Markov Chain Based Algorithms for the Hamiltonian Cycle Problem

A dissertation submitted for the degree of Doctor of Philosophy (Mathematics) to the School of Mathematics and Statistics, Division of Information Technology Engineering and the Environment, University of South Australia.

> by Michael Haythorpe B.App.Sc. (Hons)

To Giang and Trixie, the two most important women in my life.

Contents

De	edica	tion	ii	
Ta	ble o	of Contents	iii	
Li	st of	Figures	vi	
Li	st of	Tables	viii	
Li	st of	Algorithms	ix	
Su	ımm	ary	x	
De	Declaration			
Pι	Publications x			
Ac	ckno	wledgements	xv	
No	otati	on	xix	
1	Intr	roduction and Background	1	
	1.1	Hamiltonian cycle problem	1	
	1.2	Embedding of HCP in a Markov decision process	4	
2	Alg	orithms in the Space of Occupational Measures	15	
	2.1	Preliminaries	15	
	2.2	A formulation of HCP by means of a discounted MDP	18	
	2.3	Structure of 1-randomised policies	20	

	2.4	Branc	h and fix method	23
		2.4.1	Outline of branch and fix method	23
		2.4.2	Structure of LP (2.11)	27
		2.4.3	Arc fixing checks	28
	2.5	An alg	gorithm that implements the branch and fix method	31
	2.6	Nume	rical results	34
	2.7	Branc	hing methods	39
	2.8	Wedge	e constraints	41
	2.9	The V	Vedged-MIP heuristic	45
	2.10	Comp	arisons between Wedged-MIP heuristic and other TSP formula-	
		tions		52
3	Inte	erior P	oint Method	55
	3.1	Interio	pr point method	55
		3.1.1	Interior point method for a problem with inequality constraints	56
		3.1.2	Interior point method for a problem with linear equality	
			constraints and inequality constraints	58
	3.2	Deter	minant interior point method for HCP	60
		3.2.1	Function evaluations and computing directions	62
		3.2.2	Initial selections and contracting graphs	76
3.3 A		Algori	thm that implements DIPA	85
	3.4	3.4 Variations of DIPA		91
		3.4.1	Orthonormal null space	91
		3.4.2	Stochastic constraints	91
		3.4.3	Diagonal scaling	93
	3.5	The u	nique saddle-point conjecture	94
	3.6	LU de	ecomposition	98
		3.6.1	Introduction	98
		3.6.2	Product forms of $A(P)$ and $det(A(P))$	100
		3.6.3	Finding the gradient $g(P)$	106
		3.6.4	Finding the Hessian matrix $H(P)$	109

		3.6.5 Leading principal minor	112
	3.7	LU decomposition-based evaluation algorithm $\ldots \ldots \ldots \ldots \ldots$	115
		3.7.1 Sensitivity	119
		3.7.2 Experimental results	121
1	Uor	niltonion Curros and Surfaces	199
4	11an	Motivation	102
	4.1	Concricel curves and Hamiltonian autreme points	120
	4.2	Canonical Uamiltanian aufacea	132
	4.5		159
	4.4	Auxilliary constraints	1(1
5	Con	clusions and Future Work	190
	5.1	Future work arising from Chapter 2	191
	5.2	Future work arising from Chapter 3	192
	5.3	Future work arising from Chapter 4	193
Δ	Anr	pendices	194
Α	App A 1	pendices Proof of Proposition 4.3.5 for $i = 1$	194 194
A	А рр А.1 А.2	Proof of Proposition 4.3.5 for $j = 1$	194 194 198
Α	A pp A.1 A.2 A.3	DendicesProof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of $det(N_1)$	194194198204
A	App A.1 A.2 A.3 A.4	Dendices Proof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of $det(N_1)$ Derivation of $det(N_2)$	 194 194 198 204 211
A	App A.1 A.2 A.3 A.4 A.5	Dendices Proof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of det (N_1) Derivation of det (N_2) Derivation of det (N_3)	 194 194 198 204 211 226
Α	App A.1 A.2 A.3 A.4 A.5 A.6	DendicesProof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of $det(N_1)$ Derivation of $det(N_2)$ Derivation of $det(N_2)$ Derivation of $det(N_3)$ D	 194 198 204 211 226 229
A	App A.1 A.2 A.3 A.4 A.5 A.6	DendicesProof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of $det(N_1)$ Derivation of $det(N_2)$ Derivation of $det(N_2)$ Derivation of $det(N_3)$ Derivation of $det(N_3)$ Adjacency lists and solutions for 250, 500, 1000 and 2000-node graphA.6.1Adjacency list for 250-node graph	 194 198 204 211 226 229 230
A	App A.1 A.2 A.3 A.4 A.5 A.6	Dendices Proof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of $det(N_1)$ Derivation of $det(N_2)$ Derivation of $det(N_2)$ Derivation of $det(N_3)$ Derivation of $det(N_3)$ Adjacency lists and solutions for 250, 500, 1000 and 2000-node graphA.6.1Adjacency list for 250-node graphA.6.2Hamiltonian cycle for 250-node graph	 194 198 204 211 226 229 230 232
A	App A.1 A.2 A.3 A.4 A.5 A.6	DendicesProof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of det (N_1) Derivation of det (N_2) Derivation of det (N_2) Derivation of det (N_3) Derivation of det (N_3) Adjacency lists and solutions for 250, 500, 1000 and 2000-node graphA.6.1Adjacency list for 250-node graphA.6.2Hamiltonian cycle for 250-node graphA.6.3Adjacency list for 500-node graph	 194 198 204 211 226 229 230 232 234
A	App A.1 A.2 A.3 A.4 A.5 A.6	Dendices Proof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of det (N_1) Derivation of det (N_2) Derivation of det (N_2) Derivation of det (N_3) Derivation of det (N_3) Adjacency lists and solutions for 250, 500, 1000 and 2000-node graphA.6.1Adjacency list for 250-node graphA.6.2Hamiltonian cycle for 250-node graphA.6.3Adjacency list for 500-node graphA.6.4Hamiltonian cycle for 500-node graph	 194 198 204 211 226 229 230 232 234 238
A	App A.1 A.2 A.3 A.4 A.5 A.6	Dendices Proof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of det (N_1) Derivation of det (N_2) Derivation of det (N_2) Derivation of det (N_3) Derivation of det (N_3) Adjacency lists and solutions for 250, 500, 1000 and 2000-node graphA.6.1Adjacency list for 250-node graphA.6.2Hamiltonian cycle for 250-node graphA.6.3Adjacency list for 500-node graphA.6.4Hamiltonian cycle for 500-node graphA.6.5Adjacency list for 1000-node graph	 194 194 204 211 226 229 230 232 234 238 241
A	App A.1 A.2 A.3 A.4 A.5 A.6	Derivation of det(N_1) $i = 1$ $i = 1$ Derivation of det(N_1) $i = 2$ $i = 1$ Derivation of det(N_1) $i = 2$ $i = 1$ Derivation of det(N_1) $i = 2$ $i = 1$ Derivation of det(N_1) $i = 2$ $i = 1$ Derivation of det(N_2) $i = 1$ $i = 2$ Derivation of det(N_2) $i = 1$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_2) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Derivation of det(N_3) $i = 2$ $i = 2$ Adjacency list for 250-node graph $i = 2$ A.6.4Hamiltonian cycle for 500-node graph $i = 2$ A.6.5Adjacency list for 1000-node graph $i = 2$ A.6.6Hamiltonian cycle for 1000-node graph $i = 2$	 194 194 204 211 226 229 230 232 234 238 241 249
A	App A.1 A.2 A.3 A.4 A.5 A.6	Proof of Proposition 4.3.5 for $j = 1$ Proof of Proposition 4.3.5 for $j = 2$ Proof of Proposition 4.3.5 for $j = 2$ Derivation of det (N_1) Derivation of det (N_2) Derivation of det (N_3) Derivation of det (N_3) Adjacency lists and solutions for 250, 500, 1000 and 2000-node graphA.6.1Adjacency list for 250-node graphA.6.2Hamiltonian cycle for 250-node graphA.6.3Adjacency list for 500-node graphA.6.4Hamiltonian cycle for 500-node graphA.6.5Adjacency list for 1000-node graphA.6.6Hamiltonian cycle for 1000-node graphA.6.7Adjacency list for 2000-node graph	 194 194 204 211 226 229 230 232 234 238 241 249 254

References

List of Figures

1.1	The envelope graph.	6
2.1	A short cycle.	20
2.2	A noose cycle	20
2.3	Various arc fixing situations	28
2.4	The envelope graph.	36
2.5	Branching on arc $(4, 1)$	36
2.6	Branching on arc $(3, 2)$ after fixing arc $(4, 1)$	38
2.7	Second branching on arc $(3, 4)$	38
2.8	Hamiltonian cycle found by B&F method	39
2.9	The logical B&F tree for the envelope graph	39
2.10	Wedge constraints for a node in a cubic graph	42
2.11	Solution to 250-node graph (Hamiltonian cycle in red). \ldots .	51
3.1	The complete 4-node graph	65
3.2	The envelope graph Γ_6	117
4.1	A 4-node graph with 10 arcs and two Hamiltonian cycles	131
4.2	The cHc's of 4-node graphs.	133
4.3	The cHc's of 10-node graphs.	134
4.4	A set of 30 fake Hamiltonian curves for a 10-node graph	140
4.5	Canonical Hamiltonian surfaces for 10-node graphs	171
A.1	Solution to 500-node graph (Hamiltonian cycle in red)	240
A.2	Solution to 1000-node graph (Hamiltonian cycle in red).	253

List of Tables

1	Notation used in this thesis	xix
1.1	Ratio of cubic graphs over cubic non-Hamiltonian graphs	3
2.1	Preliminary results for the branch and fix method	35
2.2	Performance of the branch and fix method over cubic graphs	35
2.3	Average number of branches examined by the five branching methods	
	over sets of Hamiltonian cubic graphs.	40
2.4	Preliminary results for the branch and fix method with wedge con-	
	straints included.	44
2.5	Performance of the branch and fix method with wedge constraints	
	included over cubic graphs	44
2.6	Average number of branches examined by the five branching methods	
	with wedge constraints included over sets of Hamiltonian cubic graphs.	45
2.7	Running times for Wedged-MIP heuristic.	50
2.8	Running times (hh:mm:ss) for Wedged-MIP heuristic, MCSF and TSD.	54
3.1	Results obtained from solving sets of graphs with DIPA	87
3.2	Variable values obtained from solving a 16-node graph with Algorithm	
	3.16: DIPA	90
3.3	Comparison of Algorithm 3.4 with MATLAB's det function.	122

List of Algorithms

2.1	Branch and fix algorithm.	32
2.2	Second LP algorithm	33
2.3	Checking algorithm.	33
3.1	Reordering W algorithm	64
3.2	Algorithm for sparse multiplication ZM	68
3.3	Algorithm for sparse multiplication $Z^T M$	72
3.4	Function evaluations algorithm.	73
3.5	Reduced gradient and Hessian algorithm	74
3.6	Descent direction algorithm.	74
3.7	Negative curvature algorithm.	75
3.8	Step size algorithm	76
3.9	Barrier point algorithm.	77
3.1	0 Initial μ algorithm.	79
3.1	1 Deletion algorithm.	80
3.1	2 Deflation algorithm.	81
3.1	3 Scaling algorithm	83
3.1	4 Initial point algorithm.	84
3.1	5 Rounding algorithm.	85
3.1	6 DIPA	86
3.1	7 Stochastic null space algorithm	93
3.1	8 Function evaluations algorithm (simplified).	116

Summary

In this thesis, we continue an innovative line of research in which the Hamiltonian cycle problem (HCP) is embedded in a Markov decision process. This embedding leads to optimisation problems that we attempt to solve using methods that take advantage of the special structure from both HCP and Markov decision processes theory. Since this approach was first suggested in 1992, a number of new theoretical results and optimisation models have been developed for HCP. However, the development of numerical procedures, based on this approach, that actually find Hamiltonian cycles has lagged the rapid development of new theory. The present thesis seeks to redress this imbalance by progressing a number of new algorithmic approaches that take advantage of the Markov decision processes perspective. We present the results in three chapters, each describing a different approach to solving HCP.

In Chapter 2, we detail a method of constructing and intelligently searching a logical branching tree to find a Hamiltonian cycle, or to determine that one does not exist. The benefit of the algorithm, compared to standard branch and bound methods, is that the growth of the tree is significantly slower due to particular checks and fathoming routines. We propose five branching strategies and present numerical results to compare their effectiveness. We then augment the original model with additional constraints that further reduce the growth of the tree, and compare the performance between the original and augmented methods. Finally, we adapt the Markov decision process embedding and these additional constraints to a mixed integer programming method that succeeds in solving large graphs, and compare its performance to some well known mixed integer programming formulations of HCP. We include Hamiltonian solutions to four large non-regular graphs, specifically a 250-node, 500-node, 1000-node and 2000-node graph, obtained by this method.

In Chapter 3, we introduce an interior point method designed to solve an optimisation program that is equivalent to HCP. The chapter is divided into two halves. In the first half, comprised of Sections 3.1 - 3.5, we present an algorithm that implements a variant of the interior point method designed for HCP. This algorithm uses a series of component algorithms designed to take maximum advantage of the significant amount of sparsity inherent in HCP. We present numerical results that demonstrate how reliably Hamiltonian solutions were found, and how much computational power was required. We also propose a conjecture about the existence of a unique strictly interior stationary point in the optimisation program. We further conjecture about the possible use of this stationary point in solving the graph isomorphism problem. In the second half, comprised of Sections 3.6 - 3.7, we investigate an efficient method of calculating derivatives of the objective function in the optimisation program by use of a sparse LU decomposition. Finally, we present an algorithm to compute these derivatives, intended for use in the interior point method presented in Section 3.3, with complexity equal to that of the original sparse LU decomposition.

In Chapter 4, we analyse a polytope, the extreme points of which include all Hamiltonian solutions. We investigate the behaviour induced by perturbation and discount parameters influencing the equations that define this polytope. We then show that the Hamiltonian solution vectors contain entries that are polynomials in these parameters. These polynomials define curves and surfaces, and their exact form is derived by considering the determinant of a matrix of a particular structure, but arbitrary size. We formulate two polynomially solvable feasibility problems that are feasible for all Hamiltonian solutions, but difficult to satisfy by other solutions. We then conjecture that these feasibility programs can identify the majority of non-Hamiltonian graphs, and supply experimental results that support this conjecture.

Throughout this thesis we demonstrate the flexibility and power offered by the embedding of HCP in a Markov decision process. Unlike most graph theory-based solvers, we make few assumptions about the structure of graphs and this allows us to solve a wide variety of graphs. It is worth noting that all models discussed in this thesis have been implemented in the modeling language MATLAB (version 7.4.0.336), with a CPLEX interface used as a linear solver when necessary. Consequently, the running times for these models are not indicative of their full potential. Nonetheless, for each algorithm we provide running times for several test graphs to demonstrate the change in running times for different sized graphs. The sole exception is the mixed integer programming model in Chapter 2.9, which is coded entirely in IBM ILOG OPL-CPLEX, an extremely efficient language for solving these types of models. That this mixed integer programming model is able to solve such large graphs is a testament to the potential offered by the Markov decision process embedding. We expect that subsequent implementations in compiled languages will result in significant improvements in speed and memory management for the other models given in this thesis.

Declaration

I declare that this thesis presents work carried out by myself and does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; that to the best of my knowledge it does not contain any materials previously published or written by another person except where due reference is made in the text; and that all substantive contributions by others to the work presented, including jointly authored publications, is clearly acknowledged.

Michael Haythorpe B.App.Sc. (Hons)

Publications

This thesis is written under the supervision of Professor Jerzy A. Filar (JF) at University of South Australia, and Professor Walter Murray (WM) at Stanford University.

Chapter 1:

• Section 1.1 contains a conjecture jointly proposed by JF and Giang Nguyen (University of South Australia) that has been submitted to Discussiones Mathematicae Graph Theory.

Chapter 2:

- Sections 2.1–2.7 describe joint work with JF, Vladimir Ejov (University of South Australia) and Giang Nguyen (University of South Australia). A shortened version of these section are included in a manuscript, which was published in Mathematics of Operations Research Volume 34(3) in 2009.
- Section 2.8 describe joint work with JF and Ali Eshragh (University of South Australia). Part of this section is included in a manuscript, which has been accepted by Annals of Operations Research in 2009.

Chapter 3:

• Sections 3.6–3.7 describe joint work with JF and WM. A shortened version of these sections are included in a manuscript, that is under revision for The Gazette in 2010.

Acknowledgements

With the cessation of four years effort, I arrive at the final, and perhaps most difficult, task of acknowledging all of the family, friends, colleagues and fellow researchers that have been instrumental in keeping me sane throughout my time as a postgraduate student. The love and support I have received during these past four years from so many has been instrumental to the completion of this thesis.

Before I get started, I must acknowledge the funding that has allowed me to undertake such enjoyable and fulfilling research. During my four years as a postgraduate student, I have worked under ARC Discovery Grants DP0666632 and DP0984470. I have been supported by the CSIRO-ANZIAM Student Support Scheme which has allowed me to attend the Annual Conference of ANZIAM in 2008, 2009 and 2010. I have received an APA Scholarship from the Australian Government, and a Completion Scholarship from University of South Australia. Needless to say, four years of research does not occur without significant financial assistance and I am extremely appreciative of this necessary support.

First and foremost, I would like to express my eternal gratitude to my supervisors Professor Jerzy Filar and Professor Walter Murray. Their enthusiasm for their craft is unsurpassed and has been a source of great inspiration to me. Their patience, understanding, kindness, and genuine friendship has made researching under their supervision an immensely enjoyable ride, and has seen them extract from me my best work. Between late night phone calls, all-day meetings and car rides to the airport, Jerzy and Walter have repeatedly gone above and beyond the call of duty to help me navigate the bumps in the road, and I am certain that I would not be writing these acknowledgements if not for their tireless efforts. Prior to starting my postgraduate degree, I asked a mentor of mine for the secret of a successful Ph.D thesis. "Select the correct supervisors," he told me, "and everything else will fall into place." I am pleased to say that he was correct.

While not my supervisor in an official capacity, Associate Professor Vladimir Ejov has felt like one in every other sense. His mathematical insight has been invaluable in all chapters of this thesis, and his joyful love for this problem, not to mention life itself, has been infectious. Our research team was so much richer for Vladimir's participation. There is a saying, "the best people make those around them stand taller." There can be no doubt that Vladimir is, by this and many other definitions, a wonderful person and a brilliant researcher.

Mr. Ali Eshragh entered our research team a year after I did, and immediately made an impact with his knowledge, creativity, and wide range of mathematical skills. I have bounced so many ideas off Ali in the past three years that it is difficult to keep track of who brought them up first. Some of my most enjoyable experiences in the past three years have occurred while sitting at a computer with Ali working on MATLAB code, or while standing in front of a whiteboard looking over equations together.

My love for mathematics can be traced back to three individual teachers, without whose influence I would never have pursued this postgraduate research. Mrs. Jenny Dickson, Mrs. Marilyn Hoey, and Mr. Len Colgan were mathematics teachers of mine during my formative years of study, who planted a seed in me that grew into a rich appreciation of the beauty of mathematics. I cannot imagine what direction my life could have taken if not for their inspiration and guidance.

The staff here in the School of Mathematics and Statistics have been fantastic. The two heads of school, Associate Professor David Panton and Professor Stanley Miklavcic, have always ensured that things have run smoothly for me during the seven years I have spent as a student in our school. The administrative staff in Mrs. Maureen Cotton, Mrs. Anja van Vliet, Mrs. Ingrid van Paridon, Mrs. Pamela Phillips, Mrs. Alison Cameron and Ms. Janelle Brown handled my daily requests for assistance with an efficiency and a smile that has been greatly appreciated. Our information technologist, Mr. Richard Rawinski, has been called on time and time again to help with computer issues. Richard, I am so sorry for all of the computer parts I have destroyed during the past four years.

I would also like to thank my other colleagues, and fellow students, here at University of South Australia. While I cannot write about them all individually, each of them has been important to me at various stages throughout my time at University of South Australia. If for no other reason, thank you all for keeping me sane during conferences, late nights, hot days, and long flights.

Thanks must also go to Mrs. Indira Choudhury for her resourcefulness and kindness during my time at Stanford University. She is the backbone of ICME and they are very lucky to have her. I would also like to thank the staff and students at Stanford, in particular Michael and Nick, who made my months away from family and friends much more enjoyable than they might have otherwise been.

I have been blessed with a wonderful group of friends who have been there through thick and thin during this bumpy ride. From the hours spent chatting, to the many, many meals and celebrations, to the discussions about football and cricket, to the racquetball and netball matches, to the seaside holidays, they have been a constant source of mirth and support. To Andrew, Anna, Brucey, Dale, Jane, Jess, Jo, Julia, Justin, Katie, Kerrie, Lee, Para, Stef and Stuart, thank you all so much for being the people you are. Thank you also for putting up with me turning into a recluse at various stages during my postgraduate degree.

I must extend an additional thank you to Pat, Sam and Kay for organising extracurricular activities that gave me an opportunity to think about something other than mathematics. Wednesday, Friday, and Sunday nights have become the highlights of my week these past couple of years.

It is impossible to describe fully the influence my family has had on me, both as a researcher and as a person, but I will attempt to do so nonetheless. As far back as my memory stretches, I have enjoyed the full belief and confidence of my mother and father, who have always given me every opportunity to achieve as highly as possible. Their boundless love, genuine friendship, constant support and nurture, and undying interest in everything I am doing has made me into the man I am today. I hope this thesis makes you proud. My sister Kathryn has shared the journey through childhood with me, and I am proud to say has also begun her own journey in postgraduate research. Her friendship has been a treasured part of my life.

Last, but certainly not least, is Dr. Giang Nguyen, my fiancee. As a colleague, a friend, and a partner, Giang has been without peer in my life, and to say that this thesis would not exist without her influence is a massive understatement. Her unbelievable patience in helping me edit my thesis, her gentle reminders to get back to work when I was getting sidetracked, and her ability to find answers to questions that I cannot find anywhere else have been invaluable. Her support of me has been second to none. Thank you so much Giang, for everything.

Notation

Throughout this thesis, much symbolic notation is used. For easy reference, a summary of the most commonly used symbols is given in the table below.

	A	Adjacency matrix
	$\mathcal{A}(i)$	Set of nodes that can be reached in one step from node i
	$\mathcal{B}(i)$	Set of nodes that can go to node i in one step
	е	Column vector with all elements equal to 1
	\mathbf{e}_i	Column vector with a 1 in position i , and 0s elsewhere
	\mathcal{DS}	Set of doubly-stochastic policies
	E	Set of arcs in a graph
	$f(\mathbf{x})$	Determinant objective function defined as $f(\mathbf{x}) := -\det(I - P(\mathbf{x}) + \frac{1}{N}J)$
	$F(\mathbf{x})$	Augmented objective function defined as $F(\mathbf{x}) := f(\mathbf{x}) + \mu \mathcal{L}(\mathbf{x})$
	$\mathbf{g}(\mathbf{x})$	Gradient vector of $F(\mathbf{x})$
	$H(\mathbf{x})$	Hessian matrix of $F(\mathbf{x})$
	Ι	Identity matrix
	J	Square matrix with all elements equal to 1
$\mathcal{L}(\mathbf{x})$ Logarithmic barrier terms defined as $\mathcal{L}(\mathbf{x})$		Logarithmic barrier terms defined as $\mathcal{L}(\mathbf{x}) := \sum_{i=1}^{N} \sum_{j \in \mathcal{A}(i)} \ln(x_{ij})$
	\mathcal{M}	Markov decision process
	M^{ij}	Any matrix M with row i and column j deleted
	N	Number of nodes in a graph
	$P(\mathbf{x})$	Probability transition matrix, containing elements x_{ij}
	r	Reward vector in a Markov decision process
	v	Value vector in a Markov decision process
	V	Set of nodes in a graph
	x	Vector containing elements x_{ij} for all $(i, j) \in \Gamma$
	x_{ij}	Probability of transition to node j from node i
	β	Discount parameter that lies in $[0,1)$
	Г	Graph
	δ_{ij}	The Kronecker delta, equal to 1 if $i = j$, and 0 otherwise
	ζ	Policy in a Markov decision process
	η	Initial state probability distribution vector
	ν	Perturbation parameter used to perturb $P(\mathbf{x})$

Table 1: Notation used in this thesis.

Chapter 1

Introduction and Background

1.1 Hamiltonian cycle problem

The Hamiltonian cycle problem (HCP) is an important graph theory problem that features prominently in complexity theory because it is NP-complete¹ [31]. HCP has also gained recognition because two special cases: the Knight's tour and the Icosian game, were solved by famous mathematicians Euler and Hamilton, respectively. Finally, HCP is closely related to the even more famous Traveling salesman problem².

The definition of HCP is the following: given a graph Γ containing N nodes, determine whether any simple cycles of length N exist in the graph. These simple cycles of length N are known as *Hamiltonian cycles*. If Γ contains at least one Hamiltonian cycle (HC), we say that Γ is a *Hamiltonian graph*. Otherwise, we say that Γ is a *non-Hamiltonian graph*.

It is well known (e.g., see Robinson and Wormald [50]) that almost all regular graphs are Hamiltonian. It is also well known (e.g., see Woodall [56]) that all sufficiently dense graphs are Hamiltonian, and so in this thesis we primarily consider sparse

al. [42] pp. 361–401.

¹For more information about NP-completeness, the reader is referred to Garey and Johnson [30]. ²For more information about the Traveling salesman problem, the reader is referred to Lawler et

graphs. For Hamiltonian graphs, a constructive solution to HCP is to explicitly find a Hamiltonian cycle. Many heuristics have been designed that attempt to find a single Hamiltonian cycle as quickly as possible, solving the HCP quickly in most cases. For non-Hamiltonian graphs, however, no Hamiltonian cycles exist and the heuristics fail.

In this thesis we consider three types of graphs:

- (1) Hamiltonian graphs, which contain one or more Hamiltonian cycles.
- (2) Bridge (or 1-connected) graphs, which are non-Hamiltonian, but can be detected in polynomial time
- (3) Non-bridge non-Hamiltonian (NHNB) graphs, which is the set of all graphs that are neither Hamiltonian nor 1-connected.

Since we can quickly detect bridge graphs, it is (1) and (3) in the above that we are primarily interested in identifying. To give an indication as to the rarity of NHNB graphs, we consider the more restrictive set of cubic graphs, that is, graphs in which each node has precisely three arcs coming in and going out. Even over this seemingly restrictive set of graphs, HCP is still an NP-complete problem [31]. It was conjectured in [26] that as the size N of the graph tends to infinity, the ratio between the number of bridge graphs of size N compared to the entire set of cubic non-Hamiltonian graphs of size N tends to 1. This trend can be seen in Table 1.1. Note that the number of cubic graphs of sizes 40 and 50 was too large to test exhaustively, so a million cubic graphs of those two sizes were randomly generated to be tested.

Given the result in [50] stating that most regular graphs are Hamiltonian, and the conjecture in [26] that most of the relatively few remaining non-Hamiltonian graphs are the easily identified bridge graphs, it seems reasonable to expect that an algorithm which can find a Hamiltonian cycle quickly (after first checking if the graph is a bridge graph) if one exists will work well on the large majority of cubic (and possibly other) graphs.

There has been a wealth of optimisation problems published that attempt to solve

Graph size	Number of	Number of Cubic	Number of Cubic	Ratio of
Ν	Cubic Graphs	Non-H Graphs	Bridge Graphs	Bridge/Non-H
10	19	2	1	0.5000
12	85	5	4	0.8000
14	509	35	29	0.8286
16	4060	219	186	0.8493
18	41301	1666	1435	0.8613
20	510489	14498	12671	0.8740
22	7319447	148790	131820	0.8859
24	117940535	1768732	1590900	0.8995
40	1000000*	912	855	0.9375
50	1000000*	549	530	0.9650

Table 1.1: Ratio of cubic graphs over cubic non-Hamiltonian graphs.

HCP, or more commonly the Traveling salesman problem (TSP), which can be formulated as a problem of finding the Hamiltonian cycle of minimum weight in a weighted graph. Classically, the approach to the discrete optimisation problems generally associated with HCP and TSP (as well as other such graph theory problems) has been to solve a linear programming relaxation, followed by heuristics that prevent the formation of sub-cycles (e.g., see Lawler et al [42]). The TSP has been a problem of interest in combinatorial optimisation for much longer than researchers have been fascinated by NP-completeness and has been explored by a large number of researchers, notably by Dantzig et al. [10] and Johnson et al. [38]. Alternative methods for solving TSP and HCP have also been explored such as the use of distributed algorithms (e.g., see Dorigo et al. [13]), Simulated Annealing (e.g., see Kirkpatrick et al. [41]), and more recently a hybrid simulation-optimisation method using the cross-entropy method was applied specifically to HCP with promising results in Eshragh et al. [22].

However, in this thesis we continue a line of work initiated by Filar and Krass [27], that attempts to exploit the properties and tools prevalent in Markov decision

processes (MDPs) to solve HCP, by embedding the latter in a *Markov decision process*. This initial approach has been continued by several authors, including but not limited to Feinberg [23, 24], Andramonov et al. [2], Filar and Lasserre [28], Ejov et al. [14, 15, 16, 17, 18, 19, 20, 21] and Borkar et al. [7, 8]. While the rapid growth of this line of research is encouraging, we observe that with the notable exceptions of Andramonov et al. [2], Filar and Lasserre [28] and Ejov et al [15], all the remaining developments have been theoretical. In this thesis, we introduce numerical procedures that take advantage, in some cases for the first time, of the numerous theoretical results that have been published to date. We hope that the promise displayed by these algorithms will encourage further development of algorithms that take advantage of the MDP embedding.

1.2 Embedding of HCP in a Markov decision process

We construct the embedding as follows. Consider a directed graph Γ , containing the set of nodes V, with |V| = N, and the set of arcs E. We begin by associating the graph Γ with a Markov decision process \mathcal{M} as follows.

- (1) The state space S of \mathcal{M} is equivalent to the set of nodes V in Γ . Clearly, $S = \{1, 2, \dots, N\}.$
- (2) The action space \mathcal{A} of \mathcal{M} is equivalent to the set of arcs E in Γ . Then, $\mathcal{A} = \{(i, a) : i, a \in S \text{ and } (i, a) \in E\}$. We refer to $\mathcal{A}(i)$ as the set of states reachable by actions of the form (i, a). In these cases, we say that $a \in \mathcal{A}(i)$, or equivalently, $(i, a) \in \mathcal{A}$.
- (3) We define $\{p(j|i,a) := \delta_{aj} : (i,j) \in \mathcal{A}\}$ as the set of degenerate one-step transition probabilities. The above can be interpreted as the probability of reaching node j in one step by traversing arc (i,a). The Kronecker delta δ_{aj} arises because node j cannot be reached immediately by arc (i,a) unless a = j. In the cases when $(i,j) \notin \mathcal{A}$, we define p(j|i,a) := 0.

A stationary policy ζ in \mathcal{M} is a set of N probability vectors, $\zeta(1)$, $\zeta(2)$, ..., $\zeta(N)$. For each node $i, \zeta(i) = (\zeta(i, 1), \zeta(i, 2), \ldots, \zeta(i, N))$, where $\zeta(i, a)$ is the probability of selecting action a when in state i. In the context of HCP, $\zeta(i, a)$ is the probability of traversing arc (i, a) when node i is reached. At every state, an action must be selected, and therefore $\sum_{a=1}^{N} \zeta(i, a) = 1$. Strictly speaking, $\zeta(i, a)$ should be defined only on $(i, a) \in \mathcal{A}(i)$, but without loss of generality we shall assume that if an arc $(i, a) \notin \mathcal{A}(i)$, then $\zeta(i, a) := 0$. It is then convenient to equivalently represent the stationary policy ζ as an $N \times N$ matrix with entries $\zeta(i, a)$. We refer to the set of all stationary policies as \mathcal{F} .

Any stationary policy $\zeta \in \mathcal{F}$ induces a probability transition matrix

$$P(\zeta) = [p(j|i,\zeta)]_{i,j=1}^{N,N},$$

where for all $i, j \in S$,

$$p(j|i,\zeta) := \sum_{a=1}^{N} p(j|i,a)\zeta(i,a).$$

Then, we observe that a stationary policy is one which induces a nonnegative probability transition matrix $P(\zeta)$ with row sums of 1. For this reason, stationary policies are sometimes referred to as stochastic policies.

A doubly stochastic policy $\zeta \in \mathcal{F}$ is a stationary policy in which the probability transition matrix $P(\zeta)$ induced also has column sums of 1. We refer to the set of all doubly stochastic policies as \mathcal{DS} . As each doubly-stochastic policy is, by definition, stationary, it follows that $\mathcal{DS} \subseteq \mathcal{F}$.

A deterministic policy is a stationary policy where $\zeta(i, a) \in \{0, 1\}$ for all i and a, that is, at each node a particular arc is always selected by the deterministic policy. For convenience of notation, if $\zeta(i, a) = 1$, we say that $\zeta(i) = a$ in these situations. We refer to the set of all deterministic policies as \mathcal{D} . Note that the probability transition matrix $P(\zeta)$ induced by a deterministic policy can also be thought of as a spanning directed subgraph (or subdigraph) Γ_{ζ} that contains precisely N arcs, with one arc emanating from each node. Consider a policy that selects arcs that form a Hamiltonian cycle. Such a policy is called a *Hamiltonian policy*. Hamiltonian policies are both doubly stochastic and deterministic, as for any Hamiltonian cycle there is precisely one arc going in and one arc coming out of every node in the graph. Clearly, if $\zeta \notin DS \cap D$, then ζ is not a Hamiltonian policy. However, the converse is not true. If $\zeta \in DS \cap D$, then the subgraph Γ_{ζ} induced is either a Hamiltonian cycle in Γ , or a union of disjoint cycles in Γ , the lengths of which sum to N.

We demonstrate the above in the following example.

Example 1.2.1 Consider the cubic 6-node graph Γ_6 (also known as the envelope graph) shown in Figure 1.1.

Figure 1.1: The envelope graph.

One Hamiltonian cycle in this graph is $1 \to 2 \to 6 \to 3 \to 4 \to 5 \to 1$. This Hamiltonian cycle corresponds to a Hamiltonian policy $\zeta_{HC} \in \mathcal{DS} \cap \mathcal{D}$ such that $\zeta_{HC}(1) = 2, \ \zeta_{HC}(2) = 6, \ \zeta_{HC}(3) = 4, \ \zeta_{HC}(4) = 5, \ \zeta_{HC}(5) = 1, \ \zeta_{HC}(6) = 3$. This policy induces a probability transition matrix

$$P(\zeta_{HC}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Note that $P(\zeta_{HC})$ can also be thought of as the adjacency matrix for a spanning subdigraph $\Gamma_{HC} = \{(1,2), (2,6), (3,4), (4,5), (5,1), (6,3)\} \subset \Gamma_6$.

Consider another deterministic policy ζ_{SC} such that $\zeta_{SC}(1) = 2$, $\zeta_{SC}(2) = 1$, $\zeta_{SC}(3) = 1$

6, $\zeta_{SC}(4) = 3$, $\zeta_{SC}(5) = 4$, $\zeta_{SC}(6) = 5$, which induces the probability transition matrix

Again, we note that $P(\zeta_{SC})$ can be thought of as the adjacency matrix for a subdigraph $\Gamma_{SC} = \{(1,2), (2,1), (3,6), (4,3), (5,4), (6,5)\}$, which contains two subcycles of lengths 2 and 4 respectively. Both ζ_{HC} and ζ_{SC} are examples of deterministic, doubly-stochastic policies.

We can take convex combinations of deterministic policies to obtain randomised policies. For example, consider a randomised policy $\zeta_R = \frac{3}{4}\zeta_{HC} + \frac{1}{4}\zeta_{SC}$. This policy induces the following probability transition matrix:

$$P(\zeta_R) = \frac{3}{4}P(\zeta_{HC}) + \frac{1}{4}P(\zeta_{SC}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & 0 & 0 & 0 & 0 & \frac{3}{4} \\ 0 & 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} & 0 \end{bmatrix}$$

One inherent difficulty with this MDP embedding is that some (but not all) policies have a multi-chain ergodic structure, which can introduce technical difficulties in the associated methods of analysis. To help avoid this issue, one common technique is to force the MDP to be *completely ergodic*, that is, one in which every stationary policy induces a Markov chain containing only a single, exhaustive, ergodic class. We achieve this through the use of the following *symmetric linear perturbation* of the form

$$p_{\nu}(j|i,a) := \begin{cases} 1 - \frac{(N-1)}{N}\nu, & \text{if } a = j \in \Gamma, \\ \frac{\nu}{N}, & \text{otherwise,} \end{cases}$$
(1.1)

for all $(i, j) \in \Gamma$, $i, j \in S$. This perturbation ensures that all policies $\zeta \in \mathcal{F}$ induce a Markov chain with a completely ergodic probability transition matrix $P_{\nu}(\zeta)$ whose dominant terms (for small ν) correspond to the non-zero entries in the unperturbed probability transition matrix $P(\zeta)$ that the same policy ζ induces in Γ .

Example 1.2.2 Continuing from Example 1.2.1, consider the probability transition matrices $P_{\nu}(\zeta_{HC})$ and $P_{\nu}(\zeta_{SC})$ of the perturbed Markov chains induced by policies ζ_{HC} and ζ_{SC} respectively:

$$P_{\nu}(\zeta_{HC}) = \begin{bmatrix} \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{1 - \frac{5\nu}{6}}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & 1 - \frac{5\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} \\ \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{6} & \frac{\nu}{$$

Remark 1.2.3 Note that this perturbation ensures a single ergodic class and no transient states. While this is desirable theoretically, it also has the effect of eliminating the inherent sparsity present in the unperturbed probability transition matrices that can be exploited when algorithms are developed.

The symmetric linear perturbation (1.1) is used in [7] and [8] where a perturbation is required that does not destroy double-stochasticity in a probability transition matrix. For each stationary policy $\zeta \in \mathcal{F}$ and its corresponding probability transition matrix $P(\zeta)$, there is an associated *stationary distribution matrix* $P^*(\zeta)$, also known as the *limit Cesaro-sum matrix*, defined as

$$P^*(\zeta) := \lim_{T \to \infty} \frac{1}{T+1} \sum_{t=0}^T P^t(\zeta), \quad P^0(\zeta) = I,$$

where I is an $N \times N$ identity matrix. It is a well known property (e.g., see Blackwell [4]) that $P^*(\zeta)$ satisfies the following identity

$$P(\zeta)P^{*}(\zeta) = P^{*}(\zeta)P(\zeta) = P^{*}(\zeta)P^{*}(\zeta) = P^{*}(\zeta).$$
(1.2)

If the Markov chain corresponding to $P(\zeta)$ contains only a single ergodic class and no transient states (for example, when perturbed using (1.1)), it is also known that $P^*(\zeta)$ is a nonnegative, stochastic matrix where all rows are identical. We refer to this row as $\pi(\zeta)$, which is known as the *stationary distribution* of this Markov chain. From (1.2), we find $\pi(\zeta)$ by solving the following linear system of equations

$$\pi(\zeta)P(\zeta) = \pi(\zeta), \quad \pi(\zeta)\mathbf{e} = \mathbf{e}, \quad \pi(\zeta) \ge 0, \tag{1.3}$$

where $\mathbf{e} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$. It is known that this system always has a unique solution for $P(\zeta)$ arising from completely ergodic Markov chains (e.g., see Kemeny and Snell [40] p. 100, theorem 5.1.2).

If the probability transition matrix of a completely ergodic Markov chain is doublystochastic, it follows from the uniqueness of the solution of (1.3) that

$$\pi(\zeta) = \left[\begin{array}{ccc} \frac{1}{N} & \frac{1}{N} & \dots & \frac{1}{N} \end{array}\right].$$

Hence, for $\zeta \in \mathcal{DS}$, we observe that $P^*(\zeta) = \frac{1}{N}J$, where J is an $N \times N$ matrix with a unity in every entry.

We next define the fundamental matrix

$$G(\zeta) := (I - P(\zeta) + P^*(\zeta))^{-1} = \lim_{\beta \to 1^-} \sum_{t=0}^{\infty} \beta^t (P(\zeta) - P^*(\zeta))^t.$$

The entries of the fundamental matrix are related to moments of first hitting times of node 1. These relationships were exploited in [7] to show that if we use the symmetric linear perturbation 1.1, and constrain the probability transition matrices to be doubly-stochastic, then the HCP can be converted to the problem of minimising the top-left element $g_{11}(\zeta)$ of $G_{\nu}(\zeta) := \left(I - P_{\nu}(\zeta) + \frac{1}{N}J\right)^{-1}$, when $\nu > 0$ and sufficiently small. That is, for small positive ν it is sufficient to solve the optimisation problem

$$\min g_{11}(\zeta)$$

s.t. (1.4)
$$P_{\nu}(\zeta)\mathbf{e} = \mathbf{e},$$

$$\mathbf{e}^{T} P_{\nu}(\zeta) = \mathbf{e}^{T},$$

$$[p_{\nu}(\zeta)]_{ij} \ge 0.$$

Note that constraints above merely ensure that $\zeta \in \mathcal{DS}$. In [14] it is proven that the objective function in the above optimisation problem can be converted to a problem of maximising the determinant of $(G(\zeta))^{-1} = (I - P(\zeta) + \frac{1}{N}J)$, after which the symmetric linear perturbation is no longer required. Maximising this determinant function is the subject of Chapter 3 of this thesis.

Another important matrix in Markov decision processes is the resolvent-like matrix

$$R^{\zeta}(\beta,\nu) := [I - \beta P_{\nu}(\zeta)]^{-1} = \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} P_{\nu}^{t}(\zeta),$$

where the parameter $\beta \in [0, 1)$ is known as the discount factor. Note that the domain of β ensures that the sum above converges, and therefore both the limit and the inverse exist.

Classically, in MDP problems there is a reward (or a cost) denoted by r(i, a) associated with each action a taken in state i. When the actions chosen are prescribed by a policy $\zeta \in \mathcal{F}$, the expected reward achieved each time state i is reached is given

by

$$r(i,\zeta) := \sum_{a=1}^{N} r(i,a)\zeta(i,a), \quad i \in \mathcal{S}.$$

Then, the (single-stage) expected reward vector (or expected cost vector) $\mathbf{r}(\zeta)$ is the vector that contains $r(i, \zeta)$ for each state, that is

$$\mathbf{r}(\zeta) := \begin{bmatrix} r(1,\zeta) & r(2,\zeta) & \dots & r(N,\zeta) \end{bmatrix}^T$$

We define the discounted Markov decision process \mathcal{M}_{β} where the performance of a policy ζ is defined by the value vector

$$\mathbf{v}^{\beta}(\zeta) := \left[I - \beta P_{\nu}(\zeta)\right]^{-1} \mathbf{r}(\zeta)$$
$$= \sum_{t=0}^{\infty} \beta^{t} P_{\nu}^{t}(\zeta) \mathbf{r}(\zeta).$$
(1.5)

We also define the value starting from state i as

$$v^{\beta}(\mathbf{e}_{i}^{T},\zeta) := \mathbf{e}_{i}^{T}\mathbf{v}^{\beta}(\zeta) = \mathbf{e}_{i}^{T}\left[I - \beta P_{\nu}(\zeta)\right]^{-1}\mathbf{r}(\zeta).$$
(1.6)

The interpretation of β in a discounted Markov decision process is that it is the rate at which rewards depreciate with time. For a discounted Markov decision process, this implies that a preferred policy is one that achieves the largest reward in short time. Typically, an optimisation problem associated with the discounted Markov decision process is of the form

$$\max_{\zeta \in \mathcal{F}} \mathbf{v}^{\beta}(\zeta). \tag{1.7}$$

This problem has been extensively researched and, for most problems, completely solved. For further reading on this topic the reader is referred to [4] and [48] pp. 142–266. Note that in (1.7), the maximum is achieved componentwise, at each initial state.

In the context of HCP, we use the reward vector $\mathbf{r}(\zeta)$ only to distinguish between visiting the home node (which we define as node 1 for simplicity) and visiting all

other nodes. In this case we define $r(i, \zeta) := 0$ for all $i \ge 2$, and $r(1, \zeta) := 1$. That is, in our context, for all $\zeta \in \mathcal{F}$, the reward vector is defined as

$$\mathbf{r}(\zeta) = \mathbf{e}_1 = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T.$$
(1.8)

Note that the above convention applies regardless of whether the symmetric linear perturbation is used or not.

The embedding of the Hamiltonian cycle problem into the framework of a discounted Markov decision process offers us an opportunity to work inside the space of the *(discounted) occupational measures* induced by stationary policies. The latter has been studied extensively (e.g., see Kallenberg [39] pp. 35–94, Puterman [48] pp. 142–276, Borkar [6] pp. 31–41, Filar and Vrieze [29] pp. 23–31). Consider the polyhedral set $X(\beta, \nu)$ defined by the constraints

(1)
$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} [\delta_{ij} - \beta p_{\nu}(j|i,a)] x_{ia} = \eta_j, \quad j = 1, \dots, N,$$

(2) $x_{ia} \ge 0, \quad (i,a) \in \Gamma.$

Remark 1.2.4 To the above constraints, we write j = 1, ..., N and $(i, a) \in \Gamma$ rather than $j \in V$ and $(i, a) \in E$. Since N and Γ is generally specified, but E and V are only implied, this keeps the notation compact. We adopt this standard for the remainder of the thesis.

In the above, $\eta = [\eta_1, \eta_2, \dots, \eta_N]$ is the *initial state probability distribution vector*. To begin with we assume that $\eta_j > 0$ for every j. It is well known (e.g., see Filar and Vrieze [29] p. 45) that with every stationary policy $\zeta \in \mathcal{F}$ we can associate $\mathbf{x}(\zeta) \in X(\beta, \nu)$. We achieve this by defining a map $M : \mathcal{F} \to X(\beta, \nu)$

$$x_{ia}(\zeta) = \eta \left[I - \beta P(\zeta)\right]^{-1} \mathbf{e}_i \zeta(i, a), \quad \zeta \in \mathcal{F},$$

for each $(i, a) \in \Gamma$. We interpret the quantity $x_{ia}(\zeta)$ as the discounted occupational measure $x(\zeta)$ of the state-action pair (i, a) induced by the policy ζ . This interpretation is consistent with the interpretation of $x_i(\zeta) := \sum_{a \in \mathcal{A}(i)} x_{ia}(\zeta)$ as the discounted occupational measure $x(\zeta)$ of the state/node *i*. Next we define a map $\hat{M}: X(\beta, \nu) \to \mathcal{F}$ by

$$\zeta_x(i,a) = \frac{x_{ia}}{x_i},\tag{1.9}$$

for every $i = 1, \ldots, N$ and $a \in \mathcal{A}(i)$. The following result can be found in [48] pp. 224–227, [29] p. 45, and [1] pp. 27–36.

Lemma 1.2.5 (1) The set $X(\beta, \nu) = \{x(\zeta) | \zeta \in \mathcal{F}\}.$

(2) The map $\hat{M} = M^{-1}$. Hence

$$M\left(\hat{M}(x)\right) = x$$
 and $\hat{M}\left(M(\zeta)\right) = \zeta$,

for every $x \in X(\beta, \nu)$, and every $\zeta \in \mathcal{F}$.

(3) If x is an extreme point of $X(\beta, \nu)$, then

$$\zeta_x = \hat{M}(x) \in \mathcal{D}.$$

(4) If $\zeta \in \mathcal{D}$ is a Hamiltonian cycle, then $x(\zeta)$ is an extreme point of $X(\beta, \nu)$.

In Feinberg [23] the following, important, result is proved for the case where ν is set equal to zero. Note that, by convention, we will refer to $X(\beta, 0)$ as

$$X(\beta) := X(\beta, 0). \tag{1.10}$$

Theorem 1.2.6 Consider a graph Γ . The following statements are equivalent:

- (1) A policy ζ is deterministic and corresponds to a Hamiltonian cycle in Γ .
- (2) A policy ζ is stationary and corresponds to a Hamiltonian cycle in Γ .
- (3) A policy ζ is deterministic and $v^{\beta}(\mathbf{e}_1, \zeta) = \frac{1}{1-\beta^N}$ for at least one $\beta \in (0, 1)$.
- (4) A policy ζ is stationary and $v^{\beta}(\mathbf{e}_1, \zeta) = \frac{1}{1-\beta^N}$ for 2N-1 distinct discount factors $\beta_k \in (0, 1), \quad k = 1, 2, \dots, 2N-1.$

The combination of Lemma 1.2.5 and Theorem 1.2.6 leads naturally to a number of mathematical programming formulations of HCP that are described in Feinberg [23]. We describe a branch and fix method in Chapter 2 of this thesis that takes advantage

of the above and results proved in [16]. The branch and fix method is followed by a mixed integer programming method that succeeds in using the above results to solve large graphs. In Chapter 4 we investigate the behaviour of Hamiltonian policies as β and ν approach limiting values.

Chapter 2

Algorithms in the Space of Occupational Measures

In this chapter we present two methods: the branch and fix method, and the Wedged-MIP heuristic. Both methods take advantage of the Markov decision process embedding outlined in Chapter 1. The branch and fix method is implemented in MATLAB and results are given that demonstrate the potential of this model. The Wedged-MIP heuristic is implemented in IBM ILOG OPL-CPLEX and succeeds in solving large graphs, including two of the large test problems given on the TSPLIB website maintained by University of Heidelberg [49]. Both of these methods operate in the space of discounted occupational measures, but similar methods could be developed for the space of limiting average occupational measures.

2.1 Preliminaries

In this chapter, we continue the exploitation of the properties of the space of discounted occupational measures in the Markov decision process \mathcal{M} , associated with a graph Γ , as outlined in Chapter 1. In particular, we apply the non-standard branch and bound method of Filar and Lasserre [28] to Feinberg's embedding of the HCP in a discounted Markov decision process [23] (rather than the limiting average

Markov decision process used previously). This embedding has the benefit that the discount parameter does not destroy sparsity of the coefficient matrices to nearly the same extent as did the perturbation parameter ε , used in [28] to replace the underlying probability transitions p(j|i, a) of \mathcal{M} by the linearly perturbed transitions $p^{\varepsilon}(j|i,a)$. We refer to the method that arises from this embedding as the branch and fix method¹.

We show that in the present application, the aforementioned space of discounted occupational measures is synonymous with a polytope $X(\beta)$ defined by only N+1equality constraints and nonnegativity constraints. Using the results in [16] and [45] about the structure of extreme points of $X(\beta)$, we predict that Hamiltonian cycles will be found far earlier, and the resulting *logical branch and fix tree* will have fewer branches than that for more common polytopes. The logical branch and fix tree (which we also call the *logical* B & F tree) that arises from the branch and fix method is a rooted tree. The root of the logical B&F tree corresponds to the original graph Γ , and each branch corresponds to a certain fixing of arcs in Γ . Then, a branch forms a pathway from the root of the logical B&F tree to a leaf. These leaves correspond to particular subdigraphs of Γ , which may or may not contain Hamiltonian cycles. At the maximum depth of the logical B&F tree, each leaf corresponds to a subdigraph for which there is exactly one arc emanating from every node. We refer to subdigraphs of this type as spanning 1-out-regular subdigraphs of Γ . Leaves at a shallower level correspond to subdigraphs for which there are multiple arcs emanating from at least one node.

The set of all spanning 1-out-regular subdigraphs has a 1:1 correspondence with the set of all deterministic policies in Γ . Even for graphs with bounded out-degree, this represents a set with non-polynomial cardinality. Cubic graphs, for example, have 3^N distinct deterministic policies. Hence, it is desirable to be able to fathom branches early, and consequently restrict the number of leaves in the logical B&F tree. The special structure of the extreme points of $X(\beta)$ usually enables us to identify a

¹Since the speed of convergence depends more on arc fixing features than on bounds, the name "branch and fix" (or B&F) method is more appropriate than "branch and bound". 16

Hamiltonian cycle before obtaining a spanning 1-out-regular subdigraph, limiting the depth of the logical B&F tree. We achieve significant improvements by introducing into the branch fix method additional feasibility constraints as bounds, and logical checks that allow us to fathom branches early. This further limits the depth of the logical B&F tree. The resulting method is guaranteed to solve HCP in finitely many iterations. While the worst case may involve examination of exponentially many branches, empirically we show that the number of branches required to find a Hamiltonian cycle is generally reduced to a tiny fraction of the total number of deterministic policies. For example, a 24-node Hamiltonian cubic graph has $3^{24} \approx 3 \times$ 10^{11} possible choices for deterministic policies, but the algorithm finds a Hamiltonian cycle by examining only 28 branches. We observe that Hamiltonian graphs perform better than non-Hamiltonian graphs, as they typically have many Hamiltonian cycles spread throughout the logical B&F tree, and only one needs to be found. However, even in non-Hamiltonian graphs we demonstrate that the algorithm performs well. For instance, a 28-node non-Hamiltonian cubic graph has $3^{28} \approx 2 \times 10^{13}$ possible choices for deterministic policies, but the algorithm terminates after investigating only 11708 branches. This example highlights the ability of B&F method to fathom branches early, allowing us to ignore, in this case, 99.99999995% of the potential branches.

In addition to the basic branch and fix method, we develop and compare several branching methods for traversing the logical B&F tree that may find Hamiltonian cycles quicker in certain graphs, and propose additional constraints that can find infeasibility at an earlier depth in the logical B&F tree. We provide experimental results demonstrating the significant improvement achieved by these additions. We also demonstrate that $X(\beta)$ can be a useful polytope in many other optimisation algorithms. In particular we use $X(\beta)$, along with the additional constraints, in a mixed integer programming model that can solve extremely large graphs using commercially available software such as CPLEX. Finally, we present solutions of four large non-regular graphs, with 250, 500, 1000 and 2000 nodes respectively, which are obtained by this model.
2.2 A formulation of HCP by means of a discounted MDP

The fact that HCP can be embedded in a Markov decision process, as outlined in Chapter 1, was demonstrated in [27] and [23]. However, in [27], the long-run average MDP was, used whereas in [23], the discounted MDP was exploited to solve HCP for the first time.

For a given graph Γ , we define its *adjacency matrix* \mathbb{A} as

$$[\mathbb{A}]_{ia} = \begin{cases} 1, & \text{if } (i,a) \in \Gamma, \\ 0, & \text{otherwise.} \end{cases}$$

We now formally introduce the *transition probabilities* for Γ defined by

$$p(j|i,a) := \begin{cases} 1, & \text{if } a = j, (i,a) \in \Gamma, \\ 0, & \text{otherwise.} \end{cases}$$

Here, p(j|i, a) represents the probability of moving from *i* to *j* by choosing the action/arc (i, a), such that

$$\sum_{j=1}^{N} p(j|i,a) = 1, \quad \text{for all } (i,a) \in \mathcal{A}.$$
(2.1)

Recall from Chapter 1 that a stationary policy ζ contains entries

$$\zeta_{ia} = \begin{cases} \text{probability of action } a \text{ in state } i, \quad a \in \mathcal{A}(i), \\ 0, \qquad a \notin \mathcal{A}(i), \end{cases}$$

and from (1.5)–(1.8) that the performance of ζ , starting from state *i*, is given by the value vector whose *i*-th entry is

$$v_{\beta}(\mathbf{e}_{i}^{T},\zeta) = \mathbf{e}_{i}^{T}(I - \beta P(\zeta))^{-1}\mathbf{e}_{1}.$$
(2.2)

The space of occupational measures, $X(\beta) := {\mathbf{x}(\zeta) | \zeta \in \mathcal{F}}$ (induced by stationary policies) consists of vectors $\mathbf{x}(\zeta)$ whose entries are the discounted occupational measures of the state-action pairs $(i, a) \in \mathcal{A}(i)$ defined by

$$x_{ia}(\zeta) := \eta[(I - \beta P(\zeta))^{-1}] \mathbf{e}_i \zeta_{ia}, \qquad (2.3)$$

where $\eta = [\eta_1, \ldots, \eta_N]$ denotes an arbitrary (but fixed) initial state distribution. Note that in (2.2), $\eta = \mathbf{e}_i^T$.

In what follows, we consider a specially structured initial distribution. Namely, for $\mu \in (0, \frac{1}{N})$ we define

$$\eta_i = \begin{cases} 1 - (N-1)\mu, & \text{if } i = 1, \\ \mu, & \text{otherwise.} \end{cases}$$
(2.4)

We define the *occupational measure of the state* i as the aggregate

$$x_i(\zeta) := \sum_{a \in \mathcal{A}(i)} x_{ia}(\zeta) = \eta [I - \beta P(\zeta)]^{-1} \mathbf{e}_i, \qquad (2.5)$$

where the second equality follows from (2.3), and the fact that $\sum_{a \in \mathcal{A}(i)} \zeta_{ia} = 1$. In particular,

$$x_1(\zeta) := \sum_{a \in \mathcal{A}(1)} x_{1a}(\zeta) = \eta [I - \beta P(\zeta)]^{-1} \mathbf{e}_1 = v_\beta(\eta, \zeta).$$
(2.6)

The construction of \mathbf{x} in (2.3) defines a map M of the policy space \mathcal{F} into $\mathbb{R}^{|E|}$ by

$$M(\zeta) := \mathbf{x}(\zeta).$$

Recall from Lemma 1.2.5 that, for $\eta > 0$, the map M is invertible and its inverse M^{-1} is defined by

$$M^{-1}(\mathbf{x})[i,a] = \zeta_{\mathbf{x}}(i,a) := \frac{x_{ia}}{x_i}.$$
 (2.7)

It is also known that the extreme points of $X(\beta)$ are in one-to-one correspondence with deterministic policies of Γ . However, this important property is lost when entries of η are permitted to take on zero values. We now recall (see Filar and Vrieze [29] pp. 45–46) the partition of the space \mathcal{D} of deterministic strategies that is based on the spanning 1-out-regular subdigraphs they trace out in Γ . In particular, note that with each $\zeta \in \mathcal{D}$, we associate a subdigraph Γ_{ζ} of Γ defined by

arc
$$(i, a) \in \Gamma_{\zeta} \iff \zeta(i) = a$$

We denote a simple cycle of length k and beginning at 1 by a set of arcs

$$c_k^1 = \{(i_0 = 1, i_1), (i_1, i_2), \dots, (i_{k-1}, i_k = 1)\}, \ k = 0, 1, \dots, N-1.$$

Thus, c_N^1 is a Hamiltonian cycle. Note that, by convention, we say that the initial arc in a Hamiltonian cycle $(1, i_1)$ is the 0-th arc in the Hamiltonian cycle. If Γ_{ζ} contains a cycle c_k^1 , we write $\Gamma_{\zeta} \supset c_k^1$. Let

$$C_k^1 := \left\{ \zeta \in \mathcal{D} | \quad \Gamma_{\zeta} \supset c_k^1 \right\}, \quad \text{for all } k = 2, 3, \dots, N,$$

namely, the set of deterministic policies in Γ that trace out a simple cycle of length k beginning at node 1. Thus, $\bigcup_{k=2}^{N} C_k^1$ contains all deterministic policies in Γ that define a cycle containing node 1. We refer to the policies in the union $\bigcup_{k=2}^{N-1} C_k^1$ as short cycles (see Figure 2.1). Denote the complement of $\bigcup_{k=2}^{N} C_k^1$ in \mathcal{D} by \mathcal{N}_c . Then \mathcal{N}_c contains policies that start at the home node 1, and the node where the strategy for the first time repeats itself is different from node 1. We call such policies noose cycles (see Figure 2.2). Note that the home node is a transient state in a Markov chain induced by a noose cycle policy.

Figure 2.1: A short cycle.

Figure 2.2: A noose cycle.

2.3 Structure of 1-randomised policies

Much of the analysis in this chapter depends on the following proposition; which was proved for $\mu = 0$ in Feinberg [23].

Proposition 2.3.1 Let $\beta \in [0,1)$, $\mu \in [0,\frac{1}{N})$, and $\zeta \in \mathcal{F}$. The following two properties hold.

(1) If the initial state distribution η is given by

$$\eta_i = \begin{cases} 1 - (N-1)\mu, & \text{if } i = 1, \\ \mu, & \text{otherwise} \end{cases}$$

then if ζ is a Hamiltonian policy,

$$v_{\beta}(\eta,\zeta) = \frac{(1 - (N - 1)\mu)(1 - \beta) + \mu(\beta - \beta^N)}{(1 - \beta)(1 - \beta^N)}.$$

(2) If $\zeta \in \mathcal{D}$, and $v_{\beta}(\eta, \zeta)$ is as in part (1), then ζ is a Hamiltonian policy.

Proof. For $\mu = 0$, the first part is established in Feinberg [23], and for $\mu \in (0, \frac{1}{N})$, this part is merely an extension of the case when $\mu = 0$. The second part also follows by the same argument as the analogous result in [23] and [45].

Then, for any Hamiltonian policy $\zeta \in \mathcal{F}$, it follows from (2.6) and Proposition 2.3.1 that

$$\sum_{a \in \mathcal{A}(1)} x_{1a}(\zeta) = v_{\beta}(\eta, \zeta)$$

= $\frac{(1 - (N - 1)\mu)(1 - \beta) + \mu(\beta - \beta^N)}{(1 - \beta)(1 - \beta^N)}$

The above suggests that Hamiltonian cycles can be sought among the extreme points of the following subset $\bar{X}(\beta)$ of the discounted occupation measure space $X(\beta)$ that is defined by the linear constraints:

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} (\delta_{ij} - \beta p(j|i,a)) x_{ia} = \eta_j, \quad j = 1, \dots, N,$$
(2.8)

$$\sum_{a \in \mathcal{A}(1)} x_{1a} = \frac{(1 - (N - 1)\mu)(1 - \beta) + \mu(\beta - \beta^N)}{(1 - \beta)(1 - \beta^N)}, \quad (2.9)$$

$$x_{ia} \geq 0, \quad (i,a) \in \Gamma. \tag{2.10}$$

Recall from part (1) of Lemma 1.2.5 that, with $\nu = 0$, $X(\beta) = \{\mathbf{x} | \mathbf{x} \text{ satisfies the} \text{ constraints (2.8) and (2.10)}\}$. From Lemma 1.2.5 part (iii) we know that (when $\mu > 0$) every extreme point of $X(\beta)$ corresponds to a deterministic policy via the transformations M and M^{-1} introduced earlier. Hence, these extreme points contain

exactly N positive entries, one for each node. However, the additional equality constraint (2.9) in $\bar{X}(\beta)$ may introduce one more positive entry in its extreme points. This can be seen as follows. Let \mathbf{x}_e be an extreme point of $\bar{X}(\beta)$. It is clear that if x_e contains exactly N positive entries, then by part (iii) of Lemma 1.2.5, $\zeta = M^{-1}(\mathbf{x}_e)$ is a Hamiltonian policy. However, if \mathbf{x}_e contains N + 1 positive entries, then $\zeta = M^{-1}(\mathbf{x}_e)$ is a 1-randomised policy where randomisation occurs only in one state/node, which we call the *splitting node*, and on only two actions/arcs. This terminology is introduced in [25], and the exact structure of these 1-randomised policies is described in [16] and [45].

Specifically, it is shown that each 1-randomised policy that is an extreme point of $\bar{X}(\beta)$ is a convex combination of a short cycle policy ζ_{SC} , and a noose cycle policy ζ_{NC} , that differ only at a single node, and hence the randomisation occurs only at that single node. That is, $\zeta = \alpha \zeta_{SC} + (1-\alpha) \zeta_{NC}$. Only a particular value of α (which is called the *splitting probability*) satisfies (2.8)–(2.10).

We summarise the above findings in the following theorem, which is stated and proved in [16] and [45].

Theorem 2.3.2 For some $\mu_0 \in (0, \frac{1}{N})$ and for any $\mu \in [0, \mu_0)$, we define the initial state distribution as $\eta = [1 - (N - 1)\mu, \mu, \dots, \mu]$. Let an extreme point $\mathbf{x} \in \overline{X}(\beta)$ induce a 1-randomised policy ζ_{α} via the transformation $M^{-1}(\mathbf{x})$, for some $\alpha \in (0, 1)$, and ζ_1, ζ_2 be two deterministic policies which share the same action at all nodes except the splitting node *i*, such that $\zeta_{\alpha} = \alpha \zeta_1 + (1 - \alpha) \zeta_2$. The following two properties hold.

- (1) One of the policies $\{\zeta_1, \zeta_2\}$ is a short cycle policy, and the other one is a noose cycle policy.
- (2) For every such pair $\zeta_1 \in \bigcup_{k=2}^{N-1} C_k^1$ and $\zeta_2 \in \mathcal{N}_c$, there is only one particular value of α such that $\mathbf{x}(\zeta_{\alpha})$ is an extreme point of \bar{X}_{β} . When $\mu = 0$, this special value of α is given by one of two possible forms², depending on one of only

²In [16] and [45], the formula for α was also given for $\mu > 0$, but as this is not used in the present thesis, we do not include that result.

two cases that may arise. In particular, we define the first repeated node in ζ_2 as node j. Without loss of generality we assume that the simple cycle in ζ_1 containing node 1 is of length k, and the simple cycle in ζ_2 is of length m. If node j is contained in the simple cycle in ζ_1 , then

$$\alpha = \frac{\beta^N - \beta^{N+m}}{\beta^k - \beta^{N+m}},$$

(

otherwise,

$$\alpha \ = \ \frac{\beta^N}{\beta^k}$$

Theorem 2.3.2 shows that 1-randomised policies satisfying (2.8)–(2.10) have a very special structure. We hope that this particular structure will be relatively rare, therefore increasing the likelihood that an intelligent search of the extreme points of (2.8)–(2.10) may find a Hamiltonian extreme point rather than a 1-randomised policy.

