A NULL-SPACE PRIMAL-DUAL ALGORITHM
FOR NONLINEAR NETWORK OPTIMIZATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF MANAGEMENT SCIENCE AND ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Chih-Hung Lin Candidate
March 2002

Copyright by Chih-Hung Lin Candidate 2002
All Rights Reserved

i

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Walter Murray
(Principal Adviser)

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Richard W. Cottle

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Michael A. Saunders

Approved for the University Committee on Graduate
Studies:

il

Preface

To Feng-Yin, Winnie, Dora, and my parents,

For their love, affection, and support.

v

Acknowledgements

I express my sincere appreciation to my advisor, Prof. Walter Murray, for his constant
guidance, encouragement, and support during my time at Stanford. He has modeled
many of the qualities and characteristics to which I aspire, and I have been greatly
inspired by his enthusiasm for both teaching and research.

I am deeply indebted to Prof. Michael A. Saunders, my associate advisor, for
being on my orals and dissertation reading committees and suggesting numerous
improvements in this thesis. I would also like to thank Prof. Richard W. Cottle for
reading my dissertation and agreeing to be the final member of my orals committee.
Thank you for such kind comments!

I want to thank my friends who make these years at Stanford more enjoyable. I
would like to mention just a few in particular: Chao-Hua Lin, Chao-Yu Lin, Chih-
Tung Chan, Eric Wang, Kien-Ming Ng, Paul Yang, Tsung-Ning Liu, Wei-Je Huang
and people from volleyball club of Stanford Taiwanese Student Association. Thanks
to all my fellow students in System Optimization Lab and professors at Stanford, of
which there are too many to mention by name.

Finally, I wish to thank my parents and sisters for their endless support and
tremendous love. Most of all, I would like to thank my wife, Feng-Yin Liu, for her
encouragement, understanding, patience, and love, and my beloved daughter, Winnie

and Dora, for their inspiration in the years of my PhD study.

Contents

Preface

Acknowledgements

1 Introduction

1.1
1.2
1.3

Problem Formulation

Logarithmic Barrier Algorithm

Classes of Nonlinear Network Optimization

1.3.1
1.3.2
1.3.3
1.3.4

Hydropower generation management
Large data bases and statistics estimate
Production and inventory planning

Transportation and communication network

2 Truncated Primal-Dual Algorithm
2.1 Primal-Dual Algorithm oL oL L

2.2

2.1.1
2.1.2

Central path and path-following algorithm

Primal-dual equation 00000

Null-Space Algorithm oL

221
2.2.2

2.2.3
224
2.2.5

Reduced Newton direction
Directions of negative curvature and the modified CG-Lanczos
method
Spanning tree variable reduction basis
Preconditioning the Conjugate Gradient method
Affine scaling Lo

vi

iv

© 00 N W =

2.2.6 Maximal spanning tree basiso

3 Linesearch Procedures
3.1 Sufficient decrease conditions
3.1.1 Goldstein rule
3.1.2 Gammarule

3.2 Linesearch iteration

3.2.1 Interval of uncertainty and interval reducing procedure

3.2.2 Safeguarded-steplength algorithm

3.3 Linesearch for Objective with

3.3.1 Initial estimate . . .

Logarithmic Barrier Function

3.3.2 The procedure for generating subsequent trial steps

3.4 Linesearch on the Lagrange Multiplier

4 Implementation

4.1 Other Implementation Issues

4.2 Experimental Results and Comparisons

4.2.1 Test problems
4.2.2 Computational results

4.2.3 Comparisons
5 Summary and Conclusions

Bibliography

vii

44
46
47
48
a0
ol
93
o4
29
63
67

70
70
75
76
79
90

93

95

List of Tables

2.1 A primal-dual interior-point algorithm 25
2.2 Algorithm for computing multiplication Z xv 33
2.3 Algorithm for computing multiplication Z7 xv 34
2.4 A modified PCG-Lanczos algorithm 36
2.5 A spanning tree updating algorithm 41
2.6 Algorithm for updating the spanning tree by inserting an arc 42
2.7 Algorithm for updating the spanning tree by deleting an arc 43
3.1 Algorithm for linesearch iterate o1
3.2 Algorithm for updating the interval of uncertainty 93
3.3 Safeguarded steplength algorithm 55
3.4 Algorithm for initial estimate 64
3.5 Algorithm for generating subsequent Trial Steps 68
4.1 'Truncated null-space primal-dual algorithm 75
4.2 Hardware and system configuration 76
4.3 The Buckley test set 7
4.4 Computational results for DSPset 1 81
4.5 Computational results for DSPset 2 82
4.6 Computational results for DSPset3 83
4.7 Computational results for DSPset 4 84
4.8 Computational results for NFPset 1 85
4.9 Computational results for NFPset 2 86
4.10 Computational results for NFPset 3 87

viil

4.11 Computational results for NFPset 4 88

4.12 Computational results for large DSP 89
4.13 CG iterations comparison 90
4.14 Performance for NPDNET and SNOPT 91
4.15 Performance for NPDNET and SNOPT 92

X

List of Figures

1.1
1.2
1.3
14
1.5
1.6

3.1
3.2
3.3
3.4
3.5

4.1

The matrix and graph representation for network constraints 5)
Hydropower generation network with 3 reservoirs and 4 time periods 11
Social Accounting Matrix with three agents 13
A three time period production model without backlogging 16
A three time period production model with backlogging 17
Multi-echelon production model 18
[llustration for Goldsteinrule 48
IMlustration for Gammarule 50
EXAMPLE illustrating inefficiency for standard interpolation. 56
Example 1 of quadratic interpolating for a barrier function 58
Example 2 of quadratic interpolating for a barrier function 59
Network interpretation for doubly stochastic problem 78

Chapter 1
Introduction

Network constraints occur commonly in optimization. They arise because networks
themselves are a common feature of models. The network is used to describe such
infrastructure as a gas network, the web, public highways, etc. Network constraints
arise within an optimization problem when one seeks an optimal way to move flow
(e.g., goods, signals, cars, electrical currents) on a network (transshipment network,
computer network, transportation grid, power grid). Network optimization problems
appear in several applications in operations research, transportation, communication
network design, hydroelectric power system scheduling, air traffic control, economics,
finance, engineering design, manufacturing, and other areas are modeled in the mod-
els with network constraints. Some other problems without a network formulation
have been solved efficiently only after being reformulated as network optimization
problems. The problem formulation is given in section 1.1.

These problems are usually characterized by their very large size. Several the-
oretical and numerical studies have produced algorithms and software for linearly
constrained network programs. As a result of their form, linearly constrained net-
work programs are some of the largest optimization problems solved in practice today.
It has been extensively discussed that network-structured optimization problems can
be solved substantially faster than the general linearly constrained optimization. As
shown by the mid-seventies survey [85], several codes and studies, for example [44] and

[75], developed based on the network simplex algorithm for pure network problems

CHAPTER 1. INTRODUCTION 2

were 150-200 times faster than general purpose LP codes of the time. In the early
eighties, the research concentration on network optimization moved to the generalized
network problem. The network simplex algorithm for the generalized network prob-
lem, see [10, 76|, was shown to be approximately 50 times faster than LP codes. For
linear programming, this observation does not only hold for Simplex type algorithms
but also for the recent developments of Karmarkar’s algorithm [58], and the ensuing
research on interior-point methods. Early attempts to apply interior-point methods
to the linear network flow problems can be found in [2, 54, 57, 90, 91]. Recently, Por-
tugal et al. [86] proposed and implemented a truncated primal-infeasible dual-feasible
network interior-point method.

Nonlinearities arise due to physical phenomena and economic considerations. In
most circumstances, fortunately, only the objective function is affected. In section
1.3, we will discuss some of the real-world problems that lead to nonlinear and,
possibly, nonseparable, nonconvex objective functions with network constraints. The
highly sparse nature of these problems allows for the solution of very large nonlinear
networks. Several authors, includes Beck, Lasdon and Engquist [5], Dembo [20] and
[21], Kamesam and Meyer [55], Ahlfeld et al. [1] and Dembo, Mulvey and Zenios [23]
have designed nonlinear programming algorithms to exploit the special structure of
network problems.

In this thesis, we apply a null-space truncated Primal-Dual linesearch method to
solve the nonlinear network problem. It begins with an initial interior solution, and
each iterate computes a direction Az along which some potential function improves.
The new iteration Z to the problem is moving along the direction Az from the cur-
rent iteration Z and can be written as £ = T + a x Ax, where the steplength « is
chosen to maintain the strictly interior and to achieve a reduction in a merit func-
tion. The detailed algorithm for finding a suitable steplength is described in chapter
3. An efficient algorithm for computing a truncated primal-dual direction via a null-
space method is described in chapter 2.2. In chapter 4, we discuss the details of the
implementation, test problems and the computational results. Finally, we give our

conclusion in chapter 5 and present some possible extensions to our current work .

CHAPTER 1. INTRODUCTION 3

1.1 Problem Formulation

Network optimization problems are characterized by their network constraints. Given
a network flow problem, there is an associated directed graph G = (V, &), where V
is a set of m nodes and £ is a set of n directed edges. Let (7,7) denote a directed
edge from node ¢ to node j. Each arc has associated with it an origin node and a
destination node, implying a direction for flow to follow. Usually, arcs have limitations
(capacities) on how much flow can move through them. In spite of the capacity
limitations on the arcs, flows must satisfy Kirchhoft’s Law (conservation of flow),
which states that for each node in the network, the sum of all incoming flow plus
the flow produced at the node must equal the sum of all outgoing flow plus the flow
consumed at the node. The decision variables z;; represent units of flow on the arc
(,7). Therefore, these optimization problems usually can be formulated as linearly

constrained network programs of the form

minimize F(z)

subject Z Thj — Z JikTik =bj, JEV, (1.1)
()€€ (k.j)e€
lij < iy < g, (1.2)

where fj, are the multipliers of the flows on the arc (j,k). If all of the f;; are
unity then the problem is termed a pure network optimization problem; otherwise
it is termed a generalized network optimization problem. In this thesis, we focus
on the algorithm for pure network optimization problems, and the algorithm for
generalized network problems will be discussed in chapter 5 as an extension to our
current work. The constraints (1.1) are called network constraints (the conservation
of flow equations) and constraints (1.2) are called capacity constraints. Based on the
constraint set (1.1), nodes with b; > 0 correspond to source nodes in the network,
and nodes with b; < 0 correspond to sink nodes. In matrix notation, the network

flow problem can be reformulated as the following:

CHAPTER 1. INTRODUCTION 4

minimize F(x)
subject Az =b, (1.3)

[<zx<wu,

where A is an m x n vertex-edge incidence matrix of the network node arc graph G;
b, I and u € R™ are given vectors; and x € R" is the vector of decision variables.
In the other word, each column represents an arc on the network. Arc (i,5) denotes
the arc from node ¢ to node j. If (4, j) belongs to the network, there is an associated
column of A with exactly two nonzero elements, one in the ¢-th row is “+1” and the
other in thej-th row is “—1”. The details of the structure of the constraint matrices
of network problems is described in [7] and [59]. It is easy to see that the matrix
A is not of full row rank because e’ A = 0, where e = (1,...,1)T. One of the most
popular and easy ways to make the constraint of matrix full rank is to introduce a
root arc from outside to the root node. Suppose that we set the node r as the root

node. The modified constraint matrix A will then be
A=[A e] . (1.4)

The modified constraint matrix has full row rank and the modified graph is usually
called a “rooted network”. It is well known [19] that any basis B of a rooted network
corresponds to a rooted spanning tree. After nodes reordering (row permutation),
the basis can be formed as a lower triangular matrix. Figure 1.1 depicts the matrix
and graph representation for some particular network constraints and an associated

basis.

CHAPTER 1. INTRODUCTION)

8
The original network structure The rooted tree of the network
(matrix as shown in (1.5)) (matrix as shown in (1.6))

Figure 1.1: The matrix and graph representation for network constraints

CHAPTER 1. INTRODUCTION 6

-1 -1 — 5
1 — 4
—1 1 -1 1 —9

Note that there are only 2n nonzeros out of mn entries of A; the node-arc incidence

matrix is not a space-efficient representation of the network. There are many other
ways to represent a network. A popular representation is the node-node adjacency
matriz C, an m x m matrix with an entry 1 in position (3, j) if arc (i,5) € £ and 0
otherwise. Such a representation is efficient for dense networks, but is inefficient for
sparse networks. A more efficient representation for sparse networks is the adjacency
list, where for each node ¢ € V there exists a list of arcs emanating from node 1, i.e.
a list of nodes j such that (i,j) € £. The forward star representation is a multi-array
implementation of the adjacency list data structure. An adjacency list allows easy
access to the arcs emanating from a given node, but no easy access to the incoming
arcs. The reverse star representation allows easy access to the incoming arcs, but
no easy access to the arcs emanating from a given node. Another representation
that is much used in interior-point network flow implementations is a simple arc
list, where the arcs are stored in two linear arrays, “fromnode” and “tonode”. In our
implementation, we use the arc list representation to represent a network.

In network optimization, the structure of the matrix (A) is special but the number
of variables and constraints are typically extremely large. It is essential to use the
special structure to get good performance for solving network optimization problems.
The aim of this thesis is to present an efficient algorithm to solve large-scale network
optimization problems with a general nonconvex, nonseparable nonlinear objective

function.

CHAPTER 1. INTRODUCTION 7

1.2 Logarithmic Barrier Algorithm

Starting in 1984 with the work of Karmarkar [58], a resurgence of interest has taken
place in barrier methods for constrained optimization. Classical barrier methods,
which were popular in the 1960s and early 1970s, treat inequality constraints by
creating a transformed function containing a positive singularity (“barrier”) at the

boundary of the feasible region. Consider the constrained optimization problem

minimize f(x)
subject ¢;(x) =0, i=1,...,my, (1.7)

h](ﬁli) < 0, j: 1,...,m2.

Suppose that the objective function f and the set of constraint function {g;} and

{h;} are smooth. The corresponding logarithmic barrier problem is

minimize fp(z, p) = f(z) — u%ln hi(z)
i=1

subject gi(z) =0, i=1,...,my, (1.8)

where 1 is a positive scalar called the barrier parameter. Note that this barrier
problem is defined only at strictly feasible points & for which h;(z) < 0,5 =1,...,ma.
Let z* denote a local solution of (1.7) and z(u) denote a minimizer of (1.8). Under

certain conditions, it can be shown that

lim () = 2°
For detail about background and theory, please refer to [28, 30, 100].

Most barrier methods proposed since 1984 are designed for special cases of lin-
ear programming (LP) and convex quadratic programming, and the vast majority
of papers on these topics have concentrated on proofs of polynomial complexity (see
[45] and [48] for more bibliographies). After that, several barrier methods for con-

vex nonlinear programming have been proposed and analyzed from the viewpoint of

CHAPTER 1. INTRODUCTION 8

complexity. In recent years, interior-point methods for general nonlinear program-
ming have received considerable attention because of their close relationship with the
“new” polynomial approaches to linear and quadratic programming. On the practi-
cal side, barrier techniques are increasingly being applied to various general nonlinear
optimization problems, including nonconvex and large-scale problems [79, 92].

Barrier methods fell from favor during the 1970s partly because inherent ill-
conditioning in the Hessian matrices created difficulties for standard unconstrained
methods. A major issue today is the development of strategies for dealing with this
ill-conditioning; for a discussion of some approaches, see [100]. A second inconvenient
feature of barrier functions is that they tend to cause inefficiencies for general-purpose
linesearch techniques. In chapter 3, we discuss the role of a linesearch in optimization
algorithms, and explain why a special-purpose linesearch procedure may be helpful
in dealing with barrier functions.

The method we consider in this thesis is motivated by the application of the
logarithmic barrier function technique to problem (1.3). In a barrier function method
to (1.3), the problem to be solved is (NLP,,):

minimize F(z) — p > (In(z; — ;) + In(u; — z;))
subject to Az =1, (1.9

<z <u,

where p > 0 is the barrier parameter. Here, Inx; denotes the logarithm of z; to the

natural base. To simplify the notation, we let

n

Fg(z) = F(z) — p>_(In(z; — ;) + In(u; — ;) (1.10)

1.3 Classes of Nonlinear Network Optimization

In this section we establish a general taxonomy for nonlinear programming problems
with network structure. We survey in detail the primary areas of application for

the nonlinear network optimization model, mainly from [23] and [50]. Most of the

CHAPTER 1. INTRODUCTION 9

examples discussed here are large scale and are difficult or inefficient to solve using

general-purpose software.

1.3.1 Hydropower generation management

Network problems arise in planning the operation of a hydro system. The problem
is that of maximizing the hydropower generated along a time horizon by a multi-
reservoir power system. The nodes represent the reservoirs and the arcs correspond
to the sections of the river that connect the reservoir. This basic network is then
replicated on a number of segments, corresponding to the time periods (usually weeks)
included in the planning horizon, which are linked by special arcs on some of the nodes.

The decision variables in the optimization problem are the amount of water to
be released from each reservoir to its direct downstream reservoirs in a given period
(corresponding to the arcs in the basic network), or the amount of water to be stored
in the reservoir from one period to the next (the special arcs linking the segments).
This amount becomes available to be released from storage in the next period.

The constraints are the linear network constraints that ensure flow balance in each

reservoir, and simple bounds on the variables. The purposes of these bounds are

1. to ensure that the water released serves the desired flood control, irrigation and

navigation purposes;

2. to ensure that the amount of water released from a given reservoir to any of its

directly downstream reservoirs does not exceed the canal capacity;

3. to penalize the amount of stored water that exceeds a safety capacity for any

given reservoir;

4. to force the amount of water stored in the reservoirs to remain below a given

upper bound.

The objective consists of the maximization of a nonlinear function, typically the

amount of hydroelectricity generated from the system, or the saving in the cost of

CHAPTER 1. INTRODUCTION 10

thermal generated power to the revenue from hydroelectricity generated from the
system over the planning horizon.
We now introduce a formal model from [27] for the problem described above.

Here, we denote

T the time periods set,

R the set of reservoirs,

E the set of reservoirs that are not used for hydropower generation (F C R),
U; the set of reservoirs directly upstream from reservoir j € R,

D; the set of reservoirs directly downstream from reservoir j € R,

ri;i the amount of water released from reservoir j to reservoir ¢ € D; in period
tefT,

sy; the amount of water stored in reservoir j at the beginning of period ¢,
by the exogenous inflow to reservoir j at the beginning of period t.

The flow balance equations in each reservoir for each time period are as follows:

— Z rtij — Stj + Z thi + SH-Lj = btj v_] € J, te T, (111)

1eU; 1€D;

where s;; is fixed for t =1 and ¢ = |T'| + 1. Furthermore, the bounds on the arcs of

the replicated network are given by
ltji < Ttji < Ui Vi e Dj, _7 € J, te T, and (112)

The constraints (1.11)—(1.13) can be written as the network constraints (1.3). An
example of the graph interpretation for a Hydropower generation network with 3

reservoirs and 4 time periods is given in Figure 1.2.

CHAPTER 1. INTRODUCTION 11

811+511@ o2 ~@ L. 1 S 4,1)ba1 — s51
112 T212 7312 T412

4 b2
S12 + b12€2\ 522 22/2 532 3.2 542 4.2 Vbaz — 552
" 7 \ ’

123 223 7323 T4923

Figure 1.2: Hydropower generation network with 3 reservoirs and 4 time periods

According to the objective, the hydropower generated from the water released

from reservoir j to reservoir ¢ at time period ¢ can be express as
htji = Ktjirtji Vie T, _] € J\E, 1€ Dj , (114)

where K3;; may be a linear or nonlinear function of the s-variables for the reservoirs

in set J\E, that can be approximated by
Ktjirtji ~ gtji(stja St—}—l,j) V t € T,] € J\E, 7 € D_7 . (115)

Therefore, the objective can be approximated by some polynomial function of r and
s.

