
A BARRIER ALGORITHM FOR LARGE NONLINEAR

OPTIMIZATION PROBLEMS

a dissertation

submitted to the scientific computing

and computational mathematics program

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

in

scientific computing and computational mathematics

Maureen Doyle

December 2003

Copyright c© 2004 by Maureen Doyle

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

Walter Murray
(Principal Advisor)

I certify that I have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

Michael A. Saunders

I certify that I have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

Gene H. Golub

Approved for the University Committee on Graduate Studies:

iii

Abstract

The problem of large-scale constrained optimization is addressed. A barrier function

is used to transform the problem into a sequence of subproblems with nonlinear equal-

ity constraints. Barrier methods differ primarily in how such subproblems are solved.

The method used here for each subproblem is similar to what the second-derivative

method of Murray and Prieto (MP) reduces to when applied to equality-constrained

problems. Second derivatives are used to generate a search direction and a direction

of negative curvature for a curvilinear search. The MP method would be based on the

KKT equations for the subproblem, but here we use the primal-dual transformation of

those equations.

A key feature of our method is that only a single system of linear equations is

solved at each subproblem iteration (as in barrier methods for linear programming). In

contrast, a trust-region method applied to the subproblem may require the solution of

several linear systems, and sequential quadratic programming (SQP) methods applied

directly to the original problem require the solution of a quadratic program at each

iteration. For small problems this is of little consequence, but for large problems,

especially when iterative methods are necessary to solve the linear systems, it may

prove a vital advantage. The advantage would be lost if the number of iterations were

significantly more than for alternative methods. Since analysis cannot predict iteration

counts for general nonlinear problems, an experimental MATLAB code named MELBA

has been implemented to investigate this aspect of performance. MELBA is compared

primarily to another second-derivative barrier method, KNITRO, whose subproblems

are solved by a trust-region method. We also give results for SNOPT, which uses a

quasi-Newton SQP method. For the common set of problems solved the results are

encouraging because there is little to distinguish between the three sets of results, even

though there is much room for refining the new method. It is shown that the method

converges globally to a point satisfying the second-order necessary conditions, without

an assumption that the iterates lie in a compact set. Moreover, the iterates converge at

a quadratic rate. A feature of the method is that the implementation is close to that of

the theoretical algorithm.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Professor Walter Murray. Professor

Murray’s upbeat attitude and depth of knowledge of optimization was the backbone that

made this thesis possible. I appreciate the time he spent with me to discuss research

and the help and guidance he gave me when I felt that I had hit an impasse. He also

provided me with a wonderful work environment and vital financial support.

I also would like to thank Professor Michael Saunders for his significant contributions

to the software and his thorough review of this thesis. Professor Saunders allowed me

to speak freely, and for that I am so grateful. I value both his professionalism and

patience.

I appreciate Professor Gene Golub’s participation in my thesis review committee.

As the director of SCCM for part of my tenure as a Stanford Ph.D. candidate, Professor

Golub’s passion for SCCM helped create a wonderful learning community for me. I also

thank him for the financial support which supplemented my TA funding during my

third year.

I wish to thank Dr. Noe Lozano, for selecting me, and Professor Walter Murray, for

nominating me, for the Dean’s Doctoral Fellowship that supported me during my first

eight semesters at Stanford.

I also want to acknowledge my colleagues who were always available to discuss aca-

demic, research and other pertinent issues. My office mates at Stanford included Melissa

Aczon, Alexis Collomb, Anthony Diaco, Michael Friedlander, Sep Kamvar, Byunggyoo

Kim, Brad Mallison, Neil Molino, Kien Ming Ng, Vinayak ”Uday” Shanbhag, Herser

Sirgurgeirsson, Che-Lin Su and James Warren.

I could not have acclimated to or enjoyed life at Stanford if it was not for the

wonderful and supportive Stanford staff. In particular, I would like to thank Evelyn

Boughton and Arden King from SCCM; Lorrie Pappadakis and Landon Phan from

Management Science and Engineering; Dana Halpin from Computer Science; Chris

Griffith from the Graduate Life Office; Stephanie Eberle from the Career Development

Center; and both Rabbi Patricia Karlin-Neumann and Reverend Joanne Saunders from

the Religious Life Office.

I am grateful to my peers and superiors from BBN Technologies. I want to thank

them for their support of my decision to return to school, their encouragement and

interest in my studies. I am also thankful for my summer employment at BBN, during

part of my tenure at Stanford. Mark Berman, Jeff Berliner, Ed Campbell, Therese

Cwikla Maguire, Tom Mitchell and Carol Sabia were especially helpful and kind. I am

v

indebted to you all.

Thank you to my new employer, Morehead State University. I appreciate the support

of my peers, the Department Chair of Mathematics and Computer Science, Dr. Rodger

Hammons, and the Dean of Science and Technology, Dr. Gerald DeMoss. And, I

appreciate their patience while I served double-duty as a professor at Morehead and

student at Stanford.

I am thankful for my friends from Stanford and California, including Kanaka Szabo,

Debbie Ballard, Steve Bryson, Selena Burns, Maggie Davidson, Joel Franklin, Holly

(Lutze) Guerin, Paula Razquin, Paul and Joanne Romberg and Amanda White. Their

support and sharing of their lives kept me grounded and helped me grow.

I am indebted to my family for the love and support during my five years at Stan-

ford. I would like to thank my ’California’ family: My Godparents, Uncle Ted and

Aunt Eleanore Doyle, and my cousins who all opened their hearts and home to me. I

appreciate their friendship and love and cherish the time we were neighbors. I am also

grateful for the support and easy laughs I enjoyed with my cousins Kirsten Davis and

Leslie Doyle Fitzpatrick. Thanks to my ’East Bay’ cousins Tim and Barbara Daniels,

who always provided a wonderful respite from Stanford life.

A special thank you and much gratitude to my Mom, siblings Robert, Barbara, Tim-

othy, Shawn and Patty, sibling-in-law, Geraldine Halpin-Doyle, and my nieces, Alicia

Halpin and Danielle Doyle. I am forever grateful for the phone calls, visits and gentle

handling from them all. The unwavering support, love and faith from Mom, Barb and

Patty, both motivated and anchored me. I could not have accomplished this thesis

without having them in my corner.

Lastly, to all of those acknowledged here and the unnamed family, friends, teachers

and co-workers, thank you for being you and letting me be a part of your lives.

vi

Contents

List of Tables, Figures, and Algorithms xi

1 Introduction 1

1.1 Nomenclature and definitions . 2

1.1.1 Nomenclature . 2

1.1.2 Definitions . 3

1.2 Statement of problem . 4

1.3 Optimality conditions . 5

1.4 Thesis contents . 6

2 Interior-Point Methods 7

2.1 Interior-point methods for nonlinear optimization 7

2.1.1 Sequential unconstrained minimization 7

2.1.2 Using interior-point methods . 10

2.1.3 Other research . 13

2.2 The log-barrier function . 13

2.3 Primal-dual equations . 14

2.4 Overview of our algorithm . 15

3 Barrier Method Factorization 19

3.1 Computing the null space . 20

3.2 Computing the reduced Hessian of the Lagrangian 22

4 Search Direction 25

4.1 Computing ∆x,∆y,∆z . 26

4.1.1 Derivations . 26

4.1.2 Primal and dual search direction implementation 29

4.2 Direction of negative curvature . 32

4.2.1 Why a direction of negative curvature is needed 32

4.2.2 Estimating the minimum eigenvalue and refining dn 34

4.2.3 Extending d to IRn, scaling and validation 36

5 Step Size 39

5.1 Merit function . 39

5.2 Safeguarded linear search . 41

vii

5.2.1 Approach . 42

5.2.2 Linesearch algorithm . 44

5.2.3 initializeAlpha . 45

5.2.4 computeAlpha . 48

5.2.5 updateUncertainty . 51

5.2.6 Safeguard . 51

5.2.7 Compute rho . 52

5.3 Curvilinear search . 54

5.3.1 Curvilinear merit function . 54

5.3.2 Curvilinear Algorithm . 56

5.4 Dual linesearch . 58

6 Convergence 61

6.1 Assumptions . 63

6.1.1 Elastic variables . 64

6.2 Theory . 64

6.2.1 Global convergence . 72

7 Computational Results 75

7.1 Hock-Schittkowski test problems . 76

7.2 Nonlinearly Constrained Problems from CUTE 81

7.3 Linear Constraints . 83

7.4 Conclusions and Future Work . 84

Bibliography 85

viii

Algorithms, Figures, and Tables

Algorithms

2.1 Prototype algorithm . 17

3.1 Factorize algorithm . 20

3.2 Compute null space . 22

3.3 Factorize the reduced Hessian of the Lagrangian 23

4.1 Compute search direction . 29

4.2 Compute primal directions . 31

4.3 Compute dual directions . 32

4.4 Compute minimum eigenvalue and negative curvature 36

4.5 Compute the direction of negative curvature algorithm 37

5.1 Compute step size . 41

5.2 Linesearch algorithm . 45

5.3 Initialize alpha . 48

5.4 Compute alpha . 50

5.5 Update interval of uncertainty . 51

5.6 Safeguard algorithm . 52

5.7 Compute ρ . 54

5.8 Curvilinear search . 58

5.9 Dual linesearch . 60

Figures

2.1 Interior-Point examples . 9

2.2 Constrained nonlinear problem . 10

2.3 Barrier formulation of constrained nonlinear problem 11

2.4 Barrier trajectory example . 12

4.1 Direction of negative curvature example 34

5.1 Deciding which value X,Y,Z is ’better’ is difficult 40

ix

5.2 Quadratic approximation example . 42

5.3 Dual step size comparisons . 59

7.1 Hock-Schittkowski - Number of Iterations 80

7.2 CUTE nonlinear test problems – Number of Iterations 83

Tables

7.1 Hock-Shittkowski test problems . 77

7.2 CUTE-subset test problems . 82

x

Chapter 1

Introduction

We present an interior-point method named MELBA (MATLAB Experimental Line-

search Barrier Algorithm) for solving optimization problems with nonlinear constraints.

The general form of the problem is

NLP
minimize
x∈IRn

f(x)

subject to ci(x) = 0 i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

(1.1)

where f(x) is a function with known gradient g(x) and Hessian H(x), c(x) ∈ IRm is a

vector of the ci(x) functions with a known Jacobian J(x) ∈ IRm×n, and Hi(x) is the

known Hessian for ci(x). The format of NLP is suitable for general equality or inequality

constraints. Our method is intended for optimization problems with smooth functions

and allows some of the functions f(x) and/or ci(x) to be nonconvex.

The term interior-point method implies that the solution process maintains strict

inequality for constraints that are expressed as inequalities. For problem (1.1), this

means that all approximate solutions x̆ will satisfy x̆ > 0, even though some components

x̆j may be converging towards zero.

Interior-point methods were initially proposed by Frisch in 1955 [Fri55]. Fiacco and

McCormick [FM68] proved global convergence for general interior-point methods for

problem (1.1) by reformulating this problem as an unconstrained optimization problem.

Classical log-barrier methods, one type of interior-point algorithm, were used extensively

in the 1960’s and 1970’s. It was proven in the 1970’s [Mur71] that the Hessians for barrier

methods are ill-conditioned at the solution, so despite reasonable results, other methods

became primary topics for research.

In 1984, Karmarkar presented an algorithm that solved linear optimization problems

in polynomial time [Kar84]. This was a significant improvement over current algorithms

(notably the Simplex method), which solved worst-case problems in exponential time.

It was soon shown that Karmarkar’s algorithm was equivalent to the log-barrier method

1

1.1 Nomenclature and definitions 2

[GMSTW86] and interest in interior-point methods resurged.

Megiddo first proposed an interior-point method that solved the primal and dual

variables simultaneously. In [Meg89], Megiddo describes many of the properties of the

primal and dual central paths for linear programming. A primal-dual barrier method for

linear problems was then implemented by [KMY89]. Methods of this type were shown to

solve linear programming problems faster than general primal barrier methods. Barrier

methods are now commonly used for solving linear programming problems as described

in [Wri97] and for quadratic programming [Pon90]. Current large-scale implementations

include CPLEX [ICPLEX], OSL [Hun98], and MOSEK [MOSEK].

As a result of the success of barrier methods for both linear and quadratic pro-

gramming, research into their use for nonlinear optimization continues today. Current

research areas and results are discussed in later chapters. This thesis discusses one bar-

rier approach for solving nonlinear optimization problems. We reformulate the problem

into a sequence of equality-constrained optimization subproblems. Each subproblem is

altered using the primal-dual approach. The altered subproblem is then solved using the

reduced Hessian of the Lagrangian and negative curvature for determining the sequence

of search directions. The step size is computed using a linesearch method to reduce an

augmented Lagrangian function. MELBA is tailored for large, sparse problems. The ter-

mination criteria for each subproblem, and the sequence of subproblems, are designed

to ensure convergence to a point satisfying the necessary conditions for second-order

optimality. The necessary conditions for optimality are defined in section 1.3.

The rest of this introduction provides the foundation and background needed for

describing MELBA.

1.1 Nomenclature and definitions

This section contains general nomenclature and definitions used throughout.

1.1.1 Nomenclature

• Capital letters, both Greek and English, are used to represent matrices.

• lowercase letters, both Greek and English, are used to represent vectors.

• K � 0 defines K to be positive definite.

• K � 0 defines K to be positive semidefinite.

• λmax(K) and λmin(K) denote the maximum and minimum eigenvalues of K.

• e identifies a vector of all 1′s.

1.1 Nomenclature and definitions 3

• ei identifies a vector of all 0′s, except ei(i) = 1.

• diag(x) and X are both the matrix having the vector x on the diagonal and zero

elsewhere.

1.1.2 Definitions

• fB(x, µ) = f(x)− µ∑n
j=1 lnxj is the objective function with the barrier terms.

• g(x) is the gradient of f(x). g(x) ≡ ∇f(x), g(x) ∈ IRn.

• gB(x, µ) is the gradient of fB(x, µ). gB(x, µ) ∈ IRn.

• J ≡ ∇c(x) is the Jacobian for c(x). Jij = ∂ci(x)
∂xj

, J ∈ IRm×n.

• H(x) is the Hessian of f(x). H(x) ≡ ∇2f(x), H(x) ∈ IRn×n.

• Hi(x) is the Hessian of ci(x). Hi(x) ≡ ∇2ci(x), Hi ∈ IRn×n.

• In is the identity matrix, In ∈ IRn×n.

• y is a vector of Lagrange multipliers for the constraints c(x) = 0, y ∈ IRm.

• z is a vector of Lagrange multipliers for the constraints x ≥ 0, z ∈ IRn.

• L(x, y) ≡ f(x)− yT c(x) is the Lagrangian for problem (1.1), L ∈ IR.

• gL(x, y) ≡ g(x)− J(x)T y is the gradient of the Lagrangian, gL ∈ IRn.

• HL(x, y) ≡ H(x)−∑m
i=1 yiHi(x) is the Hessian of the Lagrangian, HL ∈ IRn×n.

• WB(x, y, z) ≡ HL(x, y) + µX−2 is the Hessian of the Lagrangian for the barrier

subproblem (2.7), WB ∈ IRn×n.

• W (x, y, z) ≡ HL(x, y) + diag(X−1z) is the Hessian of the Lagrangian for the

primal-dual reformulation of the barrier subproblems (2.7), W ∈ IRn×n.

• Z(x) spans the null space of the Jacobian of the equality constraints ci(x) = 0,

Z(x) ∈ IRn×(n−m). Z(x) satisfies JZ(x) = 0 and exists when n > m.

• Z(x)TW (x, y, z)Z(x) is the reduced Hessian of the Lagrangian.

• Z(x)TW (x, y, z)Z(x) is positive definite and is called the modified reduced Hessian

of the Lagrangian. It is computed by altering ZTWZ to obtain a positive definite

symmetric matrix.

• LA(x, y, ρ) ≡ f(x)−yT c(x)+ 1
2c(x)

TRc(x) is the augmented Lagrangian for prob-

lem (1.1), LA(x, y, ρ) ∈ IR.

1.2 Statement of problem 4

• ρ is the vector of penalty parameters for the augmented Lagrangian function.

ρ ∈ IRm, ρi > 0.

• R = diag(ρ) is the matrix of penalty parameters for the augmented Lagrangian

function.

• d is a direction of negative curvature for the reduced Hessian of the Lagrangian

for the barrier subproblem, such that dTZTWZd < 0. d ∈ IRn−m.

• dn is a direction of negative curvature for the full Hessian of the Lagrangian for

the barrier subproblem, W , such that dnTWdn < 0. dn ∈ IRn.

• X = diag(x), where x is a vector of primal variables.

• Z = diag(z), where z is a vector of dual variables.

• x̃ is the next iterate of x when a line search is used. Given a search direction ∆x,

an initial x and a step size α, x̃ = x+ α∆x.

• x̂ is the next iterate of x when a curvilinear search is used to determine the step

size. Given a search direction, ∆x, a direction of negative curvature, dn, a step

size α and initial x, x̂ = x+ α2∆x+ αdn.

• x̆ indicates the next iterate of x, regardless of step size algorithm.

• funObj(x) is a user-supplied function that calculates the objective function f(x)

and (optionally) its gradient for a specified vector x.

• funCon(x,y) is a user-supplied function that calculates the vector of constraint

functions c(x) and (optionally) its Jacobian for specified vectors x and the con-

straint Lagrange multpliers, y.

• funHess(x,y,v,gotH) is a user-supplied function that calculates HL(x, y) mul-

tiplied by a vector, v. The Hessian of the Lagrangian is defined for the specified

vectors x and y. When gotH is TRUE, the last saved HL(x, y) is used; otherwise

a new matrix is calculated.

1.2 Statement of problem

The standard form for nonlinear programming problems is

minimize
x∈IRn

f(x)

subject to l ≤

ci(x)

xj

 ≤ u,
(1.2)

1.3 Optimality conditions 5

where f(x) is a function with known gradient g(x) and Hessian H(x), c(x) ∈ IRm is a

vector of the ci(x) functions with a known Jacobian J ∈ IRm×n, and Hi(x) is the known

Hessian for ci(x). In order to obtain the general form (1.1), system (1.2) is reformulated.