2.4 Branch and fix method

In this section we describe first the branch and fix method, and next some of the techniques used in the branch and fix method to help limit the size of the logical branching tree.

2.4.1 Outline of branch and fix method

In view of the fact that it is only 1-randomised policies that prevent standard simplex methods from finding a Hamiltonian cycle, it has been recognised for some time that branch and bound type methods can be used to eliminate the possibility of arriving at these undesirable extreme points (e.g., see [28]). However, the method reported in [28] uses an embedding in a long-run average MDP, with a perturbation of transition probabilities that introduces a small parameter in most of the p(j|i, a)coefficients of variables in linear constraints (2.8), thereby leading to loss of sparsity. Furthermore, the method in [28] was never implemented fully, or tested beyond a few simple examples.

Theorem 2.3.2 indicates that 1-randomised policies induced by extreme points of $\bar{X}(\beta)$ are less prevalent than might have been conjectured, since they cannot be made of convex combinations of just any two deterministic policies. This provides motivation for testing algorithmic approaches based on successive elimination of arcs that could be used to construct these convex combinations.

Note that, since our goal is to find an extreme point $\mathbf{x}_e \in \overline{X}(\beta)$ such that

$$\zeta = M^{-1}(\mathbf{x}_e) \in \mathcal{D},$$

we have a number of degrees of freedom in designing an algorithm. In particular, different linear objective functions can be chosen at each stage of the algorithm, the parameter $\beta \in (0, 1)$ can be adjusted, and $\mu \in (0, 1/N)$ can be chosen small but not so small as to cause numerical difficulties. The latter parameter needs to be positive to ensure that M^{-1} is well-defined. In the experiments reported here, we choose μ to be $1/N^2$.

The branch and fix (B&F) method is as follows. We solve a sequence of linear programs - two at each branching point of the logical B&F tree - with the generic structure:

$$\min L(\mathbf{x})$$
s.t. (2.11)
$$\mathbf{x} \in \bar{X}(\beta),$$

additional constraints, if any, on arcs fixed earlier.

Step 1 - Initiation. We solve the original LP (2.11) without any additional constraints and with some choice of an objective function $L(\mathbf{x})$. We obtain an optimal basic feasible solution \mathbf{x}_0 . We then find $\zeta_0 := M^{-1}(\mathbf{x}_0)$. If $\zeta_0 \in \mathcal{D}$; we stop, the policy ζ_0 identifies a Hamiltonian cycle. Otherwise ζ_0 is a 1-randomised policy.

Step 2 - Branching. We use the 1-randomised policy ζ_0 to identify the splitting node *i*, and two arcs (i, j_1) and (i, j_2) corresponding to the single randomisation in

 ζ_0 . If there are $d \operatorname{arcs} \{(i, a_1), \ldots, (i, a_d)\}$ emanating from node i, we construct d subdigraphs: $\Gamma_1, \Gamma_2, \ldots, \Gamma_d$, where in Γ_k the arc (i, a_k) is the only arc emanating from node i. These graphs are identical to the original graph Γ at all other nodes. Note that in this process we, by default, fix an arc in each Γ_k .

Step 3 - Fixing. In many subdigraphs, the fixing of one arc implies that other arcs can also be fixed³, without a possibility of unintentionally eliminating a Hamiltonian cycle containing already fixed arcs that contain a Hamiltonian cycle in the current subdigraph. Four checks for determining additional arcs that can be fixed are described in Subsection 2.4.3. Once we identify these arcs, we fix them at this step.

Step 4 - Iteration. We solve a second LP (described in Subsection 2.4.2 that checks if (2.9) can still be satisfied with the current fixing of arcs. If so, we repeat Step 1 with the LP (2.11) constructed for the graph at the current branching point of the logical B&F tree, with additional constraints are derived shortly, that is (2.13) and (2.14). Note that this branching point may correspond to $\Gamma_1, \Gamma_2, \ldots, \Gamma_d$, or to a sub-graph constructed from one of these with the help of additional arc fixing⁴.

If ζ is a Hamiltonian policy, $\mathbf{x} = M(\zeta)$, and $\mu = 0$, then we can easily check that \mathbf{x} satisfies (2.8)–(2.10) ifs

$$x_{i_k i_{k+1}} = \sum_{a} x_{i_k a} = \frac{\beta^k}{1 - \beta^N}, \quad k = 0, \dots, N - 1,$$
(2.12)

where (i_k, i_{k+1}) is the k^{th} arc on the Hamiltonian cycle traced out by ζ . This immediately suggests lower and upper bounds on sums of the **x** variables corresponding to arcs emanating from the heads of fixed arcs. This is because if $i_{k+1} \neq 1$

$$\sum_{a \in \mathcal{A}(i_{k+1})} x_{i_{k+1}a} - \beta x_{i_k i_{k+1}} = 0.$$

³This frequently happens in the case of cubic graphs that supplied many of our test examples. For instance, see Figure 2.3 in Subsection 2.4.3.

⁴As is typical with branching methods, decisions guiding which branch to select first are important and open to alternative heuristics. We investigate five possible branching methods in Section 2.7.

If $i_{k+1} = 1$, then we have

$$-\beta^N \sum_{a \in \mathcal{A}(1)} x_{1a} + \beta x_{i_{N-1},1} = 0.$$

For $\mu > 0$ analogous (but somewhat more complex) expressions for the preceding sums can be derived and the above relationship between these sums at successive nodes on the Hamiltonian cycle is simply:

$$\sum_{a \in \mathcal{A}(i_{k+1})} x_{i_{k+1}a} - \beta x_{i_k i_{k+1}} = \mu.$$
(2.13)

If the fixed arc is the final arc $(i_N, 1)$, we have:

$$-\beta^{N} \sum_{a \in \mathcal{A}(1)} x_{1a} + \beta x_{i_{N-1},1} = \frac{\mu\beta(1-\beta^{N-1})}{1-\beta}.$$
 (2.14)

We derive equation (2.13) by simply inspecting the form of (2.8). For (2.14), we know from (2.8) that

$$\sum_{a \in \mathcal{A}(1)} x_{1a} - \beta x_{i_{N-1},1} = 1 - (N-1)\mu_{i_{N-1},1}$$

and therefore

$$\beta x_{i_{N-1},1} = \sum_{a \in \mathcal{A}(1)} x_{1a} - 1 + (N-1)\mu.$$
(2.15)

Then, we substitute (2.15) into the left hand side of (2.14) to obtain

$$-\beta^{N} \sum_{a \in \mathcal{A}(1)} x_{1a} + \beta x_{i_{N-1},1} = (1-\beta^{N}) \sum_{a \in \mathcal{A}(1)} x_{1a} - 1 + (N-1)\mu. \quad (2.16)$$

Finally, we substitute (2.9) into (2.16) to obtain

$$\begin{aligned} -\beta^{N} \sum_{a \in \mathcal{A}(1)} x_{1a} + \beta x_{i_{N-1},1} &= (1-\beta^{N}) \frac{(1-(N-1)\mu)(1-\beta) + \mu(\beta-\beta^{N})}{(1-\beta)(1-\beta^{N})} - 1 + (N-1)\mu, \\ &= \frac{\mu\beta(1-\beta^{N-1})}{1-\beta}, \end{aligned}$$

which coincides with (2.14).

2.4.2 Structure of LP (2.11)

At the initiation step, we solve a feasibility problem of satisfying constraints (2.8), (2.9) and (2.10). This allows us to determine which node to begin branching on.

At every branching point of the logical B&F tree other than the root, we solve an additional LP that attempts to determine if we need to continue exploring the current branch. As the algorithm evolves along successive branching points of the logical B&F tree, we have additional information about which arcs have been fixed, and this consequently permits us to perform tests check the possibility of finding a Hamiltonian cycle that incorporates these fixed arcs. If we determine that it is impossible, we fathom that branching point of the logical B&F tree and no further exploration of that branch is required.

For instance, suppose that all fixed arcs belong to a set \mathcal{U} . Let the objective function of a second LP⁵ be

$$L(\mathbf{x}) = \sum_{a \in \mathcal{A}(1)} x_{1a}, \qquad (2.17)$$

and minimise (2.17) subject to constraints (2.8) and (2.10) together with equations (2.13) and (2.14) providing additional constraints for each arc in \mathcal{U} . If the minimum $L^*(\mathbf{x})$ fails to reach the level defined by the right hand side of the now omitted constraint (2.9) of $\bar{X}(\beta)$, or if the constraints are infeasible, then no Hamiltonian cycle exists that uses all the arcs of \mathcal{U} , and we fathom the current branching point of the logical B&F tree. Otherwise, we solve the LP (2.11) with the objective function⁶

$$L(\mathbf{x}) = \sum_{(i,j)\in\mathcal{U}} \left[\sum_{a\in\mathcal{A}(j)} x_{ja} - \beta \sum_{a\in\mathcal{A}(i)} x_{ia} \right],$$

⁵Note that, although we call (2.17) the Second LP, it is the first LP solved in all iterations other than the initial iteration. Since it is not solved first in the initial iteration, we refer to (2.17) as the Second LP.

⁶For simplicity, we are assuming here that \mathcal{U} does not contain an arc going into node 1. If such an arc were in \mathcal{U} , this objective would have one term consistent with the left hand side of equation (2.14).

and with no additional constraints beyond those in $\bar{X}(\beta)$. This LP will either find a Hamiltonian cycle, or it will lead to an extreme point \mathbf{x}'_e such that $\zeta' = M^{-1}(\mathbf{x}'_e)$ is a new 1-randomised policy.

2.4.3 Arc fixing checks

There are a number of logical checks that enable us to fix additional arcs once a decision is taken to fix one particular arc. This is best illustrated with the help of an example. Note that these checks are in the spirit of well-known rules for constructing Hamiltonian cycles (see, for instance, Section 8.2 of [53]).

Consider the simple 6-node cubic envelope graph (see Figure 1.1). The figure below shows the kind of logical additional arc fixing that can arise.

Figure 2.3: Various arc fixing situations.

Check 1: Consider the left-most graph in Figure 2.3. The only fixed arcs are (1, 2) and (6, 3). Since the only arcs that can go to node 5 are (1, 5), (4, 5) and (6, 5), we may also fix arc (4, 5) as nodes 1 and 6 already have fixed arcs going elsewhere. In this case, we say that arc (4, 5) is *free*, whereas arcs (1, 5) and (6, 5) are *not free*. In general, if only one free arc enters a node, it must be fixed.

Check 2: Consider the second graph from the left in Figure 2.3. The only fixed arcs are (1, 2) and (5, 6). The only arcs going to node 5 are (1, 5), (4, 5) and (6, 5). We cannot choose (6, 5) as this will create a subcycle of length 2, and node 1 already has a fixed arc going elsewhere, so we must fix arc (4, 5). In general, if there are only two free arcs, and one will create a subcycle, we must fix the other one.

Check 3: Consider the third graph from the left in Figure 2.3. The only fixed arcs are (1, 2) and (2, 3). Since the only arcs that can come from node 6 are (6, 2),

(6,3) and (6,5), we must fix arc (6,5) as nodes 2 and 3 already have arcs going into them. In this case, we say that arcs (6,3) and (6,5) are *blocked*, whereas arc (6,2) is *unblocked*. In general, if there is only one unblocked arc emanating from a node, the arc must be fixed.

Check 4: Consider the right-most graph in Figure 2.3. The only fixed arcs are (1, 2) and (3, 6). The only arcs that can come from node 6 are (6, 2), (6, 3) and (6, 5). We cannot choose (6, 2) because node 2 already has an incoming arc, and we cannot choose (6, 3) as this will create a sub-cycle, so we must fix arc (6, 5). In general, if there are two unblocked arcs emanating from a node, and one will create a subcycle, we must fix the other one.

The branch and bound method given in [28] always finds a Hamiltonian cycle if any exist. While the branch and fix method presented here is in the same spirit as the method in [28], we include a finite convergence proof for the sake of completeness.

Theorem 2.4.1 The branch and fix method converges in finitely many steps. In particular, the following two statements hold.

- (1) If Γ is Hamiltonian, the algorithm finds a Hamiltonian cycle in Γ .
- (2) If Γ is non-Hamiltonian, the algorithm terminates after fathoming all the constructed branches of the logical B&F tree.

Proof. The algorithm begins with the original graph Γ . At each stage of the algorithm, a splitting node is identified and branches are created for all arcs emanating from that node. As we consider every arc for this node, it is not possible that the branching process can eliminate the possibility of finding a Hamiltonian cycle if one exists as we will explore every possibility from this node. It then suffices to confirm that none of the checking, bounding, or fixing steps in the branch and fix method can eliminate the possibility of finding a Hamiltonian cycle.

Recall that constraints (2.9), (2.13) and (2.14) are shown to be satisfied by all Hamiltonian cycles. Then, for a particular branching point, if the minimum value of

(2.17) constrained by (2.8), (2.10), (2.13) and (2.14) cannot achieve the value given in (2.9), or if the constraints are infeasible, there cannot be any Hamiltonian cycles remaining in the subdigraph. Therefore, fathoming the branch due to the Second LP in Subsection 2.4.2 cannot eliminate any Hamiltonian cycles.

Checks 1–4 above are designed to ensure that at least one arc goes into and comes out of each node (while preventing the formation of subcycles) by fixing an arc or arcs in situations where any other choice will violate this requirement. Since this is a requirement for all Hamiltonian cycles, it follows that arc fixing performed in Subsection 2.4.3 cannot eliminate any Hamiltonian cycles.

The branch and fix method continues to search the tree until either a Hamiltonian cycle is found, or all the constructed branches are fathomed. Since none of the steps in the branch and fix method can eliminate the chance of finding a Hamiltonian cycle, we are guaranteed to find one of the Hamiltonian cycles in Γ . If all branches of the logical B&F tree have been fathomed without finding any Hamiltonian cycles, we can conclude that Γ is non-Hamiltonian.

Note that while the branch and fix method only finds a single Hamiltonian cycle, it is possible to find all Hamiltonian cycles by simply recording each Hamiltonian cycle when they are is found, and then continuing to search the branch and fix tree rather than terminating.

Corollary 2.4.2 The logical B & F tree has a maximum depth of N.

Proof. Since at each branching point of B&F we branch on all arcs emanating from a node, it follows that once an arc (i, j) is fixed, no other arcs can be fixed emanating from node i. Then, at each level of the branch and fix tree, a different node is branched on. After N levels, all nodes will have exactly one arc fixed, and either a Hamiltonian cycle will be found, or the relevant LP will be infeasible and we will fathom that branch.

In practice, the arc fixing checks will ensure that we never reach this maximum depth as we will certainly fix multiple arcs at branching points corresponding to subdigraphs where few unfixed arcs remain.

2.5 An algorithm that implements the branch and fix method

In Section 2.4, we describe the branch and fix method for HCP and prove its convergence. Here, we present a recursive algorithm that implements the method in pseudocode format, with separate component algorithms for the arc fixing checks, and for solving the second LP. Note that the input variable *fixed arcs* is initially input as an empty vector, as no arcs are fixed at the commencement of the algorithm. Note that the output term Hamiltonian cycle may either be a Hamiltonian cycle found by the branch and fix method, or a message that no Hamiltonian cycle was found.

```
Input: \Gamma, \beta, fixed arcs
Output: HC
begin
          N \leftarrow \operatorname{Size}(\Gamma)
          \mu \leftarrow \frac{1}{N^2}
          function value \leftarrow Algorithm 2.2: Second LP algorithm(\Gamma, \beta, fixed arcs)
          if infeasibility is found or function value > \frac{(1 - (N - 1)\mu)(1 - \beta) + \mu(\beta - \beta^N)}{(1 - \beta)(1 - \beta^N)}
                     return no HC found
          \mathbf{end}
          \bar{X}(\beta) \leftarrow \text{constraints} (2.8) - (2.10)
          for Each arc in fixed arcs
                     if Arc goes into node 1
                               \bar{X}(\beta) \leftarrow Add \ constraint \ (2.14)
                     else
                               \bar{X}(\beta) \leftarrow Add \ constraint \ (2.13)
                     \mathbf{end}
          \mathbf{end}
          \mathbf{x} \leftarrow Solve \ the \ LP \ (2.11) \ with \ constraints \ \bar{X}(\beta)
          if infeasibility is found
                     return no HC found
          elseif a HC is found
                     return HC
          \mathbf{end}
          splitting node \leftarrow Identify which node has 2 non-zero entries in \mathbf x
          d \leftarrow Number of arcs emanating from splitting node
          for i from 1 to d
                     \Gamma_d \leftarrow \Gamma with the d-th arc from splitting node fixed
                     (\Gamma_d, \text{ new fixed arcs}) \leftarrow \text{Algorithm 2.3: Checking algorithm}(\Gamma_d, \text{ fixed arcs})
                     HC \leftarrow Algorithm 2.1: Branch and fix algorithm(\Gamma_d, \beta, new fixed arcs)
                     if a HC is found
                               return HC
                     \mathbf{end}
          end
          if a HC is found
                     return HC
          else
                     return no HC found
          end
\mathbf{end}
```

Algorithm 2.1: Branch and fix algorithm.

```
Input: \Gamma, \beta, fixed arcs

Output: function value

begin

L(\mathbf{x}) \leftarrow Sum \ of \ all \ arcs \ (1, j) \ emanating \ from \ node \ 1

X(\beta) \leftarrow constraints \ (2.8) \ and \ (2.10)

for each arc in fixed arcs

if arc goes into node \ 1

X(\beta) \leftarrow Add \ constraint \ (2.14)

else

X(\beta) \leftarrow Add \ constraint \ (2.13)

end

end

(\mathbf{x},function value) \leftarrow Solve \ the \ LP \ min \ L(\mathbf{x}) \ subject \ to \ X(\beta)

end
```

Algorithm 2.2: Second LP algorithm.

```
Input: \Gamma, fixed arcs
Output: \Gamma, fixed arcs
begin
         N \leftarrow \text{Size}(\Gamma)
         for i from 1 to N
                  if only one arc (j,i) is free to go into node i
                           fixed arcs \leftarrow Add arc (j, i) to fixed arcs if it is not already in fixed arcs
                  end
                  if two arcs (j,i), (k,i), j \neq k are free to go into node i and arc (i,k) is in fixed arcs
                           fixed arcs \leftarrow Add \ arc \ (j,i) to fixed arcs if it is not already in fixed arcs
                  \mathbf{end}
                  if only one arc (i, j) that emanates from node i is unblocked
                           fixed arcs \leftarrow Add arc (i, j) to fixed arcs if it is not already in fixed arcs
                  \mathbf{end}
                  if two arcs (i, j), (i, k), j \neq k that emanate from node i are unblocked, and arc (k, i) is in fixed arcs
                           fixed arcs \leftarrow Add \ arc \ (i, j) to fixed arcs if it is not already in fixed arcs
                  end
         end
end
```


2.6 Numerical results

We implemented Algorithms 2.1 - 2.2 in MATLAB (version 7.4.0.336) and used CPLEX (version 11.0.0) to solve all the linear programming sub-problems. The algorithm was tested on a range of small to medium size graphs. The results are encouraging. The number of branches required to solve each of these problems is only a tiny fraction of the number of deterministic policies. It is clear that non-Hamiltonian graphs require more branches to solve than Hamiltonian graphs of the same size. This is because in a Hamiltonian graph, as soon as a Hamiltonian cycle is found, the algorithm terminates. As there is no Hamiltonian cycle in a non-Hamiltonian graph, the algorithm only terminates after exhaustively searching the logical B&F tree.

A sample of results is seen in Tables 2.1 and 2.2, including a comparison between the number of branches examined and the maximum possible number of branches (deterministic policies), and the running time in seconds. The Dodecahedron, Petersen, and Coxeter graphs, and the Knight's Tour problem are well-known in the literature (see [35] p. 12 for the first two, p. 225 for the third, and [5] p. 241 for the last). The 24-node graph is a randomly chosen cubic 24-node graph. In the first column of Table 2.2, we refer to sets of cubic graphs with the prescribed number of nodes. In the second column of Table 2.2, we report the average number of branches examined by the branch and fix method with the average taken over all graphs in the corresponding class. We also report the minimum and maximum branches examined over the set of graphs, and the average running time taken to solve the graphs in the corresponding class. We consider all of the 10 node cubic graphs, of which there are 17 Hamiltonian and 2 non-Hamiltonian graphs, and all of the 12 node cubic graphs, of which there are 80 Hamiltonian and 5 non-Hamiltonian graphs. We randomly generate 50 cubic graphs of size N = 20, 30, 40 and 50. All of the randomly generated graphs are Hamiltonian. See [44] for a reference on generating cubic graphs. Every test is run with β set to 0.99, and μ set to $\frac{1}{N^2}$.

Note that with this basic implementation of B&F we were not able to obtain a

Upper bound Time (secs) Graph **Branches** Dodecahedron: Ham, N = 20, arcs = 60 3.4868×10^{9} 2.98 75 2.8243×10^{11} Ham, N = 24, arcs = 72 281.02 9.1654×10^{43} 8×8 Knight's Tour: Ham, N = 64, arcs = 336 failed > 12 hrs 5.9049×10^4 Petersen: non-Ham, N = 10, arcs = 30 530.99 2.2877×10^{13} Coxeter: non-Ham, N = 28, arcs = 84 11589593.40

Hamiltonian solution for the 8×8 Knight's Tour problem after twelve hours. In Section 2.8, however, we introduce new constraints that allow us solve this problem in little more than a minute.

Table 2.1: Preliminary results for the branch and fix method.

Type of graphs	Average	Minimum	Maximum	Average
	branches	branches	branches	time (secs)
Hamiltonian, $N = 10$	2.1	1	4	0.08
Hamiltonian, $N = 12$	3.4	1	10	0.14
Non-Hamiltonian, $N = 10$	32.5	12	53	0.61
Non-Hamiltonian, $N = 12$	25.6	11	80	0.53
50 graphs, $N = 20$	29.5	1	141	1.08
50 graphs, $N = 30$	216.5	3	1057	10.41
50 graphs, $N = 40$	2595.6	52	10536	160.09
50 graphs, N = 50	40316.7	324	232812	2171.46

Table 2.2: Performance of the branch and fix method over cubic graphs.

Example 2.6.1 We conclude this section with a detailed solution of the simple 6node envelope graph, shown in Figure 2.4, that is solved using the above implementation of B&F method, given in Section 2.5, with $\beta = 0.99$, $\mu = \frac{1}{36}$.

Figure 2.4: The envelope graph.

We start by solving the following feasibility problem:

$$\begin{aligned} x_{12} + x_{14} + x_{15} - \beta x_{21} - \beta x_{41} - \beta x_{51} &= 1 - 5\mu, \\ x_{21} + x_{23} + x_{26} - \beta x_{12} - \beta x_{32} - \beta x_{62} &= \mu, \\ x_{32} + x_{34} + x_{36} - \beta x_{23} - \beta x_{43} - \beta x_{63} &= \mu, \\ x_{41} + x_{43} + x_{45} - \beta x_{14} - \beta x_{34} - \beta x_{54} &= \mu, \\ x_{51} + x_{54} + x_{56} - \beta x_{15} - \beta x_{45} - \beta x_{65} &= \mu, \\ x_{62} + x_{63} + x_{65} - \beta x_{26} - \beta x_{36} - \beta x_{56} &= \mu, \\ x_{12} + x_{14} + x_{15} &= \frac{(1 - 5\mu)(1 - \beta) + \mu(\beta - \beta^6)}{(1 - \beta)(1 - \beta^6)}, \\ x_{ia} &\geq 0, \quad \text{for all } (i, a) \in \Gamma. \end{aligned}$$

The first iteration produces a 1-randomised policy where the randomisation occurs at node 4. The logical B&F tree then splits into three choices: to fix arc (4,1), (4,3) or (4,5). The algorithm first branches on fixing arc (4,1).

Figure 2.5: Branching on arc (4, 1).

As the algorithm uses a depth first search, the arcs (4,3) and (4,5) will not be fixed unless the algorithm fathoms the (4,1) branch without having found a Hamiltonian cycle. Note that fixing the arc (4,1) is equivalent to eliminating arcs (4,3) and (4,5)in the remainder of this branch of the logical B&F tree. In addition, arcs (1,4), (2,1)and (5,1) can also be eliminated because they cannot be present together with arc (4,1)in a Hamiltonian cycle. At the second iteration we solve two LPs. We first solve the Second LP, to check the feasibility of the graph remaining after the above round of fixing (and eliminating) of arcs:

 $\min x_{12} + x_{15}$

s.t.

$$\begin{aligned} x_{12} + x_{15} - \beta x_{41} &= 1 - 5\mu, \\ x_{23} + x_{26} - \beta x_{12} - \beta x_{32} - \beta x_{62} &= \mu, \\ x_{32} + x_{34} + x_{36} - \beta x_{23} - \beta x_{63} &= \mu, \\ x_{41} - \beta x_{34} - \beta x_{54} &= \mu, \\ x_{54} + x_{56} - \beta x_{15} - \beta x_{65} &= \mu, \\ x_{62} + x_{63} + x_{65} - \beta x_{26} - \beta x_{36} - \beta x_{56} &= \mu, \\ -\beta^{6} x_{12} - \beta^{6} x_{15} + \beta x_{41} &= \frac{\mu(\beta - \beta^{6})}{1 - \beta}, \\ x_{ia} \geq 0, \quad for \ all \ (i, a) \in \Gamma. \end{aligned}$$

Note that the last equality constraint above comes from (2.14) because the fixed arc (4,1) returns to the home node. The optimal objective function returned is equal to the right hand side of the omitted constraint (2.9), so we cannot fathom this branch, at this stage. Hence, we also solve the updated LP (2.11):

$$\begin{aligned} \min -\beta^{6} x_{12} - \beta^{6} x_{15} + \beta x_{41} \\ s.t. \\ x_{12} + x_{15} - \beta x_{41} &= 1 - 5\mu, \\ x_{23} + x_{26} - \beta x_{12} - \beta x_{32} - \beta x_{62} &= \mu, \\ x_{32} + x_{34} + x_{36} - \beta x_{23} - \beta x_{63} &= \mu, \\ x_{41} - \beta x_{34} - \beta x_{54} &= \mu, \\ x_{54} + x_{56} - \beta x_{15} - \beta x_{65} &= \mu, \\ x_{62} + x_{63} + x_{65} - \beta x_{26} - \beta x_{36} - \beta x_{56} &= \mu, \\ x_{12} + x_{15} &= \frac{(1 - 5\mu)(1 - \beta) + \mu(\beta - \beta^{6})}{(1 - \beta)(1 - \beta^{6})}, \\ x_{ia} \geq 0, \quad for all (i, a) \in \Gamma. \end{aligned}$$

The second iteration produces a 1-randomised policy where the randomisation occurs at node 3. The logical B&F tree then splits into three choices: to fix arc (3,2), (3,4)or (3,6). The algorithm first selects the arc (3,2) to continue the branch. The graph at this stage is shown in Figure 2.6.

Figure 2.6: Branching on arc (3, 2) after fixing arc (4, 1).

Examining remaining nodes with multiple (non-fixed) arcs and exploiting Checks 1-4 we immediately see that arcs (2,6) and (1,5) must be fixed by Check 4. Once these arcs are fixed, arcs (5,4) and (6,3) are also fixed by Check 4. At this stage, every node has a fixed arc but we have not obtained a Hamiltonian cycle, and hence we fathom the branch.

Travelling back up the tree, the algorithm next selects the arc (3,4) to branch on. The graph at this stage is shown in Figure 2.7.

Figure 2.7: Second branching on arc (3, 4).

Examining remaining nodes with multiple (non-fixed) arcs and exploiting Checks 1–4, we immediately see that arc (5,6) must be fixed by Check 3. Once this arc is fixed, arc (2,3) is also fixed by Check 3. Next, arc (6,2) is fixed by Check 4 and, finally, arc (1,5) is fixed by Check 3. At this stage, every node has a fixed arc. Since these fixed arcs correspond to the Hamiltonian cycle $1 \rightarrow 5 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$, the algorithm terminates. The Hamiltonian cycle is shown in Figure 2.8. The whole logical B&F tree is illustrated in Figure 2.9.

Note that, even in this simple example, in the worst case $3^6 = 729$ branches could

Figure 2.8: Hamiltonian cycle found by B&F method.

Figure 2.9: The logical B&F tree for the envelope graph.

have been generated. However, our algorithm was able to find a Hamiltonian cycle after examining only two.

2.7 Branching methods

One of the standard questions when using a branching algorithm is which method of branching to use. One of the major benefits of the branch and fix method is that the checks and the second LP (2.17) often allow us to fathom a branching point relatively early, so depth-first searching is used. However, the horizontal ordering of the branch tree is, by default, determined by nothing more than the initial ordering of the nodes. For a non-Hamiltonian graph, this ordering makes no difference as the breadth of the entire tree will need to be traversed to determine that no Hamiltonian cycles exist. However, for a Hamiltonian graph, it is possible that a relabelling of the graph would result in the branch and fix method finding a Hamiltonian cycle sooner.

While it seems impossible to predict, in advance, which relabelling of nodes will find a Hamiltonian cycle the quickest, it is possible that the structure of the 1-randomised policy found at each branching point can provide information about which branch should be traversed first. Each 1-randomised policy with splitting node *i* contains two non-zero values x_{ij} and x_{ik} , $j \neq k$. Without loss of generality, assume that $x_{ij} \leq x_{ik}$. We propose five branching methods:

- 1) Default branching (or node order): the branches are traversed in the order of the numerical labels of the nodes.
- 2) First branch on fixing (i, j), then (i, k) and then traverse the rest of the branches in node order.
- 3) First branch on fixing (i, k), then (i, j) and then traverse the rest of the branches in node order.
- All branches are traversed in node order other than those corresponding to fixing (i, j) or (i, k). The last two branches traversed are (i, j) and then (i, k).
- 5) First branch on fixing (i, k), then traverse the rest of the branches other than the branch corresponding to fixing (i, j) in node order, and finally branch on fixing (i, j).

We tested these five branching methods on the same sets of 50 randomly generated Hamiltonian cubic graphs as those generated for Table 2.2. In Table 2.3, we give the average number of branches examined by B&F for each branching method.

Branching	20 node	30 node	40 node	50 node
method	graphs	graphs	graphs	graphs
1	29.48	216.54	2595.58	40316.68
2	33.28	261.24	2227.24	43646.92
3	24.58	172.30	1624.50	17468.26
4	38.68	285.26	2834.44	53719.96
5	34.04	345.44	3228.44	76159.30

Table 2.3: Average number of branches examined by the five branching methods over sets of Hamiltonian cubic graphs.

From the results shown in Table 2.3 it appears that branching method 3 is the best performing method for cubic graphs. Note that the sets of cubic graphs were produced by GENREG [44] which uses a particular ordering strategy, which may account for the success of branching method 3.

2.8 Wedge constraints

Recall that constraints (2.8)–(2.10) that define $\bar{X}(\beta)$ depend upon parameters β and μ . While the use of β is necessary in the framework of a discounted MDP, the selection of μ as a small, positive parameter is used only to ensure that the mapping $\zeta_x(i, a) = x_{ia}/x_i$ (see (1.9)) is well-defined. Without setting $\mu > 0$, it is possible that x_i could be equal to 0. To illustrate this, recall constraint (2.8)

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta p(j|i,a) \right) x_{ia} = \eta_j, \quad j = 1, \dots, N,$$

where

$$\eta_j = \begin{cases} 1 - (N-1)\mu, & \text{if } i = 1, \\ \mu, & \text{otherwise.} \end{cases}$$

Rearranging constraint (2.8), we obtain

$$\sum_{a \in \mathcal{A}(j)} x_{ja} = \beta \sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} p(j|i,a) x_{ia} + \eta_j, \quad j = 1, \dots, N.$$

Since we cannot ensure that $\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} p(j|i, a) x_{ia} \neq 0$ for all j, we select $\mu > 0$ to ensure that $x_j = \sum_{a \in \mathcal{A}(j)} x_{ja} > 0$. However, an additional set of constraints, first published in [22], can achieve the same goal while allowing us to set $\mu = 0$ by constraining x_j away from 0. We call these constraints *wedge constraints*. The wedge constraints are comprised of the following two sets of inequalities:

$$\sum_{a \in \mathcal{A}(i)} x_{ia} \leq \frac{\beta}{1 - \beta^N}, \quad i = 2, \dots, N,$$
(2.18)

$$\sum_{a \in \mathcal{A}(i)} x_{ia} \geq \frac{\beta^{N-1}}{1-\beta^N}, \quad i = 2, \dots, N.$$
(2.19)

The rationale behind the wedge constraints is that, in the case when $\mu = 0$, we know from (2.12) that all Hamiltonian solutions to (2.8)–(2.10) take the form

$$x_{ia} = \begin{cases} \frac{\beta^k}{1-\beta^N}, & (i,a) \text{ is the } k\text{-th arc on the HC}, \\ 0, & \text{otherwise.} \end{cases}$$
(2.20)

In every Hamiltonian cycle h, exactly one arc emanates from each node. Let (i, h_i) be the arc emanating from node i in hs. Then,

$$\sum_{a \in \mathcal{A}(i)} x_{ia} = x_{ih_i}.$$
(2.21)

Recall that we define the home node of a graph as node 1. Then, the initial (0-th) arc in any Hamiltonian cycle is arc (1, a), for some $a \in \mathcal{A}(1)$, and therefore from (2.20) we obtain

$$\sum_{a \in \mathcal{A}(1)} x_{1a} = \frac{1}{1 - \beta^N}.$$

This constraint is already given in (2.9) if we set $\mu = 0$. For all other nodes, however, constraints of this type will partially capture a new property of Hamiltonian solutions that is expressed in (2.20). Substituting (2.21) into (2.20), for all nodes other than the home node, we obtain wedge constraints (2.18)–(2.19).

Recall that in a cubic graph, there are exactly three arcs, say (i, a), (i, b) and (i, c), from a given node i. Thus, in 3-dimensions, the corresponding constraints (2.18)– (2.19) have the shape indicated in Figure 2.10 that looks like a slice of a pyramid. The resulting wedge-like shaped inspires the name "wedge constraints".

Figure 2.10: Wedge constraints for a node in a cubic graph.

We can add wedge constraints (2.18)–(2.19) to the constraint set (2.8)–(2.10), setting $\mu = 0$ in the latter. However, adding wedge constraints destroys the 1-randomised structure of non-Hamiltonian solutions that exist for the extreme points of the feasible

region specified by (2.8)–(2.10), introducing many new extreme points to the feasible region. Since this is undesirable, we only use wedge constraints when solving the second LP (2.17), in an attempt to determine that a branch can be fathomed earlier than is the case without the wedge constraints.

The model incorporating the wedge constraints is

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta p(j|i,a) \right) x_{ia} = \delta_{1j}, \quad j = 1, \dots, N,$$
(2.22)

$$x_{ia} \geq 0, \quad (i,a) \in \Gamma, \tag{2.23}$$

$$\sum_{i \in \mathcal{A}(i)} x_{ia} \leq \frac{\beta}{1 - \beta^N}, \quad i = 2, \dots, N,$$
 (2.24)

$$\sum_{a \in \mathcal{A}(i)} x_{ia} \geq \frac{\beta^{N-1}}{1-\beta^N}, \quad i = 2, \dots, N,$$
 (2.25)

which replaces constraints (2.8) and (2.10) in the second LP (2.17). Everything else in the branch and fix method is identical to that described in Section 2.4.

We ran this model on the same selection of graphs as those in Section 2.6, to compare its performance to that of the original branch and fix method. There was a significant decrease in the number of branches examined, and consequently, also the running time of the model. A sample of results is seen in Tables 2.4 – 2.6, where we solve the same graphs as those in Tables 2.1 – 2.3. Every test is run with β set to 0.99, and μ set to $\frac{1}{N^2}$.

In Table 2.4, we compare the number of branches examined by B&F for five graphs to the maximum possible number of branches (deterministic policies), and show the running time in seconds.

In Table 2.5, we solve several sets of cubic graphs, and report the average number of branches examined by B&F over each set. We also report the minimum and maximum branches examined over each set, and the average running time. As in Table 2.2, we consider all of the 10 node cubic graphs, of which there are 17 Hamiltonian and 2 non-Hamiltonian graphs, and all of the 12 node cubic graphs, of which there are 80 Hamiltonian and 5 non-Hamiltonian graphs. For each of the sets of larger cubic graphs, we use the same graphs as were randomly generated for Table 2.2.

Graph	Branches	Upper bound	Time (secs)
Dodecahedron: Ham, $N = 20$, arcs = 60	43	3.4868×10^{9}	1.71
Ham, $N = 24$, arcs = 72	5	2.8243×10^{11}	0.39
8×8 Knight's Tour: Ham, $N = 64$, arcs $= 336$	220	9.1654×10^{43}	78.46
Petersen: non-Ham, $N = 10$, arcs $= 30$	53	5.9049×10^4	1.17
Coxeter: non-Ham, $N = 28$, arcs $= 84$	5126	2.2877×10^{13}	262.28

Table 2.4: Preliminary results for the branch and fix method with wedge constraints included.

Type of graphs	Average	Minimum	Maximum	Average
	branches	branches	branches	time (secs)
Hamiltonian, $N = 10$	2.1	1	4	0.09
Hamiltonian, $N = 12$	3.0	1	10	0.14
Non-Hamiltonian, $N = 10$	32.5	12	53	0.70
Non-Hamiltonian, $N = 12$	23.2	11	72	0.50
50 graphs, $N = 20$	14.6	1	75	0.65
50 graphs, $N = 30$	41.7	2	182	2.56
50 graphs, $N = 40$	209.2	7	1264	18.11
50 graphs, $N = 50$	584.4	8	2522	67.99

Table 2.5: Performance of the branch and fix method with wedge constraints included over cubic graphs.

In Table 2.6, we report the average number of branches examined by B&F for the same set of randomly cubic graphs shown in Table 2.5, for all five branching methods.

We note with interest that the model with wedge constraints included performs well when we select branching method 5, which was the worst performing branching method in the model without wedge constraints. Being that branching method 3 also performs well, it appears that branching first on arc (i, k) is an efficient strategy for graphs generated by GENREG when we include wedge constraints.

In [2], the first numerical procedure taking advantage of the MDP embedding was

Branching	20 node	30 node	40 node	50 node
\mathbf{method}	graphs	graphs	graphs	graphs
1	14.60	41.66	209.18	584.40
2	14.76	49.94	164.74	636.88
3	11.86	38	145.54	603.24
4	17.28	50.32	152.50	632.08
5	15.32	39.42	123.72	356.32

Table 2.6: Average number of branches examined by the five branching methods with wedge constraints included over sets of Hamiltonian cubic graphs.

used to solve graphs of similar sizes to those listed in Tables 2.4 and 2.5. The model given in [2] is solved using the MIP solver in CPLEX. The present model outperforms the model in [2] in terms of the number of branches examined in the cases displayed in Tables 2.4 and 2.5. In particular, the number of branches examined to solve each graph was much reduced in the branch and fix method when compared to similar sized graphs in [2]. In particular, to solve the 8×8 Knight's tour graph, between 2000 and 40000 branches were examined in the model given in [2] (depending on the selection of parameters in CPLEX), but only 220 were required in the branch and fix method with wedge constraints included. This significant improvement highlights first the progress made in this line of research over the last decade, and second the advantages obtained by the use of wedge constraints. We seek to take further advantage of the wedge constraints in a new mixed integer programming formulation, the Wedged-MIP heuristic, which we describe in the next section.

2.9 The Wedged-MIP heuristic

The discussion in the preceding section naturally leads us to consider the polytope $Y(\beta)$ defined by the following seven sets of linear constraints:

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta p(j|i,a) \right) y_{ia} = \delta_{1j} (1 - \beta^N), \quad j = 1, \dots, N,$$
(2.26)

$$\sum_{a \in \mathcal{A}(1)} y_{1a} = 1, \tag{2.27}$$

$$y_{ia} \geq 0, \quad (i,a) \in \Gamma, \tag{2.28}$$

$$\sum_{j \in \mathcal{A}(i)} y_{ij} \geq \beta^{N-1}, \quad i \geq 2,$$
(2.29)

$$\sum_{j \in \mathcal{A}(i)} y_{ij} \leq \beta, \quad i \geq 2, \tag{2.30}$$

$$y_{ij} + y_{ji} \leq 1, \quad (i,j) \in \Gamma, (j,k) \in \Gamma,$$
 (2.31)

$$y_{ij} + y_{jk} + y_{ki} \leq 2, \quad (i,j) \in \Gamma, (j,k) \in \Gamma, (k,i) \in \Gamma.$$
 (2.32)

Remark 2.9.1 (1) Note that the variables y_{ia} , which define $Y(\beta)$, are obtained from the variables x_{ia} that define $X(\beta)$ by the transformation

$$y_{ia} = (1 - \beta^N) x_{ia}, \quad (i, a) \in \Gamma.$$

(2) In view of (1), constraints (2.26)–(2.28) are merely constraints (2.8)–(2.10) normalised by the multiplier $(1 - \beta^N)$, and with $\mu = 0$. Furthermore, constraints (2.29)–(2.30) are similarly normalised wedge constraints.

(3) Note that normalising (2.20) in the same way implies that if $\mathbf{y} \in Y(\beta)$ corresponds to a Hamiltonian cycle, then

$$y_{ia} \in \{0, 1, \beta, \beta^2, \dots, \beta^{N-1}\}, \quad (i, a) \in \Gamma.$$

Thus, for β sufficiently near 1 all positive entries of a Hamiltonian solution \mathbf{y} are also either 1 (if i = 1), or close to 1. Therefore, if $\mathbf{y} \in Y(\beta)$ is any feasible point with only one positive entry y_{ia} for all $a \in \mathcal{A}(i)$, for each i, then constraints (2.29)–(2.30) ensure that all those positive entries have values near 1. Furthermore, constraints (2.31)–(2.32) ensure that at most one such large entry is permitted on any potential 2-cycle, and at most two such large entries are permitted on any potential 3-cycle.

(4) In view of (3), it is reasonable that we should be searching for a feasible point $\mathbf{y} \in Y(\beta)$ that has only a single positive entry y_{ia} for all $a \in \mathcal{A}(i)$ and for each i.

We make the last point of the above remark precise in the following proposition that is analogous to a result proved in [9] for an embedding of HCP in a long-run average MDP. Since it forms the theoretical basis of our most powerful heuristic, we supply a formal proof below.

Proposition 2.9.2 Given any graph Γ and its embedding in a discounted Markov decision process \mathcal{M} , consider the polytope $Y(\beta)$ defined by (2.26)-(2.32) for $\beta \in [0,1)$ and sufficiently near 1. The following statements are equivalent:

(1) The point $\hat{\mathbf{y}} \in Y(\beta)$ is Hamiltonian in the sense that the positive entries \hat{y}_{ia} of $\hat{\mathbf{y}}$ correspond to arcs (i, a) defining a Hamiltonian cycle in Γ .

(2) The point $\hat{\mathbf{y}} \in Y(\beta)$ is a global minimiser of the nonlinear program

$$\min \sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \sum_{b \in \mathcal{A}(i), b \neq a} y_{ia} y_{ib}$$
s.t.
$$\mathbf{y} \in Y(\beta),$$
(2.33)

which gives the objective function value of 0 in (2.33).

(3) The point $\hat{\mathbf{y}} \in Y(\beta)$ satisfies the additional set of nonlinear constraints

$$y_{ia}y_{ib} = 0, \quad i = 1, \dots, N, \quad a, b \in \mathcal{A}(i), \quad a \neq b,$$
 (2.34)

Proof. By the nonnegativity of $\hat{\mathbf{y}} \in Y(\beta)$ it immediately follows that part (2) and part (3) are equivalent.

From (2.20) and part (3) of Remark 2.9.1 we note that if $\hat{\mathbf{y}}$ is Hamiltonian, it implies part (3). Furthermore, if $\hat{\mathbf{y}}$ is a global minimiser of (2.33), constraints (2.29) ensure that it must have at least one positive entry corresponding to some arc $a \in \mathcal{A}(i)$ for each $i = 1, \ldots, N$. Since $\hat{y}_{ia}\hat{y}_{ib} = 0$ for all $a \neq b$, $i = 1, \ldots, N$, we conclude that $\hat{\mathbf{y}}$ has exactly one positive entry \hat{y}_{ia} , for each i. We then define $\hat{\mathbf{x}} \in X(\beta)$ by $\hat{x}_{ia} = \frac{1}{1-\beta^N}\hat{y}_{ia}$ for all $(i, a) \in \Gamma$, and use (2.20) to construct the policy $\hat{\zeta} = M^{-1}(\hat{\mathbf{x}})$. It is clear that $\hat{\zeta} \in \mathcal{D}$, and hence $\hat{\mathbf{x}}$ is Hamiltonian by part (iii) of Theorem 1.2.6. Since positive entries of $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ coincide, $\hat{\mathbf{y}}$ is also Hamiltonian, so part (3) implies part (1), completing the proof. **Corollary 2.9.3** If $Y(\beta) = \emptyset$, the empty set, then the graph Γ is non-Hamiltonian. If $Y(\beta) \neq \emptyset$, the set of Hamiltonian solutions $Y_H(\beta) \subset Y(\beta)$ is in one-to-one correspondence with Hamiltonian cycles of Γ , and satisfies

$$Y_H(\beta) := Y(\beta) \bigcap \{ \mathbf{y} \mid (2.34) \text{ holds} \}.$$

Proof. By construction, if Γ is Hamiltonian, then there exists a policy $\hat{\zeta} \in \mathcal{D}$ tracing out a Hamiltonian cycle in Γ . Let $\hat{\mathbf{x}} = M(\hat{\zeta})$ using (2.3) with $\eta = \mathbf{e}_1^T$, and define $\hat{\mathbf{y}} := (1 - \beta^N)\hat{\mathbf{x}}$. Clearly, $\hat{\mathbf{y}} \in Y(\beta)$, so $Y(\beta) \neq \emptyset$. From Proposition 2.9.2 it follows that $\hat{\mathbf{y}}$ satisfies (2.34). Conversely, only points in $Y_H(\beta)$ define Hamiltonian solutions in $Y(\beta)$.

For symmetric graphs, in which arc $(i, a) \in \Gamma$ if and only if arc $(a, i) \in \Gamma$, we further improve the wedge constraints (2.29)–(2.30) by considering the shortest path between the home node and each other node in the graph. We define $\ell(i, j)$ to be the length of the shortest path between nodes i and j in Γ .

Lemma 2.9.4 Any Hamiltonian solution to (2.26)–(2.28) satisfies the following constraints:

$$\sum_{a \in \mathcal{A}(i)} y_{ia} \leq \beta^{\ell(1,i)}, \quad i = 2, \dots, N$$

$$(2.35)$$

$$\sum_{a \in \mathcal{A}(i)} y_{ia} \geq \beta^{N-\ell(1,i)}, \quad i = 2, \dots, N.$$

$$(2.36)$$

Proof. From (2.20), and part (3) of Remark 2.9.1, we know that for a Hamiltonian cycle in which the k-th arc is the arc (i, a), the corresponding variable $y_{ia} = \beta^k$, and all other $y_{ib} = 0, b \neq a$. Therefore,

$$\sum_{a \in \mathcal{A}(i)} y_{ia} = \beta^k.$$
(2.37)

Then, since it takes at least $\ell(1, i)$ arcs to reach node *i* from the home node 1, we immediately obtain that $k \ge \ell(1, i)$, and therefore

$$\sum_{a \in \mathcal{A}(i)} y_{ia} \leq \beta^{\ell(1,i)},$$

which coincides with (2.35). Then, since Γ is an undirected graph, we know that $\ell(i, 1) = \ell(1, i)$. Therefore, we obtain that $k \leq N - \ell(1, i)$, and therefore

$$\sum_{a \in \mathcal{A}(i)} y_{ia} \geq \beta^{N-\ell(1,i)},$$

which coincides with (2.36).

Given the above, we reformulate HCP as a mixed integer programming feasibility problem, which we call the *Wedged-MIP heuristic*, as follows:

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta p(j|i,a) \right) y_{ia} = \delta_{1j} (1 - \beta^N), \quad j = 1, \dots, N,$$
(2.38)

$$\sum_{a \in \mathcal{A}(1)} y_{1a} = 1, \tag{2.39}$$

$$y_{ia} \geq 0, \quad (i,a) \in \Gamma, \tag{2.40}$$

$$\sum_{j \in \mathcal{A}(i)} y_{ij} \geq \beta^{N-\ell(1,i)}, \quad i \geq 2,$$
(2.41)

$$\sum_{j \in \mathcal{A}(i)} y_{ij} \leq \beta^{\ell(1,i)}, \quad i \geq 2,$$
(2.42)

$$y_{ij} + y_{ji} \leq 1, \quad (i,j) \in \Gamma, (j,i) \in \Gamma,$$

$$(2.43)$$

$$y_{ij} + y_{jk} + y_{ki} \leq 2, \quad (i,j) \in \Gamma, (j,k) \in \Gamma, (k,i) \in \Gamma, (2.44)$$

$$y_{ia}y_{ib} = 0, \quad i = 1, \dots, N, a, b \in \mathcal{A}(i), a \neq b.$$
 (2.45)

We solve the above formulation in IBM ILOG OPL-CPLEX 5.1. One of the benefits of the IBM ILOG OPL-CPLEX solver is that constraints (2.45) may be submitted in a format usually not acceptable in CPLEX and the IBM ILOG OPL-CPLEX CP Optimizer will interpret them in a way most suitable for CPLEX. We allow these constraints to be submitted in one of two different ways, left up to the user's choice. We define the operator == as follows,

$$(a == b) := \begin{cases} 1, & a = b, \\ 0, & a \neq b, \end{cases}$$

and the operator ! =as follows,

$$(a != b) := \begin{cases} 0, a = b, \\ 1, a \neq b, \end{cases}$$

and d_i as the number of arcs emanating from node *i*. Then, we submit constraints (2.45) to IBM ILOG OPL-CPLEX constraints in either one of the forms

$$\sum_{a \in \mathcal{A}(i)} (y_{ia} == 0) = d_i - 1, \quad i = 1, \dots, N,$$
(2.46)

or

$$\sum_{a \in \mathcal{A}(i)} (y_{ia} ! = 0) = 1, \quad i = 1, \dots, N.$$
(2.47)

Even though (2.46) and (2.47) are theoretically identical when added to (2.38)–(2.44), their interpretation by IBM ILOG OPL-CPLEX produces different solutions, with different running times. Neither choice solved graphs consistently faster than the other, so if one failed to find a solution quickly, the other was tried instead.

Using this model we are able to efficiently obtain Hamiltonian solutions for many large graphs, using a Pentium 3.4GHz with 4GB RAM.

Graph	Nodes	Arcs	Choice of β	Running time (hh:mm:ss)
8×8 Knight's tour	64	336	0.99999	00:00:02
Perturbed Horton	94	282	0.99999	00:00:02
12×12 Knight's tour	144	880	0.99999	00:00:03
250-node	250	1128	0.99999	00:00:16
20×20 Knight's tour	400	2736	0.99999	00:20:57
500-node	500	3046	0.99999	00:10:01
1000-node	1000	3996	0.999999	00:30:46
2000-node	2000	7992	0.999999	10:24:05

Table 2.7: Running times for Wedged-MIP heuristic.

Note that the perturbed Horton graph given here is a 94-node cubic graph that, unlike the original Horton graph (96-node cubic graph [55]), is Hamiltonian. The 250 and 500 node graphs are both non-regular graphs that were randomly generated for testing purposes, while the 1000 and 2000 node graphs come from the TSPLIB website, maintained by University of Heidelberg [49].

To conclude this section, we present a visual representation of a solution to the 250node graph found by the above method. In Figures 2.11, the nodes are drawn as blue dots clockwise in an ellipse, with node 1 at the top, and the arcs between the nodes are inside the ellipse. The arcs in the Hamiltonian cycle found by the Wedged-MIP heuristic are highlighted red, and all other arcs are shown in blue. While it is very difficult to make out much detail from Figure 2.11, it serves as a good illustration of the complexity involved in problems of this size. The adjacency lists for the 250node, 500-node, 1000-node and 2000-node graphs, as well as the solutions found by the Wedged-MIP heuristic for these four graphs, are given in Appendix A.6.

Figure 2.11: Solution to 250-node graph (Hamiltonian cycle in red).

2.10 Comparisons between Wedged-MIP heuristic and other TSP formulations

The Wedged-MIP heuristic is the best-performing method described in this thesis. Since we solve the Wedged-MIP heuristic in OPL-CPLEX, we investigate two other, well-known, MIP formulations, and also solve them in CPLEX for the same set of graphs as in Table 2.7, as well as three, randomly generated, cubic Hamiltonian graphs of sizes 12, 24 and 38, as a benchmark test. The two other formulations are the modified single commodity flow model [32] and the third stage dependent model [54]. These two formulations have been selected because they were the best performing methods of each type (commodity flow and stage dependent respectively) reported in [47].

Both the modified single commodity flow and the third stage dependent models were designed to solve the traveling salesman problem, and so they contain distances c_{ij} for each arc $(i, j) \in \Gamma$. Since we only want to solve HCP with these formulations, we set

$$c_{ij} := \begin{cases} 1, & (i,j) \in \Gamma, \\ 0, & (i,j) \notin \Gamma. \end{cases}$$

The modified single commodity flow model (MSCF) is formulated with decision variables x_{ij} and y_{ij} as follows:

$$\min \sum_{\substack{(i,j) \in \Gamma \\ \text{s.t.}}} c_{ij} x_{ij}$$
s.t.
$$\sum_{\substack{j \in \mathcal{A}(i) \\ i \in \mathcal{B}(j)}} x_{ij} = 1, \quad i = 1, \dots, N,$$

$$\sum_{\substack{i \in \mathcal{B}(j) \\ j \in \mathcal{A}(1)}} y_{1j} = N - 1,$$

$$\sum_{\substack{i \in \mathcal{B}(j) \\ i \in \mathcal{B}(j)}} y_{ij} - \sum_{\substack{k \in \mathcal{A}(j) \\ k \in \mathcal{A}(j)}} y_{jk} = 1, \quad j = 2, \dots, N,$$

$$y_{1j} \leq (N-1)x_{1j}, \quad j \in \mathcal{A}(1) \in \Gamma,$$

$$y_{ij} \leq (N-2)x_{ij}, \quad i = 2, \dots, N, \quad j \in \mathcal{A}(i),$$

$$x_{ij} \in \{0, 1\},$$

$$y_{ij} \geq 0.$$

The third stage dependent model (TSD) is formulated with decision variables x_{ij} and y_{ij}^t , t = 1, ..., N, as follows:

$$\begin{split} \min \sum_{\substack{(i,j) \in \Gamma \\ \text{s.t.}}} c_{ij} x_{ij} \\ \text{s.t.} \\ \sum_{\substack{j \in \mathcal{A}(i)}} x_{ij} = 1, \quad i = 1, \dots, N, \\ \sum_{\substack{i \in \mathcal{B}(j)}} x_{ij} = 1, \quad j = 1, \dots, N, \\ x_{ij} - \sum_{t=1}^{N} y_{ij}^t = 0, \quad (i,j) \in \Gamma, \\ \sum_{t=1}^{N} \sum_{\substack{j \in \mathcal{A}(i)}} y_{ij}^t = 1, \quad i = 1, \dots, N, \\ \sum_{t=1}^{N} \sum_{\substack{i \in \mathcal{B}(j)}} y_{ij}^t = 1, \quad j = 1, \dots, N, \\ \sum_{\substack{i \in \mathcal{B}(j)}} y_{ij}^t = 1, \quad t = 1, \dots, N, \\ \sum_{\substack{i \in \mathcal{B}(1)}} y_{ij}^1 = 1, \\ \sum_{\substack{i \in \mathcal{B}(i)}} y_{i1}^N = 1, \\ \sum_{\substack{i \in \mathcal{B}(i)}} y_{ij}^t - \sum_{\substack{k \in \mathcal{B}(i)}} y_{ki}^{t-1} = 0, \quad i = 1, \dots, N, \quad t = 2, \dots, N. \end{split}$$

We ran these two models on the same graphs as shown in Table 2.7, as well as three additional, randomly generated, cubic Hamiltonian graphs of sizes 12, 24 and 38. The running times, along with the Wedged-MIP heuristic running times, are shown in Table 2.8. For each graph tested other than the 1000-node graph and 2000-node graph, we ran MCSF and TSD for 24 hours, and if no solution had been obtained we
Graph	Nodes	Wedged-MIP heuristic	MCSF	TSD
12-node cubic	12	00:00:01	00:00:01	00:00:01
24-node cubic	24	00:00:01	00:00:01	00:00:02
38-node cubic	38	00:00:01	00:00:01	00:21:04
8×8 Knight's tour	64	00:00:02	00:00:01	> 24 hours
Perturbed Horton	94	00:00:02	00:03:04	> 24 hours
12×12 Knight's tour	144	00:00:03	00:01:12	> 24 hours
250-node	250	00:00:16	00:29:42	> 24 hours
20×20 Knight's tour	400	00:20:57	17:35:57	> 24 hours
500-node	500	00:10:01	> 24 hours	> 24 hours
1000-node	1000	00:30:46	> 1 week	> 1 week
2000-node	2000	10:24:05	> 1 week	> 1 week

terminated the execution. For the 1000-node and 2000-node graphs, we allowed 168 hours (1 week) before terminating.

Table 2.8: Running times (hh:mm:ss) for Wedged-MIP heuristic, MCSF and TSD.

Chapter 3

Interior Point Method

3.1 Interior point method

In this chapter we investigate an optimisation program that is shown in [14] to be equivalent to the HCP. We attempt to solve this program by using an *interior point method*. Specifically, we design each component of an interior point method that we call the *determinant interior point algorithm* (DIPA) in order to take advantage of the sparsity present in difficult graphs. This represents a significant saving in computation time and memory requirements. We also include additional techniques, such as rounding off variables that converge to their boundary values, that are not available in general implementations of interior point method models but are applicable to HCP. For further reading about techniques that can be used in numerical optimisation methods, see Gill et al. [33].

Interior point methods are now standard and described in detail in many books (e.g., see Nocedal and Wright [46] and den Hertog [11]). Hence, we outline only the basic steps that are essential to follow our adaptation of such a method to one particular formulation of HCP. We note that another version of HCP was tackled by interior point methods in [15] with encouraging preliminary results. However, our approach is entirely different. While the method in [15] operates in the space of occupational measures (see the discussions in Chapters 1 and 2) with a symmetric linear perturbation and a quadratic objective function, the method we describe in this chapter contains a simpler set of constraints, with a determinant objective function augmented with a sum of logarithmic barrier terms. The particular structure and features of this formulation provide motivation for designing a custom interior point method solver that behaves differently to standard interior point methods. In particular, while finding directions of negative curvature can speed up convergence in standard algorithms, in DIPA they become critical to finding a solution. We demonstrate in this chapter that descent directions found by Newton's method often give equal weighting to two arcs emanating from a single node, which prevents progress towards a Hamiltonian solution. Hence, we need directions of negative curvature to avoid this issue.

Computing this objective function value and its derivatives at each iteration of DIPA takes up the overwhelming majority of computation time. Therefore, we present a method of computing these values at a much improved rate in Sections 3.6 and 3.7. We also present numerical results to demonstrate the promise of DIPA.

3.1.1 Interior point method for a problem with inequality constraints

Consider a constrained optimisation problem of the form:

$$\min f(\mathbf{x})$$

s.t. (3.1)
$$h_i(\mathbf{x}) \ge 0, \quad i = 1, 2, \dots, m,$$

that has a solution $\mathbf{x}^* \in \mathbb{R}^n$. We assume that the feasible region Ω has a nonempty interior denoted by $\operatorname{Int}(\Omega)$. That is, there exists \mathbf{x} such that $h_i(\mathbf{x}) > 0$ for all $i = 1, 2, \ldots, m$. We also assume that $f(\mathbf{x})$ and $h_i(\mathbf{x})$, for $i = 1, 2, \ldots, m$, are continuous and possess derivatives up to order 2. This problem is often solved by use of an interior point method. One method of doing so is to consider a parametrised, auxilliary objective function of the form

$$F(\mathbf{x}) = f(\mathbf{x}) - \mu \sum_{i=1}^{m} \ln(h_i(\mathbf{x})), \text{ for some } \mu > 0, \qquad (3.2)$$

and an associated, essentially unconstrained, auxilliary optimisation problem

$$\min\{F(\mathbf{x})|\mathbf{x}\in\operatorname{Int}(\Omega)\}.$$
(3.3)

The auxiliary objective function $F(\mathbf{x})$ contains, for each of the inequality constraints, a logarithm term which ensures that $F(\mathbf{x}) \uparrow \infty$ as $h_i(\mathbf{x}) \downarrow 0$. This sum of logarithm terms ensures that any minimiser of $F(\mathbf{x})$ strictly satisfies the inequality constraints in (3.1) for $\mu > 0$ and sufficiently large. If we choose μ large enough that F(x) is strictly convex, then its unique global minimiser $\mathbf{x}^*(\mu)$ is well-defined. In well behaved cases, it is standard to expect that $\lim_{\mu \downarrow 0} \mathbf{x}^*(\mu)$ exists and constitutes a global minimum to (3.1). In our implementation, we select $\mu^{k+1} = 0.9\mu^k$. This is an arbitrary choice, but generally performs well. A different multiplier besides 0.9 could be used, or left as input parameter.

We define a sequence $\{\mu^k\}_{k=0}^{\infty}$ such that $\mu^k > 0$ for all k, and $\{\mu^k\} \to 0$. We associate with this sequence a set of auxiliary objective functions $F_k(\mathbf{x}) = f(\mathbf{x}) - \mu^k \sum_{i=1}^m \ln(h_i(\mathbf{x}))$, which has a sequence of minimisers $\{\mathbf{x}^k\}$. It is well known (e.g., see den Hertog [11] pp 49–65) that if $f(\mathbf{x})$ is convex and $h_i(\mathbf{x})$ are all concave, for $i = 1, 2, \ldots, m$, then $\mathbf{x}^k \to \mathbf{x}^*$. Note that while in our application $f(\mathbf{x})$ is non-convex, it is still reasonable to expect an interior point method such as the above to perform well as a heuristic.

An interior point method has two main iterations: the *inner iteration*, where the minimiser \mathbf{x}^k of a particular $F_k(\mathbf{x})$ is calculated (at least approximately), and the *outer iteration*, where the new barrier parameter μ^k is chosen and the new auxiliary objective function $F_k(\mathbf{x})$ is constructed.

The inner iteration can be performed using any optimisation solver, but a common

method is to calculate the gradient $\mathbf{g}(\mathbf{x})$ and Hessian $H(\mathbf{x})$ of $F(\mathbf{x})$, namely,

$$\mathbf{g}(\mathbf{x}) = \left\{ \frac{\partial F(\mathbf{x})}{\partial x_i} \right\}_{i=1}^{|\mathbf{x}|}, \qquad (3.4)$$

$$H(\mathbf{x}) = \left\{ \frac{\partial^2 F(\mathbf{x})}{\partial x_i \partial x_j} \right\}_{i,j=1}^{|\mathbf{x}|,|\mathbf{x}|}, \qquad (3.5)$$

and use a second-order approximation to find the Newton step $\mathbf{d} = -H^{-1}\mathbf{g}$. Then, if we have a current point \mathbf{x}^k , we find the next point \mathbf{x}^{k+1} :

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}, \tag{3.6}$$

where α is a step size selected to ensure that \mathbf{x}^{k+1} is feasible, and that the new objective function value $F(\mathbf{x}^{k+1}) < F(\mathbf{x}^k)$. One method of choosing α is to first compute α_0 , the maximum step size that can be taken while ensuring that \mathbf{x}^{k+1} does not violate the inequality constraints in (3.1). Then, we select $\alpha = 0.99\alpha_0$, and check if $F(\mathbf{x}^{k+1}) < F(\mathbf{x})$. If so, we take this step and the next iteration begins. If not, we halve the value of α and check again to see if the objective function has improved. If not, we continue halving α until it does.

If we choose μ^{k+1} in such a way that it is close the previous μ^k , the new solution \mathbf{x}^{k+1} may also be expected to be close to the previous solution \mathbf{x}^k . Since \mathbf{x}^k is used as the starting point for the (k + 1)-th inner iteration, its close proximity to \mathbf{x}^{k+1} may allow us to take advantage of the quadratic convergence of the Newton steps taken in (3.6).

3.1.2 Interior point method for a problem with linear equality constraints and inequality constraints.

Linear equality constraints can be added to (3.1) to form a new optimisation problem:

$$\min f(\mathbf{x})$$
s.t. (3.7)

$$h_i(\mathbf{x}) \ge 0,$$

 $W\mathbf{x} = \mathbf{b}.$

Once we have obtained an initial interior point satisfying the constraints in (3.7), it is possible to essentially convert the minimisation problem (3.7) to the minimisation problem (3.1) by working in the null space of the equality constraints $W\mathbf{x} = \mathbf{b}$.