The formulation given above is under the assumption that the exogenous incom-
ing flow for each reservoir and each time period is known and given. In the real
world, those parameters are usually considered as random variables. Decomposition

approaches have been used by researchers, including [84], [83], [93], and [49], to solve

CHAPTER 1. INTRODUCTION 12

this problem with remarkable success. Most of these approaches are based on Benders
decomposition. In [27], an augmented Lagrangian based algorithm was proposed and
implemented with good success.

This model can become large rather quickly when used for long or even medium
term planning. The problem solved in [21] was a nonlinear and nonconvex network
problem with over 18,000 bounded variables and 5,000 network flow-conservation
constraints. Currently, there are a number of utilities that use nonlinear network
optimization to schedule dam releases. At present, there is one company, namely
Hidroelectrica Espanola S.A., that does all its long-term scheduling and planning
using a nonlinear network optimization model solved by the specialized code NLPNET
[20].

1.3.2 Large data bases and statistics estimate

Timely collection of very large data bases has become increasingly important over the
past two decades. Many government agencies and private companies routinely depend
upon these files for maintaining their operation. One important class of data bases is
known as microdata, whereby the file consists of a large number of individual decision
units: individuals, families, corporations, etc. Typically, the size of a microdata file
ranges from several thousand to billions of observations. Once collected, the raw
data must be processed before it can be presented to the computer user. In the
data handling process, there are numerous steps involved, several of which employ
network optimization. In this section, we discuss one of the most prominent examples:
Estimating Social Accounting Matrices.

A Social Accounting Matrix (X = [mZJ]Z:EZ), or SAM, is a square matrix whose
components represent the flow of funds between the national income accounts of
a country’s economy at a fixed point of time. Each index (a row and a column)
represents an account or an agent in the economy. Component z;; is positive if agent
J receives funds from agent i. A SAM is a snapshot of the critical variables in a
general equilibrium model describing the circular flow of financial transactions in an

economy.

CHAPTER 1. INTRODUCTION 13

Typically, the agents of an economy include institutions, factors of production,
households, and the rest of the world to account for transactions with the economies
of other countries. For example, “the production activities” generate added value
that flows to the factor of production, land, labor and capital. The factor “income” is
the primary source of income for institutions, including households, government and
firms, who purchase “goods and service” supplied by production activities, thereby
completing the cycle. This simple example produces a SAM with three agents and
three nonzero components as shown in Figure 1.3. Of course, to be useful for equilib-
rium modeling, this highly aggregated model must be disaggregated into sub-accounts
for each sector of the economy. The table may reach a few hundred to a few thousand

agents in size.

Production Activities

Income Goods and Services

Figure 1.3: Social Accounting Matrix with three agents

One problem encountered in using these tables is the following:

1. the elements in the table are usually calculated from different agents in an

economy and are often obtained through sampling procedures,

2. the total expenditure (or income) of the agents is normally available through

government sources and is more accurate and up-to-date.

Therefore, the model should be formulated as follows: given a SAM whose elements
are out-of-date, compute updated values for these elements that satisfy a pre-specified
set, of row and column sums. Such problems arise not only in economics but also
in contingency table analysis, in statistical application, in analysis of congestion in

telecommunication networks, and in demographic studies in the social sciences.

CHAPTER 1. INTRODUCTION 14

We now discuss a formal model from [23] for the problem described above. First,

we denote

G the set of index with positive components,

Zi; the given value of entries in the matrix,

zi; updated new value of the entries in the matrix,
i the given new row sum for the i-th row,

Cj the given new column sum for the j-th column.

The new entries in the matrix must therefore satisfy

Yo my=rVi=1,...,n (1.16)
(i.J)€G
Z SEij:CjVj:l,...,n (117)
(i,4)€G

zi; > 0V(i,j) € G (1.18)

The manner in which the new entries are postulated to relate to the old entries
depends on the behavioral assumptions that are most plausible in the particular model
under study. Here, we give a popular example of the objective function. Suppose that
our objective is to find z;; as “close” as possible to Z;; in a least square criterion. This

can be formulated as

W gea

Therefore, (1.16)—(1.19) constitute a quadratic optimization with network flow conser-
vation (transportation) constraints. Introducing a weighting mechanism of the form
(1/Z4)(z;j — Z;;) does not change the quadratic nature of the model. The optimal
solution will be a chi-square estimate of the new matrix.

According to the size of the problem encountered in the matrix estimation, one
of the test case in [23] is derived from the national economy of Thailand. It results

in a nonlinear network optimization problem with about 2,200 decision variables

CHAPTER 1. INTRODUCTION 15

and about 1,100 constraints. On the other hand, network models have been used
to estimate SAMs for development planning by the World Bank. A modeling sys-
tem, GAMS/SAMBAL of [107], provides the interfacing of network software with
high level modeling languages and the interaction with the SAM data base. The
GAMS/SAMBAL system is also being used for compiling regional tables for national
data by researchers at the Social Sciences Data Center of the University of Pennsylva-
nia. A comprehensive survey of matrix balancing applications and related algorithmic

work is given in [94].

1.3.3 Production and inventory planning

Another major area in which network models arise is production and inventory plan-
ning. This includes the popular economic lot size problem and the capacity expan-
sion problem. In this area numerous models are found for optimal production and
inventory scheduling. These models originate from viewing the production processes
dynamically, i.e., as occurring over discrete time intervals. The resulting models in-
volve establishing flows over structured networks, with the network structure varying
according to the modeling assumptions. The networks tend to be staged, with the
stages corresponding to time periods. Units flowing through the network correspond
to production and inventory, with node requirements corresponding to customer de-
mands. Production demands for all time periods are assumed to be known in advance.
Concave objective functions occur naturally for this application. Start-up costs reflect
facility and machine start-up, and storage requirements. Economies of scale are re-
flected in storage requirements, shipping, and material purchases. Note that start-up
costs can occur at any time boundary, resulting in objective functions that are piece-
wise concave. The following is a series of production-based models that demonstrate
the correspondence between network structure and model assumptions.

The basic model in this area is the Wagner-Whitin model for a production and
inventory system with no backlogging of demand [106]. The variables for the model

are defined as follows:

n number of time periods ¢

CHAPTER 1. INTRODUCTION 16

x; amount of the product produced in period %,
T4 market requirements for time period 1,
I; inventory of the product in period 4, I; = ¥4 _ (z — 1)

P;(x;) cost of producing z; units in period i,
H;(I;) cost of inventory holdings I;, in period i.

Restrictions on the model include nonnegative production and production capacity
0 < z < u, and no backlogging of unsatisfied demand and facility capacity, 0 < I; <

U. The resulting model becomes

n n—1
R | i=1
s.t. xi+Ii—1_Ii:Ti, i=1,...,n (120)

0<z<u, 0<L<U,

with given I, and I,,. The network interpretation for a three time periods model is

depicted in Figure 1.4.

O e
I I3

7’1—[0 T2 ’f'3+13

Figure 1.4: A three time period production model without backlogging

The effect of allowing backlogging of demand on the previous model is explored
by Zangwill [105, 106]. Here we introduced the extra variables B; to be the amount
of shortage for period 7, indicating that demands in a time period can be satisfied

in a later period. The resulting extended network is presented in Figure 1.5; the

CHAPTER 1. INTRODUCTION 17

backward arcs correspond to backlogged demand. The objective functions should
add the shortage cost Y7 ! T;(B;).

7'1-[0 To T3+I3

Figure 1.5: A three time period production model with backlogging

Both of the previous models assumed a single production facility and a single
commodity without gains or losses. Generalizing the model to a product that requires
a series of processes, each process performed in a separate facility, results in a multi-
echelon economic lot size model [106]. The network for a three-facility, three-time
period model (without backlogged demand) is shown in Figure 1.6. Facility 0 is the
origin of the material required for processing. In this model, flow from (¢,7 — 1) to
(t,1) corresponds to production in time period ¢ at facility ¢ and flow from (¢,4) to
(t+1,14) corresponds to inventory in period ¢ at facility i. Konno considers extensions
to the multi-echelon model, including backlogging [65] and a time-lag for processing
[66].

A natural extension to the basic dynamic lot size problem is to allow for multiple
production facilities for the same product and account for shipping requirements
between production regions and demand regions. Location becomes important in this
model as the option to manufacture in one region to satisfy demand in another region
becomes valid due to considerations such as production start-up costs. Included in
this class is the capacity expansion model. This model permits the cost comparison
of expanding production capability at one site versus shipping products from another
site. Manne and Veinott [73] present a single production region mode with linear
transportation costs and concave expansion costs. Erlenkotter [26] considers two

production regions with similar cost functions. Fong and Rao [35] extend this two

CHAPTER 1. INTRODUCTION 18

0 0 0
I I
1,0 .20 2 (30
11 Ta1 T31
A 0 Y
I I
0 6,1 121 21 3@0
X192 T22 T32
A I I Y
1,2 2,029 2,032
T1 T2 T3

Figure 1.6: Multi-echelon production model

production region model to include concave costs for both transportation costs and

capacity expansion.

1.3.4 Transportation and communication network

One of the most natural network models arises in the area of transportation planning
and communication network design. Transportation planning arises in a number of
general models, moving equipment to a road construction site, or leasing a truck for
transporting goods. The resulting networks are as general as the applications, with
the common feature that the networks tend to be sparse. This application area also
includes problems that have become well known in their linear version, including the
Hitchcock Transportation Problem. Applications for this case include problems origi-
nal from Navy supply systems [68], and a cotton gin plant location problem [63]. If
the Hitchcock problem is generalized to include intermediate nodes with zero demand
and the uncapacitated case is considered, the transshipment problem is obtained [81].
A significant amount of effort in transportation modeling has been performed by Flo-
rian et al. [18, 33, 34|, who develop transportation models for application including

freight transportation by rail, traffic analysis, and packet switching networks. Other

CHAPTER 1. INTRODUCTION 19

transportation models are discussed by Magnanti and Wong [72], and Klincewicz [61]
considers freight transport problems in the context of consolidation areas of product
transport. LeBlanc [70] also discusses a rail network design problem. Hall [51] dis-
cusses a graphical interpretation of some transportation problems and the effect of
nonlinear costs. A specific pipeline transportation model has been studied by Bulatov
[11].

The Transportation Problem is an often used model for transportation applica-
tions. Since the basic network is fixed for this model, applications give rise to a
range of objective functions. The objective functions are chosen to reflect various
assumptions concerning the cost of transporting items throughout the network.

Communications networks have a natural interpretation in the context of trans-
portation and transshipment models. In this setting the traffic consists of point-to-
point messages, and the networks consist of communication media instead of roads
or routes. Economies of scale could correspond to reduced cost per message at higher
utilization for a link, or to the communication medium used. A major assumption in
using this type of model is that customer demands are constant for the time period
of the model. These models are characterized by their size, which is usually large,
and the generality of the underlying networks. Specific models for communication
network design have been developed in [4, 53, 103, 104].

Chapter 2

Truncated Primal-Dual Algorithm

In this chapter, we describe a Newton-type algorithm model for solving network con-
strained optimization problems (1.3) with network constraints and bounded variables.
The algorithm model is based on the definition of a continuously differentiable exact
merit function that follows an exact penalty approach for the box constraints.

The proposed algorithm for the network constrained optimization problems is to
solve a sequence of linearly equality constrained minimization problems (1.9) param-
eterized by the positive barrier parameter py. The primal-dual methods described
here involve outer and inner iterations. Each outer iteration is associated with an el-
ement of a decreasing positive sequence of parameters {,} such that lim; , p; = 0.
The inner iterations correspond to an iterative process for solving the linearly equal-
ity constrained minimization problem (1.9) for a given u. The first-order optimality
conditions for the linearly equality constrained minimization problem are discussed in
section 2.1. They imply that there exist vectors (z(u), A(u)) satisfying the conditions.
The vector A(i) can be interpreted as an estimate of A*, the Lagrange multipliers of
the original network optimization problem (1.3). Fiacco and McCormick [29] give
the conditions under which local solutions (x(u), A(1)) converge to (z*, *) as p — 0.
When (z(p), A(i)) is regarded as a function of the parameter p, the set of minimizers
x(p) defines a continuously differentiable path known as the trajectory or the central
path.

For large-scale problems, it may be impractical to use the interior-point method

20

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 21

based on Newton’s method. In this thesis, we use a truncated primal-dual algorithm
[79, 80, 100, 9, 52], in which an approximation to the Newton search direction is used.
The essential features of the truncated primal-dual algorithm are that each barrier
subproblem (1.9) is solved approximately using a truncated-Newton method. Then
the solutions to the subproblems are extrapolated to obtain an initial guess for a new
subproblem. Many of the enhancements for the truncated primal-dual algorithm, such
as preconditioning, a special matrix-vector product, and a numerically stable formula
for the search direction, are discussed in [79]. A convergence proof and complexity
analysis of a truncated primal-dual algorithm were given by Nash and Sofer [80].

Because Newton’s method is based on a Taylor’s series expansion near the current
solution estimate, there is no guarantee that the search direction it computes will be
as crucial far away from (z*, *). As discussed in Dembo, Eisenstat and Steihaug
[22], at the beginning of the solution process, a reasonable approximation to the
Newton’s direction may be almost as effective as the Newton’s direction itself. It is
only gradually, as the solution is approached, that Newton’s direction takes on more
and more meaning. This suggests using an iterative method to solve the Newton’s
equation. Moreover, it should be an iterative method with a variable tolerance, so that
far away from the solution, the Newton’s equation is not solved to undue accuracy.
Only when the solution is approached, we should consider expending enough effort
to compute something like the exact Newton’s direction.

Sherman [95] suggested using Successive-Over-Relaxation (SOR), one of the sim-
plest of a whole class of methods that have been found to be effective for solving linear
systems arising in partial differential equations. However, it is difficult to get SOR
methods to perform well on general problems. Also, they appear to be prohibitively
expensive to use in the context of truncated-Newton’s methods.

In this application, Conjugate Gradient (CG) and Preconditioning Conjugate Gra-
dient (PCG) are much better suited and have become popular. Although CG is ideal
for problems where the matrix has only one whose eigenvalues lie is a small number
of clusters, it is guaranteed to converge (in exact arithmetic) in at most n itera-
tions. However, the requirement of both of these methods is that the matrix must

be positive-definite. The (reduced) Hessian matrix is only guaranteed to be positive

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 22

semi-definite at the solution and may be indefinite elsewhere. There is a close rela-
tion between CG and Lanczos, so it is possible to recover the Lanczos vectors and
the tridiagonal matrix from CG vectors and coefficients. One can then compute the
smallest Ritz value and vector, which are optimal in the Krylov subspace we work in.
However, the work and storage requirements then become similar to those of Lanc-
zos. Here, we use the Modified CG-Lanczos Method proposed by Boman [8]. In this
method, we first use CG to solve the linear system, called reduced Newton system,
and switch to the Lanczos method to find a better direction of negative curvature
when that is necessary.

In section 2.2.3, we present a special null-space basis-Spanning Tree Variable Re-
duction basis, which can take an advantage of the network constraints and save com-
putation on the matrix vector multiplication, the most computationally intensive part
of CG. To reduce the number of CG iterates, we describe the PCG method with a
nonbasic diagonal preconditioner, with respect to the maximal spanning tree basis, to
solve the system of equations in section 2.2.4 and a maximal spanning tree updating

scheme in section 2.2.6.

2.1 Primal-Dual Algorithm

We first assume that F' is twice-continuously differentiable (€ C?), and that A is a

matrix of full row rank.

2.1.1 Central path and path-following algorithm

By introducing slack variables, we can rewrite problem (1.9) as follows:

n

minimize F(z) — MZ(ID(Sli) + In(s4))

=1

subject Az =0, (2.1)
r—85 =1
T+ Sy, =1U

5 >0, 5,>0.

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 23

To characterize the solution of the barrier problem (2.1), we introduce its Lagrangian

function,

L(z,s,Aa, N, \) = Flz) — ui(ln(sli) +1n(sy;)) + A (Az — b)

=1

N (—z+s+0)+ A (2 + s, —u), (2.2)

where A4, \; and)\, are Lagrange multipliers with respect to the equality constraints
Az —b=0, =z + s+ =0 and z + s, —u = 0. The optimality (KKT) conditions
for (2.1) are

L
6— = g+AT)\A—/\l+)\u:O
0z
oL
— =)\ - “le =
£ 1= u(S) e=0
oL
a.)‘u_ uil =
9. p(Sy) e=0
oL
= Ar—b= 2.
o xr—b=0 (2.3)
oL
—8)\1 = —.’I)’+Sl+l:0
oL _ n —0
B = x4+ 8, —u=

§1>0,8,>0, >0, A\, >0,

with S; = diag(s!,...,s!) and S, = diag(s¥,...,s"). Several papers including [101]
and [17] have given arguments suggesting that the primal search direction will often
cause the slack variables to become negative, and that can be inefficient. Research
in linear programming [102] and nonlinear programming [12] has shown that more

effective interior-point methods can be obtained by using the modified KKT system

g+AT/\A—)\l+)\u=O
SA—pe=0

(7)) =)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 24

Az —b=0 (2.4)
—$+Sl+l:0
T+ s, —u=20

51>0, 8,>0, >0, A\, >0,

which is obtained by multiplying both sides of second and third conditions of (2.3) by
S; and S, respectively. Although (2.3) and (2.4) theoretically have the same solution,
applying Newton’s method to them will produce different iterates. Furthermore,
system (2.4) has the advantage that the derivatives of SA— pe = 0 are bounded as any
slack variables approach zero, which is not the case with (2.3). Asin [98, 102, 101, 12],
analysis of the primal-dual step, as well as computational experience with linear and
nonlinear programs, has shown that it overcomes the drawbacks of the primal-step.
Rather than solving each barrier subproblem (2.1) accurately, we will be content
with an approximate solution (%,) satisfying M(z, s, \;, Ay,) < €,, where M(-)

measures the optimality condition of the barrier problem (2.1) and is defined by
M (@, 8, My Aus) = max {[| 27 (g = A + A)lloos 142 = Blloo, [ISA = pelloo } , (2.5)

where Z is a basis for the null-space of A. The form of Z is discussed later in
section 2.2.3. The tolerance €,, which determines the accuracy in the solution of
barrier subproblems, is decreased from one subproblem to the next and must converge
to zero. In this paper, we set ¢, = ¥p and p*t! = Y3uF with 0 < 93 < 1 if
M (z*, s%, AF, AE k) < e, and mineig(Z"HZ) > —9op. We test optimality for the
nonlinear network optimization problem (1.3) by means of M (z*,s¥ \F \F 0) and
mineig(ZT HZ) > 0. The primal-dual interior-point algorithm is described in Table

2.1 and a proof of convergence for this algorithm is given in Theorem 1.

Theorem 1 The primal-dual interior-point algorithm described in Table 2.1 will ter-

minate in a finite number of steps.