Slack variables, s, are added to the nonlinear constraints:

minimize
x∈IRn

f(x)

subject to c(x)− s = 0

l ≤

si

xj

 ≤ u.
(1.3)

Removing the bounds from the variables in the nonlinear equations reduces to the form

minimize
x∈IRn

f(x)

subject to c(x)− s = 0

si

xj

+ t1 = u,

si

xj

− t2 = l

t1 ≥ 0, t2 ≥ 0,

(1.4)

which is in the general form of problem (1.1). In subsequent sections this problem is

simplified using fewer variables when the algorithm or function being discussed is not

affected by the inclusion of the variable. For example, c(x) is used instead of c(x) − s
when the inclusion of s does not alter the major steps in the algorithm.

Problem (1.4) can be reduced further by substituting x = (x, t, s) and c(x) = c(x)−s
to obtain

minimize
x∈IRn

f(x)

subject to ci(x) = 0 i = 1, 2, . . . ,m : y

xj ≥ 0 j = 1, 2, . . . , n : z,

(1.5)

where y, z are called the Lagrange multipliers or dual variables. The term dual variables

comes from linear programming. For any linear programming problem with primal

variables x and dual variables y, there is a companion maximization problem with

primal variables y and dual variables x. The term Lagrange multipliers is used here to

indicate the variables y. The term dual variables defines either z or (y, z), depending on

context. When solving (1.1), we solve for the primal (x) and the dual (y, z) variables.

1.3 Optimality conditions

Consider NLP (1.1), where f(x) and ci(x) are twice-continuously differentiable. A point

x∗ is a weak local minimizer of (1.1) if x∗ ≥ 0, c(x∗) = 0 and there exists a δ > 0 such

1.4 Thesis contents 6

that f(x) ≥ f(x∗) for all x satisfying

‖x− x∗‖ ≤ δ, x ≥ 0, c(x) = 0.

Determining that x∗ satisfies these constraints is usually not practical, so most opti-

mization methods determine that x∗ satisfies equivalent, verifiable optimality conditions.

Assuming the constraint qualification that J ∗ has full row rank, then the following are

the optimality conditions for NLP.

Definition 1.1. Necessary optimality conditions

If J∗ has full row rank, then x∗ is a local minimizer of NLP when there exist multipli-

ers y∗ and z∗ such that (x∗, y∗, z∗) satisfy the Karush-Kuhn-Tucker (KKT) second-order

conditions:
c(x∗) = 0,

∇f(x∗) = J∗T y∗ + z∗,

x∗ ≥ 0,

z∗ ≥ 0,

Z∗TH∗
LZ

∗ � 0,

x∗j > 0→ z∗j = 0,

z∗j > 0, ∀ x∗j = 0,

x∗j > 0, ∀ z∗j = 0,

where Z∗ is a basis for the nullspace of J ∗. H∗
L ≡ H(x∗)−∑m

i=1 y
∗
iHi(x

∗) is the Hessian

of the Lagrangian for (1.1). The first-order condition is ∇f(x∗) = J∗T y∗ + z∗ and the

second-order condition is Z∗TW ∗Z∗ � 0.

Definition 1.2. Sufficient optimality conditions

If J∗ has full row rank, then for (x∗, y∗, z∗) to be a local minimizer of NLP the

necessary optimality conditions hold and Z∗TW ∗Z∗ � 0.

1.4 Thesis contents

The following chapter discusses interior-point methods in-depth and presents the bar-

rier algorithm, MELBA. Chapter 3 specifies and outlines the algorithms implemented

for processing the large matrices that may occur in nonlinear optimization problems.

Chapters 4 and 5 discuss the algorithm in detail. Chapter 6 contains the convergence

theory and Chapter 7 the computational results.

For simplicity, vectors and matrices that are functions of x (e.g., H(x)) will initially

be defined and written with (x); however, this term will be dropped in subsequent

references (e.g. H is used instead of H(x)).

Chapter 2

Interior-Point

Methods

In this chapter we define interior-point methods (IPMs), discuss current research us-

ing IPMs in nonlinear optimization, summarize the barrier approach and primal-dual

formulation, and presents our barrier algorithm.

2.1 Interior-point methods for nonlinear optimization

The term interior-point method was originally used by Fiacco and McCormick in [FM68]

to describe any algorithm that computes a local minimum of a nonlinear optimization

problem (NLP) by solving a specified sequence of unconstrained minimization problems.

This definition has evolved to include any method that solves a set of optimization

problems involving a decreasing multiplier µ, searching for local solutions within the

interior of the feasible region of the inequality constraints for the NLP.

2.1.1 Sequential unconstrained minimization

Consider the inequality constrained problem

minimize
x

f(x)

subject to ci(x) ≥ 0, i = 1, . . . ,m,
(2.1)

where f(x) and ci(x) are twice-continuously differentiable functions. To describe an

interior unconstrained minimization function, Fiacco and McCormick first define two

scalar-valued functions I(x) and s(r) for vector x and scalar r [FM68].

Definition 2.1. I(x) is any function I(x) : IRn → IR with the following properties:

Property 1 I(x) is continuous in the region R0 = {x | ci(x) >
0, i = 1, . . . ,m}.

Property 2 If {xk} is any finite sequence of points in R0 con-

verging to x such that ci(x) = 0 for at least one i, then

limk→∞ I(xk) = +∞.

7

2.1 Interior-point methods for nonlinear optimization 8

Definition 2.2. s(r) is any function s(r) : IR→ IR with the following properties:

Property 1 If r1 > r2 > 0, then s(r1) > s(r2) > 0.

Property 2 If {rk} is an infinite sequence of points such that

limk→∞ rk = 0, then limk→∞ s(rk) = 0.

Definition 2.3. Sequential Unconstrained Minimization Function

Given two scalar-valued functions I(x) and s(r) as in Definitions 2.1 and 2.2, define

the function

U(x, rk) ≡ f(x) + s(rk)I(x) (2.2)

as an interior unconstrained minimization function [FM68].

The minimization subproblem solved is

min
x
U(x, rk). (2.3)

The solution to this subproblem is x(rk). Fiacco and McCormick, under general as-

sumptions, prove convergence of the subsequence {x(rk)} to a local minimizer, x∗(rk),

of problem (2.3). They also prove that the sequence of local minimizers {x∗(rk)} con-

verges to a local minimizer of the original problem (2.1). Thus, interior-point methods

for problems of the form (2.1) converge to a solution by solving a specified sequence of

altered subproblems.

Theorem 2.4. For problem (2.1), assume the functions f, c1, . . . , cm, are continuous,

U(x, rk) = f(x) + s(rk)I(x) is an interior unconstrained minimization function with

s(r) and I(x) as in Definitions 2.1 and 2.2, the problem has at least one local minimum

in the closure of R0, and {rk} is a strictly decreasing null sequence.

Given these assumptions, if x∗ is an isolated local minimizer of problem (2.1) and

x(rk) is the minimizer for each U(x, rk), then the sequence {x(rk)} converges to x∗.

Proof. See [FM68].

The sequence {x(rk)} of Theorem 2.4 forms a barrier trajectory of solutions that

converge to x∗.

Two common examples of U(x, rk) are the inverse barrier and logarithmic barrier

functions. First, consider I(x) = 1
c(x) , along with a decreasing sequence {µk} = {(1

2)k}
and s(µk) = µk. The two functions and sequence satisfy the above properties, and

therefore the function

U(x, rk) = f(x) + µk

m
∑

i=1

1

ci(x)

is an interior unconstrained minimization function. Of course, it is no longer a contin-

uous function in view of the singularity when ci(x) = 0. This particular formulation is

called the inverse barrier function and was introduced by Carroll [Car59, Car61].

2.1 Interior-point methods for nonlinear optimization 9

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

x

U
(x

,r)

f(x) = sin(x)cos(x), µ = 0.1

Inverse: f(x) + µ(1/x + 1/(2pi − x))
Logarithmic: f(x) − µ(log(x) + log(2π − x))

Figure 2.1 Interior-Point examples

Second, consider the function I(x) = − ln(c(x)), along with the sequence µk defined

above. These functions similarly satisfy the definitions for I(x) and s(r), and therefore

U(x, rk) = f(x)− µk
m
∑

i=1

ln(ci(x))

is also an interior unconstrained minimization function. This particular function is

called the logarithmic barrier function, or barrier for short.

Figure 2.1 is a plot of the barriers formed by the inverse and logarithmic barriers

for µ = 0.1 and the nonlinear problem

minimize
x

sin(x) cos(x)

subject to 0 ≤ x ≤ 2π.

We now present a specific problem, used in [GMW81], to illustrate how the loga-

rithmic barrier function converges to a solution. Consider the problem

minimize
x

xy2

subject to 2− x2 − y2 ≥ 0.
(2.4)

2.1 Interior-point methods for nonlinear optimization 10

−1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

x

y

X x*

c(x)

F(x)

Figure 2.2 Constrained nonlinear problem

Figure 2.2 shows the values of xy2 as contours. The red line is the equality constraint

2− x2 − y2 = 0. The solution is identified as x∗ = (−.81650,−1.1547).

Figure 2.3 shows the contours for the barrier reformulation when µ = 0.1 where its

minimum is visibly ‘close’ to the solution x∗.

Figure 2.4 illustrates the barrier trajectory for problem (2.4). The solutions to

the subproblems are plotted for µ = (1, 0.5, 0.1). The barrier trajectory is the curve

connecting the solution of each subproblem. Note how the solution for subproblems for

larger µ’s are well behaved and also as µ decreases, the solution approaches the true

solution of problem (2.4).

2.1.2 Using interior-point methods

When second derivatives do not exist, IPMs are not very useful. If they exist but are

not available, the Hessian of the Lagrangian HL(x, y) must be estimated. This creates

a difficulty for IPMs. Either the barrier term is combined into HL or the barrier term

will be explicitly computed and the HL will be estimated. In the first case, the HL will

change significantly with small changes in x as a result of the barrier terms. Therefore,

the estimate for the Hessian of the Lagrangian never converges to the true Hessian

and it can not be proven that the IPM will converge even to the first-order optimality

conditions, as defined in section 1.3. In the latter case, the Hessian is a combination of

2.1 Interior-point methods for nonlinear optimization 11

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

xy2 − µ log(2 − x2 − y2)

x*(µ)

Figure 2.3 Barrier formulation of constrained nonlinear problem

explicit terms and estimated terms. Handling this combination has been problematic

in other applications and is not recommended here. Therefore, when second derivatives

are not on hand, other methods should be used.

SQP methods constitute one of the more successful approaches to solving (1.1) when

only first derivatives are available. They do not require second derivatives and, in fact,

most current SQP methods estimate the Hessian of the Lagrangian. However, there

is still the cost of computing the approximate reduced Hessian for each change to the

active set of constraints. This expensive computation is largely avoided with interior-

point methods because all inequality constraints are eliminated from the problem with

the function I(x), so there is only a single reduced Hessian to be dealt with.If the reduced

Hessian is very large then the conjugate gradient method may be more efficient, as it

economizes on storage but at the expense of an unknown number of iterations. This

option is less attractive with an active set method since there are more reduced Hessian

systems to be solved [though each system will in general be smaller].

When second derivatives are available, using a barrier method allows convergence

to a second-order minimizer, as we show in Chapter 6.

2.1 Interior-point methods for nonlinear optimization 12

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

X

x*(µ)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

X

x*(µ)

X

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

X

x*(µ)

X

X

Figure 2.4 Barrier trajectory example

2.2 The log-barrier function 13

2.1.3 Other research

There has been significant research into the use of interior-point methods for nonlinear

optimization, and in this section we compare MELBA to other IPM projects.

Many of the available implementations are designed for large-scale problems but

do not have convergence theory or proven convergence rates. For example, Byrd et

al. developed KNITRO (Nonlinear Interior-Point Trust Region Optimization) [BHN99],

which applies SQP techniques to a sequence of barrier subproblems. In [BGN96], Byrd

et al. prove global convergence for KNITRO, but do not prove convergence to second-

order optimality conditions. Nor is the rate of convergence determined.

Sargent and Ding [SD00] developed SQPIPM, which solves a sequence of QP sub-

problems by an interior-point method using an inexact Newton approach. They prove

finite termination of the algorithm and Q-quadratic convergence.

Shanno and Vanderbei [SV00] developed LOQO (Linear Optimization/Quadratic

Optimization) using Newton’s method applied to the first-order optimality conditions

for a primal-dual barrier formulation. They report good performance but do not provide

proofs for global convergence or convergence to second-order optimality conditions, nor

the convergence rate of the algorithm.

Gertz and Gill implemented a trust-region barrier algorithm, IOTR (Interior-Point

Optimization, Trust-Region) [GG02]. They prove the desired convergence properties:

global convergence; convergence to second-order optimality conditions; and superlin-

ear convergence rate. They use a trust-region approach, in contrast, to the linesearch

approach used in MELBA. Moguerza and Prieto [MP03] implemented a linesearch algo-

rithm and have also proven the desired convergence properties, but their implementation

was not designed for large problems (sparse-matrix methods are not used).

2.2 The log-barrier function

As mentioned in section 2.1.1, barrier methods are a class of IPMs for solving the NLP

(1.1) when the feasible region has a nonempty interior. The barrier method reformulates

inequality constraints into a logarithmic barrier term in the objective. Specifically,

problem (1.1) is reformulated into the equality constrained problem

minimize
x>0, x∈IRn

f(x)− µ∑n
j=1 ln(xj)

subject to ci(x) = 0 i = 1, 2, . . . ,m,
(2.5)

where µ > 0 is the barrier parameter.

Fiacco and McCormick proved convergence for the inequality constrained prob-

lem (2.1). However, equation (1.1) has additional equality constraints. Initially, equal-

ity constraints were reformulated using penalty functions, giving the following uncon-

2.3 Primal-dual equations 14

strained optimization problem:

minimize
x>0, x∈IRn

f(x)− µ
n
∑

j=1

ln(xj) + ρc(x)T c(x), (2.6)

Methods for unconstrained optimization were found to converge slowly on such problems

because of the inherent ill-conditioning of the Hessian at the solution for small values

of µ and large values of ρ. When interest in barrier methods was rekindled in the late

1980’s, the problem of slow convergence was still an open issue.

As a result of ideas presented in [Meg89] for linear programming, [KMY89] first

demonstrated improved convergence rates for linear programs by solving for the primal

(x) and dual (y, z) variables simultaneously with a judicious reformulation of the KKT

equations. This approach is called the primal-dual method. It was also proven in

[KMY89] that for linear programming the barrier approach using a primal-dual method

converges in polynomial time. This is the approach used for our nonlinear barrier

algorithm, as further explained in the next section.

2.3 Primal-dual equations

In this section we derive the equations for the primal-dual method for the NLP (1.1).

Let us first introduce the dual variables as multipliers for our constraints. The vector

y is the multiplier for the equality constraints and z is the multiplier for the inequality

constraints:
minimize
x∈IRn

f(x)

subject to ci(x) = 0 i = 1, 2, . . . ,m : y

xj ≥ 0 j = 1, 2, . . . , n : z.

Replacing the non-negativity constraints by a log-barrier function and introducing the

barrier parameter µ (µ > 0) we obtain:

minimize
x∈IRn

f(x)− µ
∑

j ln(xj)

subject to ci(x) = 0 i = 1, 2, . . . ,m.
(2.7)

The first-order KKT conditions for the barrier subproblem involve the primal equations

of NLP(µ), along with dual equations stating that the gradient of the subproblem

objective should be a linear combination of the gradients of the primal constraints:

c(x) = 0

JTy = g(x) − µX−1e,
(2.8)

2.4 Overview of our algorithm 15

where X = diag(x). The primal-dual method introduces a positive vector z defined by

the equation Xz = µe. The primal-dual conditions for (2.7) then become

c(x) = 0

JTy + z = g(x)

Xz = µe.

(2.9)

If Newton’s method is applied to (2.9) the resulting equation for the Newton step is

−HL I JT

Z X 0

J 0 0

∆x

∆z

∆y

=

g(x)− JT y − z
µe−Xz

−c(x)

, (2.10)

where HL(x, y) ≡ H(x) − ∑m
i=1 yiHi(x) is the Hessian of the Lagrangian and Z =

diag (z). Eliminating ∆z using X∆z = (µ−Xz)− Z∆x gives

−W JT

J 0

∆x

∆y

 =

g − µX−1e− JT y
−c(x)

 , (2.11)

where W = HL + X−1Z.

The equivalent equations for the system (2.8) are identical to (2.11) except the

matrix W is replaced by HL(x, y) + µX−2.

2.4 Overview of our algorithm

The basic idea is to solve (2.7) for a sequence of decreasing µ. Since convergence to

the solution of (2.7) is in the limit it is necessary to terminate prior to finding the

exact solution. Barrier methods differ in the choice of algorithm to solve (2.7), how µ is

adjusted, and the choice of termination conditions. The basic method we adopt to solve

(2.7) for each µ is the second-derivative SQP algorithm of [MP95] (MP), except the

search direction and direction of negative curvature are derived from the system (2.11)

rather than having W = HL(x, y) + µX−2. The properties of these directions are

identical to those obtained in [MP95]. Indeed, in the limit the two definitions of W

converge. Note that since (2.7) has no inequality constraints there is no need to solve a

QP at each iteration. The merit function used in the MP method is

M(x, y, ρ) = f(x)− yT c(x) + 1
2ρ‖c(x)‖

2
2,

which is the same as that used in SNOPT [GMS98] and NPSOL. In MP f(x) is the

objective function since we apply this method to the barrier subproblem the merit

2.4 Overview of our algorithm 16

function used in MELBA replaces f(x) with the barrier objective fB(x, µ).

It seems particularly appropriate to use a merit function that is defined in terms of

primal and dual variables when a search direction in these variables has been determined.

A common merit function used in SQP methods is

M(x) = f(x) + ρ‖c(x)‖1.

However, this merit function is not differentiable and is therefore unsuitable for use with

directions of negative curvature. The use of such directions is necessary for an algorithm

to generate iterates converging to second-order KKT points.