We define $F(\mathbf{x})$ in the same way as (3.2). Then, we represent the null space of the linear equality constraints by a matrix Z such that WZ = 0, and the columns of Z are linearly independent. Then, given the current feasible point \mathbf{x}^k , we find a search direction **d** in the null space Z, by solving for **d** and $\overline{\mathbf{y}}$ the system

$$H(\mathbf{x}^k)\mathbf{d} = W^T \overline{\mathbf{y}} - \mathbf{g}(\mathbf{x}^k), \qquad (3.8)$$

$$W\mathbf{d} = \mathbf{0}, \tag{3.9}$$

where $\mathbf{g}(\mathbf{x})$ and $H(\mathbf{x})$ are the gradient and Hessian of $F(\mathbf{x})$ respectively, evaluated at \mathbf{x}^k . Solutions to (3.8)–(3.9) are of the form

$$\mathbf{d} = Z\mathbf{u}, \tag{3.10}$$

$$H(\mathbf{x}^k) Z \mathbf{u} = W^T \overline{\mathbf{y}} - \mathbf{g}(\mathbf{x}^k), \qquad (3.11)$$

for some **u**. Multiplying (3.11) by Z^T we obtain

$$Z^T H(\mathbf{x}^k) Z \mathbf{u} = -Z^T \mathbf{g}(\mathbf{x}^k).$$

We then observe that $\mathbf{u} = -(Z^T H(\mathbf{x}^k)Z)^{-1}Z^T \mathbf{g}(\mathbf{x}^k)$, and therefore

$$\mathbf{d} = -Z(Z^T H(\mathbf{x}^k)Z)^{-1}Z^T \mathbf{g}(\mathbf{x}^k).$$
(3.12)

By taking suitable sized steps in the direction \mathbf{d} , we ensure that no $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}$ violates the equality constraints as long as the initial \mathbf{x}^0 is chosen feasible.

In practice, it is very rare that **d** is calculated as above, as the calculation of $(Z^T H(\mathbf{x}^k)Z)^{-1}$ is expensive, and must be recalculated at each new point \mathbf{x}^k . Instead, **u** is found by solving the following linear equation system:

$$Z^{T}H(\mathbf{x}^{k})Z\mathbf{u} = -Z^{T}\mathbf{g}(\mathbf{x}^{k}).$$
(3.13)

We refer to $Z^T \mathbf{g}(\mathbf{x})$ and $Z^T H(\mathbf{x})Z$ as the reduced gradient and reduced Hessian, respectively. Now, we can quickly calculate $d = Z\mathbf{u}$. Any linear equation solver can be used to solve (3.13) but two common algorithms used are the *conjugate*gradient algorithm (CG) and a variation of CG, the Lanczos algorithm (see Nocedal and Wright [46] pp. 100–133 for an excellent introduction to CG). The conjugategradient algorithm is an efficient method when $Z^T H(\mathbf{x})Z$ is a large, symmetric, positive-definite matrix, which is the case if $F(\mathbf{x})$ is convex.

In the case where $F(\mathbf{x})$ is not convex, the Lanczos algorithm, which approximates eigenvectors of large, symmetric matrices, is used to find eigenvectors associated with negative eigenvalues of $Z^T H(\mathbf{x}) Z$. These eigenvectors are then used as directions of negative curvature.

If no descent direction is found and $Z^T H(\mathbf{x})Z$ is positive definite, then the interior point method has converged to a local minimum. For convex problems, this is a global minimum, but this is not the case in general.

As in the case with problems constrained only by inequality constraints, we have to select an α to ensure that $\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha \mathbf{d}$ remains feasible. We select α in the same way as described in Subsection 3.1.1.

3.2 Determinant interior point method for HCP

In this section, we describe the determinant interior point algorithm (DIPA) that solves HCP. To achieve this, we define decision variables x_{ij} , for each arc $(i, j) \in \Gamma$. Despite the double subscript, we choose to represent these variables in a decision vector \mathbf{x} , with each entry corresponding to an arc in Γ . For the complete 4-node graph (without self-loops), for example, the decision vector is

$$\mathbf{x} = \begin{bmatrix} x_{12} & x_{13} & x_{14} & x_{21} & x_{23} & x_{24} & x_{31} & x_{32} & x_{34} & x_{41} & x_{42} & x_{43} \end{bmatrix}^T.$$

We then define $P(\mathbf{x})$, the probability transition matrix that contains the decision

variables x_{ij} , in matrix format where the (i, j)-th entry $p_{ij}(\mathbf{x})$ is defined as

$$p_{ij}(\mathbf{x}) := \begin{cases} x_{ij}, & (i,j) \in \Gamma, \\ 0, & \text{otherwise.} \end{cases}$$
(3.14)

Recall that $\mathcal{A}(i)$ is the set of all nodes reachable in one step from node *i*, and $\mathcal{B}(i)$ is the set of all nodes that can reach node *i* in one step. We then define $\mathcal{DS}_{\mathbf{x}}$ to be the set of all **x** that satisfy the following constraints:

$$x_{ij} \geq 0, \quad (i,j) \in \Gamma, \tag{3.15}$$

$$\sum_{j \in \mathcal{A}(i)} x_{ij} = 1, \quad i = 1, \dots, N,$$
(3.16)

$$\sum_{i \in \mathcal{B}(j)} x_{ij} = 1, \quad j = 1, \dots, N.$$
(3.17)

We refer to constraints (3.15)–(3.17) as the *doubly-stochastic constraints*, which are used to ensure that both the row sums and column sums of $P(\mathbf{x})$ are 1, and that all entries of $P(\mathbf{x})$ are nonnegative. Next, we define the objective function,

$$f(\mathbf{x}) = -\det(I - P(\mathbf{x}) + \frac{1}{N}J), \qquad (3.18)$$

where J is an $N \times N$ matrix where every entry is unity. In [14], the authors prove the following theorem.

Theorem 3.2.1 The Hamiltonian cycle problem is equivalent to the optimisation problem

$$\min\{f(\mathbf{x})|\mathbf{x}\in\mathcal{DS}_{\mathbf{x}}\}.$$
(3.19)

If \mathbf{x}^* is the global solution to (3.19) and $f(\mathbf{x}^*) = -N$, then the solution \mathbf{x}^* corresponds to a Hamiltonian cycle in the graph Γ . Conversely, if $f(\mathbf{x}^*) > -N$, the graph is non-Hamiltonian.

The constraints (3.15) are the only inequality constraints we demand of $\mathbf{x} \in \mathcal{DS}_{\mathbf{x}}$, and so from (3.2), the auxiliary objective function is

$$F(\mathbf{x}) = -\det(I - P(\mathbf{x}) + \frac{1}{N}J) - \mu \sum_{(i,j)\in\Gamma} \ln(x_{ij}).$$
(3.20)

We take advantage of the special structure of our formulation (the $\mathcal{DS}_{\mathbf{x}}$ constraints and the determinant function) to develop a particular implementation of the interior point method. After obtaining an initial point and choosing initial parameters, at each iteration of DIPA we perform the following steps:

- (1) Calculate $F(\mathbf{x}^k)$, and its gradient $\mathbf{g}(\mathbf{x}^k)$ and Hessian $H(\mathbf{x}^k)$, at \mathbf{x}^k (Algorithm 3.4).
- (2) Calculate the reduced gradient $Z^T \mathbf{g}(\mathbf{x}^k)$ and reduced Hessian $Z^T H(\mathbf{x}^k) Z$ (Algorithm 3.5).
- (3) Find a direction vector **d** (using either conjugate-gradient or Lanczos) and a step size α to determine the new point $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}$ (Algorithms 3.6 3.8).
- (4) If any variables x_{ij} have converged very close to 0 or 1, fix them to these values and alter the values of the remaining variables slightly to retain feasibility (Algorithms 3.11 3.13).
- (5) We check if x^{k+1} corresponds to a Hamiltonian cycle after rounding the variables to 0 or 1. If so, we stop and return the Hamiltonian cycle. Otherwise, we repeat steps (1)–(5) again (Algorithm 3.15).

We perform each of these steps by use of several component algorithms described throughout Section 3.2. In Section 3.3 the main algorithm is given that calls the component algorithms.

3.2.1 Function evaluations and computing directions

We denote the constraint matrix that describes constraints (3.16)–(3.17) by \overline{W} , which has the following structure

$$\overline{W} = \left[\frac{W_1}{W_2}\right], \qquad (3.21)$$

where each column in W_1 and W_2 has exactly one non-zero entry, and the non-zero entry is 1.

We know that \overline{W} is always rank deficient by at least 1. An intuitive explanation for this is that once we have constrained all row sums of $P(\mathbf{x})$ to be 1, it follows that the sum of all the entries of $P(\mathbf{x})$ is N. Then, if we also constrain N-1 column sums of $P(\mathbf{x})$ to be 1, the remaining column sum is predetermined to be 1, and therefore the final column sum constraint is redundant.

We find a full rank constraint matrix W by removing the required number of linearly dependant rows from \overline{W} . In general, finding a full row-rank subset of constraints is a difficult operation which requires factoring the matrix. In the large majority of cases, however, the matrix is only rank deficient by 1, and so any row can be removed. Then, certain columns of W will contain only a single unit, whereas other columns will all contain two units. We now wish to find the null space Z of the full rank constraints matrix W.

To find Z, we first perform row and column permutations on W to find W^* that has following structure:

$$W^* = \left[L | B \right], \tag{3.22}$$

where L is a lower triangular matrix. In this structure, each column of B contains exactly two units, as every column that only contains one unit is inside L. Note that L may (and usually does) contain one or more columns that have two units.

Each column permutation we perform to obtain W^* is also performed on an index set \mathcal{I} , where the cardinality of \mathcal{I} is equal to columns(W), the number of columns in W. Initially, $\mathcal{I} = \begin{bmatrix} 1, \ldots, \text{ columns}(W) \end{bmatrix}$. Once we have performed these column permutations, \mathcal{I} maps the original ordering of the columns to the new ordering. We determine the $\begin{bmatrix} L & B \end{bmatrix}$ structure of W^* and the index set \mathcal{I} by applying the following algorithm.

```
Input: \overline{W}, N
Output: L, B, \mathcal{I}
begin
            \mathrm{count} \gets 0
            rows \leftarrow \operatorname{rank}(\overline{W})
            W \leftarrow \overline{W} with rows removed to make W full rank
            cols \leftarrow columns(W)
             r \leftarrow \text{rows} - count
            \mathcal{I} \leftarrow \{1, \ldots, \text{cols}\}
            while r > 0
                         C \leftarrow Identify \ a \ set \ of \ columns \ \{c_1, \ldots, c_k\} \ such \ that \sum_{j=1}^r w_{ic_j} = 1, \quad \forall j = 1, \ldots, k
                                       and w_{ic_i}w_{ic_k}=0, \quad \forall i=1,\ldots,r, \quad j\neq k
                         for i from 1 to k
                                       \operatorname{count} \leftarrow \operatorname{count} + 1
                                      \mathcal{I} \leftarrow \begin{bmatrix} \mathcal{I}_1 & \dots & \mathcal{I}_{count-1} & \mathcal{I}_i & \mathcal{I}_{count} & \dots \end{bmatrix} (Moving \, \mathcal{I}_i \text{ into position count})
                                       W \leftarrow W(\mathcal{I}) (Moving column c_i to column count)
                                       W \leftarrow reorder the rows to get a 1 in positive (r - i + 1, \text{count})
                         \mathbf{end}
                          r \leftarrow \text{rows} - count
            end
            \mathcal{I} \gets \textit{Reverse the order of the first rows entries in } \mathcal{I}
            W \leftarrow W(\mathcal{I}) (Reverse the order of the first rows columns in \overline{W})
             L \leftarrow W(1 : \text{rows}, 1 : \text{rows})
             B \leftarrow W(1 : \text{rows}, \text{rows}+1 : \text{cols})
end
```

Algorithm 3.1: Reordering W algorithm.

Remark 3.2.2 Note that in practice, the above algorithm returns L and B not as full matrices but in sparse form. For large graphs with few arcs adjacent to each node, this represents a significant saving of computational time and storage space. However, for simplicity of notation in subsequent algorithms, we treat L and B as whole matrices for the remainder of this section.

Example 3.2.3 Consider the complete 4-node graph, as shown in Figure 3.1.

Figure 3.1: The complete 4-node graph.

Then, \overline{W} has the following form:

In this example, \overline{W} is rank deficient by exactly 1, so we delete the first row to obtain

Now, we begin execution of Algorithm 3.1, with r = 7, rows = 7, cols = 12 and count = 0. Initially, $\mathcal{I} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Since the first three columns each contain only a single unit, each in different rows, we select $C = \{1, 2, 3\}$. These columns are already in the required positions, and so we do not need to move them. By swapping rows 5, 6 and 7 to become rows 7, 6 and 5 respectively, we complete the first iteration of the algorithm. At this stage, count = 3, r = 4, and \mathcal{I} is unchanged as we have performed no column permutations thus far. Now W has become W_2 :

Next, it can be seen that columns 5, 6, 8, 9, 11 and 12 of W_2 have a single unit in the first r = 4 rows. However, not all of these columns can be chosen as some pairs of columns (for example, columns 5 and 6) have their single unit in the same row. One possible selection of columns is $C = \{5, 8, 11\}$, which we choose. Performing row and column permutations, we move columns 5, 8 and 11 to columns 4, 5 and 6 respectively, and move rows 1, 2 and 3 to rows 4, 3 and 2 respectively. The second iteration of the algorithm is now complete. At this stage, count = 6, r = 1 and $\mathcal{I} = \{1, 2, 3, 5, 8, 11, 4, 6, 7, 9, 10, 12\}$. Now W_2 has become W_3 :

In the final stage of the algorithm, we see that columns 7, 9 and 11 contain a single unit in the first 1 row, and all three columns have their unit in that same row. We select $C = \{7\}$. No row or column permutations are required as the unit is already in the correct position. Therefore, the third iteration is now complete, with count $= 7, r = 0, and \mathcal{I}$ is unchanged from the previous stage as no additional column permutations were performed. The final stage is now complete and the while loop is exited. Finally, we reverse the order of the first 7 columns to obtain

and therefore, $\mathcal{I} = \{4, 11, 8, 5, 3, 2, 1, 6, 7, 9, 10, 12\}.$

We can now perform calculations with the null space matrix Z quickly by considering Z^* , the null space for W^* found above. In block-matrix form, the null space for W^* is $Z^* = \begin{bmatrix} -L^{-1}B \\ I \end{bmatrix}$, since $W^*Z^* = -LL^{-1}B + B = 0$. Note that Z^* is equivalent to Z, but with the rows permuted according to \mathcal{I} .

Then, we calculate the matrix multiplication ZM for any appropriately sized matrix M simply by calculating Z^*M and then reordering the rows using \mathcal{I} . First, we multiply Z^* by M to obtain

$$Z^*M = \left[\frac{-L^{-1}BM}{M}\right]. \tag{3.26}$$

We define $M_1 = L^{-1}BM$, and $\mathbf{m}_i := L^{-1}BM\mathbf{e}_i$. Then, we find M_1 by calculating each \mathbf{m}_i . We achieve the latter by solving the following linear system of equations, for each *i*, for which the left hand side is already in reduced row echelon form where all non-zeros entries are 1:

$$L\mathbf{m}_i = BM\mathbf{e}_i. \tag{3.27}$$

As B contains only units and zeros, we calculate BM simply and efficiently by adding the relevant rows of M. Finally, we reorder the rows of Z^*M to find ZM such that row $\mathcal{I}(j)$ of ZM is row j of Z^*M .

We outline this process in the following algorithm.

```
Input: L, B, \mathcal{I}, M
Output: ZM
begin
            BM \gets \operatorname{zeros}(\operatorname{rows}(\mathbf{B}), \operatorname{cols}(\mathbf{M}))
            for i from 1 to rows(B)
                        for j from 1 to cols(B)
                                    \mathbf{if}\ B(i,j)=1
                                                for k from 1 to cols(B)
                                                             BM(i,k) \leftarrow BM(i,k) + M(j,k)
                                                \mathbf{end}
                                    \mathbf{end}
                        \mathbf{end}
            \mathbf{end}
            for i from 1 to cols(M)
                        M_1(1: \text{rows}(B), i) \leftarrow \text{Linear solver}(L, BM(:, i))
            \mathbf{end}
           Z^*M \leftarrow \left[\begin{array}{c} -M_1 \\ M \end{array}\right]
            ZM(\mathcal{I},:) \leftarrow Z^*M (rearranging Z^*M)
\mathbf{end}
```

Algorithm 3.2: Algorithm for sparse multiplication ZM.

Example 3.2.4 Consider the following matrix M, which is arbitrarily chosen for this example:

$$M = \begin{bmatrix} 1 & -2 & 0 & 3 \\ 4 & -6 & 1 & 2 \\ -2 & 3 & 0 & 4 \\ 1 & 0 & 0 & 3 \\ -1 & 8 & 2 & 5 \end{bmatrix},$$
 (3.28)

with Z defined as the null space of W in the previous example (see (3.24)). Then, Z^*M has the following form

$$Z^*M = \begin{bmatrix} -M_1 \\ \dots \\ M \end{bmatrix}.$$
(3.29)

In order to calculate M_1 , we must first calculate BM. Recall from (3.25) that

$$B = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$
 (3.30)

Then, we calculate the rows in BM by simply adding the relevant rows of M corresponding to units in each row of B. For instance, we calculate the first row of BM by adding the 2nd and 4th rows of M.

$$BM = \begin{bmatrix} 5 & -6 & 1 & 5 \\ 0 & 8 & 2 & 8 \\ 2 & -3 & 1 & 6 \\ 1 & -2 & 0 & 3 \\ -1 & 1 & 0 & 7 \\ -1 & 8 & 2 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

We then find \mathbf{m}_1 , \mathbf{m}_2 , \mathbf{m}_3 and \mathbf{m}_4 by solving

$$L\mathbf{m}_{1} = \begin{bmatrix} 5 & 0 & 2 & 1 & -1 & -1 & 0 \end{bmatrix}^{T},$$
(3.31)

$$L\mathbf{m}_{2} = \begin{bmatrix} -6 & 8 & -3 & -2 & 1 & 8 & 0 \end{bmatrix}^{T}, \qquad (3.32)$$

$$L\mathbf{m}_{3} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 2 & 0 \end{bmatrix}^{T}, \qquad (3.33)$$
$$L\mathbf{m}_{2} = \begin{bmatrix} 5 & 0 & 0 & 2 & 0 & 0 \end{bmatrix}^{T} \qquad (2.24)$$

$$L\mathbf{m}_{4} = \begin{bmatrix} 5 & 8 & 6 & 3 & 7 & 5 & 0 \end{bmatrix}^{T}.$$
(3.34)

Recall from (3.25) that

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence we solve the four systems (3.31)-(3.34) recursively to obtain

$$\mathbf{m}_{1} = \begin{bmatrix} 5 & 0 & 2 & -4 & -1 & 3 & -2 \end{bmatrix}_{T}^{T},$$
(3.35)

$$\mathbf{m}_{2} = \begin{bmatrix} -6 & 8 & -3 & 4 & 1 & 4 & -5 \end{bmatrix} , \qquad (3.36)$$

$$\mathbf{m}_{3} = \begin{bmatrix} 1 & 2 & 1 & -1 & 0 & 3 & -3 \end{bmatrix}^{T},$$
(3.37)

$$\mathbf{m}_4 = \begin{bmatrix} 5 & 8 & 6 & -2 & 7 & 7 & -14 \end{bmatrix}^T.$$
(3.38)

Substituting (3.35)–(3.38) and (3.28) into (3.29) we obtain Z^*M

$$Z^*M = \begin{bmatrix} -5 & 6 & -1 & -5 \\ 0 & -8 & -2 & -8 \\ -2 & 3 & -1 & -6 \\ 4 & -4 & 1 & 2 \\ 1 & -1 & 0 & -7 \\ -3 & -4 & -3 & -7 \\ 2 & 5 & 3 & 14 \\ 1 & -2 & 0 & 3 \\ 4 & -6 & 1 & 2 \\ -2 & 3 & 0 & 4 \\ 1 & 0 & 0 & 3 \\ -1 & 8 & 2 & 5 \end{bmatrix}.$$

Finally, using $\mathcal{I} = \{4, 11, 8, 5, 3, 2, 1, 6, 7, 9, 10, 12\}$ from Example 3.2.3, we reorder the rows of Z^*M to obtain

$$ZM = \begin{bmatrix} 2 & 5 & 3 & 14 \\ -3 & -4 & -3 & -7 \\ 1 & -1 & 0 & -7 \\ -5 & 6 & -1 & -5 \\ 4 & -4 & 1 & 2 \\ 1 & -2 & 0 & 3 \\ 4 & -6 & 1 & 2 \\ -2 & 3 & -1 & -6 \\ -2 & 3 & 0 & 4 \\ 1 & 0 & 0 & 3 \\ 0 & -8 & -2 & -8 \\ -1 & 8 & 2 & 5 \end{bmatrix}$$

In many situations (for example, when calculating the reduced gradient $Z^T \mathbf{g}$), we require multiplication by Z^T , rather than by Z. Consider the multiplication $Z^T M$. To perform this multiplication, we derive a separate method. Recall that $Z^* = \begin{bmatrix} -L^{-1}B \\ I \end{bmatrix}$. Then,

$$(Z^*)^T = \left[-B^T (L^{-1})^T \,|\, I \right]. \tag{3.39}$$

Note that, unlike the case of left multiplication by Z^* , the rows of $(Z^*)^T$ are in the correct (original) order, and therefore it is not necessary to reorder the rows of the matrix that we obtain after multiplication by $(Z^*)^T$. However, the columns of $(Z^*)^T$ are in a different order from their original order. To compensate, we reorder the rows of M to match the column order of $(Z^*)^T$. That is, we find

$$M^* = M(\mathcal{I}, :),$$
 (3.40)

which means that the *j*-th row of M^* is equal to the $\mathcal{I}(j)$ -th row of M.

Next, we calculate $Z^T M = (Z^*)^T M^*$. To perform this calculation we represent M^* in block form:

$$M^* = \left[\frac{M_1^*}{M_2^*}\right], \qquad (3.41)$$

where M_1^* has as many rows as L. Then, we derive the form of $(Z^*)^T M^*$:

$$(Z^*)^T M^* = -B^T (L^{-1})^T M_1^* + M_2^*.$$
(3.42)

To calculate $-B^T (L^{-1})^T M_1^*$, we first define $Y = (L^{-1})^T M_1^*$ and $\mathbf{y}_i := (L^{-1})^T M_1^* \mathbf{e}_i$. Then, we calculate each \mathbf{y}_i by solving the sparse system of equations

$$L^T \mathbf{y}_i = M_1^* \mathbf{e}_i, \tag{3.43}$$

for which the left side again is in reduced row echelon form, and all non-zero entries are 1.

After obtaining Y, we find $-B^T Y$ by simply summing the relevant rows of Y (corresponding to the units in each column of B), to calculate each row of $-B^T Y$. This can be substituted into (3.42) to find $(Z^*)^T M^*$.

We outline this process in the following algorithm.

```
Input: L, B, \mathcal{I}, M
Output: Z^T M
begin
            M^* \leftarrow M(\mathcal{I},:)
            M_1^* \leftarrow M^*(1:\operatorname{rows}(L),:)
            M_2^* \leftarrow M^*(\operatorname{rows}(L) + 1 : \operatorname{rows}(M^*), :)
            Y \leftarrow \operatorname{zeros}(\operatorname{rows}(L), \operatorname{cols}(M))
            for i from 1 to cols(M)
                        Y(1: \operatorname{rows}(B), i) \leftarrow \operatorname{Linear solver}(L^T, M_1^* \mathbf{e}_i)
            \mathbf{end}
            B^TY \gets \operatorname{zeros}(\operatorname{cols}(B), \operatorname{cols}(M))
            for i from 1 to cols(B)
                        for j from 1 to rows(B)
                                    if B(j, i) = 1
                                                 for k from 1 to cols(M)
                                                              B^T Y(i,k) \leftarrow B^T Y(i,k) + Y(j,k)
                                                 end
                                    end
                        end
            \mathbf{end}
            Z^T M = -B^T Y + M_2^*
end
```

Algorithm 3.3: Algorithm for sparse multiplication $Z^T M$.

In each iteration of DIPA we evaluate the augmented objective function $F(\mathbf{x})$ at least once (and sometimes several times), as well as its gradient vector and Hessian matrix. Recall from (3.20) that for the HCP formulation (3.19), when solving via DIPA, we use the auxiliary objective function

$$F(\mathbf{x}) = -\det(I - P(\mathbf{x}) + \frac{1}{N}J) - \mu \sum_{(i,j)\in\Gamma} \ln(x_{ij}).$$
(3.44)

The gradient vector and Hessian matrix for the barrier terms $\mathcal{L}(\mathbf{x}) = -\sum_{(i,j)\in\Gamma} \ln(x_{ij})$ are easy to calculate. However, the determinant function and its derivatives are expensive to calculate directly. In Sections 3.6 and 3.7, we develop an improved method of computing the determinant function and its derivatives. This method takes advantage of the amount of sparsity inherent in the HCP. However, for the sake of completeness of this section, the algorithm outlined in Section 3.7 that evaluates $F(\mathbf{x})$ and its derivatives is given here. Note that this algorithm uses a number of expressions that are defined or derived later in this chapter.

```
Input: \mathbf{x}, \Gamma, \mu
Output: f^1, \mathbf{g}^1, H^1
begin
               P \leftarrow Transform \mathbf{x} into matrix form, putting each x_{ij} into the appropriate entry of P(\mathbf{x})
              (L, U) \leftarrow LU Decomposition(I - P)
              \hat{L} \leftarrow \mathbf{L} with the bottom row replaced by e_N^T
               \hat{U} \leftarrow \mathbf{U} with the right column replaced by e_N
               for i from 1 to N
                            a_i^1 \leftarrow \text{LP solver}(\hat{U}^T, \mathbf{e}_i)
                             b_i^1 \leftarrow \text{LP solver}(\hat{L}, \mathbf{e}_i)
              end
              for i from 1 to N
                             for j from 1 to N
                                           C(i,j) \leftarrow (a_i^1)^T b_i
                             \mathbf{end}
              end
             end

f^{1} \leftarrow \prod_{i=1}^{N-1} u_{ii}
\mathbf{g}^{1} \leftarrow Calculate \ each \ g_{ij}^{1} = f^{1}C(i,j)
H^{1} \leftarrow Calculate \ each \ H^{1}_{[ij],[k\ell]} = \begin{cases} g_{kj}^{1}(\mathbf{a}_{i}^{1})^{T}\mathbf{b}_{\ell}^{1} - g_{ij}^{1}(\mathbf{a}_{k}^{1})^{T}\mathbf{b}_{\ell}^{1}, & i \neq k \text{ and } j \neq \ell, \\ 0, & \text{otherwise.} \end{cases}
              f^1 \leftarrow Subtract \ the \ barrier \ terms \ \mu \sum_{(i,j) \in \Gamma} \ln(x_{ij}) \ from \ f
              \mathbf{g}^1 \leftarrow Subtract \ the \ vector \ containing \ terms \ of \ the \ form \ rac{\mu}{x_{ij}} \ from \ \mathbf{g}^1
              H^1 \leftarrow Add the diagonal matrix containing terms of the form \frac{\mu}{x_{ij}^2} to H^1
end
```

Algorithm 3.4: Function evaluations algorithm.

At each iteration of DIPA we compute a direction $\mathbf{d} := Z\mathbf{u}$, and $\mathbf{u} = -(Z^T H Z)^{-1} Z^T \mathbf{g}$ (see (3.12)). Since we repose the latter as $Z^T H Z \mathbf{u} = -Z^T \mathbf{g}$, we first calculate the reduced gradient $Z^T \mathbf{g}$ and the reduced Hessian $Z^T H Z$ at each iteration. Using the results of Algorithms 3.4 – 3.3, these are efficiently calculated using the following algorithm. Algorithm 3.5: Reduced gradient and Hessian algorithm.

Now, we calculate \mathbf{d} by solving the system of equations

$$Z^T H Z \mathbf{u} = -Z^T \mathbf{g}, \tag{3.45}$$

and mapping the resulting solution $\mathbf{u} = -(Z^T H Z)^{-1} Z^T \mathbf{g}$ into the null space:

$$\mathbf{d} = Z\mathbf{u}. \tag{3.46}$$

We solve the system of equations (3.45) in our implementation by using either the conjugate-gradient (CG) method, or the Lanczos method. The CG method is an efficient method for large, symmetric, positive definite matrices. In our implementation the reduced Hessian $Z^T H(\mathbf{x})Z$ is a symmetric matrix but is not necessarily positive definite, since our original $f(\mathbf{x})$ is not convex. However, for large enough μ , $F(\mathbf{x})$ is convex and we calculate the direction vector \mathbf{d} using the following algorithm.

```
Input: L, B, \mathcal{I}, \mathbf{g}, H
Output: d
begin
(reduced gradient, reduced Hessian) \leftarrow Algorithm 3.5 : Reduced gradient and Hessian algorithm(L, B, \mathcal{I}, \mathbf{g}, H)
\mathbf{u} \leftarrow Conjugate-gradient algorithm(reduced Hessian,-reduced gradient)
\mathbf{d} \leftarrow Algorithm 3.2: Algorithm for sparse multiplication ZM(L, B, \mathcal{I}, \mathbf{u})
end
```

Algorithm 3.6: Descent direction algorithm.

If $Z^T H(\mathbf{x})Z$ is indefinite, then a direction of negative curvature exists. We can find this direction of negative curvature by using the Lanczos method to approximate the eigenvectors $\mathbf{v_n}$ corresponding to negative eigenvalues λ_n of $Z^T H Z$. Then, we construct a direction of negative curvature by setting

$$\mathbf{u}_{nc} = \sum_{n} \mathbf{v}_{n},$$

and mapping **u** into the null space of W to obtain a feasible direction of negative curvature as follows:

$$\mathbf{d}_{nc} = Z \mathbf{u}_{nc}.\tag{3.47}$$

It is worth noting that a direction of negative curvature is not necessarily a descent direction. However, if this is the case we simply travel in the direction $-\mathbf{d}_{nc}$ instead. We calculate (3.47) using the following algorithm.

```
      Input: L, B, \mathcal{I}, g, H

      Output: \mathbf{d}_{nc}

      begin

      (reduced gradient, reduced Hessian) \leftarrow Algorithm 3.5: Reduced gradient and Hessian algorithm(L, B, \mathcal{I}, g, H)

      \mathbf{u}_{nc} \leftarrow Lanczos method(reduced Hessian,-reduced gradient)

      \mathbf{d}_{nc} \leftarrow Algorithm 3.2: Algorithm for sparse multiplication ZM(L, B, \mathcal{I}, \mathbf{u}_{nc})

      if \mathbf{d}_{nc} is not a descent direction

      \mathbf{d}_{nc} \leftarrow -\mathbf{d}_{nc}

      end
```

Algorithm 3.7: Negative curvature algorithm.

Using either the descent direction **d** (specified by (3.46)) or the direction of negative curvature \mathbf{d}_{nc} (specified by (3.47)), or $-\mathbf{d}_{nc}$, we now take a step that improves the objective function locally. We perform a line search to determine how large a step can be taken that improves the objective function. First, a maximum step size α_0 is calculated such that $\mathbf{x} + \alpha_0 \mathbf{d}$ does not violate the nonnegativity constraints (3.15). Then, the following algorithm is executed.

Input : $\mathbf{x}, \Gamma, \mu, \alpha_0, \mathbf{d}$, evaluations
Output : α , evaluations
begin
$lpha \leftarrow 0.99 lpha_0$ (To ensure we move to an interior point)
$F_{old} \leftarrow \text{Algorithm 3.4: Function evaluation algorithm}(\mathbf{x}, \Gamma, \mu)$
$F_{new} \leftarrow \text{Algorithm 3.4: Function evaluation algorithm}(\mathbf{x} + \alpha \mathbf{d}, \Gamma, \mu)$
while $F_{new} \ge F_{old}$
evaluations \leftarrow evaluations + 1
$\alpha = \frac{lpha}{2}$
$F_{new} \leftarrow \text{Algorithm 3.4: Function evaluation algorithm}(\mathbf{x} + \alpha \mathbf{d}, \Gamma, \mu)$
end
end

Algorithm 3.8: Step size algorithm.

Of course, halving α in the above algorithm is a somewhat arbitrary choice, but it is widely used in such step selection heuristics.

If both $\mathbf{d} = \mathbf{0}$ and $Z^T H Z$ is positive definite, and a Hamiltonian cycle has not been found, then DIPA has converged to a local minimum. In this case, DIPA has failed to find a Hamiltonian cycle, but as we cannot be certain that none exists, we return an inconclusive result.

3.2.2 Initial selections and contracting graphs

In the initial stage of the algorithm, we only consider the barrier terms $\mathcal{L}(\mathbf{x}) = -\sum_{(i,j)\in\Gamma} \ln(x_{ij})$ in the objective function, ignoring $f(\mathbf{x})$ until we minimise $\mathcal{L}(\mathbf{x})$. This is a convex function, so we can easily find the global minimum $\mathbf{x}_{\mathcal{L}}^*$, which is the analytic centre of a polytope defined by the set of constraints (3.15)–(3.17). This process is outlined in the following algorithm.

```
Input: L, B, \mathcal{I}, \mathbf{x}
Output: \mathbf{x}_{\mathcal{L}}^*
begin
             for i from 1 to N
                           for j from 1 to N
                                        if (i, j) \in \Gamma
                                                     g_{ij} \leftarrow -\frac{1}{x_{ij}}H_{ij,ij} \leftarrow \frac{1}{x_{ij}^2}
                                        \mathbf{end}
                           \mathbf{end}
             end
             reduced gradient \leftarrow Algorithm 3.3: Algorithm for sparse multiplication Z^T M(L, B, \mathcal{I}, \mathbf{g})
             while norm(reduced gradient) > \varepsilon
                          \mathbf{d} \leftarrow \text{Algorithm 3.6: Descent direction algorithm}(L, B, \mathcal{I}, \mathbf{g}, H)
                          \mathbf{x} \leftarrow \mathbf{x} + \mathbf{d}
                           for i from 1 to N
                                        for j from 1 to N
                                                     if (i, j) \in \Gamma
                                                                  g_{ij} \leftarrow -\frac{1}{x_{ij}}H_{ij,ij} \leftarrow \frac{1}{x_{ij}^2}
                                                     end
                                        end
                          end
                           reduced gradient \leftarrow Algorithm 3.3: Algorithm for sparse multiplication Z^T M(L, B, \mathcal{I}, \mathbf{g})
             \mathbf{end}
             \mathbf{x}^*_{\mathcal{L}} \leftarrow \mathbf{x}
end
```

Algorithm 3.9: Barrier point algorithm.

Remark 3.2.5 Experimentally, we have observed that if $[x_{\mathcal{L}}^*]_{ia} = [x_{\mathcal{L}}^*]_{ib}$, for $a \neq b$, (for example, this is true for all arcs (i, a) and (i, b) for regular graphs), then it is common that descent directions maintain this equality for some arcs. In this case, we say that these descent directions have failed to break the tie between arcs (i, a) and (i, b). There may be several ties needing to be broken in a graph. In our experiments we have found that directions of negative curvature break these ties. For this reason, directions of negative curvature become critical in DIPA, and we seek to take advantage of them as soon as possible. This is achieved by choosing the value of the barrier parameter μ small enough that negative curvature either exists, or will exist after only a small number of iterations. We define $H_D(\mathbf{x})$ as the Hessian of $f(\mathbf{x})$. Then, we consider the eigenvalues and eigenvectors of $Z^T H_D(\mathbf{x}_{\mathcal{L}}^*) Z$, the reduced Hessian of $f(\mathbf{x})$ evaluated at $\mathbf{x}_{\mathcal{L}}^*$. Let λ_{min} be the most negative of these eigenvalues and \mathbf{v}_{min} be an eigenvector associated with λ_{min} . Then, $\mathbf{u}_{min} = Z \mathbf{v}_{min}$ is a direction of negative curvature for $f(\mathbf{x})$ at $\mathbf{x} = \mathbf{x}_{\mathcal{L}}^*$.

Since this negative curvature will be nonzero, then for small enough μ , \mathbf{u}_{min} will also be a direction of negative curvature in the augmented function $F(\mathbf{x})$. Defining $H_{\mathcal{L}}(\mathbf{x})$ to be the Hessian of the barrier terms $\mathcal{L}(\mathbf{x})$, we find μ by solving

$$\lambda_{\min} + \mu \mathbf{u}_{\min}^T H_{\mathcal{L}}(\mathbf{x}_{\mathcal{L}}^*) \mathbf{u}_{\min} = \gamma \lambda_{\min}, \qquad (3.48)$$

where the parameter γ allows us to control how much negative curvature we desire. The solution of this equation is

$$\mu = \frac{(1-\gamma)(-\lambda_{min})}{\mathbf{u}_{min}^T H_{\mathcal{L}}(\mathbf{x}_{\mathcal{L}}^*) \mathbf{u}_{min}}.$$
(3.49)

Note that $H_{\mathcal{L}}(x)$ is a diagonal matrix where each diagonal entry is of the form x_{ij}^{-2} . Then,

$$\mathbf{u}_{min}^{T} H_{\mathcal{L}}(\mathbf{x}_{\mathcal{L}}^{*}) \mathbf{u}_{min} = \sum_{(i,j)\in\Gamma} \left(\frac{[u_{min}]_{ij}}{[x_{\mathcal{L}}^{*}]_{ij}} \right)^{2}.$$

Note also that this expression is clearly positive and hence $\mu > 0$.

The convexity of $\mathcal{L}(\mathbf{x})$ implies that we cannot achieve more negative curvature in $F(\mathbf{x})$ than is present in $f(\mathbf{x})$. We also cannot achieve the same level unless $\mu := 0$. For this reason, we select γ less than 1. However, it is possible for γ to be negative, which produces positive curvature in $F(\mathbf{x})$. Experimentally we have observed that starting with a small amount of positive curvature is often desirable (so that we can take advantage of descent directions for a small number of iterations before switching to directions of negative curvature) so a small, negative value of γ is often chosen. Once we calculate μ , we begin the main outer iteration with the prescribed amount of positive or negative curvature present. We outline this process in the following algorithm.

```
Input: L, B, \mathcal{I}, \mathbf{x}_{\mathcal{L}}^*, \Gamma, \gamma
Output: \mu
begin
             \mu_{\boldsymbol{0}} \leftarrow \textit{Vector the same size as } \mathbf{x}_{\mathcal{L}}^{*} \textit{ with } \mathbf{0} \textit{ in every position}
             (F, \mathbf{g}, H) \leftarrow \text{Algorithm 3.4: Function evaluations algorithm}(\mathbf{x}_{\mathcal{C}}^*, \Gamma, \mu_{\mathbf{0}})
              (reduced gradient, reduced Hessian) \leftarrow Algorithm 3.5: Reduced gradient and Hessian algorithm(L, B, \mathcal{I}, \mathbf{g}, H)
              (\lambda_{min}, u_{min}) \leftarrow \text{Eigenvalues}(\text{reduced Hessian})
              \mu value \leftarrow 0
              for i from 1 to N
                           for j from 1 to N
                                        if (i, j) \in \Gamma)
                                                     \mu value \leftarrow \mu value + \left(\frac{[u_{min}]_{ij}}{[x_{\mathcal{L}}^*]_{ij}}\right)^2
                                        end
                           end
              end
             \mu value \leftarrow (\mu \text{ value})(1 - \gamma)(-\lambda_{min})
              \mu \leftarrow Vector \ the \ same \ size \ as \ \mathbf{x}^*_{\mathcal{L}} \ with \ \mu \ value \ in \ every \ position
end
```


If at any stage, some of the x_{ij} variables approach their extremal values (0 or 1), we fix these values and remove the variables from the program. This process takes two forms: *deletion* and *deflation*, that is, setting x_{ij} to 0 and 1, respectively.

Remark 3.2.6 Note that we use the term deflation because in practice the process of fixing $x_{ij} := 1$ results in two nodes being combined to become a single node, reducing the total number of nodes in the graph by 1.

Deletion is the process of removing one arc from the graph, when the variable corresponding to that arc has a near-zero value. By default, we define 0.02 as being near-zero, but this can be altered or set as an input parameter. We set such a variable to 0, and remove that arc from the graph. Deletion is a simple process which we outline in the following algorithm.

```
Input: \mathbf{x}, \Gamma, \mu, i, j

Output: \mathbf{x}, \Gamma, \mu

begin

index \leftarrow Identify which element of \mathbf{x} corresponds to arc (i, j)

\mathbf{x} \leftarrow Delete element index from \mathbf{x}

\mu \leftarrow Delete element index from \mu

\Gamma(i, j) \leftarrow 0

end
```

Algorithm 3.11: Deletion algorithm.

Deflation is the process of removing one node from the graph, by combining two nodes together. If a variable x_{ij} is close to 1, we combine nodes *i* and *j* by removing node *i* from the graph. Then, we redirect any arcs (k, i) that previously went into node *i* to become (k, j), unless this creates a self-loop arc. By default, we define 0.9 as being close to 1, but this can be altered or set as an input parameter.

During deflation, we not only fix one variable (x_{ij}) to have the value 1, but also fix several other variables to have the value 0. Namely, we fix all variables corresponding to arcs (i, k) for $k \neq j$, (k, j) for $k \neq i$, and (j, i) to have the value 0, for all k.

Consequently, we say that the deflation of node i has forced the deletion of the above arcs. We outline this process in the following algorithm.

```
Input: \mathbf{x}, \Gamma, \mu, N, i, j, deflations
Output: \mathbf{x}, \Gamma, \mu, N, deflations
begin
            (\mathbf{x}, \Gamma, \mu) \leftarrow \text{Algorithm 3.11: Deletion algorithm}(\mathbf{x}, \Gamma, \mu, i, j)
            for k from 1 to N
                       if \Gamma(i,k) = 1
                                    if k \neq j
                                                (\mathbf{x}, \Gamma, \mu) \leftarrow \text{Algorithm 3.11: Deletion algorithm}(\mathbf{x}, \mu, \Gamma, i, k)
                                    end
                        \mathbf{end}
                       if \Gamma(k, j) = 1
                                    if k \neq i
                                                (\mathbf{x}, \Gamma, \mu) \leftarrow \text{Algorithm 3.11: Deletion algorithm}(\mathbf{x}, \Gamma, \mu, k, j)
                                    end
                        \mathbf{end}
            end
            if (i, j) \in \Gamma
                        (\mathbf{x}, \Gamma, \mu) \leftarrow \text{Algorithm 3.11: Deletion algorithm}(\mathbf{x}, \Gamma, \mu, j, i)
            end
            N \leftarrow N - 1
            \Gamma \gets delete \ node \ i \ from \ \Gamma
            deflations \leftarrow deflations + 1
            Store the information about the deflated arc in memory
end
```

Algorithm 3.12: Deflation algorithm.

Note that whenever we perform a deflation, we store the information about the deflated arc in memory. This is done so we can reconstruct the original graph once a Hamiltonian cycle is found.

Whenever deletion or deflation is performed, the values of some variables change, and the resultant, smaller dimensional, \mathbf{x} no longer satisfies equality constraints (3.16)– (3.17). Define $\mathbf{s} := \mathbf{e} - \overline{W}\mathbf{x}$ to be the error introduced by Algorithms 3.11 – 3.12. Note that \mathbf{s} is a nonnegative vector in the case of both deletion and deflation. Then, we find a new \mathbf{x}' such that $\mathbf{x}' \in \mathcal{DS}_{\mathbf{x}}$, and $|\mathbf{x}' - \mathbf{x}| < \varepsilon$, where the size of ε depends on how close to 0 or 1 we require a variable to become before we undertake deletion or deflation. The interpretation of \mathbf{x}' is that it is a point that satisfies constraints (3.15)–(3.17) that is as close as possible to the point we obtained after deleting or deflating. We calculate such a vector \mathbf{x}' by solving a linear program in decision variables (\mathbf{x}, γ) , where γ is a scalar variable. First, we define x_{min} as the smallest value in \mathbf{x} , not including variables corresponding to arcs that have been deleted. Then, we solve

$$\min_{\mathbf{x}',\gamma} \gamma \tag{3.50}$$
s.t.

$$\overline{W}\mathbf{x}' + \gamma \mathbf{s} = \mathbf{e}, \tag{3.51}$$

$$\mathbf{x}' \ge \frac{x_{\min}}{2}\mathbf{e},\tag{3.52}$$

$$\gamma \ge 0, \tag{3.53}$$

which gives $\mathbf{x}' \in \mathcal{DS}_{\mathbf{x}}$ when γ is minimised to 0. Of course, many $\mathbf{x}' \in \mathcal{DS}_{\mathbf{x}}$ satisfy the above constraints. However, if we use the Simplex algorithm to solve the LP and provide the previous \mathbf{x} as the starting point, a nearby feasible point is usually found. We include the lower bound (3.52) on the values of \mathbf{x}' because, otherwise, the Simplex algorithm attempts to set many variables to 0, which is undesirable as we wish to remain interior. It is possible that for a particular graph, we may not be able to find a point that satisfies the above constraints, because some variables may need to be 0 or a value very close to 0. In these cases, the LP terminates with a positive objective function value. Then, we relax the lower bound on \mathbf{x} and solve the LP again, continuing this process until we obtain a solution where $\gamma = 0$.

If we cannot minimise γ to 0 without setting $x_{ij} = 0$ for some *i* and *j*, then we delete the arcs corresponding to these variables, as they cannot be present in a Hamiltonian cycle (or any $\mathcal{DS}_{\mathbf{x}}$ point) containing the currently fixed arcs.

We outline this method in the following algorithm.

```
Input: \mathbf{x}, \Gamma, \mu, W
Output: \mathbf{x}, \Gamma, \mu
begin
              x_{min} \leftarrow \min(\mathbf{x})
              \mathbf{s} \leftarrow \mathbf{e} - W\mathbf{x}
              \gamma \leftarrow 1
              \mathrm{count} \gets 0
              while \gamma > 0 and count < 10
                            \mathrm{count} \gets \mathrm{count} + 1
                            (\mathbf{x}, \gamma) \leftarrow \textit{Solve the LP (3.50)-(3.53) with (3.52) replaced by } \mathbf{x} \geq \frac{x_{min}}{\text{count} + 1} \mathbf{e}
              \mathbf{end}
              if \gamma > 0
                            (\mathbf{x}, \gamma) \leftarrow Solve the LP (3.50)–(3.53) with (3.52) replaced by \mathbf{x} \geq 0
                            if any x_{ij} = 0
                                          (\mathbf{x}, \Gamma, \mu) \leftarrow \text{Algorithm 3.11: Deletion algorithm}(\mathbf{x}, \Gamma, \mu, i, j)
                            end
              \mathbf{end}
end
```

Algorithm 3.13: Scaling algorithm.

To start executing Algorithm 3.9, we first require a feasible, interior point \mathbf{x}_0 that satisfies constraints (3.15)–(3.17). If Γ is a *k*-regular graph, that is, there are exactly k arcs incident to every node, then we can easily construct an initial point by defining $\mathbf{x}_0 := \begin{bmatrix} \frac{1}{k} & \dots & \frac{1}{k} \end{bmatrix}^T$.

However, for irregular graphs, an initial starting point is more difficult to calculate. To obtain \mathbf{x}_0 in these cases, we first define an obviously infeasible point, $\mathbf{x}_{-1} := \begin{bmatrix} \frac{1}{d} & \dots & \frac{1}{d} \end{bmatrix}^T$, for some *d* larger than the maximum degree of any node in the graph. In our implementation, we define d := maximum degree +1. We then use Algorithm 3.13 to find a nearby $\mathcal{DS}_{\mathbf{x}}$ point to use as \mathbf{x}_0 . We outline this method in the following algorithm.

```
Input: \Gamma, \overline{W}

Output: \mathbf{x}_0, \Gamma

begin

d \leftarrow Find the maximum degree of \Gamma

\mathbf{x}_{-1} \leftarrow \left[ \begin{array}{cc} \frac{1}{d+1} & \dots & \frac{1}{d+1} \end{array} \right]^T

\mu_0 \leftarrow Vector the same size as <math>\mathbf{x}_{-1} with N in every position

(\mathbf{x}_0, \Gamma, \mu) \leftarrow \text{Algorithm 3.13: Scaling algorithm}(\mathbf{x}_{-1}, \mu_0, \Gamma, \overline{W})

end
```

Algorithm 3.14: Initial point algorithm.

Note that Γ is output from Algorithm 3.14, because it is possible that no $\mathcal{DS}_{\mathbf{x}}$ points exists where all $x_{ij} > 0$. In these cases, some arcs are deleted from the original graph Γ .

We have no guarantee that the initial point \mathbf{x}_0 obtained from Algorithm 3.14 will be near the centroid of the $\mathcal{DS}_{\mathbf{x}}$ polytope. However, this does not adversely effect the result of DIPA, as the first step is to minimise the barrier term $\mathcal{L}(\mathbf{x})$. Since the barrier terms are convex, any interior point will be a sufficient starting point to find the barrier point $\mathbf{x}_{\mathcal{L}}^*$. By virtue of the $\mathcal{L}(\mathbf{x})$ objective function, $\mathbf{x}_{\mathcal{L}}^*$ is typically far away from the boundaries of $\mathcal{DS}_{\mathbf{x}}$.

At each iteration, we temporarily round the values of all variables to either 0 or 1 to see if they correspond to a Hamiltonian solution. If so, the algorithm ends and we return the Hamiltonian cycle. Note that if any deflations have been performed during the algorithm, the Hamiltonian cycle we return will be for the deflated graph. If this has happened, the information about the deflated arcs is recalled and we rebuild the original graph so that a Hamiltonian cycle in the original graph can be obtained.

The benefit of rounding at each iteration is that DIPA needs only obtain \mathbf{x}^* in the neighbourhood of a Hamiltonian solution. Without rounding, we would require DIPA to converge to an extreme point of $\mathcal{DS}_{\mathbf{x}}$, where $F(\mathbf{x})$ is undefined.

We outline one simple method of rounding in the following algorithm.

```
Input: \mathbf{x}, \Gamma, N
Output: HC
begin
          for count = 1 to N
                     (i, j) \leftarrow Find the largest x_{ij} not already fixed to 1 or 0
                     x_{ij} \leftarrow 1
                     x_{ji} \leftarrow 0
                     for k = 1 to N
                                if k \neq i
                                           x_{kj} \leftarrow 0
                                \mathbf{end}
                                \mathbf{if}\; k\neq j
                                           x_{ik} \leftarrow 0
                                \mathbf{end}
                      \mathbf{end}
          \mathbf{end}
          if the resulting matrix is a HC
                     return the HC
          else
                     return no HC found
          \mathbf{end}
end
```

Algorithm 3.15: Rounding algorithm.

Obviously, we could use other, more sophisticated, rounding methods which may allow us to identify a Hamiltonian cycle earlier. One potential improvement of this method would be to solve a heuristic at the completion of each iteration, using the current point \mathbf{x} , that tries to find a nearby Hamiltonian cycle. Combining an algorithm with a heuristic solved at each iteration was considered in [22], with promising results.

3.3 Algorithm that implements DIPA

We now present the main determinant interior point algorithm, that uses all the previous component algorithms.

```
Input: \Gamma, \gamma
Output: HC, deflations, iterations, evaluations
begin
            (deflations, iterations, evaluations) \leftarrow 0
            N \leftarrow Number \ of \ nodes \ in \ \Gamma
           \overline{W} \leftarrow Constraints (3.16) - (3.17)
            (L, B, \mathcal{I}) \leftarrow \text{Algorithm 3.1: Reordering } W \text{ algorithm}(\overline{W}, N)
            (\mathbf{x}, \Gamma) \leftarrow \text{Algorithm 3.14: Initial point algorithm}(\Gamma, \overline{W})
           \mathbf{x} \leftarrow \text{Algorithm 3.9: Barrier point algorithm}(L, B, \mathcal{I}, \mathbf{x})
           \mu \leftarrow \text{Algorithm 3.10: Initial } \mu \text{ algorithm}(L, B, \mathcal{I}, \mathbf{x}, \Gamma, \gamma)
            while a HC has not been found and \mathbf{x} has not converged
                       deflations \leftarrow deflations + 1
                       (f, \mathbf{g}, H) \leftarrow \text{Algorithm 3.4: Function evaluations algorithm}(\mathbf{x}, \Gamma, \mu)
                       if negative curvature exists
                                   \mathbf{d}_{nc} \leftarrow \text{Algorithm 3.7: Negative curvature algorithm}(L, B, \mathcal{I}, \mathbf{g}, H)
                       else
                                   \mathbf{d} \leftarrow \text{Algorithm 3.6: Descent direction algorithm}(L, B, \mathcal{I}, \mathbf{g}, H)
                       end
                       \alpha_0 \leftarrow Maximum value such that \mathbf{x} + \alpha_0 \mathbf{d} is a nonnegative vector
                       (\alpha, \text{evaluations}) \leftarrow \text{Algorithm 3.8: Step size algorithm}(\mathbf{x}, \Gamma, \mu, \alpha_0, \mathbf{d}, \text{evaluations})
                       x \leftarrow x + \alpha d
                       if any x_{ij} > 0.9
                                   (\mathbf{x}, \Gamma, \mu, N, \text{deflations}) \leftarrow \text{Algorithm 3.12: Deflation algorithm}(\mathbf{x}, \Gamma, \mu, N, i, j, \text{deflations})
                       end
                       if any x_{ij} < 0.02
                                   (\mathbf{x}, \Gamma, \mu) \leftarrow \text{Algorithm 3.11: Deletion algorithm}(\mathbf{x}, \Gamma, \mu, i, j)
                       \mathbf{end}
                       if any Deflations or Deletions were performed
                                   (\mathbf{x}, \mu, \Gamma) \leftarrow \text{Algorithm 3.13: Scaling algorithm}(\mathbf{x}, \Gamma, \mu, \overline{W})
                       end
                       HC \leftarrow Algorithm 3.15: Rounding algorithm(\mathbf{x}, \Gamma, \mu) to see if a HC has been found.
                       if \mathbf{x} has converged, but a HC has not been found
                                   \mu \leftarrow 0.9\mu
                       \mathbf{end}
                                          end
           if a HC was found
                       Rebuild the original graph if necessary
                       return the HC in the original graph
            else
                       return no HC found
            end
end
```

Algorithm 3.16: DIPA.

We implemented Algorithm 3.16: DIPA in MATLAB and tested several sets of

Hamiltonian graphs. The results of these tests are outlined in Table 3.1. Each test set contains 50 randomly generated Hamiltonian graphs of a certain size where each node has degree between 3 and 5. For each test set, we give the number of graphs (out of the 50 generated) in which Algorithm 3.16: DIPA succeeds in finding a Hamiltonian cycle, the average number of iterations performed, the average number of deflations performed, the average number of function evaluations required during Algorithm 3.8 over the course of execution, and the average running time for each graph. Note that since we implemented DIPA in MATLAB, the running times are not competitive when compared to other similar models implemented in compiled language. However, we provide the running times here to demonstrate how they grow as N increases.

Graph size	Number	Average	Average	Average	Average		
	solved	iterations	deflations	evaluations	run time (secs)		
N = 20	48	20.42	9.5	20.76	1.55		
N = 40	40	86.98	27.8	87.08	12.05		
N = 60	30	198.72	42.62	201.32	54.77		
N = 80	33	372.76	65.04	372.84	196.26		

Table 3.1: Results obtained from solving sets of graphs with DIPA.

Example 3.3.1 We ran Algorithm 3.16: DIPA on a 14-node cubic graph, specifically the graph with the following adjacency matrix:

		_													_
		0	1	1	1	0	0	0	0	0	0	0	0	0	0
	=	1	0	1	1	0	0	0	0	0	0	0	0	0	0
		1	1	0	0	1	0	0	0	0	0	0	0	0	0
		1	1	0	0	0	1	0	0	0	0	0	0	0	0
		0	0	1	0	0	0	1	1	0	0	0	0	0	0
		0	0	0	1	0	0	0	0	1	1	0	0	0	0
۸		0	0	0	0	1	0	0	0	1	0	1	0	0	0
F \$14		0	0	0	0	1	0	0	0	0	0	1	1	0	0
		0	0	0	0	0	1	1	0	0	0	0	0	1	0
		0	0	0	0	0	1	0	0	0	0	0	1	1	0
		0	0	0	0	0	0	1	1	0	0	0	0	0	1
		0	0	0	0	0	0	0	1	0	1	0	0	0	1
		0	0	0	0	0	0	0	0	1	1	0	0	0	1
		0	0	0	0	0	0	0	0	0	0	1	1	1	0
		_													

A Hamiltonian cycle was found by DIPA after 8 iterations. The probability assigned to each arc is displayed in the following plots.

88

з,

Final Hamiltonian cycle

Note that at iteration 1, $P(\mathbf{x})$ assigned equal probabilities to all 42 arcs, but at iteration 8, one arc from each node contains the large majority of the probability. The rounding process at the completion of iteration 8 assigns these arcs to a Hamiltonian cycle $1 \rightarrow 4 \rightarrow 6 \rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 13 \rightarrow 9 \rightarrow 7 \rightarrow 11 \rightarrow 8 \rightarrow 5 \rightarrow 3 \rightarrow 2 \rightarrow 1$.

Example 3.3.2 We ran Algorithm 3.16: DIPA on a 16-node cubic graph, specifically the graph with the following adjacency matrix

		0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
		1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
		1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
		0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0
		0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
•		0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0
		0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0
AL16	=	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0
		0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
		0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
		0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
		0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
		0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
		0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0
		0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0 _

A Hamiltonian cycle was found by DIPA after nine iterations. The probability assigned to each arc is displayed in the following table over all nine iterations. To make the convergence of the variables easier to see, when a variable has converged to either 0 or 1 we drop the decimal places, and boldface the integer.
After 9 iterations, Algorithm 3.15 found the Hamiltonian cycle

$$1 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 10 \rightarrow 12 \rightarrow 15 \rightarrow 13 \rightarrow 16 \rightarrow 14 \rightarrow 11 \rightarrow 9 \rightarrow 8 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 1.$$

Arc	Iter 1	Iter 2	Iter 3	Iter 4	Iter 5	Iter 6	Iter 7	Iter 8	Iter 9	нс
1 - 2	0.3333	0.2750	0.2210	0.1550	0.0250	0	0	0	0	0
1 - 3	0.3333	0.0720	0.0420	0.0310	0.0250	0	0	0	0	0
1 - 4	0.3333	0.6530	0.7370	0.8140	0.9500	1	1	1	1	1
2 - 1	0.3333	0.3400	0.3600	0.4060	0.5330	0.6660	0.7900	0.8250	0.8860	1
2 - 3	0.3333	0.2340	0.1830	0.1140	0.0110	0	0	0	0	0
2 - 5	0.3333	0.4250	0.4570	0.4800	0.4550	0.3340	0.2100	0.1750	0.1140	0
3 - 1	0.3333	0.4360	0.4360	0.4130	0.3130	0.3340	0.2100	0.1750	0.1140	0
3-2	0.3333	0.4510	0.5100	0.5810	0.6820	0.6660	0.7900	0.8250	0.8860	1
3-6	0.3333	0.1130	0.0540	0.0070	0.0050	0	0	0	0	0
4 - 1	0.3333	0.2230	0.2040	0.1810	0.1540	0	0	0	0	0
4-5	0.3333	0.3470	0.3720	0.4040	0.5310	0.6660	0.7900	0.8250	0.8860	1
4 - 7	0.3333	0.4300	0.4240	0.4140	0.3160	0.3340	0.2100	0.1750	0.1140	0
5-2	0.3333	0.2740	0.2700	0.2640	0.2930	0.3340	0.2100	0.1750	0.1140	0
5 - 4	0.3333	0.2990	0.2320	0.1580	0.0260	0	0	0	0	0
5 - 7	0.3333	0.4270	0.4990	0.5780	0.6810	0.6660	0.7900	0.8250	0.8860	1
6 - 3	0.3333	0.6940	0.7750	0.8550	0.9640	1	1	1	1	1
6 - 8	0.3333	0.2370	0.2180	0.1400	0.0320	0	0	0	0	0
6 - 9	0.3333	0.0690	0.0070	0.0060	0.0040	0	0	0	0	0
7 - 4	0.3333	0.0480	0.0310	0.0280	0.0230	0	0	0	0	0
7 - 5	0.3333	0.2270	0.1710	0.1160	0.0140	0	0	0	0	0
7 - 10	0.3333	0.7250	0.7980	0.8560	0.9630	1	1	1	1	1
8 - 6	0.3333	0.4280	0.4800	0.5600	0.7360	0.8140	0.9770	1	1	1
8 - 9	0.3333	0.3290	0.3300	0.3040	0.2310	0.1860	0.0230	0	0	0
8 - 10	0.3333	0.2420	0.1900	0.1360	0.0340	0	0	0	0	0
9 - 6	0.3333	0.4590	0.4660	0.4340	0.2600	0.1860	0.0230	0	0	0
9 - 8	0.3333	0.5080	0.5230	0.5580	0.7370	0.8140	0.9770	1	1	1
9 - 11	0.3333	0.0330	0.0120	0.0080	0.0040	0	0	0	0	0
10 - 7	0.3333	0.1430	0.0770	0.0080	0.0040	0	0	0	0	0
10 - 8	0.3333	0.2560	0.2600	0.3020	0.2310	0.1860	0.0230	0	0	0
10 - 12	0.3333	0.6010	0.6630	0.6900	0.7650	0.8140	0.9770	1	1	1
11 - 9	0.3333	0.6010	0.6630	0.6900	0.7650	0.8140	0.9770	1	1	1
11 - 13	0.3333	0.2650	0.2520	0.2420	0.2090	0.1660	0.0170	0	0	0
11 - 14	0.3333	0.1340	0.0850	0.0680	0.0260	0.0200	0.0060	0	0	0
12 - 10	0.3333	0.0330	0.0120	0.0080	0.0040	0	0	0	0	0
12 - 15	0.3333	0.4100	0.4090	0.4010	0.3090	0.3000	0.3830	0.4570	0.5860	1
12 - 16	0.3333	0.5570	0.5790	0.5910	0.6870	0.7000	0.6170	0.5430	0.4140	0
13 - 11	0.3333	0.4760	0.4830	0.4770	0.4470	0.4510	0.4550	0.4370	0.4060	0
13 - 15	0.3333	0.2960	0.2960	0.2980	0.3030	0.2960	0.1990	0.1100	0.0110	0
13 - 16	0.3333	0.2280	0.2220	0.2250	0.2510	0.2520	0.3460	0.4530	0.5830	1
14 - 11	0.3333	0.4900	0.5060	0.5150	0.5490	0.5490	0.5450	0.5630	0.5940	1
14 - 15	0.3333	0.2940	0.2950	0.3010	0.3880	0.4040	0.4170	0.4330	0.4030	0
14 - 16	0.3333	0.2150	0.1990	0.1840	0.0620	0.0480	0.0380	0.0040	0.0030	0
15 - 12	0.3333	0.2070	0.1800	0.1750	0.1990	0.1820	0.0200	0	0	0
15 - 13	0.3333	0.3670	0.3740	0.3810	0.4390	0.4700	0.6150	0.7310	0.8360	1
15 - 14	0.3333	0.4260	0.4460	0.4440	0.3620	0.3480	0.3650	0.2690	0.1640	0
16 - 12	0.3333	0.1920	0.1560	0.1350	0.0360	0.0040	0.0030	0	0	0
16 - 13	0.3333	0.3680	0.3740	0.3770	0.3530	0.3640	0.3690	0.2690	0.1640	0
16 - 14	0.3333	0.4400	0.4690	0.4880	0.6120	0.6320	0.6290	0.7310	0.8360	1

Table 3.2: Variable values obtained from solving a 16-node graph with Algorithm3.16: DIPA.

3.4 Variations of DIPA

We obtained the numerical results shown in Table 3.1 using Algorithm 3.16: DIPA. However, we tested other variations of this algorithm that were either abandoned in favour of other choices, or left as non-standard options that can be used if desired. We describe these variations below.

3.4.1 Orthonormal null space

We use the null space Z in Algorithms 3.2 - 3.3 because of the efficiency offered by its sparse structure, and non-zero entries of only ± 1 . However, one disadvantage of this null space is that the columns of Z are not orthogonal. While the condition number of $Z^T Z$ was not large for the experiments we ran, it is possible that the lack of orthogonality could lead to scaling issues in certain problems.

We found an orthonormal basis of the null space Z (using MATLAB's null command), and performed calculations involving Z in a non-sparse fashion to compare the results with those obtained by the non-orthogonal basis of the null space. In many cases we observed that the orthonormal basis of the null space introduced symmetry into the directions taken in DIPA. This is undesirable, as it implies that DIPA has not made a decision about which node to tend towards, and often leads to DIPA exhibiting jamming, where from many nodes two variables have identical values, and the others converge to 0 and are deleted. However, in some (rare) cases the orthonormal basis of the null space enables us to find a solution when the algorithm that used the non-orthonormal basis of the null space fails.

3.4.2 Stochastic constraints

In [14] it is shown that the optimisation problem $\min\{-\det(I - P(\mathbf{x}) + \frac{1}{N}J)\}$ is optimised at a Hamiltonian \mathbf{x} not only over the constraint set $\mathbf{x} \in \mathcal{DS}_{\mathbf{x}}$, but also the more general superset of stochastic constraints, $\mathbf{x} \in \mathcal{S}_{\mathbf{x}}$. This set of constraints is identical to $\mathcal{DS}_{\mathbf{x}}$ but without equality constraints (3.17) that ensure unit column sums. That is, $\mathcal{S}_{\mathbf{x}}$ is the set of all \mathbf{x} that satisfy the following constraints

$$x_{ij} \geq 0, \quad (i,j) \in \Gamma, \tag{3.54}$$

$$\sum_{j \in \mathcal{A}(i)} x_{ij} = 1, \quad i = 1, \dots, N.$$
(3.55)

The equality constraints (3.55) correspond to a constraints matrix W_S with the structure

Then, we can find a sparse null space for W_S much more easily than for (3.16)–(3.17). To find the null space for W_S , we move the first column of the *i*-th block of 1's, to column *i*, for all i = 1, ..., N to form W_S^* , which has the following form:

$$W_S^* = \left[I \mid B\right]. \tag{3.56}$$

We store the new column order in an index set \mathcal{I}_S . Then, the null space of W_S^* is simply $Z_S^* := \begin{bmatrix} -B \\ I \end{bmatrix}$. Finally, we find Z_S by defining $Z_S(\mathcal{I}_S) := Z_S^*$, that is, reordering the rows of Z_S^* such that row $\mathcal{I}_S(j)$ of Z_S is the same as row j of Z_S^* . This process is outlined in the algorithm below.