Proof In [36], Forsgren and Murray defined a class of algorithms that generate a

sequence of iterates xﬁ such that lim xl’j = z*(u). Consequently, such an algorithm will

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 25

Table 2.1: A primal-dual interior-point algorithm

Input: g, pg, A
Output: z*, *

set Sg, Ao
k=0
repeat
if (M (zF, sk, N AR k) < 9%t and mineig(ZTHZ) > —d9p)
F = Pgph
else
L
end if

find either a sufficient descent directions
or a direction of sufficient negative curvature Az
find As*F and ANF
find a suitable steplength o*
oF 1l = 2k + of Ak
skt = g% + af Ask
find a suitable steplength o
AeFL = Ak + ok ANF
k=k+1
until M (z*, s*, \¥, \E 0) < epp and mineig(Z"HZ) > 0

find z*(u) after a finite number of iterations. Since we generate a sequence of sufficient
descent directions and/or directions of sufficient negative curvature, the primal-dual
interior-point algorithm described in Table 2.1 falls into the class of algorithms that

are defined in [36]. Therefore, it will terminate in a finite number of steps. [

2.1.2 Primal-dual equation

Suppose that the current iterate is (Z,5,) and the search direction (Az, As, A)) is
computed by applying Newton’s method to the system of equations (2.4). Under the

assumption that F is twice-continuously differentiable (€ C?) and that A is a matrix

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 26

of full row rank, the search direction will be the unique solution that satisfies the

linear system

H 0 0 AT -1 I |] Az] s+ ATD = N+ A |
A 0 0 0 0 As; Az —b
-I I 0 0 0 Asy | _ —T+5+1 (2.6)
I 0 -1 0 0 Ay T+ 5,—u
0 A, 0 0 S5 0 AN Si\ — e
0 0 A, 0 0 S, AN, Sudy — 1€

Since —x + s, + 1 =0 and x + s, — u = 0 at each iteration, the linear system can be

simplified to

H AT -1 1 Az gz + AT — N+ A\
A 0 0 AN Az — b
i . S A (2.7)
Al Sl 0 A)\l Sl/\l — M€
—A, 0 S, AN, Sulu — e
The third and fourth equation of (2.7) implies
A)\l = —Sfll_\lA$ - (5\1 - ,uS'fle) (28)
ANy, = S;'A Az — (A, —pS)le) . (2.9)
Replacing A); and A\, in the first equation of (2.7) by (2.8) and (2.9), we get
(H+ Az + ATANy = —gz— A" Do+ uS; e —puS, e, (2.10)

where Q = S, 'A; + S;'A,. From the definition of Fp in (1.10), we know

g2 = VFp(Z) = g; — pS; e + uS; e . (2.11)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 27

Therefore, we can get the search direction by first solving

(H+Q) AT
A 0

Az
Ay

gf +AT§\A
Az — b

(2.12)

and then obtaining As;, As,, AN\, and A\, from As; = Az, As, = —Ax and (2.8)
and (2.9). The system of equations (2.12) is usually called the primal-dual equation.
Hereafter, we refer to the matrix on the left-hand side of (2.12) as the KKT-matriz
and denote it by K.

2.2 Null-Space Algorithm

One of the most fundamental requirements of an interior-point implementation for
network optimization is an efficient implementation of an iterative method to compute
the search direction at each iteration. One can solve (2.12) for the search direction

or solve the mathematically equivalent system,
ZVH A+ Zd,; = -Z7¢ (2.13)

for some £ € R™. The actual equation is derived in section 2.2.1.

Although (2.12) and (2.13) are mathematically equivalent, they differ in the
amount of work required to obtain the search direction. To obtain the search di-
rection from (2.12), the KKT-matrix is required. If H and A are sparse, they yield a
sparse K and the nonzero elements of K keep the same pattern. It is possible to take
advantage of the sparsity of the problem if equations involving K are solved. In [36],
Forsgren and Murray consider the LBL? factorization of K. Such a factorization
computes

IN"KN = LBL" , (2.14)

where II is a permutation matrix, L is a unit lower-triangular matrix, and B is a
symmetric block-diagonal matrix whose diagonal blocks are size 1 x 1 or 2 x 2.

To obtain the search direction for (2.13), the reduced Hessian is required. In the

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 28

general linear equality-constrained context, a matrix Z may be obtained by forming
the LU-factorization of A; see [42] for details. As discussed in [41], the matrix Z7 (H +
Q) Z may be completely dense, and the amount of work to form ZT(H + Q)Z may
be prohibitive even if Z is sparse. However, we intend to solve (2.13) for search
direction via an iterative method in our null-space algorithm. We use the modified
CG-Lanczos algorithm described in [8] to solve (2.13). Although CG has been widely
used for primal-dual algorithms for LP and SQP, etc, a key difference is that we
are using it neither on a KK'T system nor on a range-space system but on a reduced-
Hessian system. When we use it on a range-space system, it is necessary to recover the
search direction in z-space if we solve the system of equations approximately, whereas
when we use it on the null-space system and get the search direction in z-space, it
is not necessary to recover the search direction in multiplier-space even if we do not
solve the reduced-Hessian system accurately. In the modified CG-Lanczos algorithm,
it is not required to form the matrix Z7(H + Q)Z. Furthermore, the matrix Z for
network contraints can be obtained without a factorization and we retain the sparsity
of the network constraints. In the modified CG-Lanczos algorithm, the matrix-vector
multiplication of Z x v, (H+) xv and Z x v are the most computationally intensive
parts for each CG-Lanczos iteration. Therefore, it is predictable that the sparsity
of the null-space basis matrix Z will play a very important role. It is extremely
important to reduced the computation for the matrix-vector multiplication of Z x v
and Z7 x v. In section 2.2.3, we describe a spanning tree variable reduction basis
and an efficient algorithm (2n additions/subtractions) to compute the matrix-vector
multiplication of Z x v or ZT x v.

At the same time, it is essential to reduce the number of CG iterations. It is
well known and discussed [69] that either (2.12) or (2.13) will become ill-conditioned
when the solution approaches the optimal solution. In section 2.2.4, we present a
preconditioned CG method with a maximal spanning tree diagonal preconditioner and
the mathematically equivalent affine scaling methods. It makes the preconditioned
matrix less ill-conditioned and improves efficiency by reducing the number of CG
iterations. Since the maximal spanning tree is computationally expensive and is not

essential, an efficient approximate maximal spanning updating method is derived, as

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 29

described in section 2.2.6.

2.2.1 Reduced Newton direction
Since span(AT) U span(Z) = R", the search direction Az can be formed by
Az =ATdy+ Zdy . (2.15)
Substituting for Az from (2.15) into (2.12), we get
(H+ Q) (ATda + Zdy) + ATAN, = — (g2 + ATX,) (2.16)

AATdy = —(Az - D) . (2.17)

By the assumption that A has full row rank, AA” is a nonsingular matrix and (2.17)

defines d4 uniquely. Substituting it into (2.16), we get
(H+0)Zdz+ ATAM M = — (g8 + ATA s+ (H+Q)ATdy) . (2.18)
Multiplying both sides of (2.18) by Z”, we obtain
ZVH+NZdy = —-Z" (g2 + (H+Q)A"d,) , (2.19)

which is usually called the Reduced Newton system. To obtain the search direction
Az, it seems that we need to solve two linear systems (2.17) and (2.19). However, we
can update d4 at each iteration without solving any linear system. Assume we have

d" satisfying (2.17). Therefore, we know
A(x* + Azh) = AzF — (AzF —b) =b (2.20)

and
" =2k + oF AL (2.21)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 30

(2.20) and (2.21) imply

AATAEH = b — A
= A(z* + Az*) — A(2F + oF Az¥)
= (1-a"AAs
= (1-ak)AA"dr, . (2.22)

Under the assumption that A has full row rank, we can conclude

ditt = (1 — a®)d" . (2.23)

2.2.2 Directions of negative curvature and the modified CG-

Lanczos method

If the reduced Hessian Z” H Z is indefinite, there exists a direction d with the property
that
d"ZTHZd < 0. (2.24)

Any direction satisfying (2.24) is called a direction of negative curvature at z.

As demonstrated in [8], any method for linearly constrained minimization that
can be shown to converge to a point satisfying the second-order necessary conditions
must explicitly or implicitly compute a direction of negative curvature of an indefinite
reduced Hessian. The reason to compute a direction of negative curvature d is to move
away from a saddle point, or avoid becoming close to such point. Using a direction of
negative curvature in an algorithm when it exists not only helps to avoid the saddle
point but also aids faster convergence to a second-order KKT point.

Unlike the direction of descent, we can define the best direction of negative cur-

vature as a direction minimizing the Rayleigh quotient:

d"ZTHZd

2.2
Ty (2.25)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 31

Computing a direction of negative curvature is very similar to computing an eigen-
vector corresponding to the most negative eigenvalue.

The dominating computation for a Newton-type algorithm is that one has to solve
a (reduced Hessian) linear system (2.12) and/or to solve an eigenvalue problem to
get the search direction at each iteration. To solve the linear system (2.12), one can
apply either a direct method or an iterative method. However, it will lose the sparsity
of the problem if we apply a direct method. In this section, we describe an efficient
algorithm to solve for the search direction approximately by an iterative method.

In the present context, the algorithm we are interested in first computes a trun-
cated reduced Newton direction dz by solving (2.19) approximately. A good direction
of negative curvature is also computed if Z7'(H + Q)Z is determined to be indefinite.
We use a modified CG-Lanczos algorithm proposed in [8]. The first stage of the al-
gorithm modifies the standard Conjugate Gradient (CG) algorithm such that we can
obtain either a satisfactory descent direction or a good initial solution for finding a
direction of negative curvature in the second stage. In the case that we want to solve
(2.19) by CG but Z7(H + Q)7 is determined to be indefinite, the CG method might
fail. If all the CG iterates lie in a subspace where the quadratic is convex, CG may
find a satisfactory descent direction and we will not determine whether the matrix
Z"'(H + Q)7 is indefinite or not. On the other hand, the CG process breaks down if
the CG search direction is a direction of negative curvature. In such a case, we have
found a direction of negative curvature, though it may be is poor. However, it is a
good initial solution for finding a good direction of negative curvature because it is a
direction of negative curvature already. If the CG process breaks down before finding
a satisfactory descent direction, we switch to the Lanczos algorithm, to find a good
direction of negative curvature. As in the experiment of [8], we can expect that only

a few iterations will provide a efficiently good direction of negative curvature.

2.2.3 Spanning tree variable reduction basis

For a node-arc incidence matrix, Dantzig [19] has shown that the arcs in any basis

form a spanning tree of the network. Therefore, following [60], [14] and [78], there

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 32

exists permutation matrices P,,, € R™*™ and P.; € R™" such that the matrix

P,,,AP,, can be partitioned as
P’rowAPcol = [B N] s (226)

where the m x m submatrix B is nonsingular and lower triangular matrix. Using a
variable reduction matrix Z as in Murtagh and Saunders [78|, we can get a matrix
with columns that span the null-space of A by setting

Z = Py (2.27)

—BIN }

Let index arrays “ib”, “inl”, “in2” and the sign vector “sb” be as follows:
ib(k): the index of the subdiagonal nonzero element in k-th column of B.
sb(k): the sign of the diagonal element in k-th column of B.
in1(k): the index of element 1 in k-th column of S.
in2(k): the index of element —1 in k-th column of S.

In the CG procedure, we have to compute Z times a vector and Z7 times a
vector. With the variable reduction basis matrix (2.27), the procedure and the com-
plexity analysis (number of “x” | number of “+”) for computing such product is
shown in Table 2.2 and Table 2.3. Both procedures take 0 multiplications and 2n

additions/subtractions.

2.2.4 Preconditioning the Conjugate Gradient method

As mentioned in [47], the method of conjugate gradients works well on matrices
that are either well conditioned or have a few distinct eigenvalues. In our case, it
is predictable that the reduced Hessian matrix ZT(H + Q)Z will become very ill-
conditioned because of some diagonal elements of 2 that are extremely large (when

the solution approaches the boundary, some of the elements of s are closed to zero)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM

Table 2.2: Algorithm for computing multiplication Z X v

Input: v, inl, in2, 1b, sb, d
Output: Zv

Nv = zeros(m, 1);
forh—l n(0,2(n-m))
Nu(inl(h)) = Nuv(inl(h)) + v(h);
; Nu(in2(h)) = Nv(in2(h)) —v(h);
for h=1:m(0,2m)
Nu(ib(h)) = Nv(ib(h)) + Nv(h);
if (sb(h) == —1)
Nv(h) = —=Nw(h);
end if end
Zv(m+1:n) =uv;
Zv = Py x Zv

33

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM

Table 2.3: Algorithm for computing multiplication Z7 x v

Input: v, inl, in2, 1b, sb, d
Output: ZTv

Pv =PI xv
Du(m) = sb(m) * Pv(m)
for h = m — (0;2a1): 1

Du(h) = (Dv(ib(h)) + Pv(h));

if (sb(h) == —1)

Dv(h) = —Dwv(h);
end
for h=1:n0mm)
; Nuv(h) = Dv(inl(h)) — Dv(in2(h));

ZTv = Nv H{Emsm)

34

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 35

and the others are of reasonable size. The number of CG iterations may be extremely
large even for an approximate solution.
For the Preconditioned Conjugate Gradient method, in place of (2.19) we solve the

modified linear system
CZYH+0ZCTdy = -C1ZV (g8 + (H + Q) ATdy) , (2.28)

where C' is nonsingular and CC7 is symmetric positive definite. To be practical,
the computation of C~'v must be “simple”. The aim is to make the preconditioned

matrix

CZ"H+Q)zo™ T (2.29)

less ill-conditioned than Z7(H +Q)Z, with more clustered eigenvalues. The choice of
preconditioner can have a dramatic effect upon the number of CG iterations required.
A spanning tree preconditioner will be used and discussed in the following section.
Preconditioning for linear systems is well understood, especially the positive definite
case. However, it is not easy to precondition eigenvalue problems; see [64] for a
detailed discussion.

The modified PCG-Lanczos algorithm for obtaining a search direction in z-space
is presented in Table 2.4. Within this algorithm, the matrix-vector multiplications
Zv and ZTv are given by Table 2.2 and 2.3.

As described early in this chapter, a Preconditioned CG method with a variable
tolerance is suggested to solve for a truncated Newton’s direction. In our modified
PCG-Lanczos algorithm, the first criterion monitors the residual of the system of
normal equations. Let r; be the residual at the i-th CG iteration and pu; be the

barrier parameter at the k-th interior-point iteration. If

73]l < m/hllroll (2.30)

the first stopping criterion is triggered. Criterion (2.30) becomes tighter when p
becomes smaller. It means we will obtain more accurate primal-dual directions as the

iterates get closer to the optimal solution.

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM

36

Table 2.4: A modified PCG-Lanczos algorithm
Input: Z, H, ¢
Output: Zd; is either a truncated reduced Newton direction
or a direction of negative curvature
k=0, dy=0; r=-Z"x¢
repeat
Solve CCTv =71
k=Fk+1,;
ifk==1
p =wv; and rvl = r’ * v;
else
b= rvl/rv0;
p=r1r-4+bx*p;
end
Ap=ZT x (H % (Z xp));
pAp = p' * Ap;
if pAp <0
dz = p;
B = dz I
q=0;
repeat
q=dz/p; B
=727 % (Hx*(Zxq));
a=ql xdy;
dz =dz + axgq;
B =l dz I|;
until stopping criterion is satisfied
return;
end
a =rvl/pAp;
dz =dz +ax*p;
r=r—ax*Ap;
rv0 = rvl; and rvl = r' * v;
until stopping criterion is satisfied

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 37

As discussed in Theorem 1, we required the search direction to be a “sufficient”
descent direction to ensure convergence. When the current iterate is feasible, the
search direction is Az* = Zd,, where d is obtained from the modified PCG method.
However, the normal stopping criterion for PCG (2.30) can not guarantee a sufficient
descent direction in finite-precision computation. To ensure the sufficient descent

property, we impose the relative descent stopping criterion

(ZdP)" gk

=228 < py (2.31)
12d3|| - 1|g%]|

as the second stopping criterion when the current iterate is feasible. Geometrically,

(Zd(i))Tgk
the relative descent # is the cosine of the angle between the gradient g%
1Zd5[| - llgill

and the potential search direction ng). By bounding the cosine away from zero we
are insisting that Az* is not arbitrarily close to being orthogonal to ¢g%. Also, as a

safeguard, a hard limit of 73(n — m) CG iterations is imposed.

2.2.5 Affine scaling

Applying the affine scaling matrix D, which is a diagonal matrix, to the original

x-space, will transfer to the other vector space call z’-space. In other words, we let
g'=D"g (2.32)

and solve for Az’ rather than Az. Substituting (2.32) into (2.7) gives the new system

HD AT —1 1T Az’ gz + AT — N+ M
AD 0 0 O Ay AT —b
_ _ = - _ - . (2.33)
AlD 0 Sl 0 A)\l Sl)\l — ME
—-AD 0O 0 S, AN, Sudu — pe

The third and fourth equation of (2.33) implies

A)\l = —S’flf\lDAa:' — (5\[- /J,Slile) (234)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 38

AN, = S;'A\DAz' — (N, — uS;e) . (2.35)

Replacing A\, and A\, in the first equation of (2.33) by (2.34) and (2.35), we can
get the search direction Az’ by solving

D(H+Q)D DAT Az’ | D(g8 + AT),) (2.36)
AD 0 Adg | AZ — b ’ '
Let
—-D3i'B™IND
Zap = Peol b I N] (237)

be the null-space basis matrix for matrix AD. We can follow the same reasoning

given in section 2.2.1 to get
Ax' = Zapdy, + DATd, . (2.38)
We can obtain d, from
Zip,D(H +Q)DZapd, = —Z4,(Dg? + D(H + Q)D?*A%d),) . (2.39)

Furthermore, AATdy = —(AZ — b) and AD?A"d'y = —(AZ — b) implies that we can
substitute DA d';, = A"d4 and update it by (2.23).

If we use the spanning tree variable reduction basis (2.27) as the null-space basis,
the matrix appearing in the left-hand side of the linear system of equations (2.39)

can be expanded as

Z% ,D(H + Q)DZap

= [-DyN"B™"Dg' I| PLyD(H + Q)DPu |

—D;'B-'NDy }

= [—DNJ\ITB*TD;1 I]
DB(HBB+QB)DB DB(HBNDN —DEIBleDN
DyHypDp Dy(Hyn + Qn)Dn 1

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 39

== DNNTB_T(HBB + QB)B_INDN - DNNTB_THBNDN
DyHygB *NDy + Dy(Hyy + Qn)Dy (2.40)

For the preconditioned matrix shown in (2.29), we can expand it as follows:

C'Z'DH+Q)DzZC T

-B~IN

= C7'[-N"B" I| PLyD(H + Q)DPs cT

= C'N"BT(Hgp+Q28)B'NC T -C 'N'BTHgyC T
C'HygB 'NC™" + C ' (Hyn + Qy)C7 T . (2.41)

Comparing (2.40) and (2.41), we see that the affine scaling scheme is equivalent to
the PCG method with the preconditioner CCT = D>

2.2.6 Maximal spanning tree basis

In linear network programming, the spanning tree preconditioner for the range space
normal equation was introduced in [89] and used in several codes, such as [54] and
[86]. In that research, a “maximal spanning tree” of the graph G is identified, using
as the weights

w = Qe . (2.42)

This approach is theoretically equivalent to forming the scaled variable reduction
matrix Z4p and choosing the basis B as the maximal spanning tree for weights w.

In our algorithm, we apply a different scaling,

N

D = (Qe + (diag(H))%e) 2, (2.43)
to the original x-space and compute the maximal spanning tree based on the weights

w=D""e. (2.44)

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 40

Kruskal’s algorithm [67], implemented with the data structures in [97], is used to
compute the maximal spanning tree. The complexity of the algorithm for finding a
maximal spanning tree is O(n?). However, we do not need the exact maximal spanning
tree. Our goal is to keep indices with large components of @ on the spanning tree.
Therefore, an approximated maximal spanning tree is acceptable. Chin [16] and Spira
and Pan [96] present an O(n) algorithm for updating the maximal spanning tree if a
new arc is inserted into the graph, and an O(n?) algorithm if an arc is deleted.

In the primal-dual algorithm, the change in the maximum spanning tree is usually
very small from one iteration to the next iteration. Therefore, we conduct a spanning
tree updating procedure as shown in Table 2.5. Basically, we first check if there is
any arc (variable) whose weight is too small to be in the spanning tree (basis) but
is currently in it or there is any arc we should definitely include in the spanning
tree. Suppose that ws¢(m) is the m-th largest element of the weight w. Then the

threshold weight for adding a non-basic arc to the spanning tree is
thredaga = C1 * Wsors(M) (2.45)

with ¢; > 1, and the threshold weight for deleting a basic arc from the spanning tree
is
thredge = (o * Wsore(M) (2.46)

with 0 < (5 < 1. We insert the arcs we want to include one by one and then delete
the arcs we do not want in the basis if they are still in the basis. The reason that we
first update the spanning tree by inserting an arc is that it costs less computation and
it often removes the arc we want to delete in the process. According to our numerical
results, only 15 percent of the updates are deleting an arc.

