, known as the quadratic assignment problem

(see [PRW94, Cel98]). Nonlinear discrete optimization problems also arise in other

applications such as medical decision analysis. In Section 6.4, we look into one such

91

92 CHAPTER 6. APPLICATIONS

problem of finding the optimal number of biopsy needles that should be performed

on a patient diagnosed with cancer in order to maximize the detection of cancer.

Table 6.1 shows the platform and software that were used to perform the numerical

computations. Also, we have used MATLAB1 to implement the smoothing algorithms

for all the applications discussed in this chapter.

Table 6.1: Platform and software used for numerical comparison.

Platform 1 2 3
Processor Pentium II (400 MHz) Sun Ultra SGI

Operating System Windows 95 Solaris 8 IRIX 6.5
Memory Size 128 MB 256 MB 1.5 GB
Software Used Matlab 5.3 Matlab 6.1 GAMS 20.5, Matlab 6.0

Precision 2.22 × 10−16 2.22 × 10−16 2.22 × 10−16

6.1 Unconstrained Binary Quadratic Programming

The unconstrained binary quadratic problem (BQP) is to minimize a quadratic ob-

jective function subject to the variables being binary:

Minimize xTPx+ cTx

subject to x ∈ {0, 1}n,
(P6.1)

where P ∈ Rn×n and c ∈ Rn. By noting that xTMx = xTMTx and cTx = xTCx

for any feasible x and any M ∈ Rn×n, where C = Diag(c), it suffices to consider the

following “simpler” problem

Minimize xTQx

subject to x ∈ {0, 1}n,
(P6.2)

where Q is a symmetric matrix.

1www.mathworks.com

6.1. UNCONSTRAINED BINARY QUADRATIC PROGRAMMING 93

6.1.1 Examples

It is clear that any unconstrained quadratic programming problem with purely inte-

ger variables from a bounded set can be transformed into (P6.1) by the reformulation

techniques discussed in Section 1.3.2. This would then include many classes of prob-

lems, including least-squares problems with bounded integer variables:

Minimize
x∈D

‖s− Ax‖2, (P6.3)

where s ∈ Rm, A ∈ Rm×n, and D is a bounded subset of Zn.

An example of BQP arising out of real-world applications is the multiuser detec-

tion problem in synchronous CDMA (Code Division Multi-Access) communication

systems as described in [LPWH01]. In short, it was necessary to obtain an estimate

of x ∈ {−1, 1}m in

y = RWx+ r,

where x is a vector of bits transmitted by m active users, R is a symmetric normalized

signature correlation matrix with unit diagonal elements, W is a diagonal matrix

with diagonal elements being signal amplitudes of the corresponding users, and r

is Gaussian noise with zero mean and known covariance matrix. The maximum

likelihood estimate of x can then be obtained by solving

Minimize xTWR2Wx− 2yTRWx

subject to x ∈ {−1, 1}m,

which can be transformed into (P6.2). Other examples include machine schedul-

ing [AKA94] and molecular conformation [PR94], as well as graph problems such as

those determining maximum cuts [BMZ00] and maximum cliques [PR92].

6.1.2 Numerical Results

One of the popular test sets for this class of problems is from the OR-library main-

tained by J. E. Beasley (http://mscmga.ms.ic.ac.uk/info.html). The results of some

heuristic algorithms applied to his data sets are reported in [Bea98] and [GARK00].

94 CHAPTER 6. APPLICATIONS

The entries of matrix Q are integers uniformly drawn from [−100, 100], with density

10%. As the test problems were formulated as maximization problems, for purposes

of comparison of objective values in this section, we now maximize the objective.

The smoothing algorithm was run on all 60 problems from Beasley’s test set

ranging from 50 to 2500 binary variables on Platform 3 of Table 6.1. The parameters

of the smoothing algorithm used are the initial barrier parameter, µ0 = 100, the initial

penalty parameter, γ0 = 1, the ratio of reduction of barrier parameters, θµ = 0.5, the

ratio of increment of penalty parameters, θγ = 2, the major iteration limit, N = 50,

and all tolerance levels ε = 0.01. The initial iterate used for all the test problems is

the analytic center of [0, 1]n, i.e., 1
2
e. The objective values obtained by the smoothing

algorithm with these parameter settings are shown in Tables 6.2 to 6.7.

Table 6.2: Comparison of numerical output of algorithms applied to BQP test prob-
lems with 50 binary variables based on objective values (maximization).

Problem BARON CPLEX DICOPT SBB Smoothing
Number Algorithm

1 2160 2160 1646 1646 2160
2 3658 3658 3268* 3328 3658
3 4778 4778 4548 4548 4778
4 3472 3472 3280* 3330 3472
5 4152 4152 3886 3886 4152
6 3842 3842 3368* 3656 3842
7 4588 4588 4352 4352 4578 (0.22%)
8 4222 4222 3836* 3836 4222
9 3862 3862 3294* 3282 3862
10 3496 3496 3170* 3212 3496

In the tables (including those in subsequent sections), we used the symbol * to

denote solver error or objective/solution vector cannot be obtained. The values ob-

tained in [Bea98] or [GARK00] have not been included as we suspected some flaws

in the data. Nevertheless, the accuracy of the data sets does not affect the testing

of our algorithms as we were able to apply the nonlinear mixed-integer programming

solvers of GAMS on the data sets as a basis of comparison. These solvers include the

6.1. UNCONSTRAINED BINARY QUADRATIC PROGRAMMING 95

Table 6.3: Comparison of numerical output of algorithms applied to BQP test prob-
lems with 100 binary variables based on objective values (maximization).

Problem BARON CPLEX DICOPT SBB Smoothing
Number Algorithm

1 7910 7910 7180 7180 7800 (1.39%)
2 11178 11178 10858* 11038 11112 (0.59%)
3 12956 12956 12790* 12898 12902 (0.42%)
4 10606 10606 10370 10370 10602 (0.04%)
5 8996 8996 8640* 8640 8992 (0.04%)
6 * 10486 9696* 9888 10364 (1.16%)
7 10030 10030 9650* 9672 9920 (1.10%)
8 11380 11380 10948 10948 11380
9 11340 11340 9776* 9776 11340
10 12438 12438 11550* 11924 12364 (0.59%)

Table 6.4: Comparison of numerical output of algorithms applied to BQP test prob-
lems with 250 binary variables based on objective values (maximization).

Problem DICOPT SBB Smoothing
Number Algorithm

1 45122* 45230 45744
2 43568 43568 44818
3 49052* 49222 49620
4 41110* 41150 41534
5 47670* 47670 48044
6 40364* 40364 41204
7 46210 46210 46644
8 33956* 34098 35612
9 48004* 48012 48442
10 39248* 39332 40546

96 CHAPTER 6. APPLICATIONS

Table 6.5: Comparison of numerical output of algorithms applied to BQP test prob-
lems with 500 binary variables based on objective values (maximization).