Algorithm 3.17: Stochastic null space algorithm.

When using stochastic constraints $S_{\mathbf{x}}$ instead of $\mathcal{DS}_{\mathbf{x}}$ constraints, we can also use an easier scaling algorithm that simply normalises each row of the probability transition matrix $P(\mathbf{x})$ (see 3.14). However, despite the simpler null space which permits quicker calculations, and the simpler scaling algorithm, we found that DIPA performed far worse in most nontrivial cases when we used the stochastic constraints instead of the doubly-stochastic constraints. We propose that this is due to the fact that Sis, typically, a much larger domain than $\mathcal{DS}_{\mathbf{x}}$ and could contain many more local minima.

3.4.3 Diagonal scaling

We use Algorithm 3.13 after deflations and deletions are performed to find a feasible point in the vicinity of the now infeasible \mathbf{x} . We also use Algorithm 3.13 to find an initial feasible point. One other well-known method of finding such a feasible point, given an infeasible \mathbf{x} , is the method of diagonal scaling known as Sinkhorn's algorithm [52].

To use Sinkhorn's algorithm on the infeasible \mathbf{x} , we consider the equivalent probability

transition matrix $P(\mathbf{x})$ (see (3.14)). Then we normalise each row, followed by normalising each column. We achieve this by pre-multiplying and post-multiplying $P(\mathbf{x})$ by diagonal matrices of the following form, where r_i is the *i*-th row sum of $P(\mathbf{x})$, and c_j is the *j*-th column sum of $P(\mathbf{x})$

$$D_{1} = \begin{bmatrix} c_{1} & & & \\ & c_{2} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & c_{N} \end{bmatrix},$$
(3.57)
$$D_{2} = \begin{bmatrix} r_{1} & & & \\ & r_{2} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & r_{N} \end{bmatrix}.$$

Thus, we update $P(\mathbf{x})$ by calculating $P(\mathbf{x}) = D_1 P(\mathbf{x}) D_2$. The resulting $P(\mathbf{x})$ is less infeasible than the original $P(\mathbf{x})$.

We repeat this process as many times as necessary. It is known [3] that using this process ensures that $P(\mathbf{x})$ converges to a probability transition matrix in $\mathcal{DS}_{\mathbf{x}}$, and experimentally we found that this process converged quickly in most cases. Overall, however, we found the linear solver method used in Algorithm 3.13 to be more reliable and efficient, and hence we chose not to use diagonal scaling.

3.5 The unique saddle-point conjecture

In early implementations of DIPA, we only used descent directions. For each graph tested, we started from many randomly generated starting points, and in each case DIPA converged either to a point on the boundary of the feasible region, or more commonly, to a particular strictly interior stationary (saddle) point.

We repeated this experiment on many cubic graphs and some larger non-regular graphs, and in each case it appeared that there was a unique interior stationary point for each graph. These experimental findings led to the following, still open, conjecture. Recall that for any graph Γ the nonlinear program (3.19) has the following form

$$\min\{-\det(I - P(\mathbf{x}) + \frac{1}{N}J)\}$$

s.t.
$$x_{ij} \ge 0, \quad (i, j) \in \Gamma,$$

$$\sum_{j \in \mathcal{A}(i)} x_{ij} = 1, \quad i = 1, \dots, N,$$

$$\sum_{i \in \mathcal{B}(j)} x_{ij} = 1, \quad j = 1, \dots, N.$$

Conjecture 3.5.1 The nonlinear program (3.19) has exactly one strictly interior stationary point, and it is a saddle point. We call this point \mathbf{x}^M , or equivalently $P^M := P(\mathbf{x}^M)$.

If Conjecture 3.5.1 is true, it implies that, for all graphs Γ , there are no strictly interior local minima in (3.19). Then, given any strictly interior starting point \mathbf{x}^{0} , DIPA as described in Algorithm 3.16: DIPA is guaranteed to converge to a boundary point.

For a small percentage of cubic graphs tested, we found that $P^M = \frac{1}{3}\mathbb{A}$ (recall that \mathbb{A} is the adjacency matrix of Γ). For example, this is the case for 5 of the 85 cubic 12node graphs. This poses a problem since, for these rare cubic graphs, the barrier point $P(\mathbf{x}_{\mathcal{L}}^*)$, which we use as the starting point of the main iterations in Algorithm 3.16: DIPA, is $\frac{1}{3}\mathbb{A}$, which is the interior stationary point P^M . In general, it is considered unusual for the starting point to also be a stationary point. In the case when $P(\mathbf{x}_{\mathcal{L}}^*) = P^M$, Algorithm 3.6 gives $\mathbf{d} = \mathbf{0}$, and consequently we require Algorithm 3.7 to move away from the stationary point.

We calculated P^M for every cubic graph up to size 20, and for 500 randomly generated non-regular graphs of random sizes less than 100. In each case, we found that P^M is a symmetric matrix in $\mathcal{DS}_{\mathbf{x}}$, and almost always contains non-zero values in the interval [0.20.45]. In some small graphs we can find P^M explicitly.

Example 3.5.2 In the 6-node cubic graph Γ_6 defined by the following adjacency matrix

$$\mathbb{A}_{6} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix},$$
(3.58)

we can find P_6^M exactly:

$$P_6^M = \begin{bmatrix} 0 & \frac{2\sqrt{6}-3}{5} & 0 & \frac{4-\sqrt{6}}{5} & \frac{4-\sqrt{6}}{5} & 0\\ \frac{2\sqrt{6}-3}{5} & 0 & \frac{4-\sqrt{6}}{5} & 0 & 0 & \frac{4-\sqrt{6}}{5}\\ 0 & \frac{4-\sqrt{6}}{5} & 0 & \frac{2\sqrt{6}-3}{5} & 0 & \frac{4-\sqrt{6}}{5}\\ \frac{4-\sqrt{6}}{5} & 0 & \frac{2\sqrt{6}-3}{5} & 0 & \frac{4-\sqrt{6}}{5} & 0\\ \frac{4-\sqrt{6}}{5} & 0 & 0 & \frac{4-\sqrt{6}}{5} & 0 & \frac{2\sqrt{6}-3}{5}\\ 0 & \frac{4-\sqrt{6}}{5} & \frac{4-\sqrt{6}}{5} & 0 & \frac{2\sqrt{6}-3}{5} & 0 \end{bmatrix}.$$
(3.59)

We also performed experiments on all cubic graphs up to size 20 to see if the entries in P^M were invariant when we relabeled the nodes of the graphs. In every example tested it was found that the entries of P^M were indeed invariant. This finding leads us to speculate that the P^M point may be able to solve the famous graph isomorphism problem [51], if the following (open) Conjecture 3.5.3 is true. Two graphs Γ_1 and Γ_2 , with adjacency matrices \mathbb{A}_1 and \mathbb{A}_2 respectively, are *isomorphic* if a permutation matrix Π can be found such that $\mathbb{A}_1 = \Pi^{-1}\mathbb{A}_2\Pi$. That is, if one graph can be shown to be the relabeling of the other. The graph isomorphism problem can then be stated simply: given two graphs Γ_1 and Γ_2 , determine if the graphs are isomorphic.

Conjecture 3.5.3 Consider two cubic graphs Γ_1 and Γ_2 , their associated adjacency matrices \mathbb{A}_1 and \mathbb{A}_2 , and the associated strictly interior stationary points P_1^M and P_2^M . Let $H_1(P_1^M)$ and $H_2(P_2^M)$ be the Hessians of $f(\mathbf{x})$ at each of these points, respectively. Let Λ_1 and Λ_2 be diagonal matrices with eigenvalues of $H_1(P_1^M)$ and $H_2(P_2^M)$ in their diagonals, respectively. Then, $\Lambda_1 = \Lambda_2$ if and only if $\mathbb{A}_1 = \Pi^{-1}\mathbb{A}_2\Pi$ for some permutation matrix Π . That is, the spectra are equal if and only if Γ_1 is an isomorphism of Γ_2 . We have numerically verified Conjecture 3.5.3 for all cubic graphs up to and including size N = 18. This set includes a total of 45,982 graphs. We tested the conjecture by finding the spectra of the Hessian evaluated at P^M for each graph and comparing them to see if any were the same. We found no counterexamples for any of the tested graphs. For 1000 randomly selected cubic graphs up to size 20, we also considered random permutations of these graphs. We compared the spectra of these relabeled graphs to that of their original graphs to confirm that the spectra were the same, and again, no counterexample was found. Finally, we obtained a list of all cospectral pairs of cubic graphs with 20 nodes, that is, pairs of graphs for which the spectra of their adjacency matrices are equal. There are 5195 such cubic 20-node cospectral pairs. Since these cospectral pairs are indistinguishable by their spectra, we tested the above conjecture on these pairs, and found that it held for all cubic 20-node cospectral pairs.

While we only give Conjecture 3.5.3 for cubic graphs (as the bulk of our experiments have been carried out on cubic graphs), there is no experimental evidence as of yet that the conjecture does not hold for other graphs as well. We generated many non-regular graphs of sizes up to N = 100, and tested them using the above method, and again no counterexample was found.

The importance of Conjecture 3.5.3 is that the graph isomorphism problem was listed in Garey and Johnson [30] p. 285 as one of only twelve problems to belong to the NP set of problems that was not known at the time to be NP-complete. To this day, it is one of only two of those twelve problems whose complexity remains unknown, even if we restrict the problem to cubic graphs. If Conjectures 3.5.1 and 3.5.3 are proved, we immediately obtain that the graph isomorphism problem is equivalent to solving two Karush-Kuhn-Tucker (KKT) systems for (3.19), one for each graph. That is, the graph isomorphism problem for cubic graphs is equivalent to the problem of solving two systems of O(N) algebraic equations with maximum degree N, and 3Nnonnegativity constraints. If Conjecture 3.5.3 is proved for all graphs, then we can make similar claims about the graph isomorphism problem for all graphs.

Experimentally, we found that by selecting an initial (infeasible) point $\mathbf{x}_0 = \mathbf{e}$,

and using the MATLAB function for solve to solve the KKT system without any nonnegativity constraints, the outputted solution was always P^M in all graphs we tested. The function for solve uses a Gauss-Newton method (see [12] pp 269 – 312). A future direction of research will be to determine if this method always finds P^M , and to design an adaptation of the Gauss-Newton methods specifically to find P^M .

3.6 LU decomposition

3.6.1 Introduction

Recall the definitions of $P(\mathbf{x})$, $\mathcal{DS}_{\mathbf{x}}$ and $f(P(\mathbf{x}))$ from (3.14)–(3.18). That is, $P(\mathbf{x})$ is composed of elements p_{ij} such that

$$p_{ij}(\mathbf{x}) := \begin{cases} x_{ij}, & (i,j) \in \Gamma, \\ 0, & \text{otherwise,} \end{cases}$$
(3.60)

 $\mathcal{DS}_{\mathbf{x}}$ is the set of all \mathbf{x} that satisfy

$$x_{ij} \geq 0, \quad (i,j) \in \Gamma, \tag{3.61}$$

$$\sum_{j \in \mathcal{A}(i)} x_{ij} = 1, \quad i = 1, \dots, N,$$
(3.62)

$$\sum_{i \in \mathcal{B}(j)} x_{ij} = 1, \quad j = 1, \dots, N,$$
(3.63)

and $f(P(\mathbf{x}))$ is defined as

$$f(\mathbf{x}) = -\det(I - P(\mathbf{x}) + \frac{1}{N}J).$$
 (3.64)

We then define $A(P(\mathbf{x}))$ such that $f(P(\mathbf{x})) = -\det(A(P(\mathbf{x})))$. That is,

$$A(P(\mathbf{x})) = I - P(\mathbf{x}) + \frac{1}{N} \mathbf{e} \mathbf{e}^{T}.$$
 (3.65)

In Sections 3.2 – 3.4, we outline an interior point method that attempts to solve the optimisation problem $\{minf(P(\mathbf{x}))|\mathbf{x} \in \mathcal{DS}_{\mathbf{x}}\}$. In our interior point method, a second-order approximation to the objective function $f(P(\mathbf{x}))$ is required at each iteration. This approximation requires us to evaluate the objective function value, the gradient and the Hessian at each iteration. Evaluating these directly is a slow process, as the Hessian matrix of $f(P(\mathbf{x}))$ is dense, and each element of the Hessian matrix is itself a determinant.

An efficient method of calculating the determinant of a matrix G is to perform an LU decomposition to find G = LU and then calculate det(G) = det(L) det(U). Generally, for a determinant objective function, we need to calculate each element in the Hessian matrix by performing a separate LU decomposition. However, this requires $O(N^4)$ individual LU decompositions. In this section we demonstrate how the objective function value, the gradient vector and the Hessian matrix, required in Algorithm 3.16: DIPA, are evaluated using only a single LU decomposition of the negative generator matrix $G(\mathbf{x}) = I - P(\mathbf{x})$. For ease of notation, and when no confusion can arise, we drop the dependency on \mathbf{x} in $P(\mathbf{x})$ for the remainder of this chapter.

In [36] it is proven that such an LU decomposition exists (without requiring prior permutations) for any generator matrix where P is doubly-stochastic and contains only a single ergodic class. For connected graphs, these conditions are satisfied for all doubly-stochastic P in the interior of $\mathcal{DS}_{\mathbf{x}}$, which makes up the entire domain of points that can be reached by Algorithm 3.16: DIPA. We note that P^H corresponding to a Hamiltonian cycle is also doubly-stochastic and has a single ergodic class. However, such a P^H is an extreme point of $\mathcal{DS}_{\mathbf{x}}$ and is only approached - but never attained - by the sequence of points generated by Algorithm 3.16: DIPA.

The process of evaluating the second-order approximation is the most time-consuming part of the inner-step iteration in Algorithm 3.16: DIPA. Therefore, an improvement in the calculation time of the objective function value, gradient and Hessian leads to a similar improvement in DIPA.

3.6.2 Product forms of A(P) and det(A(P))

To calculate the objective function f(P), its gradient and Hessian, we begin by performing an LU decomposition to obtain

$$LU = G = I - P.$$
 (3.66)

By construction of L and U we know that $\det(L) = 1$ (eg, see Golub and Van Loan [34] p. 97). As the method we describe in this section is used in the implementation of DIPA, described in Sections 3.2 - 3.4, we assume for the remainder of this chapter that $P \in \text{Int}(\mathcal{DS}_{\mathbf{x}})$. This assumption ensures that the policy corresponding to Phas a single ergodic class. Therefore, G has exactly one zero eigenvalue, which along with the nonsingularity of L implies that U has exactly one eigenvalue of zero. Since U is upper triangular and has its eigenvalues on its diagonal entries, it follows from the standard implementation of the LU-decomposition algorithm (e.g., see Golub and Van Loan [34] pp. 96–97) that $u_{NN} = 0$. Then, we know that

$$A(P) = I - P + \frac{1}{N} \mathbf{e} \mathbf{e}^{T} = LU + \frac{1}{N} \mathbf{e} \mathbf{e}^{T}.$$
 (3.67)

We factorise this expression so as to calculate det(A) by finding the product of determinants of the factors. In particular, the following result is proved in this subsection:

$$\det(A(P)) = N \prod_{i=1}^{N-1} u_{ii}, \qquad (3.68)$$

where u_{ii} is the *i*-th diagonal entry of U.

The outline of the derivation of (3.68) is as follows.

- (1) We express A(P) as the product of three nonsingular factors.
- (2) We show that two of these factors have a determinant of 1.
- (3) We show that the third factor shares all but one eigenvalue with U, with the single different eigenvalue being N (rather than 0).

(4) We express the determinant as a product of the first N - 1 diagonal elements of U, and N.

First, we express A(P) as a product of L and another factor. Let \mathbf{v} be an $N \times 1$ vector, and \overline{U} be an $N \times N$ matrix, such that

$$L\mathbf{v} = \mathbf{e}, \quad \text{and} \quad \bar{U} := U + \mathbf{v}\mathbf{e}_N^T,$$
(3.69)

where $\mathbf{e}_N^T = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}$. Since *L* is nonsingular, **v** exists and is unique, and therefore \overline{U} is well-defined. Note that with the exception of the last column (that coincides with **v**), all other columns of \mathbf{ve}_N^T are identically equal to the **0** vector.

Hence, suppressing (the fixed) argument P in A(P), and exploiting (3.67) and (3.69) we write

$$A = (I - P) + \frac{1}{N} \mathbf{e} \mathbf{e}^{T}$$

$$= LU + \frac{1}{N} L \mathbf{v} \mathbf{e}^{T}$$

$$= L(U + \frac{1}{N} \mathbf{v} \mathbf{e}^{T})$$

$$= L(\bar{U} + \mathbf{v} [\frac{1}{N} \mathbf{e}^{T} - \mathbf{e}_{N}^{T}]). \qquad (3.70)$$

Since U is upper-triangular, and the addition of \mathbf{ve}_N^T alters only the rightmost column of U, it follows that \overline{U} is also upper-triangular. Therefore

$$\det \bar{U} = \prod_{i=1}^{N} \bar{u}_{ii} = \left(\prod_{i=1}^{N-1} u_{ii}\right) \bar{u}_{NN}.$$
(3.71)

Since $u_{NN} = 0$, we know that $\bar{u}_{NN} = \mathbf{e}_N^T \left(\mathbf{v} \mathbf{e}_N^T \right) \mathbf{e}_N = \mathbf{e}_N^T \mathbf{v} \left(\mathbf{e}_N^T \mathbf{e}_N \right) = \mathbf{e}_N^T \mathbf{v}$, which is the bottom-right element of $\mathbf{v} \mathbf{e}_N^T$.

Lemma 3.6.1 For any $P \in Int(\mathcal{DS}_{\mathbf{x}})$, both $(I - P + \mathbf{ee}_N^T)$ and \overline{U} are nonsingular. **Proof.** Note that

$$L\bar{U} = LU + L\mathbf{v}\mathbf{e}_N^T = I - P + \mathbf{e}\mathbf{e}_N^T, \qquad (3.72)$$

and hence

$$\bar{U} = L^{-1} \left(I - P + \mathbf{e} \mathbf{e}_N^T \right).$$
 (3.73)

We know that det $(L^{-1}) = 1$, so if $(I - P + \mathbf{e}\mathbf{e}_N^T)$ is nonsingular then \overline{U} will be nonsingular as well. We show that this is the case for an irreducible P.

Suppose that $(I - P + \mathbf{e}\mathbf{e}_N^T)$ is singular. Then there exists $\alpha = \begin{bmatrix} \alpha_1, \dots, \alpha_N \end{bmatrix}^T \neq \mathbf{0}^T$ such that $(I - P + \mathbf{e}\mathbf{e}_N^T) \alpha = \mathbf{0}$. Therefore

$$(I - P)\alpha + \alpha_N \mathbf{e} = \mathbf{0}, \tag{3.74}$$

where α_N is the *N*-th (and final) entry of α . There are then two possibilities: either $\alpha_N \neq 0$ or $\alpha_N = 0$. First, we consider the case where $\alpha_N \neq 0$. We then divide (3.74) by $-\alpha_N$ to obtain

$$(I - P)\bar{\alpha} = \mathbf{e},\tag{3.75}$$

where $\bar{\alpha} = \frac{-\alpha}{\alpha_N}$. Then, because P is irreducible, there exists $\pi^T > 0$, such that $\sum_{j=1}^{N} \pi_j = 1$ and $\pi^T = \pi^T P$. Multiplying (3.75) on the left by π^T we obtain

$$\pi^T (I - P) \bar{\alpha} = \pi^T \mathbf{e},$$

and therefore, 0 = 1. This is a contradiction, so $\alpha_N = 0$. Substituting this into (3.74) yields

$$P\alpha = \alpha. \tag{3.76}$$

Therefore, α is an eigenvector of P, corresponding to eigenvalue $\lambda = 1$, but by the irreducibility of P, we know that the multiplicity of eigenvalue $\lambda = 1$ is 1. Since we also know that $P\mathbf{e} = \mathbf{e}$, this implies that $\alpha = c\mathbf{e}$ for some constant c.

But $\alpha_N = 0$, so $\alpha = 0$, which is not a valid eigenvector, and therefore this is a contradiction as well. Hence $(I - P + \mathbf{ee}_N^T)$ is nonsingular, as required. Then, from (3.73) and the above, we also see that det $\overline{U} \neq 0$, which concludes the proof. \Box

Lemma 3.6.2 For any $P \in Int(\mathcal{DS}_{\mathbf{x}})$, the bottom-right element of the matrix \mathbf{ve}_N^T is N. That is, $\mathbf{e}_N^T \mathbf{v} = N$.

Proof. As \overline{U}^{-1} exists, it follows from (3.73) that

$$L = (I - P + \mathbf{e}\mathbf{e}_N^T) \, \bar{U}^{-1},$$

and therefore,

$$\mathbf{e}^{T}L = \mathbf{e}^{T} \left(I - P + \mathbf{e}\mathbf{e}_{N}^{T} \right) \bar{U}^{-1}$$
$$= \mathbf{e}^{T} \left(I - P \right) \bar{U}^{-1} + \mathbf{e}^{T} \mathbf{e}\mathbf{e}_{N}^{T} \bar{U}^{-1}.$$

From the column-sum $\mathcal{DS}_{\mathbf{x}}$ constraint (3.63) we know that $\mathbf{e}^{T}(I-P) = \mathbf{0}^{T}$. Therefore,

$$\mathbf{e}^T L = N \mathbf{e}_N^T \bar{U}^{-1}.$$

Since \bar{U} is upper-triangular, \bar{U}^{-1} is also upper-triangular and therefore

$$\mathbf{e}^T L = N \tilde{u}_{NN} \mathbf{e}_N^T, \qquad (3.77)$$

where \tilde{u}_{NN} is the bottom-right entry of \bar{U}^{-1} .

Then, because L is lower-triangular, $\mathbf{e}^T L \mathbf{e}_N = 1$. Thus, from (3.77), we see that

$$1 = \mathbf{e}^{T} L \mathbf{e}_{N} = N \tilde{u}_{NN} \mathbf{e}_{N}^{T} \mathbf{e}_{N}$$
$$= N \tilde{u}_{NN}, \qquad (3.78)$$

and therefore,

$$\tilde{u}_{NN} = \frac{1}{N}.$$
(3.79)

Substituting (3.79) into (3.77), we obtain $\mathbf{e}^T L = \mathbf{e}_N^T$, and multiplying both sides by \mathbf{v} and recalling that $L\mathbf{v} = \mathbf{e}$, we obtain

$$N = \mathbf{e}_N^T \mathbf{v}$$

Therefore, the bottom-right element of \mathbf{ve}_N^T is N, and since the bottom-right element of U is 0, we can then deduce from the definition of \overline{U} (3.69) that its bottom-right element is N. Next, we define \mathbf{w} to be the unique solution to the system

$$\bar{U}^T \mathbf{w} = \frac{1}{N} \mathbf{e} - \mathbf{e}_N, \qquad (3.80)$$

which is well-defined by Lemma 3.6.1. Then, from (3.70)

$$A = L\left(\bar{U} + \mathbf{v}\left[\frac{1}{N}\mathbf{e}^{T} - \mathbf{e}_{N}^{T}\right]\right)$$
$$= L\left(\bar{U} + \mathbf{v}\mathbf{w}^{T}\bar{U}\right)$$
$$= L\left(I + \mathbf{v}\mathbf{w}^{T}\right)\bar{U}.$$
(3.81)

We take the determinant of (3.81) to obtain

$$\det(A) = \det(L) \det(I + \mathbf{v}\mathbf{w}^T) \det(\overline{U}).$$
(3.82)

Note that, for any vectors \mathbf{c} and \mathbf{d} ,

$$\det(I + \mathbf{c}\mathbf{d}^T) = 1 + \mathbf{d}^T\mathbf{c}. \tag{3.83}$$

This is because \mathbf{cd}^T has one eigenvalue $\mathbf{d}^T \mathbf{c}$ of multiplicity 1 and an eigenvalue 0 of multiplicity N - 1. Consequently,

$$\det(I + \mathbf{v}\mathbf{w}^T) = 1 + \mathbf{w}^T\mathbf{v}, \qquad (3.84)$$

which we substitute into expression (3.82) above.

Lemma 3.6.3 For any $P \in \mathcal{DS}_{\mathbf{x}}$, the inner-product $\mathbf{w}^T \mathbf{v}$, where \mathbf{w} and \mathbf{v} are defined by (3.80) and (3.69) respectively, satisfies

$$\mathbf{w}^T\mathbf{v} = 0.$$

Proof. We know that both L and \overline{U} are non-singular, so we find \mathbf{w}^T and \mathbf{v} directly. In particular, from their respective definitions (3.80) and (3.69),

$$\mathbf{w}^T = \left(\frac{1}{N}\mathbf{e}^T - \mathbf{e}_N^T\right)(\bar{U})^{-1}, \qquad (3.85)$$

$$\mathbf{v} = L^{-1}\mathbf{e}. \tag{3.86}$$

Then, from (3.85)–(3.86) and (3.72), we obtain

$$\mathbf{w}^{T}\mathbf{v} = \left(\frac{1}{N}\mathbf{e}^{T} - \mathbf{e}_{N}^{T}\right)(\bar{U})^{-1}L^{-1}\mathbf{e}$$
$$= \left(\frac{1}{N}\mathbf{e}^{T} - \mathbf{e}_{N}^{T}\right)(L\bar{U})^{-1}\mathbf{e}$$
$$= \left(\frac{1}{N}\mathbf{e}^{T} - \mathbf{e}_{N}^{T}\right)(I - P + \mathbf{e}\mathbf{e}_{N}^{T})^{-1}\mathbf{e}.$$
(3.87)

Since I, P and $\mathbf{ee_N}^T$ are all stochastic matrices, we know that $I - P + \mathbf{ee}_N^T$ has row sums of 1 as well. Hence, its inverse also has row sums equal to 1, that is,

$$(I - P + \mathbf{e}\mathbf{e}_N^T)^{-1}\mathbf{e} = \mathbf{e}.$$
(3.88)

Substituting (3.88) into (3.87), we obtain

$$\mathbf{w}^T \mathbf{v} = \left(\frac{1}{N}\mathbf{e}^T - \mathbf{e}_N^T\right)\mathbf{e} = 0.$$

which concludes the proof.

We now derive the main theorem of this subsection.

Theorem 3.6.4 For any $P \in Int(\mathcal{DS}_{\mathbf{x}})$ and I - P = LU, where L and U form the LU-decomposition,

$$\det(A(P)) = N\left(\prod_{i=1}^{N-1} u_{ii}\right).$$

Proof. From (3.82), (3.84) and Lemma 3.6.3 we know that

$$\det(A(P)) = \det(L)(1+0)\det(\overline{U}).$$

From the construction of LU decomposition we know that det(L) = 1, so

$$\det(A(P)) = \det(\overline{U}).$$

From (3.71) and Lemma 3.6.2 we now see that

$$\det(A(P)) = \det(\overline{U}) = N\left(\prod_{i=1}^{N-1} u_{ii}\right).$$

This concludes the proof.

Remark 3.6.5 Note that finding \mathbf{v} and \mathbf{w} is a simple process because L and \overline{U}^T are lower-triangular matrices, so we can solve the systems of linear equations in (3.80) and (3.69) directly. Note also that in DIPA, we are not interested in calculating $\det(A(P))$, but rather $f(P) = -\det(A(P))$.

3.6.3 Finding the gradient g(P)

Next we use the LU decomposition found in Subsection 3.6.2 to find the gradient of $f(P) = -\det(A(P))$. Note that since variables of f(P) are entries x_{ij} of the probability transition matrix $P(\mathbf{x})$, we derive an expression for $g_{ij}(P) := \frac{\partial f(P)}{\partial x_{ij}}$ for each x_{ij} such that $(i, j) \in \Gamma$.

Consider vectors \mathbf{a}_j and \mathbf{b}_i satisfying the equations $\overline{U}^T \mathbf{a}_j = \mathbf{e}_j$ and $L\mathbf{b}_i = \mathbf{e}_i$. Then, we define $Q := I - \mathbf{v}\mathbf{w}^T$, where \mathbf{v} and \mathbf{w}^T are as in (3.85)–(3.86). We prove the following result in this subsection:

$$g_{ij}(P) = \det(A(P))(\mathbf{a}_j^T Q \mathbf{b}_i), \qquad (3.89)$$

where $g_{ij}(P)$ is the element of the gradient vector corresponding to the arc $(i, j) \in \Gamma$.

The outline of the derivation of (3.89) is as follows.

- (1) We represent each element $g_{ij}(P)$ of the gradient vector as a cofactor of A(P).
- (2) We construct an elementary matrix that transforms matrix A(P) into a matrix with determinant equal to the above cofactor of A(P).
- (3) We then express the element $g_{ij}(P)$ of the gradient vector as the product of $\det(A(P))$ and the determinant of the elementary matrix, the latter of which is shown to be equal to $\mathbf{a}_i^T Q \mathbf{b}_i$.

For any matrix $V = (v_{ij})_{i,j=1}^{N,N}$ it is well-known (e.g., see May [43]) that $\frac{\partial \det(V)}{\partial v_{ij}} = (-1)^{i+j} \det(V^{ij})$, where V^{ij} is the (i, j)-th minor of V. That is, $\frac{\partial \det(V)}{\partial v_{ij}}$ is the (i, j)-th cofactor of V. Since the (i, j)-th entry of A(P) is simply $a_{ij} = \delta_{ij} - x_{ij} + \frac{1}{N}$, it

now follows that

$$g_{ij}(P) = \frac{\partial f(P)}{\partial x_{ij}} = \frac{\partial \left[-\det A(P)\right]}{\partial a_{ij}} \frac{da_{ij}}{dx_{ij}} = (-1)^{i+j} \det \left(A^{ij}(P)\right).$$
(3.90)

Rather than finding the cofactor, however, we calculate (3.90) by finding the determinant of A where row i has been replaced with \mathbf{e}_j^T . Since A is a full-rank matrix, it is possible to perform row operations to achieve this. Suppose A is composed of rows \mathbf{r}_1^T , \mathbf{r}_2^T , ..., \mathbf{r}_N^T . Then, we perform the following row operation:

$$\mathbf{r}_i^T \rightarrow \alpha_j(1)\mathbf{r}_1^T + \alpha_j(2)\mathbf{r}_2^T + \ldots + \alpha_j(N)\mathbf{r}_N^T,$$
 (3.91)

where $\alpha_j(i)$ is the *i*-th element of vector α_j and $A^T \alpha_j = \mathbf{e}_j$.

In this case, from (3.81), $A^T = \overline{U}^T (I + \mathbf{w} \mathbf{v}^T) L^T$. Since A is nonsingular when $P \in \text{Int}(\mathcal{DS}_{\mathbf{x}}), \alpha_j$ can be found directly:

$$\alpha_{j} = (A^{T})^{-1} \mathbf{e}_{j}$$

$$= [\overline{U}^{T}(I + \mathbf{w}\mathbf{v}^{T})L^{T}]^{-1} \mathbf{e}_{j}$$

$$= (L^{T})^{-1}(I + \mathbf{w}\mathbf{v}^{T})^{-1}(\overline{U}^{T})^{-1}\mathbf{e}_{j}.$$
(3.92)

Lemma 3.6.6 For any $P \in \mathcal{DS}_{\mathbf{x}}$,

$$(I + \mathbf{w}\mathbf{v}^T)^{-1} = I - \mathbf{w}\mathbf{v}^T.$$

Proof. Consider

$$(I + \mathbf{w}\mathbf{v}^{T})(I - \mathbf{w}\mathbf{v}^{T}) = I - \mathbf{w}\mathbf{v}^{T} + \mathbf{w}\mathbf{v}^{T} - \mathbf{w}\mathbf{v}^{T}\mathbf{w}\mathbf{v}^{T}$$
$$= I - \mathbf{w}\mathbf{v}^{T}\mathbf{w}\mathbf{v}^{T}$$
$$= I, \text{ because } \mathbf{v}^{T}\mathbf{w} = \mathbf{w}^{T}\mathbf{v} = 0, \text{ from Lemma 3.6.3.}$$

Therefore, $(I + \mathbf{w}\mathbf{v}^T)^{-1} = (I - \mathbf{w}\mathbf{v}^T)$.

Taking the above result and substituting into (3.92), we obtain

$$\alpha_j = (L^T)^{-1} (I - \mathbf{w} \mathbf{v}^T) (\bar{U}^T)^{-1} \mathbf{e}_j.$$
(3.93)

Next, we define an elementary matrix E_{ij} by

$$E_{ij} := I - \mathbf{e}_i \mathbf{e}_i^T + \mathbf{e}_i \alpha_j^T, \qquad (3.94)$$

and note that it performs the desired row operation (3.91) on A because

$$E_{ij}A = A - \mathbf{e}_i \mathbf{r}_i^T + \mathbf{e}_i \mathbf{e}_j^T,$$

in effect replacing the *i*-th row of A with \mathbf{e}_j^T . Therefore,

$$g_{ij}(P) = (-1)^{i+j} \det (A^{ij})$$

= $\det(E_{ij}A)$
= $\det(E_{ij}) \det(A).$ (3.95)

From (3.94), we rewrite $E_{ij} = I - \mathbf{e}_i (\mathbf{e}_i - \alpha_j)^T$. Then, from (3.83) we obtain

$$\det(E_{ij}) = 1 - (\mathbf{e}_i - \alpha_j)^T \mathbf{e}_i$$

= $1 - \mathbf{e}_i^T \mathbf{e}_i + \alpha_j^T \mathbf{e}_i$
= $1 - 1 + \alpha_j^T \mathbf{e}_i$
= $\alpha_j^T \mathbf{e}_i.$ (3.96)

Substituting (3.93) into (3.96) we obtain

$$\det(E_{ij}) = \mathbf{e}_j^T (\bar{U})^{-1} (I - \mathbf{v} \mathbf{w}^T) (L)^{-1} \mathbf{e}_i.$$
(3.97)

For convenience we define $Q := I - \mathbf{v} \mathbf{w}^T$. Then

$$\det(E_{ij}) = \mathbf{a}_j^T Q \mathbf{b}_i, \text{ where } \bar{U}^T \mathbf{a}_j = \mathbf{e}_j \text{ and } L \mathbf{b}_i = \mathbf{e}_i.$$
(3.98)

We now derive the main result of this subsection.

Proposition 3.6.7 For any $P \in Int(\mathcal{DS}_{\mathbf{x}})$ and I - P = LU, where L and U form the LU-decomposition; the general gradient element of f(P) is given by

$$g_{ij}(P) = \frac{\partial f(P)}{\partial x_{ij}} = \det(A(P))(\mathbf{a}_j^T Q \mathbf{b}_i).$$
(3.99)

Proof. Substituting (3.98) into (3.95) immediately yields the result.

Remark 3.6.8 Note that we can calculate all \mathbf{a}_j and \mathbf{b}_i in advance, by solving the systems of linear equations in (3.98), again in reduced row echelon form. Then, for the sake of efficiency we first calculate

$$\hat{\mathbf{q}}_j^T := \mathbf{a}_j^T Q, \quad j = 1, \dots, N, \tag{3.100}$$

and then calculate

$$\hat{q}_{ij} := \hat{\mathbf{q}}_{j}^{T} \mathbf{b}_{i}, \quad i = 1, \dots, N, \quad j = 1, \dots, N.$$
 (3.101)

This allows us to rewrite the formula for $g_{ij}(P)$ as

$$g_{ij}(P) = -f(P)\hat{q}_{ij}.$$

3.6.4 Finding the Hessian matrix H(P)

Here, we show that the LU decomposition found in Subsection 3.6.2 can also be used to calculate the Hessian of f(P) more efficiently. Consider g_{ij} and \hat{q}_{ij} as defined in (3.99) and (3.101) respectively. We prove the following result in this subsection:

$$H_{[ij],[k\ell]}(P) := \frac{\partial^2 f(P)}{\partial x_{ij} \partial x_{k\ell}} = g_{kj} \hat{q}_{i\ell} - g_{ij} \hat{q}_{k\ell},$$

where $H_{[ij],[k\ell]}$ is the general element of the Hessian matrix corresponding to arcs (i, j)and $(k, \ell) \in \Gamma$.

The outline of the derivation is as follows.

- (1) We represent each element $H_{[ij],[k\ell]}(P)$ of the Hessian matrix as a cofactor of a minor of A(P).
- (2) We construct a second elementary matrix that in conjunction with E_{ij} (see (3.94)) transforms matrix A(P) into one with a determinant equivalent to the (k, ℓ)-th cofactor of A^{ij}(P).

- (3) We then show that the general element of the Hessian matrix is the product of det(A(P)) and the determinants of the two elementary matrices.
- (4) Using results obtained from finding $\mathbf{g}(P)$ in Subsection 3.6.3, we obtain these values immediately.

We define $A^{[ij],[k\ell]}$ to be the matrix A with rows i, k and columns j, ℓ removed. An argument similar to that for $g_{ij}(P)$ in the previous subsection can be made that finding

$$H_{[ij],[k\ell]}(P) = \frac{\partial^2 f(P)}{\partial x_{ij} \partial x_{k\ell}} = (-1)^{(i+j+k+\ell+1)} \det(A^{[ij],[k\ell]}), \ i \neq k, \ j \neq \ell, \qquad (3.102)$$

is equivalent to finding the negative determinant of A with the *i*th and *k*th rows changed to \mathbf{e}_j^T and \mathbf{e}_ℓ^T respectively. That is,

$$\frac{\partial^2 f(P)}{\partial x_{ij} \partial x_{k\ell}} = -\det(\hat{E}_{k\ell} E_{ij} A(P))$$
$$= -\det(\hat{E}_{k\ell}) \det(E_{ij}) \det(A(P)), \qquad (3.103)$$

where $\hat{E}_{k\ell}$ is an additional row operation constructed to change row k of $E_{ij}A$ into \mathbf{e}_{ℓ}^{T} . Note that if i = k or $j = \ell$, the matrix $A^{[ij],[k\ell]}$ is no longer square and the determinant no longer exists. If this occurs, we define $H_{[ij],[k\ell]} := 0$. If both i = k and $j = \ell$, we also define $H_{[ij],[k\ell]} := 0$, as the determinant is linear in each element of A(P).

Consider $E_{ij}A$ composed of rows $\hat{\mathbf{r}}_1^T$, $\hat{\mathbf{r}}_2^T$, ..., $\hat{\mathbf{r}}_N^T$. Then, we perform the following row operation:

$$\hat{\mathbf{r}}_k \to \gamma_\ell(1)\hat{\mathbf{r}}_1 + \gamma_\ell(2)\hat{\mathbf{r}}_2 + \ldots + \gamma_\ell(N)\hat{\mathbf{r}}_N, \qquad (3.104)$$

where $(E_{ij}A)^T \gamma_\ell = \mathbf{e}_\ell$. Then, similarly to (3.92), we directly find γ :

$$\gamma_{\ell} = (E_{ij}^{T})^{-1} (L^{T})^{-1} (I - \mathbf{w} \mathbf{v}^{T}) (\overline{U}^{T})^{-1} \mathbf{e}_{\ell}.$$
(3.105)

Next, in a similar fashion to (3.94), we construct an elementary matrix $\hat{E}_{k\ell}$

$$\hat{E}_{k\ell} = I - \mathbf{e}_k \mathbf{e}_k^T + \mathbf{e}_k \gamma^T$$

= $I - \mathbf{e}_k (\mathbf{e}_k^T - \gamma^T).$ (3.106)

Then, we evaluate $\det(\hat{E}_{k\ell})$:

$$\det(\hat{E}_{k\ell}) = 1 - (\mathbf{e}_k^T - \gamma^T)\mathbf{e}_k$$
$$= 1 - 1 + \gamma^T \mathbf{e}_k$$
$$= \mathbf{e}_\ell^T (\bar{U})^{-1} Q L^{-1} (E_{ij})^{-1} \mathbf{e}_k.$$
(3.107)

Recall from (3.94) that $E_{ij} = I - \mathbf{e}_i(\mathbf{e}_i^T - \alpha_j^T)$. We now find the inverse of this matrix. It is a known result that $(I - \mathbf{cd}^T)^{-1} = (I + \frac{1}{1 - \mathbf{d}^T \mathbf{c}} \mathbf{cd}^T)$ for any vectors \mathbf{c} , \mathbf{d} such that $\mathbf{d}^T \mathbf{c} \neq 1$. This is easy to see by considering

$$(I - \mathbf{c}\mathbf{d}^T) \left(I + \frac{1}{1 - \mathbf{d}^T \mathbf{c}} \mathbf{c}\mathbf{d}^T \right) = I + \frac{1}{1 - \mathbf{d}^T \mathbf{c}} \mathbf{c}\mathbf{d}^T - \mathbf{c}\mathbf{d}^T - \frac{1}{1 - \mathbf{d}^T \mathbf{c}} \mathbf{c}\mathbf{d}^T \mathbf{c}\mathbf{d}^T$$
$$= I + \frac{1 - (1 - \mathbf{d}^T \mathbf{c}) - \mathbf{d}^T \mathbf{c}}{1 - \mathbf{d}^T \mathbf{c}} \mathbf{c}\mathbf{d}^T$$
$$= I.$$

In our case, $\mathbf{c} = \mathbf{e}_i$ and $\mathbf{d} = \mathbf{e}_i - \alpha_j$. Hence

$$(E_{ij})^{-1} = I + \frac{1}{1 - (\mathbf{e}_i^T - \alpha_j^T)\mathbf{e}_i}\mathbf{e}_i(\mathbf{e}_i^T - \alpha_j^T)$$

= $I + \frac{1}{\alpha_j^T\mathbf{e}_i}\mathbf{e}_i(\mathbf{e}_i^T - \alpha_j^T).$ (3.108)

Recall from (3.95) that $g_{ij} = \det(A) \det(E_{ij})$, and from (3.96) that $\det(E_{ij}) = \alpha_j^T \mathbf{e}_i$. Note that in our case $\mathbf{d}^T \mathbf{c} \neq 1$ because $\alpha_j^T \mathbf{e}_i = \det(E_{ij}) \neq 0$, and therefore (3.108) holds. Then,

$$\alpha_j^T \mathbf{e}_i = \frac{g_{ij}}{\det(A)}.$$
(3.109)

Substituting (3.109) into (3.108) we obtain

$$(E_{ij})^{-1} = I + \frac{\det(A)}{g_{ij}} \mathbf{e}_i (\mathbf{e}_i^T - \alpha_j^T),$$
 (3.110)

and further substituting (3.110) into (3.107), we obtain

$$\det(\hat{E}_{k\ell}) = \mathbf{e}_{\ell}^{T} \left(\bar{U}\right)^{-1} Q L^{-1} \left(I + \frac{\det(A)}{g_{ij}} \mathbf{e}_{i} (\mathbf{e}_{i}^{T} - \alpha_{j}^{T})\right) \mathbf{e}_{k}$$
$$= \mathbf{e}_{\ell}^{T} (\bar{U})^{-1} Q L^{-1} \left(\mathbf{e}_{k} + \frac{\det(A)}{g_{ij}} \mathbf{e}_{i} \mathbf{e}_{i}^{T} \mathbf{e}_{k} - \frac{\det(A)}{g_{ij}} \mathbf{e}_{i} \alpha_{j}^{T} \mathbf{e}_{k}\right). \quad (3.111)$$

Note that since $i \neq k$, $\mathbf{e}_i \mathbf{e}_i^T \mathbf{e}_k = \mathbf{0}$, and from (3.109), $\alpha_j^T \mathbf{e}_k = \frac{g_{kj}}{\det(A)}$. Hence, from (3.111) and (3.98) we obtain

$$\det(\hat{E}_{k\ell}) = \mathbf{e}_{\ell}^{T} (\bar{U})^{-1} Q L^{-1} (\mathbf{e}_{k} - \frac{g_{kj}}{g_{ij}} \mathbf{e}_{i})$$
$$= \mathbf{a}_{\ell}^{T} Q (\mathbf{b}_{k} - \frac{g_{kj}}{g_{ij}} \mathbf{b}_{i}).$$
(3.112)

We now derive the main result of this subsection.

Proposition 3.6.9 For any $P \in Int(\mathcal{DS}_{\mathbf{x}})$ and I - P = LU, where L and U form the LU-decomposition, the general element of the Hessian of f(P) is given by

$$H_{[ij],[k\ell]} = g_{kj}\hat{q}_{i\ell} - g_{ij}\hat{q}_{k\ell},$$

where $\hat{q}_{i\ell}$ and $\hat{q}_{k\ell}$ are as in (3.101).

Proof. From (3.103) and (3.95), we can see that $H_{[ij],[k\ell]} = -\det(\hat{E}_{k\ell})g_{ij}$. Then, from (3.112), $\det(\hat{E}_{k\ell}) = \mathbf{a}_{\ell}^T Q(\mathbf{b}_k - \frac{g_{kj}}{g_{ij}}\mathbf{b}_i)$ and so $H_{[ij],[k\ell]} = -\mathbf{a}_{\ell}^T Q(\mathbf{b}_k g_{ij} - \mathbf{b}_i g_{kj})$.

In order to improve computation time, we take advantage of the fact that we evaluate every \hat{q}_{ij} while calculating the gradient to rewrite the second order partial derivatives of f(P) as

$$H_{[ij],[k\ell]} = g_{kj} \mathbf{a}_{\ell}^{T} Q \mathbf{b}_{i} - g_{ij} \mathbf{a}_{\ell}^{T} Q \mathbf{b}_{k}$$
$$= g_{kj} \hat{q}_{i\ell} - g_{ij} \hat{q}_{k\ell}. \qquad (3.113)$$

This concludes the proof.

Remark 3.6.10 Note that in practice, we do not calculate some g_{kj} 's when calculating $\mathbf{g}(P)$ as an arc (k, j) need not exist in the graph. In these cases we find g_{jk} using the gradient formula, $g_{jk} = -f(P)(\hat{q}_{jk})$, which remains valid despite arc (k, j) not appearing in the graph.

3.6.5 Leading principal minor

It is, perhaps, interesting that instead of using the objective function $f(P) = -\det(I - P + \frac{1}{N}\mathbf{e}\mathbf{e}^T)$, it is also possible to use $f^1(P) := -\det(G^{NN}(P))$, the

negative determinant of the leading principal minor of I-P. The following, somewhat surprising, result justifies this claim.

Theorem 3.6.11 For any $P \in Int(\mathcal{DS}_{\mathbf{x}})$,

- (1) $f^1(P) = \frac{1}{N}f(P) = -\frac{1}{N}\det\left(I P + \frac{1}{N}\mathbf{e}\mathbf{e}^T\right).$
- (2) If the graph is Hamiltonian, then

$$\min_{P \in \mathcal{DS}_{\mathbf{x}}} f^1(P) = -1. \tag{3.114}$$

Proof. First, we show part (1) $f^1(P) = \frac{1}{N}f(P)$. To find $f^1(P)$, we construct LU = I - P as before, and define \hat{L} , \hat{U} as:

$$\hat{L} = \begin{bmatrix} \mathbf{e}_1^T L \\ \vdots \\ \mathbf{e}_{N-1}^T L \\ \mathbf{e}_N^T \end{bmatrix}, \quad \hat{U} = \begin{bmatrix} U \mathbf{e}_1 & \cdots & U \mathbf{e}_{N-1} & \mathbf{e}_N \end{bmatrix}.$$
(3.115)

That is, \hat{L} is the same as L with the last row replaced by \mathbf{e}_N^T , and \hat{U} is the same as U with the last column replaced with \mathbf{e}_N . Then consider

$$\hat{L}\hat{U} = \begin{bmatrix} \mathbf{e}_{1}^{T}L\\ \vdots\\ \mathbf{e}_{N-1}^{T}L\\ \mathbf{e}_{N}^{T} \end{bmatrix} \begin{bmatrix} U\mathbf{e}_{1} & \cdots & U\mathbf{e}_{N-1} & \mathbf{e}_{N} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{e}_{1}^{T}LU\mathbf{e}_{1} & \cdots & \mathbf{e}_{1}^{T}LU\mathbf{e}_{N-1} & \mathbf{e}_{1}^{T}L\mathbf{e}_{N}\\ \vdots & \ddots & \vdots & \vdots\\ \mathbf{e}_{N-1}^{T}LU\mathbf{e}_{1} & \cdots & \mathbf{e}_{N-1}^{T}LU\mathbf{e}_{N-1} & \mathbf{e}_{N-1}^{T}L\mathbf{e}_{N}\\ \mathbf{e}_{N}^{T}U\mathbf{e}_{1} & \cdots & \mathbf{e}_{N}^{T}U\mathbf{e}_{N-1} & \mathbf{e}_{N}^{T}\mathbf{e}_{N} \end{bmatrix}$$

Since L is lower-triangular, $\mathbf{e}_i^T L \mathbf{e}_N = 0$ for all $i \neq N$. Likewise, since U is uppertriangular, $\mathbf{e}_N^T U \mathbf{e}_j = 0$ for all $j \neq N$. Therefore the above matrix simplifies to

$$\hat{L}\hat{U} = \begin{bmatrix} \mathbf{e}_{1}^{T}LU\mathbf{e}_{1} & \cdots & \mathbf{e}_{1}^{T}LU\mathbf{e}_{N-1} & 0\\ \vdots & \ddots & \vdots & \vdots\\ \mathbf{e}_{N-1}^{T}LU\mathbf{e}_{1} & \cdots & \mathbf{e}_{N-1}^{T}LU\mathbf{e}_{N-1} & 0\\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

which is the same as LU with the bottom row and rightmost column removed, and a 1 placed in the bottom-right element. Therefore, $\det(\hat{L}\hat{U}) = \det(G^{NN}(P))$, and consequently

$$f^{1}(P) = -\det(\hat{L})\det(\hat{U}).$$
 (3.116)

Note that \hat{L} and \hat{U} are triangular matrices, so

$$\det\left(\hat{L}\right) = \prod_{i=1}^{N} \hat{l}_{ii}, \quad \text{and} \quad \det\left(\hat{U}\right) = \prod_{i=1}^{N} \hat{u}_{ii}.$$

However, only the last diagonal elements of \hat{L} and \hat{U} are different from L and \bar{U} (see (3.69)) respectively, so

$$\det\left(\hat{L}\right) = \hat{l}_{NN} \prod_{i=1}^{N-1} l_{ii}, \quad \text{and} \quad \det\left(\hat{U}\right) = \hat{u}_{NN} \prod_{i=1}^{N-1} \bar{u}_{ii}. \quad (3.117)$$

Now, since $\hat{l}_{NN} = l_{NN} = 1$, we have

$$\det\left(\hat{L}\right) = \det\left(L\right) = 1. \tag{3.118}$$

We also have $\hat{u}_{NN} = 1$, but by Lemma 3.6.2, $\bar{u}_{NN} = N$ and hence

$$\det\left(\hat{U}\right) = \frac{1}{N}\det\left(\bar{U}\right). \tag{3.119}$$

Therefore, substituting (3.118) and (3.119) into (3.116) we obtain

$$f^{1}(P) = -\det\left(\hat{L}\right)\det\left(\hat{U}\right)$$
$$= -\frac{1}{N}\det\left(\bar{U}\right)$$
$$= -\frac{1}{N}\det\left(I - P + \frac{1}{N}\mathbf{e}\mathbf{e}^{T}\right) = \frac{1}{N}f(P).$$

Therefore, part (1) is proved.

The proof of part (2) of Theorem 3.6.11 follows directly from the fact that $\min_{P \in \mathcal{DS}_{\mathbf{x}}} f(P) = -N \text{ (proved in [14]), and part (1).} \qquad \Box$

Remark 3.6.12 Using the leading principal minor has the advantage that the rankone modification $\frac{1}{N} \mathbf{e} \mathbf{e}^T$ is not required, which makes calculating the gradient and the Hessian even simpler, as well as more numerically stable than described in Subsection 3.6.3 and Subsection 3.6.4 respectively. The derivation of the gradient and Hessian formulae for the negative derivative of the leading prinpical minor follows the same process as that for the determinant function, except that the matrix $Q = I - \mathbf{v}\mathbf{w}^T$ is not required.

The formulae for $f^1(A(P))$, $\mathbf{g}^1(P)$ and $H^1(P)$ then reduce to

$$f^{1} = -\prod_{i=1}^{N-1} u_{ii}, \qquad (3.120)$$

$$g_{ij}^1 = -f^1(P)(\mathbf{a}_j^1)^T \mathbf{b}_i^1,$$
 (3.121)

$$H^{1}_{[i,j],[k,\ell]} = g^{1}_{kj}(\mathbf{a}^{1}_{i})^{T}\mathbf{b}^{1}_{\ell} - g^{1}_{ij}(\mathbf{a}^{1}_{k})^{T}\mathbf{b}^{1}_{\ell}, \qquad (3.122)$$

where

$$\hat{L}\mathbf{b}_i^1 = \mathbf{e}_i, \qquad (3.123)$$

$$\hat{U}^T \mathbf{a}_j^1 = \mathbf{e}_j. \tag{3.124}$$

Remark 3.6.13 In practice, we use the negative derivative of the leading principal minor in Algorithm 3.16: DIPA than the determinant, for three reasons. First, it is more efficient to calculate, second, its maximum value is the same for every graph, and third, as is shown in Subsection 3.7.1, it is more numerically stable than the determinant. This eliminates the need to scale any parameters by the size of the graph. When $f^1(P)$ is used in lieu of f(P) the corresponding gradient vector and Hessian matrix are denoted by $g^1(P)$ and $H^1(P)$, respectively.

3.7 LU decomposition-based evaluation algorithm

The algorithm for computing $f^1(P)$, $g^1(P)$, $H^1(P)$ is given in Algorithm 3.4, but is repeated here in a simpler, less structured format for the sake of completion. We also include the complexity of each step of the algorithm.

Input: P	
Output : $f^1(P), g^1(P), H^1(P)$	
begin	Complexity
1) Perform LU decomposition to find $LU = I - P$.	$O(N^3)$
2) Calculate \hat{L} and \hat{U} , using (3.115).	O(N)
3) Calculate each $(\mathbf{a}_i^1)^T$ and \mathbf{b}_i^1 , using (3.123) and (3.124).	$O(N^3)$
	· · ·
4) Calculate each $(\mathbf{a}_{i}^{1})^{T}\mathbf{b}_{i}^{1}$.	$O(N^3)$
	()
5) Calculate $f^{1}(P) = -\prod_{i=1}^{N-1} u_{ii}$.	O(N)
6) Calculate each $a_{\perp}^{1}(P) = -f^{1}(P)(\mathbf{a}_{\perp}^{1})^{T}\mathbf{b}_{\perp}^{1}$.	$O(N^2)$
J_{ij}	- ()
$\begin{cases} a_i^1 \cdot (\mathbf{a}_i^1)^T \mathbf{b}_i^1 - a_i^1 \cdot (\mathbf{a}_i^1)^T \mathbf{b}_i^1, & i \neq k \text{ and } i \neq \ell. \end{cases}$	
7) Calculate each $H^1_{[ij],[k\ell]}(P) = \begin{cases} s_{kj} < z_{\ell} & s_{ij} < z_{\ell} \\ 0 & \text{otherwise.} \end{cases}$	$O(N^4)$
end	

Algorithm 3.18: Function evaluations algorithm (simplified).

The complexity of the above algorithm is $O(N^4)$. The $O(N^4)$ bound is because there are $O(N^4)$ elements in the Hessian. Each element of the Hessian is calculated in O(1)time, because they simply involve scalar multiplication where all of the scalars have already been calculated in earlier steps, that is, the gradient terms in step 6, and each $(\mathbf{a}_i^1)^T \mathbf{b}_l^1$ in step 4.

This bound is considerably better than the $O(N^7)$ bound that applies if we simply perform an LU decomposition for each element in the Hessian and gradient.

These complexity bounds are calculated assuming that Γ is a dense matrix. For sparse matrices containing O(N) arcs, the above algorithm has complexity $O(N^3)$, compared to $O(N^5)$ when performing an LU decomposition for each element in the Hessian and gradient. This $O(N^3)$ complexity is the same complexity as the original LU decomposition itself, so finding the Hessian and gradient in a sparse graph by Algorithm 3.4 has the same complexity as computing the objective function value. **Example 3.7.1** Consider the six-node cubic graph Γ_6 introduced earlier (see (3.58)).

Figure 3.2: The envelope graph Γ_6 .

The adjacency matrix of Γ_6 is

 _					-	
0	1	0	1	1	0	
1	0	1	0	0	1	
0	1	0	1	0	1	
1	0	1	0	1	0	
1	0	0	1	0	1	
0	1	1	0	1	0	
					-	

Consider a point \mathbf{x} such that,

$$P(\mathbf{x}) = \begin{bmatrix} 0 & \frac{2}{3} & 0 & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{2}{3} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & \frac{2}{3} & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{2}{3} & 0 & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 & \frac{2}{3} \\ 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{2}{3} & 0 \end{bmatrix},$$

which is in the interior of $\mathcal{DS}_{\mathbf{x}}$.

Performing the LU decomposition of I - P using MATLAB's lu routine we obtain matrices L and U

		_					-	-
		1	0	0	0	0	0	
		-0.6667	1	0	0	0	0	
т	_	0	-0.3000	1	0	0	0	
\boldsymbol{L}	_	-0.1667	-0.2000	-0.7368	1	0	0	,
		-0.1667	-0.2000	-0.0351	-0.5556	1	0	
		0	-0.3000	-0.2281	-0.4444	-1.0000	1	

,

		1	-0.6667	0	-0.1667	-0.1667	0
		0	0.5556	-0.1667	-0.1111	-0.1111	-0.1667
IJ	_	0	0	0.9500	-0.7000	-0.0333	-0.2167
U	_	0	0	0	0.4342	-0.2412	-0.1930
		0	0	0	0	0.8148	-0.8148
		0	0	0	0	0	0

Consequently, $\hat{L} = \begin{bmatrix} L^T \mathbf{e}_1 & \cdots & L^T \mathbf{e}_{N-1} & \mathbf{e}_N \end{bmatrix}^T$ and $\hat{U} = \begin{bmatrix} U \mathbf{e}_1 & \cdots & U \mathbf{e}_{N-1} & \mathbf{e}_N \end{bmatrix}$ are simply

	_					
	1	0	0	0	0	0
	-0.6667	1	0	0	0	0
_	0	-0.3000	1	0	0	0
_	-0.1667	-0.2000	-0.7368	1	0	0
	-0.1667	-0.2000	-0.0351	-0.5556	1	0
	0	0	0	0	0	1
	=	$= \begin{bmatrix} 1 \\ -0.6667 \\ 0 \\ -0.1667 \\ -0.1667 \\ 0 \end{bmatrix}$	$= \begin{bmatrix} 1 & 0 \\ -0.6667 & 1 \\ 0 & -0.3000 \\ -0.1667 & -0.2000 \\ -0.1667 & -0.2000 \\ 0 & 0 \end{bmatrix}$	$= \begin{bmatrix} 1 & 0 & 0 \\ -0.6667 & 1 & 0 \\ 0 & -0.3000 & 1 \\ -0.1667 & -0.2000 & -0.7368 \\ -0.1667 & -0.2000 & -0.0351 \\ 0 & 0 & 0 \end{bmatrix}$	$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.6667 & 1 & 0 & 0 \\ 0 & -0.3000 & 1 & 0 \\ -0.1667 & -0.2000 & -0.7368 & 1 \\ -0.1667 & -0.2000 & -0.0351 & -0.5556 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -0.6667 & 1 & 0 & 0 & 0 \\ 0 & -0.3000 & 1 & 0 & 0 \\ -0.1667 & -0.2000 & -0.7368 & 1 & 0 \\ -0.1667 & -0.2000 & -0.0351 & -0.5556 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

		_					
		1	-0.6667	0	-0.1667	-0.1667	C
		0	0.5556	-0.1667	-0.1111	-0.1111	C
\hat{U}	_	0	0	0.9500	-0.7000	-0.0333	C
U	_	0	0	0	0.4342	-0.2412	C
		0	0	0	0	0.8148	C
		0	0	0	0	0	1
		-					

For all i, j, we calculate the \mathbf{a}_j^1 and \mathbf{b}_i^1 vectors using (3.123) and (3.124). Namely,

$\mathbf{a}_1^1 =$	$ \begin{array}{c} 1 \\ 0.3750 \\ 0.1429 \\ 0.6 \\ 1.2 \\ 0 \\ \end{array} $, ${f a}_2^1 =$	0 1.1250 0.4286 0.4 0.6 0	, ${f a}_3^1 =$	$0 \\ 0 \\ 1.1429 \\ 0.6 \\ 0.6 \\ 0$, $\mathbf{a}_4^1 =$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1.4 \\ 1.2 \\ 0 \end{array}$, a	$^{1}_{5} =$	0.3 0.1 0 1	0 3750 .429 0.6 2 0	$, {f a}_6^1 =$	0 0 0 0 0 1],
$\mathbf{b}_1^1 =$	1 0.3333 0.1250 0.4286 0.6667 0	$, \mathbf{b}_{2}^{1} =$	0 1 0.375 0.2857 0.3333 0	$, \mathbf{b}_{3}^{1} =$	0 0 1 0.4286 0.3333 0	$\left] \; , \; {\bf b}_4^1 = \right.$	0 0 1 0.66 0	67	$,\mathbf{b}_{5}^{1}$	=	0 0 0 1 0	, ${f b}_{6}^{1}=$	0 0 0 0 0 1	.

We can now represent each $(\mathbf{a}_{j}^{1})^{T}\mathbf{b}_{i}^{1}$ as the ij-th element of the matrix

$$\left[(\mathbf{a}_{j}^{1})^{T}(\mathbf{b}_{i}^{1}) \right]_{i,j=1}^{N,N} = \begin{bmatrix} 2.2 & 1 & 0.8 & 1.4 & 1.2 & 0 \\ 1 & 1.6 & 0.8 & 0.8 & 0.6 & 0 \\ 0.8 & 0.8 & 1.6 & 1 & 0.6 & 0 \\ 1.4 & 0.8 & 1 & 2.2 & 1.2 & 0 \\ 1.2 & 0.6 & 0.7 & 1.2 & 1.8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, $f^1(P) = \prod_{i=1}^{N-1} \hat{u}_{ii} \approx -0.3086$. Note that we can directly verify the preceding by confirming that $\det(A(P)) \approx 1.8516 = -6(f^1(P))$.

The gradient vector is then found using (3.121). Note that we are only interested in the gradient elements for the eighteen arcs in the graph; this yields, to three decimal places:

Finally, the Hessian is be found using (3.122), given here to two decimal places:

	0	0	0	0.78	0.15	0	0	0.04	0	0.11	-0.11	-0.07	0.04	-0.11	0	0	0	0
	0	0	0	0.11	-0.15	0	-0.04	0	0	0.89	0.11	0.30	0.30	0	0	0	0	0
	0	0	0	0.04	-0.15	0	-0.11	-0.11	0	0.30	-0.07	0	0.78	0.33	0	0	0	0
	0.78	0.11	0.04	0	0	0	0.15	-0.11	0	0	0.04	-0.11	0	-0.07	0	0	0	0
	0.15	-0.15	-0.145	0	0	0	0.59	0.15	0	-0.04	0	-0.11	-0.11	-0.15	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	-0.04	-0.11	0.15	0.59	0	0	0	0	-0.15	0.15	-0.15	-0.15	-0.11	0	0	0	0
	0.04	0	-0.11	-0.11	0.15	0	0	0	0	0.11	0.78	0.04	-0.07	0	0	0	0	0
$H^1(P) \approx$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 (1) / v	0.11	0.89	0.30	0	-0.04	0	-0.15	0.11	0	0	0	0	0	0.30	0	0	0	0
	-0.11	0.11	-0.07	0.04	0	0	0.15	0.78	0	0	0	0	-0.11	0.04	0	0	0	0
	-0.07	0.30	0	-0.11	-0.11	0	-0.15	0.04	0	0	0	0	0.33	0.78	0	0	0	0
	0.04	0.30	0.78	0	-0.11	0	-0.15	-0.07	0	0	-0.11	0.33	0	0	0	0	0	0
	-0.11	0	0.33	-0.07	-0.15	0	-0.11	0	0	0.30	0.04	0.78	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3.7.1 Sensitivity

In all of the derivations in this chapter we assume that $P(\mathbf{x})$ is doubly-stochastic. However, when a numerical method such as DIPA is executed on a computer, small inaccuracies may be introduced. It is important to analyse the sensitivity of the formulae derived thus far to ensure that they will still perform adequately in a computer implementation of DIPA.

Recall from (3.82) that $\det(A) = \det(L) \det(I + \mathbf{v}\mathbf{w}^T) \det(\overline{U})$. Here, L and \overline{U} can still be found as the LU Decomposition does not require $P(\mathbf{x})$ to be doubly-stochastic. However, where Lemma 3.6.3 proves that $\det(I + \mathbf{v}\mathbf{w}^T) = 1$ for doubly-

stochastic $P(\mathbf{x})$, the result no longer holds if, numerically, $P(\mathbf{x})$ is not precisely doubly-stochastic.