When an arc is inserted into a spanning tree a cycle is created. We can get a new
tree by removing any arc within the cycle. To update the maximal spanning tree, we
can remove the arc with minimum weight of the arcs in the cycle. The algorithm for
updating the spanning tree by inserting an arc is described in Table 2.6.

When we delete an arc from a spanning tree, a subtree disconnected from the

root is created. We can get a new spanning tree by adding an arc with one end

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM

Table 2.5: A spanning tree updating algorithm

Input: Zp, Iy, w
Output: new Zp, Zy

Given 1 < GGand 0< (<1

Tger =0 and Zogq = 0

Wsort = SOTt(W)

thredyga = C1 * Wsore(m) and thredge = (o * Wsore (M)

for (i € Zp)
if (w(i) < threadge)
end if
end
for (i € Iy)
if (w(i) > threadgqq)
1 € Lyaa
end if
end

for (’L € Iadd)
Update the Spanning by Inserting Arc ¢

end
for (i € Zye)
if (< € Zp)
Update the Spanning by Deleting Arc 1
end if

end

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM 42

Table 2.6: Algorithm for updating the spanning tree by inserting
an arc

Input: Zg, Iy, w, iedq
Output: new Zg, Zy

Find the index set Icycle C I U%aa
iremove = arg min {wi: S Icycle}
IN = IN U {iremove} \ {iadd}

IB = IB U {iadd} \ {iremove}

node in the rooted tree and another in the subtree. To update the maximal spanning
tree, we can insert the arc with maximum weight over the arcs with one end node
in the rooted tree and another in the subtree. However, we do not need the exact
maximal spanning tree. We need to put the arc with large weight into the spanning
tree and remove the arc with a tiny weight out of the spanning tree. Therefore, we
propose that an appropriate arc with weight greater than (3w(ig4e;), where (3 > 1 and
w(iqe) is the weight of the arc that we would like to delete, is acceptable to insert
into the spanning tree rather than searching for the entire arcs set. The algorithm

for updating the spanning tree by deleting an arc is described in Table 2.7.

CHAPTER 2. TRUNCATED PRIMAL-DUAL ALGORITHM

Table 2.7: Algorithm for updating the spanning tree by deleting an
arc

Input: Ty, Iy, w, i4e
Output: new Zg, Ty

Find the node set Voo C V and Vsyp = V\Vroor
lins = ldel
thred = (3w,
for (1 € &)
if ((fromnode(i) € Voot and tonode(i) € Vsyp) or
(tonode(i) € Voot and fromnode(i) € Viup))
if w; > thred
lins =1
break
end if
end if
end
Iy =1In U {idel} \ {st}
Ip=1p U {Zzns} \ {idel}

Chapter 3
Linesearch Procedures

In a linesearch algorithm, a new point wy, is defined by taking a positive step oy

from the current point wy along a search direction p,. In other words,
Wg41 = Wi + Qg - (31)

It is assumed that the objective function ¥(w) is a differentiable function and py is a
search direction with the property that py is a “sufficient” descent direction for the
objective function. Given the current point wy and the search direction p;, we denote

the univariate function ¢(«) as
Y(a) = U(wg + apg) - (3.2)

It implies that 1(«) represents the variation in ¥ as a function of the steplength «

from wy, along p, and has the properties

$(0) = ¥ (wy) , (3.3)
Y'(0) = pp V' (wy) (3.4)
V(@) = pi V¥ (wi + apy) - (3.5)

Since py, is a descent direction of VU, it follows that v'(0) < 0.

44

CHAPTER 3. LINESEARCH PROCEDURES 45

The process of finding a suitable steplength «y is called the linesearch procedure.
In general, linesearch procedures generate a closed interval [a, b], called the interval
of uncertainty, such that an acceptable steplength oy lies in [a,b]. Then by gener-
ating and testing a new trial steplength in the current enclosing interval, either an
acceptable steplength is obtained or the interval of uncertainty reduced.

In the linesearch procedure, oy is required to satisfy some conditions, as discussed
in section 3.1. Depending on the choice of parameter used in the conditions, the
linesearch procedure can perform an accurate linesearch or an inexact linesearch. In
the early years of linesearch algorithms for unconstrained optimization, most imple-
mentations used an accurate linesearch. Recently, the topic of an inexact linesearch is
widely used and studied by many authors such as [3, 99, 88, 40, 24, 71, 31]. However,
an accurate linesearch remains desirable in some situations, such as in large-scale
problems where the numerical computation of a search direction p, is substantially
more time-consuming than the evaluation of W(-) at trial steps. For additional dis-
cussion and comparison, see [24, 31, 43].

For generating the trial steplength, one of the popular techniques is the Armijo
or pure backtracking linesearch [82, 24], in which each trial step o), j = 1,... is
determined as a fixed fraction w (typically w = % or %) of the previous step al/=1.
Under reasonably mild conditions, this procedure with modification is guaranteed to
produce a sufficient decrease (see [13]). The advantage of an Armijo linesearch is
its simplicity. In the situation where the initial step is almost always accepted, such
as the case when applying Newton’s method to minimize a well-behaved function,
an Armijo linesearch is also efficient. However, a pure backtracking procedure is
not appropriate when an accurate linesearch is needed, since the fixed and strictly
decreasing sequence of trial steps {@/a(?} is unaffected by the behavior of ¥(-).

A second standard linesearch technique is to define the trial steps as iterates from
a procedure for finding an approximate minimizer of a univariate function v(-) within
a specified interval of uncertainty. The interval of uncertainty is modified to reflect
information about 9(-) accumulated as the linesearch proceeds. The details about
updating the interval of uncertainty are described in section 3.2.1. Here, it should

be stressed that the univariate minimization is used only as a model subproblem for

CHAPTER 3. LINESEARCH PROCEDURES 46

generating trial steps in the linesearch; the sequence of trial steps terminates as soon
as the conditions on the step length are satisfied.

For smooth objective functions, low-order polynomial (linear, quadratic or cubic)
interpolation is widely used to conduct the trial step based on previous trial steps
and the associated value of 1 (-) (see [37, 43, 24, 31, 25]). This approach is sometime
combined with backtracking (see [25]), and can be used when an accurate linesearch is
needed. To ensure robustness, a safeguarded algorithm is used to guarantee a certain
reduction in the interval of uncertainty. In a safeguarded algorithm, the interpolant
step a;,; can be rejected under some circumstances, for example, if «;,; fails to lie
within the current interval of uncertainty. This issue and related topics are discussed
in (37, 31, 25]. In section 3.2.2, an efficient safeguarded steplength algorithm is
discussed and described.

In the linesearch procedure for an objective with a logarithmic barrier function,
low-order polynomial interpolation usually cannot reflect the singularity of the barrier
function. This problem tends to cause inefficiency for the barrier method. Therefore,
several special-purpose linesearch strategies have been proposed. In [32], separate
approximations were made to the objective function and the barrier term. In the
approach of [31], a special function is developed by substituting linearized versions
of the objective function and constraints into the form of the barrier term. The
techniques of both [32] and [31] apply to a broad class of barrier functions. A special
approximating function designed specially for the logarithmic barrier function was
proposed in [77]. In section 3.3, we propose a double iterative linesearch procedure,
in which each trial step length is produced by a special iterative procedure to find an
approximate local minimizer of a lower-order polynomial interpolant plus the barrier

term.

3.1 Sufficient decrease conditions

A fundamental requirement for a linesearch algorithm associated with a descent
method involves the reduction in W(w) at each iteration. If convergence is to be

assured, the steplength o has to satisfy conditions of sufficient reduction in ¥(w).

CHAPTER 3. LINESEARCH PROCEDURES 47

Sufficient decrease conditions not only require a reduction in ¥ but have restrictions
on the character of the decrease. The sufficient decrease requirement can be achieved
by several alternative sets of restrictions on 4. In this section, two of the most popu-
lar rules for sufficient decrease, the Goldstein rule and the Gamma rule, are described.
For other sufficient decrease conditions, see [82, 43, 24, 31, 25].

3.1.1 Goldstein rule

In [46], Goldstein and Price proposed a sufficient decrease condition that has been
widely used and discussed. This condition ensures that oy is neither “too large” nor

“too small”. A suitable step, «, is required to satisfy

0 < —m10p3'(0) < 9(0) — 9h(an) < —m209'(0) (3.6)

where 71 and 75 are scalars satisfying 0 < 71 < 75 < 1. This is now known as the
Goldstein Rule. The upper bound in (3.6) prevents «y from being too large, and the
lower bound prevents oy from being too small. Figure 3.1 illustrates the rule.

The Goldstein rule does not in itself constitute an algorithm because how to find
a point satisfying it is not immediately suggested by the rule. One possibility is to
adopt a backtracking linesearch algorithm, that is, the trial values of steplength are
defined in terms of an initial step o®) and a positive scalar w with @ < 1. The
value of q, is taken as the first member of sequence {w/a(?0}; o for which (3.6) is
satisfied. The performance of this type of algorithm is highly dependent on the choice

0)) rather than on any particular merits of condition (3.6). Typically o(® = 1

of al
in order to achieve superlinear convergence with Newton-based and quasi-Newton
methods rather than to maximize the probability of satisfying (3.6).

As emphasized in [6], the Goldstein rule (3.6) alone does not guarantee a “good”
value of oy. Note that for almost all functions encountered in practice, choosing o(?)
as 107° would satisfy (3.6) for appropriate small values of 7, and 7. This strategy
would be “efficient” finding a suitable ay, but, any descent method that included such
a steplength algorithm would be extremely inefficient. It is essential to consider the

performance of a steplength algorithm not merely in terms of the number of function

CHAPTER 3. LINESEARCH PROCEDURES 48
Figure 3.1: Illustration for Goldstein rule

The set of a satisfying Tllp’(O)GSL]J(O()—Lp(O)STqu’(O)a

yd o~

tzw'(O)a

~ W(@)-w(O)

T lllJ'(O)G

evaluations per iteration, but in terms of the overall reduction in ¥(-) achieved at

each iteration.

3.1.2 Gamma rule

An alternative class of conditions on «y, can be derived from interpreting the steplength

in terms of univariate minimization:
minimize 1(c) . (3.7)

A step to the first minimizer of ¢ (-) yields a “significant” reduction in % (-), and this

choice of oy is important for many theoretical convergence results. The following

CHAPTER 3. LINESEARCH PROCEDURES 49

widely used criterion for steplength acceptance is based on interpreting a4 in terms

of univariate minimization:

| Y () |[< —m19(0) (3.8)

where 0 < 7; < 1. The value of v; in (3.8) determines the accuracy with which
oy approximates a stationary point of ¢(-), and consequently provides a means of
controlling the balance of effort to be expended in computing a. When 7 is small,
a linesearch procedure based on (3.8) can be described as an “accurate linesearch”;
when 7, = 0, the procedure will terminate at a stationary point of 9 () so that it will
be termed an “exact linesearch”. Furthermore, it may be shown that the condition
(3.8) prevents oy from being too small. It will also usually prevent oy from being too
large.

Because (3.8) does not restrict the function value of (-), an additional condition
is necessary to ensure a sufficient decrease in the function value of ¢(-). In particular,

many steplength algorithms include the following condition:

P(a) < (0) + 72049 (0) (3.9)

where 0 < 7 < 3. Satisfaction of (3.9) implies that the point (o, (ax)) lies on
or below the straight line ¢(a) = 9(0) + (72¢'(0)). Usually, v, is chosen to be
small, which increases the probability that an approximate minimizer will satisfy the
condition. Combining conditions (3.8) and (3.9) as termination criteria gives the
so-called Gamma Rule.

The set of points satisfying conditions (3.8) and (3.9) will be denote by I'(y1,72)-
If 0 < v < v <1, it can be shown [43] that I'(+,72) contains a nontrivial interval
(i.e. there exists a point belonging to I'(7y1,72)). Figure 3.2 illustrates the gamma
rule.

The advantage of using (3.8) as an acceptance criterion is that its interpretation
in terms of a local minimum suggests efficient methods for computing a good value

of oy, as discussed in section 3.2 and 3.3.

CHAPTER 3. LINESEARCH PROCEDURES 20

Figure 3.2: Illustration for Gamma rule

The set of a satisfying |qJ’(0()|sylw'(0() and qJ(a)—Lp(O)syqu’(O)a

/ <

< W(a)-w(0)

Y0 (O)a

0

The set of a satisfying |qJ’(cx)|sylw'(0() but LIJ(C()—lIJ(O)ZVZLIJ'(O)C(

3.2 Linesearch iteration

A suitable value of ¢y is obtained by an iterative procedure that generates a sequence
of trial steplength {a,(ej)} for j = 0,1,... with termination condition that accepts
the first oz,(cj) for which the sufficient decrease conditions hold. A certain amount of
computation is required to calculate and to test for each trial steplength oz,(cj). For
example, to check the sufficient decrease condition we have to evaluate ¥(w) and
V¥ (w) at wy + a,(cj)pk. The function evaluations of ¥(w) and V¥ (w) are usually
time-consuming.

In the early years of linesearch algorithms for unconstrained optimization, most
implementations used an accurate linesearch, i.e., a; was choose to be an approxi-

mation close to the minimizer of 1. We can easily achieve this goal by setting the

CHAPTER 3. LINESEARCH PROCEDURES 51

Table 3.1: Algorithm for linesearch iterate

Input: wy, pg
Output: a4 is the step length which will be taken in k-th iteration

J=0;

compute a,(co) (see Table 3.4)

if W(ay”) — 9(0) > 301" 9/(0)

initialize the interval of uncertainty (oo, aup;)

repeat
J=7+1
compute aggal (see Table 3.5)
Od,(cj) = safeguard(ozgz)-al, Qo, pi) (see Table 3.3)
evaluate \I’(a,(cj)) and ‘Il’(a,(cj))
updating the interval of uncertainty (o, cs;) (see Table 3.2)

until a,(cj) satisfies the condition (3.8) and (3.9)
end if

return az;

parameters v; and ¥, in the Gamma rule to be small. A steplength satisfying the
terminating criteria will be very close to the minimizer of ¢. Today, it is customary
to perform only an inexact or relaxed linesearch algorithm with small 7; and large 7,
(for example, 7, = 10~ and v, = 0.9).

Typical relaxed sufficient decrease criteria are satisfied by a set of acceptable
values for ay. A good linesearch algorithm should produce a good step, usually a
large reduction in W relative to what can be achieved in a small number of trial steps.

As demonstrated in [87], the efficient linesearch iteration will be as in Table 3.1.

3.2.1 Interval of uncertainty and interval reducing procedure

As discussed in section 3.1.2, the Gamma rule is derived from interpreting the line-

search iterate in terms of univariate minimization. The techniques used to solve

CHAPTER 3. LINESEARCH PROCEDURES 52

the problem of univariate minimization in a bounded interval are analogous to those
for zero-finding. To develop an interval-reduction procedure, we need to define a
condition that ensures that there is a proper minimum «* in a given interval, say
[Qows Qhign], which is defined as the interval of uncertainty for this problem. The
interval reducing procedure is based upon computing a sequence of intervals {I;},
each containing a minimum of the objective function, such that the interval I; lies
wholly within I;_;. Given an interior-point g for [Qow, @hign], the next interval
of uncertainty will be the reduced interval [eou, Qtriar] OF [Qriat, Chign], Which can be
determined by using the value and the first derivative of the objective function at
Ctrial-

For linesearch iterations using Gamma rule as a terminating criterion, the interval
reducing procedure is modified as each interval of uncertainty {I;} must contain
points of I'(y1,72). The sequence of intervals can be computed using the method of
safeguarded interpolation described in section 3.2.2 and 3.3. The linesearch iterate
will end up with the first point generated by safeguarded interpolation that lies in
L (71, 72)-

To ensure that the interval of uncertainty ey, (iriqr] contains points of I'(y1,72),

Qow, Qirig are Tequired to satisfy the following conditions:
V'(wow) < mY'(0) and
P(ow) < P(0) + 20009 (0) (3.10)
and
V' (Qhign) > —714'(0) or

P (thign) > 1¥(0) + Yatnignt)'(0) . (3.11)

Based on conditions (3.10) and (3.11), we can use the algorithm described in Table

3.2 to update the interval of uncertainty.

CHAPTER 3. LINESEARCH PROCEDURES 93

Table 3.2: Algorithm for updating the interval of uncertainty

IHPUt: Qlow, CXhighs Ctrial
Output: [®ew, Ahign] is the reduced interval of uncertainty

lf 1/)(Oftrz'al) Z 1/1(0) + 72atrial¢l(0)
Qhigh = Ctrial

else if ' (agriqr) > 0
Qhigh = Orial

else
Qlow = Orial

end

return [ow, Chigh)

3.2.2 Safeguarded-steplength algorithm

The idea of a safeguarded steplength algorithm is to conduct the trial steplength
by the combination of a reliable method (such as the method of bisection) and a
rapidly-convergent method (such as polynomial or special interpolation, see section

3.3.1, 3.3.2) that has the following properties:
(i) If ¥(-) is well behaved, the linesearch algorithm will converge rapidly.
(ii) In the worst case, it is not much less efficient than the guaranteed method.

At each iteration, the safeguarded method is given an interval of uncertainty, say [a, b].
The known values of 1(a) and ¥'(«) are used to obtain an estimate of minimizer c;q
by interpolation of the linesearch function. Without safeguards, the next step would
involve evaluating ¥ (i) and ¥’ (e). However, a safeguarded procedure ensures
that aurqe is a “reasonable” steplength before evaluating v (uria) and ¥ (upiar)-

It is complicated to define what is “reasonable”. However, there are some apparent
required characteristics. First of all, oy, must lie in the interval of uncertainty [a, b].

Secondly, it should not be too close to a or b even if a4 is in [a, b]. The reason for

CHAPTER 3. LINESEARCH PROCEDURES 54

this is that the sequence of trial steplengths might converge to one of the end points
or the reduction of the interval of uncertainty may become extremely slow. The most
common techique used to prevent these is to specify a fraction n; € (0,0.5), often
chosen small (say 0.05), and force ay.iq at least 7;(b — a) away from the two end

points a and b. That is,

Qirigl = @ + M1 (b - CL) if Qgrit < a + T (b - a)
Qtrial = b— m (b - a) if Oltrial > b— ™ (b — CL) . (312)
Oprial = Olirial otherwise

Note that an absolute bound is not required since b — a is bounded away from zero.
Furthermore, an efficient safeguarded algorithm should also take into account the
situations that cause inefficiency and often occur in the interpolating method of the

linesearch procedure. We should consider the following four cases:

1. The minimum is close to the right-end point of the interval of uncertainty, but
the trial step oy obtained from interpolating method is less than the lower
bound and the interval of uncertainty keeps updating the left-end point. For

example, the function in Figure 3.3.

2. The minimum is close to the left-end point of the interval of uncertainty, but
the trial step oy obtained from interpolating method is great than the upper
bound and the interval of uncertainty keeps updating the right-end point. (The

opposite to the previous case)

After considering those cases, we conduct an efficient safeguarded steplength al-

gorithm that prevents those slow convergence cases, as shown in Table 3.3.

3.3 Linesearch for Objective with Logarithmic Bar-

rier Function

In the 1960s and 1970s, several special-purpose linesearch strategies were proposed

for barrier functions. In [32], separate approximations are made to the objective

CHAPTER 3. LINESEARCH PROCEDURES

Table 3.3: Safeguarded steplength algorithm

IHPUt: Qlow, Xhighs Ctrials Ilowa Ihigh; Jlow and Jhigh
Output: oy is the suitable trial steplength

LB = myoigh + (1 — m1) ow
UB = (1 = m1)high + M ow
if Arial < LB
Olirial = LB
Jlow = Jlow +1
Jhigh =0
if Jipw > 3
if Tpign > 3
Qtrial = T2Chigh + (1 — 12) Qow
else if I;,, > 3

Qi = UB
end
end
else if aypiqp > UB
Qriq = UB
Jhigh = Jhigh +1
Jiow =0
if Jpigh > 3
if Ilow >3
Qtrial = M20ow + (1 — 72) Qhign
else if Ihigh > 3
Qpriqt = LB
end
end

end
return oy;q

95

CHAPTER 3. LINESEARCH PROCEDURES o6

Figure 3.3: EXAMPLE illustrating inefficiency for standard interpolation.