Problem DICOPT SBB Smoothing
Number Algorithm

1 109712* 112984 115602
2 125352* 125370 128378
3 127730 127730 131084
4 124410* 124976 129358
5 122560* 122708 124736
6 120690* 120566 121406
7 117820* 118662 122350
8 118606* 118606 123196
9 116614 116614 121218
10 124404* 127302 130684

Table 6.6: Comparison of numerical output of algorithms applied to BQP test prob-
lems with 1000 binary variables based on objective values (maximization).

Problem DICOPT SBB Smoothing
Number Algorithm

1 364866 364866 371132
2 345642* 348176 354332
3 364062* 364222 369562
4 368028* 368184 369880
5 343414 343414 352252
6 354238* 354654 360248
7 365634* 365634 369756
8 344482* 344562 350040
9 341366* 342470 348646
10 345684* 346158 350338

6.1. UNCONSTRAINED BINARY QUADRATIC PROGRAMMING 97

Table 6.7: Comparison of numerical output of algorithms applied to BQP test prob-
lems with 2500 binary variables based on objective values (maximization).

Problem DICOPT SBB Smoothing
Number Algorithm

1 1494902* 1499132 1513318
2 1450470* 1451398 1468492
3 1399406* 1401190 1408836
4 1493204* 1496206 1503950
5 1479610* 1479760 1491090
6 1447998 1447998 1464820
7 1466628* 1466674 1471098
8 1470002* 1470382 1482778
9 1450380* 1460478 1480266
10 1472306* 1472796 1475248

DICOPT solver, which is based on extensions of the outer-approximation algorithm

for the equality relaxation strategy and solving a series of nonlinear programming

and mixed-integer linear programming problems; and the SBB solver, which is based

on a combination of the standard branch-and-bound method for the mixed-integer

linear programming problems and standard nonlinear programming solvers. Also, as

described in [Bea98], (P6.2) can be reformulated as a binary linear program (at the

cost of squaring the number of variables) as follows:

Maximize qTy

subject to yij ≤ xi, i, j = 1, 2, . . . , n

yij ≤ xj, i, j = 1, 2, . . . , n

yij ≥ xi + xj − 1, i, j = 1, 2, . . . , n

x ∈ {0, 1}n

y ∈ {0, 1}n2
,

where q = vec(Q). This allows us to use the Mixed-Integer Solver in CPLEX as an-

other source of comparison. For all the testing using GAMS as the interface (including

98 CHAPTER 6. APPLICATIONS

the subsequent sections), we set the maximum iteration limit to be 100,000 and the

maximum iteration time to be 100,000 seconds. In addition, we used BARON, the

global optimization solver based on the branch-and-reduce method discussed in Sec-

tion 1.3.3.2. Both CPLEX and BARON could be used only on problems with 100 or

fewer variables.

CPLEX found the optimal solution for all 20 problems on which it could be run.

The smoothing algorithm successfully found 11 of these optima, with another 6 results

having less than 1% error in the optimal objective value. The error in remaining 3

results were also close, with the worst one having an error of 1.39% in the optimal

objective value. All the error percentages for the results obtained by the smoothing

algorithm are shown bracketed in Tables 6.2 and 6.3. On the other hand, the DICOPT

solver obtained results with error percentages ranging from 4.81% to 23.8% for the 50-

variable test problems and from 1.28% to 13.79% for the 100-variable test problems,

while the SBB solver obtained results with error percentages ranging from 4.09% to

23.8% for the 50-variable test problems and from 0.44% to 13.79% for the 100-variable

test problems. The DICOPT and SBB solvers obtained the same objective values for

many of the test problems, especially those in which no solver error was encountered

in using DICOPT. This is because both solvers use the same nonlinear programming

solvers to solve the underlying relaxation problems.

After comparing Tables 6.2 to 6.7, we see that the smoothing algorithm produced

better solutions than the DICOPT/SBB solvers even though we cannot verify whether

these solutions are globally optimal or good quality local optimal solutions for Tables

6.4 to 6.7. However, it is also necessary to compare the performance in terms of

the computational time involved in generating the solution vectors. First, we did a

comparison of the smoothing algorithm with and without preconditioning to see how

the efficiency and computational time are affected by preconditioning. In this case,

the preconditioner introduced is the diagonal matrix arising from the Hessian of the

logarithmic barrier term, i.e., P = µXH , where XH is defined in Chapter 3. Thus,

the reduced Hessian system we are solving without preconditioning at iterate x is

(2Q− 2Γ + µXH)u = −2Qx− Γ (e− 2x) + µXge,

6.1. UNCONSTRAINED BINARY QUADRATIC PROGRAMMING 99

while the preconditioned reduced Hessian system at iterate x is

(2P− 1
2QP− 1

2 − 2P−1Γ + I)v = P− 1
2 (−2Qx− Γ (e− 2x) + µXge),

with u = P− 1
2v.

Table 6.8 shows the comparison of the computational effort required by the smooth-

ing algorithm in terms of the number of CG iterations and the backtracking line-

search iterations for using the reduced Hessian system and the preconditioned reduced

Hessian system. It can be seen that preconditioning reduces the computational ef-

fort significantly on these test problems, and this is especially clear from the graph

in Figure 6.1 that plots the number of CG iterations required versus the number of

variables in the BQP test problems.

Table 6.8: Comparison of average number of iterations required to solve BQP test
problems by smoothing algorithm with and without preconditioning.

Number Smoothing algorithm Smoothing algorithm
of without preconditioning with preconditioning

variables Conj. Grad. Backtrack Conj. Grad. Backtrack
50 659 128 192 121
100 997 152 257 143
250 1664 174 302 152
500 2474 190 355 166
1000 3893 213 394 171
2500 6927 293 524 200

Table 6.9 shows a comparison of the average computation time taken by DICOPT,

SBB and the smoothing algorithm with and without preconditioning for the test prob-

lems with the same number of variables. Although the algorithms were run on the

same platform, it should be noted that DICOPT and SBB are implemented in a

commercial solver interface package while the smoothing algorithm is implemented

in the higher level MATLAB language. The results in Table 6.9 illustrate that fewer

iterations are required with preconditioning than without, and the cost of the pre-

conditioning is minimal. Thus, preconditioning works well for this class of problems.

100 CHAPTER 6. APPLICATIONS

0

1000

2000

3000

4000

5000

6000

7000

Number of
iterations

0 1000 2000

Number of variables

Smoothing algorithm without preconditioning
Smoothing algorithm with preconditioning

.........
........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
.........
...........
...........
..........
..........
..........
...........
..........
..........
..........
...........
..........
............
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
...

........................
...

...
...

...

....................................

....................................

�
�

�

�

�

�

�

�� � � � �

�

Figure 6.1: Graph of number of CG iterations required by the smoothing algorithm
for solving BQP test problems.

6.2. FREQUENCY ASSIGNMENT PROBLEM 101

In general, preconditioning may work well with the smoothing algorithm on other

classes of nonlinear discrete optimization problem, but the impact would vary ac-

cording to the nature of the problem, such as the objective function and the linear

constraints involved in the problem. For the numerical results in the subsequent sec-

tions, we will only be considering the smoothing algorithm without preconditioning

in order to assess the performance of the smoothing algorithm without any potential

acceleration techniques.