The termination conditions used are a relaxation of the transformed KKT conditions

(2.9). Specifically,

‖c(x)‖∞ ≤ τ1µ

‖JTy + z − g(x)‖∞ ≤ τ2µ

‖Xz − µe‖∞ ≤ τ3µ

λmin(Z
TWZ) > − τ4µ.

(2.12)

The values of τi ≥ 0 and typically about 10. Note that these termination conditions

differ from those typically used in algorithms to solve equality constrained problems.

Typically the reduced gradient is used but since in the case of barrier functions the

gradient in the neighborhood of the solutions is unbounded it is not a good measure of

proximity of an iterate to the solution.

Algorithm 2.1 specifies a prototype barrier algorithm for solving the sequence of

nonlinear equality optimization problems.

2.4 Overview of our algorithm 17

Data : x0, y0, z0, {µ1, . . . µS}
Result : x∗, y∗, z∗

1 Initialization

k = 0

2 for s = 1, . . . , S do

µ← µs

Call Factorize(xk, yk, µ, funObj, funCon, funHess)

3 while termination criteria not satisfied for µ do

Call Primal-Dual to compute ∆x,∆y,∆z, dn

Call Linesearch to calculate steplength, αx

Call DualLinesearch to calculate steplength, αyz

xk+1 ← xk + α2
x∆x+ αxdn

yk+1 ← yk + αyz∆y

zk+1 ← zk + αyz∆z

k = k + 1

Call Factorize(xk, yk, µ, funObj, funCon, funHess)

Algorithm 2.1: Prototype algorithm

In Algorithm 2.1 dn is a direction of negative curvature for the matrix W , satisfying

dnTWdn < 0. Note the direction of negative curvature applies only in the primal space.

Also for small α this direction dominates.

All routines or functions are discussed in subsequent chapters. The routine Fac-

torize performs the major linear algebra operations and is discussed in chapter 3. The

search direction (∆x,∆y,∆z) and direction of negative curvature (dn) are computed in

the function Primal-Dual and discussed in chapter 4. Chapter 5 discusses both the

Linesearch and DualLinesearch functions, which compute the step length for each

new search direction.

For clarity, error checking and error handling, although part of the design and im-

plementation, are not included in the prototype algorithm.

Chapter 3

Barrier Method

Factorization

This chapter discusses the function Factorize, as initially defined in Algorithm 2.1.

Factorize is called when µ is changed, xk, yk, zk is changed, or both.

Factorize is the backbone of our barrier method, yet it is independent of the bar-

rier function or the primal-dual approach. This routine enables us to solve large-scale

systems by performing factorization and matrix storage based upon proven methods

used in other large-scale solvers. The solvers and references are included in the detailed

discussion of each function called in Factorize.

The term factorize applies to the factorization of two matrices: a basis for the

sparse Jacobian of the constraints, B(x) ∈ IRm×m, B ≡ LU , and the dense modi-

fied reduced Hessian of the Lagrangian function for the reformulated barrier problem,

Z(x)TW (x, y, z)Z(x) ≡ LDLT = Z(x)TW (x, y, z)Z(x) + E. For our implementation,

the Jacobian matrix is sparse but the reduced Hessian of the Lagrangian is a dense

matrix. As a result, our implementation is best suited to problems where n−m is not

too large.

Factorize includes a partitioning of the Jacobian J and computation of Z, a basis

for the null space. The Jacobian is partitioned into two parts such that JP =
(

B S
)

,

where P is a permutation, S ∈ IRm×n−m, and B is nonsingular. The null space Z is

stored implicitly as a function of B and S. The Factorize algorithm is outlined in

figure 3.1.

18

3.1 Computing the null space 19

Data : x, y, funCon, funHess

Result : L,U, S, Pcol, Prow, Lchol, D,E, d

1 Partition J , factorize B and define Z

Call [Prow, Pcol, L, U, S] = ComputeNullSpace(x, y, funCon)

2 Compute and factorize the reduced Hessian of the Lagrangian

Compute ZTWZ

Factorize ZTWZ +E = LcholDL
T
chol, also returns d

Algorithm 3.1: Factorize algorithm

The two main components of this function are discussed in the following sections.

The first section discusses the computation of B,S and Z as well as the factorization

of B. The second section explains how ZTWZ is computed and factorized.

3.1 Computing the null space

The function ComputeNullSpace permutes the Jacobian J into two parts, B(x) and

S(x), where JPcol =
(

B S
)

. It also computes the LU factors of B and uses this

factorization to give implicit access to Z(x), the nullspace of the Jacobian.

ComputeNullSpace is based on the approach used in MINOS [MS78] and SNOPT

[GMS02]. The choice of B must take into account the term diag(X−1z) in W (x, y, z).

We favor columns of J associated with large values of x. We define a sequence of

threshold values aiming to determine a basis for the range space of J without values

of x close to 0. For example, let bigX = [1 0.1 0.01 0.001]. The first time through

our loop, we select only the columns of J for which xj > 1. The resulting matrix is Jr

and we define Pr ∈ IRn×n such that JPr =
(

Jr K
)

, where K contains the remaining

columns of J . Next, we estimate whether Jr has full rank and if not, reset Jr to contain

the columns of J for which xj > 0.1. This continues until Jr has full rank or is the full

J .

Given Jr ∈ IRm×r and m ≤ r, we perform an LU factorization on its transpose

to find a basis of the columns of Jr. Since the Jacobian is sparse, we use MATLAB’s

sparse lu solver on JTr . This sparse solver combines a column pre-ordering strategy with

a right-looking unsymmetric-pattern multifrontal numerical factorization [Dav02]. The

routine returns four matrices, L̂, Û , P̂ , Q̂ such that P̂ JTr Q̂ = L̂Û , where L̂ is nonsingular

(and well-conditioned in general) and Û =
(

Ũ 0
)T

. We next create the permutation

3.1 Computing the null space 20

matrix

P1 =

P̂ 0

0 I

 ∈ IRn×n

and define Pcol = PrP
T
1 . This gives the partition JPcol =

(

B S
)

with B nonsingular.

We can now define the nullspace of J ∈ IRm×n,m < n, as the following Z ∈ IRn×(n−m):

Z = Pcol

−B−1S

I

 .

This Z is a basis for the nullspace of J because it has full column rank and

JZ = JPcol

−B−1S

I

 =
(

B S
)

−B−1S

I

 = 0.

The final step is to factorize B, again using MATLAB’s lu. This returns matri-

ces Prow, Q, L, U such that ProwBQ = LU . All operations using these matrices are

optimized in utility functions (e.g., computeZg, solveZg).

The routine is summarized in Algorithm 3.2. In the test for the rank of Jr, δ is a

small value, such as 10−8.

3.2 Computing the reduced Hessian of the Lagrangian 21

Data : x, y, µ, bigX, funCon

Result : L,U, S, Prow, Pcol

1 Get user-defined J , the Jacobian of the constraints

Call J = funCon(x, y)

2 Get column permutation of J to give us a full rank basis, B

for minX in bigX do

3 Select columns of J associated with large xj

Set Jr = J(:,find(x > minX))

Set Pr, such that JPr =
(

Jr K
)

Use sparse LU solver

[L̂, Û , P̂ , Q̂] = lu(JTr)

If tentative basis B has full rank, then we are done

if min(abs(diag(Û))) > δ then

break

Set Û = Û ∗ Q̂T

4 From S explicitly and factorize B

Set Pcol = Pr

P̂ 0

0 I

T

Set sortJ = JPcol

Set [L,U, Prow, Q] = lu(sortJ(:, 1 : m))

Set U ← U ∗QT

Set S = sortJ(:,m+ 1 : n)

Algorithm 3.2: Compute null space

3.2 Computing the reduced Hessian of the Lagrangian

The reduced Hessian of the Lagrangian Z(x)TW (x, y)Z(x) is required to compute

∆x,∆y and ∆z. The approach is based on the reduced-gradient method used in MINOS

and SQOPT, as described in [MS78] and [GMS02].

The first step computes the matrix ZTWZ ≡ ZT (HL + X−1Z)Z.

The second step calls the function modchol. Modchol returns a factorization

LDLT = ZTWZ + E, where the diagonal matrix E is added to the original matrix

to obtain a positive definite matrix, ZTWZ. Using a positive definite matrix ensures

that (∆x,∆y,∆z) is a descent direction for the merit function M(x, y, ρ) that is used

3.2 Computing the reduced Hessian of the Lagrangian 22

to determine the length of a step and is discussed in detail in Chapter 5.

The routine modchol is based on the Modified Cholesky Factorization algorithm

defined in [GMW81]. The standard Cholesky factorization usually applies to a symmet-

ric, positive definite matrix. For a dense matrix, it is the most efficient factorization.

The modified Cholesky factorization is used for symmetric matrices that are almost

symmetric positive definite. The diagonal modification E provides us with a factoriza-

tion of a symmetric, positive definite matrix that is close to the original matrix. The

intermediate matrix ZTWZ is not retained, only its factorization.

Algorithm 3.3 is the algorithm for factorizing the reduced Hessian of the Lagrangian

for the reformulated primal-dual problem.

Data : L,U, S, Prow, Pcol, x, y

Result : Pchol, Lchol, D,E, d

1 Compute ZTHZ

begin

Compute Z = Pcol

−B−1S

I

 from the factorization of B

Solve Z1 = −U\(L\(P T
rowS))

Rearrange

Z ← Pcol

Z1

In−m

Perform the matrix-vector multiplications to obtain HZ

for j = 1, 2, . . . , n−m do

HZ(:, j) = funHess(x, y, Z(:, j)), FALSE)

2 Compute Hessian of Barrier Term * Z and compute ZTWZ.

begin

Barrier← (X−1z). ∗ Z
ZTWZ = ZT (HZ +Barrier)

end
end

3 Compute LcholDL
T
chol = P Tchol(Z

TWZ)Pchol +E, and d

begin

[Pchol, Lchol, D,E, d] = modchol(ZTWZ)

end

Algorithm 3.3: Factorize the reduced Hessian of the Lagrangian

Chapter 4

Search Direction

In this chapter, we discuss the computation of the search direction for the primal (∆x)

and dual (∆y,∆z) variables. We also define and explain the computation of the direction

of negative curvature (d) and discuss the computation of the minimum eigenvalue of

the reduced Hessian of the Lagrangian (λmin).

So far, we have considered a standard format for NLP (1.1) that has been adequate

for explaining concepts and the factorize function. However, for search direction and

step length, it is now necessary to include the use of upper and lower bounds. The

format used in most large-scale solvers is

NLP1 minimize
x

f(x)

subject to ` ≤

x

c(x)

 ≤ u.

A variable vector s ∈ IRm, termed the slacks, is used to reformulate the problem to

NLP2 minimize
x

f(x)

subject to c(x)− s = 0, ` ≤

x

s

 ≤ u.

Since the slack variables are treated just like x in the primal-dual method, we take the

liberty of implicitly implying the existence of s and use the problem definition

NLP3 minimize
x

f(x)

subject to c(x) = 0, ` ≤ x ≤ u,

where f(x) and ci(x) are as defined for (1.1). For unbounded variables, the upper and

lower bounds are set to a maximum or minimum bound.

23

4.1 Computing ∆x,∆y,∆z 24

4.1 Computing ∆x, ∆y, ∆z

The search directions for the primal and dual variables are computed using modifications

to the KKT system. The derivations are defined in section 4.1.1. The implementation

is then discussed in section 4.1.2.

4.1.1 Derivations

BLA assumes all variables are non-negative. To convert the bounds to non-negativity

constraints, we define additional slack variables t1, t2 ∈ IRn:

minimize
x,t1,t2

f(x)

subject to

c(x) = 0

x− t1 = `

x+ t2 = u

t1, t2 ≥ 0.

Then, we replace the non-negativity constraints by the log barrier function, obtaining

a sequence of equality-constrained subproblems with decreasing values of µ (µ > 0):

NLP(µ) minimize
x,t1,t2

f(x)− µ∑j ln([t1]j [t2]j)

subject to

c(x) = 0 : y

x− t1 = ` : z1

−x− t2 = −u, : z2

where y, z1, and z2 denote dual variables for the associated constraints. With µ > 0,

the variables t1, t2, z1, z2 are strictly positive.

The KKT conditions for the barrier subproblem involve the three primal equations

of NLP(µ), along with three dual equations stating that the gradient of the subproblem

objective should be a linear combination of the gradients of the primal constraints:

c = 0

x− t1 = `

−x− t2 = −u
JTy + z1 − z2 = g : x

T1z1 = µe : t1

T2z2 = µe : t2,

where T1 = diag(t1), T2 = diag(t2), and similarly for Z1, Z2 later. In fact, the last

4.1 Computing ∆x,∆y,∆z 25

two equations arise in a different form. The dual equation for t1 is actually

−z1 = ∇(−µ ln(t1)) = −µT1
−1e,

where e is a vector of 1’s. Thus, t1 > 0 implies z1 > 0, and multiplying by −T1 gives

the equivalent equation T1z1 = µe as stated. In this form, the last two equations are

commonly called (perturbed) complementarity conditions.

Newton’s method

We now apply Newton’s method, defining new primal directions as ∆x,∆t1 and ∆t2,

which may later be combined with a direction of negative curvature, dn. The search

directions for the dual variables are defined to be ∆y,∆z1 and ∆z2. The resulting

system is

J∆x = −c
(x+ ∆x)− (t1 + ∆t1) = `

−(x+ ∆x)− (t2 + ∆t2) = −u
JT(y + ∆y) + (z1 + ∆z1)− (z2 + ∆z2) = g +HL∆x

T1z1 + T1∆z1 + Z1∆t1 = µe

T2z2 + T2∆z2 + Z2∆t2 = µe,

where c is the current constraint vector, g is the objective gradient andHL is the Hessian

of the Lagrangian. To solve this Newton system, we work with three sets of residuals:

∆x−∆t1

−∆x−∆t2

 =

r`

ru

≡

`− x+ t1

−u+ x+ t2

 (4.1)

T1∆z1 + Z1∆t1

T2∆z2 + Z2∆t2

 =

c`

cu

≡

µe−T1z1

µe−T2z2

 (4.2)

J∆x

−HL∆x+ JT∆y + ∆z1 −∆z2

 =

r1

r2

≡

−c
g − JT y − z1 + z2

 . (4.3)

We use (4.1) and (4.2) to replace two set of vectors in (4.3) with

∆t1

∆t2

 =

−r` + ∆x

−ru −∆x

 ,

∆z1

∆z2

 =

T1
−1(c` − Z1∆t1)

T2
−1(cu − Z2∆t2)

 . (4.4)

4.1 Computing ∆x,∆y,∆z 26

Defining

W ≡ HL + T1
−1Z1 + T2

−1Z2 (4.5)

w ≡ r2 −T1
−1(c` + Z1r`) + T2

−1(cu + Z2ru), (4.6)

we find that ∆x and ∆y satisfy the KKT-type system

−W JT

J 0

∆x

∆y

 =

w

r1

 . (4.7)

This is a sparse linear system that may be solved by many possible direct or iterative

methods. The efficiency of the chosen method largely determines the efficiency of the

complete barrier method.

In MELBA, we have chosen to use a reduced Hessian method, based on a sparse

representation of the null space of J . This allows us to transform equation (4.7) to block

triangular form.

Given a permutation matrix P such that

JPcol =
(

B S
)

,

where B ∈ IRm×m, S ∈ IRm×n−m and rank(B) = m, define matrices Y ∈ IRn×m and

Z ∈ IRn×(n−m), as well as the vectors ∆xY ∈ IRm and ∆xZ ∈ IRn−m such that

JY = B

JZ = 0

Y = Pcol

I

0

Z = Pcol

−B−1S

In−m

∆x =
(

Y Z
)

∆xY

∆xZ

 .

Finally, define the matrix

T =

Y Z

I

 .

Premultiplying (4.7) by T T and substituting the above definitions, we obtain the block

4.1 Computing ∆x,∆y,∆z 27

triangular system

−Y TWY −Y TWZ BT

−ZTWY −ZTWZ

B

∆xY

∆xZ

∆y

=

Y Tw

ZTw

r1

.

We can now obtain ∆xZ and ∆xY by solving

B∆xY = r1 (4.8)

ZTWZ∆xZ = −ZT (w +WY∆xY). (4.9)

We can then form ∆x = Y∆xY + Z∆xZ . Finally, we can solve for ∆y by solving the

system

BT∆y = Y T (w +W∆x). (4.10)

4.1.2 Primal and dual search direction implementation

The top-level algorithm for determining the search directions is given in Algorithm 4.1,

Data : L,U, S, Pcol, Prow, Pchol, d, funHess, funObj, x, t, y, z, µ

Result : ∆x,∆y,∆z1,∆z2,∆t1,∆t2, dn, λmin

1 Compute w (4.6), W (4.5) and ru, rl (4.1), cu, cl (4.2), r1, r2 (4.3)

2 Call [∆x,∆t1,∆t2] = ComputePrimalDirection

3 Call [∆y,∆z] = ComputeDualDirection

4 Compute direction of negative curvature dn

Algorithm 4.1: Compute search direction

The primal directions

The computation of the primal direction is a straightforward implementation of the

derivations in Section 4.1.1. However, there are two things to note. First, we do not

show the use of the factorize routines (e.g., B = P T
rowLU) in these derivations. Also,

and much more interesting, is the computation of the matrix W . We have a positive

definite reduced Hessian from Factorize, ZTWZ = LcholDL
T
chol. In order to guarantee

that the same Hessian (or altered Hessian) used in all computations, we compute the

matrix W where

ZTWZ = ZTWZ +E.

4.1 Computing ∆x,∆y,∆z 28

Given the definitions of the nullspace of the Jacobian, this W is easily computed as

shown in the following theorem.

Theorem 4.1. For W ∈ IRn×n, Z ∈ IRn×(n−m), where Z is defined for a Jacobian

matrix of the constraints J ∈ IRm×n with JPcol =
(

B S
)

, Pcol a permutation, B

nonsingular, JZ = 0 and Z = Pcol

−B−1S

I

, then given the modified Cholesky

factorization ZTWZ+E = LcholDL
T
chol, the matrix W such that ZTWZ = LcholDL

T
chol

is W = W + Pcol

0 0

0 E

P Tcol.