Ohigh

function and the barrier term. The technique can be applied to different kinds of
barrier functions. In [77], the approximating function are designed specially for the
logarithmic barrier function.

Since Karmarkar [56] proposed his projective algorithm in 1984 and its relation-
ship to the barrier method was shown in [39], the interest in barrier methods was
renewed but largely for the linear programming problem. Such algorithms typically
rely on a fixed step and do not in practice require a linesearch. Typically, the line-
search in the barrier-related interior-point algorithms for linear programming take oy
as a fixed fraction (say, 0.95 or 0.99) of the maximum allowable steplength, the step
from x along px to the boundary of the feasible region. Basically, this kind of sim-

plified strategy succeeds for the linear programming case because in many instances

CHAPTER 3. LINESEARCH PROCEDURES S7

singularity at the boundary causes a minimizer to occur near the boundary in a func-
tion that would otherwise behave like a monotonically decreasing linear function. For
more discussion and references for linesearches in interior-point methods for linear
programming, please refer to [48].

However, as discussed in [77], it tends to be inadequate or inefficient to use such
a simple linesearch approach for nonlinear optimization. For minimizing a nonlinear
objective function with a logarithmic barrier function, we suggest modifications to

two aspects of a traditional general linesearch:
(i) The choice of initial step a?), described in section 3.3.1.

(ii) The procedure for generating subsequent trial steps a® described in section
3.3.2.

In this section, the discussion involves a single linesearch and we denote w =
(z7,5%)T as the current iterate and p = (Az?, As™)? as the descent search direction.

Furthermore, we define the univariate linesearch function as follows:

¢y = F(z+ alzx),
ola) = B(s+als),
(o) = Fg(w+ap,p) = ¢(a) — pp(a) .

The second issue arises because a low-order polynomial interpolant may not reflect
the characteristic dramatic behavior of a barrier function in a neighborhood of a
singularity. In Figure 3.4, a barrier function ¢(«) with barrier parameter p = 1 is
shown as a solid line and the dashed line represents the quadratic function that in-
terpolates ¥(uow), V' (Cow) and 1(auign). The minimizer of the quadratic function
is a substantial and infeasible overestimate of the minimizer of the barrier function.
In Figure 3.5, another barrier function ¢ (a) with barrier parameter ;4 = 1 is shown
as a solid line and the dashed line represents the quadratic function that interpo-
lates ¥(cow), ¥ (ow) and 9'(onign). The minimizer of the quadratic function is a

substantial underestimate of the minimizer of the barrier function.

CHAPTER 3. LINESEARCH PROCEDURES o8

Figure 3.4: Example 1 of quadratic interpolating for a barrier function

= Y(@)

low high ~

quadratic interpolating function — = -

Both examples occur often in the linesearch for barrier function and illustrate the
disparity of function interpolation using low-order polynomial interpolant. Instead,
we use a low-order polynomial ¢ to interpolate the function ¢ but not for the barrier

function ¢. The interpolating function becomes

Y(a) = é(a) — pe(a) . (3.13)

We propose an iterative procedure to find the next trial step that is an “approximate”
local minimizer for the univariate function (). Note that the function evaluation
for ¢(-) only involves some logarithmic function (In s;) and some reciprocal (s%)’ and
the effort to compute these quantities is negligible compared to the evaluation of ¢(c).

For univariate minimization, a general-purpose algorithm (for example, Newton’s

CHAPTER 3. LINESEARCH PROCEDURES 99

Figure 3.5: Example 2 of quadratic interpolating for a barrier function

quadratic interpolating function — ;

low high

method) might be inefficient because of the singularity of the barrier function. There-
fore, an efficient iterative univariate minimization algorithm based on a special inter-
polating function containing a logarithmic singularity is used and described later in

this section.

3.3.1 Initial estimate

In the algorithm described in Table 3.1, it is important to find a good initial step
because the hope is that most of the linesearch iterates terminate at the initial step.
In this section, we describe an efficient algorithm to estimate the minimizer o* of
() based on the current information and the special properties of barrier functions.

For the initial step, the first ingredient in the process is to calculate the maximum

CHAPTER 3. LINESEARCH PROCEDURES 60

allowable steplength, the step from (77, 57)T along (Axz?, AsT)T to the boundary of
the feasible region. It can be easily computed by a ratio test:
g.
min{ ————: (As); <0} if (As); <0 for some i
Omax = { (AS)Z () } ()
00 if (As); > 0 for all i

(3.14)

When amax = 00, which indicates that there is no any singularity for moving w along
p, we set a® = 1.
For the case that au,.x < 0o, we know there is a singularity of ¥(«) at o = auax-

The interpolating function for i) has the form

Y(a) = d(a) — p-p(a) (3.15)

where

dla) = a+ba

is the linear interpolation function for ¢ at o = 0, that is, ¢'(0) = b = ¢'(0). So, we

(0

derive a strategy to find the initial estimate linesearch step o!?) as the minimizer of

(). With the descent direction property, we can claim the following.

Lemma 1 The sufficient condition that a unique minimizer a; of 1 exists on [0, Ctmax]
is ¢'(0) < 0.

Proof If the search direction is a descent direction, then
¥'(0) = b— pugp'(0) =¢'(0) — pe'(0) = ¢¥'(0) < 0.

The first and second derivatives of ¥(-) are given by

Vo) = b- ,ué s —1-(0zA-S()iAs)Z ’
(A

\Illl(a) = NZ(S-FOz-(AS)i)Q'

CHAPTER 3. LINESEARCH PROCEDURES 61

Since its second derivative is positive and lim,, ,,- U'(a) = +oo, we know there
exists a unique minimizer oy of 1 on [0, Aumax]. .

When only ¢(0), ¥'(0) and ¢'(0) are known, we use the first interpolation function
of the form

O1(a) =a+ba— p- (In(max — @) +ca+ f) . (3.16)

The first and second derivatives of ©; are given by

Ol(a) = (b= pe)+——,
u
) = oy

Because its second derivative is always positive, © is strictly convex. A minimizer

of ©; occurs at ag, satisfying

7

o] = (b— —
(00,) = (b= pe) +

=0.

Hence,

U
b— uc’

Qg, = Omax +

Determination of ¢ depends on fitting ©1(a) to the values ¢ (-) and ¢'(-) at a« = 0. It
implies b — cp = 9'(0) — A Therefore,
O'max
¥'(0)

0(0) — Gmax (347

Oé@l =

Suppose an interval of uncertainty [;oy, Qhign] is known for 9(+) with ¥'(qe,) < 0

and 9’ (apign) > 0. Then we use the second interpolation function of the form

Oy(a) =a+ba— p-(d-In(amay — @) +ca+ f). (3.18)

CHAPTER 3. LINESEARCH PROCEDURES 62

The first and second derivatives of ©, are given by:

o) = (b— ,w)+%, (3.19)
o) = P (3.20)

(a’max - 04)2
By fitting ©4(c) to the value of ¥'(+) at (e, and apign, we have

d _
b—cp+ — = P () s (3.21)

Cmax — Uow

pd 7
b—cpu+—" = P (pion) - 3.22
a Omax — high w (" gh) ()

Subtracting (3.21) from (3.22), we get

pd| ! - !] = ¥ (hign) — ¥ (Qow)

Omax — Qhigh Omax — Qlow

which implies

(amax - a’high,) (amax - alow) [

Chigh — Clow

V' (Qhigh) — ¥ (ow)] > 0. (3.23)

pd =

It follows from (3.20) and d > 0 implied by (3.23) that ©, is strictly convex. From
the assumption that 1’ (aqey) < 0 and ¥'(apign) > 0, a unique minimizer of ©,, say
o, € [Mow, Qhign), satisfies

d
O(ae,) = (b—pc)+—— =0,

Omax — G,

which implies
ud
b— puc’

(3.24)

g, = Omax +
From (3.22) and (3.23), we obtain

ud

b—cp = J}I(ahigh) -
Omax — Qhigh

CHAPTER 3. LINESEARCH PROCEDURES 63

87 — —
= ' (Qhigh) — —2X L [(thigh) — V' (Qtow)]
Chigh — Aow

Mﬁ'(azow) _ Md—/(ahigh) . (3.25)
Qhigh — Qlow Chigh — Clow

Hence from (3.24) and (3.25), we know that ag, is given by

6, = Ohmax + (amax - CVhigh)(_amax - alow)['(/jl(ahigh) - }/;I(alow)]) (326)

(amax - a’low)wl(alow) - (amax - a’high)wl(a’high)

Using these two analytical solutions for the interpolating functions, the initial estimate

o can be obtained from the algorithm in Table 3.4.

3.3.2 The procedure for generating subsequent trial steps

When the initial estimate o?) does not satisfy the condition given in Table 3.1, we
need to generate subsequent trial steps based on the information for (-). Since the
search direction is always a descent direction, we can choose the end points of the
interval of uncertainty such that the function ¢ (-) is decreasing at its left endpoint

(' (ow) < 0). Under this situation, the interpolating function for ¢ has the form

(@) = g(a) = p- p(a) (3.27)

where

C
¢(a) = a + bl(a - Ov’low) + 51(04 - a’low)2

is the quadratic interpolating function for ¢ at a = 4, the current left end point
of the interval of uncertainty with ¢'(q,) < 0, and one of the steplengths o = «y,

which has been evaluated in the current linesearch procedure. Therefore, we have

bl = ¢,(alow); (328)
6 o= (@) — & (Otow)) - (3.29)

G5 — Qow

CHAPTER 3. LINESEARCH PROCEDURES

Table 3.4: Algorithm for initial estimate

Input: @ = (z,5) and p = (Az, As)
Output: o? is the initial step length in the linesearch iteration

i=0;
Olmax = min{—(AS;). : (As); <0}
if upax = 00 (no restriction on «)
a0 =1
else
h=1
b=VEF(#)p
W0~ VEs(@)'p
V Fy(@)Tp — QL

max

1;’(04,(10)) =b— pVB(5+ a,(lo)As)TAs
while /(o)) < —p

h=h+1

al(zO) = Tmax + (1 — n)aﬁoll

D) =b— uVB(GE+ oV As)TAs
end
Qlow = agzo—)l and &I(alow) = Qﬁl(ago—)l)
Oign = @}, and ¥/ (anign) = 9/ (o)
repeat

h=h+1

(a’max - alow)(a’max — ahigh)(¢l(ahigh) - 77DI(O~’low))

Qrigl = Qmax + = =

o) = safeguard (Quriat, Qtow, Qhign) (see Table 3.3)

V() =b— pVB(GE+ oV As)TAs
(0)

until | /(o) |> p

a(o) oy CU}(LO)
end

return o9

(ama.x - Cklow)wl(oﬂow) - (amax - ahigh)wl(ahigh)

Update the interval of uncertainty («,’, Qow, Qhign) (see Table 3.2)

64

CHAPTER 3. LINESEARCH PROCEDURES 65

We now need to derive a strategy to find the subsequent linesearch step al/) as
the approximate minimizer of ¢(-). Here, we also apply the technique of interval
reduction. Suppose that the current interval of uncertainty for minimizing (-) is
(6, é). From the choice of interval of uncertainty, we can guarantee that ¢/'(&;) < 0.

We use a third interpolating function of the form

C
@3(0./) = a + bl(a - alow) + 51(@ - a’low)2
C2

—p(In(Omax — @) + a5 + by — &) + (o — &)%) . (3.30)
To simplify the calculation, denote
~ C1, .
a = a + bl(al - alow) + El(al - alow)2 — Mag ,
b = bl + Cl(d’l - CL’low) - ,U'bQ 3
C = C — Ucy.
Then, the interpolating function O3(-) becomes
Os(a) = a+bla—a)+ g(a — @)% — pIn(Gmax — Q). (3.31)
The first and second derivatives of ©3 are given by
O4a) = btecla—a)+—1— | (3.32)
Qmax — &
0a) = e+ —H | (3.33)

(Omax — @)?

Because of the singularity of 1Z() at amax, it 1S not appropriate to use &y, to interpolate

the function if G, = omax. By fitting ©%(a) to the value of ¢/ (+) at & and d;, we have

b+ —E = @), (3.34)

COmax — O

b+l —)+ —— = §(@,). (3.35)

CHAPTER 3. LINESEARCH PROCEDURES 66

Subtracting (3.34) from (3.35), we get

_ 1 THx N A M _ 1%
= 645 - &l (w (QS) ,(p (al) * Qmax — dl Omax — ds) (336)
and
RN M
b=/() ~ e (3.37)

Because ©%(q;) < 0 based on the choice of the interval of uncertainty and ©%(«)
is unbounded above as & — Qmay, at least one minimizer of O3(-) must exist in
the interval of (y, max). To simplify the computation, we denote a@ = z + &; and
Omax = Olmax — 0.

A stationary point ag, = z. + & of O3(-) occurs when ©4(-) = 0. It implies that

z, satisfies the following quadratic equation:
C'Zf + (b - Cd’max)z* — K bdmax =0. (338)

If ¢ = 0, then there is no quadratic term and the minimizer of O3(-) is ag, =

~ ~ + bam X . .
oy + 2, = 0y + /;7_3 Otherwise, we have the following result.
— COlmax

COlmax — b— b— COlmax 2 + 4de(p + bd’max
Lemma 2 If ¢ # 0, then \/(5) (v)
c

root of (3.38) in (0, Gmax) under the assumption that 1'(éy) < 0.

1s the unique

Proof. If ¢ # 0, there are two roots r; and 7, that can be expressed in two forms:

co_fma.x - b :|: b - camax 2 + 4C + b@max
T,Te = \/(%) (,u) (339)

COmax — b £ 1/ (b + cOmax)? + 4c
- V . frdep (3.40)
C

and the product of r; and ry satisfies

riry = s H). (3.41)

Case 1. If ¢ > 0, 7y and r5 both are real (from (3.40)) and have the same sign

CHAPTER 3. LINESEARCH PROCEDURES 67

(from (3.41)). Furthermore,

\/(b + COmax)? + 4cpt > | b+ COmax | = max {b + cAmax, —0 — COmax} - (3.42)

If b+ cAmax > 0, using (3.41) and (3.42) we can obtain

_ma.x —b b _Inax _
o> = ;(+ COma) > Omax - (3.43)
C

b
If b+ ¢@max < 0, it implies that Gma, < ——. Combining (3.41) and (3.42) we have
c

_max - b - b max b _
r > « (b + cOma) = —— > Omax - (3.44)
2c c

From (3.43), (3.44) and the fact that at least one root of (3.38) must exist in the
interval (0, Gmay), it follows that 75 € (0, Gmax)-

Case 2. If ¢ < 0, 7y and 5 both are real (from (3.40)) and (3.41) shows that they
have the opposite sign. We also know that 4c(p + bimax) > 0 because ¢ < 0 and
i+ b@max < 0. Therefore, from (3.39) we have

COlmax — b+ \/(b — COmax)? + 4c(pt + bmax)
> COmax — b+ | b — COmax |> 0. (3.45)

It follows that r < 0 and ry € (0, Gmax) by the same argument as in case 1. [
From (3.37), (3.36) and Lemma 2, we can generate the subsequent trial step o)

by using the algorithm in Table 3.5.

3.4 Linesearch on the Lagrange Multiplier

In most primal-dual algorithms, the steplength on the Lagrange multiplier is either
the same as for x and s, i.e., ay = «, if that is acceptable, or a certain fraction

of the maximal allowable steplength to keep the Lagrange multiplier positive, i.e.,

max

ay = nay®. However, we believe we should be able to do better than that. First of

CHAPTER 3. LINESEARCH PROCEDURES

68

ali) = o

Table 3.5: Algorithm for generating subsequent Trial Steps

Inpl-It: w = (jv 5)7 b= (Aﬂ?, AS), CGmax, Qow; s, ¢I(alow) and 1/)'(045)
Output: o9 is the j trial step length in the linesearch iteration

h=20
1
bl ¢I(alow) and C1 = 7(¢I(a8) - (/b,(alow))
g — Qow
Q) = Qo and G = oy
repeat
h=h+1
d’max = Omax — C~¥l
b=/ () — =
I z z
C = — = (w,(&s) —W(dl) + = - ~)
O — O Omax Omax — Qg
ifc=0
. + bOmax
Qrial = O + uTa
else
 COmax — b — \/(b + COmax)? + 4ep
Olgrigl = Oy + %2
end

ozgj) = safeguard(uriar, 0y, Ghign) (see Table 3.3)
1/_)’(0453)) =b + cl(ag) — Qow) — pVB(5 + agj)As)TAs
Update the interval of uncertainty (oz,(f) &y, Ghign) (see Table 3.2)

until | ¢/ (o) |> p

()

CHAPTER 3. LINESEARCH PROCEDURES 69

all, the linesearch on z and s is independent of the Lagrange multiplier A. Therefore,
we can decide the steplength «, on A after the linesearch procedure for z and s. In the
latter, the gradient of the objective function for the new iterate is obtained. In each
primal-dual iteration, we try to find a point that is close to the optimality condition
(2.4) of the barrier subproblem (2.1). Since the first and second equations of the
optimality condition (2.4) involve the Lagrange multiplier A\, we consider choosing

the steplength o, as the minimizer of

pLllS(N" + an AX®) — pre|* + (1 = p) |1 27 (garsr — (N + anAN) + (g + enAAD)1*
(3.46)
a convex combination of the two-norm of the first and second equations of (2.4).

The minimizer &, of (3.46) is given by

g, = PUANTS(SN = pye) + (1= pi)(gares — M+ M)TZZT (AN, — AN
pLISAN)|1Z + (1 = p) | ZT(ANE — AN)|1?

(3.47)
The computation of (3.47) needs matrix-vector multiplications ZT (AN — ANF) and
ZT (ggrsr — AF 4+ XF)) which are cheap to compute (2n additions/subtractions).
We should note that the new multiplier iterate obtained from \¥t1 = M* 4+ G, AN
may not be strictly positive as we need. To ensure the strictly interior property, we
set the steplength a as

a) = min {pay™, an} . (3.48)

Chapter 4
Implementation

In this chapter, we describe NPDNET, an implementation of the null-space truncated
primal-dual algorithm for solving nonlinear network problems. We first specify the
initial estimates and the parameter settings and describe the complete version of the
NPDNET algorithm in section 4.1. Secondly, we conduct some numerical experiments
on problems of the form (1.3). In section 4.2, we describe the test problems, the
performance results and the comparisons with a general-purpose large-scale nonlinear
optimization solver, SNOPT [38].

NPDNET is a collection of Fortran 77 subroutines for solving nonlinear pure
network optimization problems of the form (1.3). The user must provide a subroutine
to define the function value, the gradient and the Hessian matrix of the objective,
and four arrays, nodefyom, nodes,, | and u, to define the network. The format of the

user-supplied subroutine is referred to as SNOPT format, which can be found in [38].

4.1 Other Implementation Issues

To complete the algorithm description, we make some remarks on other important
implementation issues of the truncated null-space primal-dual algorithm, namely the

starting solution and parameter settings.

70

CHAPTER 4. IMPLEMENTATION 71

The primal-dual algorithm starts with any solution {z°, s?,s% A A} satisfying

s9>0,82>0, A >0 AN >0 (4.1)

and
' —s) =1, (4.2)
=8 =u. (4.3)

Additionally, it is desirable that the initial point also satisfy the remaining equation
in the modified KKT system (2.4) that defines the central path. Consequently, we

also require that the starting solution satisfy the following equations:

SN = ple and S2A0 = 4l (4.4)
for pg > 0.
In NPDNET, we let

2 = (u+1)/2,
o= (w+1)/2,
sv = (u+1)/2, (4.5)
Xo= p(S)) e,
o= 1(Sy) e,

be the starting solution.