Table 6.9: Comparison of average computation time (seconds) required to solve BQP
test problems.

Number of DICOPT SBB Smoothing algorithm Smoothing algorithm
variables without preconditioning with preconditioning

50 0.1 0.1 2.3 1.7
100 0.2 0.3 3.5 2.5
250 1.5 1.7 8.3 5.5
500 10.7 12.0 29.5 21.8
1000 85.2 89.5 217.4 108.8
2500 1494.6 1524.0 2850.9 997.2

To compare better the increase in the computational effort as the number of

variables increase, we plotted in Figure 6.2 the average computation times taken by

the three algorithms for solving the BQP test problems. It can be seen that when

problem size increases, the increase in computation time for the smoothing algorithm

with preconditioning is smaller than for the other two algorithms, at least for 2500

variables or less. This illustrates that compared to other algorithms, the smoothing

algorithm may be increasingly efficient when the number of variables grows.

6.2 Frequency Assignment Problem

Consider the assignment of frequencies in a cellular network in which there are T

transmitters and F frequencies. In practice, a transmitter uses several frequencies

but a block of frequencies may be considered as one frequency.

102 CHAPTER 6. APPLICATIONS

0

1000

2000

3000

Average
computation

time

0 1000 2000

Number of variables

DICOPT

SBB

Smoothing algorithm without preconditioning

Smoothing algorithm with preconditioning

..
..

..................................
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.........

..
...

.......................................
..............
..............
..............
..............
..............
..............
..............
..............
.............
..............
..............
..............
..............
..............
..............
..............
.............
..............
..............
..............
..............
..............
..............
..............
..............
.............
..............
..............
..............
..............
..............
..............
..............
.............
..............
..............
..............
....

...
.............................

............................
.............................

.............................
............................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....

...
..

...
...................

...................
....................

....................
....................

....................
....................

...................
...................

....................
....................

....................
....................

....................
...................

...................
....................

....................
....................

....................
....................

....................
...................

.............

....................................

....................................

....................................

....................................

×× × × ×

×

×

• • • •
•

•

•

�� � �
�

�

�

�� � �
�

�

�

Figure 6.2: Graph of average computation time required by the algorithms for solving
BQP test problems.

6.2. FREQUENCY ASSIGNMENT PROBLEM 103

When F < T , it is necessary for two or more transmitters to use the same fre-

quency and as a consequence, noise occurs at a receiver. Thus, there is a need to

assign frequencies to these transmitters in such a way that the amount of noise is

minimized. Typically, F � T , and so the number of possible assignments is as-

tronomically large; an exhaustive search, even a highly selective one, is not possible.

Moreover, for real problems, there is no assignment for which noise can be eliminated.

One approach to solving this problem is to take first an assignment, say T1 uses

F3, T2 uses F7, etc. For each such assignment, the noise may be computed, and then

another different assignment can be examined to see if the noise is reduced. The total

number of choices using this approach is (T −F)F since there must be F transmitters

assigned to F distinct frequencies to minimize the contribution of noise. This problem

has been the focus of much research, and many algorithms have been proposed. For

recent surveys of such algorithms, see [Dor01, DM02].

6.2.1 Formulation of the Problem in Binary Variables

Let T be the index set of transmitters and F be the index set of frequencies that can

be assigned. Let S be the matrix (sij), where i, j ∈ T and sij is a measure of the

amount of interference between transmitters i and j. The diagonal elements of S are

zero.

Let X be the matrix (xik), where i ∈ T , k ∈ F and xik is a number between 0 and

1 representing the proportion of frequency k used by transmitter i. In other words,

we assume that all transmitters transmit on all frequencies, and our unknowns are

the proportions used by a given transmitter. Since the unknowns are proportions, we

have constraints ∑

k∈F

xik = 1

for all i ∈ T .

For a transmitter i, the amount of interference caused by assigning it frequency

k is given by
∑
j∈T

sijxjk. Considering all the transmitters and all the frequencies, the

104 CHAPTER 6. APPLICATIONS

total amount of interference is given by

∑

i∈T

∑

k∈F

xik

(∑

j∈T

sijxjk

)
=
∑

i∈T

∑

j∈T

∑

k∈F

sijxikxjk.

The problem can then be written as

Minimize
∑

i∈T

∑

j∈T

∑

k∈F

sijxikxjk

subject to
∑

k∈F

xik = 1 for all i ∈ T

xik = 0 or 1 for all i ∈ T , k ∈ F .

6.2.2 Transformation of the Problem

Letting m = |T | and n = |F|, we transform the problem to

Minimize

m∑

i=1

n∑

k=1

[
m∑

j=1

sijxikxjk − µ [ln xik + ln(1 − xik)] + γxik(1 − xik)

]

subject to
n∑

k=1

xik = 1 for all i = 1, . . . , m.

The constraints
n∑

k=1

xik = 1 (for all i) can be written in the matrix form Ax = e,

where

A = [e1, . . . , e1, e2, . . . , e2, . . . , em, . . . , em] is an (m×mn) matrix,

x = vec(XT), and

ei = ith column of the (m×m) identity matrix Im.

6.2. FREQUENCY ASSIGNMENT PROBLEM 105

6.2.3 Reduced Hessian Matrix

The simple form of A enables us to define and obtain a sparse and structured form

of the null-space matrix, namely the (mn×m(n− 1)) matrix

Z =




−eT 0 . . . 0

In−1 0n−1 . . . 0n−1

0 −eT . . . 0

0n−1 In−1 . . . 0n−1
...

...
. . .

...

0 0 . . . −eT
0 0 . . . In−1




.

This allows us to perform matrix-vector products ZTHZv efficiently when solving

the reduced Hessian system (3.11) by CG methods.

6.2.4 Numerical Results

We are grateful to Magnus Almgren of the LM Ericsson Telephone Co. for providing

data collected from the Dallas region of Texas. The problem they provided has 137

stations and the density of the interference matrix S is 53%. We considered the

assignment of 5, 8, 10, 12, 15, 18 and 20 frequencies to these stations.

The parameters of the smoothing algorithm used are the initial barrier parameter,

µ0 = 100, the initial penalty parameter, γ0 = 0, the ratio of reduction of barrier

parameters, θµ = 0.95, the major iteration limit, N = 50, and all tolerance levels

ε = 0.001. The initial iterate used for all the test problems is 1
m
e, where m is the

number of frequencies available to be assigned. The objective values obtained by

running the smoothing algorithm on Platform 3 of Table 6.1 with these parameter

settings are shown in Table 6.10.

In all the tests, almost all the variables xi,k were sufficiently close to 0 or 1 at

termination, even though the penalty term (3.3) was not introduced. The variables

that were not 0 or 1 at termination indicate possible alternative solutions obtained by

rounding up or down and maintaining feasibility. In fact, the objective value obtained

106 CHAPTER 6. APPLICATIONS

by such rounding procedures is usually invariant.