Proof. For the specified W ,

ZTWZ = ZTWZ + ZTPchol

0 0

0 E

P TcholZ

= ZTWZ +
(

(−B−1S)T I
)

0 0

0 E

−B−1S

I

= ZTWZ +E

= LcholDL
T
chol.

This theorem shows that by choosing the permutation Pcol such that B is nonsingular

we are able to obtain the modification to W that gives us the modified reduced matrix.

A related result is that choosing the permutation Pcol in a more careful way shows that

the reduced Hessian is ill-conditioned only by having an ill-conditioned diagonal matrix

as shown in the following theorem.

Theorem 4.2. Consider Z ∈ IRn×(n−m), where Z is defined as a nullspace for the

Jacobian J , and JPcol =
(

B S
)

. When Z is defined as

Z = Pcol

−B−1S

I

 ,

the number of i’s where x∗i = 0 is less than or equal to n−m, and the rank of B = m,

then the ill-conditioning due to the barrier terms is kept to the diagonal of the reduced

Hessian of the Lagrangian.

Proof. For simplicity we revert to problem (2.7) with bounds x ≥ 0. The reduced

Hessian of the Lagrangian is

ZT (HL + X−1Z)Z = ZTHLZ + ZTX−1ZZ,

4.1 Computing ∆x,∆y,∆z 29

where ill-conditioning due to the barrier term occurs only in the last term. Using our

definition of Z,

ZTX−1ZZ =
(

−STB−T I
)

X−1Z

−B−1S

I

 .

Let Y = −B−1S and M = P TcolX
−1ZPcol. Then M is a diagonal matrix in which small

x values are in the lower right of the matrix. Let

M =

M11 0

0 M22

 ,

where the columns of M22 correspond to all xj’s where x∗j = 0. We now have

(

Y T I
)

M

Y

I

 = Y TM11Y +M22,

where M22 is a diagonal matrix containing the ill-conditioned x values.

As a result of this theorem, when there are only a few x∗ = 0 at the solution, we

can compute an accurate solution regardless of the ill-conditioning.

Algorithm 4.2 details the algorithm for computing the primal search directions

∆x,∆t1,∆t2.

Data : L,U, Pcol, Prow, Pchol, Lchol, D, r`, ru, w,W

Result : ∆x,∆t1,∆t2

1 Compute ∆x

begin

Solve B∆xY = −c(x) for ∆xY , see (4.8)

Solve ZTWZ∆xZ = −ZTw − ZTWY∆xY for ∆xZ , see (4.9)

Set ∆x = Y∆xY + Z∆xZ
end

2 Compute ∆t1,∆t2

begin

Set ∆t1 = −r` + ∆x, see (4.4)

Set ∆t2 = −ru −∆x

end

Algorithm 4.2: Compute primal directions

4.2 Direction of negative curvature 30

The dual directions

The algorithm for the computation of the dual direction is given in Algorithm 4.3, which

is a direct implementation of the derivations in section 4.1.1.

Data : L,U, S, Pcol, Prow,W , y, z1, z2, t1, t2, c`, cu,∆t1,∆t2, ∆x,w

Result : ∆y,∆z1,∆z2

1 Compute ∆z1,∆z2

begin

Solve T1∆z1 = c` − Z1∆t1 for ∆z1, see (4.4)

Solve T2∆z2 = cu − Z2∆t2 for ∆z2
end

2 Compute ∆y

begin

Solve BT∆y = Y T (w +W∆x) for ∆y, see (4.10)

end

Algorithm 4.3: Compute dual directions

4.2 Direction of negative curvature

In this section we discuss computation of the directions of negative curvature dn and α

for ZTWZ and W , and also the minimum eigenvalue of ZTWZ (λmin). The eigenvalue

is not part of the search direction algorithm, but is included here because it is computed

as one of the steps for refining d.

4.2.1 Why a direction of negative curvature is needed

A direction of negative curvature for ZTWZ is any vector d ∈ IRn−m that satisfies

dT (ZTWZ)d < 0. In order to guarantee convergence to a second-order point it is

essential that a direction of negative curvature be used. For example, consider the

problem

min x3

subject to x ≥ −2.

If the current iterate is x = 0 the first-order optimality conditions are satisfied, but the

second-order optimality conditions are not. Generating the next search direction from

the KKT system at x = 0 gives ∆x = 0 and no progress can be made. Without d, the

algorithm can not converge to x∗ = −2.

4.2 Direction of negative curvature 31

Using d may also improve efficiency even when d is not essential for convergence.

Assume x represents all primal variables and y are the dual variables. After a descent

direction is computed, a typical Newton method performs a linesearch to find a step

length αk that reduces some merit function M(x, y) at the point

xk

yk

+ αk

∆x

∆y

 .

Murray and Prieto [MP95] propose an alternative computation for xk+1, yk+1 using dn.

They define a curvilinear search as a procedure that computes a step length αk such

that

xk

yk

+ αk

dn

0

+ α2
k

∆x

∆y

reduces the merit function. They show that fewer iterations may be needed to satisfy the

convergence criteria using directions of negative curvature rather than descent directions

alone. This method, and its theory, has been successfully applied to SQP methods.

Moguerza and Prieto [MP03] analyzed the use of negative curvature for a primal-

dual method using a log-barrier function. In 20% of their test cases, the total iterations

decreased when negative curvature was combined with descent directions to determine

the next iterates. In no test case did the total iterations increase.

The benefits of using negative curvature can also be seen in the example

minx1,x2
−x2

1 + x2
2

subject to 0 ≤ x1 ≤ 1.

This problem illustrates how using negative curvature results in a larger reduction in the

objective function value than using the direction of descent alone. There is one solution

(1, 0) with Lagrange multiplier λ = −2 satisfying the second-order KKT conditions for

inequality constrained problems.

Consider a starting point of (0.5, 0.5). The Newton descent direction is found by

solving HLp = −g, where p = (−2∆x1, 2∆x2). The direction of negative curvature

is obtained from the eigenvector corresponding to the smallest eigenvalue of HL. Fig-

ure 4.1 shows the contour for the objective function values, along with the direction

of negative curvature, descent direction and the combined direction vectors. We see

that the combined direction has a lower objective function value at the boundary and

converges to the solution in one step.

The routine modchol computes the modified Cholesky factorization of the reduced

Hessian ZTWZ and gives us a direction of negative curvature for ZTWZ with minimal

computation costs. This direction of negative curvature, dn, is an estimate for the

4.2 Direction of negative curvature 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.81818

0.45455

0.27273

−0.090909

−0
.4

54
55

0.00 −0.75

0.00 −1.00

Newton descent direction

direction of negative curvature

combined directions

Figure 4.1 Direction of negative curvature example

eigenvector corresponding to the smallest eigenvalue of ZTWZ.

Since the cost of computing d for ZTWZ is negligible and the convergence rate is

generally improved, negative curvature is combined with the computed descent direc-

tion.

There are three parts to computing a direction of negative curvature. First, we

update the direction d returned from the modified Cholesky algorithm. In section 4.2.2

we discuss this and the computation of λmin. After we solve for the primal direction,

we extend d to IRn to obtain dn, and scale it to the same size as the primal direction

using the 2-norm. Finally, we verify that dn is a direction of negative curvature for

HL(x, y)+µX−2 and if not, we discard it. This functionality is discussed in section 4.2.3.

4.2.2 Estimating the minimum eigenvalue and refining dn

The minimum eigenvalue of ZTWZ is necessary to demonstrate convergence of our

sequence to second-order KKT points and to decide whether or not to use a direction

of negative curvature d when it exists. When the minimum eigenvalue λmin > 0 then

ZTWZ � 0, which is a condition for convergence to second-order KKT points (see

section 1.3).

Given a symmetric matrix A, the modified Cholesky algorithm produces the factor-

ization

A+E = LcholDL
T
chol,

where E � 0 is diagonal. When A is positive definite, E = 0 and there is no direction

of negative curvature. When E 6= 0 we find w such that Aww = minj Ajj. With ew the

4.2 Direction of negative curvature 33

wth unit vector, we then solve

LTd = ew.

The resulting d is often a direction of negative curvature. It approximates the eigen-

vector corresponding to λmin, the smallest eigenvalue of A [GMW81], and its Rayleigh

quotient estimates λmin itself [GV83].

In MELBA, A is ZTWZ and the estimate of λmin is used to determine whether

to use a direction of negative curvature. The estimate can be somewhat imprecise,

indicating only whether or not we have a positive definite matrix. We consider negative

curvature when our estimate satisfies λmin < −δ for some δ > 0.

In estimating λmin we have two issues to consider. First, how accurate does this

eigenvalue need to be? Then, given the accuracy required, what is the most efficient

way to obtain this value?

Moré and Sorensen [MS79] prove that the modified Cholesky algorithm has difficulty

estimating directions of negative curvature when the minimum eigenvalue is close to 0.

This is not an issue here because we only consider the direction of negative curvature

when it is less than a small negative value (λmin < −δ). If λmin is negative, but close to

0, then the direction of negative curvature is discarded. This feature is a benefit as we

get closer to the solution because ZTWZ may fluctuate between positive definiteness

and indefiniteness because of roundoff errors in computing the products with Z and

ZT . If we do not eliminate small directions of negative curvature then there may be

convergence rate difficulties. Using an upper bound on the minimum eigenvalue is a

reasonable approach since the reduced Hessian Z(x∗)THL(x∗, y∗)Z(x∗) must be positive

definite at the solution. By continuity, as (xk, yk)→ (x∗, y∗) the reduced Hessian of the

Lagrangian should also be positive definite and any fluctuation is due to rounding errors.

Ignoring erroneous and small negative eigenvalues allows for quadratic convergence near

the solution.

Given our direction of negative curvature (d computed in the modified Cholesky func-

tion), we estimate the corresponding minimum eigenvalue using the Rayleigh quotient

[GV83]. Let A ≡ ZTWZ, with approximate eigenvector d. To find the corresponding

eigenvalue λmin, we minimize ‖(A − λminI)d‖2 with respect to λmin. The solution to

this problem is called the Rayleigh quotient:

λmin = dTAd
dT d

.

Using this equation we can improve both d and λmin at a cost of n−m operations. We

perform a univariate search along each component of d and determine if a small change

reduces λmin. If it does, λmin is set to this value and dk is updated to d+ αek.

4.2 Direction of negative curvature 34

For each k, the univariate search solves the minimization problem

min
α
r(α) =

(d+ αek)
TA(d+ αek)

T

‖d+ αek‖2
.

This requires us to find the roots of a quadratic and test both solutions to see if ei-

ther reduces the eigenvalue estimate. If neither decreases λmin, we simply discard the

change [Bom99].

The algorithm for estimating the minimum eigenvalue and improving d is detailed

in Algorithm 4.4.

Data : d,A

Result : λmin, d

1 Univariate Search to improve eigenvalue estimate

if A is not positive definite then

2 Obtain estimate for minimum eigenvalue

Set λmin = dTAd
‖d‖2

2

3 Perform univariate search to improve λmin and d estimate.

for k = 1, 2, . . . , n do

Compute λtemp = minα
(d+αek)TA(d+αek)

‖(d+αek)‖2

2

and αmin = optimal α

if λtemp < λmin then

d(k)← d(k) + αmin

λmin ← λtemp

Algorithm 4.4: Compute minimum eigenvalue and negative curvature

4.2.3 Extending d to IRn, scaling and validation

In the linesearch routines, the search direction is combined with the direction of negative

curvature. The search direction is in IRn and d ∈ IRn−m. Therefore, d is extended to

IRn as follows.

The direction of negative curvature d satisfies dTZTWZd < 0. Defining dn = Zd,

we see that

dnTWdn = (dTZT)W (Zd) < 0

and, hence, dn is a direction of negative curvature for W as required.

To prevent difficulties when combining dn with ∆x, the direction of descent, we

scale dn so that ‖dn‖2 = ‖∆x‖2 [MP03].

The last step is to check that dn is a direction of negative curvature for the original

4.2 Direction of negative curvature 35

barrier subproblem. Note that dn has been computed for the matrix

W = HL + T1
−1Z1 + T2

−1Z2,

which is derived from the primal-dual equations. The Hessian of the Lagrangian for the

barrier subproblem in section 4.1.1 is actually

WB = HL + µ
(

T1
−2 + T2

−2
)

.

We therefore test if dnTWBdn < 0, which is equivalent to testing if dTZTWBZd < 0.

If not, then dn is not a valid direction of negative curvature and it is discarded.

Algorithm 4.5 defines the computation of the direction of negative curvature. The

implementation is spread out in different routines, but presented here as one algorithm

for clarity.

Data : d, ∆x,∆t1,∆t2, λmin

Result : dn

1 If min eigenvalue is small enough, disregard direction of negative curvature

if λmin > MINEIG then

dn = 0

return

2 Verify that d is a direction of negative curvature for the

reduced Hessian of the Lagrangian for the original barrier subproblem

Set A = ZT
(

HL + µ
(

T1
−2 + T2

−2
)

)

Z

if dTAd < −ε then

3 Extend d to IRn : dn← Z × d
4 Scale dn to be the same size in norm as ∆x

dn← dn
‖dn‖‖∆x‖

else

Discard d

Set dn← 0

Algorithm 4.5: Compute the direction of negative curvature algorithm

Chapter 5

Step Size

In this chapter we discuss the computation of the step size to be taken along the linear

and curvilinear search directions. It is well known that one of these needs to be exercised

when performing a linesearch for a barrier function [GMW81]. We return to the problem

formulation (1.1):

minimize
x∈IRn

f(x)

subject to ci(x) = 0 i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n,

where f(x) is a function with known gradient g(x) and Hessian H(x), and c(x) ∈ IRm

is the vector of ci(x) functions with known Jacobian J(x) ∈ IRm×n and Hessians Hi(x).

The barrier subproblem formulation is

minx f(x)− µ∑n
j=1 lnxj

subject to c(x) = 0.
(5.1)

A linesearch method determines an α > 0 (usually α ∈ (0, 1]) that reduces a pre-

defined merit function M(x + α∆x, y + α∆y) for search directions (∆x,∆y). Close to

the solution, we expect the full Newton step (α = 1) to be returned by the linesearch

routine.

This chapter is in four sections. The first section discusses the merit function used

and gives an overview of the algorithm. In subsequent sections we discuss the different

step size algorithms that have been implemented.

5.1 Merit function

The term Merit Function is used to denote a scalar function M(x, y, ρ) that enables

iterates to be ranked. For linearly constrained minimization, the merit function is

usually the objective function f(x) itself because sequences {xk}∞k=0 can be generated

with all points xk feasible.

For nonlinearly constrained problems, feasibility for all xk can not be guaranteed

and deciding if one point is ‘better’ than another is problematic. Figure 5.1 is a plot

of problem (2.4) for three points X,Y and Z. As the plot shows, it is not clear which

36

5.1 Merit function 37

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x

y

X

Y

Z

Figure 5.1 Deciding which value X,Y, Z is ’better’ is difficult

value is ‘better’. A merit function provides us with a numerical value that enables us

to rank X,Y and Z.

We use a modification to the merit function defined by Eldersveld [Eld91] with one

penalty parameter per constraint:

M(x, y, ρ) = f(x)− yT c+ 1
2c
TRc,

where R = diag(ρi), i = 1, . . . ,m. The augmented Lagrangian function for prob-

lem (5.1) is a bit more complicated because it must include barrier terms:

M(x, y, µ, ρ) = fB(x, µ)− yT c+ 1
2c
TRc, (5.2)

where ρ is the vector of ρi’s and fB(x, µ) = f(x) − µ
∑n

j=1 lnxj. When there is a

direction of negative curvature, a curvilinear search is performed along the arc (α2∆x+

α∆x, α2∆y) and step length α is determined that solves the problem

min
α
M(x+ α2∆x+ αdn, y + α∆y, µ, ρ).

Otherwise, a linesearch is performed and α satisfies

min
α
M(x+ α∆x, y + α∆y, µ, ρ).

The algorithm for computing the step size is outlined in Algorithm 5.1. The func-

tionality for this procedure is discussed in Sections 5.2 and 5.3. Finally, a separate

linesearch is done for the dual variables and the procedure for this is discussed in Sec-

5.2 Safeguarded linear search 38

tion 5.4.

Data : E,L,U, S, Pchol, Lchol, E, funHess, funCon, funObj, x, y, z,∆x,∆y,∆z

Result : α, αyz

α = 0

if There exists a sufficient direction of negative curvature then

Call α = Curvilinear search

if α = 0 then

Call α = Safeguarded linear search

Call αyz = Dual linesearch

Algorithm 5.1: Compute step size

The safeguarded linesearch is presented first because some of its functionality is used

in the curvilinear search.

5.2 Safeguarded linear search

The safeguarded linesearch is based on the linear search described in Lin’s thesis [Lin02].

This linesearch method is called when there is not a sufficient direction of negative cur-

vature. As discussed earlier, the goal is to find an α that minimizes the augmented

Lagrangian merit function (5.2). Determining α is a minimization problem in its own

right and we want an approach that is efficient computationally, while still being accu-

rate.

One approach is the Armijo or backtracking linesearch. We start with α = 1 and

test if it satisfies our linesearch termination criterion. If it does, we return. If not,

α is reduced by a fixed factor ω. Then we compute the new objective and constraint

function values and calculate the new merit function value. We continue until we satisfy

the termination criterion. The backtracking linesearch can be quite expensive because

each trial α requires calls to the user-defined objective and constraint functions. This

approach uses very little of the problem information, using ψ(α) only to compare the

two values for α.

A more efficient procedure for a linesearch, using more information from the func-

tion, is to approximate the univariate function ψ(α) using a simple function whose

minimum is easily computed. Since such a procedure may diverge if the approximation

is inaccurate, an interval of uncertainty [l, h] is maintained as a safeguard. The most

common interpolation functions are polynomials. Murray and Wright [MW94] discuss

the problems of using polynomial interpolation for estimating a barrier function and

5.2 Safeguarded linear search 39

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

Barrier Function
Quadratic Approximation

Figure 5.2 Quadratic approximation example

show that although low-order polynomials are typically used to estimate ψ(α), the es-

timating functions can not reflect the singularity at the barrier. Figure 5.2 illustrates

this problem, plotting both a barrier function and a quadratic interpolation function

based on the Taylor-series expansion of the barrier objective function:

q̂(x) = q(xk) + q′(xk)(x− xk) + 1
2q

′′(xk)(x− xk)2.