Assume that we have obtained $P(\mathbf{x})$ such that $P(\mathbf{x})\mathbf{e} = \mathbf{e} - \mathbf{s}$, for some nonnegative error vector \mathbf{s} . Then, from (3.84), (3.85), (3.86) and (3.72) we have

$$\det(I + \mathbf{v}\mathbf{w}^T) = 1 + \left(\frac{1}{N}\mathbf{e}^T - \mathbf{e}_N^T\right) \left(I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_N^T\right)^{-1} \mathbf{e}.$$
 (3.125)

Now, $[I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_N^T]\mathbf{e} = \mathbf{e} + \mathbf{s}$. Therefore, $(I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_N^T)^{-1}\mathbf{e} = \mathbf{e} - (I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_N^T)^{-1}\mathbf{s}$. Substituting this into (3.125) we find

$$\det(I + \mathbf{v}\mathbf{w}^T) = 1 - \left(\frac{1}{N}\mathbf{e}^T - \mathbf{e}_N^T\right) \left(I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_N^T\right)^{-1} \mathbf{s}.$$
 (3.126)

We observe that the additional error introduced into the determinant value is of the same order as the error in the numerically obtained $P(\mathbf{x})$, and will grow or shrink at the same rate as the error is controlled.

It is worth noting that for the principal minor, the $det(I + \mathbf{v}\mathbf{w}^T)$ term is not required, and therefore no additional inaccuracy will be introduced for the principal minor when $P(\mathbf{x})$ is not precisely doubly-stochastic.

For the gradient, the equation given in (3.97) is no longer accurate either, as it assumes that $(I + \mathbf{v}\mathbf{w}^T)^{-1} = I - \mathbf{v}\mathbf{w}^T$ which is not the case when $P(\mathbf{x})$ is not precisely doubly-stochastic.

The additional error introduced is found by considering

$$(I + \mathbf{v}\mathbf{w}^{T})^{-1} - (I - \mathbf{v}\mathbf{w}^{T}) = (I + \mathbf{v}\mathbf{w}^{T})^{-1} [I - (I + \mathbf{v}\mathbf{w}^{T}) (I - \mathbf{v}\mathbf{w}^{T})]$$
$$= (I + \mathbf{v}\mathbf{w}^{T})^{-1} (\mathbf{v}\mathbf{w}^{T}\mathbf{v}\mathbf{w}^{T}). \qquad (3.127)$$

Then, substituting (3.85), (3.86) and (3.72) into (3.127) we obtain

$$\left(I + \mathbf{v}\mathbf{w}^{T}\right)^{-1} - \left(I - \mathbf{v}\mathbf{w}^{T}\right) = \left(I + \mathbf{v}\mathbf{w}^{T}\right)^{-1}\mathbf{v}\left[\left(\frac{1}{N}\mathbf{e}^{T} - \mathbf{e}_{N}^{T}\right)\left(I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_{N}^{T}\right)^{-1}\mathbf{s}\right]\mathbf{w}^{T}$$

Note that the term inside the square brackets is a scalar, and so we can move it to the front to obtain

$$\left(I + \mathbf{v}\mathbf{w}^{T}\right)^{-1} - \left(I - \mathbf{v}\mathbf{w}^{T}\right) = \left[\left(\frac{1}{N}\mathbf{e}^{T} - \mathbf{e}_{N}^{T}\right)\left(I - P(\mathbf{x}) + \mathbf{e}\mathbf{e}_{N}^{T}\right)^{-1}\mathbf{s}\right]\left(I + \mathbf{v}\mathbf{w}^{T}\right)^{-1}\mathbf{v}\mathbf{w}^{T}$$

This additional error is again of the same order as the error in the numerically obtained $P(\mathbf{x})$ and grows or shrinks in accordance with the accuracy of computing $P(\mathbf{x})$. Note that, again, the principal minor form of the problem avoids this issue as the inverse $(I + \mathbf{v}\mathbf{w}^T)^{-1}$ is not required.

As the elements of the Hessian are simply built out of multiplying terms identical to those used to find the gradient elements, the additional error in the Hessian is also of the same order as the inaccuracy of computing $P(\mathbf{x})$.

These additional inaccuracies provide further evidence as to the merit of selecting the principal minor function over the determinant function.

3.7.2 Experimental results

In Sections 3.6 – 3.7 we demonstrate how the $f(P) = -\det (I - P + \frac{1}{N} ee^T)$ function possesses nice properties that allow us to find its gradient and Hessian efficiently. In practice, we do not actually find f(P) and its derivatives, but rather those of the negative derivative of the leading principal minor $f^1(P)$, for which the same nice features are preserved, but the computation is more efficient and accurate, and the Hessian is sparser. We have implemented this process as part of Algorithm 3.16: DIPA, with some encouraging results.

To conclude, we provide an illustration as to the improvement offered by Algorithm 3.4. The time taken to calculate the Hessian at a randomly selected interior point was calculated for four test graphs, and compared to the time taken to compute each element of the Hessian using MATLAB's det function. The results can be seen in Table 3.3.

These encouraging results could be further improved by taking advantage of graph structure to increase the level of sparsity present in the LU decomposition.

Graph	Time to calculate	Using det method				
48 nodes, 144 variables	0.1 seconds	362 seconds				
94 nodes, 282 variables	0.5 seconds	crashed				
144 nodes, 880 variables	0.9 seconds	crashed				
1000 nodes, 3996 variables	680 seconds	crashed				

Table 3.3: Comparison of Algorithm 3.4 with MATLAB's det function.

Chapter 4

Hamiltonian Curves and Surfaces

4.1 Motivation

In this chapter we consider, in considerable detail, the polytope defined in Chapter 2 by linear constraints (2.8)–(2.10). We investigate the behaviour induced on the polytope by the discount parameter β , and later by a perturbation parameter ν . In both cases, we observe that Hamiltonian solutions to the parametrised equations defining the polytopes take the form of vectors whose entries are either 0, or polynomials in these new parameters β and ν . We derive the exact form of these polynomials by considering the determinants of particular matrices. Finally, we introduce new linear feasibility programs by equating coefficients in systems of linear equations characterising the polytopes and show that these new programs are able to identify, by their infeasibility, many non-Hamiltonian graphs.

Every Hamiltonian cycle in an N-node graph Γ induces a doubly stochastic (permutation) matrix whose 1-entries identify precisely the arcs comprising the simple cycle of length N. For instance, if h_s is the standard Hamiltonian graph: $1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow N$ -1 $\rightarrow N \rightarrow 1$, the corresponding permutation matrix is

$$P_{h_s} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & \ddots & \\ 1 & & & 1 \end{pmatrix}$$

Furthermore, any other Hamiltonian cycle h^* in Γ has the corresponding matrix P_{h^*} that can be obtained from P_{h_s} via a similarity transformation

$$P_{h^*} = \Pi P_{h_s} \Pi^{-1}, \tag{4.1}$$

where Π is some permutation matrix. Thus all Hamiltonian cycles are co-spectral, that is, eigenvalues of P_{h_s} and P_{h^*} are the same. In fact, it is well-known that the spectrum of every P_h consists of the N roots of unity (e.g., see Ejov et al [14]).

Thus the shared properties of matrices P_h contain many of the properties characterising the special characteristics of Hamiltonian cycles. Some of the latter are obvious such as the facts that for any Hamiltonian cycle:

- (1) $P_h^N = I$, the identity matrix (since P_h is a clearly circulant matrix).
- (2) $P_h^T = P_h^{-1}$, the idempotent property.
- (3) P_h is an irreducible matrix with the vector $\frac{1}{N}\mathbf{e}^T = \frac{1}{N}\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$ being its unique stationary distribution.

However, a matrix P_h also contains other properties that only become apparent when we consider the associated resolvent matrix¹,

$$R_h(\beta) := [I - \beta P_h]^{-1} = \sum_{n=0}^{\infty} \beta^n P_h^n,$$
 (4.2)

where $\beta \in [0, 1)$, and $P_h^0 := I$. Note that we exclude $\beta = 1$ because it is an eigenvalue of P_h and hence destroys the convergence of the series (4.2).

¹Strictly speaking, the resolvent of a square matrix A is defined by $R(z) = [A - zI]^{-1}$, however, in keeping with the conventions of Markov decision processes $R_h(\beta)$ defined above is the more useful matrix.

Interestingly, entries of $R_h(\beta)$ have a simple algebraic form.

Lemma 4.1.1 Let h be any Hamiltonian cycle in Γ , and P_h be a 0-1 matrix, with 1-entries corresponding exactly to the arcs (i, j) in h. All remaining entries of P_h are equal to 0. Let $d(\beta) := \det(I - \beta P_h), d_{ij}(\beta)$ be the (i, j)-th cofactor of $(I - \beta P_h)$, and $r_{ij}(\beta)$ be the (i, j)-th entry of $R_h(\beta)$. Then

- (1) $d(\beta) = 1 \beta^N$.
- (2) $d_{ij}(\beta) \in \{1, \beta, \beta^2, \dots, \beta^{N-1}\}.$ (3) $r_{ij}(\beta) = \frac{\beta^k}{1 - \beta^N}$, for some $k \in \{0, 1, 2, \dots, N-1\}.$

Proof. First, we show part (1) $d(\beta) = 1 - \beta^N$. From (4.1), we know that

$$d(\beta) := \det(I - \beta P_h) = \det(I - \beta \Pi P_{h_s} \Pi^{-1})$$
$$= \det(\Pi I \Pi^{-1} - \beta \Pi P_{h_s} \Pi^{-1})$$
$$= \det\left[\Pi (I - \beta P_{h_s}) \Pi^{-1}\right]$$
$$= \det(I - \beta P_{h_s}).$$
(4.3)

So the determinant $d(\beta)$ is the same for all Hamiltonian cycles, and hence we simply consider the standard Hamiltonian cycle h_s .

Define $D := I - \beta P_{h_s}$. Then, D has the structure

$$D = \begin{bmatrix} 1 & -\beta & & & \\ & 1 & -\beta & & \\ & & \ddots & \ddots & \\ & & & \ddots & -\beta \\ & & & & 1 \end{bmatrix}.$$
 (4.4)

We perform the following row operation on the N-th row of D:

$$\mathbf{r}_N^T \to \beta \mathbf{r}_1^T + \beta^2 \mathbf{r}_2^T + \dots + \beta^{N-1} \mathbf{r}_{N-1}^T + \mathbf{r}_N^T,$$

which changes the N-th row of D to

$$\mathbf{r}_N^T \to \left[\begin{array}{ccccc} 0 & 0 & 0 & \cdots & 1 - \beta^N \end{array} \right].$$

$$(4.5)$$
We perform the above row operation by multiplying the matrix on the left by the following elementary matrix E:

Then ED is a triangular matrix with N - 1 diagonal entries of 1, and one diagonal entry of $1 - \beta^N$. Clearly, $\det(E) = 1$, so $\det(D) = \det(ED) = 1 - \beta^N$. Therefore, part (1) of Lemma 4.1.1 is proved.

Now, we show part (2) $d_{ij} \in \{1, \beta, \beta^2, \dots, \beta^{N-1}\}$. We define

$$D_h := I - \beta P_h. \tag{4.7}$$

Consider the matrix D_s^C of cofactors d_{ij}^s of D, such that $d_{ij}^s(\beta)$ is the (i, j)-th cofactor of D, and the matrix D_h^C of cofactors $d_{ij}(\beta)$, such that $d_{ij}(\beta)$ is the (i, j)-th cofactor of D_h . Since $P_h = \prod P_{h_s} \prod^{-1}$, it is clear that

$$D_h = \Pi D \Pi^{-1}.$$

We then easily see that

$$D_h^{-1} = \Pi D^{-1} \Pi^{-1},$$

and also, from part (1), that

$$\det(D_h) = \det(D).$$

Then, since an inverse can be thought of as the matrix of cofactors divided by the determinant (e.g., see Horn and Johnson [37] pp. 20–21), we immediately obtain

$$D_h^C = \Pi D_s^C \Pi^{-1}. (4.8)$$

Therefore, the elements in D_h^C are the same as the elements in D_s^C , but in different positions.

Then d_{ij}^s , the (i, j)-th cofactor of D, is

$$d_{ij}^s = (-1)^{i+j} \det(D^{ij}), \tag{4.9}$$

where D^{ij} is the matrix D with row i and column j removed. Note that both d_{ij}^s and $\det(D^{ij})$ depend on β but for simplicity of notation we drop the dependency. We consider two possibilities - when $i \geq j$ and when i < j.

Case 1: $i \ge j$. Then, we observe that D^{ij} has the form:

We now calculate $det(D^{ij})$. Column *i* has only a single entry 1, which occurs at the top-left of the third block in position (i, i), so we expand on this entry, deleting row *i* and column *i* from D^{ij} . This results in a smaller matrix for which the new column *i* (which was previously column i + 1) again has only a single entry. We continue this

process until the bottom-right block is entirely depleted (*i* expansions), which also eliminates the $-\beta$ in the bottom-left position of D^{ij} .

Now, column 1 has only a single entry, and we expand on that column to obtain a smaller matrix that again only has a single entry in column 1. We continue this process until the top-left block is entirely depleted (j - 1 expansions), leaving only the middle block remaining, which is a lower-triangular matrix with determinant $(-\beta)^{i-j}$. Each entry we expand during the above process is a 1, in a diagonal position (so there is no need to consider the sign of each individual cofactor), and therefore $d_{ij} = (-1)^{i+j}(-\beta)^{i-j} = \beta^{i-j}$.

Case 2: i < j. Then, we observe that D^{ij} has the form:

	$\begin{bmatrix} 1 & -\beta \end{bmatrix}$
	1
	··. ··.
	$1 -\beta$
	$(i-1 \times i)$ $1 -\beta$
	$1 -\beta$
	· ·
$D^{ij} =$	$\cdot \cdot -\beta$
	1
	(j-i-1 imes j-i-1) — eta
	$1 -\beta$
	$1 -\beta$
	· ·
	$\cdot \cdot -\beta$
	$\begin{bmatrix} -\beta & 1 \end{bmatrix}$
	$(N-i+1 \times N-i)$

We now calculate det (D^{ij}) . Clearly, column *i* has only a single non-zero entry $-\beta$, which occurs at the bottom-right of the first block in position (i-1,i), so we expand on this entry, deleting row (i-1) and column *i* from D^{ij} . This results in a smaller matrix for which column i-1 has only a single entry, a $-\beta$ in position (i-2, i-1).

We continue this process until the top-left block is depleted (i - 1 expansions). Next, we expand on column 1 to eliminate the $-\beta$ in the bottom-left position of D^{ij} . This ensures that the rightmost column now has only a single non-zero entry in it, which will be $-\beta$. We expand on this column, which results in a smaller matrix which again has only a single entry, $-\beta$, in the right column. We continue this process until the bottom-right block is depleted (N - j expansions), leaving only the middle block remaining, which is an upper triangular matrix with determinant 1.

Each entry we expand on in the above process is a $-\beta$, but some of the expansions introduce a negative term. All i - 1 terms in the top-left block are in superdiagonal positions, and therefore each provides a negative term. We expand on the $-\beta$ in the bottom-left of the matrix after i - 1 rows are eliminated from the matrix (which originally has N - 1 rows), and so we obtain the negative term $(-1)^{N-1-(i-1)+1} =$ $(-1)^{N-i+1}$ from this expansion. The (N-j) terms we expand on in the bottom-right block are in diagonal positions and do not provide any negative terms. Then, we see that

$$d_{ij} = (-1)^{i+j} (-1)^{i-1} (-1)^{N-i+1} (-\beta)^{i-1} (-\beta) (-\beta)^{N-j}$$

= $(-1)^{N-j+i} (-\beta)^{N-j+i} = \beta^{N-j+i}.$

Therefore, we observe that every cofactor of D (and hence $I - \beta P_h$) is β^k for some $k \in \{0, 1, 2, ..., N - 1\}$, which completes the proof of part (2) of Lemma 4.1.1.

Then, we recall that an inverse can be thought of as the matrix of cofactors divided by the determinant. Hence, it is immediately obvious from parts (1) and (2) that part (3) holds. \Box

Corollary 4.1.2 We assume that i = 1 is the initial (home) node in the Hamiltonian cycle h and j is the k-th node following the home node in h. By convention, we say that node i = 1 is the 0-th node after the home node. Then,

$$d_{j1} = \beta^k$$
 and $r_{1j} = \frac{\beta^k}{1 - \beta^N}$.

Proof. From the proof of Lemma 4.1.1 we see that for the standard Hamiltonian

cycle, $d_{(k+1),1}^s = \beta^k$. In the standard Hamiltonian cycle, node (k+1) is the k-th node following the home node.

For a general Hamiltonian cycle h, we know from (4.8) that

$$d_{j1} = d^s_{(k+1),1}. (4.10)$$

Then, from (4.10) and the proofs of parts (1) and (3) in Lemma 4.1.1 we immediately see that

$$r_{1j} = \frac{\beta^k}{1 - \beta^N}.$$
 (4.11)

This completes the proof.

We recall from Section 2.2 that $\mathcal{A}(i)$ is the set of all nodes reachable in one step from node *i*, and further define $\mathcal{B}(i)$ to be the set of all nodes that can reach node *i* in one step. Then, we recall from (1.10) that $X(\beta)$ is a polytope defined by the system of linear constraints

$$\sum_{i} \sum_{a} \left(\delta_{ij} - \beta p_{iaj} \right) x_{ia} = \left(1 - \beta^{N} \right) \delta_{ij}, \quad j = 1, \dots, N,$$
(4.12)

$$\sum_{a \in \mathcal{A}(1)} x_{1a} = 1, \tag{4.13}$$

$$x_{ia} \geq 0, \quad i = 1, \dots, N, \quad a \in \mathcal{A}(i).$$
 (4.14)

Let $\mathbf{x}(\beta) \in X(\beta)$, then the entries of \mathbf{x} (for simplicity of notation, we drop the dependency on β) are in one-to-one correspondence with arcs (i, a), so that $x_{ia} = [\mathbf{x}]_{ia}$ for all $(i, a) \in \Gamma$. We say that $\mathbf{x}_h \in X(\beta)$ is Hamiltonian if there exists a Hamiltonian cycle h in the graph Γ such that for every $\beta \in (0, 1)$,

- (1) $[\mathbf{x}_h]_{ia} = 0$ whenever $(i, a) \notin h$, and
- (2) $[\mathbf{x}_h]_{ia} > 0$ otherwise.

The importance of Lemma 4.1.1 and Corollary 4.1.2 is that they characterize the Hamiltonian (extreme) points of the polytope above to form a feasible region of various optimisation problems that can solve HCP.

Figure 4.1: A 4-node graph with 10 arcs and two Hamiltonian cycles.

We note that all vectors \mathbf{x} satisfying (4.12) also satisfy the matrix equation

$$W(\beta)\mathbf{x} = (1 - \beta^N) \mathbf{e}_1, \qquad (4.15)$$

where $\mathbf{e_1} = [1, 0, \dots, 0]^T \in \mathbb{R}^N$, $W(\beta)$ is an $N \times m$ matrix (with *m* denoting the total number of arcs) whose rows are subscripted by *j* and columns by the pair *ia*. That is, a typical (j, ia)-entry of $W(\beta)$ is given by

$$w_{j,ia} := [W(\beta)]_{j,ia} = \delta_{ij} - \beta p_{iaj}, \quad j = 1, \dots, N, \quad (i,a) \in \Gamma.$$
(4.16)

Example 4.1.3 Consider the 4-node graph Γ_4 displayed in Figure 4.1.

It is clear that $\mathcal{A}(1) = \{2, 3, 4\}, \ \mathcal{A}(2) = \{1, 3\}, \ \mathcal{A}(3) = \{2, 4\}, \ \mathcal{A}(4) = \{1, 2, 3\}.$ Hence any $\mathbf{x} \in X(\beta)$ is of the form $\mathbf{x}^T = (x_{12}, x_{13}, x_{14}, x_{21}, x_{23}, x_{32}, x_{34}, x_{41}, x_{42}, x_{43}).$

Furthermore, $W(\beta)$ is a 4×10 matrix and equation (4.15) becomes

$$\begin{bmatrix} 1 & 1 & 1 & | & -\beta & 0 & | & 0 & 0 & | & -\beta & 0 & 0 \\ -\beta & 0 & 0 & | & 1 & 1 & | & -\beta & 0 & | & 0 & -\beta & 0 \\ 0 & -\beta & 0 & | & 0 & -\beta & | & 1 & 1 & | & 0 & 0 & -\beta \\ 0 & 0 & -\beta & | & 0 & 0 & | & 0 & -\beta & | & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{21} \\ x_{23} \\ x_{32} \\ x_{34} \\ x_{41} \\ x_{42} \\ x_{43} \end{bmatrix} = \begin{bmatrix} 1 - \beta^4 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \quad (4.17)$$

We define h_1 as the Hamiltonian cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ and h_2 as the reverse cycle $1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$. Clearly, both h_1 and h_2 are Hamiltonian cycles in Γ_4 . Also, we can view them as collections of arcs, namely, $h_1 = \{(1,2), (2,3), (3,4), (4,1)\}$ and $h_2 = \{(1,4), (4,3), (3,2), (2,1)\}$. Now, we let \mathbf{x}_1^T and \mathbf{x}_2^T be two 10-dimensional vectors corresponding to h_1 and h_2 respectively:

$$\mathbf{x}_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & \beta & 0 & \beta^{2} & \beta^{3} & 0 & 0 \end{bmatrix}$$

and

$$\mathbf{x}_{2}^{T} = \begin{bmatrix} 0 & 0 & 1 & \beta^{3} & 0 & \beta^{2} & 0 & 0 & \beta \end{bmatrix}.$$

We observe that both \mathbf{x}_1 and \mathbf{x}_2 in Example 4.1.3 satisfy (4.17), and therefore (4.12). Indeed, they also satisfy (4.13) and (4.14), and their positive entries correspond to linearly independent columns of $W(\beta)$. It follows that \mathbf{x}_1 and \mathbf{x}_2 are extreme points of $X(\beta)$. They are also (the only) Hamiltonian points in $X(\beta)$ for Γ_4 .

Given the above, it seems plausible that all non-zero entries of all Hamiltonian points in $X(\beta)$ lie on exactly N curves $c_k(\beta)$

$$c_k(\beta) = \beta^k, \quad k = 0, 1, \dots, N - 1,$$
(4.18)

defined on the interval (0, 1). We call these the *canonical Hamiltonian curves* (cHc) of N-node graphs.

Example 4.1.3 (cont.) For the 4-node graph Γ_4 in Example 4.1.3, we display the four canonical Hamiltonian curves in Figure 4.2.

4.2 Canonical curves and Hamiltonian extreme points

In this section we prove that the characteristics of Hamiltonian points \mathbf{x}_1 and \mathbf{x}_2 demonstrated in Example 4.1.3 hold in general. Specifically, we show that if $\mathbf{x}_h \in X(\beta)$ is Hamiltonian, then its positive entries, as functions of β , coincide with (4.18). Moreover, the order of the mapping of these entries onto the canonical curves corresponds precisely to the order of arcs on the Hamiltonian cycle h.

Figure 4.2: The cHc's of 4-node graphs.

In what follows we consider the Hamiltonian cycle

$$h: j_0 = 1 \to j_1 \to j_2 \to \dots \to j_{N-2} \to j_{N-1} \to 1 = j_N, \tag{4.19}$$

consisting of the selection of arcs

$$(1, j_1), (j_1, j_2), \dots, (j_{N-2}, j_{N-1}), (j_{N-1}, 1).$$

Thus j_k is the k-th node in h following the home node $j_0 = 1$, for each $k = 0, 1, \ldots, N - 1$. Motivated by Example 4.1.3 we construct a vector $\mathbf{x}_h = \mathbf{x}_h(\beta)$ (with $\beta \in [0, 1)$), according to

$$[\mathbf{x}_{h}]_{ia} = \begin{cases} 0, & (i,a) \notin h, \\ \beta^{k}, & (i,a) = (j_{k}, j_{k+1}), k = 0, 1, 2, \dots, N - 1. \end{cases}$$
(4.20)

Theorem 4.2.1 Recall that $X(\beta)$ is defined by (4.12)–(4.14), h is any Hamiltonian cycle, and that \mathbf{x}_h is constructed as given in (4.20). It follows that

- (1) \mathbf{x}_h is an extreme point of $X(\beta)$.
- (2) $[\mathbf{x}_h]_{j_k,j_{k+1}} = c_k(\beta) = d_{j_k,1}, \quad k = 0, 1, \dots, N-1.$

Figure 4.3: The cHc's of 10-node graphs.

Proof. For part (1) we note that, by construction, $\mathbf{x}_h \ge 0$ and $\sum_{a \in A(1)} [\mathbf{x}_h]_{1a} = \beta^0 = 1$. Thus, (4.13) and (4.14) are satisfied. Furthermore, substituting \mathbf{x}_h into the left hand side of (4.12), for j = 1, we obtain by (4.20)

$$\sum_{a \in \mathcal{A}(1)} [\mathbf{x}_h]_{1a} - \beta \sum_{i \in \mathcal{B}(1)} [\mathbf{x}_h]_{i1} = [\mathbf{x}_h]_{1j_1} - \beta [\mathbf{x}_h]_{j_{N-1}1}$$
$$= \beta^0 - \beta \beta^{N-1}$$
$$= 1 - \beta^N,$$

which coincides with the right hand side of (4.12) for j = 1. Now, if $j = j_k$ for $k \ge 1$ and, again, we substitute \mathbf{x}_h into the left hand side of (4.12), then we obtain from (4.20)

$$\sum_{a \in A(j_k)} [\mathbf{x}_h]_{j_k a} - \beta \sum_{i \in B(j_k)} [\mathbf{x}_h]_{ij_k} = [\mathbf{x}_h]_{j_k j_{k+1}} - \beta [\mathbf{x}_h]_{j_{k-1} j_k}$$
$$= \beta^k - \beta \beta^{k-1}$$
$$= 0,$$

that coincides with the right hand side of (4.12) for $j \ge 2$. Thus, \mathbf{x}_h satisfies (4.12) as well, and therefore $\mathbf{x} \in X(\beta)$. Next, we define $\overline{\mathbf{x}}_h$ as an *N*-component vector consisting of only the positive entries in \mathbf{x}_h . We then observe that satisfying (4.12) reduces to satisfying

$$(I - \beta P_h)^T \overline{\mathbf{x}}_h = (1 - \beta^N) \mathbf{e}_1, \qquad (4.21)$$

when we suppress columns of $W(\beta)$ that correspond to 0 entries of \mathbf{x}_h . Since columns of $(I - \beta P_h)^T$ are linearly independent, \mathbf{x}_h is a basic feasible solution of (4.12) and (4.14) that also satisfies (4.13). It follows that \mathbf{x}_h is an extreme point of $X(\beta)$.

For part (2) it follows from (4.21) that

$$\overline{\mathbf{x}}_h^T = (1 - \beta^N) \mathbf{e}_1^T (I - \beta P_h)^{-1} = (1 - \beta^N) \mathbf{e}_1^T R_h(\beta).$$
(4.22)

The result now follows from Lemma 4.1.1, Corollary 4.1.2, and the adjoint form of $R_h(\beta)$.

The importance of Theorem 4.2.1 stems from the fact that we now know that the canonical Hamiltonian curves fully describe the relative weights, as functions of β , that a Hamiltonian cycle associates to the arcs it selects. Asymptotically, with the exception of the first arc, all these weights tend to 0 as $\beta \downarrow 0$ and to 1 as $\beta \uparrow$ 1. Separation between β^k and β^ℓ when $k > \ell$ may also prove to contain useful information in further analyses.

We represent \mathbf{x}_h in the following form

$$\mathbf{x}_h = \sum_{k=0}^{N-1} \beta^k \mathbf{x}_h^k, \qquad (4.23)$$

where each \mathbf{x}_{h}^{k} is a vector containing a single unit in the position corresponding to the k-th arc of the Hamiltonian cycle h, and all other entries are zero. Recall that we refer to the initial arc (1, i) of a Hamiltonian cycle as the 0-th arc in that Hamiltonian cycle.

Recall also that the linear equations that defined $X(\beta)$ take the form

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta p_{iaj} \right) x_{ia} = (1 - \beta^N) \delta_{1j}, \quad j = 1, \dots, N,$$
$$\sum_{a \in \mathcal{A}(1)} x_{1a} = 1,$$
$$x_{ia} \geq 0, \quad (i, a) \in \Gamma.$$

We represent the above linear equations in matrix form as $\tilde{W}(\beta)\mathbf{x} = \mathbf{b}$. We then separate \tilde{W} into two matrices W_0 and W_1 , which correspond to the expressions without and with β respectively. That is, $\tilde{W} = W_0 + \beta W_1$, where

$$W_0 = \begin{bmatrix} \Delta \\ \vdots \\ 1 \cdots 1 \ 0 \cdots \cdots 0 \end{bmatrix}, \qquad W_1 = \begin{bmatrix} -P \\ \vdots \\ 0 \cdots \cdots \cdots 0 \end{bmatrix}, \qquad (4.24)$$

where $\Delta := [\delta_{ij}]_{j=1,(i,a)\in\Gamma}^N$, and $P = [p_{iaj}]_{j=1,(i,a)\in\Gamma}^N$.

Example 4.2.2 Consider the complete 4-node graph Γ_4^c , defined by the adjacency matrix

$$\mathbb{A}_{4}^{c} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$
(4.25)

For this graph, \tilde{W} has the form

In a similar fashion, we separate the vector \mathbf{b} into two vectors \mathbf{b}_0 and \mathbf{b}_N , where $\mathbf{b} = \mathbf{b}_0 + \beta^N \mathbf{b}_N$, by defining

$$\mathbf{b}_{0} = \begin{bmatrix} 1\\0\\\vdots\\0\\1 \end{bmatrix}, \qquad \mathbf{b}_{N} = \begin{bmatrix} -1\\0\\\vdots\\0\\0 \end{bmatrix}.$$
(4.26)

Then, we rewrite the constraints of $X(\beta)$ as

$$(W_0 + \beta W_1)\mathbf{x} = \mathbf{b}_0 + \beta^N \mathbf{b}_N,$$
$$x_{ij} \geq 0.$$

Then, from (4.23) we know that any Hamiltonian solution has a particular structure. We can substitute this into the above equality constraints to obtain

$$(W_0 + \beta W_1) \left(\sum_{k=0}^{N-1} \mathbf{x}_h^k \beta^k \right) = \mathbf{b}_0 + \beta^N \mathbf{b}_N,$$

and expanding the above sum we obtain

$$(W_0 + \beta W_1) \left(\mathbf{x}_h^0 + \beta \mathbf{x}_h^1 + \ldots + \beta^{N-1} \mathbf{x}_h^{N-1} \right) = \mathbf{b}_0 + \beta^N \mathbf{b}_N.$$
(4.27)

We know from Theorem 4.2.1 that \mathbf{x}_h is feasible (and in particular, extremal) for all choices of $\beta \in [0, 1)$. We take advantage of this fact by expanding the left hand side of (4.27), and equating coefficients of corresponding powers of β to arrive at a new, parameter-free model. To emphasise that we do not know a Hamiltonian cycle in advance, we drop the subscript of h from the \mathbf{x}^k vectors.

$$W_0 \mathbf{x}^0 = \mathbf{b}_0,$$

$$W_0 \mathbf{x}^1 + W_1 \mathbf{x}^0 = \mathbf{0},$$

$$W_0 \mathbf{x}^2 + W_1 \mathbf{x}^1 = \mathbf{0},$$

$$W_0 \mathbf{x}^3 + W_1 \mathbf{x}^2 = \mathbf{0},$$

$$\vdots$$

$$W_0 \mathbf{x}^{N-1} + W_1 \mathbf{x}^{N-2} = \mathbf{0},$$

$$W_1 \mathbf{x}^{N-1} = \mathbf{b}_N.$$

The above system of linear equations has the following block structure

We then add to these parameter free linear equations further constraints on the new \mathbf{x}^k variables. In particular, if each \mathbf{x}^k contains only a single unit and the rest of the entries are non-zero, then \mathbf{x}^k is a Hamiltonian solution. However, this requires integer constraints, so we relax the integer requirement and instead impose the following additional, linear, constraints

$$\sum_{(i,a)\in\Gamma} x_{ia}^k = 1, \quad k = 0, \dots, N-1,$$
(4.29)

$$x_{ia}^k \ge 0, \quad k = 0, \dots, N - 1, \quad (i, a) \in \Gamma.$$
 (4.30)

Our intention for this model is that by requiring the solution to satisfy the original $X(\beta)$ for all values of β as well as the structure specified in (4.23), only Hamiltonian solutions exist. The relaxation of (4.23) to (4.29)–(4.30) admits solutions which do not correspond to Hamiltonian cycles. Nonetheless, it is plausible that for a Hamiltonian graph, an extreme point solution found by an LP solver for the feasibility program made out of constraints (4.28)–(4.30) is more likely to correspond to a Hamiltonian cycle than that for (4.12)–(4.14).

We also hope that for some non-Hamiltonian graphs, the nonexistence of Hamiltonian solutions would imply that there are no feasible solutions to (4.28)–(4.30). Unfortunately, initial testing found no examples of this. However, the separation of the \mathbf{x}_h vector into coefficients of the powers of β offers an additional level of freedom that is not present in the original form of $X(\beta)$, which we now take advantage of. From Theorem 4.2.1, we know that the element (i, a) in \mathbf{x}_h corresponding to the k-th arc of a Hamiltonian cycle is equal to β^k , that is, $[x_h]_{ia} = \beta^k$. In the expanded form of \mathbf{x}_h , this implies that $[x^k]_{ia} = 1$.

Consequently, successive arcs belong to the non-zero elements in successive \mathbf{x}^k , and hence satisfy the following set of auxilliary constraints

$$\sum_{a \in \mathcal{B}(i)} x_{ai}^k + \sum_{j \neq i} \sum_{b \in \mathcal{A}(j)} x_{jb}^{k+1} = 1, \quad k = 0, \dots, N-2, \quad i = 1, \dots, N, \quad (4.31)$$

$$\sum_{a \in \mathcal{B}(1)} x_{a1}^{N-1} + \sum_{j \neq 1} \sum_{b \in \mathcal{A}(j)} x_{1b}^0 = 1.$$
(4.32)

The intuition behind these constraints is that exactly one of the following two statements must be true for every node i in every step k:

- 1) the node i is entered in step k, or
- 2) a node other than i is departed from in step k + 1 (or step 0 if k = N 1).

We refer to constraints (4.28)–(4.32) the parameter-free LP feasibility model (PFLP). We tested PFLP on many sets of Hamiltonian cubic graphs. In some cases, for Hamiltonian graphs, we found an exact Hamiltonian cycle, but these cases were rare. We also tested PFLP on sets of non-Hamiltonian cubic graphs, and we found that PFLP is an infeasible set of constraints for every cubic bridge graph (all of which are non-Hamiltonian), up to and including size 18. However, for every non-bridge non-Hamiltonian (NHNB) graph considered, up to and including size 18, PFLP is a feasible set of constraints. This experiment led us to the following conjecture.

Conjecture 4.2.3 The constraints (4.28)–(4.32) form an infeasible polytope for any Γ corresponding to a bridge graph.

In all of our experiments where a feasible solution is found that does not correspond to the canonical Hamiltonian curves, for each node we observe that the set of variables corresponding to arcs emanating from that node contains multiple non-zero entries whose sum is β^k for some k. We call the curves of this type *fake Hamiltonian curves*. An example of this phenomenon is shown in Figure 4.4.

4.3 Canonical Hamiltonian surfaces

In this section we consider a perturbed probability transition matrix

 $P^{\nu} := (1-\nu)P + \frac{\nu}{N}J$. Clearly, if P is doubly stochastic, then P^{ν} is doubly stochastic as well for $0 \le \nu \le 1$.

In particular, we consider $X(\beta, \nu)$, the more general set of constraints for which $X(\beta)$

Figure 4.4: A set of 30 fake Hamiltonian curves for a 10-node graph.

is a special case where $\nu = 0$. Let d_{iaj} be defined as

$$d_{iaj} := \begin{cases} \frac{1}{N}, & p_{iaj} = 0, \\ -\frac{N-1}{N}, & p_{iaj} = 1. \end{cases}$$
(4.33)

Then, $X(\beta, \nu)$ are defined by the following constraints:

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta (p_{iaj} + \nu d_{iaj}) \right) x_{ia} = d^{\nu}(\beta) \delta_{1j}, \quad j = 1, \dots, N, \quad (4.34)$$

$$\sum_{a \in \mathcal{A}(1)} x_{1a} = 1, \tag{4.35}$$

$$x_{ia} \geq 0, \quad (i,a) \in \Gamma. \tag{4.36}$$

We now derive formulae for the reverse standard Hamiltonian cycle h_R , which is selected in lieu of the standard Hamiltonian cycle h to make some of the proceeding calculations simpler. All of the proceeding formulae can be generalised to generic Hamiltonian cycles via permutation transformations such as that given in (4.1). The eventual result that we prove is that all Hamiltonian solutions to (4.34)–(4.36) take the form

$$[\mathbf{x}_{h_R}^*]_{ia} = \begin{cases} \sum_{k=0}^{N-1} \sum_{\ell=0}^k c_{k\ell}^r \beta^k \nu^\ell, & (i,a) = (N-r+1, N-r) \text{ for some } r, \\ 0, & \text{otherwise,} \end{cases}$$

for certain coefficients $c_{k\ell}^r(\beta)$ that we derive in this section.

Lemma 4.3.1 Let h_R be the standard reverse Hamiltonian cycle containing arcs $1 \rightarrow N \rightarrow N-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and P_{h_R} be the associated probability transition matrix. We define $P_{h_R}^{\nu} := (1-\nu)P_{h_R} + \frac{\nu}{N}J$, and $M := I - \beta P_{h_R}^{\nu}$. We define $d^{\nu}(\beta) := \det(M)$, and $\lambda := \beta \nu - \beta$. Then

$$d^{\nu}(\beta) = (1-\beta)\frac{1-(-\lambda)^{N}}{1+\lambda}.$$
 (4.37)

Proof. Consider the matrix M which is of the following form

$$\begin{bmatrix} 1 - \frac{1}{N}\beta\nu & -\frac{1}{N}\beta\nu & \cdots & \cdots & -\frac{1}{N}\beta\nu & -\beta(1 - \frac{N-1}{N}\nu) \\ -\beta(1 - \frac{N-1}{N}\nu) & 1 - \frac{1}{N}\beta\nu & -\frac{1}{N}\beta\nu & \cdots & \cdots & -\frac{1}{N}\beta\nu \\ -\frac{1}{N}\beta\nu & -\beta(1 - \frac{N-1}{N}\nu) & 1 - \frac{1}{N}\beta\nu & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & -\frac{1}{N}\beta\nu \\ -\frac{1}{N}\beta\nu & \cdots & \cdots & -\frac{1}{N}\beta\nu & -\beta(1 - \frac{N-1}{N}\nu) & 1 - \frac{1}{N}\beta\nu \end{bmatrix}.$$
(4.38)

Finding the determinant of this matrix directly is quite difficult, but an appropriate change of basis makes the matrix sparse, which makes the determinant simpler to calculate. One such basis is

$$B = I + \mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N \mathbf{e}_N^T, \qquad (4.39)$$

whose inverse has the simple form

$$B^{-1} = I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T. \tag{4.40}$$

We verify (4.40) as follows:

$$B(I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T) = (I + \mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N \mathbf{e}_N^T)(I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T)$$

$$= I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T + \mathbf{e}\mathbf{e}_N^T - \mathbf{e}\mathbf{e}_N^T \mathbf{e}\mathbf{e}_N^T + \mathbf{e}\mathbf{e}_N^T \mathbf{e}_N \mathbf{e}_N^T$$

$$-\mathbf{e}_N \mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T \mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N \mathbf{e}_N^T \mathbf{e}_N \mathbf{e}_N^T$$

$$= I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T + \mathbf{e}\mathbf{e}_N^T - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N \mathbf{e}_N^T + \mathbf{e}_N \mathbf{e}_N^T - \mathbf{e}_N \mathbf{e}_N^T$$

$$= I.$$

These two matrices have the form

$$B = \begin{bmatrix} 1 & & & 1 \\ 1 & & & 1 \\ & \ddots & & \vdots \\ & & \ddots & \vdots \\ & & & 1 & 1 \\ & & & & 1 \end{bmatrix} , \quad B^{-1} = \begin{bmatrix} 1 & & & -1 \\ 1 & & & -1 \\ & & \ddots & & \vdots \\ & & & \ddots & \vdots \\ & & & & 1 & -1 \\ & & & & 1 \end{bmatrix}.$$

For simplicity of notation we define $\gamma_1 := \beta(1-\nu)$ and $\gamma_2 := \frac{\beta\nu}{N}$, so that $M = I - \gamma_1 P_{h_R} - \gamma_2 J$. Note that $\gamma_1 = -\lambda$. Consider $B^{-1}MB$ that corresponds to the change of basis via B:

$$B^{-1}MB = (I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N\mathbf{e}_N^T) [I - \gamma_1 P_{h_R} - \gamma_2 J] (I + \mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N\mathbf{e}_N^T).$$

We expand first the two rightmost factors. Recalling that $P_{h_R} \mathbf{e} = \mathbf{e}$, $J \mathbf{e}_N = \mathbf{e}$ and $J \mathbf{e} = (N) \mathbf{e}$, we obtain

$$B^{-1}MB = (I - \mathbf{e}\mathbf{e}_{N}^{T} + \mathbf{e}_{N}\mathbf{e}_{N}^{T}) \left[I + \mathbf{e}\mathbf{e}_{N}^{T} - \mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{1}P_{h_{R}} - \gamma_{1}P_{h_{R}}\mathbf{e}\mathbf{e}_{N}^{T} + \gamma_{1}P_{h_{R}}\mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{2}J - \gamma_{2}J\mathbf{e}\mathbf{e}_{N}^{T} + \gamma_{2}J\mathbf{e}_{N}\mathbf{e}_{N}^{T}\right]$$

$$= (I - \mathbf{e}\mathbf{e}_{N}^{T} + \mathbf{e}_{N}\mathbf{e}_{N}^{T}) \left[I + \mathbf{e}\mathbf{e}_{N}^{T} - \mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{1}P_{h_{R}} - \gamma_{1}\mathbf{e}\mathbf{e}_{N}^{T} + \gamma_{1}P_{h_{R}}\mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{2}J - \gamma_{2}N\mathbf{e}\mathbf{e}_{N}^{T} + \gamma_{2}\mathbf{e}\mathbf{e}_{N}^{T}\right].$$

Gathering like terms we find

$$B^{-1}MB = (I - \mathbf{e}\mathbf{e}_N^T + \mathbf{e}_N\mathbf{e}_N^T) \left[I + (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N\mathbf{e}_N^T - \gamma_1 P_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T) - \gamma_2 J \right].$$

Then, expanding the above we obtain

$$B^{-1}MB = I + (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N\mathbf{e}_N^T - \gamma_1P_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T) - \gamma_2J$$

$$-\mathbf{e}\mathbf{e}_N^T - (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}\mathbf{e}_N^T\mathbf{e}\mathbf{e}_N^T + \mathbf{e}\mathbf{e}_N^T\mathbf{e}_N\mathbf{e}_N^T + \gamma_1\mathbf{e}\mathbf{e}_N^TP_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T)$$

$$+\gamma_2\mathbf{e}\mathbf{e}_N^TJ + \mathbf{e}_N\mathbf{e}_N^T + (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}_N\mathbf{e}_N^T\mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N\mathbf{e}_N^T\mathbf{e}_N\mathbf{e}_N^T$$

$$-\gamma_1\mathbf{e}_N\mathbf{e}_N^TP_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T) - \gamma_2\mathbf{e}_N\mathbf{e}_N^TJ.$$

Noting that $\mathbf{e}_N^T \mathbf{e} = \mathbf{e}_N^T \mathbf{e}_N = 1$, and that $\mathbf{e}\mathbf{e}_N^T J = J$, we see that

$$B^{-1}MB = I + (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}\mathbf{e}_N^T - \mathbf{e}_N\mathbf{e}_N^T - \gamma_1P_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T) - \gamma_2J$$

- $\mathbf{e}\mathbf{e}_N^T - (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}\mathbf{e}_N^T + \mathbf{e}\mathbf{e}_N^T + \gamma_1\mathbf{e}\mathbf{e}_N^TP_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T) + \gamma_2J$
+ $\mathbf{e}_N\mathbf{e}_N^T + (1 - \gamma_1 - (N - 1)\gamma_2)\mathbf{e}_N\mathbf{e}_N^T - \mathbf{e}_N\mathbf{e}_N^T - \gamma_1\mathbf{e}_N\mathbf{e}_N^TP_{h_R}(I - \mathbf{e}_N\mathbf{e}_N^T) - \gamma_2\mathbf{e}_N\mathbf{e}^T.$

Finally, we collect like terms, note that $\mathbf{e}_N^T P_{h_R} = \mathbf{e}_{N-1}^T$, $P_{h_R} \mathbf{e}_N = \mathbf{e}_1$, and $\mathbf{e}_N^T P_{h_R} \mathbf{e}_N = 0$, and substitute $\gamma_1 = \beta(1 - \nu)$ and $\gamma_2 = \frac{\beta\nu}{N}$ back into the equation to obtain

$$B^{-1}MB = I - \mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{1}P_{h_{R}}(I - \mathbf{e}_{N}\mathbf{e}_{N}^{T}) + \gamma_{1}\mathbf{e}\mathbf{e}_{N}^{T}P_{h_{R}}(I - \mathbf{e}_{N}\mathbf{e}_{N}^{T}) + (1 - \gamma_{1} - (N - 1)\gamma_{2})\mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{1}\mathbf{e}_{N}\mathbf{e}_{N}^{T}P_{h_{R}}(I - \mathbf{e}_{N}\mathbf{e}_{N}^{T}) - \gamma_{2}\mathbf{e}_{N}\mathbf{e}^{T} = I - (\gamma_{1} + (N - 1)\gamma_{2})\mathbf{e}_{N}\mathbf{e}_{N}^{T} - \gamma_{1}P_{h_{R}}(I - \mathbf{e}_{N}\mathbf{e}_{N}^{T}) + \gamma_{1}\mathbf{e}\mathbf{e}_{N}^{T}P_{h_{R}} - \gamma_{1}\mathbf{e}_{N}\mathbf{e}_{N}^{T}P_{h_{R}} - \gamma_{2}\mathbf{e}_{N}\mathbf{e}^{T} = I - (\beta - \frac{\beta\nu}{N})\mathbf{e}_{N}\mathbf{e}_{N}^{T} + \lambda \left[P_{h_{R}} - \mathbf{e}_{1}\mathbf{e}_{N}^{T} - \mathbf{e}\mathbf{e}_{N-1}^{T} + \mathbf{e}_{N}\mathbf{e}_{N-1}^{T}\right] - \frac{\beta\nu}{N}\mathbf{e}_{N}\mathbf{e}^{T}$$

Thus, the matrix transformation M in the new basis takes the form

$$B^{-1}MB = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 & -\lambda & 0 \\ \lambda & 1 & 0 & \cdots & 0 & -\lambda & 0 \\ 0 & \lambda & 1 & 0 & \cdots & 0 & -\lambda & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \lambda & 1 & -\lambda & 0 \\ 0 & \cdots & \cdots & 0 & \lambda & 1 -\lambda & 0 \\ -\frac{1}{N}\beta\nu & -\frac{1}{N}\beta\nu & \cdots & \cdots & -\frac{1}{N}\beta\nu & \frac{(N-1)\beta\nu}{N} - \beta & 1 - \beta \end{bmatrix}.$$
 (4.41)

To find $d^{\nu}(\beta) = \det(M) = \det(B^{-1}MB)$, we expand (4.41) on column N. There is only a single non-zero entry in this column, namely $(1 - \beta)$, in position (N, N). Performing this expansion, we find

$$d^{\nu}(\beta) = (-1)^{N+N} (1-\beta) \det([B^{-1}MB]^{N,N})$$

= $(1-\beta) \det([B^{-1}MB]^{N,N}),$ (4.42)

where $[B^{-1}MB]^{N,N}$ is (4.41) with row N and column N removed. To find $det([B^{-1}MB]^{N,N})$, we first multiply $[B^{-1}MB]^{N,N}$, on the right, by an $(N-1)\times(N-1)$ elementary matrix E:

$$E := I + \mathbf{e}\mathbf{e}_{N-1}^{T} - \mathbf{e}_{N-1}\mathbf{e}_{N-1}^{T}, \qquad (4.43)$$

which has the same structure as the $N \times N$ matrix (4.39). Then, we obtain the following $(N-1) \times (N-1)$ upper-Hessenberg matrix (that is, an upper-triangular matrix that also has non-zeros on its subdiagonal),

$$[B^{-1}MB]^{N,N}E = \begin{bmatrix} 1 & 0 & \cdots & 0 & 1-\lambda \\ \lambda & 1 & 0 & \cdots & 0 & 1 \\ 0 & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 1 & \vdots \\ 0 & \cdots & \cdots & 0 & \lambda & 1 \end{bmatrix}.$$
 (4.44)

Note that as $\det(E) = 1$, the determinant of (4.44) is the same as the determinant of $[B^{-1}MB]^{N,N}$. Next, we find $\det([B^{-1}MB]^{N,N}E)$ by performing row operations that convert (4.44) into an upper-triangular matrix. Consider a pair of rows \mathbf{r}_1^T and \mathbf{r}_2^T of the form

$$\begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & \sum_{i=0}^n (-\lambda)^i \\ 0 & \cdots & 0 & \lambda & 1 & 0 & \cdots & 0 & 1 \end{bmatrix}, \quad (4.45)$$

which contains an arbitrary (perhaps zero) number of 0 entries at the start of each row. We observe that the first two rows of (4.44) correspond to the pair of rows (4.45) with n = 1, and no zero entries at the start of each row. Then, we perform the following row operation

$$\mathbf{r}_2^T \to \mathbf{r}_2^T - \lambda \mathbf{r}_1^T. \tag{4.46}$$

Then, the pair of rows becomes

$$\begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & \sum_{i=0}^{n} (-\lambda)^{i} \\ 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & \sum_{i=0}^{n+1} (-\lambda)^{i} \end{bmatrix}.$$

After the row operation (4.46), the new second row and the third row of (4.44) also correspond to the pair of rows (4.45), for n = 2 and a single zero entry at the start of each row. By induction, we continue this process, performing N - 2 row operations. We perform these operations by left multiplying by the following elementary matrices E_i

$$E_i := I - \lambda \mathbf{e}_{i+1} \mathbf{e}_i^T, \quad i = 1, \dots, N - 2.$$

$$(4.47)$$

Clearly, $det(E_i) = 1$ for all *i*, so none of these row operations alter the determinant value of (4.44). Then, we obtain the following matrix

$$\left(\prod_{i=1}^{N-2} E_i\right) [B^{-1}MB]^{N,N}E = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & \sum_{i=0}^{1} (-\lambda)^i \\ 0 & 1 & 0 & \cdots & 0 & \sum_{i=0}^{2} (-\lambda)^i \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \sum_{i=0}^{N-2} (-\lambda)^i \\ 0 & 0 & 0 & \cdots & 0 & \sum_{i=0}^{N-1} (-\lambda)^i \end{bmatrix}.$$
(4.48)

This matrix is upper triangular, and so

$$\det([B^{-1}MB]^{N,N}) = \det\left[\left(\prod_{i=1}^{N-2} E_i\right) [B^{-1}MB]^{N,N}E\right] = \sum_{i=0}^{N-1} (-\lambda)^i. \quad (4.49)$$

Finally, we substitute (4.49) into (4.42), and use the geometric series formula to obtain the value of $d^{\nu}(\beta)$:

$$d^{\nu}(\beta) = (1-\beta) \sum_{i=0}^{N-1} (-\lambda)^{i}$$

= $(1-\beta) \frac{1-(-\lambda)^{N}}{1+\lambda},$ (4.50)

which coincides with (4.37).

Example 4.3.2 Consider the standard reverse 8-node Hamiltonian cycle

$$P_{h_R} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$
(4.51)

Then, we construct $M := I - \beta((1 - \nu)P_{h_R} + \frac{\nu}{8}J)$

$$M = \begin{bmatrix} 1 - \frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{$$

We wish to find $d^{\nu}(\beta) = \det(M)$. After the change of basis (4.39), we obtain

$$B^{-1}MB = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -\lambda & 0\\ \lambda & 1 & 0 & 0 & 0 & 0 & -\lambda & 0\\ 0 & \lambda & 1 & 0 & 0 & 0 & -\lambda & 0\\ 0 & 0 & \lambda & 1 & 0 & 0 & -\lambda & 0\\ 0 & 0 & 0 & \lambda & 1 & 0 & -\lambda & 0\\ 0 & 0 & 0 & 0 & \lambda & 1 & -\lambda & 0\\ 0 & 0 & 0 & 0 & 0 & \lambda & 1 -\lambda & 0\\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & \frac{\beta\nu}{8} - \beta\nu - \beta & 1 - \beta \end{bmatrix}.$$

Then, we expand on the right column to obtain $d^{\nu}(\beta) = (1 - \beta) \det([B^{-1}MB]^{8,8})$. After multiplying $[B^{-1}MB]^{8,8}$ on the right by the elementary matrix $E = I + \mathbf{ee}_7^T - \mathbf{e}_7\mathbf{e}_7^T$ defined in (4.43), we obtain

$$[B^{-1}MB]^{8,8}E = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1-\lambda \\ \lambda & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & \lambda & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & \lambda & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & \lambda & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & \lambda & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & \lambda & 1 \end{bmatrix}$$

.

Finally, we perform six row operations using elementary matrices (4.47) to obtain

Clearly, $\det\left(\left(\prod_{i=2}^{7} E_i\right) [B^{-1}MB]^{8,8}E\right) = 1 - \lambda + \lambda^2 - \lambda^3 + \lambda^4 - \lambda^5 + \lambda^6 - \lambda^7$, and so we obtain the final result

$$d^{\nu}(\beta) = (1-\beta)(1-\lambda+\lambda^2-\lambda^3+\lambda^4-\lambda^5+\lambda^6-\lambda^7)$$

= $(1-\beta)\left(\frac{1-(-\lambda)^8}{1+\lambda}\right).$

Proposition 4.3.3 For a graph Γ with N nodes, the determinant $d^{\nu}(\beta)$ can be expressed as

$$d^{\nu}(\beta) = \sum_{k=0}^{N} \sum_{\ell=0}^{k} c_{k\ell} \beta^{k} \nu^{\ell},$$

for some coefficients $c_{k\ell}$.

Proof. The determinant $d^{\nu}(\beta)$ is of the $N \times N$ matrix M, each element of which contains terms of the form $k_1 + k_2\beta + k_3\beta\nu$, for some coefficients k_1, k_2, k_3 . Then, we observe that $d^{\nu}(\beta)$ is a bivariate polynomial in β and ν (with maximum degree of 2N), and that the power of ν cannot exceed the power of β . That is, $d^{\nu}(\beta)$ takes the form $\sum_{k=0}^{N} \sum_{\ell=0}^{k} c_{k\ell}\beta^k\nu^{\ell}$.

We find the coefficients $c_{k\ell}$ by calculating

$$c_{k\ell} = \frac{1}{k!\ell!} \left[\frac{\partial^{k+\ell} d^{\nu}(\beta)}{\partial \beta^k \partial \nu^{\ell}} \right]_{\beta=0,\nu=0}.$$

In other words, starting with $d^{\nu}(\beta)$, we find the k-th derivative with respect to β , the ℓ -th derivative with respect to ν , divide by $k!\ell!$ and set both $\beta = 0$ and $\nu = 0$.

Proposition 4.3.4 The coefficients $c_{k\ell}$ have the values

$$c_{k\ell} = \begin{cases} (-1)^{\ell} \binom{k-1}{\ell-1}, & k \neq N, \\ (-1)^{\ell-1} \binom{N-1}{\ell}, & k = N, \quad \ell < N, \\ 0, & k = \ell = N. \end{cases}$$
(4.52)

Proof. From (4.50) we know that

$$d^{\nu}(\beta) = (1-\beta)\frac{1-(-\lambda)^{N}}{1+\lambda} = (1-\beta)\left(1+(-\lambda)+(-\lambda)^{2}+\dots+(-\lambda)^{N-1}\right) \\ = \theta_{1}\theta_{2},$$

where $\theta_1 := (1 - \beta)$ and $\theta_2 := (1 + (-\lambda) + (-\lambda)^2 + ... + (-\lambda)^{N-1}).$

We first find the k-th derivative of $d^{\nu}(\beta)$ with respect to β . Using the product rule for derivatives, we obtain

$$\frac{\partial^k d^{\nu}(\beta)}{\partial \beta^k} = \sum_{i=0}^k \frac{k!}{i!(k-i)!} \frac{\partial^i \theta_1}{\partial \beta^i} \frac{\partial^{k-i} \theta_2}{\partial \beta^{k-i}}.$$

Since θ_1 is a linear function, it is clear that $\frac{\partial^i \theta_1}{\partial \beta^i} = 0$ for all $i \ge 2$, and therefore we ignore most of the terms in this sum. Then,

$$\frac{\partial^{k} d^{\nu}(\beta)}{\partial \beta^{k}} = \sum_{i=0}^{1} \frac{k!}{i!(k-i)!} \frac{\partial^{i} \theta_{1}}{\partial \beta^{i}} \frac{\partial^{k-i} \theta_{2}}{\partial \beta^{k-i}} \\
= \theta_{1} \frac{\partial^{k} \theta_{2}}{\partial \beta^{k}} + k \frac{\partial \theta_{1}}{\partial \beta} \frac{\partial^{k-1} \theta_{2}}{\partial \beta^{k-1}}.$$
(4.53)

Consider the *n*-th derivative of θ_2 with respect to β , for any $n \ge 1$. We recall that $\lambda = \beta \nu - \beta$ and therefore $\frac{\partial \lambda}{\partial \beta} = (\nu - 1)$. Consequently,

$$\frac{\partial^n \theta_2}{\partial \beta^n} = (-1)^n (\nu - 1)^n \sum_{j=n}^{N-1} \frac{j!}{(j-n)!} (-\lambda)^{j-n}.$$
(4.54)

Then, substituting (4.54) into (4.53), we obtain

$$\frac{\partial^k d^{\nu}(\beta)}{\partial \beta^k} = (1-\beta)(-1)^k (\nu-1)^k \sum_{j=k}^{N-1} \frac{j!}{(j-k)!} (-\lambda)^{j-k} + (k)(-1)(-1)^{k-1} (\nu-1)^{k-1} \sum_{j=k-1}^{N-1} \frac{j!}{(j-k+1)!} (-\lambda)^{j-k+1}.$$
(4.55)

We observe that if k = N, the first of the two sums in (4.55) is 0. To accommodate this, we consider two cases - first, when k < N, and second when k = N.

Case 1: k < N. Next, we set $\beta = 0$. Note that this also sets $\lambda = \beta \nu - \beta = 0$, and so the only non-zero terms remaining in the sums (4.55) are those where the power of $(-\lambda)$ is 0. Hence,

$$\left[\frac{\partial^k d^{\nu}(\beta)}{\partial \beta^k} \right]_{\beta=0} = (-1)^k (\nu - 1)^k k! + (-1)^k (\nu - 1)^{k-1} k (k-1)!$$

= $(-1)^k k! \left[(\nu - 1)^k + (\nu - 1)^{k-1} \right].$ (4.56)

Next, we find the ℓ -th derivative (for $\ell \leq k$) of (4.56) with respect to ν . However, if $\ell = k$, the second term in the square brackets in (4.56) is 0. Hence, we consider the ℓ -th derivative for two cases, one where $\ell < k$ and one where $\ell = k$.

$$\left[\frac{\partial^{k+\ell}d^{\nu}(\beta)}{\partial\beta^{k}\partial\nu^{\ell}}\right]_{\beta=0} = \begin{cases} (-1)^{k}k! \left[\frac{k!}{(k-\ell)!}(\nu-1)^{k-\ell} + \frac{(k-1)!}{(k-1-\ell)!}(\nu-1)^{k-\ell-1}\right], & \ell < k, \\ \\ (4.57) \\ (-1)^{k}k!k!, & \ell = k. \end{cases}$$

Setting $\nu = 0$ and dividing by $k!\ell!$ in (4.57), we obtain the coefficient $c_{k\ell}$. We first consider $\ell < k$:

$$c_{k\ell} = \frac{1}{k!\ell!} \left[\frac{\partial^{k+\ell} d^{\nu}(\beta)}{\partial \beta^{k} \partial \nu^{\ell}} \right]_{\beta=0,\nu=0} = (-1)^{k} \frac{k!}{k!\ell!} \left[\frac{k!}{(k-\ell)!} (-1)^{k-\ell} - \frac{(k-1)!}{(k-1-\ell)!} (-1)^{k-\ell} \right] \\ = \frac{(-1)^{\ell}}{\ell!} \left[\frac{(k-1)!}{(k-1-\ell)!} \left(\frac{k}{k-\ell} - 1 \right) \right] \\ = \frac{(-1)^{\ell}}{\ell!} \frac{(k-1)!}{(k-1-\ell)!} \frac{\ell}{k-\ell} \\ = \frac{(-1)^{\ell} (k-1)!}{(\ell-1)!(k-\ell)!} \\ = (-1)^{\ell} \left(\frac{k-1}{\ell-1} \right).$$
(4.58)

Next, we consider $\ell = k$. We set $\nu = 0$ and divide by k!k! to obtain

$$c_{kk} = (-1)^k. (4.59)$$

Note that setting $\ell = k$ in (4.58) yields (4.59), so we simply use the expression (4.58) for all $\ell \leq k$. Expression (4.58) coincides with the first case of (4.52).

Case 2: k = N. Next, we set $\beta = 0$. Again, note that this sets $\lambda = 0$ and therefore the only term remaining from the sum is when j = N - 1.

$$\left[\frac{\partial^{N} d^{\nu}(\beta)}{\partial \beta^{N}}\right]_{\beta=0} = (-1)^{N} (\nu - 1)^{N-1} N(N-1)!$$
$$= (-1)^{N} N! (\nu - 1)^{N-1}.$$
(4.60)

Next, we find the ℓ -th derivative of (4.60) with respect to ν . Note that if $\ell = N$, the derivative is precisely 0, which coincides with the third formula in Proposition 4.3.4. If $\ell < N$, we obtain

$$\left[\frac{\partial^{N+\ell} d^{\nu}(\beta)}{\partial \beta^{N} \partial \nu^{\ell}}\right]_{\beta=0} = (-1)^{N} N! \frac{(N-1)!}{(N-1-\ell)!} (\nu-1)^{N-1-\ell}$$

Setting $\nu = 0$ and dividing by $N!\ell!$, we obtain the coefficient $c_{N\ell}$

$$c_{N\ell} = \frac{(-1)^N N!}{N!\ell!} \frac{(N-1)!}{(N-1-\ell)!} (-1)^{N-1-\ell}$$

= $\frac{(-1)^{\ell-1}(N-1)!}{\ell!(N-1-\ell)!}$
= $(-1)^{\ell-1} \begin{pmatrix} N-1\\ \ell \end{pmatrix}$, (4.61)

which coincides with the second formula in Proposition 4.3.4. This concludes the proof. $\hfill \Box$

Next, we derive a closed form expression for the (j, 1)-th cofactor of M. This is analogous to the proof of Lemma 4.3.1 but more complicated since the structure of the underlying matrix is more complex. To accommodate the flow of this chapter, we omit some of the more arduous parts of the proof of the following proposition, as well as some special cases. The omitted parts can be found in Appendices A.1 – A.5 as indicated throughout the proof. We follow the proof of the following proposition with an example.

Proposition 4.3.5 Consider h_R , $P_{h_R}^{\nu}$ and M as defined in Lemma 4.3.1. We further define $d_{j1}^{\nu}(\beta)$ as the (j, 1)-th cofactor of M. Then, for j = 1,

$$d_{11}^{\nu}(\beta) = \frac{\frac{1}{N}\beta\nu}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(1+\lambda)\right] + 1, \qquad (4.62)$$

and, for $j \geq 2$

$$d_{j1}^{\nu}(\beta) = \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(-\lambda)^{N-j+1}(1+\lambda)\right] + (-\lambda)^{N-j+1}.$$
(4.63)

In the proceeding proof we only consider the general case where $j \ge 2$. For the proof of Proposition 4.3.5 for the case where j = 1, see Appendix A.1.

Proof. Consider M which has the structure shown in (4.38). Then, we define M^{j1} as the matrix M with row j and column 1 removed. Clearly then

$$d_{j1}^{\nu}(\beta) = (-1)^{j+1} \det(M^{j1}). \tag{4.64}$$

We observe that M^{j1} is an $(N-1) \times (N-1)$ matrix which has the following

where the separation is between rows j-1 and j. We define the following elementary matrix

$$E_2 = I - \mathbf{e}\mathbf{e}_2^T + \mathbf{e}_2\mathbf{e}_2^T. \tag{4.65}$$

Then, the multiplication $E_2 M^{j1}$ subtracts row 2 from every other row in M^{j1} . In general, row 2 contains the entry $\left(-\frac{\beta\nu}{N}\right)$ in all but the first position, and so these row operations eliminate the majority of non-zero entries in M^{j1} . However, if j = 2, this outcome is not achieved, and so we consider the proof of Proposition 4.3.5 separately for the case j = 2. For the remainder of this proof, we assume $j \ge 3$. For the proof of Proposition 4.3.5 for j = 2, see Appendix A.2.

Performing the multiplication $E_2 M^{j1}$, we obtain an $(N-1) \times (N-1)$ matrix with the following structure:

where the separation is between rows j - 1 and j.