Our results on the objective values obtained after rounding are compared to three

other methods, namely the modified de Werra-Gay algorithm [DG94], the DICOPT

and SBB solvers, and Dorstenstein’s local recoloring algorithm [Dor01], running on

Platforms 2, 1 and 2 of Table 6.1 respectively. Both the de Werra-Gay and Dorsten-

stein algorithms are specifically designed for the frequency assignment problem. In

fact, Dorstenstein’s results for the frequency assignment problems are far better than

those obtained by other algorithms for this problem. In the comparison shown in

Table 6.10, we find that the smoothing algorithm is getting solutions with objective

values close to those of Dorstenstein’s algorithm while outperforming the other two

methods.

Table 6.10: Comparison of algorithms applied to the frequency assignment problem
with Ericsson’s data set based on objective values (minimization).

Number of Modified de Dorstenstein’s Smoothing
frequencies Werra-Gay DICOPT SBB Local Recoloring Algorithm

n Algorithm Algorithm
5 8708.4 24322.4* 6707.7 6279.0 6318.5
8 4006.6 2985.4 2985.4 2534.9 2715.5
10 2527.8 1970.7 1970.7 1581.4 1656.2
12 1775.1 1266.0 1266.0 1047.3 1083.6
15 991.0 745.9 745.9 588.5 683.8
18 630.2 499.4 499.4 346.6 383.1
20 437.5 344.9 344.9 238.4 329.1

We have also included in Table 6.11 a comparison of the computational time taken

by the DICOPT and SBB solvers and the smoothing algorithm. The large compu-

tational time of the smoothing algorithm as compared to that of both the DICOPT

and SBB solvers stems from a conservative setting of the parameters involved in the

algorithm and from the MATLAB implementation. Still, the computational time

taken by the algorithm is not unreasonable in view of the large number of variables

involved.

6.3. QUADRATIC ASSIGNMENT PROBLEM 107

Table 6.11: Comparison of algorithms applied to the frequency assignment problem
with Ericsson’s data set based on computation time (seconds).

Number of Smoothing
frequencies DICOPT SBB Algorithm

n
5 182* 18 2460
8 22 23 5218
10 25 24 8218
12 32 32 13975
15 44 41 32203
18 61 53 30970
20 56 60 27887

6.3 Quadratic Assignment Problem

In some facility location problems, it is necessary to place exactly L facilities within

L areas in such a way as to minimize the total cost of interaction between any two

facilities. To describe this in greater detail, let A denote the interaction matrix among

facilities, i.e., Aij is the amount of interaction between facilities i and j, and let B

denote the distance matrix, i.e., Bkl is the distance between zones k and l, where

i, j, k, l ∈ {1, 2, . . . , L}. Also, let C be the facility setup cost matrix, i.e., Cik is the

setup cost for facility i to be placed in zone k, where i, k ∈ {1, 2, . . . , L}. Then if

σ ∈ SL is a permutation such that σ(i) denotes the zone for facility i to be placed

in, where i ∈ {1, 2, . . . , L}, then the quadratic assignment problem (QAP) involves

finding an optimal permutation σ such that the following objective function measuring

the total cost of interaction is minimized:

L∑

i=1

L∑

j=1

AijBσ(i)σ(j) +
L∑

i=1

Ciσ(i).

Here, the size of the QAP is defined to be L.

There are also applications other than facility location problem that can be for-

mulated as a QAP, e.g., the backboard wiring problem in electronics [Ste61], as well

108 CHAPTER 6. APPLICATIONS

as problems in human factors engineering such as the design of keyboards [LA93].

6.3.1 Equivalent Formulation

It is possible to find for the QAP an equivalent formulation that is in the form of

(P3.1). Let

xik =





1, if facility i is placed in zone k

0, otherwise.

Then an equivalent formulation would be

Minimize
L∑

i=1

L∑
j=1

L∑
k=1

L∑
l=1

AijBklxikxjl +
L∑

i=1

L∑
k=1

Cikxik

subject to
L∑

k=1

xik = 1, for all i

L∑
i=1

xik = 1, for all k

xik = 0 or 1, for all i, k.

(P6.4)

Letting X = (xij) and introducing the Kronecker product and vec notation, the

objective function in (P6.4) can be simplified to

vec(X)T(A⊗ B)vec(X) + vec(C)Tvec(X).

Thus, it will be easy to perform arithmetic operations involving the gradient and

Hessian of the objective function using the above expression.

6.3.2 Numerical Results

The QAP test problems that were used for comparing the performance of the smooth-

ing algorithm are the Nugent facility location problems [NVR68] and the Stein-

berg backboard wiring problem (using both Manhattan and squared Euclidean dis-

tances) mentioned earlier, and the numerical data was obtained from the QAPLIB

(http://www.opt.math.tu-graz.ac.at/qaplib/). The former set of test problems is

probably the most frequently used for comparison purposes. The difficulty of solving

6.3. QUADRATIC ASSIGNMENT PROBLEM 109

the QAP problems is illustrated by the fact that the Nugent problem with 30 vari-

ables was solved to optimality only in June 2000, while the Steinberg problem with

36 variables was solved to optimality in October 2001 [BA01].

The parameters of the smoothing algorithm used are the initial barrier parameter,

µ0 = 100, the initial penalty parameter, γ0 = 0.01, the ratio of reduction of barrier

parameters, θµ = 0.7, the ratio of increment of penalty parameters, θγ = 1.43, the

major iteration limit, N = 50, and all tolerance levels ε = 0.01. The initial iterate

used for all the test problems is 1
L
e, where L is the size of the QAP. The objective

values obtained by the smoothing algorithm running on Platform 3 of Table 6.1 with

these parameter settings are shown in Table 6.12.

Since the test problems have proven optimal solutions, we are able to compare

the quality of the solutions obtained by the smoothing algorithm. The nature of this

combinatorial problem makes it possible to include simple local search algorithms

to further improve the solutions obtained by the algorithm. For this purpose, we

used the 2-OPT local search algorithm, which means that given a permutation σ =

[σ1, σ2, . . . , σL], we check if other permutations τ = [τ1, τ2, . . . , τL] would produce a

solution with lower objective value, where

τi = σi, i 6= p, q

τp = σq

τq = σp,

for some p, q. In addition, we include in Table 6.12 the objective values obtained from

the DICOPT solver running on Platform 1 of Table 6.1 and the SBB solver running

on Platform 3 of Table 6.1.

From Table 6.12, we see that the smoothing algorithm obtains solutions with

objective values close to optimal, and that these solutions can sometimes be further

improved by local search algorithms. The error percentage of the objective value

obtained by the smoothing algorithm with 2-OPT are shown bracketed and ranges

from 0.07% to 1.82%. Though the SBB solver obtains marginally better solutions

for the smaller problems than the smoothing algorithm, it (as well as the DICOPT

110 CHAPTER 6. APPLICATIONS

Table 6.12: Comparison of algorithms applied to QAP test problems based on objec-
tive values (minimization).