In NPDNET, the primal-dual barrier parameter has an initial value
o = 500 . (4.6)

Subsequently, for iteration k£ > 1, the procedure for updating u* is

if (M (2%, s%, \F,0F k) < 9 p*~'and mineig(ZTHZ) > —op)
pt = ggptt

CHAPTER 4. IMPLEMENTATION 72

as described in Table 2.1 with
Y =1, Y9=1 and 93 =0.02. (4.7)
As described in Table 2.1, the stopping criterion is
M(zF, s X AR 0) < epp (4.8)
where we set the optimality tolerance
epp = 1078 . (4.9)

In the Preconditioned Conjugate-Gradient method, we terminate the PCG process

when one of the criteria

I7ill < 7as/mxliroll (4.10)
VA N\T .k
(Zy) 95 I _ < g, (4.11)
124l - llgz|
or
CGiter > m3(n —m) (4.12)
is triggered. In NPDNET, we set
=002, 7=10"% and 73 =02. (4.13)

In the spanning tree updating algorithm, see Table 2.5, the threshold weight for

adding a non-basic arc to the spanning tree is

thredagg = (1 * Wsore(M) (4.14)

CHAPTER 4. IMPLEMENTATION 73

and the threshold weight for deleting a basic arc from the spanning tree is
thTEddel = CQ * wsort(m)) (415)
where wgor4(m) is the m-th largest element of the weight w. In NPDNET, we set

1
(=10 and (=5 (4.16)

In the algorithm for updating the spanning tree by deleting an arc, see Table 2.7, the
criterion for an acceptable arc is an arc with one end node in the rooted tree and

another in the subtree whose weight is greater than

Gw(ige) - (4.17)

In NPDNET, we set
(3 = 10. (4.18)

For the stopping rule in the algorithm for linesearch iterate, see Table 3.1, the

initial trial steplength a,(co) is acceptable when

V(o) — ¥(0) < 30V (0) (4.19)

and the subsequent trial step oz,(cj) is acceptable when it satisfies the Gamma rule:

| () |< =mw'(0) (4.20)
and
¥(af) < (0) + 00 (0) - (4.21)
In NPDNET, we set

If xy, is close to a saddle point then the direction obtained may not be a direction of

sufficient descent. What is happening is the magnitude of the direction of negative

CHAPTER 4. IMPLEMENTATION 74

curvature may be large compared to the direction of descent. The likelihood of this oc-
currence is small because saddle points are not points of attraction for the algorithm.
Therefore, it is not worthwhile having a special search under these circumstances or
having complex termination criteria. It has sufficient to have a simple back-tracking
algorithm that terminates at the first point lower than the current iterate.

For a given interval of uncertainty (cow, @nign), we define a safeguarded interval

in the safeguarded steplength algorithm, see Table 3.3, as

[(1 - nl)alow + M Qhighs N Qow + (1 - nl)ahigh] . (4-23)

To prevent the slow convergence cases caused by the barrier function, we take the

trial steplength
T20ow + (1 - 772)ahigh (424)

if it happens three times in a row that the trial step a,;o obtained from the interpola-
tion method is less than the lower bound of the safeguarded interval and the interval

of uncertainty keeps updating the left-end point. In NPDNET, we set
m =02, n=0.02. (4.25)

In the algorithm for initial trial step, see Table 3.4, and the algorithm for gener-
ating subsequent trial steps, see Table 3.5, we use an iterative procedure to find the
minimizer of the interpolating functions t(-) and t(-), respectively. The stopping

criterion for the iterative procedure is

| 9'(9) [< & (4.26)
and
| (™) |< & . (4.27)

In NPDNET, we set
& =01, &=0.1. (4.28)

CHAPTER 4. IMPLEMENTATION

75

Table 4.1: Truncated null-space primal-dual algorithm

Initialize o, po, So and Ag by (4.5) and (4.6)

k=0
repeat
if (M (xF, s8N 0E pF) < 9 %=1 and mineig(ZTHZ) > —9ou)
pt = D3kt
else
L
end if

call spanning tree updating algorithm, Table 2.5
call modified CG-Lanczos algorithm, Table 2.4, for Axy
compute As* and AN from (2.6)
call linesearch procedure, Table 3.1, for of
T = 2k 4+ ok Agh
shHl = gk 4 afAgh
compute of from (3.48)
/\k—|—1 —)\k + CkiC\A)\k
k=k+1
until M (z*, s*, ¥, A\F 0) < epp and mineig(ZTHZ) > 0

IEEATR]

To conclude, we give a complete version of truncated null-space primal-dual algo-

rithm in Table 4.1.

4.2 Experimental Results and Comparisons

In the context of network optimization, most researchers are interested in problems

with either a linear objective or some special nonlinear objective, e.g., a separable

function, convex/quadratic function or concave function. General-purpose network

optimization has not received much attention in the literature. As a result, there

does not exist any test problem set for general nonlinear network optimization in

the public domain. To test our algorithm, we constructed two sets of test problems

CHAPTER 4. IMPLEMENTATION 76

Table 4.2: Hardware and system configuration

CPU : AMD Athlon processor at 1.2 GHZ
Memory size : 768 Mbytes

Operating system : Microsoft Windows 2000

Fortran Compiler : Fortran PowerStation 4.0

by combining unconstrained minimization test problems and two network constraint
generators. Details are given in section 4.2.1.

The experiments were performed on a PC with the configuration summarized in
Table 4.2. Though this hardware is fast for integer arithmetic, it is less efficient
for floating-point computation. We expect NPDNET to benefit from systems with
improved floating-point performance relative to integer arithmetic. A large set of
computational results is presented and discussed in section 4.2.2. We then compare

some of our results to SNOPT in section 4.2.3.

4.2.1 Test problems

In our test problem set, we generate the objective function and the constraints sepa-
rately. For the objective functions F'(x), we use the Buckley test set containing 142
unconstrained test problems. Table 4.3 lists the function name, problem name, and
the size of each implemented test problem. The function value, the gradient and the
Hessian are provided for all test problems.

For the network constraints, we consider two different sets of problems. The
first set of network constraints is from netgen [62], a pure minimum cost linear
network flow problem generator. The generator can be retrieved from the ftp site
dimacs.rutgers.edu. For the first set of test problems—Network Flow Problems
(NFP)—we generate the input file for the minimum cost linear network flow problem
from netgen and replace the linear objective function by one of the nonlinear functions

from the Buckley test set.

CHAPTER 4. IMPLEMENTATION

Table 4.3: The Buckley test set

7

function problem size || function problem size || function problem size
ARGAUS ARGAUS 3 GENTSN GENT2B 2 PENAL3 PENL3GM5 1000
ARGQDN ARGQDN50 5 || GENTSN GENTS50A 3 || POWBSC POWBSC 2
ARGQDO ARGQO10 5 GENTSN GENT500A 3 POWBSC POWBSC50 50
ARGQDZ ARGQDZ10 3 GENTSN GENT1000 10 POWBSC POWBS500 100
ARTRIG ARTRIG10 10 || GOTTFR GOTTFR 12 || POWBSC POWB1000 1000
AVRIEL AVRIEL3 2 GULF GULFSH2 2 POWER POWER10 10
BARD70 BARD70 3 HELIX HELIX 2 POWER POWERT5 75
BEALS58 BEAL5S8KO 2 HILBRT HILBR10A 2 POWQUD POWQUDSA 4
BIGGS BIGGS6 6 HILBRT HILBRT12 2 POWSSQ POWSSQ 2
BOOTH BOOTH 2 HIMLN3 HIMLN3 2 PWSING PWSING5 4
BOX66 BOX662HL 2 HIMM1 HIMM1 2 PWSING PWSING60 60
BRKMCC BRKMCC 2 HIMM?25 HIMM?25 2 PWSING PWSIN100 100
BROWNB BROWNB 2 HIMM?27 HIMM?27 2 PWSING PWSI1000 1000
BROWND BROWND 4 HIMM28 HIMM28 2 QUARTC QUARTC 25
BROYT7D BROY7D 60 HIMM?29 HIMM?29 2 RECIPE RECIPE 3
BRWNAL BRWNAL10 10 HIMM30 HIMM30 3 ROSENB ROSENB 2
BRWNAL BRWNL100 100 HIMM32 HIMM32 4 SHNRSN SHNRSN10 10
BRYBND BRYBND 10 HIMM33 HIMMS33A 2 SARSEB SARSEB 4
BRYBND BRYBND18 100 HYPCIR HYPCIR 2 SCHMVT SCHMVT 3
BRYTRI BRYTRI2 5 JENSMP JENSMP 2 SCHMVT SCHMVT50 50
BRYTRI BRYTRI6 20 KOWOSB KOWOSB1 4 SCHMVT SCHMV500 500
BRYTRI BRYTRI10 600 MANCIN MANCIN10 10 SCHMVT SCHV1000 1000
CHEBYQ CHEBYQS8 8 MANCIN MANCIN50 50 SISSER SISSER 2
CHEBYQ CHEBYQI10 10 MEYER MEYER 3 SQRTMX MSQRTB9 9
CHNRSH CHNRSH10 10 NMSRF1 NMSURF64 36 SQRTMX MSQRTB49 49
CLIFF CLIFF 2 NMSRF1 NMSURA484 400 TDQUAD TDQ10 10
CLUSTR CLUSTR 2 NMSRF2 SNMSURG64 36 TDQUAD TDQ500 500
CRGLVY CRGLVY 4 || NMSRF2 SNMSR484 400 || TDQUAD TDQ1000 1000
CRGLVY CRGLVY10 10 MORCIN MORCIN10 10 TOIN2 TOIN2 3
CRGLVY CRGLY500 500 MOREBV MOREBV10 10 TOIN4 TOIN4 4
CRGLVY CRGL1000 1000 MOREBV MOREBV18 18 TOINT PSPTOINT 50
DIX7DG DIX7DGA 15 MOREBV MORBV998 998 TRIDIA TRIDIA10 10
DIXON DIXON 10 NONDIA NONDIA10 10 TRIDIA TRLN100 100
ENGVL1 ENGVL1A 2 NONDIA NONDIA20 20 TRIDIA TRLN1000 1000
ENGVL1 ENGVL1B2 10 NONDIA NONDI500 500 TRIGTO TRIGT50 50
ENGVL1 ENGVL1B4 100 NONDIA NOND1000 1000 TRIGTO TRIGT100 100
ENGVL1 ENGVL1B6 1000 OSBRN1 OSBRN1 5 VARDIM VARDIM 10
ENGVL2 ENGVL2 3 OSBRN2 OSBRN2 11 VARDIM VARDIM100 100
EXTRSN EXTRARI10 10 PENALI1L PEN1GM6 10 VAROSE VAROSEBG1 50
EXTRSN EXTRARS50 50 PENALIL PEN1LN1 50 VAROSE VAROSEBG2 100
EXTRSN EXTRA100 100 PENAL1 PEN1LN2 100 WATSON WATSONG6 6
EXTRSN EXTR1000 1000 PENAL1 PEN1LN3 1000 WATSON WATSON12 12
FRANK FRANKS 8 PENAL2 PEN2GM6 4 WOODS WOODS 4
FRANK FRANK12 12 PENAL2 PEN2GM1 50 WOODS WOODS80 80
FRDRTH FRDRTH 2 PENAL2 PEN2GM2 100 XTX XTX2 2
FRDRTH FRDRTHB3 50 PENAL3 PENL3GM3 50 XTX XTX16 16
FRDRTH FRDRTHB4 100 PENAL3 PENL3GM4 100 ZANGWL ZANGWLI1 3
FRDRTH FRDRTHB7 1000

CHAPTER 4. IMPLEMENTATION 78

The second set of network constraints that we consider is doubly stochastic con-
straints. These arise in the content of statistical estimation problems, where both the

row sum and the column sum of a square matrix are equal to one. In mathematical

form,
j=m
j=1
i=m
oxy=1, V1<j<m (4.30)
i=1
0<uz; <1, Vi<i<mand1<j<m. (4.31)

The doubly stochastic constraints can be reformulated as network constraints by
multiplying both sides of constraints (4.30) by —1. The network interpretation for
doubly stochastic constraints is as shown in Figure 4.1, where the node r; represents
row ¢ and the node c; represents column j. The arc between node r; and node c;
represents component z;;. This set of network contains 2m nodes and m? arcs. The
second set of test problems—Doubly Stochastic Problems (DSP)—have a nonlinear
objective function from the Buckley test set and a set of doubly stochastic constraints.
For any integer m, an interior feasible point for DSP always exists because the matrix

with all components 1/m is feasible.

Figure 4.1: Network interpretation for doubly stochastic problem

CHAPTER 4. IMPLEMENTATION 79

4.2.2 Computational results

In this section, we present preliminary results with our code NPDNET. For every
class of problems, we summarize the runs of the problems solved by NPDNET in

tables that include the following information:

Name the name of the objective function,

N, the number of arcs in the network,

N, the number of nodes in the network,

Ngj the number of variables involved in the objective function evaluation,

iter the number of primal-dual iterations,

func the number of function evaluations,

CB the number of spanning tree updates,

CG the number of CG iterations,

Ny the number of active variables at the optimal solution,

Ttun ~ the CPU time (in seconds) that NPDNET spends in the function evaluations,
Tiotar the total CPU time (in seconds) that NPDNET spends to solve the problem.

For the test set DSP, we first set the size of the problem to be m = |/4Ny; + 1.
Tables 4.4-4.7 summarize the runs for this DSP test set. We make the following

remarks regarding the computational results:

e NPDNET required an average of 29.4 primal-dual iterations to converge to the
optimal solution, and the number of iterations does not grow as the size of the

problem grows.

e On average, it takes 1.828 function evaluations per primal-dual iteration. This
result indicates that our linesearch algorithm works very well in the primal-dual

algorithm.

CHAPTER 4. IMPLEMENTATION 80

e The average ratio of ite?PNn is 0.029. This means that only 3 percent of the
basis variables were updated in each iteration and confirms that the number of

basis variables that we need to change is small from one iteration to the next.

For the test set NFP, we first generated 5 network flow problems with different
sizes from netgen. We created a code that reads the standard netgen output file to
fit our data structure. For each test problem, we decided which set of constraints to
choose based on Ny, the number of variables involved in the function evaluation.
Tables 4.8-4.11 summarize the runs for this NFP test set. For the NFP runs, we

make the following remarks:

e NPDNET required an average of 32.16 primal-dual iterations to converge to
the optimal solution. This is a little more than for the DSP problems because

NPDNET spends more iterations in phase I.

e On average, it takes 1.46 function evaluations per primal-dual iteration. The

average ratio of CB_ s 0.035.

iter X Np,

e NPDNET fails to converge on some of the NFP test problems, for instance
CRGL1000, PENL3GM5, POWBS500, POWB1000, SCHV1000 and
VARDIM100, because the objective function is not well defined on the feasible

region.

In order to test NPDNET on the large problems, we chose 9 functions, including
CRGL1000, ENGVL1B6, EXTR1000, GENT1000, NOND1000, PEN1LN3, PWSI1000
and TDQ1000, with 1000 variables involved in the function evaluation, and we gen-
erated large DSP constraint sets of different sizes. Table 4.12 summarizes the runs

for the large DSP test set. For those runs, we make the following remarks:
e The number of primal-dual iterations stays the same as the problem size grows.

e The growth rate of CPU time for NPDNET is close to a linear rate.

CHAPTER 4. IMPLEMENTATION

Table 4.4: Computational results for DSP set 1

Name No Np, Ngj; iter func CB CG Nat Trun Tiotal
AVRIEL3 17 8 2 19 23 5 61 2 0.00 0.02
BEALS8KO 17 8 2 16 20 5 bl 7 0.00 0.05
BOOTH 17 8 2 16 18 2 40 7 0.00 0.02
BOX662HL 17 8 2 17 21 2 59 7 0.00 0.02
BRKMCC 17 8 2 16 20 3 42 2 0.00 0.04
BROWNB 26 10 2 18 18 7 53 9 0.00 0.02
CLIFF 17 8 2 16 31 5 61 0 0.00 0.02
CLUSTR 17 8 2 15 21 3 44 2 0.00 0.04
ENGVLIA 17 8 2 20 36 5 78 6 0.00 0.03
FRDRTH 17 8 2 18 20 5 62 7 0.00 0.02
GENT2B 17 8 2 17 23 4 65 2 0.00 0.03
GOTTFR 17 8 2 27 54 2 117 0 0.00 0.04
HIMLN3 17 8 2 21 44 5 85 2 0.00 0.02
HIMM1 17 8 2 16 20 3 39 7 0.00 0.02
HIMM25 17 8 2 16 19 5 50 7 0.00 0.02
HIMM27 17 8 2 14 29 3 38 0 0.00 0.06
HIMM28 17 8 2 18 21 2 53 7 0.00 0.03
HIMM29 17 8 2 73 223 2 353 0 0.00 0.07
HIMM33A 17 8 2 20 37 2 78 2 0.00 0.03
HYPCIR 17 8 2 19 24 5 51 7 0.00 0.03
JENSMP 17 8 2 10 58 2 44 0 0.00 0.02
POWBSC 17 8 2 59 120 4 226 5 0.00 0.06
POWSSQ 17 8 2 21 32 2 88 1 0.00 0.02
ROSENB 17 8 2 20 26 4 78 2 0.00 0.02
SISSER 17 8 2 15 25 2 54 0 0.00 0.03
XTX2 17 8 2 17 32 2 65 0 0.00 0.03
ARGAUS 26 10 3 17 29 5 77 3 0.00 0.03
ARGQDZ10 26 10 3 17 63 3 99 0 0.01 0.03
BARD70 26 10 3 19 19 6 105 9 0.00 0.02
ENGVL2 26 10 3 24 53 3 102 9 0.00 0.04
GULFSH2 26 10 3 25 56 7 95 9 0.02 0.06
HELIX 26 10 3 25 54 7 141 9 0.00 0.01
HIMM30 26 10 3 16 18 5 76 2 0.00 0.03
MEYER 37 12 3 19 19 9 64 11 0.00 0.03
SCHMVT 26 10 3 16 25 5 83 2 0.00 0.04

CHAPTER 4. IMPLEMENTATION

Table 4.5: Computational results for DSP set 2

Name No N, Ng; iter func CB CG N Trun Tiotal
TOIN2 26 10 3 16 25 3 87 0 0.00 0.02
ZANGWL1 26 10 3 15 27 3 71 0 0.00 0.02
CRGLVY 26 10 4 16 20 5 81 2 0.00 0.03
HIMM32 26 10 4 23 45 7T 67 9 0.00 0.05
KOWOSB1 26 10 4 16 41 4 93 0 0.01 0.04
PEN2GM6 26 10 4 88 222 4 631 0 0.00 0.09
POWQUDS8SA 26 10 4 10 64 0 25 0 0.00 0.03
PWSING4 26 10 4 23 32 4 149 2 0.00 0.02
SARSEB 26 10 4 18 23 4 103 2 0.00 0.02
TOIN4 26 10 4 14 23 4 72 0 0.00 0.02
WOODS 26 10 4 25 32 5 126 2 0.00 0.03
ARGQDN50 37 12 5 15 21 4 43 11 0.00 0.02
ARGQO10 37 12 5 21 61 5 151 0 0.00 0.04
BRYTRI2 37 12 5 22 34 5 164 2 0.00 0.03
OSBRN1 37 12 5 35 59 10 349 1 0.00 0.06
BIGGS6 37 12 6 26 29 5 172 4 0.00 0.04
WATSONG6 37 12 6 18 21 6 155 3 0.01 0.03
CHEBYQ8 50 14 8 65 104 20 5/97 1 0.02 0.12
FRANKS 50 14 8 16 22 12 104 5 0.00 0.03
MSQRTB9 50 14 9 16 22 12 119 6 0.00 0.03
ARTRIG10 65 16 10 13 37 8 150 0 0.00 0.04
BRWNAL10 65 16 10 17 19 13 85 15 0.00 0.05
BRYBND 65 16 10 24 36 9 288 3 0.01 0.06
CHEBYQ10 65 16 10 51 81 14 547 6 0.00 0.13
CHNRSHI10 65 16 10 16 22 7 149 7 0.00 0.03
CRGLVY10 65 16 10 18 23 12 139 10 0.00 0.04
DIXON 65 16 10 17 23 14 217 9 0.00 0.03
ENGVL1B2 65 16 10 21 33 13 290 0 0.00 0.05
EXTRARI10 65 16 10 24 41 17 275 6 0.00 0.07
HILBR10A 65 16 10 15 22 7 154 16 0.00 0.03
MANCIN10 65 16 10 19 19 8 125 4 0.03 0.07
MORCIN10 65 16 10 14 20 8 132 2 0.00 0.04
MOREBV10 65 16 10 14 26 8 200 0 0.00 0.04
NONDIA10 65 16 10 16 66 9 120 0 0.00 0.04