Notice how the true minimum of the function can not be detected. In view of this

difficulty we base our linesearch method on an algorithm developed by Lin using linear

constraints [Lin02]. Lin’s method is based on [MW94].

5.2.1 Approach

Given a twice-differentiable objective function f(x) and constraint functions ci(x), i ∈
1, . . . ,m, the merit function M(x, y) and its gradient M ′(x, y) are defined as

M(x, y) = f(x)− µ∑n
j=1 lnxj − yT c+ 1

2c
TRc

M ′(x, y) =

∇f(x)− µX−1e− JT y + JTRc

−c

 .

5.2 Safeguarded linear search 40

With the search directions (∆x,∆y), the safeguarded linesearch procedure deter-

mines the step size α that approximately minimizes the univariate function

ψ(α) = M(x+ α∆x, y + α∆y).

Lemma 5.1. When ψ(α) = M(x+ α∆x, y + α∆y) then

ψ(0) = M(x, y)

ψ′(0) = M ′(x, y)T

∆x

∆y

ψ′(α) = M ′(x+ α∆x, y + α∆y)T

∆x

∆y

 .

Proof. Let
(

x̃ ỹ
)

=
(

x+ α∆x y + α∆y
)

.

By definition,

ψ(α) = M(x̃, ỹ) = f(x̃)− µ
n
∑

j=1

ln(x̃j)− ỹT c(x̃) + 1
2c(x̃)TRc(x̃),

and therefore ψ(0) = M(x, y). Next, consider

ψ′(α) = (∇f(x̃)− µX̃−1e)T∆x− ỹTJ(x̃)∆x−∆yT c(x̃) + c(x̃)TRJ(x̃)∆x

=

g(x̃)− µX̃−1e− J(x̃)T ỹ + J(x̃)TRc(x̃)

−c(x̃)

T

∆x

∆y

= M ′(x̃, ỹ)T

∆x

∆y

 . (5.3)

Consequently,

ψ′(0) =

g(x)− µX−1e− JT y + JTRc

−c(x)

T

∆x

∆y

= M ′(x, y)T

∆x

∆y

 .

5.2 Safeguarded linear search 41

5.2.2 Linesearch algorithm

The linesearch algorithm first verifies that there is sufficient descent for the merit func-

tion. This is guaranteed when

ψ′(0) ≤ −1
2∆xTW∆x,

where W is the Hessian for problem (5.1). If this inequality does not hold, then the rou-

tine compute rho is called to increase individual ρi’s, thereby guaranteeing sufficient

descent.

Given sufficient descent, the first routine called is initializeAlpha. This routine

estimates an initial α using both linear and quadratic interpolation functions for f(x).

This routine also returns an interval of uncertainty [0, αmax] for α and guarantees fea-

sibility (i.e., x+ αmax∆x > 0).

If the initial α satisfies the inequality

ψ(α) ≤ ψ(0) + γ2αψ
′(0),

then α is returned and the linesearch is complete. Otherwise we iterate, updating our

estimate of α until the following Gamma conditions are satisfied:

|ψ′(αk)| ≤ −γ1ψ
′(0) and ψ(αk) ≤ ψ(0) + γ2αkψ

′(0),

where 0 ≤ γ1 < 1 and 0 ≤ γ2 <
1
2 . If γ1 is small, we have an ‘accurate linesearch’.

If γ1 = 0, we have an ‘exact linesearch’, and the procedure terminates at a stationary

point of ψ(α). Usually γ2 is chosen to be small, increasing the probability that an

approximate minimizer will satisfy the condition.

When 0 < γ2 ≤ γ1 < 1, then Γ(γ1, γ2) contains a nontrivial interval [GMW81].

The iteration loop for refining α has three steps. First, the interval of uncertainty

[αlo, αhi] is updated for the current estimate of α in updateUncertainty. Then com-

puteAlpha is called to update the estimate for α using a quadratic interpolating func-

tion based upon αlo. Finally, safeguard is called to verify, and if necessary change, α

to ensure it is a reasonable step size.

The algorithm for the safeguarded linesearch is given in Algorithm 5.2. The routines

in bold are detailed in the following subsections.

5.2 Safeguarded linear search 42

Data : x, y, γ1, γ2,∆x,∆y

Result : α

Verify that there is sufficient descent

if ψ′(0) > −1
2∆xTW∆x then

Call compute rho to update the penalty parameters

1 Obtain initial estimate for α

α← initializeAlpha

2 if (ψ(α) > ψ(0) + γ2αψ
′(0)) then

[αlo, αhi]← updateUncertainty

while (|ψ′(α)| > −γ1ψ
′(0)) or (ψ(α) > ψ(0) + γ2αψ

′(0)) do

αtemp ← computeAlpha

α← safeguard

[αlo, αhi]← updateUncertainty

Algorithm 5.2: Linesearch algorithm

5.2.3 initializeAlpha

In this section we describe an algorithm for computing the initial estimate for α. The

goal is to compute an α efficiently using interpolating functions.

The first step is to compute a maximum allowable step αmax such that x+ αmax∆x ≥ 0

according to

αmax = min
∆xj<0

− xj
∆xj

.

The starting interval of uncertainty is set to [0, αmax].

Next, we use a linear interpolant to refine the interval of uncertainty [αlo, αhi] with

ψ′(αlo) < 0 and ψ′(αhi) > 0 and use this interval for the initial estimate of α.

Linear Interpolant

Computing the merit function for each possible α is often computationally expensive

because of the cost of the objective and constraint function calls. As a result, the merit

function values for potential α values are interpolated. In order to do linear interpolation

for ψ(α) = M(x+ α∆x, y + α∆y), we first define the following univariate functions:

ϕ(α) =
∑n

j=1 ln(xj + α∆xj)

φ(α) = ψ(α) − µϕ(α),

5.2 Safeguarded linear search 43

where B is the log-barrier function. The interpolating function ψ is defined as

ψ(α) = φ(α)− µϕ,

where φ(α) = a+ bα is the linear interpolation for φ(α); that is, φ
′
(0) = b = φ′(0).

Lin proves that a sufficient condition for a unique minimizer αψ to exist in [0, αmax]

is that φ′(0) < 0 [Lin02].

Initially, we need to set up an interval of uncertainty [αlo, αhi] with ψ′(αlo) < 0 and

ψ′(αhi) > 0. Since ψ′(0) < 0, we estimate αlo given only the values ψ(0), ψ′(0) and

φ′(0). We use the linear interpolation function

Θ1(α) = φ(α)− µϕ(α)

= a+ bα− µ(ln(αmax − α) + cα + f).

As shown in [Lin02], this function’s derivatives are

Θ′
1(α) = (b− µc) + µ

αmax−α
,

Θ′′
1(α) = µ

(αmax−α)2
.

The second derivative is always positive, so Θ1 is strictly convex with a minimum at

αΘ1
satisfying

Θ′
1(αΘ1

) = (b− µc) +
µ

αmax − α
= 0.

Solving for αΘ1
, we obtain the analytic solution

αΘ1
= αmax + u

b−µc ,

= ψ′(0)
ψ′(0)−µ/αmax

αmax.

Given αlo, we find the smallest αhi such that ψ′(αhi) > 0. Given this interval of

uncertainty, we now perform a quadratic interpolation within the interval, reducing the

interval until ψ′(α) ≈ 0.

Quadratic Interpolant

Given an interval [αlo, αhi] for ψ(α) with ψ
′
(αlo) < 0 and ψ

′
(αhi) > 0, we use the

interpolation function

Θ2(α) = φ(α)− µφ(α)

= a+ bα− µ(d ln(αmax − α) + cα+ f).

Its derivatives are
Θ′

2(α) = (b− µc) + µd
αmax−α

,

Θ′′
2(α) = µd

(αmax−α)2
.

5.2 Safeguarded linear search 44

Lin fitted Θ2(α) to values of ψ
′
(α) at αlo and αhi, showing it is convex and obtaining

the following estimate for the minimum:

αΘ2
= αmax +

(αmax − αhi)(αmax − αlo)
[

ψ
′
(αhi)− ψ

′
(αlo)

]

(αmax − αlo)ψ
′
(αlo)− (αmax − αhi)ψ

′
(αhi)

.

The initializeAlpha routine is outlined in Algorithm 5.3.

5.2 Safeguarded linear search 45

Data : x, y, ∆x,∆y, γ, γ1, γ2, η

Result : α, αlo, αhi

Compute the maximum step size we can take and still be feasible

αmax ← min(1,− xj

|∆xj |
,∆xj < 0)

Compute αmin, with ψ(0), ψ′(0) and φ′(0)

αmin = ψ′(0)αmax

ψ′(0)−µαmax

xtest = x+ αmin∆x

Invert each value of (xtest)j = 1
(xtest)j

gψ = b− µ(xTtest∆x)

Given αmin, get the next largest α where the derivative changes sign

while gmin < −ε do

αlo = αmin

αmin = ζαmax + (1− ζ)αmin

xtest = x+ αmin∆x

Invert each value of (xtest)j = 1
(xtest)j

gmin = b− µ(xTtest∆x)
αhi ← αmin

Compute α where Θ′(α) ≈ 0 in [αlo, αhi]

while |Θ′(α)| > ε do

αmin = αmax +
(αmax−αhi)(αmax−αlo)

h

ψ
′

(αhi)−ψ
′

(αlo)
i

(αmax−αlo)ψ
′

(αlo)−(αmax−αhi)ψ
′

(αhi)

αtrial ← safeguard

xtest = x+ αmin∆x

Invert each value of (xtest)j = 1
(xtest)j

g ← b− µ(xTtest∆x)

if Θ′(α) > 0 then

αhi = αtrial

else

αlo = αtrial

α = αmin

Algorithm 5.3: Initialize alpha

5.2.4 computeAlpha

When the initial estimate for α does not pass the linesearch termination criterion ψ(α0)−
ψ(0) > γ3α

0ψ′(0), the estimate for α is updated in computeAlpha. We use a quadratic

5.2 Safeguarded linear search 46

interpolating function for φ:

ψ̃(α) = φ̃(α)− µϕ(α),

where we interpolate at α = αlo with ψ′(αlo) < 0:

φ̃(α) = a+ b(α− αlo) +
c

2
(α− αlo)2

and
a = −µ
b = φ′(αlo)

c = 1
αs−αlo

(φ′(αs)− φ′(αlo))

and we use interval reduction to find the linesearch minimizer. Algorithm 5.4 outlines

this routine.

5.2 Safeguarded linear search 47

Data : x, y, αfit, αmax, αlo, αhi, dflo, dfhi, interval length, µ

Result : α, αlo, αhi

1 Set initial guess to αhi when it is the maximum value

if αhi == αmax then

αs = αfit

dfs = dffit

else

αs = αhi

dfs = dfhigh

Set (xinv)j = 1
xj

Set ψ ← dffit + µ(xinv
T∆x)

Set b1← dflow + µ(xinv
T∆x)

Set c1← (ψ − b1)/(αs − αlo)
Set length iu← αhi − αlo
while (|dfs| > 0) and (length iu > interval length) do

2 Perform the interpolation to update guess for α

Set αδ ← αmax − αlo
Set b← dflow − µ

αδ

Set c← 1
αs−αlo

(dfs − b− µ
αmax−αs

)

If c is 0 then use only α and b to update αtrial if c = 0 then

Set αtrial ← αlo + µ+bαδ

b

else

Set αtrial ← αlo + c
αδ−b−

√
(b+cαδ)2+4cµ

2c

Set αmin = safeguard(αtrial)

3 Estimate new value

dfs = b1 + c1(αmin − αlo)− µxinvT∆x;

[αlo, αhi]← updateUncertainty

Set length iu = αhi − αlo
end;

Set α← αmin

Algorithm 5.4: Compute alpha

5.2 Safeguarded linear search 48

5.2.5 updateUncertainty

The interval of uncertainty is defined as [αlo, αhi] with ψ′(αlo) < 0 and ψ′(αhi) > 0.

Within this interval, there exists a minimizer of the merit function.

UpdateUncertainty updates this interval when a new estimate of α has been

computed. The value of ψ′(α) replaces the lower or higher bound based on whether it

is negative or positive.

The variable hit ic is also updated in this routine. This variable is used in the

function safeguard to prevent slow convergence to an endpoint of this interval.

Data : hit ic, αlo, αhi, α

Result : hit ic, αlo, αhi

1 if
(

ψ(α0) > ψ(0)
)

or (ψ′(α) > 0) then

αhi ← α

hit ic(2) ← hit ic(2) + 1

hit ic(1) ← 0

else

αlo ← α

hit ic(1) ← hit ic(1) + 1

hit ic(1) ← 0

Algorithm 5.5: Update interval of uncertainty

5.2.6 Safeguard

The function safeguard is provided to prevent slow convergence to one of the end

points of the interval of uncertainty. Given three points, αtrial, αlo, αhi, we safeguard α

by setting it to

α =

αlo + η1(αhi − αlo) if αtrial < αlo + η1(αhi − αlo)
αhi − η1(αhi − αlo) if αtrial > αhi − η1(αhi − αlo)
αtrial otherwise,

where 0 ≤ η1 ≤ 1. The algorithm for this routine is outlined in Algorithm 5.6.

5.2 Safeguarded linear search 49

Data : hit sg, hit ic, αlo, αhi, αtrial, η1

Result : α, hit sg

1 Set LB ← η1αhi + (1− η1)αlo

Set UB ← (1− η1)αhi + η1αlo

if α < LB then

if (hit ic(1) > 2) and (hit sg(1) > 2) then

α← UB

else if (hit ic(2) > 2) and (hit sg(1) > 2) then

α← η2αhi + (1− η2)αlo

else

α← LB

hit sg(1) = hit sg(1) + 1

hit sg(2) = 0

else if α > UB then

if (hit ic(2) > 2) and (hit sg(2) > 2) then

α← LB

else if (hit ic(1) > 2) and (hit sg(2) > 2) then

α← η2αlo + (1− η2)αhi

else

α← HB

hit sg(2) = hit sg(2) + 1

hit sg(1) = 0

else

hit sg(1) ← 0

hit sg(2) ← 0

Algorithm 5.6: Safeguard algorithm

5.2.7 Compute rho

The function compute rho is used by the safeguarded linesearch and the curvilinear

search. It is called when we do not have a sufficient descent direction or significant

direction of negative curvature.

In order to achieve a sufficient reduction in the merit function for the safeguarded

linesearch we require

5.2 Safeguarded linear search 50

ψ′(0) ≤ −1
2∆xTW∆x (5.4)

[GMW81]. When this inequality is not satisfied, ρ is modified to obtain a sufficient

descent direction. The minimum ρ that guarantees satisfying equation (5.4) is

ρmin =
gTB∆x+ (y −∆y)T c+ 1

2∆xTW∆x

‖c‖2 ,

where gB is the gradient of the objective of (5.1) and W is the Hessian of the Lagrangian

for the barrier subproblem. It is shown in [Eld91] that the minimum-Euclidean-norm

choice of the vector of penalty parameters for the augmented Lagrangian merit function

is given by ρ∗ = λr, for

λ =
gTB∆x+ (y −∆y)T c+ 1

2∆xTW∆x

rT r
,

and ri = c2i , i = 1, . . . ,m.

This value ρmin ensures that (5.4) is satisfied and we have a direction of descent for

the linear merit function. However, in order to ensure that ∆x is a descent direction

for the curvilinear merit function, 0.5 must be added to ρmin. Since ρ > ρmin, we use

the curvilinear computation for ρmin. The equivalence of the two ρ values is proven in

the curvilinear search section 5.3.

It is also necessary to keep ρ from getting too large, and therefore when an individual

ρi > ρ∗i it can be reduced and still satisfy equation (5.4). Eldersveld shows that in this

situation the individual value can be reset to the geometric mean of ρi and ρ∗i :

ρt =
√

ρi(δk + ρ∗i), (5.5)

where δk ≥ 1. The new ρi is

ρi =

{

ρt if ρt ≤ 1
2ρi

ρi otherwise.

The parameter δk is increased by a factor of two whenever a ρi is decreased to prevent

too many updates to ρ.

Algorithm 5.7 defines the algorithm for computing ρ.

5.3 Curvilinear search 51

Data : ρ, x, y,∆x,∆y, gB , c, δ

Result : ρ, δ

1 Compute θ← gTB∆x+ (y −∆y)T c+ 1
2∆xTW∆x

Set ri ← c2i for i = 1, . . . ,m

Set ρmin ← θ
cT c

c+ 1
2

2 Set the new ρ values, handling decreases

for i = 1 to m do

if ρ(i) > ρmin then

Set ρt per equation (5.5)

if ρt ≤ 1
2ρ(i) then

ρ(i)← ρt

δ ← 2δ

else

ρ(i)← ρmin(i)

Algorithm 5.7: Compute ρ

5.3 Curvilinear search

When a direction of negative curvature exists, it is used to compute the next step size,

α. This algorithm is based on the curvilinear search of Murray and Prieto [MP95]. Our

implementation of the method uses a backtracking search to obtain α.

5.3.1 Curvilinear merit function

The curvilinear search also uses the augmented Lagrangian merit function to find α,

combining the descent directions and directions of negative curvature for the primal

variable x and using only the descent direction for the dual variable y. Since this

routine is independent of the barrier method, all primal variables are combined into x.

The gradient and Hessian are functions of the barrier (see (2.7)).

Lemma 5.2. The univariate function used to compute α when there is a sufficient

direction of negative curvature is

ψ(α) = M(x+ α2∆x+ αdn, y + α2∆y) (5.6)

5.3 Curvilinear search 52

and has the following properties:

ψ(0) = M(x, y)

ψ′(α) = ∇M(x+ α2∆x+ αdn, y + α2∆y)T

2α∆x+ dn

2α∆y

ψ′(0) = ∇M(x, y)T

dn

0

 .