Test Optimal Smoothing Smoothing
Problem Objective DICOPT SBB Algorithm Algorithm

Value with 2-OPT
Nugent-12 578 660 578 590 586 (1.38%)
Nugent-15 1150 1198 1152 1160 1160 (0.87%)
Nugent-20 2570 2634 2588 2578 2574 (0.16%)
Nugent-30 6124 * * 6128 6128 (0.07%)

Steinberg-36a 9526 10228* 10524 9680 9622 (1.01%)
Steinberg-36b 15852 * 18258 16492 16140 (1.82%)

Table 6.13: Comparison of algorithms applied to QAP test problems based on com-
putation time (seconds).

Test Smoothing
Problem DICOPT SBB Algorithm

Nugent-12 3 20 55
Nugent-15 12 101 120
Nugent-20 54 556 624
Nugent-30 * * 7813

Steinberg-36a 821* 4564 20230
Steinberg-36b * 1112 29410

solver) is unable to handle the larger problems. Thus, the smoothing algorithm has

the advantage of obtaining a solution very close to the best solution and yet not

being seriously impacted by the size of the problem. We also show in Table 6.13 the

computation time taken by the smoothing algorithm to obtain these solutions.

6.4 Medical Decision-Making

In the previous sections, we looked at classical problems in the literature that have

been the focus of research efforts for an extended period of time. There are certainly

6.4. MEDICAL DECISION-MAKING 111

many other recent applications in industry that can be formulated as nonlinear dis-

crete optimization problems in which the smoothing algorithm can be applied to yield

good solutions. We consider one such problem in medical decision-making.

Consider the problem of determining optimal positions for certain medical proce-

dures to be administered in order to maximize the detection or treatment of cancer in

a patient. An example of such a problem is described in [SZ01], where it is required

to determine optimal locations for biopsy needles to be placed in the prostate of a

patient, such that the probability of detecting cancer is maximized. In short, let

xk =





1, if a biopsy needle is administered in zone k

0, otherwise,

where k ∈ {1, 2, . . . , K} and K is the total number of prostate zones to be considered.

Also, suppose Q = eeT − P , where P is the probability matrix for cancer detection,

i.e., Pik is the estimated probability that a biopsy needle administered in zone k will

detect cancer in patient i, where k ∈ {1, 2, . . . , K}, i ∈ {1, 2, . . . , T}, and T is the

total number of patients. Then the problem can be formulated and simplified to

Minimize
T∑

i=1

K∏
k=1

Qxk
ik

subject to
K∑

k=1

xk = L

Ax = b

xk = 0 or 1, for all k,

(P6.5)

where L is the total number of biopsy needles to be administered to a patient. The

constraint Ax = b is used to take into account other constraints such as the left-right

symmetry constraints that are not included in (P6.5).

In [SZ01], the nonconvex problem (P6.5) is transformed to a convex programming

problem before applying Generalized Benders Decomposition (GBD) to solve it. For

purposes of comparison with the performance of the smoothing algorithm applied

to problems with the objective function not necessarily convex, we have applied the

algorithm directly to (P6.5). The data was obtained from Professor A. Sofer and the

112 CHAPTER 6. APPLICATIONS

problem has 48 binary variables with the Q matrix being 278 by 48.

The parameters of the smoothing algorithm used are the initial barrier parameter,

µ0 = 100, the initial penalty parameter, γ0 = 0.1, the ratio of reduction of barrier

parameters, θµ = 0.75, the ratio of increment of penalty parameters, θγ = 1.33, the

major iteration limit, N = 20, and all tolerance levels ε = 0.1. The initial iterate

used for all the test problems is L
K
e, where L and K are defined above. The objective

values obtained by the smoothing algorithm running on Platform 1 of Table 6.1 with

these parameter settings are shown in Table 6.14.

Table 6.14 also shows the objective values obtained by the GBD algorithm running

on Platform 2 of Table 6.1, as well as those obtained from the DICOPT and SBB

solvers running on Platform 1 of Table 6.1. The iteration limit and tolerance level for

the GBD algorithm were 106 and 10−12 respectively. As the GBD and the smoothing

algorithms are written in the same programming language, namely MATLAB, it is

meaningful to compare their computation times as in Table 6.15. It can be seen from

both tables that the smoothing algorithm is able to generate good quality solutions

within reasonable time.

6.4. MEDICAL DECISION-MAKING 113

Table 6.14: Comparison of algorithms applied to prostate cancer detection problem
based on objective values (minimization).

Number of GBD DICOPT SBB Smoothing
Needles Technique Algorithm

6 52.3 67.8 52.3 52.3
8 40.8 45.5 40.8 40.8
10 34.1 39.0 34.1 34.2
12 28.6 31.8 28.6 29.7
14 24.9 28.3 24.9 25.2
16 21.8 24.3 22.2 22.4

Table 6.15: Comparison of algorithms applied to prostate cancer detection problem
based on computation time (seconds).

Number of GBD DICOPT SBB Smoothing
Needles Technique Algorithm

6 14 3 27 83
8 67 6 27 81
10 322 5 43 76
12 597 5 25 86
14 906 11 48 86
16 983 4 39 70

114 CHAPTER 6. APPLICATIONS

Chapter 7

Extension to More General

Problems and Conclusions

Though this thesis is focused on smoothing algorithms for nonlinear optimization with

linear equality constraints and pure bounded integer variables, it is possible to extend

the algorithm to handle more general optimization problems. This is discussed in

Section 7.1. Conclusions and further work to be done on these smoothing algorithms

are given in Section 7.2.

7.1 More General Problems

There are many nonlinear discrete optimization problems that are not restricted to

the format of problem (P3.1). For example, we may need to have both integer and

continuous variables present in the formulation of a problem, i.e., a mixed-integer

programming problem with nonlinear objective function. We illustrate next how the

smoothing algorithms could be adapted to such problems, and some of the results

in the earlier chapters could then be carried over for these problems. However, we

do not concern ourselves with issues such as checking whether the feasible region is

non-empty or not, and how to obtain an initial iterate for these general problems.

Also, we assume that the integer variables are bounded, so that we essentially only

need to consider problems whose discrete variables are binary variables.

115

116 CHAPTER 7. EXTENSIONS AND CONCLUSIONS

7.1.1 Adding Continuous Variables

Consider the following nonlinear optimization problem in which there are some vari-

ables that are not necessarily discrete:

Minimize f(x, y)

subject to A1x + A2y = b

x ∈ {0, 1}p, y ∈ Rq.

(P8.1)

We have partitioned the variables in such a way that x denotes the discrete variables,

while y denotes the continuous variables. Since our approach involves converting

discrete variables to continuous variables, adding continuous variables to the problem

is relatively straightforward.

We can perform a continuous relaxation of problem (P8.1) to obtain

Minimize f(x, y)

subject to A1x + A2y = b

0 ≤ x ≤ e, y ∈ Rq,

(P8.2)

and the appropriate smoothing function to be added would again be Φ(x) of (3.2).