82

CHAPTER 4. IMPLEMENTATION

Table 4.6: Computational results for DSP set 3

Name Ny N Ng; iter func CB CG Nt Tiun Tiota
PEN1GM6 65 16 10 18 59 8 168 0 0.00 0.04
POWER10 65 16 10 19 39 8 199 2 0.00 0.05
SHNRSN10 65 16 10 19 24 8 159 6 0.01 0.04
TDQ10 65 16 10 20 29 13 114 2 0.00 0.03
TRIDIA10 65 16 10 19 49 8 256 0 0.00 0.04
VARDIM 101 20 10 34 65 12 196 19 0.00 0.10
OSBRN2 65 16 11 23 30 9 274 4 019 0.24
FRANK12 65 16 1217 25 14 205 6 0.01 0.05
HILBRT12 65 16 12 15 22 7 151 19 0.00 0.03
WATSON12 65 16 12 20 22 8 190 9 0.02 0.04
DIX7DGA 82 18 15 13 24 9 111 5 0.00 0.04
XTX16 82 18 16 17 35 9 109 0 0.00 0.04
MOREBV18 101 20 18 16 25 10 399 1 0.00 0.06
BRYTRIG6 101 20 20 18 23 9 262 12 0.00 0.05
NONDIA20 101 20 20 15 60 10 64 0 0.00 0.04
QUARTC 122 22 25 32 40 12 217 53 0.00 0.09
NMSURF64 170 26 36 22 35 15 356 30 0.01 0.11
SNMSUR64 170 26 36 25 48 15 408 30 0.01 0.15
MSQRTB49 226 30 49 35 47 30 345 78 0.15 043
EXTRAR50 257 32 o0 27 45 34 346 14 0.00 0.19
FRDRTHB3 257 32 50 94 107 97 573 88 0.04 0.69
GENT50A 257 32 50 22 59 16 357 0 0.01 0.20
MANCINS0 290 34 50 100 646 37 1659 76 14.86 15.92
PENI1LN1 257 32 50 17 58 16 181 0 0.00 0.15
PEN2GM1 257 32 o0 26 37 31 329 91 0.02 0.21
PENL3GM3 257 32 50 138 189 114 566 112 0.22 1.25
POWBSC50 257 32 50 61 136 37 2434 0 0.02 0.93
SCHMVT50 257 32 50 27 o0 31 2185 15 0.05 0.54
PSPTOINT 257 32 o0 18 22 21 207 80 0.06 0.14
TRIGT50 257 32 50 27 34 33 317 34 031 0.59

83

CHAPTER 4. IMPLEMENTATION

Table 4.7: Computational results for DSP set 4

84

Name Ny N, Ng; iter func CB CG Naet Trun Tiotal
BROY7D 290 34 60 19 24 27 1041 31 0.02 0.37
PWSING60 290 34 60 27 49 22 1464 17 0.03 0.42
POWERT5 362 38 7 20 26 18 215 15 0.01 0.22
WOODSS80 362 38 80 20 23 33 275 54 0.02 0.21
BRWNL100 442 42 100 17 19 20 130 6 0.06 0.24
BRYBND18 442 42 100 27 33 26 986 60 0.27 0.76
ENGVL1B4 442 42 100 14 20 34 238 6 0.03 0.19
EXTRA100 442 42 100 26 50 31 521 5 0.03 0.34
FRDRTHB4 442 42 100 169 175 179 668 164 0.36 2.19
PEN1LN2 442 42 100 26 53 22 290 0 0.06 0.38
PEN2GM2 442 42 100 31 52 29 397 132 0.09 0.53
PENL3GM4 442 42 100 188 307 203 1782 185 1.06 3.96
PWSIN100 442 42 100 27 47 27 1419 29 0.04 0.59
TRLN100 442 42 100 23 43 36 1413 8§ 0.01 0.55
TRIGT100 442 42 100 31 41 26 406 69 2.78 3.16
NMSUR484 1682 82 400 26 49 62 865 355 2.3 3.70
SNMSR484 1682 82 400 26 49 62 866 355 2.28 3.64
CRGLY500 2117 92 500 17 23 56 174 258 1.23 1.86
GENT500A 2117 92 500 20 64 46 437 0 094 2.11
NONDI500 2117 92 500 18 28 46 121 6 1.19 1.76
POWBS500 2117 92 500 90 146 78 30553 6 749 47.52
TDQ500 2117 92 500 16 24 81 128 75 0.67 1.31
BRYTRI1I0 2305 96 600 122 135 62 7386 520 11.61 26.84
MORBV998 4226 130 998 16 40 65 5892 0 439 29.81
CRGL1000 4226 130 1000 19 33 104 224 542 5.53 7.78
ENGVL1IB6 4226 130 1000 16 26 87 428 41 2.98 5.81
EXTR1000 4226 130 1000 23 42 114 339 540 4.69 7.56
FRDRTHB7 4226 130 1000 93 118 370 917 1736 26.72 57.77
GENT1000 4226 130 1000 21 67 65 362 0 4.05 7.02
NOND1000 4226 130 1000 19 32 89 145 40 5.11 6.95
PENI1LN3 4226 130 1000 44 108 67 360 0 11.75 34.45
POWB1000 4226 130 1000 164 308 154 164096 40 56.29 739.94
PWSI1000 4226 130 1000 23 42 85 2098 256 4.81 14.77
TDQ1000 4226 130 1000 22 52 113 241 25 3.83 6.30
TRLN1000 4226 130 1000 21 32 113 1891 64 4.18 13.18

CHAPTER 4. IMPLEMENTATION

Table 4.8: Computational results for NFP set 1

Name Ny N, Ng; iter func CB CG Nou Trun Tiota
ARGAUS 17 10 3 20 20 4 65) 0 0.05
ARGQDN50 17 10 5 18 21 4 66 3 0 0.03
ARGQDZ10 17 10 3 19 19 5 64 9 0 0.02
ARGQO10 17 10 5 20 20 5 50 8 0 0.02
ARTRIGI10 17 10 10 22 22 4 80 4 0 0.03
AVRIEL3 17 10 2 15 15 3 60 1 0 0.03
BARDT70 17 10 3 17 17 4 52 5 0.01 0.03
BEALSSKO 17 10 2 24 24 7 79 4 0 0.01
BIGGS6 17 10 6 17 18 6 68 4 0 0.02
BOOTH 17 10 2 16 19 3 62 1 0 0.03
BOX662HL 17 10 2 19 22 5 76 1 0 0.02
BRKMCC 17 10 2 18 20 4 72 1 0 0.03
BROWNB 17 10 2 24 24 6 56) 0 0.03
BROWND 17 10 4 21 25 6 71 2 0 0.02
BRWNAL10 17 10 10 29 56 6 107 6 0 0.02
BRYBND 17 10 10 43 80 13 149 4 0 0.04
BRYTRI2 17 10 5 35 83 4 139 2 0 0.03
CHNRSH10 17 10 10 26 49 5 104 3 0.01 0.03
CLIFF 17 10 2 15 31 4 59 1 0 0.03
CLUSTR 17 10 2 29 31 10 88 1 0 0.07
DIXON 17 10 10 17 19 4 68 1 0 0.02
ENGVL1A 17 10 2 16 16 3 61 1 0 0.04
ENGVL1B2 17 10 10 24 35 4 96 3 0 0.03
ENGVL2 17 10 3 23 141 3 88 0 0.01 0.05
EXTRAR10 17 10 10 32 7l 7 128 4 0 0.03
FRANKS 17 10 8 17 26 5 68 1 0 0.02
FRDRTH 17 10 2 17 17 4 65 1 0 0.01
GENT2B 17 10 2 20 21 5 80 1 0 0.01
GOTTFR 17 10 2 25 30 8 85 1 0 0.04
HILBR10A 17 10 10 17 17 4 58 8 0 0.02
HIMLN3 17 10 2 17 17 5 68 1 0 0.02
HIMM1 17 10 2 15 15 4 60 0 0 0.02
HIMM25 17 10 2 16 16 3 63 1 0 0.01

CHAPTER 4. IMPLEMENTATION

Table 4.9: Computational results for NFP set 2

Name No N Ng; iter func CB CG Noow Trun Tiotar
HIMM29 17 10 2 32 35 7 64) 0 0.03
HIMM30 17 10 3 22 27 5 78 1 0 0.04
HIMM32 17 10 4 46 145 8 167 2 0.02 0.06
HIMM33A 17 10 2 12 17 4 48 0 0 0.04
HYPCIR 17 10 2 15 15 3 95 1 0 0.03
KOWOSB1 17 10 4 20 20 5 69 7 0.01 0.04
MANCIN10 17 10 10 23 24 5 90 3 0.04 0.06
MEYER 17 10 3 22 22 6 40 5 0.01 0.02
MORCIN10 17 10 10 17 17 3 68 3 0 0.02
MOREBV10 17 10 10 25 39 3 100 3 0 0.04
MSQRTB9 17 10 9 27 42 5 107 2 0 0.03
NONDIA10 17 10 10 25 25 5 96 4 0 0.04
OSBRN1 17 10 5 17 17 5 62 4 0.01 0.04
PEN1GM6 17 10 10 17 17 3 68 3 0 0.02
PEN2GM6 17 10 4 30 47 4 106 2 0.01 0.03
POWBSC 17 10 2 90 244 18 187 5 0 0.05
POWERI10 17 10 10 19 19 5 73 3 0 0.01
POWQUDS8A 17 10 4 10 20 2 40 0 0 0.01
POWSSQ 17 10 2 20 27 5 T4) 0 0.02
PWSING4 17 10 4 22 25 7 82) 0 0.03
RECIPE 17 10 3 15 19 3 57 1 0 0.03
ROSENB 17 10 2 21 23 7 84 1 0 0.02
SCHMVT 17 10 3 o0 99 6 128 1 0 0.03
SISSER 17 10 2 16 16 3 60 1 0 0.02
TDQ10 17 10 10 20 24 3 80 4 0 0.04
TOIN2 17 10 3 17 18 3 66 1 0 0.03
TOIN4 17 10 4 14 14 4 56 1 0 0.03
TRIDIA10 17 10 10 16 16 3 64 3 0 0.02
VARDIM 17 10 10 33 67 5 114 9 0 0.02
WATSONG6 17 10 6 24 24 12 55 6 0 0.03
WOODS 17 10 4 20 20 5 80 1 0 0.02
XTX2 17 10 2 20 22 3 80 1 0 0.02
ZANGWL1 17 10 3 18 19 3 72 1 0 0.02

CHAPTER 4. IMPLEMENTATION

Table 4.10: Computational results for NFP set 3

Name Ny N, Ng; iter func CB CG Ny Trun Tiotal

BRYTRI6 42 20 20 21 19 16 149 15 0.01 0.04
CRGLVY 42 20 4 17 44 14 130 0 0 0.03
CRGLVY10 42 20 10 22 20 14 192 2 0 0.04
DIX7DGA 42 20 15 63 223 19 610 11 0.02 0.11

FRANKI12 42 20 12 23 26 15 215 6 0 0.04
HILBRT12 42 20 12 20 18 18 193 19 0 0.04
HIMM27 42 20 2 14 63 11 101 0 0 0.03
HIMM28 42 20 2 16 40 12 140 0 0 0.03
MOREBV18 42 20 18 20 18 16 152 17 0 0.03

NONDIA20 42 20 20 30 28 23 125 17 0 0.04

OSBRN2 42 20 11 32 48 15 307 4 025 031
WATSON12 42 20 12 28 26 17 194 19 0.02 0.06
XTX16 42 20 16 19 17 14 172 6 0 0.03

EXTRARS0 84 40 50 31 41 29 526 26 0.02 0.11
FRDRTHB3 84 40 20 63 93 67 310 30 0.05 0.17
GENT50A 84 40 20 25 26 25 281 21 0 0.08
GULFSH2 84 40 3 27 39 10 310 3 0.03 0.08
HELIX 84 40 3 22 30 9 277 3 0 0.07
HILBR10A 84 40 10 24 30 20 435 14 0 0.08
MSQRTB49 84 40 49 29 31 33 468 29 017 0.25
NMSURF64 84 40 36 20 18 32 377 25 0.01 0.09
PENI1LN1 84 40 o0 22 21 19 301 18 0 0.07
PEN2GM1 84 40 o0 22 20 22 267 21 0.01 0.10
POWERT75 84 40 7w 33 33 25 278 10 0.02 0.18
PSPTOINT 84 40 50 26 36 23 463 27 0.01 0.12
PWSING60 84 40 60 26 34 22 454 24 0.01 0.09
QUARTC 84 40 25 36 100 28 376 19 0.01 0.12
SCHMVT30 84 40 50 46 65 39 638 12 0.04 0.20
SNMSURG64 84 40 36 21 19 33 400 23 0.01 0.07
TRIGT50 84 40 50 38 58 29 412 14 0.42 0.59
VAROSBG1 84 40 50 21 22 19 351 17 0.01 0.07
WOODS80 84 40 80 23 21 24 271 26 0.04 0.14
BROY7D 102 40 60 26 28 39 397 34 0 0.10

CHAPTER 4. IMPLEMENTATION 88
Table 4.11: Computational results for NFP set 4
Name N, N, Ngy; iter func CB CG Nut Trun Tiota
BRWNL100 1010 200 100 32 28 241 3634 17 013 3.15
BRYBND18 1010 200 100 37 36 239 2507 27 030 2.24
BRYTRI1I0 1010 200 600 51 74 333 11258 306 4.07 11.47
ENGVL1B4 1010 200 100 34 36 231 5911 8 0.02 3.65
ENGVL1B6 1010 200 1000 37 36 292 2169 397 5.59 7.42
EXTR1000 1010 200 1000 89 324 363 25557 461 16.77 32.02
EXTRA100 1010 200 100 43 61 237 8616 10 0.02 5.18
FRDRTHB4 1010 200 100 93 103 263 1602 82 0.23 2.70
FRDRTHB7 1010 200 1000 152 165 652 3309 694 39.43 44.06
GENT1000 1010 200 1000 48 49 371 2125 425 7.61 9.65
GENT500A 1010 200 500 57 138 314 6214 210 231 6.77
MORBV998 1010 200 998 30 23 262 3603 382 6.38 9.03
NMSUR484 1010 200 400 42 48 302 9657 152 3.16 9.16
NOND1000 1010 200 1000 55 90 385 2199 475 13.09 15.33
NONDI500 1010 200 500 85 160 342 4221 235 5.07 9.27
PENI1LN2 1010 200 100 26 19 231 1646 8§ 0.03 1.66
PEN1LN3 1010 200 1000 37 33 237 1557 263 797 63.13
PEN2GM2 1010 200 100 42 51 247 1938 36 0.11 2.24
PENL3GM3 1010 200 50 67 94 240 1366 54 0.07 2.14
PENL3GM4 1010 200 100 199 302 281 5168 109 1.05 8.78
POWBSC50 1010 200 50 135 183 301 9080 31 0.05 6.98
PWSI1000 1010 200 1000 41 52 322 4078 514 7.10 10.04
PWSIN100 1010 200 100 34 36 237 4069 34 0.05 2.69
SNMSR484 1010 200 400 40 43 302 9187 152 294 8.61
TDQ1000 1010 200 1000 32 30 237 1655 263 4.27 5.62
TDQ500 1010 200 500 31 29 304 2913 158 1.06 3.28
TRIGT100 1010 200 100 72 75 272 1551 33 5.73 8.23
TRLN100 1010 200 100 30 26 234 3308 7 004 224
TRLN1000 1010 200 1000 43 59 264 2878 325 7.22 9.46
VAROSBG2 1010 200 100 31 27 234 3671 16 0.09 249

CHAPTER 4. IMPLEMENTATION 89
Table 4.12: Computational results for large DSP
Name N, N, Ngj iter func CB CG Nogt Tpun Tiotal
CRGL1000 10001 200 1000 18 27 109 176 502 5.04 10.53
ENGVL1B6 10001 200 1000 13 24 99 159 1 240 6.22
EXTR1000 10001 200 1000 19 36 99 123 500 3.90 8.98
GENT1000 10001 200 1000 20 92 99 338 0 4.26 12.19
NOND1000 10001 200 1000 24 123 100 110 1 6.65 13.74
PENI1LN3 10001 200 1000 61 152 97 387 0 15.22 138.33
PWSI1000 10001 200 1000 31 78 99 727 250 7.12 21.05
TDQ1000 10001 200 1000 20 67 188 144 0 348 9.17
TRLN1000 10001 200 1000 27 52 99 1530 81 4.99 27.82
CRGL1000 108901 660 1000 23 49 496 374 822 743 151.88
ENGVL1B6 108901 660 1000 20 42 16 336 321 4.61 119.38
EXTR1000 108901 660 1000 25 67 342 396 815 6.04 155.92
GENT1000 108901 660 1000 19 60 331 220 1 471 93.56
NOND1000 108901 660 1000 26 76 339 200 321 799 123.35
PEN1LN3 108901 660 1000 39 132 18 437 0 11.40 390.78
PWSI1000 108901 660 1000 24 65 413 1101 500 6.41 308.67
TDQ1000 108901 660 1000 28 88 330 270 10 6.06 134.15
TRLN1000 108901 660 1000 26 76 330 2092 319 583 507.32
CRGL1000 1000001 2000 1000 18 37 999 107 502 10.28 645.81
ENGVL1B6 1000001 2000 1000 11 25 1 40 1 546 301.89
EXTR1000 1000001 2000 1000 19 43 999 73 500 9.74 661.32
GENT1000 1000001 2000 1000 15 39 999 99 1 8.22 407.21
NOND1000 1000001 2000 1000 22 87 1 72 1 16.90 1018.97
PEN1LN3 1000001 2000 1000 16 90 1 20 0 1498 T747.71
PWSI1000 1000001 2000 1000 20 59 999 192 500 12.12 822.39
TDQ1000 1000001 2000 1000 22 91 999 82 0 15.78 1080.23
TRLN1000 1000001 2000 1000 27 63 999 3861 987 13.56 8192.04

CHAPTER 4. IMPLEMENTATION 90

Table 4.13: CG iterations comparison

N, 17 26 37 65 101 257
cG
——— 2.06E-01 1.89E-01 1.78E-01 1.56E-01 1.23E-01 9.52E-02
iter X Ny
N, 442 2117 4226 10001 108901 1000001
cG
—— 4.80E-02 3.65E-02 3.27E-02 7.51E-03 2.20E-04 2.18E-05
iter X Ny

4.2.3 Comparisons

In this section, we compare NPDNET to one of the most efficient general-purpose
large-scale nonlinear optimization solvers, SNOPT [38], which is a Fortran 77 package
for large-scale constrained optimization problems. The version of SNOPT that we
compare with is version 5.3 and it runs with default parameter settings. We compare
NPDNET and SNOPT on the DSP problem with m = 33 and m = 46 and 9 objective
functions, including CRGL1000, ENGVL1B6, EXTR1000, GENT1000, NOND1000,
PEN1LN3, PWSI1000 and TDQ1000. Table 4.14 and 4.15 summarize the runs for
these DSP test sets on both Fortran codes, NPDNET and SNOPT. We make the

following remarks regarding the computational results:

e On most of the problems except PWSI1000 and TRLN1000, NPDNET and
SNOPT take a similar number of iterations and function evaluations. However,
the CPU time taken by SNOPT on these problems is about 20 times more for
N, = 1090 and about 100 times more for N, = 2017 than by NPDNET.

e Over all the test problems, NPDNET runs 28 times faster on the problems with
N, = 1090 and 220 times faster on the problems with N, = 2017. Consequently,

we expect to gain more as the size of the problem grows.

e Since NPDNET needs to evaluate the Hessian matrix of the objective function
but SNOPT does not, NPDNET spends more time on the function evaluations

CHAPTER 4. IMPLEMENTATION

Table 4.14: Performance for NPDNET and SNOPT

NPDNET SNOPT
Name N, iter func Tioa iter func Tiota
CRGL1000 1090 | 24 35 7.36 37 40 1545
ENGVL1B6 1090 | 16 24 3.54 49 62 102.17
EXTR1000 1090 | 23 38 5.24 58 66 62.29
GENT1000 1090 | 26 51 5.50 71 115 28447
NOND1000 1090 | 27 55 7.99 81 86 141.65
PENILN3 1090 | 17 39 12.79 30 38 123.11
PWSII000 1090 | 25 44 7.92| 407 471 296.87
TDQ1000 1090 | 17 23 3.2 35 41 124.60
TRLN1000 1090 | 19 23 478 | 293 340 400.38
| Average 1090 | 21.55 36.88 6.48 | 117.88 139.88 172.33

than SNOPT.