Proof. By definition,

ψ(0) = M(x, y). (5.7)

Let

x̂ = x+ α2∆x+ αdn

ŷ = y + α2∆y

q =

2α∆x+ dn

2α∆y

 .

By definition,

∇M =

g(x̂)− J(x̂)T ŷ + J(x̂)TRc(x̂)

−c(x̂)

and we have

ψ′(α) = g(x̂)T (2α∆x+ dn)− ŷTJ(x̂)(2α∆x+ dn)− 2αc(x̂)T∆y + J(x̂)TRc(x̂)(2α∆x+ dn)

=

g(x̂)− J(x̂)T ŷ + c(x̂)TRJ(x̂)

−c(x̂)

T

q

= ∇M(x̂, ŷ)T q. (5.8)

It is now apparent that

ψ′(0) =

g(x) − JT y + JTRc

−c

T

dn

0

 (5.9)

= ∇M(x, y)T

dn

0

 . (5.10)

As defined in [MP95], the second derivative of the merit function is only required for

5.3 Curvilinear search 53

α = 0. The second derivative is

ψ′′(0) = 2
(

∆xT ∆yT
)

∇M +
(

dnT 0T
)

∇2M

(

dn

0

)

. (5.11)

5.3.2 Curvilinear Algorithm

Before beginning the curvilinear search, we ensure that we have a direction of sufficient

negative curvature. First, since the sign of dn is ambiguous, when

gB(x)T dn > 0,

where gB(x) is the gradient of f(x)−µ∑j ln(xj), we switch the sign of dn. This switch

makes sure that dn is a descent direction for the merit function. We next check that

φ′′(0) > −ω + 1
2dn

TWdn,

where

ω = 1
2(cT c+ ∆xTW∆x). (5.12)

When this inequality holds, we need to increase ρi to guarantee descent for ψ. In this

situation, ρ is updated by calling the function compute rho discussed in section 5.2.

Lemma 5.3. Define ρ̂min to be the minimum multiplier, ρ, that guarantees (∆x +

dn,∆y) is a direction of descent for the augmented Lagrangian function. Then

ρ̂ =
1
2ω + gT∆x+ (y −∆y)T c

‖c‖ ,

as shown in [MP95]. Further, let ρ̄min be the minimum ρ to guarantee descent for the

augmented Lagrangian applied for (∆x,∆y). Then

ρ̄ =
gT∆x+ (y −∆y)T c+ 1

2∆xTW∆x

‖c‖2

as shown in [Eld91]. Given these two definitions, ρ̂ = ρ̄+ 1
2 .

Proof. From the definition of ω: 1
2ω = 1

2∆xTW∆x+ 1
2‖c‖2.

The direction of negative curvature is sometimes discarded [MP95] and the safe-

guarded linesearch is performed using only ∆x, as detailed in section 5.2. When the

penalty multipliers remain unchanged, a curvilinear search is carried out to compute α,

using a backtracking algorithm.

The first step computes a starting α. Given the bounds on x we compute αmax, the

5.3 Curvilinear search 54

minimum among all {α+
xj
, α−

xj
}. This set is computed by solving the quadratic equation

xj + α2
xj

∆xj + αxj
dnxj

= 0

for its two roots α+
xj
, α−

xj
for each j and defining αxj

= min{α+
xj
, α−

xj
}. Finally, αmax is

set to

αmax = min
αxj

>0
αxj

.

The initial value of α is set to min(1, αmax ∗ γ), where ‖γ − 1.0‖ is very small. This

step size ensures that the constraints x ≥ 0 remain strictly satisfied. We now test if α

satisfies the termination criterion

ψ(α) − ψ(0) ≤ γ2(αψ
′(0) + 1

2αψ
′′(0)),

and if so, α is returned. Otherwise, α is reduced by multiplying it by a constant,

0 < β < 1, until

ψ(α) − ψ(0) ≤ γ2(αψ
′(0) + 1

2αψ
′′(0))

ψ′(α) ≥ γ1(ψ
′(0) + αψ′′(0)),

where 0 < γ2 ≤ 1
2 and 1

2 ≤ γ1 < 1. Using this criterion we are guaranteed a minimizer

for ψ(α) and M(xk+1) < M(xk) [MP95].

Algorithm 5.8 presents the algorithm for the curvilinear search.

5.4 Dual linesearch 55

Data : x, y,∆x,∆y, dn, β

Result : α, dn

1 Test if we have a direction of significant negative curvature

begin

if gTdn > 0 then

dn = −dn

Compute ψ(0) as defined in (5.7)

Compute ψ′(0) per (5.9)

Compute ψ′′(0) per (5.11)

Compute ω per (5.12)

if ∇ψ′′(0) > −ω + 1
2dn

TWdn then

Update ρ per linear search compute rho

Set dn to all 0’s

return

end

2 Compute 0 < αmax ≤ 1, such that x+ α2
max∆x+ αmaxdn > 0

begin

For each element xj,

Compute roots of xj + α2
j∆xj + αjdnj = 0

Set αmax to the minimum for all roots greater than 0

end

α = min(1, γ ∗ αmax)

3 Backtrack, reducing α until we satisfy the termination conditions

while ψ(α) − ψ(0) > γ2(αψ
′(0) + 1

2αψ
′′(0))

and ψ′(α) ≥ γ1(ψ
′(0) + αψ′′(0)) do

α← β ∗ α
Compute ψ(α) per (5.6)

Compute ψ′(α) per (5.8)

Algorithm 5.8: Curvilinear search

5.4 Dual linesearch

Once the step size for the primal values x has been computed, a separate linesearch is

done to update the dual variables, y and z. In this routine, we find the step αyz that

minimizes the residuals (4.2) and (4.3). Using an algorithm proposed by Lin [Lin02],

5.4 Dual linesearch 56

<5 <10 <15 <20 <25 <30 <50 <150
5

10

15

20

25

30

35

40

N
um

be
r o

f p
ro

bl
em

s
so

lv
ed

Iterations

no dual linesearch
dual linesearch for z
dual linesearch for y,z

Figure 5.3 Dual step size comparisons

which determines a step length for z alone, we extend it to calculate one step length for

both dual variables (y, z).

For a test set of 36 random problems, Figure 5.3 plots the iterations versus the

number of test problems solved within the number of iterations. The plot compares

different algorithms for computing the dual variable step sizes:

1. Using one α, as described in previous sections, for all variables.

2. One α for updating x and y and αz for z.

3. One α for the primal variable and αyz for the dual variables.

Using one α for all variables appears to be the worst approach, not unexpectedly because

z is not a component in the merit function. The decision to use either αyz or αz is

inconclusive from these test results. However, additional testing on 80 test problems

from the Hock-Schittkowski test cases show αyz is superior because it solved 33% more

test problems than were solved using αz.

This algorithm determines the αyz that minimizes the norm of the residuals defined

in section 4.1.1 involving the dual variables. The residuals are

µe− T̆(z + αxy∆z) See (4.2)

g(x̆)− J(x̆)T (y + αyz∆y)− (z + αyz∆z) See (4.3),

5.4 Dual linesearch 57

where (x̆, t̆) are the updated values, using x̃ = x+α∆x from the safeguarded linesearch

or x̂ = x+ α2∆x+ αdn from the curvilinear search.

Letting x, t are the updated values, the unconstrained minimization problem solved

is

min
αyz

β‖µe−T(z + αyz∆z)‖2 + (1− β)‖g − JT (y + αyz∆y)− (z + αyz∆z)‖22

for 0 ≤ β ≤ 1. The analytical solution to this is

αyz = −β∆zTT(Tz − µe) + (1− β)(g − z − JT y)(−JT∆y −∆z)

β‖T∆z‖22 + (1− β)(−∆z − JT∆y)2
. (5.13)

The algorithm is defined in Algorithm 5.9.

Data : g, J, x̆, y, t̆, z, µ,∆y,∆z, β

Result : αyz

1 Set N to the numerator of (5.13)

N = β∆zTT(Tz − µe) + (1− β)(g − z − JT y)(−JT∆y −∆z)

2 Set D to the denominator of (5.13)

D = β‖T∆z‖22 + (1− β)(−∆z − JT∆y)2

αyz = −N
D

Algorithm 5.9: Dual linesearch

Chapter 6

Convergence

In this chapter we give a proof of global convergence and prove our barrier algorithm

converges at a pure quadratic rate. In order to prove a quadratic rate of convergence

we need to be more precise about the procedure for determining the maximum step and

the procedure for reducing the penalty parameter. We also introduce a refinement of

the termination criteria for solving the subproblem. For simplicity we assume a single

barrier parameter and assume the problem is in the form

minimize
x

f(x)

subject to c(x) = 0, x ≥ 0.

Let (x∗, y∗) be a solution of this system, where y is the dual variable. This solution

is found by solving the sequence of subproblems

minimize
x>0, x∈IRn

f(x)− µ∑n
j=1 ln(xj)

subject to ci(x) = 0 i = 1, 2, . . . ,m.
(6.1)

for µ ∈ {µs}. The solution to (6.1) is represented by (x∗(µ), y∗(µ)). Our algorithm does

not find (x∗(µ), y∗(µ)) for this subproblem, but finds an approximate solution to (6.1),

(x(µ), y(µ)). This approximation is found by applying a damped Newton method to

the KKT conditions (2.9). The search directions for Newton’s method are given by the

primal-dual KKT system

−H I JT

Z X 0

J 0 0

∆x

∆z

∆y

=

g(x) − JT y − z
µe−Xz

−c(x)

, (6.2)

where (x, y, z) is the current estimate of the solution to (2.9). Recall that this system

reduces to

−W JT

J 0

∆x

∆y

 =

w

−c(x)

 , (6.3)

58

59

where

W ≡ HL + X−1Z,

w = g − JT y − z −X−1(µe−Xz)

= g − JT y − µX−1e.

The termination conditions (along with the assumptions given later) imply that the

approximate solution to (6.1) satisfies

lim
µ→0

x(µ)→ x∗, lim
µ→0

y(µ)→ y∗.

The merit function used for the linesearch routine is

M(x, y, ρ) = f(x)− µ
n
∑

j=1

ln(xj)− yT c(x) + 1
2ρ‖c(x)‖22

for ρ ≥ 0, ρ ∈ IR.

In order to show convergence, we must show at least that the algorithm for the

subproblem always terminates successfully. The termination criteria ensure convergence

to the KKT conditions as µ→ 0. The criteria are

‖c(x̆)‖∞ ≤ τ1µ

‖JTy̆ + z̆ − g(x̆)‖∞ ≤ τ2µ

‖X̆z̆ − µe‖∞ ≤ τ3µ

λmin(Z
TWZ) > − τ4µ,

(6.4)

where

(x̆, y̆, z̆) =

{

(x̃, ỹ, z̃) if a linear search is used to compute α,

(x̂, ŷ, ẑ) when a curvilinear search is used to compute α,

and τ1, . . . τ4 are positive scalar parameters. Although (6.4) can always be satisfied by

choosing τi sufficiently large, we will in general not know the lowest acceptable value

for these parameters. Instead, we introduce a second condition for terminating the

subproblem, namely:

‖c(x̆)‖∞ ≤ θc(x)

‖JTy̆ + z̆ − g(x̆)‖∞ ≤ θ(JTy + z − g(x))
‖X̆z̆ − µ̂e‖∞ ≤ θ(Xz − µp)
λmin(Z

TWZ) > 0,

(6.5)

where 0.01 ≤ θ ≤ 0.1 and µp is the previous µ.

6.1 Assumptions 60

The proof that our algorithm terminates successfully is done in two parts. We first

show that if µ is sufficiently small then for each subsequent choice of µ our algorithm

requires only one step provided µ is not reduced too quickly and the initial point (x, y)

is the termination point for the previous µ.

The result that only one step is required is also used to show that our algorithm

converges at a quadratic rate. Note that this is a “true” quadratic rate of convergence

for the original NLP and not simply that x(µ) is converging quadratically for fixed µ.

6.1 Assumptions

The following assumptions refer to problem (1.1) and are based on [MP95].

Assumption 1 x∗ is an isolated, local minimizer and satisfies the sufficient optimality

conditions defined in section 1.3.

Assumption 2 There exist no first-order KKT points at ∞.

Assumption 3 f, c1, c2, . . . , cm and their first, second and third derivatives are contin-

uous and uniformly bounded in norm on any compact set.

Assumption 4 The isolated local minimizer x∗ is in the closure of x ≥ 0.

Assumption 5 Strict complementarity holds at all stationary points.

Assumption 6 The reduced Hessian of the Lagrangian function is nonsingular at all

first-order KKT points.

Assumption 7 The Jacobian of the active constraints at any second-order KKT point

has full rank.

Assumption 8 The set {µs} is a strictly decreasing positive sequence converging to 0.

Assumption 9 For some constants βc > 0 and βx > 0, the optimal objective value for

minimize
x∈IRn

f(x)

subject to |ci(x)| ≤ βce i = 1, 2, . . . ,m

xj ≥ −βxe j = 1, 2, . . . , n

is bounded below.

Assumption 10 At all iterates {xk} generated by the algorithm there exists a feasible

step p from xk that satisfies the linearization of the constraints and is such that

‖p‖ ≤ βp‖c(x)‖, gT p ≤ βp‖c(x)‖

6.2 Theory 61

for some constant βp > 0 and x+ p ≥ 0.

It is transparent from the proofs in [MP95] that the curvilinear search is required

only in a finite neighborhood of a stationary point. Outside of this it does not matter.

6.1.1 Elastic variables

Assumption 10 can always be made to hold if elastic variables are used (see [GMS02]

and [MP95a]). Elastic variables mean that two variables, vi, wi, are defined for each

equality constraints. The constraints are modified to ci(x) + vi−wi = 0 and vi, wi ≥ 0.

The modified constraints produce a Jacobian, J =
(

Jo I −I
)

∈ IRm×(n+2m), where

Jo is the original Jacobian.

The term θ
∑

(vi + wi), 0 < θ < ∞ is also added to the objective. Apart from

ensuring a feasible step to the linearized system always exists the addition of this term

implies the Lagrange multipliers are bounded. In many instances the use of elastic

variables allows a temporary problem with infeasibility to be overcome. When the

linearization changes the issue of infeasibility may disappear. However, it is possible it

never disappears and consequently the elastic variables do not converge to zero.

6.2 Theory

Lemma 6.1. Let Z be a basis for the nullspace of J . There exists a µ such that for

all µ ≥ µ > 0, ZT (x∗(µ))WB(x∗(µ), y∗(µ))Z(x∗(µ)) � 0, where WB(x∗(µ), y∗(µ)) =

HL(x∗(µ), y∗(µ)) + µX−2.

Proof. We may assume without loss of generality that the full KKT-system is partitioned

such that the variables that are zero at the solution are grouped first. Consider the

following partitioned form of the KKT matrix in which Ja are the columns of the

Jacobian matrix corresponding to these variables that are not zero in the solution. This

system is

H11
L H12

L JT1

H21
L H22

L JTa

J1 Ja 0

.

Let

Ka =

H22
L JTa

Ja 0

and let Za be a basis for the nullspace of Ja. Let ñ define the number of variables for

which x∗j > 0.

6.2 Theory 62

By assumption, ZTa (x∗)H22
L (x∗, y∗)Za(x

∗) � 0. It follows by continuity that for µ

sufficiently small,

ZTa (x∗(µ))H22
L (x∗(µ), y∗(µ))Za(x

∗(µ)) � 0. (6.6)

Part 1 The inertia of a symmetric matrix M is a triplet {ip(M), in(M), iz(M)}
containing the number of positive, negative and zero eigenvalues of M .

It is shown in [Gou85] that

In(Ka) = In(ZTa H
22
L Za) + (r, r,m − r).

Since Ja has full rank, (6.6) implies that In(Ka) = (ñ− n,m, 0).

Now consider

Kb =

H22
L + µX−2

2 JTa

Ja 0

 ≡ Ka +D.

It follows immediately that In(Kb) = In(Ka) for µ small enough.

Now, consider the full matrix

K =

H11
L + µX−2

1 H12
L JT1

H21
L H22

L + µX−2
2 JTa

J1 Ja 0

≡

A BT

B Kb

 , (6.7)

where

A = H11
L + µX−2

1

B =
(

H12
L JT1

)T
.

From Sylvester’s law of inertia, we know that K and its Schur complement have

the same inertia. Reformulating K with its Schur complement we obtain the

matrix

A 0

0 Kb −BTA−1B

 ,

and A is positive definite by definition. Hence,

In(K) = In(A) + In(Kb −BTA−1B).

6.2 Theory 63

Since limµ→0 ‖BTA−1B‖2 = 0 it follows that for µ small enough,

In(K) = In(A) + In(Kb).

Since limµ→0 µX
−1e = x∗ > 0, by construction, and z∗ > 0 it follows that

In(K) = (n,m, 0).

Using Gould once again, we can show that the reduced Hessian of the Lagrangian

is positive definite for solutions that are close to the solution, or

ZT (x∗(µ))WB(x∗(µ), y∗(µ), z∗(µ))Z(x∗(µ)) � 0.

Lemma 6.2. If ZT (x∗(µ))WB(x∗(µ), y∗(µ), z∗(µ))Z(x∗(µ)) is positive definite, then

the primal-dual reduced Hessian, ZT (x∗(µ))W (x∗(µ), y∗(µ), z∗(µ))Z(x∗(µ)), is positive

definite for µ < µ̄, as defined in Lemma 6.1, and W = HL(x∗(µ), y∗(µ)) + X−1Z.

Proof. Theorem 3.3 in [Ng02].

Lemma 6.3. If ZT (x∗(µ))W (x∗(µ), y∗(µ))ZT (x∗(µ)) is positive definite, then there ex-

ists ε > 0, which is independent of µ, such that if (x(µ), y(µ)) satisfies

‖x(µ)− x∗(µ)‖ < ε, ‖y(µ)− y∗(µ)‖ < ε,

then ZT (x(µ))W (x(µ), y(µ))Z(x(µ)) � 0.