The resulting problem after smoothing is then

Minimize f(x, y) + µΦ(x)

subject to A1x + A2y = b,
(P8.3)

where we have omitted the implicit constraints (x, y) ∈ (0, 1)p ×Rq. We can also add

an optional penalty term to force the binary variables to their bounds, so that the

problem becomes

Minimize f(x, y) + µΦ(x) + γ
∑

j∈J xj(1 − xj)

subject to A1x+ A2y = b.
(P8.3)

Now we can apply the smoothing algorithms in Chapter 3 to problem (P8.3), with

slight modification. For example, the first-order optimality conditions (3.14) are now

7.1. MORE GENERAL PROBLEMS 117

given by

∇xf − µXge + Γ (e− 2x) + AT
1 λ = 0

∇yf + AT
2 λ = 0

A1x + A2y = b,

(7.1)

where Xg = Diag(xg) with (xg)i = 1
xi

− 1
1−xi

, i = 1, . . . , p, Γ = γDiag(χJ) with χJ

being a column vector such that the ith component of χJ is 1 if i ∈ J and 0 otherwise,

and λ is the Lagrange multiplier of the constraint A1x+A2y = b. The corresponding

Newton system is



∇2

xxf + µXH − 2 Γ ∇2
xyf AT

1

∇2
xyf ∇2

yyf AT
2

A1 A2 0






4x
4y
4λ


 =



−∇xf + µXge− Γ (e− 2x) − AT

1 λ

−∇yf − AT
2 λ

b− A1x− A2y


 ,

(7.2)

where XH= Diag(xH) and (xH)i = 1
x2

i
+ 1

(1−xi)2
, i = 1, . . . , p. This system can be

simplified to a reduced Hessian system similar to (3.17), to which the CG method

can be applied.

7.1.2 Adding Linear Inequality Constraints

Consider a nonlinear optimization problem with binary variables and a mix of both

linear equality and inequality constraints:

Minimize f(x)

subject to A1x = b1

A2x ≤ b2

x ∈ {0, 1}p.

(P8.4)

We can include slack variables y for the inequality constraints, so that we only

118 CHAPTER 7. EXTENSIONS AND CONCLUSIONS

need to deal with linear equality constraints:

Minimize f(x)

subject to A1x = b1

A2x + y = b2

0 ≤ x ≤ e, y ≥ 0,

(P8.5)

The continuous relaxation of problem (P8.5) would be

Minimize f(x)

subject to A1x = b1

A2x + y = b2

0 ≤ x ≤ e, y ≥ 0.

(P8.6)

In this case, the smoothing function to be added would be a modification of that in

(3.2) to take into account the bounds on y, i.e., the new smoothing function is

Φ(x, y) = −
p∑

j=1

(log xj + log(1 − xj)) +

q∑

j=1

log yj.

The resulting “smoothed” problem is

Minimize f(x) + µΦ(x, y)

subject to A1x = b1

A2x + y = b2,

(P8.7)

where we have omitted the implicit constraints (x, y) ∈ (0, 1)p × (0,∞)q. Again, an

optional penalty term can be added to force the binary variables to their bounds, so

that the actual problem we are solving is

Minimize F(x, y) ≡ f(x) + µΦ(x, y) + γ
∑

j∈J xj(1 − xj)

subject to A1x = b1

A2x + y = b2.

(P8.8)

7.2. CONCLUSIONS 119

The first-order optimality conditions of (P8.8) are given by

∇xF(x, y) + AT
1 λ1 + AT

2 λ2 = 0

−µYge+ λ2 = 0

A1x = b1

A2x + y = b2,

(7.3)

where Xg = Diag(xg) with (xg)i = 1
xi

− 1
1−xi

, i = 1, . . . , p, Yg = Diag(yg) with

(yg)i = 1
yi

, i = 1 . . . , q, Γ = γDiag(χJ) with χJ being a column vector such that

the ith component of χJ is 1 if i ∈ J and 0 otherwise, and λ1, λ2 are the Lagrange

multipliers of the constraints A1x = b1, A2x+ y = b respectively. The corresponding

Newton system is




∇2
xxf(x) + µXH − 2 Γ 0 AT

1 AT
2

0 µYH 0 I

A1 0 0 0

A2 I 0 0







4x
4y
4λ1

4λ2




=




−∇xF(x, y) − AT
1 λ1 − AT

2 λ2

µYge− λ2

b1 − A1x

b2 − A2x− y



,

(7.4)

where XH= Diag(xH) with (xH)i = 1
x2

i
+ 1

(1−xi)2
, i = 1, . . . , p, and YH= Diag(yH) with

(yH)i = 1
y2

i
, i = 1, . . . , q. This system can be simplified to a reduced Hessian system

similar to (3.17) before the CG method is applied.

7.2 Conclusions

In summary, we have developed a continuation approach to nonlinear optimization

problems with discrete variables by transforming such problems into one that allows

global or nonlinear optimization techniques for continuous variables to be applied. As

these optimization techniques improve over time, the ability of our algorithm to obtain

good quality or even global solutions to the nonlinear discrete optimization problem

will also improve. Such a continuation approach offers the advantage of reducing

the number of local minima encountered in the solution process. Also, the size of

120 CHAPTER 7. EXTENSIONS AND CONCLUSIONS

the original nonlinear discrete problem does not appear to affect the computational

burden of the algorithms exponentially, unlike existing methods such as branch-and-

bound.

We have also tested the performance of our proposed algorithms on different classes

of nonlinear discrete problems. The numerical results show that most of the binary

variables in the test problems were very close to 0 or 1 at termination of the algo-

rithm. Also, good-quality solutions were being obtained in a reasonable amount of

computational time.

Though the continuation approach we proposed provides the framework of a

general-purpose algorithm to deal with large classes of nonlinear discrete optimization

problems, it is also possible to tailor the approach to specific types of problems by

presetting the parameters of the smoothing algorithm, computing the null-space ma-

trix in advance, and exploiting the structure of the problem to improve efficiency in

dealing with the reformulated continuous problem. Moreover, the algorithm has the

flexibility to be used in conjunction with other exact solution techniques to produce

better solutions to the original problem.

Besides running more types of test problems with the smoothing algorithm, other

future work will include methods to improve the efficiency of the algorithm, such

as better linesearch and preconditioning procedures. Also, the algorithm could be

adapted to consider the smaller problems arising out of fixing binary variables that

have converged rapidly to their bounds of 0 and 1. It would also be helpful to

look into adaptive updating techniques for the parameters involved in the smoothing

algorithms, so that alternative solutions can be examined. We could also consider

introducing extra linear constraints to prevent convergence to the undesired local

minima. Lastly, there are other smoothing functions that could be considered in this

continuation approach, such as other types of barrier functions used in interior-point

methods.

In conclusion, this thesis illustrates what the continuation approach can achieve in

the realm of nonlinear discrete optimization. It is hoped that the approach will open

the door to new and efficient techniques to handle many difficult nonlinear discrete

optimization problems in the real world.

Bibliography

[AG90] E.L. Allgower and K. Georg (1990), Numerical Continuation Methods:

An Introduction, Springer-Verlag, New York.

[AKA94] B. Alidaee, G. Kochenberger and A. Ahmadian (1994), 0-1 quadratic

programming approach for the optimal solution of two scheduling prob-

lems, International Journal of Systems Science, 25, 401–408.

[BA01] N.W. Brixius and K.M. Anstreicher (2001), The Steinberg wiring prob-

lem, Working Paper, University of Iowa.