Next, we define E_3 , another $(N-1) \times (N-1)$ elementary matrix of the form

$$E_{3} := \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & -1 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & -1 & 1 \end{bmatrix} .$$
(4.66)

Then, we multiply $E_2 M^{j1}$ on the right by this elementary matrix. For simplicity, we define $Y^{j1} := E_2 M^{j1} E_3$. We now find the determinant of Y^{j1} , noting that $\det(E_2) = \det(E_3) = 1$. This yields $\det(M^{j1}) = \det(Y^{j1})$. Recalling that $\lambda = \beta \nu - \beta$, we observe

 $Y^{j1} = \begin{cases} -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda \\ 1 - \frac{\beta \nu}{N} & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\ \lambda - 1 & 1 & \ddots & & & & \\ -1 & \lambda - 1 & 1 & \ddots & & & \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & & \\ -1 & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \\ -1 & 0 & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & \cdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \\ 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \\ \end{bmatrix}$ 0 ÷ (4.67)0

that Y^{j1} is an $(N-1) \times (N-1)$ matrix that has the following structure

where the separation is between rows j - 1 and j.

We calculate $det(Y^{j1})$ by expanding on the rightmost column. There are three nonzero entries to consider in general, in rows 1, 2 and N. However, we consider the case where j = N separately. In that case, the separation occurs after the last row of Y^{j1} , and the 1 in the bottom-right corner does not appear, so there will be only two non-zero entries in the expansion. However, we demonstrate shortly that the third expression in the general expansion is equal to 0 when j = N, so there is no need to consider j = N as a separate case. Note that, since we are considering $j \ge 3$, we can be certain that the two non-zero entries in positions (1, N - 1) and (2, N - 1) are present.

We expand on these three terms, and obtain three minors by in each case removing column N-1 and one of rows 1, 2 and N-1. We call these minors N_1 , N_2 and N_3 respectively. Then,

$$\det(Y^{j1}) = (-1)^{N}(\lambda) \det(N_{1}) + (-1)^{N+1}(-\frac{\beta\nu}{N}) \det(N_{2}) + \det(N_{3}), \quad (4.68)$$

where N_1 is an $(N-2) \times (N-2)$ matrix that has the form

$$N_{1} = \begin{bmatrix} 1 - \frac{\beta\nu}{N} & 0 & \cdots & 0 \\ \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & & & \vdots \\ -1 & 0 & -\lambda & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \frac{-1}{-1} & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \hline -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix},$$
(4.69)

 N_2 is an $(N-2) \times (N-2)$ matrix that has the form

$$N_{2} = \begin{bmatrix} -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda \\ \lambda - 1 & 1 & \ddots & & & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & \ddots & & \vdots \\ -1 & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \hline -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix}, \quad (4.70)$$

and N_3 is an $(N-2) \times (N-2)$ matrix that has the form

$$N_{3} = \begin{bmatrix} -1 & 0 & \cdots & 0 & -\lambda \\ 1 - \frac{\beta\nu}{N} & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \lambda - 1 & 1 & \ddots & & & & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & & 0 \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & & & & \vdots \\ -1 & 0 & -\lambda & \ddots & \ddots & \ddots & & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix} . \quad (4.71)$$

We show (see Lemma A.3.1 in Appendix A.3, Lemma A.4.1 in Appendix A.4 and Lemma A.5.1 in Appendix A.5) that

$$\det(N_1) = (-1)^{N+j} (1 - \frac{\beta\nu}{N}) \frac{1 - (-\lambda)^{N-j+1}}{1+\lambda}, \qquad (4.72)$$

$$\det(N_2) = (-1)^{N+j} \frac{1}{1+\lambda} \left[(N-1-\lambda)(-\lambda)^{N-j+1} + \frac{(-\lambda)^N - 1}{1+\lambda} \right], \quad (4.73)$$

$$\det(N_3) = (-1)^j (1 - \frac{\beta\nu}{N}) \frac{(-\lambda) - (-\lambda)^{N-j+1}}{1+\lambda}.$$
(4.74)

Recall that if j = N, the third non-zero in the last column of (4.67) is not present, and minor N_3 is not considered. However, if we substitute j = N in (4.74), we observe that $det(N_3) = 0$. Therefore, we can use (4.74) for all $3 \le j \le N$, and hence (4.68) also holds for all $3 \le j \le N$.

Substituting (4.72), (4.73) and (4.74) into (4.68), we obtain

$$det(M^{j1}) = (-1)^{N}(\lambda)(-1)^{N+j}(1-\frac{\beta\nu}{N})\frac{1-(-\lambda)^{N-j+1}}{1+\lambda} + (-1)^{N+1}(-\frac{\beta\nu}{N})\left((-1)^{N+j}\frac{1}{1+\lambda}\left[(N-1-\lambda)(-\lambda)^{N-j+1}+\frac{(-\lambda)^{N}-1}{1+\lambda}\right]\right) + (-1)^{j}(1-\frac{\beta\nu}{N})\frac{(-\lambda)-(-\lambda)^{N-j+1}}{1+\lambda} = (-1)^{j}\left\{(\lambda)(1-\frac{\beta\nu}{N})\frac{1-(-\lambda)^{N-j+1}}{1+\lambda}\right\}$$

$$-\left(-\frac{\beta\nu}{N}\right)\left(\frac{1}{1+\lambda}\left[\left(N-1-\lambda\right)(-\lambda)^{N-j+1}+\frac{(-\lambda)^{N}-1}{1+\lambda}\right]\right)\\+\left(1-\frac{\beta\nu}{N}\right)\frac{(-\lambda)-(-\lambda)^{N-j+1}}{1+\lambda}\right\}.$$

Factorising all terms containing $\left(\frac{-1}{N}\beta\nu\right)$, we obtain

$$\det(M^{j1}) = \frac{\left(\frac{-1}{N}\beta\nu\right)(-1)^{j}}{(1+\lambda)^{2}} \Big[\lambda(1+\lambda)(1-(-\lambda)^{N-j+1}) - (1+\lambda)((N-1-\lambda)(-\lambda)^{N-j+1}) \\ Big. - (-\lambda)^{N} + 1 + (1+\lambda)((-\lambda) - (-\lambda)^{N-j+1})\Big] \\ + (-1)^{j}\lambda\frac{1-(-\lambda)^{N-j+1}}{1+\lambda} + (-1)^{j}\frac{(-\lambda) - (-\lambda)^{N-j+1}}{1+\lambda}.$$

Then, inside the square brackets we factorise all terms containing $(1 + \lambda)$ while in the final term we factorise out $-\lambda$ to obtain

$$\det(M^{j1}) = \frac{\left(\frac{-1}{N}\beta\nu\right)(-1)^{j}}{(1+\lambda)^{2}} \left[1 - (-\lambda)^{N} + (1+\lambda)\left[\lambda + (-\lambda)^{N-j+2}\right] - (N-1-\lambda)(-\lambda)^{N-j+1} - \lambda - (-\lambda)^{N-j+1}\right] - (-1)^{j}(-\lambda)\frac{1 - (-\lambda)^{N-j+1}}{1+\lambda} + (-1)^{j}(-\lambda)\frac{1 - (-\lambda)^{N-j}}{1+\lambda}.$$

Finally, we simplify this expression to obtain

$$\det(M^{j1}) = \frac{\left(\frac{-1}{N}\beta\nu\right)(-1)^{j}}{(1+\lambda)^{2}} \left[1 - (-\lambda)^{N} - N(1+\lambda)(-\lambda)^{N-j+1}\right] \\ - (-1)^{j}(-\lambda)\frac{1}{1+\lambda} \left[1 - (-\lambda)^{N-j+1} - 1 + (-\lambda)^{N-j}\right] \\ = \frac{\left(\frac{-1}{N}\beta\nu\right)(-1)^{j}}{(1+\lambda)^{2}} \left[1 - (-\lambda)^{N} - N(1+\lambda)(-\lambda)^{N-j+1}\right] - (-1)^{j}(-\lambda)^{N-j+1}.$$

Then, from (4.64), we obtain

$$d_{j1}^{\nu}(\beta) = \frac{(\frac{1}{N}\beta\nu)}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(-\lambda)^{N-j+1}(1+\lambda)\right] + (-\lambda)^{N-j+1},$$

which coincides with (A.2).

Example 4.3.6 Consider the 8-node reverse Hamiltonian cycle defined in (4.51).

Then, we consider M^{51}

$$M^{51} = \begin{bmatrix} -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ 1 - \frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ \frac{7}{8}\beta\nu - \beta & 1 - \frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & \frac{7}{8}\beta\nu - \beta & 1 - \frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\ -\frac{\beta\nu}{8} & -\frac{\beta\nu}{8} \\$$

We observe that $d_{51}^{\nu}(\beta) = \det(-1)^{5+1} \det(M^{51}) = \det(M^{51})$. Multiplying M^{51} on the left by the elementary matrix (4.65), we obtain

$$E_2 M^{51} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & \lambda \\ 1 - \frac{\beta\nu}{8} & 1 - \frac{\beta\nu}{8} \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & \lambda & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & \lambda & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & \lambda & 1 \end{bmatrix}.$$

Then, multiplying on the right by the elementary matrix (4.66), we find

$$Y^{51} = E_2 M^{51} E_3 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & -\lambda & \lambda \\ 1 - \frac{\beta\nu}{8} & 0 & 0 & 0 & 0 & 0 & -\frac{\beta\nu}{8} \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix}$$

We expand this matrix on the last (seventh) column to obtain

$$d_{51}^{\nu}(\beta) = (-1)^{1+7}(\lambda) \det(N_1) + (-1)^{2+7}(-\frac{\beta\nu}{8}) \det(N_2) + (-1)^{7+7}(1) \det(N_3)$$

= $(\lambda) \det(N_1) + (\frac{\beta\nu}{8}) \det(N_2) + \det(N_3),$

where

$$N_1 = \begin{bmatrix} 1 - \frac{\beta\nu}{8} & 0 & 0 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 & 1 \\ -1 & 0 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix},$$

$$N_{2} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & -\lambda \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & 0 & -\lambda & \lambda - 1 & 1 \\ -1 & 0 & 0 & 0 & 0 & -\lambda \\ 1 - \frac{\beta\nu}{8} & 0 & 0 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix},$$

We confirm that the determinants of these matrices are agree with (4.72)-(4.74). That is,

$$det(N_1) = (-1)^{13} (1 - \frac{\beta\nu}{8}) (1 - \lambda + \lambda^2 - \lambda^3)
= (1 - \frac{\beta\nu}{8}) (\lambda^3 - \lambda^2 + \lambda - 1),
det(N_2) = (-1)^{13} \frac{1}{1 + \lambda} [7\lambda^4 - \lambda^5 + \lambda^7 - \lambda^6 + \lambda^5 - \lambda^4 + \lambda^3 - \lambda^2 + \lambda - 1]
= \frac{-1}{1 + \lambda} [(1 + \lambda)(\lambda - 2\lambda^5 + 2\lambda^4 + 4\lambda^3 - 3\lambda^2 + 2\lambda - 1)]
= 1 - 2\lambda + 3\lambda^2 - 4\lambda^3 - 2\lambda^4 + 2\lambda^5 - \lambda^6,
det(N_3) = (-1)^5 (1 - \frac{\beta\nu}{8}) (-\lambda^3 + \lambda^2 - \lambda)
= (1 - \frac{\beta\nu}{8}) (\lambda^3 - \lambda^2 + \lambda).$$

Then, we find

$$d_{51}^{\nu}(\beta) = (\lambda) \det(N_1) + \left(\frac{\beta\nu}{8}\right) \det(N_2) + \det(N_3)$$

$$= \lambda \left(1 - \frac{\beta\nu}{8}\right) (\lambda^3 - \lambda^2 + \lambda - 1)$$

$$+ \left(\frac{\beta\nu}{8}\right) (1 - 2\lambda + 3\lambda^2 - 4\lambda^3 - 2\lambda^4 + 2\lambda^5 - \lambda^6)$$

$$+ \left(1 - \frac{\beta\nu}{8}\right) (\lambda^3 - \lambda^2 + \lambda)$$

$$= \left(\frac{\beta\nu}{8}\right) (-\lambda^6 + 2\lambda^5 - 3\lambda^4 - 4\lambda^3 + 3\lambda^2 - 2\lambda + 1) + \lambda^4$$

$$= \frac{\left(\frac{\beta\nu}{8}\right) (1 + \lambda)^2}{(1 + \lambda)^2} (-\lambda^6 + 2\lambda^5 - 3\lambda^4 - 4\lambda^3 + 3\lambda^2 - 2\lambda + 1) + \lambda^4$$

$$= \frac{\left(\frac{1}{8}\beta\nu\right)}{(1 + \lambda)^2} \left[1 - \lambda^8 - 8\lambda^4 - 8\lambda^5\right] + \lambda^4,$$

which coincides with the formula given in (A.2).

Proposition 4.3.7 For a graph Γ with N nodes, $d_{j1}^{\nu}(\beta)$ can be expressed as

$$d_{j1}^{\nu}(\beta) = \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} c_{k\ell}^{j} \beta^{k} \nu^{\ell},$$

for some coefficients $c_{k\ell}^j$.

Proof. This cofactor is a determinant of an $(N-1) \times (N-1)$ matrix where each element only contains terms of the form $k_1 + k_2\beta + k_3\beta\nu$, for some constants k_1, k_2, k_3 . Therefore, we observe that $d_{j1}^{\nu}(\beta)$ is a bivariate polynomial of bounded degree, and that the power of ν does not exceed the power of β . That is, $d_{j1}^{\nu}(\beta)$ takes the form $\sum_{k=0}^{N-1} \sum_{\ell=0}^{k} c_{k\ell}^{j} \beta^{k} \nu^{\ell}$, where $c_{k\ell}^{j}$ are particular coefficients.

As with $d^{\nu}(\beta)$, these coefficients can be found by computing

$$c_{k\ell}^{j} = \frac{1}{k!\ell!} \left[\frac{\partial^{k+\ell} d_{j1}^{\nu}(\beta)}{\partial \beta^{k} \partial \nu^{\ell}} \right]_{\beta=0,\nu=0}.$$
(4.75)

That is, we find the coefficient $c_{k\ell}^{j}$ by finding the k-th derivative with respect to β , the ℓ -th derivative with respect to ν , dividing by $k!\ell!$ and setting both $\beta = 0$ and $\nu = 0$.

Proposition 4.3.8 The coefficients $c_{k\ell}^j$ for $j \ge 2$ take the following form for $\ell > 0$,

$$c_{k\ell}^{j} = \begin{cases} (-1)^{\ell+1} \frac{k}{N} \binom{k-1}{\ell-1}, & k < N-j+1, \\ (-1)^{\ell} \frac{N-\ell}{N} \binom{k}{\ell}, & k = N-j+1, \\ (-1)^{\ell} \frac{N-k}{N} \binom{k-1}{\ell-1}, & k > N-j+1, \end{cases}$$
(4.76)

and the following form for $\ell = 0$,

$$c_{k0}^{j} = \begin{cases} 1, & k = N - j + 1, \\ 0, & otherwise. \end{cases}$$
(4.77)

Proof. We first consider the case when $\ell = 0$. Since we do not need to take any derivatives of $d_{j1}^{\nu}(\beta)$ with respect to ν , we set $\nu = 0$ first to obtain $d_{j1}^{0}(\beta)$. Then, from Proposition 4.3.7, $d_{j1}^{0}(\beta)$ is

$$d_{j1}^0(\beta) = \beta^{N-j+1}. (4.78)$$

Next, we will take the k-th derivative of (4.78). If k > N - j + 1, the k-th derivative of (4.78) will be 0. If $k \le N - j + 1$, then the k-th derivative of (4.78) with respect to β is

$$\frac{\partial^k d_{j1}^0(\beta)}{\partial \beta^k} = \frac{(N-j+1)!}{(N-j+1-k!} \beta^{N-j+1-k}.$$
(4.79)

Then, if we set $\beta = 0$ in (4.79), we obtain

$$\left[\frac{\partial^k d_{j1}^0(\beta)}{\partial \beta^k}\right]_{\beta=0} = \begin{cases} (N-j+1)!, & k=N-j+1, \\ 0, & \text{otherwise.} \end{cases}$$
(4.80)

Then, dividing (4.80) by k!, we obtain

$$c_{k0}^{j} = \begin{cases} 1, & k = N - j + 1, \\ 0, & \text{otherwise,} \end{cases}$$

which coincides with (4.77).

We next consider the case when $k \ge \ell > 0$. From (A.2), we separate $d_{j1}^{\nu}(\beta)$ into three terms, m_1^{j1} , m_2^{j1} and m_3^{j1} as follows:

$$d_{j1}^{\nu}(\beta) = \frac{1}{N} \frac{\beta\nu}{1+\lambda} \frac{1-(-\lambda)^{N}}{1+\lambda} - \frac{\beta\nu}{1+\lambda} (-\lambda)^{N-j+1} + (-\lambda)^{N-j+1}$$
(4.81)

$$= \frac{1}{N}m_1^{j1} - m_2^{j1} + m_3^{j1}.$$
(4.82)

The first step is to find the k-th derivatives of m_1^{j1} , m_2^{j1} and m_3^{j1} separately, and set $\beta = 0$ in each of them.

We first consider
$$m_1^{j1} = \frac{\beta\nu}{1+\lambda} \frac{1-(-\lambda)^N}{1+\lambda} = \frac{\beta\nu}{1+\lambda} \left[1+(-\lambda)+(-\lambda)^2+\ldots+(-\lambda)^{N-1}\right]$$

We now calculate $\left[\frac{\partial^k m_1^{j_1}}{\partial \beta^k}\right]_{\beta=0}$. To achieve this, we split up $m_1^{j_1}$ further into $m_{11}^{j_1}$ and $m_{12}^{j_1}$ such that

$$m_1^{j1} := m_{11}^{j1} m_{12}^{j1},$$

where $m_{11}^{j1} := \frac{\beta \nu}{1+\lambda}$ and $m_{12}^{j1} := [1+(-\lambda)+(-\lambda)^2+\ldots+(-\lambda)^{N-1}]$. Then, we calculate

$$\frac{\partial^{k} \det(m_{1}^{j1})}{\partial \beta^{k}} = \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \frac{\partial^{k-i}m_{11}^{j1}}{\partial \beta^{k-i}} \frac{\partial^{i}m_{12}^{j1}}{\partial \beta^{i}} \\
= \frac{\partial^{k}m_{11}^{j1}}{\partial \beta^{k}} m_{12}^{j1} + \sum_{i=1}^{k-1} \frac{k!}{i!(k-i)!} \frac{\partial^{k-i}m_{11}^{j1}}{\partial \beta^{k-i}} \frac{\partial^{i}m_{12}^{j1}}{\partial \beta^{i}} + m_{11}^{j1} \frac{\partial^{k}m_{12}^{j1}}{\partial \beta^{k}}. \quad (4.83)$$

Then, setting $\beta = 0$ and noting that $\left[m_{11}^{j1}\right]_{\beta=0} = 0$ and $\left[m_{12}^{j1}\right]_{\beta=0} = 1$, we obtain

$$\left[\frac{\partial^k \det(m_1^{j_1})}{\partial \beta^k}\right]_{\beta=0} = \left[\frac{\partial^k m_{11}^{j_1}}{\partial \beta^k} + \sum_{i=1}^{k-1} \frac{k!}{i!(k-i)!} \frac{\partial^{k-i} m_{11}^{j_1}}{\partial \beta^{k-i}} \frac{\partial^i m_{12}^{j_1}}{\partial \beta^i}\right]_{\beta=0}.$$
 (4.84)

Noting that $\frac{\partial \lambda}{\partial \beta} = (\nu - 1)$, we find the first derivative of m_{11}^{j1} :

$$\frac{\partial m_{11}^{j1}}{\partial \beta} = \frac{\nu(1+\lambda) - (\nu-1)\beta\nu}{(1+\lambda)^2}$$
$$= \frac{\nu+\nu\lambda - (\beta\nu-\beta)\nu}{(1+\lambda)^2}$$
$$= \nu(1+\lambda)^{-2}.$$

From this point, we observe that in general, the *n*-th derivative of m_{11}^{j1} (or the (n-1)-th derivative of (4.85)) with respect to β is

$$\frac{\partial^n m_{11}^{j1}}{\partial \beta^n} = (-1)^{n-1} n! \nu (\nu - 1)^{n-1} (1+\lambda)^{-n-1}$$
$$= n! \nu (1-\nu)^{n-1} (1+\lambda)^{-n-1}.$$
(4.85)

Then, setting $\beta = 0$, we obtain

$$\left[\frac{\partial^{n} m_{11}^{j1}}{\partial \beta^{n}}\right]_{\beta=0} = n! \nu (1-\nu)^{n-1}.$$
(4.86)
Next, we find the *n*-th derivative of m_{12}^{j1} :

$$\frac{\partial^n m_{12}^{j1}}{\partial \beta^n} = (-1)^n (\nu - 1)^n \sum_{j=n}^{N-1} \frac{j!}{(j-n)!} (-\lambda)^{j-n}.$$

Then, setting $\beta = 0$ in the above, we observe that every term in the sum is 0 except for when the power of $(-\lambda)$ is 0, which is when j = n. Hence,

$$\left[\frac{\partial^n m_{12}^{j1}}{\partial \beta^n}\right]_{\beta=0} = (1-\nu)^n n! .$$

$$(4.87)$$

We substitute (4.86) and (4.87) into (4.84) to obtain

$$\begin{bmatrix} \frac{\partial^k m_1^{j1}}{\partial \beta^k} \end{bmatrix}_{\beta=0} = k! \nu (1-\nu)^{k-1} + \sum_{i=1}^{k-1} \frac{k!}{i!(k-i)!} (k-1)! \nu (1-\nu)^{k-i-1} (1-\nu)^i i!$$
$$= k! \nu (1-\nu)^{k-1} + \sum_{i=1}^{k-1} k! \nu (1-\nu)^{k-1}.$$

Then, we note that the term in the sum does not depend on i. Therefore,

$$\left[\frac{\partial^{k} m_{1}^{j1}}{\partial \beta^{k}}\right]_{\beta=0} = k! \nu (1-\nu)^{k-1} + (k-1)k! \nu (1-\nu)^{k-1}$$
$$= kk! \nu (1-\nu)^{k-1}.$$
(4.88)

Next, we consider $m_2^{j1} = \frac{\beta\nu}{1+\lambda} (-\lambda)^{N-j+1}$, and find the k-th derivative of m_2^{j1} with respect to β . To achieve this we split up m_2^{j1} into m_{21}^{j1} and m_{22}^{j1} such that

$$m_2^{j1} = m_{21}^{j1} m_{22}^{j1},$$

where $m_{21}^{j1} := \frac{\beta \nu}{1+\lambda}$ and $m_{22}^{j1} := (-\lambda)^{N-j+1}$. Then, we calculate

$$\frac{\partial^{k} \det(m_{2}^{j1})}{\partial \beta^{k}} = \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \frac{\partial^{k-i} m_{21}^{j1}}{\partial \beta^{k-i}} \frac{\partial^{i} m_{22}^{j1}}{\partial \beta^{i}} \\
= \frac{\partial^{k} m_{21}^{j1}}{\partial \beta^{k}} m_{22}^{j1} + \sum_{i=1}^{k-1} \frac{k!}{i!(k-i)!} \frac{\partial^{k-i} m_{21}^{j1}}{\partial \beta^{k-i}} \frac{\partial^{i} m_{22}^{j1}}{\partial \beta^{i}} + m_{21}^{j1} \frac{\partial^{k} m_{22}^{j1}}{\partial \beta^{k}}.$$
(4.89)

Setting $\beta = 0$ in (4.92) and noting that $[m_{21}^{j1}]_{\beta=0} = [m_{22}^{j1}]_{\beta=0} = 0$, we obtain

$$\left[\frac{\partial^k \det(m_2^{j1})}{\partial \beta^k}\right]_{\beta=0} = \sum_{i=1}^{k-1} \frac{k!}{i!(k-i)!} \frac{\partial^{k-i} m_{21}^{j1}}{\partial \beta^{k-i}} \frac{\partial^i m_{22}^{j1}}{\partial \beta^i}.$$
 (4.90)

We first consider m_{21}^{j1} , which we note is identical to m_{11}^{j1} , and so we use (4.86) to find derivatives of m_{21}^{j1} . Next, we consider m_{22}^{j1} . We observe that the *n*-th derivative of m_{22}^{j1} is 0 if n > N - j + 1. Otherwise, if $n \le N - j + 1$,

$$\frac{\partial^n m_{22}^{j1}}{\partial \beta^n} = \frac{(-1)^n (N-j+1)!}{(N-j+1-n)!} (-\lambda)^{N-j+1-n} (\nu-1)^n$$
$$= \frac{(N-j+1)!}{(N-j+1-n)!} (-\lambda)^{N-j+1-n} (1-\nu)^n.$$

Then, setting $\beta = 0$, we obtain

$$\left[\frac{\partial^{n} m_{22}^{j1}}{\partial \beta^{n}}\right]_{\beta=0} = \begin{cases} (N-j+1)!(1-\nu)^{N-j+1}, & n=N-j+1, \\ 0, & n\neq N-j+1. \end{cases}$$
(4.91)

We substitute (4.86) and (4.91) into (4.90) to obtain

$$\left[\frac{\partial^k m_2^{j1}}{\partial \beta^k}\right]_{\beta=0} = \sum_{i=1}^{k-1} \frac{k!}{i!(k-i)!} (k-i)! \nu (1-\nu)^{k-i-1} \frac{\partial^i m_{22}^{j1}}{\partial \beta^i}.$$

We know from (4.91) that all terms in the above sum will be 0 except for when i = N - j + 1. However, if k - 1 < N - j + 1 (or, since k is integer, $k \le N - j + 1$), then i never reaches this value and all the terms are 0. Hence, the above expression becomes

$$\left[\frac{\partial^{k} m_{2}^{j1}}{\partial \beta^{k}}\right]_{\beta=0} = \begin{cases} k! \nu (1-\nu)^{k-1}, & k > N-j+1, \\ 0, & k \le N-j+1. \end{cases}$$
(4.92)

Finally, we consider $m_3^{j1} = (-\lambda)^{N-j+1}$. We note that m_3^{j1} is identical to m_{22}^{j1} , so we use (4.91) to find derivatives of m_3^{j1} . That is,

$$\left[\frac{\partial^{n} m_{3}^{j1}}{\partial \beta^{n}}\right]_{\beta=0} = \begin{cases} (N-j+1)!(1-\nu)^{N-j+1}, & n=N-j+1, \\ 0, & n\neq N-j+1. \end{cases}$$
(4.93)

Substituting (4.88), (4.92) and (4.93) into (4.82) we obtain

$$\left[\frac{\partial^{k} d_{j1}^{\nu}(\beta)}{\partial \beta^{k}}\right]_{\beta=0} = \begin{cases} \frac{1}{N} kk! \nu(1-\nu)^{k-1}, & k < N-j+1, \\ \frac{1}{N} kk! \nu(1-\nu)^{k-1} + k! (1-\nu)^{k}, & k = N-j+1, \\ \frac{1}{N} kk! \nu(1-\nu)^{k-1} - k! \nu(1-\nu)^{k-1}, & k > N-j+1. \end{cases}$$
(4.94)

We now consider each case in (4.94) separately.

Case 1: k < N - j + 1. Then, we have

$$\begin{bmatrix} \frac{\partial^{k} d_{j1}^{\nu}(\beta)}{\partial \beta^{k}} \end{bmatrix}_{\beta=0} = \frac{1}{N} kk! \nu (1-\nu)^{k-1}$$
$$= \frac{1}{N} (-1)^{k-1} kk! (\nu-1+1)(\nu-1)^{k-1}$$
$$= \frac{kk!}{N} (-1)^{k-1} \left[(\nu-1)^{k} + (\nu-1)^{k-1} \right].$$
(4.95)

We now find the ℓ -th derivative with respect to ν of (4.95), for $\ell \leq k$, and set $\nu = 0$. However, if $\ell = k$, then the second term $(\nu - 1)^{k-1}$ in the square bracket above becomes 0 after ℓ derivatives, so we consider two more cases.

Case 1.1: $\ell < k$. Then, we have

$$\left[\frac{\partial^{k+\ell}d_{j1}^{\nu}(\beta))}{\partial\beta^{k}\nu^{\ell}}\right]_{\beta=0} = \frac{k(k)!}{N}(-1)^{k-1}\left[\frac{k!}{(k-\ell)!}(\nu-1)^{k-\ell} + \frac{(k-1)!}{(k-1-\ell)!}(\nu-1)^{k-1-\ell}\right].$$

Next, we set $\nu = 0$, and obtain

$$\left[\frac{\partial^{k+\ell}d_{j1}^{\nu}(\beta))}{\partial\beta^{k}\nu^{\ell}}\right]_{\beta=0,\nu=0} = \frac{k(k)!}{N}(-1)^{k-1}\left[\frac{k!}{(k-\ell)!}(-1)^{k-\ell} + \frac{(k-1)!}{(k-1-\ell)!}(-1)^{k-1-\ell}\right] \\
= \frac{k(k)!}{N}(-1)^{\ell+1}\left[\frac{k!}{(k-\ell)!} - \frac{(k-1)!}{(k-1-\ell)!}\right] \\
= \frac{k(k)!}{N}(-1)^{\ell+1}\left[\frac{(k-1)!}{(k-1-\ell)!}\left(\frac{k}{k-\ell} - 1\right)\right] \\
= \frac{k(k)!(k-1)!}{N(k-1-\ell)!}(-1)^{\ell+1}\frac{\ell}{k-\ell} \\
= \frac{k(k)!(k-1)!}{N(k-\ell)!}(-1)^{\ell+1}\ell.$$
(4.96)

Case 1.2: $\ell = k$. Then, the k-th derivative of (4.95) with respect to ν is

$$\left[\frac{\partial^{2k} \det(M^{j1})}{\partial \beta^k \nu^k}\right]_{\beta=0} = (-1)^{k-1} \frac{kk!k!}{N}.$$
(4.97)

Since (4.97) does not depend on ν , setting $\nu = 0$ does not change its value. We observe that setting $\ell = k$ in (4.96) yields (4.97), and so we use (4.96) for all $\ell \leq k$.

Finally, to find the coefficient $c_{k\ell}^j$, for k < N - j + 1, we divide (4.96) by $k!\ell!$ to obtain

$$c_{k\ell}^{j} = \frac{k(k)!(k-1)!}{N(k-\ell)!k!\ell!}(-1)^{\ell+1}\ell$$

= $\frac{k(k-1)!}{N(k-\ell)!(\ell-1)!}(-1)^{\ell+1}$
= $(-1)^{\ell+1}\frac{k}{N}\binom{k-1}{\ell-1}.$ (4.98)

Case 2: k = N - j + 1. Then, we have

$$\left[\frac{\partial^k d_{j1}^{\nu}(\beta)}{\partial \beta^k}\right]_{\beta=0} = \frac{1}{N} kk! \nu (1-\nu)^{k-1} + (k)! (1-\nu)^k.$$

We observe that this expression contains two terms, c_1 and c_2 , the first of which is identical to the expression (4.95) in Case 1. We use (4.98) to obtain the coefficient for the first term c_1 . Next, we consider the second term c_2 ,

$$c_2 = (k)!(1-\nu)^k. (4.99)$$

Next, we find the ℓ -th derivative with respect to ν of (4.99), where $\ell \leq k$:

$$\frac{\partial^{\ell} c_2}{\partial \nu^{\ell}} = (-1)^{\ell} \frac{k! k!}{(k-\ell)!} (1-\nu)^{k-\ell}.$$
(4.100)

Then, we set $\nu = 0$ in (4.100) to obtain

$$\left[\frac{\partial^{\ell} c_2}{\partial \nu^{\ell}}\right]_{\nu=0} = (-1)^{\ell} \frac{k!k!}{(k-\ell)!}.$$
(4.101)

Finally, dividing (4.101) by $k!\ell!$ and adding the result to the coefficient (4.98) found

in Case 1, we obtain the coefficient $c_{k\ell}^{j}$ for k = N - j + 1:

$$c_{k\ell}^{j} = (-1)^{\ell} \frac{k!k!}{(k-\ell)!k!\ell!} + (-1)^{\ell+1} \frac{k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}$$

$$= (-1)^{\ell} \frac{k!}{(k-\ell)!\ell!} + (-1)^{\ell+1} \frac{k(k-1)!}{N(\ell-1)!(k-\ell)!}$$

$$= \frac{(-1)^{\ell}k!}{N(k-\ell)!(\ell-1)!} \left[\frac{N}{\ell} - 1\right]$$

$$= (-1)^{\ell} \frac{N-\ell}{N} \frac{k!}{\ell!(k-\ell)!}$$

$$= (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} k\\ \ell \end{pmatrix}.$$
(4.102)

Case 3: k > N - j + 1. Then, we have

$$\left[\frac{\partial^k d_{j1}^{\nu}(\beta)}{\partial \beta^k}\right]_{\beta=0} = \frac{1}{N} kk! \nu (1-\nu)^{k-1} - k! \nu (1-\nu)^{k-1}.$$

Similarly to Case 2, we observe that the above expression contains two terms, c_1 and c_3 , the first of which is identical to the expression (4.95) in Case 1. We use (4.98) to obtain the coefficient for the first term c_1 . Next, we consider the additional term c_3 ,

$$c_{3} = -k!\nu(1-\nu)^{k-1}$$

= $(-1)^{k}k! \left[(\nu-1)^{k} + (\nu-1)^{k-1} \right].$ (4.103)

Next, we find the ℓ -th derivative of c_3 , and set $\nu = 0$. We note that if $\ell = k$, the second term in the square bracket above becomes 0 after ℓ derivatives, and so we consider two separate cases.

Case 3.1: $\ell < k$. Then, we have

$$\frac{\partial^{\ell} c_{3}}{\partial \nu^{\ell}} = (-1)^{k} k! \left[\frac{k!}{(k-\ell)!} (\nu-1)^{k-\ell} + \frac{(k-1)!}{(k-1-\ell)!} (\nu-1)^{k-1-\ell} \right].$$

Setting $\nu = 0$, we obtain

$$\begin{bmatrix} \frac{\partial^{\ell} c_{3}}{\partial \nu^{\ell}} \end{bmatrix}_{\nu=0} = (-1)^{k} k! \left[\frac{k!}{(k-\ell)!} (-1)^{k-\ell} + \frac{(k-1)!}{(k-1-\ell)!} (-1)^{k-1-\ell} \right]$$

$$= (-1)^{\ell} k! \left[\frac{(k-1)!}{(k-1-\ell)!} \left(\frac{k}{k-\ell} - 1 \right) \right]$$

$$= (-1)^{\ell} \frac{k! (k-1)!}{(k-1-\ell)!} \frac{\ell}{k-\ell}$$

$$= (-1)^{\ell} \frac{k! (k-1)! \ell}{(k-\ell)!}.$$

$$(4.104)$$

Case 3.2: $\ell = k$. Then, we find the k-th derivative with respect to ν of (4.103):

$$\frac{\partial^{\ell} c_3}{\partial \nu^k} = (-1)^k k! k! . \qquad (4.105)$$

This term does not contain ν , so setting $\nu = 0$ does not change the result. Note that setting $\ell = k$ in (4.104) yields (4.105), and so we use (4.104) for all $\ell \leq k$.

Finally, dividing (4.104) by $k!\ell!$, and adding the result to coefficient (4.98) found in Case 1, we obtain the coefficient $c_{k\ell}^j$ for k > N - j + 1:

$$\begin{aligned} c_{k\ell}^{j} &= (-1)^{\ell} \frac{k!(k-1)!\ell}{(k-\ell)!k!\ell!} + (-1)^{\ell+1} \frac{k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} \\ &= (-1)^{\ell} \frac{(k-1)!}{(k-\ell)!(\ell-1)!} + (-1)^{\ell+1} \frac{k}{N} \frac{(k-1)!}{(\ell-1)!(k-\ell)!} \\ &= (-1)^{\ell} \frac{(k-1)!}{(k-\ell)!(\ell-1)!} \left[1 - \frac{k}{N}\right] \\ &= (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}. \end{aligned}$$

This concludes the proof.

Now that we have found the coefficients $c_{k\ell}^j$ for the general case when $j \ge 2$, we find the coefficients $c_{k\ell}^1$ for j = 1.

Proposition 4.3.9 The coefficients $c_{k\ell}^1$ have the following form for $\ell > 0$:

$$c_{k\ell}^{1} = (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix},$$

and they have the following form for $\ell = 0$

$$c_{k0}^{1} = \begin{cases} 1, & k = 0, \\ 0, & otherwise. \end{cases}$$

Proof. We recall from Proposition 4.3.5 that

$$d_{11}^{\nu}(\beta) = \frac{\frac{1}{N}\beta\nu}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(1+\lambda) \right] + 1.$$

However, for this proof, we find it convenient to use the more expanded form from (A.11). That is,

$$d_{11}^{\nu}(\beta) = 1 - \frac{1}{N} \beta \nu \left(\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) \right).$$

We now find the coefficients $c^1_{k\ell}$ by calculating

$$c_{k\ell}^1 = \frac{1}{k!\ell!} \left[\frac{\partial^{k+\ell} d_{11}^{\nu}(\beta)}{\partial \beta^k \partial \nu^\ell} \right]_{\beta=0,\nu=0}.$$

Clearly, if $k = \ell = 0$, no derivatives are required and setting $\beta = 0, \nu = 0$ immediately yields $c_{00}^1 = 1$, as required.

We rewrite $d_{11}^{\nu}(\beta)$ in the form $d_{11}^{\nu}(\beta) = 1 + m_1^{11}m_2^{11}$, where

$$m_1^{11} = -\frac{\beta\nu}{N},$$

$$m_2^{11} = \sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1).$$

Then, we find the k-th derivative of $d_{11}^{\nu}(\beta)$ for k > 0:

$$\frac{\partial^k d_{11}^{\nu}(\beta)}{\partial \beta^k} = \sum_{i=0}^k \frac{k!}{(k-i)!} \frac{\partial^i m_1^{11}}{\partial \beta^i} \frac{\partial^{k-i} m_2^{11}}{\partial \beta^{k-i}}.$$
(4.106)

We observe that $\frac{\partial m_1^{11}}{\partial \beta} = -\frac{\nu}{N}$, and any further derivatives of m_1^{11} are zero. Substituting this into (4.106) we obtain

$$\frac{\partial^k d_{11}^{\nu}(\beta)}{\partial \beta^k} = -\frac{\beta \nu}{N} \frac{\partial^k m_2^{11}}{\partial \beta^k} - \frac{k\nu}{N} \frac{\partial^{k-1} m_2^{11}}{\partial \beta^{k-1}}.$$
(4.107)

Then, setting $\beta = 0$ in the above we obtain

$$\left[\frac{\partial^k d_{11}^{\nu}(\beta)}{\partial \beta^k}\right]_{\beta=0} = -\frac{k\nu}{N} \left[\frac{\partial^{k-1} m_2^{11}}{\partial \beta^{k-1}}\right]_{\beta=0}.$$
(4.108)

Next, we calculate the (k-1)-th derivative of m_2^{11} with respect to β , recalling that $\frac{\partial \lambda}{\partial \beta} = (\nu - 1):$ $\frac{\partial^{k-1}m_2^{11}}{\partial \beta^{k-1}} = \sum_{i=0}^{N-k-1} \frac{(N-2-i)!}{(N-k-i-1)!} (-\lambda)^{N-k-i-1} (-1)^{k-1} (\nu - 1)^{k-1} (i+1).$ (4.109)

Then, setting $\beta = \lambda = 0$ in the above, we obtain

$$\left[\frac{\partial^{k-1}m_2^{11}}{\partial\beta^{k-1}}\right]_{\beta=0} = (k-1)!(-1)^{k-1}(\nu-1)^{k-1}(N-k).$$
(4.110)

Substituting (4.110) into (4.108), we find

$$\left[\frac{\partial^k d_{11}^{\nu}(\beta)}{\partial \beta^k} \right]_{\beta=0} = -\frac{N-k}{N} k(k-1)! (-1)^{k-1} (\nu-1)^{k-1} \nu$$

= $-\frac{N-k}{N} k! (-1)^{k-1} \left[(\nu-1)^k + (\nu-1)^{k-1} \right].$ (4.111)

If we set $\nu = 0$ in (4.111), we obtain 0. This corresponds to the case where k > 0 and $\ell = 0$, and therefore $c_{k0}^1 = 0$ for k > 0, which coincides with the required formula. For $\ell > 0$, we find the ℓ -th derivative of (4.111) with respect to ν , and set $\nu = 0$. However, if $\ell = k$, the second term in the square brackets in (4.111) becomes 0 after ℓ derivatives, so we consider two cases.

Case 1: $\ell < k$. We observe that the ℓ -th derivative of (4.111) with respect to ν is

$$\left[\frac{\partial^{k+\ell}d_{11}^{\nu}(\beta)}{\partial\beta^{k}\partial\nu^{\ell}}\right]_{\beta=0} = -\frac{(N-k)}{N}k!(-1)^{k-1}\left[\frac{k!}{(k-\ell)!}(\nu-1)^{k-\ell} + \frac{(k-1)!}{(k-\ell-1)!}(\nu-1)^{k-\ell-1}\right].$$

Then, setting $\nu = 0$ in the above we obtain

$$\left[\frac{\partial^{k+\ell} d_{11}^{\nu}(\beta)}{\partial \beta^k \partial \nu^\ell} \right]_{\beta=0,\nu=0} = -\frac{(N-k)}{N} k! (-1)^{k-1} \left[\frac{k!}{(k-\ell)!} (-1)^{k-\ell} + \frac{(k-1)!}{(k-\ell-1)!} (-1)^{k-\ell-1} \right]$$

$$= \frac{(N-k)}{N} k! (-1)^\ell \left[\frac{k!}{(k-\ell)!} - \frac{(k-1)!}{(k-\ell-1)!} \right]$$

$$= \frac{(N-k)}{N} k! (-1)^\ell \left[\frac{k!}{(k-\ell)!} \left(1 - \frac{k-\ell}{k} \right) \right]$$

$$= \frac{(N-k)}{N} k! (-1)^\ell \frac{k!}{(k-\ell)!} \frac{\ell}{k}.$$

$$(4.112)$$

Finally, dividing by $k!\ell!$ we obtain

$$c_{k\ell}^{1} = \frac{1}{k!\ell!} \frac{(N-k)}{N} k! (-1)^{\ell} \frac{k!}{(k-\ell)!} \frac{\ell}{k}$$

= $(-1)^{\ell} \frac{(N-k)}{N} \frac{(k-1)!}{(\ell-1)!(k-\ell)!}$
= $(-1)^{\ell} \frac{(N-k)}{N} \binom{k-1}{\ell-1},$ (4.113)

which coincides with the desired formula. Now all that remains is to check the case when $\ell = k$.

Case 2: $\ell = k$. We observe that the ℓ -th derivative of (4.111) (which is the same as the k-th derivative) of (4.111) is

$$\left[\frac{\partial^{2k} d_{11}^{\nu}(\beta)}{\partial \beta^k \partial \nu^k}\right]_{\beta=0} = -\frac{(N-k)}{N} k! (-1)^{k-1} k! .$$
(4.114)

The above expression does not contain ν , so we now simply divide by $k!\ell!$ to obtain

$$c_{kk}^{1} = (-1)^{k} \frac{(N-k)}{N}.$$
 (4.115)

Setting $k = \ell$ in (4.113) yields (4.115), and so we use (4.113) for all $\ell = k > 0$. This concludes the proof.

Remark 4.3.10 We note that the formula for $c_{k\ell}^1$ is identical to the third equation (corresponding to the case when k > N - j + 1) for $c_{k\ell}^r$ (see Proposition 4.3.8) for $\ell > 0$. However, this is not the case for $\ell = 0$, unless we ensure that k > 0.

Now, using the results of Propositions 4.3.7 – 4.3.9, we see that the following solution vector for the reverse Hamiltonian cycle h_R satisfies $X(\beta, \nu)$:

$$[\mathbf{x}_{h_R}^*]_{ia} = \begin{cases} \sum_{k=0}^{N-1} \sum_{\ell=0}^k c_{k\ell}^r \beta^k \nu^\ell, & (i,a) = (N-r+1, N-r) \text{ for some } r, \\ 0, & \text{otherwise.} \end{cases}$$
(4.116)

Then, using analogous arguments to those in Theorem 4.2.1, we see that for any Hamiltonian cycle h such that $P_h = \prod P_{h_R} \Pi^{-1}$, the elements inside \mathbf{x}_h^* are the same as those for $\mathbf{x}_{h_R}^*$, but in different positions.

Figure 4.5: Canonical Hamiltonian surfaces for 10-node graphs.

Remark 4.3.11 Similarly to the canonical Hamiltonian curves shown in Figure 4.3, solutions of the form shown in (4.116) can be represented on a figure as 3-dimensional surfaces in parameters β and ν . We call these surfaces the canonical Hamiltonian surfaces. The canonical Hamiltonian surfaces for 10-node graphs can be seen in Figure 4.5.

4.4 Auxilliary constraints

Now that we know from (4.118) the form of all Hamiltonian solutions in $X(\beta, \nu)$, in this section we derive constraints that facilitate the search for solutions of that form. We begin by defining N vectors \mathbf{y}^r , for r = 1, ..., N. These vectors correspond to arcs in a Hamiltonian cycle in the following way:

$$y_{ia}^{r} = \begin{cases} 1, & \text{if arc } (i,a) \text{ is selected as the } (r-1)\text{-th step in the HC}, \\ 0, & \text{otherwise.} \end{cases}$$
(4.117)

For a generic Hamiltonian cycle h we observe that the form of the solution vector

is

$$\mathbf{x}_{h}^{*} = \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} \beta^{k} \nu^{\ell} \sum_{r=1}^{N} c_{k\ell}^{r} \mathbf{y}^{r}.$$
(4.118)

We then define new decision vectors $\mathbf{x}^{k\ell}$ such that

$$\mathbf{x}^{k\ell} := \sum_{r=1}^{N} c_{k\ell}^{r} \mathbf{y}^{r}, \qquad (4.119)$$

and search for a solution vector \mathbf{x} of the form

$$\mathbf{x} = \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} \beta^{k} \nu^{\ell} \mathbf{x}^{k\ell}.$$
 (4.120)

Recall that the polytope $X(\beta, \nu)$ is defined by the following constraints:

$$\sum_{i=1}^{N} \sum_{a \in \mathcal{A}(i)} \left(\delta_{ij} - \beta (p_{iaj} + \nu d_{iaj}) \right) x_{ia} = d^{\nu}(\beta) \delta_{1j}, \quad j = 1, \dots, N, \quad (4.121)$$

$$\sum_{a \in \mathcal{A}(1)} x_{1a} = 1, \tag{4.122}$$

$$x_{ia} \geq 0, \quad (i,a) \in \Gamma, \tag{4.123}$$

where

$$d_{iaj} := \begin{cases} \frac{1}{N}, & p_{iaj} = 0, \\ -\frac{N-1}{N}, & p_{iaj} = 1. \end{cases}$$
(4.124)

Note that if we set $\nu = 0$, the resulting polytope is the special case $X(\beta)$ (see (4.12)–(4.14)). Using analogous arguments to those in Section 4.2, we represent these equations in the matrix form $\tilde{W}(\beta,\nu)\mathbf{x} = \mathbf{b}(\beta,\nu)$, and separate \tilde{W} into the components involving no parameters, those involving only β , and those involving $\beta\nu$. That is, $\tilde{W} = W_{00} + \beta W_{10} + \beta \nu W_{11}$, where

$$W_{00} = \begin{bmatrix} \Delta \\ \vdots \\ 1 \cdots 1 \ 0 \cdots \cdots 0 \end{bmatrix}, \quad W_{10} = \begin{bmatrix} -P \\ \vdots \\ 0 \cdots \cdots 0 \end{bmatrix}, \quad W_{11} = \begin{bmatrix} -D \\ \vdots \\ 0 \cdots \cdots 0 \end{bmatrix}, (4.125)$$

where $D := [d_{iaj}]_{j=1,(i,a)\in\Gamma}^N$ (recall that the columns of $\tilde{W}(\beta,\nu)$ are indexed by arcs $(i,a)\in\Gamma$).

Using Proposition 4.3.3, we also separate **b** into vectors of the form

$$\mathbf{b}_{00} = \begin{bmatrix} c_{00} \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{b}_{k\ell} = \begin{bmatrix} c_{k\ell} \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \quad \text{for all } k = 1, \dots, N, \quad \ell = 0, \dots, k.$$

Then, from (4.120), we know the form of all Hamiltonian solutions, and using analogous arguments to those in Section 4.2 we obtain

$$(W_{00} + \beta W_{10} + \beta \nu W_{11}) \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} \beta^{k} \nu^{\ell} \mathbf{x}^{k\ell} = \sum_{k=0}^{N} \sum_{\ell=0}^{k} \beta^{k} \nu^{\ell} \mathbf{b}_{k\ell}.$$
(4.126)

Expanding (4.126) and equating coefficients of powers of β and ν we obtain

$$W_{00}\mathbf{x}^{00} = \mathbf{b}_{00},$$

$$W_{00}\mathbf{x}^{10} + W_{10}\mathbf{x}^{00} = \mathbf{b}_{10},$$

$$W_{00}\mathbf{x}^{11} + W_{11}\mathbf{x}^{00} = \mathbf{b}_{11},$$

$$W_{00}\mathbf{x}^{20} + W_{10}\mathbf{x}^{10} = \mathbf{b}_{20},$$

$$W_{00}\mathbf{x}^{21} + W_{10}\mathbf{x}^{11} + W_{11}\mathbf{x}^{10} = \mathbf{b}_{21},$$

$$W_{00}\mathbf{x}^{22} + W_{11}\mathbf{x}^{11} = \mathbf{b}_{22},$$

$$W_{00}\mathbf{x}^{30} + W_{10}\mathbf{x}^{20} = \mathbf{b}_{30},$$

$$\vdots$$

$$W_{00}\mathbf{x}^{N-1,N-1} + W_{11}\mathbf{x}^{N-2,N-2} = \mathbf{b}_{N-1,N-1},$$

$$W_{10}\mathbf{x}^{N-1,0} = \mathbf{b}_{N0},$$

$$W_{10}\mathbf{x}^{N-1,1} + W_{11}\mathbf{x}^{N-1,0} = \mathbf{b}_{N1},$$

$$\vdots$$

$$W_{10}\mathbf{x}^{N-1,N-1} + W_{11}\mathbf{x}^{N-1,N-2} = \mathbf{b}_{N,N-1},$$

$$W_{11}\mathbf{x}^{N-1,N-1} = \mathbf{b}_{NN}.$$

This new, parameter-free, system of equations replaces the parametrised system

 $W(\beta,\nu)\mathbf{x} = \mathbf{b}(\beta,\nu)$, and has the following block structure

Example 4.4.1 Recall the 4-node graph Γ_4 shown in Example 4.1.3 that has the following adjacency matrix \mathbb{A}_4 :

$$\mathbb{A}_4 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

For this graph, we have

$$W_{11} = \begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then, the block structure (4.127) for Γ_4 is:

We want solutions of (4.127) to emulate solutions induced by Hamiltonian cycles (if there are any in the graph). Hence, we add to (4.127) constraints on the vectors $\mathbf{x}^{k\ell}$, to try to force them to resemble $\sum_{r=0}^{N-1} c_{k\ell}^r \mathbf{y}^r$ as closely as possible. Since we have exact expressions for each $c_{k\ell}^r$, we could impose constraints of the form

$$\mathbf{x}^{k\ell} = \sum_{r=1}^{N} c_{k\ell}^{r} \mathbf{y}^{r}, \qquad (4.128)$$

$$\sum_{(i,a)\in\Gamma} y_{ia}^r = 1, \tag{4.129}$$

 $y_{ia}^r \in \{0,1\}. \tag{4.130}$

However, we do not want to have the set of (binary) integer constraints (4.130), and so we relax these constraints. We now form ten sets of auxilliary constraints which, while not equivalent to (4.128)–(4.130), are designed to be difficult to satisfy while simultaneously satisfying (4.127) without obtaining integer \mathbf{y}^r . First, we derive three lemmata about sums of the coefficients $c_{k\ell}^r$.

Lemma 4.4.2 For all k = 2, ..., N - 1, r = 1, ..., N, we have

$$\sum_{\ell=0}^k c_{k\ell}^r = 0.$$

Proof. We know from Propositions 4.3.8 and 4.3.9 that coefficients $c_{k\ell}^r$ take one of many forms, depending on the values of r, k and ℓ . If $r \ge 2$, we consider separately the three cases where r < N - k + 1, r = N - k + 1 and r > N - k + 1. In the case where r = 1, we know from Remark 4.3.10 that since k > 0, the formula for $c_{k\ell}^1$ is the same as the general formula for the case where r > N - k + 1, which is one of the three cases we are already considering. Therefore, we do not need to consider r = 1 separately.

Case 1: r < N - k + 1. Then, we have

$$\sum_{\ell=0}^{k} c_{k\ell}^{r} = 0 + \sum_{\ell=1}^{k} (-1)^{\ell+1} \frac{k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}$$
$$= \frac{k}{N} \sum_{\ell=0}^{k-1} (-1)^{\ell} \begin{pmatrix} k-1\\ \ell \end{pmatrix}.$$

We observe that $\sum_{\ell=0}^{k-1} (-1)^{\ell} \begin{pmatrix} k-1 \\ \ell \end{pmatrix} = 0$. This is because it is equivalent to a binomial expansion of $(1+x)^{k-1}$, setting x = -1. Therefore

$$\sum_{\ell=0}^{k} c_{k\ell}^{r} = (1-1)^{k-1} = 0, \text{ since } k \ge 2.$$
(4.131)

Case 2: r = N - k + 1. Then, we have

$$\begin{split} \sum_{\ell=0}^{k} &= 1 + \sum_{\ell=1}^{k} (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} k\\ \ell \end{pmatrix} \\ &= 1 + \sum_{\ell=1}^{k} (-1)^{\ell} \begin{pmatrix} k\\ \ell \end{pmatrix} + \sum_{\ell=1}^{k} (-1)^{\ell+1} \frac{\ell}{N} \frac{k!}{\ell!(k-\ell)!} \\ &= \sum_{\ell=0}^{k} (-1)^{\ell} \begin{pmatrix} k\\ \ell \end{pmatrix} + \frac{k}{N} \sum_{\ell=1}^{k} (-1)^{\ell+1} \frac{(k-1)!}{(\ell-1)!(k-\ell)!} \\ &= (1-1)^{k} + \frac{k}{N} (1-1)^{k-1} = 0. \end{split}$$

We are able to deduce the final line using the same argument as in (4.131).

Case 3: r > N - k + 1 (or r = 1).

$$\sum_{\ell=0}^{k} = 0 + \sum_{\ell=1}^{k} (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}$$
$$= -\frac{N-k}{N} \sum_{\ell=0}^{k-1} (-1)^{\ell} \begin{pmatrix} k-1\\ \ell \end{pmatrix}$$
$$= (1-1)^{k-1} = 0.$$

This completes the proof of the lemma.

Lemma 4.4.3 For all r = 1, ..., N, we have

$$\sum_{k=0}^{1} \sum_{\ell=0}^{k} c_{k\ell}^{r} = c_{11}^{r} + c_{10}^{r} + c_{00}^{r} = \frac{1}{N}.$$

Proof. We consider three cases, that is, $r = 1, 2 \le r \le N - 1$ and r = N. Case 1: r = 1. Then, from Proposition 4.3.9 we obtain

$$c_{11}^{1} + c_{10}^{1} + c_{00}^{1} = (-1)\frac{N-1}{N} + 0 + 1 = \frac{1-N}{N} + \frac{N}{N} = \frac{1}{N}.$$

Case 2: $2 \le r \le N$. Then, from Proposition 4.3.8 we obtain

$$c_{11}^r + c_{10}^r + c_{00}^r = \frac{1}{N} + 0 + 0 = \frac{1}{N}.$$

Case 3: r = N. Then, from Proposition 4.3.8 we obtain

$$c_{11}^N + c_{10}^N + c_{00}^N = (-1)\frac{N-1}{N} + 1 + 0 = \frac{1}{N}.$$

Therefore, $\sum_{k=0}^{1} \sum_{\ell=0}^{k} c_{k\ell}^{r} = \frac{1}{N}$, for all r = 1, ..., N, which concludes the proof. \Box

Lemma 4.4.4 For all k = 1, ..., N - 1, $\ell = 1, ..., k$, we have

$$\sum_{r=1}^{N} c_{k\ell}^{r} = (-1)^{\ell} \begin{pmatrix} k \\ \ell \end{pmatrix}.$$

Proof. Since the formula for $c_{k\ell}^r$ is separate for r = 1, we break the sum to obtain

$$\sum_{r=1}^{N} c_{k\ell}^{r} = c_{k\ell}^{1} + \sum_{r=2}^{N} c_{k\ell}^{r}.$$

Then, from Propositions 4.3.8 Proposition 4.3.9 we obtain

$$\sum_{r=1}^{N} c_{k\ell}^{r} = (-1)^{\ell} \frac{N-k}{N} {\binom{k-1}{\ell-1}} + (N-k-1)(-1)^{\ell+1} \frac{k}{N} {\binom{k-1}{\ell-1}} + (-1)^{\ell} \frac{N-\ell}{N} {\binom{k}{\ell}} + (k-1)(-1)^{\ell} \frac{N-k}{N} {\binom{k-1}{\ell-1}} = \frac{(-1)^{\ell}}{N} {\binom{k-1}{\ell-1}} \left[-(N-k-1)k + (N-\ell)\frac{k}{\ell} + k(N-k) \right] = \frac{(-1)^{\ell}}{N} {\binom{k-1}{\ell-1}} \left[k + \frac{Nk}{\ell} - k \right] = (-1)^{\ell} {\binom{k}{\ell}}, \qquad (4.132)$$

which concludes the proof.

We now use Lemmata 4.4.2 – 4.4.4 to derive new constraints on $\mathbf{x}^{k\ell}$ that are satisfied by all solutions induced by Hamiltonian cycles.

Remark 4.4.5 The three lemmata above, and the auxilliary constraints that are derived in the remainder of this chapter, all take advantage of our knowledge of the

exact form of the coefficients $c_{k\ell}^r$ from Propositions 4.3.8 and 4.3.9. Although those Propositions were given only for the standard reverse Hamiltonian cycle h_R , we note that the set $\left\{ c_{k\ell}^1, \ldots, c_{k\ell}^N \right\}$ is identical for all Hamiltonian cycles, and it is only the order of the coefficients that changes. None of the auxilliary constraints that we derive depend on r in their final form, and though the ordering of the Hamiltonian cycle is used in some of the proceeding derivations (most notably for the tenth and final set of auxilliary constraints), an analogous argument can be given for any Hamiltonian cycle that arrives at the same set of auxilliary constraints. Hence, the auxilliary constraints that we derive are satisfied for all Hamiltonian cycles that exist in the graph Γ .

auxilliary constraints set 1: We consider $\sum_{\ell=0}^{k} x_{ia}^{k\ell}$ for all $k \geq 2$, $(i, a) \in \Gamma$. It immediately follows that for any arcs $(i, a) \in \Gamma$,

$$\sum_{\ell=0}^{k} x_{ia}^{k\ell} = \sum_{r=1}^{N} y_{ia}^{r} \sum_{\ell=0}^{k} c_{k\ell}^{r}$$

= 0, from Lemma 4.4.2. (4.133)

The constraints (4.133) are the first set of auxiliary constraints.

Auxilliary constraints set 2: We consider $\sum_{k=0}^{N-1} \sum_{\ell=0}^{k} x_{ia}^{k\ell}$ for all $(i, a) \in \Gamma$.

$$\sum_{k=0}^{N-1} \sum_{\ell=0}^{k} x_{ia}^{k\ell} = \sum_{r=1}^{N} y_{ia}^{r} \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} c_{k\ell}^{r}$$
$$= \sum_{r=1}^{N} y_{ia}^{r} \frac{1}{N}, \text{ from Lemmata 4.4.2 and 4.4.3.}$$

From (4.117), we know that for any Hamiltonian cycle, each \mathbf{y}^r contains only a single non-zero value, which is a 1. Then, we impose the relaxed 0-1 constraint by requiring

$$0 \le \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} x_{ia}^{k\ell} \le \frac{1}{N}, \quad (i,a) \in \Gamma.$$
(4.134)

The constraints (4.134) are the second set of auxilliary constraints.

Auxilliary constraints set 3: We consider $\sum_{(i,a)\in\Gamma} x_{ia}^{k\ell}$, for all $k = 1, \ldots, N-1$, $\ell = 1, \ldots, k$. Then,

$$\sum_{(i,a)\in\Gamma} x_{ia}^{k\ell} = \sum_{r=1}^{N} c_{k\ell}^{r} \sum_{(i,a)\in\Gamma} y_{ia}^{r}$$
$$= \sum_{r=1}^{N} c_{k\ell}^{r}$$
$$= (-1)^{\ell} \begin{pmatrix} k \\ \ell \end{pmatrix}, \text{ from Lemma 4.4.4.}$$
(4.135)

The constraints (4.135) are the third set of auxilliary constraints.

Auxilliary constraints set 4: We consider $\sum_{k=0}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0}$, for all $i = 1, \ldots, N$. Then,

$$\sum_{k=0}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} = \sum_{r=1}^{N} \sum_{a \in \mathcal{A}(i)} y_{ia}^r \sum_{k=0}^{N-1} c_{k0}^r$$

We recall from Propositions 4.3.8 and 4.3.9 that, for any r, the coefficient $c_{k0}^r = 0$ for all but one choice of k, for which $c_{k0}^r = 1$. Therefore,

$$\sum_{k=0}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} = \sum_{r=1}^{N} \sum_{a \in \mathcal{A}(i)} y_{ia}^{r}.$$

For a Hamiltonian cycle, we know that each node has a single arc emanating from it exactly once, and so for each i = 1, ..., N

$$\sum_{k=0}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} = 1.$$
(4.136)

The constraints (4.136) are the fourth set of auxilliary constraints.

Auxilliary constraints set 5: We consider $\sum_{k=\ell}^{N-1} c_{k\ell}^r$, for $\ell > 0, r = 1, \ldots, N$. First, we consider the case where $r \ge 2$. Again, while we do not know a Hamiltonian cycle in advance, we know from Proposition 4.3.8 that, if since $r \ge 2$, the above sum gives

(we define m := N - r + 1 for ease of notation):

$$\sum_{k=\ell}^{N-1} c_{k\ell}^{r} = \sum_{k=\ell}^{m-1} (-1)^{\ell+1} \frac{k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} + (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} m\\ \ell \end{pmatrix} + \sum_{k=m+1}^{N-1} (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}$$
$$= \sum_{k=\ell}^{m-1} (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} + \sum_{k=\ell}^{m-1} (-1)^{\ell+1} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}$$
$$+ (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} m\\ \ell \end{pmatrix} + \sum_{k=m+1}^{N-1} (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}.$$
(4.137)

We consider just the middle two terms for now, which we call t_M . That is,

$$\sum_{k=\ell}^{N-1} c_{k\ell}^r = \sum_{k=\ell}^{m-1} (-1)^\ell \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} + t_M + \sum_{k=m+1}^{N-1} (-1)^\ell \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}, (4.138)$$

where

$$t_M = \sum_{k=\ell}^{m-1} (-1)^{\ell+1} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} + (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} m\\ \ell \end{pmatrix}.$$
(4.139)

Then, we consider the Diagonal Sums identity from Pascal's triangle:

$$\sum_{i=r}^{n} \begin{pmatrix} i \\ r \end{pmatrix} = \begin{pmatrix} n+1 \\ r+1 \end{pmatrix}.$$

We select $r = \ell - 1$ and n = m - 2, and obtain

$$\sum_{i=\ell-1}^{m-2} \binom{i}{\ell-1} = \sum_{i=\ell}^{m-1} \binom{i-1}{\ell-1} = \binom{m-1}{\ell} = \binom{m-1}{m-1-\ell}.$$
 (4.140)

Then, substituting (4.140) into (4.139) we obtain

$$t_M = (-1)^{\ell+1} \frac{(m-1)!}{(m-1-\ell)!\ell!} - (-1)^{\ell+1} \frac{N-\ell}{N} \frac{m!}{(m-\ell)!\ell!}$$

$$= (-1)^{\ell+1} \frac{(m-1)!}{(m-1-\ell)!\ell!} \left[1 - \frac{m}{m-\ell} \frac{N-\ell}{N} \right]$$

$$= (-1)^{\ell+1} \frac{(m-1)!}{(m-1-\ell)!\ell!} \left[\frac{Nm - N\ell - Nm + m\ell}{(m-\ell)N} \right]$$

$$= \frac{(-1)^{\ell+1}}{N} \frac{(m-1)!}{(m-\ell)!\ell!} \left[(m-N)\ell \right]$$

$$= \frac{(-1)^{\ell}(N-m)}{N} \frac{(m-1)!}{(m-\ell)!(\ell-1)!}$$

= $\frac{(-1)^{\ell}(N-m)}{N} \begin{pmatrix} m-1\\ \ell-1 \end{pmatrix}.$ (4.141)

Next, we substitute (4.141) into (4.138) to obtain

$$\sum_{k=\ell}^{N-1} c_{k\ell}^{r} = \sum_{k=\ell}^{m-1} (-1)^{\ell} \frac{N-k}{N} {\binom{k-1}{\ell-1}} + \frac{(-1)^{\ell}(N-m)}{N} {\binom{m-1}{\ell-1}} + \sum_{k=m+1}^{N-1} (-1)^{\ell} \frac{N-k}{N} {\binom{k-1}{\ell-1}} = \sum_{k=\ell}^{N-1} (-1)^{\ell} \frac{N-k}{N} {\binom{k-1}{\ell-1}}.$$
(4.142)

Note that if we now consider r = 1, (4.142) follows immediately from Proposition 4.3.9, and so we say that (4.142) holds for all r = 1, ..., N. We make use of this result by considering $\sum_{k=\ell}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell}$ for all $\ell > 0, i = 1, ..., N$. That is,

$$\sum_{k=\ell}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} = \sum_{r=1}^{N} \sum_{a \in \mathcal{A}(i)} y_{ia}^r \sum_{k=\ell}^{N-1} c_{k\ell}^r.$$
(4.143)

We substitute (4.142) into (4.143) to obtain

$$\sum_{k=\ell}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} = \sum_{k=\ell}^{N-1} (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} \sum_{r=1}^{N} \sum_{a \in \mathcal{A}(i)} y_{ia}^{r}$$
$$= \sum_{k=\ell}^{N-1} (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}, \qquad (4.144)$$

for all i = 1, ..., N, $\ell = 1, ..., N - 1$. The constraints (4.144) are the fifth set of auxilliary constraints.