91

CHAPTER 4. IMPLEMENTATION

Table 4.15: Performance for NPDNET and SNOPT

NPDNET SNOPT
Name N, iter func Tioa iter func Tiotal
CRGL1000 2017 | 22 36 7.24 33 37 304.04
ENGVLIB6 2017 | 13 19 3.09 23 26 236.24
EXTR1000 2017 | 27 57 6.76 37 40 645.04
GENT1000 2017 | 26 70 6.31 43 46 1348.25
NOND1000 2017 | 19 26 5.77 54 61 661.13
PENILN3 2017 | 19 54 14.07 30 34 695.61
PWSI1000 2017 | 25 50 896| 240 261 3101.18
TDQ1000 2017 | 20 29 4.8 27 31 859.42
TRLN1000 2017 | 22 43 8.08| 418 473 6365.36
| Average 2017 [21.44 42,67 7.16 | 100.56 112.11 1579.59 |

92

Chapter 5
Summary and Conclusions

The code described in this paper can be further improved. For instance, great ben-
efits were obtained from parallel implementation of the conjugate-gradient code in
a parallel implementation of a dual affine scaling network flow algorithm [91]. We
expect NPDNET to benefit similarly from such computer architectures.

We have shown that our linesearch algorithm performs very well for the primal-
dual algorithm for network optimization. We expect that it will also prove use-
ful when used within other interior-point algorithms, for example, box-constrained
nonlinear optimization, general linearly constrained nonlinear optimization with box
constraints, and linear inequality constrained optimization.

For generalized network problems, the constraint structure is the same as for
pure network problems but some components of the node-arc incidence matrix A are
neither 1 nor —1. To solve the generalized network problem, the procedure that must
be modified is the algorithm for computing Z x v and Z7 x v. The spanning tree
variable reduction null-space basis can easily extend to generalized network problems
by using the flow multiplier —f;; rather than —1 in the algorithm for computing
multiplication Z x v and ZT x v.

As discussed in [85], [74] and [15], some of the real-world applications have an

embedded network structure of the form

Minimize F(x)

93

CHAPTER 5. SUMMARY AND CONCLUSIONS 94

Ax =0
Cr=d (5.1)
[<zx<u

where Az = b represents network constraints and Cxz = d (C € R"™") represents
general linear constraints. We can also use our algorithm with a different variable
reduction basis. Suppose that P,,,AP.,; = [B N|, where B is a basis (rooted spanning
tree) of A and the associated partition of C is CP., = [C] Cy]. We can apply LU

decomposition with column interchanges to D = Cy — C;B~!N and get
DP.,=LI[U, Uy] , (5.2)

where U; € R™" is an upper-triangular matrix. The variable reduction basis for the

constraint matrix [A7 CT]” can be obtained by

—U7'0,

Z:Pcol I

(5.3)

—B7IN | -
I col

In this class of problems, the number of the general linear constraints r (the num-
ber of rows in C) is usually small comparing to the number of network constraints.
Therefore, the computation of the LU decomposition and the multiplication Z x v
and Z1 x v will be not too computationally intensive.

Finally, we hope this thesis will lead to further research both on the implemen-
tation of null-space truncated methods for other specially structured mathematical
programming problems, as well as on the theoretical analysis of null-space truncated

variants of other interior-point techniques.

Bibliography

[1] D. P. Ahlfeld, R. S. Dembo, J. M. Mulvey, and S. A. Zenios. Nonlinear pro-
gramming on generalized networks. ACM Trans. Math. Software, 13:350-367,
1987.

[2] A. Armacost and S. Mehrotra. Computational comparison of the network sim-
plex method with the affine scaling method. Opsearch, 28:26-43, 1991.

[3] L. Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific J. of Mathematics, 16:1-3, 1966.

4] 1. Baybars and R. H. Edahl. A heuristic method for facility planning in telecom-
g
munications networks with multiple alternate routes. Naval Research Logistics
Quarterly, 35(4):503-528, 1988.

[5] P. Beck, L. Lasdon, and M. Engquist. A reduced gradient algorithm for non-
linear networks. ACM Trans. Math. Software, 9:57-70, 1983.

6] D. P. Bertsekas. Nonlinear Optimization. Athena Scientific, Belmont, MA,
1982.

[7] D. P. Bertsekas. Linear Network Optimization: Algorithm and Codes. The MIT
Press, London, England, 1991.

[8] E. G. Boman. Infeasibility and Negative Curvature in Optimization. PhD the-
sis, The program in Scientific Computing and Computational Mathematics,
Stanford University, 1999.

95

BIBLIOGRAPHY 96

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

M. G. Breitfeld and D. Shanno. Computational experience with penalty /barrier
methods for nonlinear programming. Annals of Operations Research, 62:439—
464, 1996.

G. G. Brown and R. D. McBride. Solving generalized networks. Management
Science, 30:1497-1523, 1984.

V. P. Bulatov. The immersion method for the global minimization of functions
on the convex polyhedra. International Symposium on Engineering, Mathemat-

ics, and Applications, Beijing, China, pages 335-338, 1988.

R. H. Byrd, M. B. Hribar, and J. Nocedal. An interior point algorithm for large

scale nonlinear programming. Technical report, 1999.

R. H. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton methods
with application to unconstrained optimization. SIAM J. Numer. Anal., 26:727—
739, 1989.

R. H. Byrd and R. B. Schnabel. Continuity of the null space basis and con-
strained optimization. Math. Prog., 35:32-41, 1986.

S. Chen and R. Saigal. A primal algorithm for solving a capacitated network
flow problem with additional linear constraints. Networks, 7:59-79, 1977.

F. Chin. Algorithm for updating minimal spanning tree. J. of Computer and
System Sciences, 16:333-344, 1978.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A note on using alternative
second-order models for the subproblems arising in barrier function methods
for minimization. Numer. Math., 68:17-33, 1994.

T. G. Crainic, M. Florian, and J. Leal. A model for the strategic planning
of national freight transportation by rail. Transportation Science, 24(1):1-24,
1990.

BIBLIOGRAPHY 97

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

G. B. Dantzig. Linear Programming and Eztensions. Princeton University

Press, Princeton, New Jersey, 1963.

R. S. Dembo. The performance of nlpnet, a large-scale nonlinear optimizer.
Math. Program. Study, 26:245-248, 1986.

R. S. Dembo. A primal truncated Newton algorithm with application to large-
scale nonlinear network optimization. Math. Program. Study, 31:43-72, 1987.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. STAM
J. Numer. Anal., 19:400-408, 1982.

R. S. Dembo, J. M. Mulvey, and S. A. Zenios. Large-scale nonlinear network
models and their application. OR Practice, 37(3):353-372, 1989.

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

J. E. Dennis, Jr. and R. B. Schnabel. A view of unconstrained optimization. In
G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors, Handbooks in
Operations Research and Management Science, volume 1. Optimization, chap-
ter 1, pages 1-72. North Holland, Amsterdam, New York, Oxford and Tokyo,
19809.

D. Erlenkotter. Two producing areas—dynamic programming solutions. In
A.S. Manne, editor, Investment for Capacity Expansion: Size, Location and
Time Phasing, pages 210-227. MIT Press, Cambridge, MA, 1967.

L. F. Escudero, J. L. de la Fuente, C. Garcia, and F. J. Prieto. Hydropower
generation management under uncertainty via scenario analysis and parallel

computation. IEEE Transactions on Power Systems, 11(2):683-689, 1996.

A. V. Fiacco. Barrier methods for nonlinear programming. In A. Holzman,
editor, Operations Research Support Methodology, pages 377-440, New York,
1979. Marcel Dekker.

BIBLIOGRAPHY 98

[29] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Un-
constrained Minimization Techniques. John Wiley & Sons, Inc., New York,
1968.

[30] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Un-
constrained Minimization Techniques. Classics in Applied Mathematics. STAM,
Philadelphia, 1990.

[31] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Chichester,
second edition, 1987.

[32] R. Fletcher and A. P. McCann. Acceleration techniques for nonlinear program-

ming. In Optimization. Academic Press, New York, 1969.

[33] M. Florian. An introduction to network models used in transportation planning.

In Transportation Planning Models. Elsevier Publishers, New York, 1984.

[34] M. Florian. Nonlinear cost network models in transportation analysis. Mathe-
matical Programming Study 26, pages 167-196, 1986.

[35] C. O. Fong and M. R. Rao. Capacity expansion with two producing regions
and concave costs. Management Science, 22(3):331-339, 1975.

[36] A. Forsgren and W. Murray. Newton methods for large-scale linear equality-
constrained minimization. SIAM J. Matrix Anal. Appl., 14:560-587, 1993.

[37] P. E. Gill and W. Murray. Newton-type methods for unconstrained and linearly
constrained optimization. Math. Prog., 7:311-350, 1974.

[38] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. Numerical Analysis Report 97-2, Depart-
ment of Mathematics, University of California, San Diego, La Jolla, CA, 1997.

[39] P. E. Gill, W. Murray, M. A. Saunders, J. Tomlin, and M. H. Wright. On
projected Newton methods for linear programming and an equivalence to Kar-
markar’s projective method. Math. Prog., 36:183-209, 1986.

BIBLIOGRAPHY 99

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A note on a
sufficient-decrease criterion for a non-derivative step-length procedure. Math.
Prog., 23:349-352, 1982.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Software and its re-
lationship to methods. In P. T. Boggs, R. H. Byrd, and R. B. Schnabel, editors,
Numerical Optimization 1984, pages 139-159. SIAM, Philadelphia, 1985.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Constrained nonlin-
ear programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd,
editors, Handbooks in Operations Research and Management Science, volume
1. Optimization, chapter 3, pages 171-210. North Holland, Amsterdam, 1989.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic
Press, London and New York, 1981.

F. Glover, J. Hultz, D. Klingman, and J. Stutz. Generalized network: A fun-
damental computer based planning tool. Management Science, 24:1209-1220,
1978.

D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H. G.
Rinnooy Kan, and M. J. Todd, editors, Handbooks in Operations Research and
Management Science, volume 1. Optimization, chapter 2, pages 73-170. North
Holland, Amsterdam, 1989.

A. A. Goldstein. On steepest descent. STAM J. on Control, 3:147-151, 1965.

G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins
University Press, Baltimore, Maryland, 1983.

C. C. Gonzaga. Path-following methods for linear programming. STIAM Review,
34:167-224, 1992.

B. G .Gorenstin and N. M. Campodonico. Power system expansion planning
under uncertainty. IEEE Transactions on Power Systems, 8(1):129-136, 1993.

BIBLIOGRAPHY 100

[50] G. Guisewite. Network problems. In R. Horst and P.M. Pardalos, editors,
Handbook of Global Optimization. Kluwer Academic Publisher, 1995.

[51] R. W. Hall. Graphical interpretation of the transportation problem. Trans-
portation Science, 23(1):34-75, 1989.

[52] F. Jarre and M. A. Saunders. A practical interior-point method for convex
programming. SIAM J. Optimization, 5:149-171, 1995.

[53] B. Yaged Jr. Minimum cost routing for static network models. Networks,
1:139-172, 1971.

[64] J. Kaliski and Y. Ye. A decomposition variant of potential reduction algorithm
for linear programming. Management Science, 39:757-776, 1993.

[65] P. V. Kamesam and R. R. Meyer. Multipoint methods for separable nonlinear
network. Math. Program. Studt, 22:185-205, 1984.

[66] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373-395, 1984.

[67] N. Karmarkar and K. G. Ramakrishnan. Computational results of an interior
point algorithm for large scale linear programming. Math. Prog., 52:555-586,
1991.

[58] N. K. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373-395, 1984.

[59] J. L. Kennington and R. V. Helgason. Algorithms for Network Programming.
John Wiley & Sons, New York and Toronto, 1980.

[60] K. Kim and L. Nazareth. Implementation of a primal null-space affine scaling
method and its extensions. Technical Report 92-1, Department of Pure and
Applied Mathematics, Washington State University, 1992.

[61] J. G. Klincewicz. Solving a freight transport problem using facility location
techniques. Operations Research, 38(1):99-109, 1989.

BIBLIOGRAPHY 101

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

D. Klingman, A. Napier, and J. Stutz. Netgen: A program for generating large
scale capacitated assignment, transportation, and minimum-cost flow network
problems. Management Science, 20:814-820, 1974.

D. Klingman, P. H. Randolph, and S. W. Fuller. A cotton ginning problem.
Operations Research, 24(4):700-717, 1976.

A. V. Knyazev. Preconditioned eigensolvers—an oxymoron. FElectronic Tran-
scations on Numerical Analysis, 7:104-123, 1998.

H. Konno. Minimum concave series production system with deterministic de-
mands: A backlogging case. J. of the Operations Research Society of Japan,
16:246-253, 1973.

H. Konno. Minimum concave series production system : Multi-echelon model.
Math. Prog., 41:185-193, 1988.

J. Kruskal. On the shortest spanning tree of graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48-50, 1956.

H. W. Kuhn and W. J. Baumol. An approximate algorithm for the fixed-charge
transportation problem. Naval Research Logistics Quarterly, 9(1):1-16, 1962.

M. Lalee, J. Nocedal, and T. Plantenga. On the implementation of an algorithm
for large-scale equality constrained optimization. STAM J. Optimization, 8:682—
706, 1998.

L. J. LeBlanc. Global solutions for a nonconvex, nonconcave rail network model.
Mathematical Science, 23:131-139, 1978.

D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Pub-
lishing Company, Reading, MA, second edition, 1984.

T. L. Magnanti and R. T. Wong. Network design and transportation planning:
Models and algorithms. Transportation Science, 18(1):1-55, 1984.

BIBLIOGRAPHY 102

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

A. S. Manne and A. F. Veinott Jr. Optimal plant size with arbitray increasing
time paths of demand. In A.S. Manne, editor, Investment for Capacity Expan-
ston: Size, Location and Time Phasing, pages 178-190. MIT Press, Cambridge,
MA, 1967.

R. D. McBride. Solving embedded generalized network problems. European J.
of Operational Research, 21:82-92, 1985.

J. M. Mulvey. Testing of a large scale network optimization program. Math.
Prog., 15:291-315, 1978.

J. M. Mulvey and S. A. Zenios. Solving large scale generalized networks. J. of
Information and Optimization Sciences, 6:95-112, 1985.

W. Murray and M. H. Wright. Line search procedures for the logarithmic barrier
function. SIAM J. Optim., 4:229-246, 1994.

B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimiza-
tion. Math. Prog., 14:41-72, 1978.

S. G. Nash and A. Sofer. A barrier method for large-scale constrained opti-
mization. ORSA J. on Computing, 5:40-53, 1993.

S. G. Nash and A. Sofer. On the complexity of a practical interior-point method.
SIAM J. Optim., 8(3):833-849, 1993.

A. Orden. The transshipment problem. Management Science, 2(3):276-285,
1956.

J. M. Ortega and W. C. Rheinboldt. lterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

M. V. F. Pereira. Optimal stochastic operations scheduling of large hydroelectric
system. International J. of Electrical Power and Energy Systems, 11:161-169,
1989.

BIBLIOGRAPHY 103

[84]

[85]

[86]

[87]

88

[89]

[90]

[91]

[92]

M. V. F. Pereira and L. M. V. G. Pinto. Stochastic optimization of a hydro-
electric system: a decomposition approach. Water Resource Research, 21(6),
1985.

M. Pinar and S. A. Zenios. Solving nonlinear programs with embedded network
structures. In Network Optimization Problems: Algorithm, Application and
Complezity, pages 177-202. World Scientific, New Jersey, 1999.

L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Judice. A trun-
cated primal-infeasible dual-feasible network interior point method. Networks,
35(2):91-108, 2000.

F. A. Potra and Y. Shi. Efficient line search algorithm for unconstrained opti-
mization. J. of Optimization Theory and Applications, 85:677-704, 1995.

M. J. D. Powell. Some global convergence properties of a variable metric algo-
rithm for minimization without exact line searches. In R. W. Cottle and C. E.
Lemke, editors, SIAM-AMS Proceedings, volume IX, Philadelphia, 1976. SIAM

Publications.

M. G. C. Resende and G. Veiga. An efficient implementation of a network

interior point method. Technical report, 1992.

M. G. C. Resende and G. Veiga. Computing the projection in an interior
point algorithm: An experimental comparison. Investigacion Operativa, 3:81—
92, 1993.

M. G. C. Resende and G. Veiga. An implementation of the dual affine scaling
algorithm for minimum cost flow on bipartite uncapacitated networks. SIAM
J. on Optimization, 3:516-537, 1993.

U. T. Ringertz. Optimal design of nonlinear shell structures. Report FFA TN
91-18, The Aeronautical Research Institute of Sweden, 1991.

BIBLIOGRAPHY 104

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

103]

104]

T. A. Rottimg and A. Gjelsvik. Stochastic dual programming for seasonal
scheduling in the Norwegian power system. IEEE Transactions on Power Sys-
tems, 7:273-279, 1992.

M. H. Schneider and S. A. Zenios. A comparative study of algorithms for matrix
balancing. Operations Research, 38(3):439-455, 1990.

A. H. Sherman. On Newton-iterative methods for the solution of system of
nonlinear equations. SIAM J. Numerical Analysis, 15:755-771, 1978.

P. M. Spira and A. Pan. On finding and updating spanning trees and shortest
paths. SIAM J. Computing and System Sciences, 4:375-380, 1975.

R. Tarjan. Data structures and network algorithm. Society for Industrial and
Applied Mathematics, 1983.

R. J. Vanderbei. Linear Programming. Kluwer, Dordrecht, the Netherlands,
1996.

P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11:226—
235, 1968.

M. H. Wright. Interior methods for constrained optimization. In A. Iserles,
editor, Acta Numerica 1992, pages 341-407. Cambridge University Press, New
York, USA, 1992.

M. H. Wright. Why a pure primal Newton barrier step may be infeasible. STAM
J. Optim., 5:1-12, 1995.

S. J. Wright. Primal-dual interior-point methods. SIAM, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1997.

N. Zadeh. On building minimum cost communication networks. Networks,
3:315-331, 1973.

N. Zadeh. On building minimum cost communication networks over time. Net-
works, 4:19-34, 1974.

BIBLIOGRAPHY 105

[105] W. I. Zangwill. A deterministic multi-period productin scheduling model with
backlogging. Management Science, 13(1):105-119, 1966.

[106] W. 1. Zangwill. A backlogging model and a multi-echelon model of a eco-
nomic lot size production system - a network approach,. Management Science,
15(9):506-527, 19609.

[107] S. A. Zenios, A. Drud, and J. M. Mulvey. Balancing large social accounting
matrices with nonlinear network programming. Networks, 19(5):569-585, 1989.