[Bea98] J.E. Beasley (1998), Heuristic algorithms for the unconstrained bi-

nary quadratic programming problem, Working Paper, Imperial Col-

lege, http://mscmga.ms.ic.ac.uk/jeb/bqp.pdf

[Ber95] D.P. Bertsekas (1995), Nonlinear Programming, Athena Scientific, Bel-

mont, Massachusetts.

[BMZ00] S. Burer, R. Monteiro and Y. Zhang (2000), Rank-two relaxation heuris-

tics for max-cut and other binary quadratic programs, Technical Re-

port TR00-33, Department of Computational and Applied Mathemat-

ics, Rice University.

[Bom99] E.G. Boman (1999), Infeasibility and Negative Curvature in Optimiza-

tion, Ph.D. Thesis, Scientific Computing and Computational Mathe-

matics Program, Stanford University, Stanford.

121

122 BIBLIOGRAPHY

[Bor88] M. Borchardt (1988), An exact penalty approach for solving a class

of minimization problems with boolean variables, Optimization, 19(6),

829–838.

[BSS93] M.S. Bazaraa, H.D. Sherali and C.M. Shetty (1993), Nonlinear Pro-

gramming: Theory and Algorithms, John Wiley & Sons, New York.

[BW01] G. Belvaux and L.A. Wolsey (2001), Modeling practical lot-sizing prob-

lems as mixed-integer programs, Management Science, 47(7), 993–1007.

[CMY78] S.N. Chow, J. Mallet-Paret and J.A. Yorke (1978), Finding zeros of

maps: homotopy methods that are constructive with probability one,

Mathematics of Computation, 32, 887–899.

[Cel98] E. Cela (1998), The Quadratic Assignment Problem: Theory and Algo-

rithms, Kluwer Academic Publishers, Dordrecht.

[CNW02] M. Crary, L.K. Nozick and L.R. Whitaker (2002), Sizing the US de-

stroyer fleet, European Journal of Operational Research, 136(3), 680–

695.

[CSD01] J.-F. Cordeau, F. Soumis and J. Desrosiers (2001), Simultaneous assign-

ment of locomotives and cars to passengers trains, Operations Research,

49(4), 531–548.

[Dav53] D.F. Davidenko (1953), On a new method of numerical solution of

systems of nonlinear equations, Dokl. Akad. Nauk SSSR, 88, 601–602.

[Del00] A. Del Gatto (2000), A Subspace Method Based on a Differential Equa-

tion Approach to Solve Unconstrained Optimization Problems, Ph.D.

Thesis, Management Science and Engineering Department, Stanford

University, Stanford.

[DG86] M.A. Duran and I.E. Grossmann (1986), An outer approximation al-

gorithm for a class of mixed-integer nonlinear programs, Mathematical

Programming, 36, 307–339.

BIBLIOGRAPHY 123

[DG94] D. de Werra and Y. Gay (1994), Chromatic scheduling and frequency

assignment, Discrete Applied Mathematics, 49, 165–174.

[DM02] T. Dorstenstein and W. Murray (2002), Constructive and exchange

algorithms for the frequency assignment problem, Journal of Combina-

torial Optimization, to appear.

[Dor01] T. Dorstenstein (2001), Constructive and Exchange Algorithms for

the Frequency Assignment Problem, Ph.D. Thesis, Management Sci-

ence and Engineering Department, Stanford University, Stanford,

http://www.geocities.com/dorstenstein/research.html

[DS83] R.S. Dembo and T. Steihaug (1983), Truncated-Newton algorithms for

large-scale unconstrained optimization, Mathematical Programming, 26,

190–212.

[FM68] A.V. Fiacco and G.P. McCormick (1968), Nonlinear Programming: Se-

quential Unconstrained Minimization Techniques, John Wiley & Sons,

New York and Toronto.

[FM93] A. Forsgren and W. Murray (1993), Newton methods for large-scale lin-

ear equality-constrained minimization, SIAM Journal on Matrix Analy-

sis and Applications, 14(2), 560–587.

[FGM95] A. Forsgren, P. E. Gill, and W. Murray (1995). Computing modified

Newton directions using a partial Cholesky factorization, SIAM Journal

on Scientific Computing, 16, 139–150.

[GARK00] F. Glover, B. Alidaee, C. Rego, and G. Kochenberger (2000). One-

pass heuristics for large scale unconstrained binary quadratic problems,

Research Report HCES-09-00, Hearin Center for Enterprise Science,

http://hces.bus.olemiss.edu/reports/hces0900.pdf

[Geo72] A.M. Geoffrion (1972), Generalized Benders decomposition, Journal of

Optimization Theory and Applications, 10:4, 237–260.

124 BIBLIOGRAPHY

[GH89] R. Ge and C. Huang (1989), A continuous approach to nonlinear integer

programming, Applied Mathematics and Computation, 34, 39–60.

[GM74] P.E. Gill and W. Murray (1974), Newton-type methods for uncon-

strained and linearly constrained optimization, Mathematical Program-

ming, 7, 311–350.

[GMSW79] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright (1979), Two

steplength algorithms for numerical optimization, Report SOL 79-25,

Management Science and Engineering Department, Stanford Univer-

sity, Stanford.

[GMW81] P.E. Gill, W. Murray, and M. Wright (1981), Practical Optimization,

Academic Press, London.

[Gom58] R.E. Gomory (1958), Outline of an algorithm for integer solutions to

linear programs, Bulletin of the American Mathematical Society, 64,

275–278.

[GR85] O.K. Gupta and A. Ravindran (1985), Branch and bound experiments

in convex nonlinear integer programming, Management Science, 31,

1533–1546.

[GTP98] M.D. González-Lima, R.A. Tapia, and F.A. Potra (1998). On effec-

tively computing the analytic center of the solution set by primal-dual

interior-point methods, SIAM Journal on Optimization, 8, 1–25.

[GV96] G.H. Golub and C.F. Van Loan (1996), Matrix Computation, The John

Hopkins University Press, Baltimore and London.

[HRS00] R.G. Haight, C.S. Revelle, and S.A. Snyder (2000), An integer op-

timization approach to a probabilistic reserve site selection problem,

Operations Research, 48(5), 697–708.

BIBLIOGRAPHY 125

[Kan97] C. Kanzow (1997), A new approach to continuation methods for com-

plementarity problems with uniform P-functions, Operations Research

Letters, 20, 85–92.

[KMM90] M. Kojima, S. Mizuno, and T. Noma (1990), Limiting behavior of tra-

jectories generated by a continuation method for monotone complemen-

tarity problems, Mathematics of Operations Research, 15, 662–675.

[KMM93] M. Kojima, N. Megiddo, and S. Mizuno (1993), A general framework

of continuation methods for complementarity problems, Mathematics

of Operations Research, 18, 945–963.

[KMN91] M. Kojima, N. Megiddo, and T. Noma (1991), Homotopy continua-

tion methods for nonlinear complementarity problems, Mathematics of

Operations Research, 16, 754–774.

[KRR91] N. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan (1991), An

interior point algorithm to solve computationally difficult set covering

problems, Mathematical Programming, 52, 597–618.