Auxilliary constraints set 6: We consider $\sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell}$, for all i = 1, ..., N, k = 1, ..., N, $\ell = 1, ..., k$. Then,

$$\sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} = \sum_{r=1}^{N} c_{k\ell}^{r} \sum_{a \in \mathcal{A}(i)} y_{ia}^{r}$$

We know that for any Hamiltonian cycle, exactly one of the above y_{ia}^r will be 1 and the rest will be 0, and therefore for all $i = 1, ..., N, k = 1, ..., N - 1, \ell = 1, ..., k$,

$$\sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} = c_{k\ell}^{r^*}, \qquad (4.145)$$

for some r^* . Since we do not know in advance which value r^* takes, we only achieve lower and upper bounds on $\sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell}$. From Propositions 4.3.8 and 4.3.9, we define lower bound $b_L(k, \ell)$ and upper bound $b_U(k, \ell)$ of (4.145) as

$$b_{L}(k,\ell) := \min\left\{ (-1)^{\ell+1} \frac{k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}, (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} k\\ \ell \end{pmatrix}, (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} \right\}, \\ b_{U}(k,\ell) := \max\left\{ (-1)^{\ell+1} \frac{k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix}, (-1)^{\ell} \frac{N-\ell}{N} \begin{pmatrix} k\\ \ell \end{pmatrix}, (-1)^{\ell} \frac{N-k}{N} \begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} \right\}.$$

Then, substituting the above bounds into (4.145) we obtain

$$\sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} \le b_U(k,\ell), \quad i = 1, \dots, N, \quad k = 1, \dots, N-1, \quad \ell = 1, \dots, k. \quad (4.146)$$
$$\sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} \ge b_L(k,\ell), \quad i = 1, \dots, N, \quad k = 1, \dots, N-1, \quad \ell = 1, \dots, k. \quad (4.147)$$

The constraints (4.146)-(4.147) are the sixth set of auxilliary constraints.

Auxilliary constraints set 7: We consider the expression (4.145), but for $\ell = 0$. Then, from Propositions 4.3.8 and 4.3.9, we obtain

$$\sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} = c_{k0}^r = \{0, 1\}.$$

Therefore, relaxing the above, we obtain

 $a \in \mathcal{A}(i)$

$$0 \le \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} \le 1, \quad \ell = 0, \dots, N, \quad i = 1, \dots, N.$$
(4.148)

The constraints (4.148) form the seventh set of auxilliary constraints.

Auxilliary constraints set 8: We consider next $\sum_{k=0}^{N-1} \sum_{(i,a)\in\Gamma} x_{ia}^{kk}$, then since $\sum_{(i,a)\in\Gamma} y_{ia}^r = 1$ for each r, we obtain

$$\sum_{k=0}^{N-1} \sum_{(i,a)\in\Gamma} x_{ia}^{kk} = \sum_{r=1}^{N} \sum_{k=0}^{N-1} c_{kk}^r \sum_{(i,a)\in\Gamma} y_{ia}^r$$
$$= \sum_{r=1}^{N} \sum_{k=0}^{N-1} c_{kk}^r$$
$$= \sum_{r=1}^{N} c_{00}^r + \sum_{k=1}^{N-1} \sum_{r=1}^{N} c_{kk}^r$$

Recall from Propositions 4.3.8 and 4.3.9 that $c_{00}^1 = 1$, and $c_{00}^r = 0$, for all $r \ge 2$. Then, from (4.135) we obtain

$$\sum_{k=0}^{N-1} \sum_{(i,a)\in\Gamma} x_{ia}^{kk} = 1 + \sum_{k=1}^{N-1} (-1)^k \binom{k}{k}$$
$$= 1 + \sum_{k=1}^{N-1} (-1)^k$$
$$= \sum_{k=0}^{N-1} (-1)^k$$
$$= \frac{1}{2} + \left(-\frac{1}{2}\right)^N.$$
(4.149)

The constraint (4.149) forms the eighth set of auxilliary constraints (though in this case, the set contains only a single constraint).

Auxilliary constraints set 9: We consider $\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk}$, for all $i = 1, \ldots, N$. Then

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = \sum_{r=1}^{N} \sum_{a \in \mathcal{A}(i)} y_{ia}^{r} \sum_{k=0}^{N-1} c_{kk}^{r}$$

For each i = 1, ..., N, exactly one $y_{ia}^r = 1$, for some r. Then

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = \sum_{k=0}^{N-1} c_{kk}^r.$$
(4.150)

We first consider the case when $r \ge 2$. Recall from Proposition 4.3.8 that $c_{00}^r = 0$, for $r \ge 2$. Substituting this and the results from Proposition 4.3.8 for $\ell = k$ into (4.150)

we obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = \sum_{k=1}^{N-r} (-1)^{k+1} \frac{k}{N} + (-1)^{N-r+1} \frac{N - (N-r+1)}{N} + \sum_{k=N-r+2}^{N-1} (-1)^k \frac{N-k}{N}.$$
(4.151)

Next, we consider (4.150) when r = 1. Then, from Proposition 4.3.9 we obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = 1 + \sum_{k=1}^{N-1} (-1)^k \frac{N-k}{N}.$$
(4.152)

Now we consider three cases, the first where r = 1, the second where $2 \le r \le N - 1$, and the third where r = N.

Case 1: If r = 1, then from (4.152) we have

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = 1 + \sum_{k=1}^{N-1} (-1)^k \frac{N-k}{N}$$
$$= 1 + \sum_{k=1}^{N-1} (-1)^k + \frac{1}{N} \sum_{k=1}^{N-1} (-1)^{k+1} k.$$

Then, if N is odd, the middle term above disappears and the expression reduces to

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = 1 + \frac{1}{N} \sum_{k=1}^{N-1} (-1)^{k+1} k.$$
(4.153)

Note that

$$\sum_{k=1}^{N-1} (-1)^{k+1} k = [1-2] + [3-4] + \ldots + [(N-2) - (N-1)] = -\left(\frac{N-1}{2}\right). \quad (4.154)$$

Substituting (4.154) into (4.153) we obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = 1 - \frac{N-1}{2N} = \frac{1}{2} + \frac{1}{2}N.$$
(4.155)

If N is even, using a similar argument we instead obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = 1 - 1 + \frac{1}{2} = \frac{1}{2}.$$
(4.156)

Case 2: If $2 \le r \le N - 1$, then from (4.151) we have

$$\begin{split} \sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} &= \sum_{k=1}^{N-r} (-1)^{k+1} \frac{k}{N} + (-1)^{N-r+1} \frac{N - (N-r+1)}{N} + \sum_{k=N-r+2}^{N-1} (-1)^k \frac{N-k}{N} \\ &= \sum_{k=1}^{N-r} (-1)^k \frac{N-k}{N} + \sum_{k=1}^{N-r} (-1)^{k+1} + (-1)^{N-r+1} \frac{N - (N-r+1)}{N} \\ &+ \sum_{k=N-r+2}^{N-1} (-1)^k \frac{N-k}{N} \\ &= \sum_{k=1}^{N-1} (-1)^k \frac{N-k}{N} + \sum_{k=1}^{N-r} (-1)^{k+1} \\ &= \sum_{k=1}^{N-1} (-1)^k + \sum_{k=1}^{N-r} (-1)^{k+1} + \frac{1}{N} \sum_{k=1}^{N-1} (-1)^{k+1} k \\ &= \sum_{k=N-r+1}^{N-1} (-1)^k + \frac{1}{N} \sum_{k=1}^{N-1} (-1)^{k+1} k. \end{split}$$

Then, if N is odd (4.151) simplifies to

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = \sum_{k=N-r+1}^{N-1} (-1)^k - \frac{N-1}{2N}.$$

We do not know the value of r, so we cannot find the exact value of the above expression. However, we know the final term of the sum will be +1 (as N - 1 is even), and therefore the sum will either be 0 or 1. Thus, we can impose the following bounds:

$$-\frac{1}{2} + \frac{1}{2N} \le \sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} \le \frac{1}{2} + \frac{1}{2N}.$$
(4.157)

If N is even we instead obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = \sum_{k=N-r+1}^{N-1} (-1)^k + \frac{1}{2}.$$

Again, we cannot find the exact value of the above expression, but using analogous arguments as above, we can impose the following bounds

$$-\frac{1}{2} \le \sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} \le \frac{1}{2}.$$
(4.158)

Case 3: If r = N, then from (4.151) we have

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = -\left(\frac{N-1}{N}\right) + \sum_{k=2}^{N-1} (-1)^k \frac{N-k}{N}$$
$$= \sum_{k=1}^{N-1} (-1)^k + \frac{1}{N} \sum_{k=1}^{N-1} (-1)^{k+1} k.$$

If N is odd, we obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = \frac{1-N}{2N} = -\frac{1}{2} + \frac{1}{2}N.$$
(4.159)

If N is even, we obtain

$$\sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} = -\frac{1}{2}.$$
(4.160)

Note that the bounds given in (4.157) also encompass the equality constraints (4.155) and (4.159). In addition, the bounds given in (4.158) also encompass the equality constraints (4.156) and (4.160). Then, since we do not know in advance the value of r, we simply consider (4.157) and (4.158) for all r = 1, ..., N. We can further combine (4.157) and (4.158) into a single set of constraints that accommodates any N:

$$-\frac{1}{2} + \frac{1}{4N} - (-1)^N \frac{1}{4N} \le \sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} \le \frac{1}{2} + \frac{1}{4N} - (-1)^N \frac{1}{4N},$$
(4.161)

for i = 1, ..., N. The constraints (4.161) are the ninth set of auxilliary constraints.

Auxilliary constraints set 10: For the final set of auxilliary constraints, we want to replicate the auxilliary constraints (4.31) that causes the one-parameter model in Section 4.2 to be infeasible for bridge graphs. We consider $\sum_{j \neq i} \sum_{a \in \mathcal{A}(j)} x_{ja}^{k0} - \sum_{\ell \neq i} x_{\ell i}^{k-1,0}$, for all $i = 1, \ldots, N, k = 2, \ldots, N-1$. Then, we know that

$$\sum_{j \neq i} \sum_{a \in \mathcal{A}(j)} x_{ja}^{k0} - \sum_{\ell \neq i} x_{\ell i}^{k-1,0} = \sum_{j \neq i} \sum_{a \in \mathcal{A}(j)} \sum_{r=1}^{N} c_{k0}^{r} y_{ja}^{r} - \sum_{\ell \neq i} \sum_{r=1}^{N} c_{k-1,0}^{r} y_{\ell i}^{r}.$$

Then, from Proposition 4.3.8, we know that $c_{k0}^r = 1$ when r = N - k + 1, and $c_{k0}^r = 0$ for all other r. Likewise, we know that $c_{k-1,0}^r = 1$ when r = N - k + 2, and $c_{k-1,0}^r = 0$ for all other r. Note that we need not consider c_{k0}^1 or $c_{k-1,0}^1$, as k > 1 and therefore from Proposition 4.3.9, $c_{k0}^1 = c_{k-1,0}^1 = 0$. Hence,

$$\sum_{j \neq i} \sum_{a \in \mathcal{A}(j)} x_{ja}^{k0} - \sum_{\ell \neq i} x_{\ell i}^{k-1,0} = \sum_{j \neq i} \sum_{a \in \mathcal{A}(j)} y_{ja}^{N-k+1} - \sum_{\ell \neq i} y_{\ell i}^{N-k+2}.$$
(4.162)

Remark 4.4.6 For the standard reverse Hamiltonian cycle, we think of r as the ordering index of the nodes in the Hamiltonian cycle. Then, (4.162) corresponds to constraints (4.31). For any other Hamiltonian cycle, the choices of r in the two sums above are no longer N - k + 1 and N - k + 2 respectively, but nonetheless they correspond to the order of successive arcs in a Hamiltonian cycle, and therefore still correspond to (4.31).

Therefore, from (4.31), for all i = 1, ..., N and k = 1, ..., N - 1, we have

$$\sum_{j \neq i} \sum_{a \in \mathcal{A}(j)} x_{ja}^{k0} - \sum_{\ell \neq i} x_{\ell i}^{k-1,0} = 1.$$
(4.163)

The constraint (4.163) are the tenth and final set of auxiliary constraints.

We combine each of the auxilliary constraints we have derived, with the block constraints (4.127), to form a new, parameter-free LP

$$\begin{split} W_{00}\mathbf{x}^{00} &= \mathbf{b}_{00}, \\ W_{00}\mathbf{x}^{10} + W_{10}\mathbf{x}^{00} &= \mathbf{b}_{10}, \\ W_{00}\mathbf{x}^{11} + W_{11}\mathbf{x}^{00} &= \mathbf{b}_{11}, \\ &\vdots \\ W_{11}\mathbf{x}^{N-1,N-1} &= \mathbf{b}_{NN}, \\ \sum_{\ell=0}^{k} x_{ia}^{k\ell} &= 0, \quad k = 2, \dots, N-1, \quad (i, a) \in \Gamma, \\ \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} x_{ia}^{k\ell} &\leq \frac{1}{N}; \quad (i, a) \in \Gamma, \\ \sum_{k=0}^{N-1} \sum_{\ell=0}^{k} x_{ia}^{k\ell} &\geq 0; \quad (i, a) \in \Gamma, \end{split}$$

$$\begin{split} \sum_{(i,a)\in\Gamma} x_{ia}^{k\ell} &= (-1)^{\ell} \left(\begin{array}{c} k\\ \ell \end{array} \right), \quad 1 \leq \ell \leq k \leq N-1, \\ \sum_{k=0}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} &= 1, \quad i = 1, \dots, N, \\ \sum_{k=\ell}^{N-1} \sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} &= \sum_{k=\ell}^{N-1} (-1)^{\ell} \frac{N-k}{N} \left(\begin{array}{c} k-1\\ \ell-1 \end{array} \right), \quad i = 1, \dots, N, \quad \ell = 1, \dots, N-1, \\ \sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} &\leq b_U(k, \ell), \quad i = 1, \dots, N, \quad 1 \leq \ell \leq k \leq N-1, \\ \sum_{a \in \mathcal{A}(i)} x_{ia}^{k\ell} &\geq b_L(k, \ell), \quad i = 1, \dots, N, \quad 1 \leq \ell \leq k \leq N-1, \\ \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} &\leq 1, \quad i = 1, \dots, N, \quad 0 \leq k \leq N-1, \\ \sum_{a \in \mathcal{A}(i)} x_{ia}^{k0} &\geq 0, \quad i = 1, \dots, N, \quad 0 \leq k \leq N-1, \\ \sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} &= \frac{1}{2} + \left(-\frac{1}{2}\right)^{N}, \\ \sum_{a \in \mathcal{A}(i)} \sum_{k=0}^{N-1} x_{ia}^{kk} &\leq \frac{1}{2} + \frac{1}{4N} - (-1)^{N} \frac{1}{4N}, \quad i = 1, \dots, N, \\ \sum_{a \in \mathcal{A}(j)} \sum_{k=0}^{N-1} x_{ia}^{kk} &\geq -\frac{1}{2} + \frac{1}{4N} - (-1)^{N} \frac{1}{4N}, \quad i = 1, \dots, N, \\ \sum_{a \in \mathcal{A}(j)} \sum_{k=0}^{N-1} x_{ia}^{kk} &\geq -\frac{1}{2} + \frac{1}{4N} - (-1)^{N} \frac{1}{4N}, \quad i = 1, \dots, N, \\ \sum_{a \in \mathcal{A}(j)} \sum_{k=0}^{N-1} x_{ia}^{kk} &\geq -\frac{1}{2} + \frac{1}{4N} - (-1)^{N} \frac{1}{4N}, \quad i = 1, \dots, N, \\ \sum_{a \in \mathcal{A}(j)} \sum_{k=0}^{N-1} x_{ia}^{kk} &\geq -\frac{1}{2} + \frac{1}{4N} - (-1)^{N} \frac{1}{4N}, \quad i = 1, \dots, N, \end{split}$$

This model attempts to find a solution of the form (4.120). We have implemented this model in MATLAB using a CPLEX interface. Unfortunately, while this model was able to correctly identify all bridge graphs in a similar fashion to Conjecture 4.2.3, it was not able to identify any other non-Hamiltonian graphs and so currently, the additional effort required to solve the above model compared to (4.28)–(4.31) yields no additional results. However, we hope that further refining of the above model will lead to additional non-Hamiltonian graphs being identified. We suggest some improvements are suggested in Section 5.3 that at the time of submission of this thesis are already leading to promising results.

Chapter 5

Conclusions and Future Work

In this thesis we have demonstrated a number of algorithmic developments ensuing from the embedding of the Hamiltonian cycle problem in a discounted Markov decision process. We have discovered new properties of Hamiltonian cycles, revealed by this embedding, and have developed four new algorithmic approaches as a result.

In Chapter 2, we outlined an improved version of the branch and fix method in [28], and demonstrated that this method works well in the space of discounted occupational measures. We used the discount parameter inherited from the discounted Markov decision process embedding to develop wedge constraints that improved the model significantly. We then used a tightened version of the wedge constraints to formulate the Wedged-MIP heuristic that succeeded in solving large graphs.

In Chapter 3, we outlined the interior point method, DIPA, designed to solve the optimisation problem given in [14], that is equivalent to the Hamiltonian cycle problem. We derived formulae that allow us to calculate the derivatives of the objective function much quicker than standard algorithms, and designed DIPA to take advantage of the sparsity inherent in difficult graphs. We conjectured about the existence of a unique strictly interior saddle-point in the optimisation problem formulated in [14], and gave experimental evidence supporting this conjecture.

In Chapter 4, we investigated the form of Hamiltonian solutions of linear equations, derived from the discounted Markov decision process embedding. We derived exact expressions for all Hamiltonian cycles for both unperturbed and perturbed discounted Markov decision process embeddings. Furthermore, we supplied experimental evidence that our understanding of these expressions allows us to formulate new linear feasibility programs that identify (by their infeasibility) the majority of non-Hamiltonian graphs.

All models in this thesis, other than the Wedged-MIP heuristic, have been implemented in MATLAB. The most obvious direction of future research is to implement these models in compiled language, which will lead to an improvement in the running times compared to the results displayed in this thesis. However, we have also raised new questions that are as of yet unanswered, and identified many potentially fruitful directions of further research. These include, but are not limited to, the following.

5.1 Future work arising from Chapter 2

In both the branch and fix method and the Wedged-MIP heuristic, we currently only use constraints that seek a single, directed, Hamiltonian cycle starting from the first node. One possible improvement is to introduce new variables that find the reverse Hamiltonian cycle. Then, by use of some coupling constraints, we can demand that a solution be satisfied in two directions simultaneously. Alternatively (or additionally), we can introduce new variables for each possible home node in the graph. Then, by use of some further coupling constraints, we can demand that a solution be satisfied for N Hamiltonian cycles, all using the same arcs, but each starting at a different node. This will lead to a reduced feasible region.

We can apply the tightened wedge constraints, currently used only in the Wedged-MIP heuristic, to the branch and fix method. These constraints are graph-specific constraints, which will lead to further improvement in the performance of the branch and fix method.

5.2 Future work arising from Chapter 3

An interior point method was developed in [15] that solved a quadratic programming problem, with constraints arising from embedding the Hamiltonian cycle problem in a long-run average Markov decision process. Modifying DIPA to solve an equivalent quadratic programming problem, but with constraints arising from the discounted Markov decision process embedding will allow us to take advantage of knowledge gained from both [15] and this thesis. In particular, the addition of wedge constraints from Chapter 2 will prove fruitful.

The knowledge gained about the LU decomposition of the negative generator matrix for Hamiltonian cycles has led to a new quartic feasibility program that is satisfied only by solutions corresponding to Hamiltonian cycles.

$$\left(\sum_{k=1}^{N} l_{ik} u_{kj}\right) \left(\sum_{k=1}^{N} l_{ik} u_{kj} + 1\right) = 0, \quad i = 1, \dots, N, \quad j = 1, \dots, N, \quad i \neq j,$$

$$l_{ik} u_{ki} = 0, \quad i = k + 1, \dots, N,$$

$$l_{ii} = u_{ii} = 1, \quad i = 1, \dots, N - 1,$$

$$l_{NN} = 1,$$

$$u_{NN} = 0,$$

$$l_{ij} = u_{ji} = 0, \quad i = 1, \dots, N - 1, \quad j = i + 1, \dots, N,$$

$$-1 \leq l_{ji} \leq 0, \quad i = 1, \dots, N - 1, \quad j = i + 1, \dots, N,$$

$$-1 \leq u_{ij} \leq 0, \quad i = 1, \dots, N - 1, \quad j = i + 1, \dots, N,$$

The variables in the above program are from the L and U matrices in the LU decomposition, LU = I - P. This formulation of the Hamiltonian cycle problem contains only N(N-1) nonlinear constraints, all of degree 4. Solving this feasibility program will be the subject of future research.

The unique saddle-point conjecture, and its potential use in the graph isomorphism problem are also new directions of research that will be further investigated. In addition to determining if the saddle-point exists and is unique for all graphs, we will investigate methods of identifying the saddle-point quickly.

5.3 Future work arising from Chapter 4

We aim to prove that the two models given in Chapter 4 are infeasible for all bridge graphs, which will verify the experimental results we have obtained so far. The two models can also be extended, in a similar sense to the improvements suggested in Section 5.1, by introducing new variables corresponding to alternative starting nodes. Then, by the use of suitable coupling constraints, we will demand that solutions satisfy the original constraints in both directions, for all possible starting nodes. This more restrictive set of constraints will, hopefully, lead to further non-Hamiltonian graphs being identified by the infeasibility of the new constraints.

Appendix A

Appendices

Recall that Proposition 4.3.5:

Consider h_R , $P_{h_R}^{\nu}$ and M as defined in Lemma 4.3.1. We further define $d_{j1}^{\nu}(\beta)$ as the (j, 1)-th cofactor of M. Then, for j = 1,

$$d_{11}^{\nu}(\beta) = \frac{\frac{1}{N}\beta\nu}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(1+\lambda)\right] + 1,$$
(A.1)

and, for $j \geq 2$

$$d_{j1}^{\nu}(\beta) = \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(-\lambda)^{N-j+1}(1+\lambda)\right] + (-\lambda)^{N-j+1}.$$
 (A.2)

In Appendices A.1 – A.5, we prove Proposition 4.3.5 for the special cases j = 1 and j = 2, and we derive closed-form expressions for three determinants that are used in the proof of Proposition 4.3.5. Recall from that proof that we define $\lambda := \beta \nu - \beta$. In Appendix A.6 we provide adjacency lists, and a Hamiltonian solution, for each of four graphs, of sizes 250, 500, 1000 and 2000 respectively.

A.1 Proof of Proposition 4.3.5 for j = 1

Recall the form of M as defined in Lemma 4.3.1, and that $d_{11}^{\nu}(\beta)$ is defined as the (1, 1)-th cofactor of M in Proposition 4.3.5.

Lemma A.1.1

$$d_{11}^{\nu}(\beta) = \frac{\frac{1}{N}\beta\nu}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(1+\lambda)\right] + 1.$$
 (A.3)

This proof is intended to follow the general proof of Proposition 4.3.5 for $j \ge 2$ and hence utilises some expressions and derivations from that proof. We recommend that the general proof is read first.

Proof. Recall from (4.64) that

$$d_{11}^{\nu}(\beta) = \det(M^{11}). \tag{A.4}$$

Then, consider the $(N-1) \times (N-1)$ matrix M^{11} , which is the (1, 1)-th minor of M. This minor has the following structure

$$M^{11} = \begin{bmatrix} 1 - \frac{\beta\nu}{N} & -\frac{\beta\nu}{N} & \cdots & \cdots & \cdots & \cdots & -\frac{\beta\nu}{N} \\ -\beta(1 - \frac{N-1}{N}\nu) & 1 - \frac{\beta\nu}{N} & -\frac{\beta\nu}{N} & \cdots & \cdots & \cdots & -\frac{\beta\nu}{N} \\ -\frac{\beta\nu}{N} & -\beta(1 - \frac{N-1}{N}\nu) & 1 - \frac{\beta\nu}{N} & -\frac{\beta\nu}{N} & \cdots & \cdots & -\frac{\beta\nu}{N} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & & & & & & & & & \\ -\frac{\beta\nu}{N} & & & & & & & & & & & & & & & & \\ -\frac{\beta\nu}{N} & & & & & & & & & & & & & & & & & & \\ \end{bmatrix}$$
 (A.5)

We define two elementary matrices, E_{11}^1 and E_{11}^2 , as the following.

$$E_{11}^{1} = I - \mathbf{e}\mathbf{e}_{1}^{T} + \mathbf{e}_{1}\mathbf{e}_{1}^{T},$$

$$E_{11}^{2} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & \vdots \\ 0 & -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}.$$
(A.6)

Note that these two elementary matrices are equivalent to E_2 and E_3 , given in equations (4.65) and (4.66) in the general proof of Proposition 4.3.5.

Then, premultiplying M^{11} by E_{11}^1 , postmultiplying the result by E_{11}^2 , and recalling that $\lambda := \beta \nu - \beta$, we obtain the $(N - 1) \times (N - 1)$ matrix Y^{11}

$$Y^{11} := E_{11}^{1} M^{11} E_{11}^{2} = \begin{bmatrix} 1 - \frac{\beta\nu}{N} & 0 & \cdots & \cdots & \cdots & 0 & -\frac{\beta\nu}{N} \\ \lambda - 1 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & \lambda & \lambda - 1 & \ddots & \ddots & & & \vdots \\ \vdots & 0 & -\lambda & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 1 & 0 \\ -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix}.$$

Since E_{11}^1 and E_{11}^2 are triangular matrices with units on their diagonals, we see that

$$\det(M^{11}) = \det(Y^{11}). \tag{A.7}$$

We find $det(Y^{11})$ by expanding on the last column where there are two non-zero entries, in the first and (N-1)-th positions. Expanding on this column, we find two minors M_1^{11} and M_2^{11} . Then,

$$\det(Y^{11}) = (-1)^N (-\frac{\beta\nu}{N}) \det(M_1^{11}) + \det(M_2^{11}).$$
 (A.8)

The determinant of the second minor, M_2^{11} , is the simplest to evaluate. It is an $(N-2) \times (N-2)$ matrix with the structure

$$M_{2}^{11} = \begin{bmatrix} 1 - \frac{\beta\nu}{N} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \lambda - 1 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & \vdots \\ -1 & \lambda & \lambda - 1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix}$$

 ${\cal M}_2^{11}$ is a lower-triangular matrix, and therefore

$$\det(M_2^{11}) = 1 - \frac{\beta\nu}{N}.$$
 (A.9)

The other minor, M_1^{11} , is an $(N-2) \times (N-2)$ matrix with the structure

$$M_{1}^{11} = \begin{bmatrix} \lambda - 1 & 1 & 0 & \cdots & \cdots & 0 \\ -1 & \lambda - 1 & \ddots & \ddots & \ddots & \vdots \\ -1 & -\lambda & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 1 \\ -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix}$$

This minor has the same form as a matrix (A.64), that is investigated in the general proof of Proposition 4.3.5, and its determinant is given in (A.68). However, the latter matrix had dimensions $(j - 3) \times (j - 3)$, rather than $(N - 2) \times (N - 2)$ for M_1^{11} . Substituting j = N + 1 into (A.68) we obtain

$$\det(M_1^{11}) = \left[\sum_{i=0}^{N-2} \lambda^{N-2-i} (i+1)(-1)^i\right] + (-1)^{N+1}.$$
 (A.10)

Substituting (A.9) and (A.10) into (A.8) we find

$$\det(Y^{11}) = (-1)^N \left(-\frac{\beta\nu}{N}\right) \left(\sum_{i=0}^{N-2} \lambda^{N-2-i} (i+1)(-1)^i\right) + \frac{\beta\nu}{N} + 1 - \frac{\beta\nu}{N}$$
$$= 1 - \frac{1}{N} \beta\nu \left(\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1)\right),$$

and we substitute the above into (A.7) to obtain

$$\det(M^{11}) = 1 - \frac{1}{N} \beta \nu \left(\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) \right).$$
 (A.11)

Consider the sum in (A.11). We rewrite the sum as

$$\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) = N \sum_{i=0}^{N-2} (-\lambda)^i - \sum_{i=0}^{N-2} (-\lambda)^i (i+1).$$
We use the geometric series formula in the first sum above to obtain

$$\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) = \frac{N(1-(-\lambda)^{N-1})}{(1+\lambda)} - \sum_{i=0}^{N-2} (-\lambda)^i (i+1).$$

Next, we rewrite the remaining sum as a sum of derivatives of $(-\lambda)^{i+1}$ to obtain

$$\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) = \frac{N(1-(-\lambda)^{N-1})}{(1+\lambda)} + \sum_{i=0}^{N-2} \frac{\partial (-\lambda)^{i+1}}{\partial \lambda}$$
$$= \frac{N(1-(-\lambda)^{N-1})}{(1+\lambda)} + \frac{\partial}{\partial \lambda} \sum_{i=1}^{N-1} (-\lambda)^{i}.$$

We augment the second sum by the additional term when i = 0, for which the derivative is 0, and use the geometric series formula to find

$$\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) = \frac{N(1-(-\lambda)^{N-1})}{(1+\lambda)} + \frac{\partial}{\partial\lambda} \left(\frac{1-(-\lambda)^N}{1+\lambda}\right).$$

We take the derivative in the above and simply to obtain

$$\sum_{i=0}^{N-2} (-\lambda)^{N-2-i} (i+1) = \frac{N(1-(-\lambda)^{N-1})}{(1+\lambda)} + \frac{(-\lambda)^{N-1}(N)(1+\lambda)-1+(-\lambda)^N}{(1+\lambda)^2}$$
$$= \frac{N(1-(-\lambda)^{N-1})(1+\lambda)+(-\lambda)^{N-1}(N)(1+\lambda)-1+(-\lambda)^N}{(1+\lambda)^2}$$
$$= \frac{N+N\lambda-N(-\lambda)^{N-1}+N(-\lambda)^N}{(1+\lambda)^2}$$
$$+ \frac{N(-\lambda)^{N-1}-N(-\lambda)^N-1+(-\lambda)^N}{(1+\lambda)^2}$$
$$= \frac{-1+(-\lambda)^N+N(1+\lambda)}{(1+\lambda)^2}.$$
(A.12)

Finally, we substitute (A.12) into (A.11) to obtain

$$\det(M^{11}) = \frac{\frac{1}{N}\beta\nu}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(1+\lambda)\right] + 1.$$
 (A.13)

Substituting (A.13) into (A.4) concludes the proof.

A.2 Proof of Proposition 4.3.5 for j = 2

In this appendix we will prove Proposition 4.3.5 for the special case j = 2. Recall the form of M as defined in Lemma 4.3.1, and that we define $\lambda := \beta \nu - \beta$.

Lemma A.2.1

$$d_{21}^{\nu}(\beta) = \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(-\lambda)^{N-1}(1+\lambda)\right] + (-\lambda)^{N-1}.$$

Proof. Recall from (4.64) that

$$d_{21}^{\nu}(\beta) = -\det(M^{21}). \tag{A.14}$$

Then, consider the $(N-1) \times (N-1)$ matrix M^{21} , which is the (2, 1)-th minor of M. This minor has the following structure

$$M^{21} = \begin{bmatrix} -\frac{\beta\nu}{N} & \cdots & \cdots & \cdots & \cdots & -\frac{\beta\nu}{N} & -\beta(1-\frac{N-1}{N}\nu) \\ -\beta(1-\frac{N-1}{N}\nu) & 1-\frac{\beta\nu}{N} & -\frac{\beta\nu}{N} & \cdots & \cdots & \cdots & -\frac{\beta\nu}{N} \\ -\frac{\beta\nu}{N} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ -\frac{\beta\nu}{N} & \cdots & \cdots & \cdots & -\frac{\beta\nu}{N} & -\beta(1-\frac{N-1}{N}\nu) & 1-\frac{\beta\nu}{N} \end{bmatrix}.$$

First, we shift the last column to the front of the matrix using the following $(N-1) \times (N-1)$ elementary matrix E_1^{21} :

$$E_1^{21} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ 1 & & & \end{bmatrix},$$

which has determinant

$$\det(E_1^{21}) = (-1)^N.$$
 (A.15)

Next, we use a second elementary matrix E_2^{21} which subtracts the top row from every other row, and multiplies the top row by -1,

$$E_2^{21} = I - \mathbf{e}\mathbf{e}_1^T - \mathbf{e}_1\mathbf{e}_1^T, \qquad (A.16)$$

for which $det(E_2^{21}) = -1$. Multiplying M^{21} on the right by E_1^{21} and on the left by E_2^{21} we obtain a new $(N-1) \times (N-1)$ matrix, which we call Y^{21} :

$$Y^{21} := E_2^{21} M^{21} E_1^{21} = \begin{bmatrix} \beta (1 - \frac{N-1}{N}\nu) & \frac{\beta\nu}{N} & \frac{\beta\nu}{N} & \cdots & \cdots & \cdots & \frac{\beta\nu}{N} \\ -\lambda & \lambda & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & 0 & \lambda & 1 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ -\lambda + 1 & 0 & \cdots & \cdots & \cdots & 0 & \lambda \end{bmatrix} .$$
(A.17)

From (A.15) and (A.16) we see that

$$\det(M^{21}) = (-1)^{N-1} \det(Y^{21}).$$
(A.18)

Next, we eliminate the $-\lambda$ terms in the first column of (A.17). Define \mathbf{c}_k^{21} to be the *k*-th column of Y^{21} . We then find a_1 such that the following column operation

$$\mathbf{c}_{1}^{21} \to \mathbf{c}_{1}^{21} + a_{1} \left(\sum_{i=2}^{N-1} \mathbf{c}_{i}^{21} \right),$$
 (A.19)

gives a column with zeros in all positions other than the first and last position. We find a_1 by solving

$$-\lambda + a_1(\lambda + 1) = 0,$$

and therefore

$$a_1 = \frac{\lambda}{1+\lambda}.\tag{A.20}$$

This column operation is performed by multiplying Y^{21} on the right by the following elementary matrix E_3^{21} :

$$E_3^{21} = I + \frac{\lambda}{1+\lambda} \mathbf{e} \mathbf{e}_1^T - \frac{\lambda}{1+\lambda} \mathbf{e}_1 \mathbf{e}_1^T, \qquad (A.21)$$

for which $det(E_3^{21}) = 1$. Then $Y^{21}E_3^{21}$, which is the same as Y^{21} except for the first column, has the following structure

$$Y^{21}E_{3}^{21} = \begin{bmatrix} \beta(1 - \frac{N-1}{N}\nu) + (N-2)\frac{\lambda}{1+\lambda}\frac{\beta\nu}{N} & \frac{\beta\nu}{N} & \cdots & \cdots & \cdots & \cdots & \frac{\beta\nu}{N} \\ 0 & \lambda & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \vdots & & \ddots & \ddots & \ddots & 0 \\ 0 & \vdots & & \ddots & \ddots & \ddots & 1 \\ \frac{1}{1+\lambda} & 0 & \cdots & \cdots & \cdots & 0 & \lambda \end{bmatrix} . \quad (A.22)$$

Next, we eliminate all but the first two entries in the first row of (A.22). Define \mathbf{r}_k^{21} to be the k-th row of $Y^{21}E_3^{21}$. We then find a_2 such that the following row operation

$$\mathbf{r}_{1}^{21} \to \mathbf{r}_{1}^{21} + a_{2} \left(\sum_{i=2}^{N-1} \mathbf{r}_{i}^{21} \right),$$
 (A.23)

gives a row with zeros in all entries other than in the first and second positions. We find a_2 by solving

$$\frac{\beta\nu}{N} + a_2(1+\lambda) = 0,$$

and therefore

$$a_2 = -\frac{\beta\nu}{N(1+\lambda)}.$$
 (A.24)

This row operation is performed by multiplying $Y^{21}E_3^{21}$ on the left by the following elementary matrix E_4^{21} :

$$E_4^{21} = I - \frac{\beta\nu}{N(1+\lambda)} \mathbf{e}_1 \mathbf{e}^T + \frac{\beta\nu}{N(1+\lambda)} \mathbf{e}_1 \mathbf{e}_1^T, \qquad (A.25)$$

for which $det(E_4^{21}) = 1$. Then, $E_4^{21}Y^{21}E_3^{21}$, which is the same as $Y^{21}E_3^{21}$ except for the first row, has the following structure (where *a* and *b* are complicated expression we will derive shortly):

$$E_{4}^{21}Y^{21}E_{3}^{21} = \begin{bmatrix} a & b & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & & & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \vdots & & & \ddots & \ddots & 1 \\ \frac{1}{1+\lambda} & 0 & \cdots & \cdots & \cdots & 0 & \lambda \end{bmatrix}.$$
 (A.26)

For simplicity we define $Z^{21} := E_4^{21} Y^{21} E_3^{21}$. As $det(E_4^{21}) = det(E_3^{21}) = 1$, then from (A.18) we obtain

$$\det(M^{21}) = (-1)^{N-1} \det(Z^{21}).$$
(A.27)

We find $det(Z^{21})$ by expanding on the first column, where there are two nonzero terms in positions (1,1) and (N-1,1), and obtain two minors Z_1^{21} and Z_2^{21} respectively. Then,

$$\det(Z^{21}) = a \det(Z_1^{21}) + (-1)^N \frac{1}{1+\lambda} \det(Z_2^{21}).$$
 (A.28)

The $(N-2) \times (N-2)$ minor Z_1^{21} has the structure

$$Z_{1}^{21} = \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda \end{bmatrix}.$$

The above minor is upper-triangular and therefore

$$\det(Z_1^{21}) = \lambda^{N-2}. \tag{A.29}$$

The $(N-2) \times (N-2)$ minor Z_2^{21} has the structure

The above minor is lower-triangular and therefore

$$\det(Z_2^{21}) = b. (A.31)$$

Substituting (A.29) and (A.31) into (A.28) we obtain

$$\det(Z^{21}) = a\lambda^{N-2} + (-1)^N \frac{b}{1+\lambda}.$$
 (A.32)

We now derive the expression for a, recalling that it arises from row operation (A.23),

$$a = \beta \left(1 - \frac{N-1}{N}\nu\right) + (N-2)\frac{\lambda}{1+\lambda}\frac{\beta\nu}{N} - \frac{\beta\nu}{N(1+\lambda)^2}$$
$$= \beta - \beta\nu + \frac{\beta\nu}{N} + \frac{\left(\frac{1}{N}\beta\nu\right)}{1+\lambda} \left[(N-2)\lambda - \frac{1}{1+\lambda}\right]$$
$$= -\lambda + \frac{\left(\frac{1}{N}\beta\nu\right)}{1+\lambda} \left[\lambda + 1 + (N-2)\lambda - \frac{1}{1+\lambda}\right]$$
$$= -\lambda + \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[((N-1)\lambda+1)\left(1+\lambda\right) - 1\right]$$
$$= -\lambda + \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[N\lambda + (N-1)\lambda^2\right].$$
(A.33)

Similarly, we now derive the expression for b,

$$b = \frac{\beta\nu}{N} - \frac{\beta\nu\lambda}{N(1+\lambda)} = \frac{\beta\nu}{N} \left(1 - \frac{\lambda}{1+\lambda}\right) = \frac{\beta\nu}{N} \left(\frac{1}{1+\lambda}\right).$$
(A.34)

Substituting (A.33) and (A.34) into (A.32) we obtain

$$\det(Z^{21}) = -\lambda^{N-1} + \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[N\lambda^{N-1} + (N-1)\lambda^N\right] + (-1)^N \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} = -(-\lambda)^{N-1}(-1)^{N-1} + \frac{\left(\frac{1}{N}\beta\nu\right)(-1)^{N-1}}{(1+\lambda)^2} \left[N(-\lambda)^{N-1} - (N-1)(-\lambda)^N\right] + (-1)^N \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2}.$$
(A.35)

Finally we substitute (A.35) into (A.27) to obtain

$$\det(M^{21}) = -(-\lambda)^{N-1} + \frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[N(-\lambda)^{N-1}(1+\lambda) + (-\lambda)^N - 1\right]$$

= $-\frac{\left(\frac{1}{N}\beta\nu\right)}{(1+\lambda)^2} \left[1 - (-\lambda)^N - N(-\lambda)^{N-1}(1+\lambda)\right] - (-\lambda)^{N-1}.$ (A.36)

Substituting (A.36) into (A.14) concludes the proof.

A.3 Derivation of $det(N_1)$

Recall the form of the $(N-2) \times (N-2)$ minor N_1 , as shown in (A.37):

$$N_{1} = \begin{bmatrix} 1 - \frac{\beta\nu}{N} & 0 & \cdots & 0 \\ \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & \ddots & & \vdots \\ 1 & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \frac{-1}{-1} & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix},$$
(A.37)

where the separation occurs between rows (j-2) and (j-1).

Lemma A.3.1

$$\det(N_1) = (-1)^{N+j} \left(1 - \frac{\beta\nu}{N}\right) \frac{1 - (-\lambda)^{N-j+1}}{1+\lambda}.$$
 (A.38)

Proof. To find det (N_1) we first expand over the first row, where there is only one non-zero term, in position (1,1). Then we obtain a new minor N_{11} of size $(N-3) \times$

(A.39)0____

(N-3) with the separation between rows (j-3) and (j-2):

and we know that

$$\det(N_1) = (1 - \frac{\beta \nu}{N}) \det(N_{11}).$$
 (A.40)

We notice that N_{11} is lower-Hessenberg (ie lower-triangular, but with non-zeros on the superdiagonal), but all non-zero superdiagonals are in the lower part of the matrix, where they are all 1's. Starting from column (j-1), we perform column operations one at a time to remove each of these 1's, with the intention of transforming N_{11} into a lower-triangular matrix.

Consider a pair of columns of the following form:

$$\begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ \left(\sum_{i=0}^{n} \lambda^{n-i} (-1)^{i}\right) & 1 \\ \left(\sum_{i=0}^{n-1} \lambda^{n-i} (-1)^{i+1}\right) & \lambda - 1 \\ 0 & -\lambda \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}.$$
 (A.41)

Then consider the column operation required to remove the 1 from the second column \mathbf{c}_2 of (A.41):

$$\mathbf{c}_2 \to \left(\sum_{i=0}^n \lambda^{n-i} (-1)^i\right) \mathbf{c}_2 - \mathbf{c}_1. \tag{A.42}$$

The column operation (A.42) results in a new pair of columns,

$$\begin{bmatrix} 0 & 0\\ \vdots & \vdots\\ \left(\sum_{i=0}^{n} \lambda^{n-i} (-1)^{i}\right) & 0\\ \left(\sum_{i=0}^{n-1} \lambda^{n-i} (-1)^{i+1}\right) & t_{1}\\ 0 & t_{2}\\ 0 & 0\\ \vdots & \vdots\\ 0 & 0 \end{bmatrix},$$

where
$$t_1 := (\lambda - 1) \left(\sum_{i=0}^n \lambda^{n-i} (-1)^i \right) - \left(\sum_{i=0}^{n-1} \lambda^{n-i} (-1)^{i+1} \right)$$
, and $t_2 := (-\lambda) \left(\sum_{i=0}^n \lambda^{n-i} (-1)^i \right)$.

We now simplify t_1 and t_2 . First, for t_1 , we have

$$t_{1} = (\lambda - 1) \left(\sum_{i=0}^{n} \lambda^{n-i} (-1)^{i} \right) - \left(\sum_{i=0}^{n-1} \lambda^{n-i} (-1)^{i+1} \right)$$

$$= (\lambda - 1) (-1)^{n} + \sum_{i=0}^{n-1} \left[(\lambda - 1) \lambda^{n-i} (-1)^{i} + \lambda^{n-i} (-1)^{i} \right]$$

$$= (\lambda - 1) (-1)^{n} + \sum_{i=0}^{n-1} \left[\lambda^{n-i+1} (-1)^{i} \right]$$

$$= \sum_{i=0}^{n+1} \lambda^{(n+1)-i} (-1)^{i}.$$
(A.43)

Next, for t_2 , we have

$$t_2 = \left(\sum_{i=0}^n \lambda^{n-i} (-1)^i\right) (-\lambda) = \sum_{i=0}^{(n+1)-1} \lambda^{(n+1)-i} (-1)^{i+1}.$$
 (A.44)

Then, after the column operation (A.42) is performed, the pair of columns (A.41) becomes

Note that after the column operation, the second column is the same as the first column except shifted one row down, with the index n changing to (n + 1).

In N_{11} , columns (j-2) and (j-1) correspond to (A.41) for the case n = 1. After performing the column operation (A.42) for n = 1, we obtain a new matrix for which columns (j-1) and j correspond to (A.41) for the case n = 2. By induction, we continue to perform the column operation (A.42) with increasing values of n on all subsequent pairs of columns, and predict the form of N_{11}^* , the resulting matrix after the column operations are complete:

We observe that N_{11}^* is lower-triangular and its determinant is the product of its diagonal terms. In the upper part of N_{11}^* the terms are all 1, but in the lower part the terms all take the form $\sum_{i=0}^n \lambda^{n-i} (-1)^i$, for $n = 1, \ldots, N - j$.

Each of the column operations performed to obtain N_{11}^* is performed by multiplication by elementary matrices of the form:

$$E_4^n = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & -1 & & \\ & & & \left(\sum_{i=0}^n \lambda^{n-i} (-1)^i\right) & & \\ & & & & 1 & \\ & & & & \ddots & \\ & & & & & 1 \end{bmatrix}$$

Each of these elementary matrices are upper-triangular, and therefore

$$\det(E_4^n) = \left(\sum_{i=0}^n \lambda^{n-i} (-1)^i\right)$$

Then, we know that by a sequence of matrix multiplications,

$$N_{11}^* = N_{11} \prod_{n=1}^{N-j-1} E_4^n,$$

and therefore

$$\det(N_{11}) = \frac{\det(N_{11}^*)}{\prod_{n=1}^{N-j-1} \det(E_4^n)}.$$
 (A.45)

Since each det (E_4^n) coincides with the entry in the (j - 3 + n)-th diagonal position in N_{11}^* , we cancel each of these, leaving only the bottom-right entry of N_{11}^* remaining in (A.45). Hence

$$\det(N_{11}) = \sum_{i=0}^{N-j} (-1)^i \lambda^{N-j-i}.$$
 (A.46)

Substituting (A.46) into (A.40), we find

$$\det(N_1) = (1 - \frac{\beta\nu}{N}) \left(\sum_{i=0}^{N-j} (-1)^i \lambda^{N-j-i} \right)$$
$$= (-1)^{N+j} (1 - \frac{\beta\nu}{N}) \sum_{i=0}^{N-j} (-\lambda)^{N-j-i}.$$

Then, we use the geometric series formula to obtain

$$\det(N_1) = (-1)^{N+j} (1 - \frac{\beta\nu}{N}) \frac{1 - (-\lambda)^{N-j+1}}{1+\lambda},$$

which coincides with (A.38).

Example A.3.2 Recall from Example 4.3.6 the form of N_1

$$N_1 = \begin{bmatrix} 1 - \frac{\beta\nu}{8} & 0 & 0 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 & 1 \\ -1 & 0 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$

In this example, N = 8 and j = 5. First we expand over row 1, where there is only one non-zero entry, to obtain the minor N_{11}

$$N_{11} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{\lambda - 1 & 1 & 0 & 0 & 0}{0 & -\lambda & \lambda - 1 & 1 & 0} \\ 0 & 0 & -\lambda & \lambda - 1 & 1 \\ 0 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$
 (A.47)

Then, $\det(N_1) = (1 - \frac{\beta\nu}{8}) \det(N_{11})$. Now the lower part of N_{11} contains 1's on the superdiagonal so we perform column operations to make N_{11} lower-triangular. First we perform the column operation (A.42) with n = 1 on the fourth column c_4 :

$$c_4 \leftarrow (\lambda - 1) c_4 - c_3.$$

This is done by postmultiplying N_{11} by the elementary matrix E_4^1

$$E_4^1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & \lambda - 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Note that $\det(E_4^1) = \lambda - 1$. We calculate

$$N_{11}E_4^1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ \lambda - 1 & 1 & 0 & 0 & 0\\ 0 & -\lambda & \lambda - 1 & 0 & 0\\ 0 & 0 & -\lambda & \lambda^2 - \lambda + 1 & 1\\ 0 & 0 & 0 & -\lambda^2 + \lambda & \lambda - 1 \end{bmatrix}.$$

Next, we perform the column operation (A.42) with n = 2 on the fifth column c_5 :

$$c_5 \leftarrow (\lambda^2 - \lambda + 1) c_5 - c_4.$$

This is done by postmultipliying $N_{11}E_4^1$ by the elementary matrix E_4^2

$$E_4^2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & \lambda^2 - \lambda + 1 \end{bmatrix}.$$

Note that $det(E_4^2) = \lambda^2 - \lambda + 1$. We thus arrive at the lower-triangular form N_{11}^*

$$N_{11}^* = N_{11}E_4^1E_4^2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ \frac{\lambda - 1 & 1 & 0 & 0 & 0}{0 & -\lambda & \lambda - 1 & 0 & 0} \\ 0 & 0 & -\lambda & \lambda^2 - \lambda + 1 & 0\\ 0 & 0 & 0 & -\lambda^2 + \lambda & \lambda^3 - \lambda^2 + \lambda - 1 \end{bmatrix}.$$

Then, we see

$$\det(N_{11}^*) = (\lambda - 1) \left(\lambda^2 - \lambda + 1\right) \left(\lambda^3 - \lambda^2 + \lambda - 1\right).$$

However, dividing by $\det(E_4^1)$ and $\det(E_4^2)$ we obtain

$$\det(N_{11}) = \lambda^3 - \lambda^2 + \lambda - 1. \tag{A.48}$$

Finally, we find

$$\det(N_1) = \left(1 - \frac{\beta\nu}{8}\right) \left(\lambda^3 - \lambda^2 + \lambda - 1\right)$$
$$= -\left(1 - \frac{\beta\nu}{8}\right) \left((-\lambda)^3 - (-\lambda)^2 + (-\lambda) - 1\right)$$
$$= -\left(1 - \frac{\beta\nu}{8}\right) \frac{1 - (-\lambda)^4}{1 + \lambda}.$$

A.4 Derivation of $det(N_2)$

Recall the form of the $(N-2) \times (N-2)$ minor N_2 , as shown in (A.49):

$$N_{2} = \begin{bmatrix} -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda \\ \lambda - 1 & 1 & \ddots & & & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix}, \quad (A.49)$$

where the separation occurs between rows (j-2) and (j-1).

Lemma A.4.1

$$\det(N_2) = (-1)^{N+j} \frac{1}{1+\lambda} \left[(N-1-\lambda)(-\lambda)^{N-j+1} + \frac{(-\lambda)^N - 1}{1+\lambda} \right].$$
(A.50)

Proof. To find det (N_2) , we first expand over the first row, where there are only two non-zero terms, in position (1, 1) and (1, N - 2). Then we obtain two new minors, N_{21} and N_{22} respectively, both of dimensions $(N - 3) \times (N - 3)$ with the separation occurring between rows (j - 3) and (j - 2). Therefore,

$$\det(N_2) = (-1) \det(N_{21}) + (-1)^{N-1} (-\lambda) \det(N_{22})$$

= $-\det(N_{21}) + (-1)^N \lambda \det(N_{22}).$ (A.51)

Note that N_{21} is the submatrix obtained by removing rows 1 and 2, and columns 1 and N - 1 from Y^{j1} (see 4.67). This is identical to how N_{11} (see Appendix A.3) is obtained, so $N_{11} = N_{21}$ and therefore

$$\det(N_{21}) = \det(N_{11}). \tag{A.52}$$

The minor N_{22} is an $(N-3) \times (N-3)$ matrix that has the following structure:

$$N_{22} = \begin{bmatrix} \lambda - 1 & 1 & 0 & \cdots & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & & & & & & & & & & \\ N_{22} = \left(\begin{array}{c} \lambda - 1 & 1 & 0 & \cdots & 0 & 0 \\ -1 & 0 & \cdots & \cdots & 0 & 0 & -\lambda & -1 \\ 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & -\lambda \\ \end{array} \right), \quad (A.53)$$

with the separation occurring between rows (j-3) and (j-2). To find det (N_{22}) , a recursive procedure is used. At each step of the procedure, an elementary matrix is

constructed that shifts the last row to row (j-2), and shifts rows (j-2) through to the second to last row one row down. The row that is shifted into the (j-2)-th row is expanded on, containing two non-zero entries. We calculate the determinant of one of the two resulting minors, and show that the other minor is simply a smaller version of the original matrix. We continue this procedure until the latter is an upper-Hessenberg matrix, whose determinant we then evaluate.

Consider the elementary matrix E_5^0 of the following form:

where E_5^0 is an $(N-3) \times (N-3)$ matrix with the 1 in the last column occurring in row (j-2). Note that the I block on the bottom right is of size $(N-j-1) \times (N-j-1)$. We then define

$$N_{22}^{00} = E_5^0 N_{22}. (A.54)$$

It is easy to see that $\det(E_5^0) = (-1)^{N-3+j-2} = (-1)^{N+j+1}$. Then,

$$\det(N_{22}) = (-1)^{N+j+1} \det(N_{22}^{00}).$$
(A.55)

 $N_{22}^{00} = \begin{bmatrix} \lambda - 1 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & \ddots & & \vdots \\ -1 & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ -1 & 0 & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 & 0 \\ \hline -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \hline -1 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \lambda - 1 \end{bmatrix}$

Now we see that the $(N-3) \times (N-3)$ matrix N_{22}^{00} has the structure

Next, we calculate $det(N_{22}^{00})$ by expanding on row (j-2), which contains non-zero terms in only the first and last positions. We name the minor obtained by expanding on the first term N_{22}^{01} , and the minor obtained by expanding on the last term N_{22}^{02} . Then, the expanded determinant is

$$\det(N_{22}^{00}) = (-1)^{j} \det(N_{22}^{01}) + (-1)^{N-3+j-2} (-\lambda) \det(N_{22}^{02}).$$
(A.56)

We first consider first the structure of N_{22}^{01} :

$$N_{22}^{01} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \lambda - 1 & 1 & \ddots & & & \vdots \\ -\lambda & \lambda - 1 & 1 & \ddots & & & \vdots \\ 0 & -\lambda & \lambda - 1 & \ddots & \ddots & \ddots & & \vdots \\ 0 & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix}$$

Notice that N_{22}^{01} is of identical structure to N_{11} (see (A.39) in Appendix A.3), except that N_{22}^{01} is of size $(N-4) \times (N-4)$, one row and column smaller than N_{11} . Hence, replacing N by N-1 in (A.46) from Appendix A.3, we obtain

$$\det(N_{22}^{01}) = \sum_{i=0}^{N-j-1} (-1)^i \lambda^{N-j-1-i}.$$
 (A.57)

Next, we consider the structure of N_{22}^{02} :

$$N_{22}^{02} = \begin{bmatrix} \lambda - 1 & 1 & 0 & \cdots & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & \ddots & & \vdots \\ -1 & 0 & -\lambda & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ -1 & 0 & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & 1 \\ \vdots & \vdots & & & & & \ddots & \ddots & 0 \\ \end{bmatrix}$$

We observe that N_{22}^{02} is of identical structure to N_{22} (see (A.53)), except that N_{22}^{02} is of size $(N-4) \times (N-4)$, one row and column smaller than N_{22} . Define an elementary matrix E_5^1 of size $(N-4) \times (N-4)$, which has the following structure:

Note that this is identical in structure to E_5^0 , except the *I* block on the bottom right is of size $(N - j - 2) \times (N - j - 2)$. The single 1 in the last column is again in the (j - 2)-th position.

Next, we define $N_{22}^{10} = E_5^1 N_{22}^{02}$. This matrix has the structure

We now observe that N_{22}^{10} of identical structure to N_{22}^{00} , except of size $(N-4) \times (N-4)$, and we expand again on row (j-2) to obtain new minors N_{22}^{11} and N_{22}^{12} . The same process as before is repeated, noting N_{22}^{11} is of the same structure as the $(N-3) \times (N-3)$ matrix (A.39), and using another elementary matrix E_5^2 to find N_{22}^{20} . We continue this process, at the k-th iteration finding det (N_{22}^{k1}) from (A.46), and constructing $N_{22}^{(k+1),0} = E_5^k N_{22}^{k2}$, until we encounter an iteration where the second minor obtained is lower-Hessenberg with 1's on the superdiagonal. This is definitely the case for the (N-j-1)-th iteration, but it may be the case for an earlier iteration depending on the selection of j. However, once a lower-Hessenberg form is reached, further iterations of the type outlined above maintain the lower-Hessenberg form so for the sake of simplicity we assume for the remainder of this proof that N-j-1 iterations are performed.

In general we say that for $k = 0, 1, \ldots, N - j - 2$,

$$\det(N_{22}^{k0}) = (-1)^{j} \det(N_{22}^{k1}) + (-1)^{N+j-k-1}(-\lambda) \det(N_{22}^{k2}), \qquad (A.59)$$

$$\det(N_{22}^{k1}) = \sum_{i=0}^{j-1} \lambda^{N-j-1-k-i} (-1)^i, \qquad (A.60)$$

$$\det(N_{22}^{k2}) = (-1)^{N+j-k} \det(N_{22}^{k+1,0}).$$
(A.61)

Note that by substituting (A.61) into (A.59), we eliminate the need to calculate

the former in all but the final iteration. We then obtain a reduced set of recursive equations for k = 0, 1, ..., N - j - 2,

$$\det(N_{22}^{k0}) = (-1)^{j} \det(N_{22}^{k1}) + \lambda \det(N_{22}^{k+1,0}), \qquad (A.62)$$

$$\det(N_{22}^{k1}) = \sum_{i=0}^{N-j-1} \lambda^{N-j-1-k-i} (-1)^i.$$
 (A.63)

When k = N - j - 1, the last remaining matrix to consider is $N_{22}^{N-j-1,0}$, which is a matrix of size $(j-3) \times (j-3)$ of the form

$$N_{22}^{N-j-1,0} = \begin{bmatrix} \lambda - 1 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & \lambda - 1 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\ -1 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & \cdots & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & 1 \\ -1 & 0 & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$
(A.64)

We use an inductive argument to calculate $det(N_{22}^{N-j-1,2})$, similar to the argument used in Appendix A.3. That is, we use j-2 column operations to transform all of the 1's on the superdiagonals into 0's, and show inductively the form that each column takes as a result. Consider a pair of columns of the form

$$\begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ \left(\sum_{i=0}^{n} \lambda^{n-i}(i+1)(-1)^{i}\right) + (-1)^{n+1} & 1 \\ \left(\sum_{i=0}^{n-1} \lambda^{n-i}(i+1)(-1)^{i+1}\right) + (-1)^{n+1}(\lambda-1) & \lambda-1 \\ (-1)^{n} & -\lambda \\ (-1)^{n} & 0 \\ \vdots & \vdots \\ (-1)^{n} & 0 \end{bmatrix}$$
 (A.65)

Note that for n = 1, this pair of columns is equivalent to the first two columns in (A.64). Now consider the column operation required to remove the 1 from the second column c_2

$$\mathbf{c}_{2} \to \left(\left[\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i} \right] + (-1)^{n+1} \right) \mathbf{c}_{2} - \mathbf{c}_{1}.$$
 (A.66)

This results in a new pair of columns

$$\begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ \left(\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i}\right) + (-1)^{n+1} & 0 \\ \left(\sum_{i=0}^{n-1} \lambda^{n-i} (i+1)(-1)^{i+1}\right) + (-1)^{n+1} (\lambda - 1) & t_{3} \\ (-1)^{n} & t_{4} \\ (-1)^{n} & (-1)^{n+1} \\ \vdots & \vdots \\ (-1)^{n} & (-1)^{n+1} \end{bmatrix}, \quad (A.67)$$

where

$$t_3 := \left(\left[\sum_{i=0}^n \lambda^{n-i} (i+1)(-1)^i \right] + (-1)^{n+1} \right) (\lambda - 1) \\ - \left[\sum_{i=0}^{n-1} \lambda^{n-i} (i+1)(-1)^{i+1} \right] - (-1)^{n+1} (\lambda - 1), \\ t_4 := \left(\left[\sum_{i=0}^n \lambda^{n-i} (i+1)(-1)^i \right] + (-1)^{n+1} \right) (-\lambda) - (-1)^n.$$

First,, we simplify t_3 :

$$t_{3} = \left(\left[\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i} \right] + (-1)^{n+1} \right) (\lambda - 1) \\ - \left[\sum_{i=0}^{n-1} \lambda^{n-i} (i+1)(-1)^{i+1} \right] - (-1)^{n+1} (\lambda - 1) \\ = \left(\left[\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i} \right] \right) (\lambda - 1) - \left[\sum_{i=0}^{n-1} \lambda^{n-i} (i+1)(-1)^{i+1} \right] \\ = \left(\left[\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i} \right] \right) (\lambda - 1) + \left[\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i} \right] - (n+1)(-1)^{n}.$$

Factorising out the sum, we obtain

$$t_{3} = \left(\left[\sum_{i=0}^{n} \lambda^{n-i} (i+1)(-1)^{i} \right] \right) \lambda + (n+2)(-1)^{n+1} + (-1)^{n+2}$$
$$= \left(\left[\sum_{i=0}^{n+1} \lambda^{n+1-i} (i+1)(-1)^{i} \right] \right) + (-1)^{(n+1)+1}$$
$$= \left(\left[\sum_{i=0}^{n+1} \lambda^{(n+1)-i} (i+1)(-1)^{i} \right] \right) + (-1)^{(n+1)+1}.$$

Next, we simplify t_4 :

$$t_4 = \left(\left[\sum_{i=0}^n \lambda^{n-i} (i+1)(-1)^i \right] + (-1)^{n+1} \right) (-\lambda) - (-1)^n \\ = \left[\sum_{i=0}^{(n+1)-1} \lambda^{(n+1)-i} (i+1)(-1)^{i+1} \right] + (-1)^{(n+1)+1} (\lambda-1).$$

Then, we observe that, after the column operation (A.66), the second column in (A.67) becomes the same as the first but with n replaced by n + 1 and shifted down one row. Using analogous arguments to those used in Appendix A.3, we find

$$\det(N_{22}^{N-j-1,2}) = \left[\sum_{i=0}^{j-3} \lambda^{j-3-i} (i+1)(-1)^i\right] + (-1)^j.$$
(A.68)

Now, recursively substituting (A.68), (A.62), (A.63) into (A.55), we obtain

$$\det(N_{22}) = \sum_{k=1}^{N-j} \sum_{i=0}^{N-j-k} (-1)^{N+j+1+j+i} \lambda^{N-1-j-k-i+k} + \sum_{i=0}^{j-3} (-1)^{N+j+1+N+j-(N-j-1)+i} (i+1) \lambda^{N-j+j-3-i} + (-1)^{N+j+1+N+j-(N-j-1)+j} \lambda^{N-j} = \sum_{k=1}^{N-j} \sum_{i=0}^{N-j-k} (-1)^{N+1+i} \lambda^{N-1-j-i} + \sum_{i=0}^{j-3} (-1)^{N+j+i} (i+1) \lambda^{N-3-i} + (-1)^N \lambda^{N-j} = \sum_{i=0}^{N-j-1} (-1)^{N+i+1} (N-j-i) \lambda^{N-j-1-i} + \sum_{i=0}^{j-3} (-1)^{N+j+i} (i+1) \lambda^{N-3-i} + (-1)^N \lambda^{N-j}.$$
(A.69)

Finally, substituting (A.52) and (A.69) into (A.51), we obtain

$$det(N_2) = -det(N_{21}) + (-\lambda)(-1)^{N-1} det(N_{22})$$

$$= \sum_{i=0}^{N-j} (-1)^{i+1} \lambda^{N-j-1} + (-1)^N \left[\sum_{i=0}^{N-j-1} (-1)^{N+i+1} (N-j-i) \lambda^{N-j-1-i} \right]$$

$$+ \sum_{i=0}^{j-3} (-1)^{N+j+i} (i+1) \lambda^{N-3-i} + (-1)^N \lambda^{N-j} \right]$$

$$= \sum_{i=0}^{N-j} (-1)^{i+1} \lambda^{N-j-i} + \sum_{i=0}^{N-j-1} (-1)^{i+1} (N-j-i) \lambda^{N-j-i}$$

$$+ \sum_{i=0}^{j-3} (-1)^{j+i} (i+1) \lambda^{N-2-i} + \lambda^{N-j+1}$$

$$= \sum_{i=0}^{N-j} (-1)^{i+1} (N-j-i+1) \lambda^{N-j-i}$$

$$+ \sum_{i=0}^{j-3} (-1)^{j+i} (i+1) \lambda^{N-2-i} + \lambda^{N-j+1}.$$

We define p_1 and p_2 as the first two (summation) expressions of the last equation above. That is,

$$\det(N_2) = p_1 + p_2 + \lambda^{N-j+1}.$$
 (A.70)

Then, we consider the first part p_1 of (A.70):

$$p_1 := \sum_{i=0}^{N-j} (-1)^{i+1} (N-j-i+1) \lambda^{N-j-i}$$
$$= (-1)^{N+j+1} \sum_{i=0}^{N-j} (N-j-i+1) (-\lambda)^{N-j-i}.$$

Each term inside the sum has a coefficient one larger than the power of λ . We then rewrite the above as a sum of derivatives of the form

$$p_1 = (-1)^{N+j+1} \sum_{i=0}^{N-j} \frac{\partial}{\partial \lambda} (-\lambda)^{N-j+1-i}$$
$$= (-1)^{N+j+1} \frac{\partial}{\partial \lambda} \left[\frac{(-\lambda) - (-\lambda)^{N-j+2}}{1+\lambda} \right].$$

Now we take the derivative and simplify to obtain

$$p_{1} = (-1)^{N+j+1} \left[\frac{\left(-1 - (N-j+2)(-\lambda)^{N-j+1} \right) (1+\lambda) - ((-\lambda) - (-\lambda)^{N-j+2})}{(1+\lambda)^{2}} \right]$$
$$= \frac{(-1)^{N+j}}{(1+\lambda)} \left[\frac{(N-j+2)(-\lambda)^{N-j+1} - (N-j+1)(-\lambda)^{N-j+2} - 1}{(1+\lambda)} \right].$$
(A.71)

Next, we consider the second part p_2 of (A.70):

$$p_{2} := \sum_{i=0}^{j-3} (-1)^{j+i} (i+1)\lambda^{N-2-i}$$

$$= (-1)^{N+j} \sum_{i=0}^{j-3} (i+1)(-\lambda)^{N-2-i}$$

$$= (-1)^{N+j} \left[(-\lambda)^{N-2} + 2(-\lambda)^{N-3} + \dots + (j-2)(-\lambda)^{N-j+1} \right]. \quad (A.72)$$

Then, (A.72) is equivalent to the following

$$p_{2} = (-1)^{N+j} \left[\frac{\partial}{\partial \alpha} \left[\left(\frac{\alpha}{-\lambda} \right) (-\lambda)^{N-1} + \left(\frac{\alpha}{-\lambda} \right)^{2} (-\lambda)^{N-1} + \dots + \left(\frac{\alpha}{-\lambda} \right)^{j-2} (-\lambda)^{N-1} \right] \right]_{\alpha=1}$$

$$= (-1)^{N+j} (-\lambda)^{N-1} \left[\frac{\partial}{\partial \alpha} \left[\frac{\left(\frac{\alpha}{-\lambda} \right) - \left(\frac{\alpha}{-\lambda} \right)^{j-1}}{1 + \frac{\alpha}{\lambda}} \right] \right]_{\alpha=1}$$

$$= (-1)^{N+j} (-\lambda)^{N-1} \left[\frac{\partial}{\partial \alpha} \left[\frac{\alpha (-\lambda)^{j-2} - \alpha^{j-1}}{\lambda + \alpha} \right] \left(\frac{\lambda}{(-\lambda)^{j-1}} \right) \right]_{\alpha=1}$$

$$= (-1)^{N+j+1} (-\lambda)^{N-j+1} \left[\frac{\partial}{\partial \alpha} \left[\frac{\alpha (-\lambda)^{j-2} - \alpha^{j-1}}{\lambda + \alpha} \right] \right]_{\alpha=1}.$$

Now we take the derivative, and set $\alpha = 1$ to obtain

$$p_{2} = (-1)^{N+j} (-\lambda)^{N-j+1} \left[\frac{((-\lambda)^{j-2} - (j-1)\alpha^{j-2})(\lambda+\alpha) - (\alpha(-\lambda)^{j-2} - \alpha^{j-1})}{(\lambda+\alpha)^{2}} \right]_{\alpha=1}$$

$$= (-1)^{N+j+1} (-\lambda)^{N-j+1} \left[\frac{((-\lambda)^{j-2} - (j-1))(\lambda+1) - (-\lambda)^{j-2} + 1}{(1+\lambda)^{2}} \right]$$

$$= (-1)^{N+j+1} (-\lambda)^{N-j+1} \left[\frac{(-\lambda)^{j-2} - (-\lambda)^{j-1} - (j-1)(\lambda+1) - (-\lambda)^{j-2} + 1}{(1+\lambda)^{2}} \right]$$

$$= \frac{(-1)^{N+j}}{(1+\lambda)} \left[\frac{(-\lambda)^{N} - (j-1)(-\lambda)^{N-j+2} + (j-2)(-\lambda)^{N-j+1}}{(1+\lambda)} \right]. \quad (A.73)$$

Substituting (A.71) and (A.73) into (A.70), we obtain

$$\det(N_2) = \frac{(-1)^{N+j}}{(1+\lambda)} \left[\frac{(-\lambda)^N - N(-\lambda)^{N-j+2} + N(-\lambda)^{N-j+1} - 1}{(1+\lambda)} - (1+\lambda)(-\lambda)^{N-j+1} \right]$$

$$= \frac{(-1)^{N+j}}{(1+\lambda)} \left[\frac{(-\lambda)^N - 1}{(1+\lambda)} + N(-\lambda)^{N-j+1} - (-\lambda)^{N-j+1} + (-\lambda)^{N-j+2} \right]$$

$$= \frac{(-1)^{N+j}}{(1+\lambda)} \left[(-\lambda)^{N-j+1}(N-1-\lambda) + \frac{(-\lambda)^N - 1}{(1+\lambda)} \right],$$

which coincides with (A.4.1).