Proof. The eigenvalues λ(µ) of ZT (x)W (x, y)ZT (x) vary continuously with W (x, y)

[FM90]. Given ZT (x∗(µ))W (x∗(µ), y∗(µ))Z(x∗(µ)) is positive definite, all of its eigen-

values, λ∗(µ), are greater than 0. Let λmin(µ) and λ∗min(µ) denote the smallest eigen-

values. Then by continuity, for all δ > 0, there exists a ε > 0 such that if

∥

∥

∥

∥

x(µ)

y(µ)

−

x∗(µ)

y∗(µ)

∥

∥

∥

∥

< ε

then

‖λmin(µ)− λ∗min(µ)‖ < δ.

For δ small enough, λmin(µ) must be positive. The smallest eigenvalue of

ZT (x(µ))W (x(µ), y(µ))ZT (x(µ)) is greater than 0, so ZT (x(µ))W (x(µ), y(µ))ZT (x(µ))

must be positive definite.

6.2 Theory 64

Lemma 6.4. Consider µ as defined in (6.1) and µ < µ, where (x(µ), y(µ), z(µ)) satisfies

the termination criteria for µ, but not for µ2. If

x̃ = x+ α∆x

ỹ = y + α∆y

z̃ = z + α∆z,

where ∆x,∆y,∆z are the computed primal-dual directions obtained from our algorithm,

then (x̃, ỹ, z̃) satisfies the termination criteria for µ2. In other words,

x̃ > 0

‖c(x̃)‖∞ ≤ Mµ2

‖g(x̃)− J(x̃)T ỹ − z̃‖∞ ≤ Mµ2

λmin(x̃, ỹ, z̃) > 0

‖X̃z̃ − µ2e‖∞ ≤ Mµ2,

for some M > 0.

Proof. First, we show that feasibility is maintained for x and z. Then, we show the

termination criteria are satisfied for (x̃, ỹ, z̃).

1. Show x̃, z̃ > 0.

1a. Show x̃ > 0. We see from the top row of the KKT system (6.3) that

−(HL + X−1Z)∆x = g − JT (y + ∆y)− µX−1e.

Consider any x̃j where x∗j = 0. Omitting the subscripts, and solving this equa-

tion for the current barrier multiplier, µ2,

z

x
∆x =

µ2

x
− g(x) + j̃ − h̃,

where j̃ = (JT (y + ∆y))j and h̃ = (HL∆x)j . Since (x, y, z) terminated for µ,

we know that

g(x)− JT y − z = O(µ)

and ∆x,∆y are also O(µ). Therefore,

z

x
∆x = −z +O(µ) +

µ2

x

6.2 Theory 65

or

∆x = −x+ xO(µ) +
µ2

z
.

It follows that

x+ ∆x = Mxµ+
µ2

z
, (6.8)

where M is bounded. If M ≥ 0 there is not an issue because x̃ > 0. Therefore,

suppose M < 0. Consider taking the step α = (1− θµ). We obtain

x+ ∆x− θµ∆x− µ2

z
= Mxµ− θµ∆x

= xµ(M − θ∆x

x
).

From equation (6.8), we have

∆x

x
= −1 +Mµ+

µ2

xz
< 0,

or

xz >
µ2

1−Mµ
.

This gives us

x+ (1− θµ)∆x = xµ(M + θ(1−Mµ− µ2

xz
)) +

µ2

z

= xµ(M + θ(1−Mµ− µ2

xz
) +

µ

xz
).

If θ = −M and for α ≤ 1 we obtain

x+ (1− θµ)∆x >
µ2

z
> 0.

1b. Show z̃ > 0.

Again we consider a specific element of z and omit the subscript. Strict com-

plementarity requires that x∗j > 0. From the KKT system (6.2) we then have

z∆x+ x∆z = µ2 − xz. (6.9)

Rearranging (6.9) gives us

∆z =
µ2 − (x+ ∆x)z

x
. (6.10)

When ∆z ≥ 0, then z+∆z ≥ 0. Therefore, there is only an issue when ∆z < 0.

6.2 Theory 66

Rearranging equation (6.10) we get

∆z = −z +
µ2

x
−∆x

z

x
,

where the dominant term in the right-hand side of the equation is z because µ2

and ∆x are both small. Rearranging again, we have

z + ∆z =
µ2

x
−∆x

z

x
.

Including a stepsize, α = 1− θµ we obtain

z + (1− θµ)∆z =
µ2

x
−∆x

z

x
− θµ∆z.

Substituting for z in the right-hand side, we obtain

z + (1− θµ)∆z =
µ2

x
−∆x

(−∆z + µ2

x −∆x zx)

x
− θµ∆z.

The terms ∆xµ2/x2 and (∆x)2z/x2 are both O(µ3) so we can simplify to

z + (1− θµ)∆z =
µ2

x
− (−∆x+ θµ)∆z +O(µ3).

When θ > ∆x
µ and µ is sufficiently small, then

z + (1− θµ)∆z > 0.

2. Given (x̃, ỹ, z̃) show that the termination criteria for µ2 are satisfied.

2a. Show ‖c(x̃)‖ ≤Mµ2.

‖c(x̃)‖ = ‖c+ αJ∆x+O(∆x2)‖
≤ ‖c− αc+O(∆x2)‖
≤ ‖(1 − α)c +O(µ2)‖
≤ ‖θµc+O(µ2)‖
≤ Mµ2.

2b. ‖g(x̃)− J(x̃)T ỹ − z̃‖ ≤Mµ2.

Define w(χ, ψ, ω) = g(χ)− JT (χ)ψ − ω.

6.2 Theory 67

A Taylor’s expansion of w for (x̃, ỹ, z̃) gives us

w(x̃, ỹ, z̃) = w(x, y, z) + α

∆x

∆y

∆z

T

∇w +O(µ2).

From solving the Newton equations (6.2) we know

w(x+ ∆x, y + ∆y, z + ∆z) = w(x, y, z) +

∆x

∆y

∆z

T

∇w.

This gives us

w(x+ α∆x, y + α∆y, z + α∆z) = w(x, y, z) + (1− θµ)

∆x

∆y

∆z

T

∇w +O(µ2)

= −θµ

∆x

∆y

∆z

T

∇w +O(µ2)

= O(µ2).

2c λmin(x+ α∆x, y + α∆y, z + α∆z) > 0 by Lemma (6.3).

2d For the last part, we have

|(xj + α∆xj)(zj + α∆zj)| ≤ Mµ2

since either xj + α∆xj or zj + α∆zj is O(µ2).

Lemma 6.5. The initial step taken in the linesearch algorithm (see section 5.2.2) is of

the form 1− τµ, τ ≥ 0.

Proof. We may assume without loss of generality that xi → 0 for all i and the unit step

is not feasible. The initial step is given by the unique minimizer of the function

ϑ(α) = aα− µ2
n
∑

j=1

ln(xj + α∆xj)

6.2 Theory 68

in the interval (0, 1) and a = ∆xT g+cT y− ρ
2c
T c−cT∆y. Note that a < 0 and a = O(µ).

Let
∗
α denote the minimizer. We have

ϑ′(
∗
α) = a− µ2

∑ ∆xj

xj+
∗
α ∆xj

= 0.

This may be rewritten as

a− µ2
∑ 1

xj/∆xj+
∗
α

= 0.

Let
xr

∆xr
≤ xj

∆xj
, for all j = 1, . . . , n. It follows

∗
α ≥ αmin, where

a− µ2n
1

xr/∆xr + αmin
= 0.

Since a = O(µ) there exists τ , with 0 < τ <∞ such that

− ∆xr
xr + αmin∆xr

=
1

µτ
.

Rearranging gives

αmin = −τµ− xr
∆xr

.

From (6.8) we get

αmin = −τµ− (−1 +Mxrµ+
µ2

zr
),

which gives

αmin = 1− τµ+O(µ2).

Since 1 ≥ ∗
α ≥ αmin the required result follows.

Corollary 6.6. The initial step
∗
α satisfies

∗
α ≤ 1− τµ+O(µ2).

Corollary 6.7. The termination conditions for the subproblem are satisfied at the initial

step of the linesearch.

Proof. We have from Lemma 6.5 that
∗
α, the initial step, is of the form

∗
α = 1− τµ+ (µ2). (6.11)

The merit function along the search direction (∆x,∆y) is of the form

ψ(α) = ϑ(α) − µ2
∑

ln(xj + α∆xj).

If there is no index, j, such that xj → 0 the result follows from Lemma 4.1 in [MP95].

6.2 Theory 69

There is no loss of generality if we assume xj → 0 for all j. We have

ϑ′(α) = a = −1

τ
µ and ψ(0) = 0,

where 0 < τ <∞. We need to show that

ψ(
∗
α) ≤ − 1

2τ
µ

∗
α . (6.12)

From Taylor’s theorem we have

ϑ(
∗
α) = ϑ(0)+

∗
α ϑ′(0) +O(µ2).

It follows

ϑ(
∗
α) ≤

∗
α

τ
µ+O(µ2).

We have

−µ2
∑

ln(xi+
∗
α ∆xi) ≤ −βMµ2 lnµ2,

where β <∞. From (6.11) it follows that if µ is sufficiently small that

−βMµ2 lnµ2 <
1

2τ
µ

∗
α

and (6.12) holds.

In practice, a judgement needs to be made when to start reducing µ at a quadratic

rate. One option is to do this gradually simply by increasing the reduction in µ (by

doubling). Even if a gradual approach is adopted we still need to decide when to increase

the reduction. A simple test is when a unit step is taken, which Lemma 6.4 shows will

eventually happen.

The following theorem is an immediate consequence of Lemmas 6.4 through 6.7.

Theorem 6.8. Given an initial point (x0, y0) that satisfies the termination conditions

(2.12) for µ sufficiently small then the sequence {xk, yk} generated by a single step on

each subproblem in which µk+1 = µ2
k converges at a quadratic rate.

6.2.1 Global convergence

Global convergence follows if we can show that for µ ≥ ε > 0 our algorithm satisfies

the termination criteria in a finite number of iterations. This follows if the curvilinear

search algorithm converges to a solution of the subproblem. In [MP95a] it is shown that

the curvilinear search algorithm is shown to converged to a second-order KKT point

provided the assumptions 1 to 10 applied to the subproblem hold. The only assumptions

6.2 Theory 70

for which there is an issue are assumptions 3 and 9 since the inclusion of the barrier

term impacts the properties of the objective. The following lemma shows 3 holds.

Lemma 6.9. Provided µ ≥ ε > 0, the function f(x) − µ
∑n

j=1 lnxj ∈ C3, for x ∈
Sx∪D, where Sx is the set of iterates {xk} generated by our algorithm and D is the set

‖x‖ ≤ Θ <∞.

Proof. The only term of concern is
∑

lnxj since f(x) ∈ C3 by assumption 3. Let S

denote the set {xk, yk, zk} generated by our algorithm. It follows from the definition of

our algorithm that for (x, y, z) ∈ S

M(x, y, z) < M0,

where M0 is the initial value of the merit function. Consequently, δ > 0 must exist such

that for xj ∈ Sx
xj ≥ δ > 0.

The boundness of lnxj and its derivative follows immediately.

The objective in the subproblems is

f(x)− µ
n
∑

j=1

lnxj.

Consequently, it is this function we require to be bounded below on the feasible set.

Since limxj→0 − lnxj = −∞ it could be that this property is not true even when f(x)

is bounded below. A simple remedy is to add a term of the form µ(x− xµ)T (x− xµ)/2
to the objective. A good choice of xµ is x0 and subsequently it can be the point the

previous subproblem terminated. The inclusion of this term has no impact on any of

the earlier results. To make that complete transparent it is enough if µ is replaced in

this term byµ2).

In the following theorem we assume either Assumption 9 is modified to assume

f(x)−µ0
∑n

j=1 lnxj is bounded below or the algorithm is modified from our description

to include a term of the form µ(x − xµ)
T (x − xµ)/2 added to the objective of the

subproblems.

Theorem 6.10. Global Convergence. Under Assumptions 1-10 applied to the original

problem, for any starting point (x0, y0), our algorithm converges to (x∗, y∗), a second-

order KKT point of problem (1.1).

Chapter 7

Computational

Results

The implementation of our barrier method is called MELBA (MATLAB Experimen-

tal Linesearch Barrier Algorithm). This chapter summarizes the results produced by

MELBA solving a subset of the CUTE test suite [BCGT95]. The results for MELBA

are compared to the results obtained using KNITRO and SNOPT [BHN99, GMS98].

The number of iterations for MELBA is, and should be, primarily compared to

KNITRO. KNITRO is a trust region implementation for solving nonlinearly constrained

optimization problems using first and second derivatives of the objective and constraint

functions. KNITRO applies the Byrd-Omojokun method [Omo91] to solve the barrier

subproblem (2.7). Trust-region methods solve first for the step length, or a radius for

the next iterate location. KNITRO then solves for both a vertical and a horizontal step

within the radius. The trust-region radius is contracted until the required accuracy is

obtained for the vertical and horizontal steps. The vertical step should lie within the

trust region and makes the linear constraints satisfied. The horizontal step is computed

by solving an equality-constrained QP. A merit function is used to determine if the step

is accurate enough.

KNITRO, version 3, was run on the Network-Enabled Optimization Server (NEOS)

[CMM98]. The default parameters were used for KNITRO, including 10−6 for the

optimality tolerance and feasibility tolerance. Therefore, when KNITRO terminates

successfully the maximum error in the KKT conditions is 10−6. We report the total

iterations for KNITRO.

We were also interested in comparing the results of MELBA to a second-order SQP

method with proven convergence properties. Our goal was to run the tests on the NEOS

server and no method was available at the time of testing (although an experimental

version of SNOPT does use second-derivatives). Instead, we compare our solver to

SNOPT 6.1 a sparse SQP solver that uses only first-order information to approximate

the Hessian of the Lagrangian. The tests were run with SNOPT.

The accuracy controls for SNOPT are the major feasibility tolerance and major

optimality tolerance. Both were set to the default value of 10−6. The major feasibility

tolerance specifies how accurately the nonlinear constraints are satisfied. The major

71

7.1 Hock-Schittkowski test problems 72

optimality tolerance specifies the final accuracy of the dual variables. We report the

total major iterations for SNOPT.

KNITRO and SNOPT both used AMPL description files generated by Vanderbei

[Vand02].

The barrier algorithm was implemented using MATLAB version 6.5 and the CUTE

mex interface [BCGT95] running on a Silicon Graphics Origin 2000. The CUTE mex

interface is limited to problems with n ≤ 2010 and m ≤ 1500 in order to link in the

necessary FORTRAN files. Although not all selected problems are solved successfully,

analysis supports that this is caused by insufficient tuning of the parameters for each

problem and lack of adequate special-case implementation in MELBA itself. For exam-

ple, when the Jacobian is not of full rank there may be early termination of MELBA.

MELBA has one parameter that controls the accuracy, namely the final value µ.

This was set to be µS = 10−7. Success is declared when (2.12) is satisfied with µ = µS .

Please note that there can be few conclusions made comparing iterations for a Quasi-

Newton method such as SNOPT to the two barrier methods. The comparison is included

to demonstrate that the total iterations are not significantly different. If they were

significantly greater it would probably indicate an error.

7.1 Hock-Schittkowski test problems

The Hock-Schittkowski (HS) test set is a collection of small, nonlinear problems [HS81].

Most are included in the CUTE test set. The following problems were excluded:

• 3 non-smooth problems: HS67, HS85, and HS87.

• 2 problems that require external functions: HS68 and HS69.

• 3 problems for which the values returned from the CUTE functions [BCGT95] did

not match the Hock-Schittkowski descriptions: HS101, HS102, and HS103.

Unless otherwise noted, the parameters in MELBA were as follows:

• The set of barrier parameters: MU SET = [1, 5e−1, 1e−1, 5e−2, 1e−2, 5e−3,

1e−3, 5e−4, 1e−4, 1e−5, 1e−6, 1e−7].

• The initial value for the non-negative variables t1 and t2: INIT T = 0.1.

• The multipliers for the termination conditions (2.12): τ1 = τ2 = τ3 = 10 and

τ4 = 0.

The following problems required special parameters to achieve convergence:

• HS15, HS57 used a finer grained MU SET

7.1 Hock-Schittkowski test problems 73

• HS18, HS109 had starting µ = 10

• HS96, HS97, HS99, HS114 had starting µ = 100

• HS106 had starting µ = 1000

Also, HS111 and HS111LNP used a simple backtracking algorithm.

Table 7.1 contains the total iterations for MELBA, KNITRO, and SNOPT (major

iterations).

Table 7.1

Hock-Schittkowski test problems

Name SNOPT KNITRO MELBA

HS1 39 38 35

HS2 12 14 21

HS3 1 4 4

HS4 1 4 5

HS5 6 6 7

HS6 6 8 10

HS7 17 8 26

HS8 5 5 6

HS9 6 6 3

HS10 19 11 21

HS11 10 6 7

HS12 9 7 10

HS14 6 6 10

HS15 6 13 19

HS16 3 7 41

HS17 10 32 29

HS18 17 8 15

HS19 7 19 42

HS20 3 10 13

HS21 4 9 8

HS22 4 6 8

HS23 5 8 17

HS24 3 10 12

HS25 0 33 7

HS26 23 17 25

HS27 20 26 12

HS28 13 2 1

HS29 13 8 10

HS30 3 160 13

7.1 Hock-Schittkowski test problems 74

Table 7.1

Hock-Schittkowski test problems (continued)

Name SNOPT KNITRO MELBA

HS31 7 6 8

HS32 3 9 11

HS33 5 7 14

HS34 6 11 10

HS35 5 8 7

HS36 5 6 35

HS37 8 6 8

HS38 84 49 14

HS39 18 12 128

HS40 6 3 5

HS41 6 7 8

HS42 6 3 10

HS43 8 7 19

HS44 1 8 40

HS45 0 11 19

HS46 25 19 18

HS47 22 17 14

HS48 31 2 1

HS49 31 16 16

HS50 19 8 9

HS51 8 2 1

HS52 8 2 1

HS53 8 4 4

HS54 1 5 6

HS56 10 6 7

HS57 2 7 18

HS59 12 18 12

HS60 9 7 18

HS62 10 5 8

HS63 10 12 10

HS64 23 16 22

HS65 9 17 19

HS66 4 9 9

HS70 14 23 25

HS71 6 7 10

HS72 25 18 145

HS73 5 7 10

HS74 12 12 10

7.1 Hock-Schittkowski test problems 75

Table 7.1

Hock-Schittkowski test problems (continued)

Name SNOPT KNITRO MELBA

HS75 10 11 16

HS77 12 10 18

HS78 6 4 5

HS79 11 4 6

HS80 11 7 9

HS81 7 7 13

HS83 5 9 13

HS84 5 7 42

HS93 31 6 37†

HS95 1 60 36

HS96 1 110 38

HS97 14 49 104

HS98 14 10 52

HS99 10 9 10

HS100 13 8 12

HS100LNP 14 8 11

HS100MOD 14 8 8

HS104 21 14 59

HS105 85 36 24

HS106 12 99 44

HS107 8 ‡ 16

HS109 30 123 22

HS111 51 10 36

HS111LNP 71 10 43

HS112 22 6 9

HS113 17 9 205

HS114 37 23 50

HS116 22 42 177

HS117 17 17 86

HS118 15 14 32

HS119 15 26 19

‡: Solver did not find solution.
†: Modified bounds from [Vand02] to match Hock-Schittkowski [HS81].