[LA93] L.W. Light and P.G. Anderson (1993), Designing better keyboards via

simulated annealing, AI Expert, 8(9), 20–27.

[LB66] E.L. Lawler and M.D. Bell (1966), A method for solving discrete opti-

mization problems, Operations Research, 14, 1098–1112.

[LPWH01] J. Luo, K. Pattipati, P. Willett, and F. Hasegawa (2001), Near-optimal

multiuser detection in synchronous CDMA using probabilistic data as-

sociation, IEEE Communications Letters, 5(9), 361–363.

[LW66] E.L. Lawler and D.E. Wood (1966), Branch-and-bound methods: A

survey, Operations Research, 14, 699–719.

[Man69] O.L. Mangasarian (1969), Nonlinear Programming, McGraw-Hill, New

York.

126 BIBLIOGRAPHY

[Man76] O.L. Mangasarian (1976), Equivalence of the complementarity problem

to a system of nonlinear equations, SIAM Journal on Applied Mathe-

matics, 31, 89–92.

[Mit70] L.G. Mitten (1970), Branch-and-bound methods: General formulation

and properties, Operations Research, 18, 24–34.

[Mit99] J.E. Mitchell (1999), Branch-and-cut algorithms for combinatorial op-

timization problems, Handbook of Applied Optimization, Oxford Uni-

versity Press, 2001 (to appear).

[MS79] J.J. Moré and D.C. Sorensen (1979), On the use of directions of negative

curvature in a modified Newton method, Mathematical Programming,

16, 1–20.

[MW94] W. Murray and M.H. Wright (1994). Line search procedures for the

logarithmic barrier function, SIAM Journal on Optimization, 4, 229–

246.

[MW97] J.J. Moré and Z. Wu (1997). Global continuation for distance geometry

problems, SIAM Journal on Optimization, 7, 814–836.

[NS95] S.G. Nash and A. Sofer (1995), Linear and Nonlinear Programming,

McGraw-Hill, New York.

[NS96] S.G. Nash and A. Sofer (1996), Preconditioning reduced matrices,

SIAM Journal on Matrix Analysis and Applications, 17, 47–68.

[NVR68] C.E. Nugent, T.E. Vollman, and J. Ruml (1968), An experimental com-

parison of techniques for the assignment of facilities to locations, Oper-

ations Research, 16, 150–173.

[NW99a] G.L. Nemhauser and L.A. Wolsey (1999), Integer and Combinatorial

Optimization, John Wiley & Sons, New York.

BIBLIOGRAPHY 127

[NW99b] J. Nocedal and S.J. Wright (1999), Numerical Optimization, Springer-

Verlag, New York.

[PR88] R.G. Parker and R.L. Rardin (1988), Discrete Optimization, Academic

Press, New York.

[PR92] P.M. Pardalos and G.P. Rodgers (1992), A branch and bound algorithm

for maximum clique problem, Computers and Operations Research, 19,

363–375.

[PRW94] P.M. Pardalos, F. Rendl, and H. Wolkowicz (1994), The quadratic as-

signment problem: a survey of recent developments, in Quadratic As-

signment and Related Problems, 16, 1–42, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, American Mathemat-

ical Society, Providence, RI.

[PR94] A.T. Phillips and J.B. Rosen (1994), A quadratic assignment formu-

lation of the molecular conformation problem, Journal of Global Opti-

mization, 4, 229–241.

[PS82] C.H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimiza-

tion: Algorithms and Complexity, Prentice-Hall Inc., Englewood Cliffs,

New Jersey.

[RS01] S. Rajagopalan and J.M. Swaminathan (2001), A coordinated produc-

tion planning model with capacity expansion and inventory manage-

ment, Management Science, 47(11), 1562–1580.

[Sah00] N.V. Sahinidis (2000), BARON Global Optimization Software User

Manual, http://archimedes.scs.uiuc.edu/baron/manuse.pdf

[Sch98] A. Schrijver (1998), Theory of Linear and Integer Programming, John

Wiley & Sons, New York.

[Sch01] M.A. Schulze (2001), Active contours (snakes): A demonstration using

Java, http://www.markschulze.net/snakes/

128 BIBLIOGRAPHY

[Sha89] L. Sha (1989), A Macrocell Placement Algorithm Using Mathematical

Programming Techniques, Ph.D. Thesis, Electrical Engineering Depart-

ment, Stanford University, Stanford.

[Shi00] T. Shiina (2000), Integer programming model and exact solution for

concentrator location problem, Journal of the Operations Research So-

ciety of Japan, 43(2), 291–305.

[Ste61] L. Steinberg (1961), The backboard wiring problem: A placement al-

gorithm, SIAM Review, 3, 37–50.

[SS92] A.C. Sun and W.D. Seider (1992), Homotopy-continuation algorithm

for global optimization, in Recent Advances in Global Optimization (edi-

tors:C.A. Floudas, P.M. Pardalos), Princeton University Press, Prince-

ton, New Jersey.

[SZ01] A. Sofer and J. Zeng (2001), Optimized needle biopsy strategies for

prostate cancer detection, submitted for publication.

[TM99] A. Tajima and S. Misono (1999), Using a set packing formulation to

solve airline seat allocation/reallocation problems, Journal of the Op-

erations Research Society of Japan, 42(1), 32–44.

[TS99] M. Tawarmalani and N.V. Sahinidis (1999), Global optimization of

mixed-integer nonlinear programs: A theoretical and computational

study, Mathematical Programming, submitted.

[Van01] F. Vanderbeck (2001), A nested decomposition approach to a three-

stage, two-dimensional cutting-stock problem, Management Science,

47(6), 864–879.

[VD68] A.F. Veinott, Jr. and G.B. Dantzig (1968), Integral extreme points,

SIAM Review, 10(3), 371–372.

BIBLIOGRAPHY 129

[VD02] V. Verter and A. Dasci (2002), The plant location and flexible tech-

nology acquisition problem, European Journal of Operational Research,

136(2), 366–382.

[Was73] E. Wasserstrom (1973), Numerical solutions by the continuation

method, SIAM Review, 15(1), 89–119.

[Wat00] L.T. Watson (2000), Theory of globally convergent probability-one ho-

motopies for nonlinear programming, SIAM Journal on Optimization,

11(3), 761–780.

[Wri97] S.J. Wright (1997), Primal-Dual Interior-Point Methods, SIAM,

Philadelphia.

[YC02] S. Yan, J.-C. Chang (2002), Airline cockpit crew scheduling, European

Journal of Operational Research, 136(3), 501–511.

[Ye97] Y. Ye (1997), Interior Point Algorithms: Theory and Analysis, John

Wiley & Sons, New York.

[ZGZ99] L.-S. Zhang, F. Gao, and W.-X. Zhu (1999), Nonlinear integer program-

ming and global optimization, Journal of Computational Mathematics,

17:2, 179–190.

[ZL01] Y.-B. Zhao and D. Li (2001), On a new homotopy continuation trajec-

tory for nonlinear complementarity problems, Mathematics of Opera-

tions Research, 26(1), 119–146.