Figure 7.1 summarizes the HS problem results. The number of HS tests completed

(y-axis) is plotted for x iterations. The plot shows that SNOPT solves most problems

7.1 Hock-Schittkowski test problems 76

in fewer iterations than either barrier approach. However, the iterations are within an

order of magnitude of each other for most problems.

An Analysis of Variance (ANOVA) and pairwise comparison tests [WM72] were per-

formed on the iteration counts using MATLAB’s statistics toolkit. The null hypothesis

tested was that the means for the three data sets are the same. This hypothesis could

not be rejected with a typical 95% confidence. The ANOVA f statistic was 1.43 with

its two degrees of freedom (2, 291), which means there is 24% chance that the results

are from the same distribution. The pairwise comparison, likewise, did not demonstrate

significantly different means. This is a simple test comparing only the means and stan-

dard deviations for the iteration counts. However, it supports the observable results in

Figure 7.1.

100 101 102 103
10

20

30

40

50

60

70

80

90

100

Iterations

N
um

be
r o

f t
es

ts
 c

om
pl

et
ed

MELBA
SNOPT
KNITRO

Figure 7.1 Hock-Schittkowski - Number of Iterations

7.2 Nonlinearly Constrained Problems from CUTE 77

7.2 Nonlinearly Constrained Problems from CUTE

One of our goals was to demonstrate that MELBA can solve larger problems. The HS

test set problems are too small to benefit from the sparse matrix procedures. Using

CUTE’s select tool, 260 nonlinearly constrained problems were identified in the CUTE

test set. Tests that were omitted were:

• 48 tests already run as part of the Hock-Schittkowski test set

• 11 tests with n > 2010 and/or m > 1500 (BRAINPC0–BRAINPC9, BRIDGEND,

TWIRIBG1)

• 47 tests with variable parameters n > 2010 and/or m > 1500 (CAMSHAPE,

CATMIX, CHANNEL, CLNLBEAM, CRESC132, DTOC2, DTOC6, EIGENC, ELEC,

GASOIL, GAUSSELM, GLIDER, GPP, LUBRIFC, LUKVLE1–9, LUKVLE11, LUKVLI1–

9, LUKVLI11, MARINE, METHANOL, ORTHRDM2, ORTHRGDM, PINENE, POLY-

GON, READING7, READING8, ROBOTARM, ROCKET, SSNLBEAM, STEERING,

TWIRIMD1)

Of these 154 tests, MELBA successfully solved 40 for the set of parameters defined

later in this section. Known problems in the results were

• 17 tests had Jacobians without full rank.

• 22 tests, which did not use the reduced gradient method, had singular KKT sys-

tems.

Additional work is needed to tune parameters, correctly handle the issues above and,

possibly, correct the implementation.

The test problems in Table 7.2 were selected because MELBA solved them and

AMPL files existed for comparisons to KNITRO and SNOPT. MELBA certainly did not

solve all of the CUTE nonlinear problems, but it did solve more problems than presented

here. The columns in Table 7.2 define the number of variables n and constraints m along

with the iterations needed to solve the problem.

7.2 Nonlinearly Constrained Problems from CUTE 78

Table 7.2

CUTE-subset test problems

Problem n m SNOPT KNITRO MELBA

ALSOTAME 2 1 4 8 7

ARGAUSS 3 15 1 8 3

BROYDNBD 10 10 7 5 11

BT11 5 3 11 7 10

BT6 5 2 14 10 12

BT9 4 2 20 12 128

CB2 3 3 1 10 46

CHACONN2 3 3 22 7 9

CHANDHEQ 10 10 10 10 9

CHEMRCTA 500 500 6 5 9

CHEMRCTB 10 10 4 44 6

CONCON 15 11 6 25 82

DIPIGRI 7 4 13 8 68

DIXCHLNG 10 5 29 8 10

GROWTH 3 12 ‡ 164 8

HIMMELBK 24 14 7 21 30

INTEGREQ 52 50 2 2 3

LEWISPOL 6 9 0 >1000 8

MADSEN 3 6 1 9 21

MATRIX2 6 2 13 17 18

MCONCON 15 11 6 25 68

METHANB8 31 31 0 290 3

OET2 2007 1002 ‡ 34 32

POLAK1 3 2 46 10 11

POLAK5 3 2 38 127 16

SPIRAL 3 2 76 165 52

‡: Solver did not find a solution

Note that NEOS upgraded SNOPT to release 6.2 near the end of testing and two

tests from this test set, MADSEN and METHANB8, were run with version 6.2.

The parameters used in MELBA to solve this problem set were

• MU SET = [1, 5e−1, 1e−1, 5e−2, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 1e−5, 1e−6].

• The initial value for the non-negative variables t1 and t2: INIT T = 10.

• Multipliers for the termination conditions of (2.12): τ1 = τ2 = τ3 = 10 and τ4 = 0.

Table 7.2 shows a larger range of problem sizes and differences between the solvers.

This test set shows that MELBA successfully solves larger problems (e.g., CHEM-

7.3 Linear Constraints 79

RECTA, OET2) and that it sometimes performs a little better than the other solvers

(e.g., GROWTH, OET2 and SPIRAL) and sometimes worse (e.g., CB2).

Figure 7.2 presents the number of tests completed in x iterations. For this graph

a maximum iteration count of 300 was used. SNOPT often solves problems in fewer

iterations than either other method, but not to a 95% level of significance. ANOVA and

multiple comparison tests could not reject the hypothesis that the results are from the

same distribution. The ANOVA test indicates a 45% probability that these test results

are from the same distribution.

100 101 102 103
0

5

10

15

20

25

30

Iterations

N
um

be
r o

f t
es

ts
 c

om
pl

et
ed

MELBA
SNOPT
KNITRO

Figure 7.2 CUTE nonlinear test problems – Number of Iterations

7.3 Linear Constraints

The total number of iterations could probably be reduced if we take into account the

existence of linear constraints. SNOPT and MINOS both do this and Lin [Lin02] demon-

strated faster convergence for a network barrier method when the starting points sat-

isfied the linear constraints. A specialized LP or QP solver would be needed for the

initialization, but no function evaluations would be required. We also may see a reduc-

tion partly because our merit function emphasizes satisfying the nonlinear constraints

and does not include a measure of feasibility for the linear constraints.

7.4 Conclusions and Future Work 80

7.4 Conclusions and Future Work

Given the variety and difficulty of nonlinearly constrained optimization problems, it

is unlikely that a single best algorithm will emerge. We expect there to be a variety

of valuable algorithms, each occupying a niche within the tapestry of real-world ap-

plications. How large the proposed algorithm’s niche remains to be determined, but

we feel it could well be significant. A promising class of problems is those with many

degrees of freedom. The reduced-Hessian system would then require an iterative solver,

but the theoretical basis of our algorithm does not require an accurate solution of the

primal-dual equations, and only one system needs to be solved.

Much needs to be done to improve the efficiency and robustness of the algorithm.

Key issues are the selection of starting points for the primal and dual variables, choice of

initial barrier parameter, and subsequent adjustment of the barrier parameter according

to progress. Theory has little to say about such matters, but poor choices lead to

poor performance. To address the most relevant problem class, the core sparse-matrix

methods need to be further developed. In particular, the Jacobian basis-selection could

be based on sparse LU factors of XJT , and the reduced Hessian system could be solved

by a preconditioned conjugate gradient method. Indefinite reduced Hessians could then

be treated as in Nash [Na84], Lin [Lin02] and Ng [Ng02]. Another key issue is when

and how best to incorporate elastic variables. As we have mentioned, elastic variables

are a remedy for singular Jacobians, but in practice the Jacobian may be merely ill-

conditioned and it is not clear at what point this becomes an issue.

Although we have a sophisticated linesearch, we currently use a simple backtrack-

ing procedure for the curvilinear search. Both may need improving. The linesearch

presupposes we are minimizing a barrier function and that a singularity is encountered

somewhere along the search direction. The search does not fail when there is no singu-

larity, but it may be possible to treat this case better.

A feature perhaps worth incorporating is a proximal-point term in the subproblem

objective. This was raised as a technical issue in section 6.2.1, but such terms are

often beneficial for other reasons and give linesearch methods some of the features of a

trust-region method without the need to solve multiple linear systems.

Bibliography

[BSV00] H. Y. Benson, D. F. Hribar, R. J. Vanderbei. 2000. Interior-point methods

for nonconvex nonlinear programming: jamming and comparative numer-

ical testing. Technical Report ORFE–00–02, Department of Operations

Research and Financial Engineering, Princeton University, Princeton, NJ.

[Bom99] E. G. Boman. 1999. Infeasibility and Negative Curvature in Optimization.

Ph.D. Dissertation, Stanford University, Stanford, CA.

[BCGT95] I. Bongartz, A. R. Conn, N. Gould, P. Toint. 1995. CUTE: Constrained

and unconstrained testing environment, ACM Trans. Math. Software, 21,

123–160.

[BHN99] R. Byrd, M. E. Hribar, J. Nocedal. 1999. An interior-point method for

large scale nonlinear programming, SIAM J. Optim., 9, 877–900.

[BGN96] R. Byrd, J. C. Gilbert, J. Nocedal. 1996. A trust region method based

on interior point techniques for nonlinear programming. Technical Report

OTC-96/2, Optimization Technology Center, Northwestern University,

Evanston, IL.

[Car59] C. W. Carroll. 1959. An Operations Research Approach to the Economic

Optimization of a Kraft Pulping Process. Ph.D. Dissertation, Institute of

Paper Chemistry, Appleton, WI.

[Car61] C. W. Carroll. 1961. The created response surface technique for optimizing

nonlinear restrained systems, Operations Research, 9:169–184.

[CMM98] J. Czyzyk, M. Mesnier, J. Moré. 1998. The NEOS Server, IEEE J. on

Comp. Science and Engineering, 5, 68–75.

[Dav02] T. A. Davis. 2003. UMFPACK Version 4.1 User Guide, Technical Report

TR-03-008, Dept. of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL.

[Eld91] S. K. Eldersveld. 1991. Large-Scale Sequential Quadratic Programming

Algorithms, Ph.D. Dissertation, Stanford University, Stanford, CA.

[FM68] A. Fiacco and G. McCormick. 1968. Nonlinear Programming, SIAM,

Philadephia, PA.

81

Bibliography 82

[FGW02] A. Forsgren, P. E. Gill and M. H. Wright. 2002. Interior methods for

nonlinear optimizaton, SIAM Review, 44, 4, 525–597.

[FM90] A. Forsgren and W. Murray. 1990. Newton methods for large-scale linear

equality-constrained minimization, Technical Report SOL 90-6, Depart-

ment of Operations Research, Stanford University, Stanford, CA.

[Fri55] K. R. Frisch. 1955. The logarithmic potential method of Convex Program-

ming, Technical Report, University Institute of Economics, Oslo, Norway.

[GG02] E. M. Gertz and P. E. Gill. 2002. A primal-dual trust region algorithm

for nonlinear programming, Optimization Technical Report 02-09, UW-

Madison CS Department, Madison, WI.

[GMS98] P. E. Gill, W. Murray and M. A. Saunders. 1998. User’s Guide for SNOPT

version 5.3: A Fortran package for large-scale nonlinear programming,

Technical Report SOL 98-1, Department of Operations Research, Stanford

University.

[GMS02] P. E. Gill, W. Murray and M. A. Saunders. 2002. SNOPT: An SQP Al-

gorithm for large-scale constrained optimization, SIAM J. Optim., 12,

979–1006.

[GMSTW86] P. E. Gill, W. Murray, M. A. Saunders, J. Tomlin and M. H. Wright.

1986. On projected Newton barrier methods for linear programming and

an equivalence to Karmarkar’s projective method, Math. Prog., 36, 183–

209.

[GMW81] P. E. Gill, W. Murray and M. H. Wright. 1981. Practical Optimization,

Academic Press, San Diego, CA.

[GV83] G. Golub and C. Van Loan. 1983. Matrix Computations, John Hopkins

University Press, Baltimore MD.

[Gou85] N. I. M. Gould. 1985. On practical conditions for the existence and unique-

ness of solutions to the general equality quadratic programming problem,

Math. Prog., 18, 31–40.

[HS81] W. Hock and K. Schittkowski. 1981. Test Examples for Nonlinear Pro-

gramming Codes, Lecture Notes in Economics and Mathematical Systems

187, Springer-Verlag, Berlin, Heidelberg, and New York.

[Hun98] M. S. Hung. 1998. Optimization With IBM-OSL: Manual, Scientific Press,

South San Francisco, CA.

Bibliography 83

[ICPLEX] ILOG CPLEX 8.0. 2002. User’s Manual. ILOG SA, Gentilly, France.

[Kar84] N. Karmarkar. 1984. A new polynomial-time algorithm for linear pro-

gramming, Combinatorica, 4, 373–395.

[KMY89] M. Kojima, S. Mizuno and A. Yoshishe. 1989. A primal-dual interior point

algorithm for linear programming, in Progress in Mathematical Program-

ming: Interior Point and Related Methods, N. Megiddo, ed., Springer-

Verlag, New York, 29–48.

[Lin02] C. Lin. 2002. A Null-Space Primal-Dual Algorithm For Nonlinear Network

Optimization, Ph.D. Dissertation, Stanford University, Stanford, CA.

[Meg89] N. Megiddo. 1989. Pathways to the optimal set in linear programming,

in Progress in Mathematical Programming: Interior Point and Related

Methods, N. Megiddo, ed., Springer-Verlag, New York, 131–158.

[MP03] J. Moguerza and F. Prieto. 2003. An augmented Lagrangian interior-point

method using directions of negative curvature, Math. Prog., A(95), 573–

616.

[MS79] J. Moré and D. Sorensen. 1979. On the use of directions of negative cur-

vature in a modified Newton method, Math. Prog., 15, 1–20.

[MOSEK] MOSEK ApS. 2002. The MOSEK optimization tools version 2.5 (Revision

166) User’s manual and reference, MOSEK ApS, Denmark.

[Mur71] W. Murray. 1971. Analytical expressions for the eigenvalues and eigenvec-

tors of the Hessian matrices of barrier and penalty functions, J. Optim.

Theory Appl., 7, 189–196.

[MP95] W. Murray and F. Prieto. 1995. A second-derivative method for nonlin-

early constrained optimization, Technical Report SOL 95-3, Department

of Operations Research, Stanford University, Stanford, CA.

[MP95a] W. Murray and F. Prieto. 1995. A sequential quadratic programming al-

gorithm using an incomplete solution of the subproblem. SIAM J. Optim.,

5, 590–640.

[MW94] W. Murray and M. H. Wright. 1994. Line search procedures for the loga-

rithmic barrier function SIAM J. Optim., 4, 229–246.

[MS78] B. A. Murtagh and M. A. Saunders. 1978. Large-scale linearly constrained

optimization, Math. Prog., 14, 41–72.

Bibliography 84

[MS98] B. A. Murtagh and M. A. Saunders. 1998. MINOS 5.5 User’s Guide, Tech-

nical Report SOL 83-20R, Department of Operations Research, Stanford

University, Stanford, CA.

[Na84] S. G. Nash. 1984. Truncated-Newton methods for large scale function

minimization, Applications of Nonlinear Programming to Optimization

and Control,, H. E. Rauch, ed., Pergamon Press, Oxford, 91–100.

[Ng02] K. M. Ng. 2002. A Continutation Approach For Solving Nonlinear Opti-

mization Problems With Discrete Variables, Ph.D. Dissertation, Stanford

University, Stanford, CA.

[Omo91] E. O. Omojokun. 1991. Trust Region Algorithms For Optimization With

Nonlinear Equations And Inequality Constraints, Ph.D. Dissertion, Uni-

versity of Colorado.

[Pon90] D. B. Ponceleón. 1990. Barrier Methods for Large-Scale Quadratic Pro-

gramming, Ph.D. Dissertation, Stanford University, Stanford, CA.

[Roc73] R. T. Rockafellar. 1973. The multiplier method of Hestenes and Powell

applied to convex programming, J. Optim Theory Appl., 12, 555–562.

[SD00] R. W. Sargent and M. Ding. 2000. A new SQP algorithm for large-scale

nonlinear programming, SIAM J. Optim., 11, 716–747.

[SV00] D. Shanno and R. Vanderbei. 2000. Interior-point methods for nonconvex

nonlinear programming: orderings and higher order, Math. Prog., 87(2),

303–316.

[Vand02] R. Vanderbei. 2002. Benchmarks for nonlinear optimization,

http://www.princeton.edu/˜rvdb/bench.html.

[WM72] R. Walpole and R. Myers. 1972. Probability and Statistics for Engineers

and Scientists, Macmillan Publishing Co., Inc., New York, NY.

[Wri97] S. J. Wright. 1997. Primal-Dual Interior Point Methods, SIAM, Philade-

phia, PA.