Example A.4.2 Recall from Example 4.3.6 the form of N_2

$$N_2 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & -\lambda \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 & 1 \\ -1 & 0 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$

In this example, N = 8 and j = 5. We start by expanding over the first row to obtain two minors

$$N_{21} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 & 0 \\ 0 & -\lambda & \lambda - 1 & 1 & 0 \\ 0 & 0 & -\lambda & \lambda - 1 & 1 \\ 0 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix},$$
$$N_{22} = \begin{bmatrix} \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 \\ -1 & 0 & 0 & 0 & -\lambda \end{bmatrix}.$$

Then, we have

$$\det(N_2) = -\det(N_{21}) + \lambda \det(N_{22}).$$

Note that $N_{21} = N_{11}$ (see (A.47)) and so we know from (A.48)

$$\det(N_{21}) = \lambda^3 - \lambda^2 + \lambda - 1.$$

Next, we transform N_{22} into a lower-Hessenberg matrix by (eventually) finding N_{22}^{22} (see (A.64)). First, we find

$$E_5^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Clearly, $\det(E_5^0) = 1$. Then we calculate N_{22}^{00} :

$$N_{22}^{00} = E_5^0 N_{22} = \begin{bmatrix} \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 \\ \hline -1 & 0 & 0 & 0 & -\lambda \\ -1 & 0 & -\lambda & \lambda - 1 & 1 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix}$$

Then, $det(N_{22}) = det(N_{22}^{00})$. We expand N_{22}^{00} over the third row to obtain minors N_{22}^{01} and N_{22}^{02}

$$N_{22}^{01} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 \\ 0 & -\lambda & \lambda - 1 & 1 \\ 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix},$$
(A.74)
$$N_{22}^{02} = \begin{bmatrix} \lambda - 1 & 1 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 \\ -1 & 0 & 0 & -\lambda \end{bmatrix}.$$

The expanded determinant is

$$\det(N_{22}^{00}) = (-1) \det(N_{22}^{01}) + (-\lambda) \det(N_{22}^{02}).$$

Note that N_{22}^{01} is identical in structure to N_{11} (see (A.47)), but has one less row and column. Using a similar argument to that used to find det(N_{11}) in Appendix A.3, we find

$$\det(N_{22}^{01}) = \lambda^2 - \lambda + 1.$$

Next, we construct another elementary matrix E_5^1 (see (A.58)):

$$E_5^1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Clearly, $\det(E_5^1) = -1$. Then, we can calculate N_{22}^{10} :

$$N_{22}^{10} = E_5^1 N_{22}^{02} = \begin{bmatrix} \lambda - 1 & 1 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 \\ \hline -1 & 0 & 0 & -\lambda \\ \hline -1 & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$

Note that $\det(N_{22}^{02}) = -\det(N_{22}^{10})$. Again, we expand on the third row to obtain minors N_{22}^{11} and N_{22}^{12}

$$N_{22}^{11} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{\lambda - 1}{0} & \frac{1}{-\lambda} & 0 \\ 0 & -\lambda & \lambda - 1 \end{bmatrix},$$
$$N_{22}^{12} = \begin{bmatrix} \lambda - 1 & 1 & 0 \\ -1 & \lambda - 1 & 1 \\ -1 & 0 & -\lambda \end{bmatrix}.$$

The expanded determinant is

$$\det(N_{22}^{10}) = (-1) \det(N_{22}^{11}) + (-1)(-\lambda) \det(N_{22}^{12}).$$

We observe that $det(N_{22}^{11}) = \lambda - 1$. The final elementary matrix is

$$E_5^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Clearly $\det(E_5^2) = 1$, so $\det(N_{22}^{12}) = \det(N_{22}^{20})$. Then, we calculate N_{22}^{20}

$$N_{22}^{20} = E_5^2 N_{22}^{12} = \begin{bmatrix} \lambda - 1 & 1 & 0 \\ -1 & \lambda - 1 & 1 \\ -1 & 0 & -\lambda \end{bmatrix}.$$

The expanded determinant is

$$\det(N_{22}^{20}) = (-1) \det(N_{22}^{21}) + (-\lambda) \det(N_{22}^{22}).$$

We expand on the third row to obtain minors N^{21}_{22} and N^{22}_{22}

$$N_{22}^{21} = \begin{bmatrix} 1 & 0 \\ \lambda - 1 & 1 \end{bmatrix},$$
$$N_{22}^{22} = \begin{bmatrix} \lambda - 1 & 1 \\ -1 & \lambda - 1 \end{bmatrix}.$$

Clearly, $\det(N_{22}^{21}) = 1$ and $\det(N_{22}^{22}) = \lambda^2 - 2\lambda + 2$.

Summarising the above, we have

- (1) $\det(N_{22}^{00}) = -\det(N_{22}^{01}) \lambda \det(N_{22}^{02}),$
- (2) det $(N_{22}^{01}) = \lambda^2 \lambda + 1$,
- (3) $\det(N_{22}^{02}) = -\det(N_{22}^{10}),$

- (4) $\det(N_{22}^{10}) = -\det(N_{22}^{11}) + \lambda \det(N_{22}^{12}),$
- (5) $\det(N_{22}^{11}) = \lambda 1$,
- (6) $\det(N_{22}^{12}) = \det(N_{22}^{20}),$
- (7) $\det(N_{22}^{20}) = -\det(N_{22}^{21}) \lambda \det(N_{22}^{22}),$
- $(8) \det(N_{22}^{21}) = 1,$
- (9) $\det(N_{22}^{22}) = \lambda^2 2\lambda + 2.$

Recursively substituting (2)–(9) into (1), as needed, we obtain

$$\det(N_{22}) = \det(N_{22}^{00}) = -\lambda^5 + 2\lambda^4 - 2\lambda^3 - 3\lambda^2 + 2\lambda - 1.$$

Finally, we calculate $det(N_2)$:

$$det(N_2) = -det(N_{21}) + \lambda det(N_{22}) = -\lambda^3 + \lambda^2 - \lambda + 1 - \lambda^6 + 2\lambda^5 - 2\lambda^4 - 3\lambda^3 + 2\lambda^2 - \lambda = -\lambda^6 + 2\lambda^5 - 2\lambda^4 - 4\lambda^3 + 3\lambda^2 - 2\lambda + 1.$$
(A.75)

We now confirm that this can be rewritten in the compressed form (A.50),

$$\det(N_2) = \frac{-1}{1+\lambda} \left[(-\lambda)^4 (7-\lambda) + \frac{(-\lambda)^8 - 1}{1+\lambda} \right],$$

by expanding the latter and confirming that these two forms coincide

$$det(N_2) = \frac{-1}{1+\lambda} \left[7\lambda^4 - \lambda^5 - \frac{1-(-\lambda)^8}{1+\lambda} \right]$$

= $\frac{-1}{1+\lambda} \left[7\lambda^4 - \lambda^5 - (1-\lambda+\lambda^2-\lambda^3+\lambda^4-\lambda^5+\lambda^6-\lambda^7) \right]$
= $\frac{-1}{1+\lambda} \left[\lambda^7 - \lambda^6 + 6\lambda^4 + \lambda^3 - \lambda^2 + \lambda - 1 \right].$

The expression in the above square brackets can be factorised to obtain

$$\det(N_2) = \frac{-1}{1+\lambda} (1+\lambda)(\lambda^6 - 2\lambda^5 + 2\lambda^4 + 4\lambda^3 - 3\lambda^2 + 2\lambda - 1) \\ = -\lambda^6 + 2\lambda^5 - 2\lambda^4 - 4\lambda^3 + 3\lambda^2 - 2\lambda + 1,$$

which agrees with (A.75).

A.5 Derivation of $det(N_3)$

Recall the form of the $(N-2) \times (N-2)$ minor N_3 , as shown in (4.71):

$$N_{3} = \begin{bmatrix} -1 & 0 & \cdots & 0 & -\lambda \\ 1 - \frac{\beta\nu}{N} & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \lambda - 1 & 1 & \ddots & & & & 0 \\ -1 & \lambda - 1 & 1 & \ddots & & & & \vdots \\ -1 & -\lambda & \lambda - 1 & \ddots & \ddots & & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix}$$

with the separation occurring between rows (j-2) and (j-1).

Lemma A.5.1

$$\det(N_3) = (-1)^j (1 - \frac{\beta\nu}{N}) \frac{(-\lambda) - (-\lambda)^{N-j+1}}{1+\lambda}.$$
 (A.77)

Proof. To find det(N_3), we expand over the first row, which contains two non-zero entries, in positions (1, 1) and (1, N - 2). However, expanding on the first entry results in a zero row in the minor and therefore a zero determinant, so we only need to expand on the last entry in the first row. This leaves us with a new first row, that has only a single non-zero entry $(1 - \frac{\beta\nu}{N})$. This is expanded on as well to arrive at the following $(N - 4) \times (N - 4)$ matrix, which we will call N_{31} , with the separation

•

occurring between rows (j-4) and (j-3).

Then, we observe that

$$\det(N_3) = \left[(-1)^{N-1} (-\lambda) \right] \left[(-1)^2 (1 - \frac{\beta \nu}{N}) \right] \det(N_{31})$$
$$= (-1)^{N-1} (-\lambda) (1 - \frac{\beta \nu}{N}) \det(N_{31}).$$
(A.78)

We note that N_{31} is identical to N_{22}^{01} , the determinant of which is calculated in Appendix A.4. Therefore, from (A.60), we see that

$$\det(N_{31}) = \sum_{i=0}^{N-j-1} \lambda^{N-j-1-i} (-1)^i.$$
 (A.79)

Therefore, substituting (A.79) into (A.78) we obtain

$$\det(N_3) = (-1)^{N-1} (-\lambda) (1 - \frac{\beta\nu}{N}) \sum_{i=0}^{N-j-1} \lambda^{N-j-1-i} (-1)^i$$

= $(-1)^j (-\lambda) (1 - \frac{\beta\nu}{N}) \sum_{i=0}^{N-j-1} (-\lambda)^{N-j-1-i}$
= $(-1)^j (-\lambda) (1 - \frac{\beta\nu}{N}) \left(\frac{1 - (-\lambda)^{N-j}}{1 + \lambda}\right)$
= $(-1)^j (1 - \frac{\beta\nu}{N}) \frac{(-\lambda) - (-\lambda)^{N-j+1}}{1 + \lambda},$

which coincides with (A.77).

Example A.5.2 Recall from Example 4.3.6 the form of N_3

$$N_3 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & -\lambda \\ 1 - \frac{\beta\nu}{8} & 0 & 0 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & \lambda - 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -\lambda & \lambda - 1 & 1 & 0 \\ -1 & 0 & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix}.$$

Expanding on the first row, we obtain two minors, but the minor obtain from expanding on the (1, 1)-th entry of N_3 has the following form

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 & 0 \\ 0 & -\lambda & \lambda - 1 & 1 & 0 \\ 0 & 0 & -\lambda & \lambda - 1 & 1 \end{bmatrix},$$

and this minor has a zero row and therefore a determinant of zero. So we simply expand on the (1, 6)-th entry of N_3 to obtain

$$\begin{bmatrix} 1 - \frac{\beta\nu}{8} & 0 & 0 & 0 & 0\\ \lambda - 1 & 1 & 0 & 0 & 0\\ -1 & \lambda - 1 & 1 & 0 & 0\\ \hline -1 & 0 & -\lambda & \lambda - 1 & 1\\ -1 & 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$
 (A.80)

Then, we expand on the first row of (A.80), where only a single non-zero term exists (in position (1,1)) to obtain N_{31}

$$N_{31} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 \\ 0 & -\lambda & \lambda - 1 & 1 \\ 0 & 0 & -\lambda & \lambda - 1 \end{bmatrix}.$$

Note that

$$\det(N_3) = -(-\lambda)(1 - \frac{\beta\nu}{8}) \det(N_{31}).$$
 (A.81)

Then, N_{31} is identical to N_{22}^{01} (see (A.74)), and so we immediately see that

$$\det(N_{31}) = \det(N_{22}^{01}) = \lambda^2 - \lambda + 1.$$
 (A.82)

Finally, substituting (A.82) into (A.81), we obtain

$$\det(N_3) = -(-\lambda)\left(1 - \frac{\beta\nu}{8}\right)\det(N_{31})$$
$$= -(-\lambda)\left(1 - \frac{\beta\nu}{8}\right)\left(\lambda^2 - \lambda + 1\right)$$
$$= -(-\lambda)\left(1 - \frac{\beta\nu}{8}\right)\frac{1 - (-\lambda)^3}{1 + \lambda}$$
$$= -\left(1 - \frac{\beta\nu}{8}\right)\frac{(-\lambda) - (-\lambda)^4}{1 + \lambda}.$$

A.6 Adjacency lists and solutions for 250, 500, 1000 and 2000-node graph

In this section we give the adjacency lists that define four large graphs that we solve using the Wedged-MIP Heuristic in Section 2.9, and the Hamiltonian solutions that are obtained.

A.6.1 Adjacency list for 250-node graph

							60 :	71	122	132	150	162	238
1:	48	96	104	221			61:	143	171	208			
2 :	69	70	84	109	173	176	62 :	47	176	222			
3 :	104	175	197				63	6	64	100	129	136	
4:	40	119	181	241			64 :	34	63	73	136	1/3	
5 :	8	53	167	180			04. ef.	01	44	169	100	016	0.27
6 :	63	102	125	192	208		05:	21	44	108	190	210	231
7 :	110	128	191				66 :	55	96	102	117	234	
8:	5	58	135	149	173	244	67 :	106	151	174	197		
<u>9</u> .	83	91	111				68 :	57	183	197	239	248	
10 .	107	152	217	230			69:	2	26	39	73	184	201
11.	00	156	210	200			70:	2	15	91	95	134	
11.	00	150	107	104	105	020	71:	52	60	110	171	221	
12:	88	99	107	184	185	239	72:	171	176	194	226		
13 :	36	38	130	170	192		73:	41	64	69	134	146	
14:	36	134	187				74 :	21	77	151	190		
15 :	70	96	165	192	217		75 -	28	121	162	167	195	
16 :	92	102	175	180	200		76 .	20	40	50	194	106	021
17:	36	206	225	226	238	244	70.	20	40	09	124	170	231
18:	22	103	160	195	247		77 : T O	52	74	89	125	179	242
19 :	49	56	59	100	136	140	78 :	80	111	151	163	170	207
20 :	36	55	114	212			79:	38	39	43	89	175	192
21 ·	65	74	161	203			80:	26	78	87	154	229	247
22.	18	116	232	237			81:	40	109	242			
<u>2</u> 2.	24	76	105	174			82:	159	162	223			
20:	34	10	105	174	000	0.40	83 :	9	44	213			
24:	113	154	162	204	226	243	84:	2	102	108	236		
25 :	58	183	200	227			85 :	101	141	234			
26 :	31	49	69	80			86 :	53	143	176	200		
27:	49	173	177	233			87 ·	20	80	124	238		
28 :	75	90	138	223	227		88.	11	12	33	43	102	
29 :	41	87	180	189			80.	20	12 E0	77	70	1102	110
30 :	89	98	239				89 :	30	00	0.17	19	110	112
31 :	26	111	129	156	219	245	90 :	28	37	247	249		
32 :	42	119	126	146	206		91 :	9	41	70	176		
33 :	50	88	92	155			92 :	16	33	57	112	171	216
34 ·	23	64	218				93 :	37	166	204	213		
25	07	161	240				94 :	110	191	231			
96.	10	14	17	20	105		95 :	70	158	162	179	203	
30:	15	14	17	20	165		96 :	1	15	66	137	203	232
37:	39	90	93	228			97:	35	56	106	115		
38:	13	43	79	211	238		98 :	30	186	188	200	207	
39 :	37	69	79				99 :	12	57	100	146	222	
40 :	4	76	81	123	188	221	100 ·	19	63	99	123		
41 :	29	73	91	161	188		101 -	55	85	147	222		
42:	32	193	230				102 .	6	16	66	91	00	191
43 :	38	46	79	88	194	239	102.	10	100	00	04	88	131
44 :	65	83	209				103 :	18	180	212			
45 :	113	139	194	230	232		104 :	1	3	49	118		
46 :	43	123	142	167	215		105 :	23	187	198	217		
47 ·	59	62	226				106:	50	53	67	97	114	
18	1	54	155				107:	10	12	151	154	206	216
40.	10	96	27	104	146	104	108:	84	182	193	233		
49:	19	20	21	104	140	194	109 :	2	81	150	198		
50:	ა ა ა	100	110	121	107	100	110:	7	71	89	94	153	
51:	56	137	198	250			111 :	9	31	78	216		
52 :	71	77	153				112:	59	89	92	121	163	198
53 :	5	86	106	135	149		113 ·	24	45	211	240		
54 :	48	147	190				114.	20	106	166	186		
55 :	20	66	101	178	205		114:	50	07	101	100		
56 :	19	51	97	130	235		115:	00	91	181	⊿14		
57 :	68	92	99	173			116 :	22	198	207			
58:	8	25	89	173	233	249	117:	66	219	224			
59 :	19	47	76	112	147	195	118 :	104	136	137			
	-		-			-	119:	4	32	160	171	182	209

120 :	148	225	228				180:	5	16	29	103		
121 :	50	75	112	126	149	165	181 :	4	115	123	167	186	209
122 :	60	127	189	223	229		182 :	108	119	129	143	169	
123 :	40	46	100	139	176	181	183:	25	68	138	226	233	
124 :	76	87	128	156	215	224	184 :	12	69	160	231		
125 :	6	77	235				185 :	12	36	232	243		
126 :	32	121	201	230			186:	98	114	163	178	181	235
127 :	122	141	142	208	237	248	187:	14	105	179	245		
128 :	7	124	138	218	228		188:	40	41	98	163	202	242
129 :	31	63	177	182	204	249	189:	29	122	132			
130 :	13	56	158	248			190 :	54	65	74	131	135	219
131 :	102	190	248				191:	7	94	153			
132 :	60	152	189	201	224		192 :	6	13	15	79	154	175
133 :	179	200	206				193 :	42	108	154	199	202	229
134 :	14	70	73	164	202		194 :	43	45	49	72	242	
135 :	8	53	190	214	228		195:	18	59	75			
136 :	19	63	64	118	249		196:	76	170	172			
137 :	51	96	118	207	250		197:	3	67	68	142	231	
138:	28	128	144	183			198:	51	105	109	112	116	172
1 39 :	45	123	158				199:	193	213	222			
140 :	19	160	174	231			200 :	16	25	86	98	133	206
141:	85	127	155				201 :	69	126	132	170	174	208
142 :	46	127	197	234	243		202 :	134	188	193	220		
143 :	61	64	86	157	182	218	203 :	21	95	96	168	245	
144:	138	157	213				204 :	24	93	129	158		
145 :	221	230	236				205 :	55	151	234			
146 :	32	49	73	99	173	232	2 06 :	17	32	107	133	168	200
147:	54	59	101				207:	78	98	116	137	240	
148:	120	155	177				208 :	6	61	127	201		
149 :	8	53	121	159	210	240	209 :	44	119	181	210	250	
150 :	60	109	245				210 :	149	165	209	243		
151 :	67	74	78	107	169	205	211 :	38	113	223			
152 :	10	132	171				212 :	20	103	246			
153 :	52	110	191	247			213 :	83	93	144	199		
154 :	24	80	107	192	193		214 :	115	135	178	246		
155 :	33	48	141	148	164		215 :	46	124	225	235		
156 :	11	31	124	172	250		216 :	65	92	107	111		
157:	50	143	144	219	235		217 :	10	15	105			
158 :	95	130	139	204			218 :	34	128	143	237		
159 :	82	149	244				219 :	11	31	117	157	190	
160 :	18	119	140	164	184	229	220 :	165	202	250			
161 :	21	35	41				221 :	1	40	71	145	230	
162 :	24	60	75	82	95		222 :	62	99	101	199		
163 :	78	112	168	172	186	188	223 :	28	82	122	211		
164 :	134	155	160				224 :	117	124	132			
165 :	15	121	167	210	220	249	225 :	17	120	215			
166 :	50	93	114				226 :	17	24	47	72	183	
167 :	5	46	75	165	181	238	227 :	25	28	170	175		
168 :	65	163	175	203	206	229	228 :	37	120	128	135	241	
169 :	151	182	234				229 :	80	122	160	168	193	241
170 :	13	78	196	201	227		230 :	42	45	126	145	221	
171 :	61	71	72	92	119	152	231 :	76	94	140	184	197	
172 :	156	163	196	198			232 :	22	45	96	146	185	239
173 :	2	8	27	57	58	146	233 :	27	58	108	179	183	241
174 :	23	67	140	201	236		234 :	66	85	142	169	205	
175 :	3	16	79	168	192	227	235 :	56	125	157	186	215	241
176:	2	62	72	86	91	123	236 :	84	145	174	07.0		
177:	27	129	148	0.10			237 :	22	65	127	218	1.07	0.10
178:	55	186	214	249	000		238 :	17	38	60	87	167	246
179 :	77	95	133	187	233		239 :	10	12	30	43	68	232

240 :	35	113	149	207		
241 :	4	228	229	233	235	
242 :	77	81	188	194		
243 :	24	142	185	210		
244 :	8	17	159			
245 :	31	150	187	203		
246 :	212	214	238			
247 :	18	80	90	153		
248 :	68	127	130	131		
249 :	58	90	129	136	165	178
250 :	51	137	156	209	220	

A.6.2 Hamiltonian cycle for 250-node graph

The Hamiltonian cycle that we found using the Wedged-MIP Heuristic for 250-node graph is shown below. This Hamiltonian cycle is the one shown in Figure 2.11.

 $1 \rightarrow 104 \rightarrow 118 \rightarrow 137 \rightarrow 250 \rightarrow 220 \rightarrow 202 \rightarrow 134 \rightarrow 14 \rightarrow 187 \rightarrow 105$ $\rightarrow 217 \rightarrow 15 \rightarrow 165 \rightarrow 210 \rightarrow 149 \rightarrow 159 \rightarrow 244 \rightarrow 8 \rightarrow 5 \rightarrow 167$ $\rightarrow 46 \rightarrow 43 \rightarrow 38 \rightarrow 79 \rightarrow 192 \rightarrow 154 \rightarrow 24 \rightarrow 113 \rightarrow 211 \rightarrow 223$ $\rightarrow 82 \rightarrow 162 \rightarrow 60 \rightarrow 71 \rightarrow 221 \rightarrow 145 \rightarrow 236 \rightarrow 84 \rightarrow 102 \rightarrow 131$ $\rightarrow 248 \rightarrow 127 \rightarrow 122 \rightarrow 189 \rightarrow 29 \rightarrow 87 \rightarrow 124 \rightarrow 215 \rightarrow 225 \rightarrow 17$ $\rightarrow 238 \rightarrow 246 \rightarrow 212 \rightarrow 103 \rightarrow 180 \rightarrow 16 \rightarrow 200 \rightarrow 206 \rightarrow 133 \rightarrow 179$ $\rightarrow 95 \rightarrow 158 \rightarrow 130 \rightarrow 56 \rightarrow 51 \rightarrow 198 \rightarrow 116 \rightarrow 207 \rightarrow 240 \rightarrow 35$ $\rightarrow 97 \rightarrow 115 \rightarrow 181 \rightarrow 209 \rightarrow 44 \rightarrow 65 \rightarrow 216 \rightarrow 92 \rightarrow 33 \rightarrow 50$ $\rightarrow 166 \rightarrow 93 \rightarrow 204 \rightarrow 129 \rightarrow 177 \rightarrow 148 \rightarrow 120 \rightarrow 228 \rightarrow 241 \rightarrow 235$ $\rightarrow 125 \rightarrow 77 \rightarrow 52 \rightarrow 153 \rightarrow 191 \rightarrow 7 \rightarrow 110 \rightarrow 94 \rightarrow 231 \rightarrow 184$ $\rightarrow 12 \rightarrow 88 \rightarrow 11 \rightarrow 219 \rightarrow 190 \rightarrow 74 \rightarrow 21 \rightarrow 161 \rightarrow 41 \rightarrow 188$ $\rightarrow 98 \rightarrow 186 \rightarrow 178 \rightarrow 214 \rightarrow 135 \rightarrow 53 \rightarrow 86 \rightarrow 176 \rightarrow 62 \rightarrow 47$ $\rightarrow 226 \rightarrow 72 \rightarrow 171 \rightarrow 152 \rightarrow 10 \rightarrow 107 \rightarrow 151 \rightarrow 169 \rightarrow 182 \rightarrow 108$ $\rightarrow 233 \rightarrow 27 \rightarrow 49 \rightarrow 26 \rightarrow 80 \rightarrow 247 \rightarrow 18 \rightarrow 195 \rightarrow 75 \rightarrow 121$ $\rightarrow 112 \rightarrow 59 \rightarrow 19 \rightarrow 140 \rightarrow 174 \rightarrow 23 \rightarrow 34 \rightarrow 64 \rightarrow 136 \rightarrow 249$ $\rightarrow 58 \rightarrow 89 \rightarrow 30 \rightarrow 239 \rightarrow 232 \rightarrow 22 \rightarrow 237 \rightarrow 218 \rightarrow 128 \rightarrow 138$ $\rightarrow 28 \rightarrow 90 \rightarrow 37 \rightarrow 39 \rightarrow 69 \rightarrow 73 \rightarrow 146 \rightarrow 173 \rightarrow 2 \rightarrow 70$ $\rightarrow 91 \rightarrow 9 \rightarrow 83 \rightarrow 213 \rightarrow 144 \rightarrow 157 \rightarrow 143 \rightarrow 61 \rightarrow 208 \rightarrow 6$ $\rightarrow 63 \rightarrow 100 \rightarrow 123 \rightarrow 139 \rightarrow 45 \rightarrow 194 \rightarrow 242 \rightarrow 81 \rightarrow 109 \rightarrow 150$ $\rightarrow 245 \rightarrow 203 \rightarrow 96 \rightarrow 66 \rightarrow 117 \rightarrow 224 \rightarrow 132 \rightarrow 201 \rightarrow 170 \rightarrow 13$

 $\begin{array}{l} \rightarrow 36 \rightarrow 185 \rightarrow 243 \rightarrow 142 \rightarrow 234 \rightarrow 205 \rightarrow 55 \rightarrow 20 \rightarrow 114 \rightarrow 106 \\ \rightarrow 67 \rightarrow 197 \rightarrow 3 \rightarrow 175 \rightarrow 227 \rightarrow 25 \rightarrow 183 \rightarrow 68 \rightarrow 57 \rightarrow 99 \\ \rightarrow 222 \rightarrow 199 \rightarrow 193 \rightarrow 42 \rightarrow 230 \rightarrow 126 \rightarrow 32 \rightarrow 119 \rightarrow 4 \rightarrow 40 \\ \rightarrow 76 \rightarrow 196 \rightarrow 172 \rightarrow 156 \rightarrow 31 \rightarrow 111 \rightarrow 78 \rightarrow 163 \rightarrow 168 \rightarrow 229 \\ \rightarrow 160 \rightarrow 164 \rightarrow 155 \rightarrow 141 \rightarrow 85 \rightarrow 101 \rightarrow 147 \rightarrow 54 \rightarrow 48 \rightarrow 1 \end{array}$
A.6.3 Adjacency list for 500-node graph

										60 ·	195	246	264	296	469	480			
1:	36	74	124	197	201	222	259	312	325	61	200	104	201	270	450	100			
2:	7	55	79	232	288	384				01:	34	184	210	312	450				
3:	11	44	166	239	255	357	381	414	482	62 :	236	393	452						
4.	15	19	67	305	352	363				63 :	59	67	123	139	148	236	395	398	
- <u>-</u>	20	110	154	000	002	200	491	450	401	64 :	111	267	378	436	443	454	471	481	485
b :	33	118	154	297	371	399	431	456	481	65:	205	344	392	433					
6:	43	220	233	275	324	357	365	401	415	66 :	122	130	188	235	344	352			
7:	2	71	262							67 .	4	63	118	253	261	303			
8:	76	134	209	260	419	420	447			69.		80	220	200	262	400			
9 :	41	94	178	262	279	345	382	407		08:	11	69	220	320	303	465			
10:	40	246	379	466						69 :	160	238	445						
11 .	3	209	292	304						70:	52	155	202	208	244	280	381	482	
10.	50	200	01	152	200	272	416	495	420	71:	7	26	191	214	270	325			
12:	00	80	81	105	322	3/3	410	420	439	72:	22	100	167	324	326	375	402	427	441
13:	119	237	330	389	470	482				73:	140	189	238	272	383	404	475		
14:	98	158	176	343	381	451	477	499		74 :	1	156	248	258	395	447			
15 :	4	75	288	372	479					75 .	15	260	276	309	367				
16 :	239	317	403	430						76		162	269	461	001				
17:	90	198	201	220	245	296	360	395			0	105	308	401					
18:	109	262	299	392	394					77:	68	162	487						
19 :	4	27	230	233	338	352	402			78 :	221	364	379	412	438				
20 ·	55	183	213	225	235	331	381			79 :	2	141	202	255	344	376			
21.	162	204	242	456	200	001	001			80:	12	130	137	236	350	382	481	484	
21.	70	175	240	450	205	490				81:	12	25	155	192	266	269	279	398	476
22:	(2	175	232	258	325	438				82:	108	170	288	334	335	384	395	466	
23:	144	147	450							83 :	149	216	252	261	279				
24 :	50	54	248	299	350	390	491			84 :	187	191	201	288	311	316	344	365	
25 :	31	81	219	290	363	398				85.	106	130	203	245	280	204	328	387	187
26 :	31	71	163	305	387					80.	200	150	220	114	141	234	328	204	401
27:	19	214	265	395	436	451	454	458	493	80 :	37	30	92	114	141	294	307	324	320
28:	46	107	137	167	169	296	370	392	448	87 :	106	243	304	385	452	464			
29 :	279	334	374	455	493					88 :	54	141	163	254	326	404	416	418	471
30 ·	104	132	285	303	403	486				89:	34	68	208	475					
21.	25	26	04	100	101	252	256	402	420	90:	17	33	328	366	450				
	1.4.1	20	34	100	101	202	350	402	423	91:	158	259	340	468	486				
32:	141	362	370							92 :	86	161	194	263	266	352	373	376	
33 :	5	90	104	105	211	285	473			93 :	198	214	328						
34 :	35	61	89	157	256					94:	9	31	124	170	193	273	326	410	466
35 :	34	50	299							95	135	323	428						
36 :	1	430	433							06	47	156	175	224	200	202	254		
37:	86	267	400							90 . 97	41	150	100	234	290	302	304		
38:	166	298	332	435						97:	123	251	422						
39 :	225	366	375							98 :	14	270	321	377	405	412	439		
40 :	10	178	216	285	336					99:	59	132	152	245	277	367			
41 ·	9	171	174	212	326	428	477	490		100:	31	72	126	170	187	350	421		
42 .	48	40	150	207	255	268	376	413	453	101 :	31	137	152	243	279	388			
49.	6	161	220	201	450	200	010	410	400	102 :	247	336	355						
43:	0	101	239	260	450					103:	195	222	430	465	474	492			
44:	3	161	269	324	441					104:	30	33	134	136	233				
45 :	106	319	396	438	471					105 :	33	57	117	242	244	274	308	338	
46 :	28	134	257	271	277	327	367	404		106 :	45	85	87	280					
47 :	96	133	299	442						107	28	170	241	362					
48 :	42	244	251	252	267	361	417			107.	20	200	405	442	4771				
49 :	42	53	303	304	406	432	495			108 :	02	298	405	445	471				
50 :	24	35	244							109 :	18	278	346	448					
51:	166	366	435							110 :	287	379	385						
52 ·	70	149	180	183	255	279	373	398	466	111 :	64	180	184	304	316	326	396		
59.	19	10	304	300	255	404	010	000	100	112 :	114	115	341						
00: FA	14	49	100	107	000	404				113 :	238	248	256	319	391	496			
54:	24	88	193	197	233	376		_		114 :	86	112	154	252	295	316	383	430	
55:	2	20	135	168	195	248	262	317	348	115 :	112	196	257	307	372	450			
56 :	86	154	218							116 ·	132	162	187	356	399				
57:	105	126	145	170	216	226	292	392	482	117.	105	210	255	486					
58:	125	396	404							110	×00	67	200	200	910	991	402	400	
59 :	63	99	134	136	151	247	275	344	464	110 :	10	100	203	209	219	201	402	400	10-
										119:	13	100	195	248	320	329	459	464	485

120 :	206	273	319	373	484					180:	52	111	133	179	184	204	293	301	306
121 :	156	184	200	207	310	317	441	452	473	181 :	170	248	296	391	442	464			
122 :	66	201	250							182 :	146	177	425						
123 :	63	97	158	170	320	478	494	495		183:	20	52	132	219	266	318	392		
124 :	1	94	192	205	236	261	318	336	426	184 :	61	111	121	180	228	323	331	410	444
125 :	58	127	135	188	289	306	343	407		185 :	228	446	462	470					
126 :	57	100	244	272	305	352				186:	275	381	399	420	495	500			
127 :	125	145	174	216	397	470				187 :	84	100	116	199	261	316	426	444	
128 :	446	450	461							188 :	66	125	190	257	269	280	303	388	419
129 :	237	397	431							189 :	73	136	360	378	407	413	429	484	
130 :	66	80	85	255	290					190:	188	235	415						
131 :	164	228	353							191 :	71	84	327	375					
132 :	30	99	116	183	293	328	403			192 :	81	124	137	194	219	287	327	354	
133 :	47	180	351	405	411	447				193:	54	94	144	225	235	330	359	368	450
134 :	8	46	59	104	207	306	307	318		194 :	92	192	297	430					
135 :	55	95	125	224	426	441	454			195 :	55	60	103	119	282	335			
136 :	59	104	189	205	211	225	251	344	351	196:	115	284	488						
137 :	28	80	101	179	192	290	309	354		197:	1	54	252	260	316	349	443	444	466
138 :	237	353	365							198:	17	93	153	161	378	398	436	479	495
139 :	63	145	169	176	260	298	306	451	489	199:	140	164	187	234	424	473	489		
140 :	73	199	224	380	426	428	493			200 :	121	263	348	363	489				
141 :	32	79	86	88						201 :	1	17	84	122	284				
142 :	209	264	303	310	371	410	448	489		202 :	70	79	158	226	304	306	308	319	439
143 :	154	221	319	362	378	400				203 :	118	166	224	312	389	401	409	492	
144 :	23	193	318	402	478					204 :	21	180	229	266	297	312	393	488	
145 :	57	127	139	169	269	389	433	476		205 :	65	124	136	242	273	290	294	363	377
146 :	182	269	292	296	459					206:	120	169	273	274	307				
147 :	23	308	330	397						207:	42	121	134	356					
148 :	63	217	250							208:	70	89	155	222	266	316	333	425	473
149 :	52	83	302	315	347	351	399			209 :	8	11	118	142	228	277	320	369	466
150 :	160	270	340							210 :	117	250	282	357					
151:	59	233	249	279	292	344	368	394	497	211 :	33	136	169	462					
152 :	99	101	326							212 :	41	173	445	473					
153 :	12	198	369	406						213 :	20	234	304	379	492				
154 :	5	56	114	143						214 :	27	71	93	165	179	373	488		
155 :	70	81	208	215	317	355	370	403	408	215 :	155	237	293	315	451	460			
156 :	74	96	121	217	222	326				216 :	40	57	61	83	127	338	371	422	
157:	34	162	172	280	424	432				217:	148	156	234	345					
158:	14	91	123	202	240					218 :	56	271	285						
159 :	42	322	364	370	427	430	434	464	475	219 :	25	118	183	192	291	305	366	410	437
160 :	69	119	150	241	310	361	465			220 :	6	17	68	437	441	494			
161:	43	44	92	179	198	270	452	461	466	221 :	78	143	231	465	473	479			
162:	77	116	157	179	275	293	312	448	449	222 :	1	103	156	208	387	484			
163:	21	26	76	88	369	385	398	429		223 :	85	251	377	0.6.1	050	0.07	450		
164:	131	199	271	321	343					224 :	135	140	203	231	256	321	450		
165:	214	229	293	488	050	950	410	410	45.4	225 :	20	39	136	193	250	453			
166:	3	38	51	203	252	350	416	418	454	226 :	57	202	482	10.1					
167:	28	72	266	349	356	419	485	489		227 :	312	347	378	434	0.01	200	070	200	
168:	55	307	348	425	011	0.40	000	955		228 :	131	184	185	209	261	360	372	390	
170	28 57	138	145	206	211	242 192	208	300	440	229 :	105	204	233 20≝	244	204	212			
171	07 71	02 072	94	100	107	123	1((191	449	230 :	19	200 204	290 201	297 490	457				
172	41	213	299 206							231:	221	224	202	420	407				
172:	107 919	აკგ ენ1	380 490	150	475	407	500			232:	2	10	54	411	151	220	256	262	36F
174.	414 1	201 197	300	330	410	491	500			200: 094:	06	100	04 019	104 917	101	449	200	202	505
175.	90 90	121	009 097	222	4420 210	354	189			204÷	90 90	199	⊿13 100	417 109	300				
176	44 14	120	201 280	214 207	306	304 ⊿51	400 469	121		200 : 226 -	20 62	69	190	190 194	329 269	287	250	204	
177.	170	180	200 202	291	500	491	409	401		200: 097-	12	120	120	124	200 215	201	252	394	
179.	1/U	102	206 203							201: 220.	10 60	129 79	119	110 219	⊿10 406	344 400	333 467	180	
170	9 197	40	169	180	914	979				200 : 220 :	2	10 16	110 19	919	-400	409	-407	·±0∠	
T18:	137	101	102	180	⊿14	213				239 :	3	10	43						

240 :	158	301	387	427						300 :	242	382	418	432	440	443	463	492	
241 :	107	160	417							301:	180	231	240	396	414				
242 :	105	169	205	300	399	436	478	494		302 :	96	149	292	339	343	355	448		
243 :	21	87	101	249	374					303 :	30	49	67	142	177	188	357	416	
2 44 :	48	50	70	105	126	229	405	473		304 :	11	49	87	111	202	213	316	405	
245 :	17	85	99	266	307	337	444	448		305 :	4	26	53	126	219	284	361	486	
246 :	10	60	269	427						306:	125	134	139	176	180	202	318	430	
247 :	59	102	317	329	377					307:	86	115	134	168	206	245	430		
248 :	24	55	74	113	119	181	289	422	475	308:	53	105	147	202	256	293	366	370	402
249 :	151	243	277	281	337	461				309 :	75	137	174	315	403	459	463		
250 :	122	148	210	225	314	367	475			310 :	121	142	160	391	449				
251 :	48	97	136	223	396	452				311 :	84	263	391						
252 :	31	48	83	114	166	197	448	489	491	312 :	1	162	203	204	227	254	374		
253:	67	280	328	402	407	426				313 :	238	283	321	329					
254 :	88	270	273	312	329	400	467			314 :	250	267	379	440	461				
255:	3	42	52	79	117	130	390	395		315 :	149	215	268	273	309	329	369	498	
256:	34	113	224	233	308	322	432			316 :	84	111	114	187	197	208	260	304	477
257:	40	115	188	362	370					317 :	10	00 194	121	155	102	295	350	207	
258:	1	(4 01	325	350						318 :	124	134	144	149	183	306	337	397	
209 : 260 ·	1	91 75	130	107	316	381	466			319 :	40	110	120	200	202	440 274	490		
200.	67	83	194	187	228	486	400			321	08	164	224	203	200	476			
262 ·	7	9	124	55	220	202	418	469		322 :	12	159	256	264	382	404	418	444	
263	92	200	311	323	381	387	407	474		323	95	184	263	479	002	101	410		
2 64 :	60	142	229	322	346	392	441	459	491	324 :	6	44	72	86	436	498			
265 :	27	230	295							325 :	1	22	71	258	297	457			
266 :	81	92	167	183	204	208	245			326 :	41	72	86	88	94	111	152	156	476
267:	37	48	64	314						327 :	46	191	192	332					
268 :	42	169	236	270	293	315	320	350	463	328 :	85	90	93	132	253	460			
269 :	44	81	145	146	188	246	275	391	425	329 :	119	235	247	254	313	315			
27 0 :	71	98	150	161	254	268	392	420	450	330 :	13	147	193	294					
271 :	46	164	218	337						331 :	20	118	184	415					
272 :	73	126	229	371	372	468	500			332 :	38	291	327	378	404	410	426	435	460
273 :	94	120	171	179	205	206	254	315	416	333 :	208	298	460						
274 :	105	175	206	320	489					334 :	29	82	372	375					
275 :	6	59	162	186	269	361	457	462		335 :	82	195	411	434	445				
276 :	75	380	407	497						336 :	40	102	124	480					
277 :	46	99	209	249						337 :	245	249	271	291	318	372	422	470	
278 :	109	398	499							338 :	19	105	216	291	298	372	390	408	450
279 :	9	29	52	81	83	101	151	280	463	339 :	172	174	302	467					
280 :	70	85	106	157	188	253	279			340 :	91	150	284	497					
281 :	173	249	374							341 :	112	446	455						
282 :	195	210	379	411						342 :	287	397	430	440	487				
283:	313	367	371	393	471					343 :	14	125	164	302	481	487		~~~	
284 :	196	201	289	305	340	465	100			344 :	59	65	66	79	84	136	151	237	443
285:	30	33	40	43	218	355	488			345 :	9	217	286	362	105				
286 :	295	345	409	001	240	470				346 :	109	264	390	414	465				
287:	110	192	230	291	176	470	477.4			347 :	149	169	465	49.4					
200:	125	248	04 284	04 204	286	411	414			348 : 240 :	167	108	200	434					
209. 200.	25	240 06	130	137	205	357	376	388	460	349	24	80	100	166	258	268	317	300	454
291	210 210	287	332	337	338	395	402	441	448	351	± 1,33	136	149	474	200	200	017	000	-104
292 .	11	57	146	151	262	302	355	365	402	352	4	19	66	92	126	419	426		
293:	132	162	165	180	215	268	308	409		353 :	131	138	237	~=					
294 :	85	86	205	289	330	421	454			354 :	96	137	175	192					
295:	114	230	265	286	317	378	393	403	493	355 :	53	102	155	169	285	292	302	488	
296 :	17	28	60	146	181	363	400	473		356:	31	116	167	207	410				
297 :	5	176	194	204	230	325	370	444		357:	3	6	210	290	303	349	373	387	
298 :	38	108	139	333	338	453				358:	423	425	426						
299 :	18	24	35	47	171					359:	193	236	375	406					

360 :	17	189	228	391						420 :	8	174	186	231	270				
361:	48	160	275	305	377	418	437	451		421 :	100	294	446	467					
362 :	32	107	143	257	345					422 :	97	216	248	337	370	385	393	464	
363:	4	25	68	200	205	296	411			423 :	358	395	405	408	410				
364:	78	159	321							424 :	157	199	439						
365 :	6	84	138	233	292					425 :	12	168	182	208	269	358	387		
366 :	39	51	90	219	308	413	467			426 :	124	135	140	187	253	332	352	358	497
367	46	75	qq	250	283	385	394	480	482	427 :	72	159	240	246	452	459			
368	76	151	193	416	460	000	001	100	102	428 :	41	95	140	499	102	100			
369	153	163	209	315	482	483	499			429 :	31	163	189	475					
370 ·	28	155	150	207	308	499	437	130	470	430 :	16	36	103	114	150	104	306	307	349
271	5	149	216	231	200	422	407	405	410	421	5	120	105	114	105	134	300	307	042
371:	15	142	210	212	200	224	0.07	990		431 :	10	129	470	200	445				
372:	15	50	115	228	272	334	337	338		432:	49	157	256	300	445				
373:	12	52	92	120	214	357	484			433 :	36	65	145						
374:	29	243	281	312	468	478				434 :	159	227	335	348					
375 :	39	72	191	334	359	394	480			435 :	38	51	332	382	407				
376 :	32	42	54	79	92	257	290	394	445	436 :	27	64	198	242	324	437	467	495	
377:	98	205	223	247	361	400	437	460	486	437 :	219	220	361	370	377	379	436	476	
378 :	64	143	189	198	227	295	332	405		438:	22	45	78						
379 :	10	78	110	213	282	314	403	437	468	439 :	12	98	173	202	370	424	496		
380 :	140	276	452							440 :	300	314	342	461					
381 :	3	14	20	70	186	260	263			441 :	44	72	121	135	220	264	291	388	416
382 :	9	80	300	322	390	435	457			442 :	47	181	397	460					
383:	73	114	477							443 :	64	108	197	300	344	414			
384 :	2	82	495							444 :	184	187	197	245	297	322			
385:	87	110	163	367	422	454				445 :	69	212	319	335	376	432			
386:	172	232	289							446 :	128	185	341	421					
387 :	26	85	222	240	263	357	425			447 :	8	74	133	497					
388:	101	188	290	441						448:	28	109	142	162	245	252	291	302	
389:	13	145	203	409	414					449 :	162	170	310	487					
390 :	24	228	255	338	346	382	476	498		450 :	23	43	90	115	128	193	224	270	338
391 :	113	181	269	310	311	360				451 :	14	27	139	176	215	361	458	485	
392 :	18	28	57	65	183	264	270	401	484	452 :	62	87	121	161	251	380	427	468	490
393	62	204	283	295	415	422	488			453	42	225	298						
394	18	151	236	367	375	376	410			454 :	27	64	135	166	294	350	385		
305 -	17	27	63	74	82	255	201	123		455 -	20	3/1	100	100	204	000	000		
306 -	45	58	111	178	251	301	201	420		456 :	5	21	61	496					
207	197	120	147	210	249	449	461	470	406	457	021	21	225	200	476				
308.	25	129	62	01	162	100	979	479	490	457.	231	172	451	450	470				
396 :	20	110	140	100	105	198	400	472		458 :	21	175	401	409	409	450	460		
399 :	о 07	110	149	180	242	350	408	495	100	459 :	119	146	264	309	427	458	462	1.10	
400:	37	143	254	289	296	377	486	489	490	460 :	215	290	328	332	333	368	377	442	
401:	6	203	392	110		050	001	000	000	461 :	76	128	161	249	314	397	440	467	
402:	19	31	72	118	144	253	291	292	308	462 :	185	211	275	415	459				
403 :	16	30	132	155	295	309	379	485		463 :	176	268	279	300	309	418			
404 :	46	53	58	73	88	322	332	418		464 :	59	87	119	159	181	408	422		
405 :	98	108	133	244	259	304	378	423	490	465 :	103	160	221	284	346	347			
406 :	49	153	238	359	467					466 :	10	52	82	94	161	197	209	260	
407 :	9	125	189	253	263	276	435			467:	238	254	339	366	406	408	421	436	461
408 :	118	155	338	399	423	464	467	493		468:	91	272	374	379	452				
409 :	203	238	286	293	389					469 :	60	262	412						
410 :	94	142	184	219	332	356	394	416	423	470 :	13	127	185	287	337	370	495		
411 :	133	232	282	288	335	363	480			471 :	45	64	88	108	283				
412 :	78	98	419	469						472 :	398	418	492	496					
413 :	42	189	366							473 :	33	121	199	208	212	221	244	296	
414 :	3	301	346	389	443					474 :	103	263	288	351					
415 :	6	190	331	393	417	462				475 :	73	89	159	173	248	250	429		
416 :	12	88	166	273	303	368	410	441		476 :	81	145	321	326	390	431	437	457	496
417 :	48	241	415							477:	14	41	316	383					
418 :	88	166	262	300	322	361	404	463	472	478 :	123	144	242	374	484				
419 :	8	167	188	289	352	412				479 :	15	198	221	323	397	490			

```
367
480:
        60
               336
                            375
                                  411
                      80
481 :
         \mathbf{5}
               64
                            176
                                  343
                            70
482 :
         3
               13
                      57
                                  226
                                         238
                                               367
                                                      369
               175
                     369
483:
        68
484
        80
               120
                     189
                            222
                                  373
                                         392
                                                478
485
         64
               119
                     167
                            403
                                  451
486 :
        30
               91
                     117
                            261
                                  305
                                         377
                                                400
        77
               85
                     342
487:
                            343
                                  449
        165
               196
                     204
                            214
                                  285
488 :
                                         355
                                                393
                                                      493
489:
        139
               142
                     167
                            199
                                  200
                                         252
                                                274
                                                      400
                                                             458
490:
        41
               319
                     400
                            405
                                  452
                                         479
                     264
491 :
        24
               252
492 :
        103
               203
                     213
                            300
                                  472
493:
        27
               29
                     140
                            295
                                  408
                                         455
                                               488
        123
               220
494:
                     242
        49
                                                      470
495:
               123
                     186
                            198
                                  384
                                         399
                                                436
496:
        113
               397
                     439
                            456
                                  472
                                         476
                                                499
497 ·
        151
               173
                     276
                            340
                                  426
                                         447
        315
498:
              324
                     390
499:
        14
               278
                     369
                            428
                                  496
500:
        173
               186
                     272
```

A.6.4 Hamiltonian cycle for 500-node graph

The Hamiltonian cycle that we found using the Wedged-MIP Heuristic for 500-node graph is shown below. This Hamiltonian cycle is the one shown in Figure A.1. $1 \rightarrow 312 \rightarrow 204 \rightarrow 229 \rightarrow 165 \rightarrow 214 \rightarrow 93 \rightarrow 328 \rightarrow 90 \rightarrow 366 \rightarrow 413$ $\rightarrow 189 \rightarrow 378 \rightarrow 332 \rightarrow 327 \rightarrow 191 \rightarrow 71 \rightarrow 7 \rightarrow 2 \rightarrow 384 \rightarrow 495$ $\rightarrow 49 \rightarrow 304 \rightarrow 111 \rightarrow 396 \rightarrow 58 \rightarrow 125 \rightarrow 289 \rightarrow 419 \rightarrow 8 \rightarrow 260$ $\rightarrow 466 \rightarrow 10 \rightarrow 40 \rightarrow 178 \rightarrow 9 \rightarrow 407 \rightarrow 435 \rightarrow 51 \rightarrow 166 \rightarrow 38$ $\rightarrow 298 \rightarrow 338 \rightarrow 390 \rightarrow 498 \rightarrow 315 \rightarrow 309 \rightarrow 75 \rightarrow 276 \rightarrow 380 \rightarrow 140$ $\rightarrow 428 \rightarrow 95 \rightarrow 323 \rightarrow 263 \rightarrow 200 \rightarrow 348 \rightarrow 434 \rightarrow 227 \rightarrow 347 \rightarrow 149$ $\rightarrow 351 \rightarrow 474 \rightarrow 103 \rightarrow 465 \rightarrow 284 \rightarrow 196 \rightarrow 115 \rightarrow 372 \rightarrow 228 \rightarrow 360$ $\rightarrow 391 \rightarrow 311 \rightarrow 84 \rightarrow 288 \rightarrow 15 \rightarrow 4 \rightarrow 352 \rightarrow 126 \rightarrow 100 \rightarrow 421$ $\rightarrow 294 \rightarrow 330 \rightarrow 13 \rightarrow 470 \rightarrow 185 \rightarrow 462 \rightarrow 275 \rightarrow 6 \rightarrow 365 \rightarrow 292$ $\rightarrow 302 \rightarrow 343 \rightarrow 481 \rightarrow 176 \rightarrow 297 \rightarrow 444 \rightarrow 184 \rightarrow 331 \rightarrow 415 \rightarrow 417$ $\rightarrow 241 \rightarrow 107 \rightarrow 170 \rightarrow 57 \rightarrow 482 \rightarrow 226 \rightarrow 202 \rightarrow 158 \rightarrow 240 \rightarrow 427$ $\rightarrow 72 \rightarrow 167 \rightarrow 485 \rightarrow 451 \rightarrow 361 \rightarrow 377 \rightarrow 223 \rightarrow 85 \rightarrow 487 \rightarrow 77$ $\rightarrow 68 \rightarrow 89 \rightarrow 475 \rightarrow 429 \rightarrow 163 \rightarrow 369 \rightarrow 483 \rightarrow 175 \rightarrow 354 \rightarrow 96$ $\rightarrow 234 \rightarrow 213 \rightarrow 492 \rightarrow 472 \rightarrow 496 \rightarrow 113 \rightarrow 248 \rightarrow 74 \rightarrow 156 \rightarrow 222$ $\rightarrow 387 \rightarrow 26 \rightarrow 305 \rightarrow 53 \rightarrow 308 \rightarrow 147 \rightarrow 23 \rightarrow 144 \rightarrow 402 \rightarrow 291$ $\rightarrow 219 \rightarrow 25 \rightarrow 398 \rightarrow 81 \rightarrow 279 \rightarrow 52 \rightarrow 180 \rightarrow 306 \rightarrow 430 \rightarrow 159$

 $\rightarrow 364 \rightarrow 321 \rightarrow 98 \rightarrow 439 \rightarrow 370 \rightarrow 437 \rightarrow 379 \rightarrow 110 \rightarrow 287 \rightarrow 236$ $\rightarrow 62 \rightarrow 452 \rightarrow 490 \rightarrow 479 \rightarrow 221 \rightarrow 78 \rightarrow 412 \rightarrow 469 \rightarrow 262 \rightarrow 18$ $\rightarrow 394 \rightarrow 367 \rightarrow 385 \rightarrow 454 \rightarrow 64 \rightarrow 267 \rightarrow 37 \rightarrow 86 \rightarrow 307 \rightarrow 206$ $\rightarrow 120 \rightarrow 319 \rightarrow 445 \rightarrow 335 \rightarrow 82 \rightarrow 334 \rightarrow 375 \rightarrow 39 \rightarrow 225 \rightarrow 453$ $\rightarrow 42 \rightarrow 48 \rightarrow 251 \rightarrow 136 \rightarrow 211 \rightarrow 169 \rightarrow 139 \rightarrow 145 \rightarrow 389 \rightarrow 409$ $\rightarrow 286 \rightarrow 345 \rightarrow 217 \rightarrow 148 \rightarrow 250 \rightarrow 314 \rightarrow 440 \rightarrow 342 \rightarrow 397 \rightarrow 129$ $\rightarrow 237 \rightarrow 138 \rightarrow 353 \rightarrow 131 \rightarrow 164 \rightarrow 271 \rightarrow 218 \rightarrow 56 \rightarrow 154 \rightarrow 143$ $\rightarrow 362 \rightarrow 257 \rightarrow 46 \rightarrow 134 \rightarrow 104 \rightarrow 30 \rightarrow 285 \rightarrow 355 \rightarrow 488 \rightarrow 493$ $\rightarrow 455 \rightarrow 29 \rightarrow 374 \rightarrow 281 \rightarrow 249 \rightarrow 461 \rightarrow 76 \rightarrow 368 \rightarrow 416 \rightarrow 12$ $\rightarrow 322 \rightarrow 256 \rightarrow 432 \rightarrow 157 \rightarrow 424 \rightarrow 199 \rightarrow 473 \rightarrow 33 \rightarrow 105 \rightarrow 244$ $\rightarrow 405 \rightarrow 259 \rightarrow 91 \rightarrow 468 \rightarrow 272 \rightarrow 500 \rightarrow 173 \rightarrow 212 \rightarrow 41 \rightarrow 174$ $\rightarrow 127 \rightarrow 216 \rightarrow 83 \rightarrow 261 \rightarrow 124 \rightarrow 318 \rightarrow 337 \rightarrow 245 \rightarrow 448 \rightarrow 109$ $\rightarrow 278 \rightarrow 499 \rightarrow 14 \rightarrow 477 \rightarrow 316 \rightarrow 187 \rightarrow 426 \rightarrow 358 \rightarrow 423 \rightarrow 395$ $\rightarrow 255 \rightarrow 79 \rightarrow 141 \rightarrow 32 \rightarrow 376 \rightarrow 290 \rightarrow 388 \rightarrow 101 \rightarrow 31 \rightarrow 252$ $\rightarrow 491 \rightarrow 24 \rightarrow 50 \rightarrow 35 \rightarrow 34 \rightarrow 61 \rightarrow 456 \rightarrow 21 \rightarrow 243 \rightarrow 87$ $\rightarrow 106 \rightarrow 45 \rightarrow 438 \rightarrow 22 \rightarrow 232 \rightarrow 386 \rightarrow 172 \rightarrow 339 \rightarrow 467 \rightarrow 436$ $\rightarrow 324 \rightarrow 44 \rightarrow 269 \rightarrow 246 \rightarrow 60 \rightarrow 195 \rightarrow 282 \rightarrow 210 \rightarrow 117 \rightarrow 486$ $\rightarrow 400 \rightarrow 296 \rightarrow 363 \rightarrow 411 \rightarrow 480 \rightarrow 336 \rightarrow 102 \rightarrow 247 \rightarrow 317 \rightarrow 16$ $\rightarrow 239 \rightarrow 3 \rightarrow 11 \rightarrow 209 \rightarrow 277 \rightarrow 99 \rightarrow 152 \rightarrow 326 \rightarrow 94 \rightarrow 410$ $\rightarrow 356 \rightarrow 207 \rightarrow 121 \rightarrow 310 \rightarrow 449 \rightarrow 162 \rightarrow 116 \rightarrow 399 \rightarrow 408 \rightarrow 118$ $\rightarrow 203 \rightarrow 401 \rightarrow 392 \rightarrow 28 \rightarrow 137 \rightarrow 192 \rightarrow 194 \rightarrow 92 \rightarrow 266 \rightarrow 183$ $\rightarrow 20 \rightarrow 235 \rightarrow 190 \rightarrow 188 \rightarrow 280 \rightarrow 253 \rightarrow 67 \rightarrow 63 \rightarrow 59 \rightarrow 464$ $\rightarrow 181 \rightarrow 442 \rightarrow 460 \rightarrow 333 \rightarrow 208 \rightarrow 425 \rightarrow 168 \rightarrow 55 \rightarrow 135 \rightarrow 224$ $\rightarrow 231 \rightarrow 301 \rightarrow 414 \rightarrow 346 \rightarrow 264 \rightarrow 441 \rightarrow 220 \rightarrow 494 \rightarrow 123 \rightarrow 97$ $\rightarrow 422 \rightarrow 393 \rightarrow 283 \rightarrow 313 \rightarrow 238 \rightarrow 69 \rightarrow 160 \rightarrow 150 \rightarrow 340 \rightarrow 497$ $\rightarrow 447 \rightarrow 133 \rightarrow 47 \rightarrow 299 \rightarrow 171 \rightarrow 273 \rightarrow 179 \rightarrow 161 \rightarrow 43 \rightarrow 450$ $\rightarrow 128 \rightarrow 446 \rightarrow 341 \rightarrow 112 \rightarrow 114 \rightarrow 383 \rightarrow 73 \rightarrow 404 \rightarrow 418 \rightarrow 88$ $\rightarrow 471 \rightarrow 108 \rightarrow 443 \rightarrow 344 \rightarrow 151 \rightarrow 233 \rightarrow 19 \rightarrow 27 \rightarrow 265 \rightarrow 230$ $\rightarrow 295 \rightarrow 403 \rightarrow 132 \rightarrow 293 \rightarrow 215 \rightarrow 155 \rightarrow 70 \rightarrow 381 \rightarrow 186 \rightarrow 420$ $\rightarrow 270 \rightarrow 254 \rightarrow 329 \rightarrow 119 \rightarrow 320 \rightarrow 274 \rightarrow 489 \rightarrow 458 \rightarrow 459 \rightarrow 146$ $\rightarrow 182 \rightarrow 177 \rightarrow 303 \rightarrow 142 \rightarrow 371 \rightarrow 5 \rightarrow 431 \rightarrow 476 \rightarrow 457 \rightarrow 325$

 $\begin{array}{l} \rightarrow 258 \rightarrow 350 \rightarrow 268 \rightarrow 463 \rightarrow 300 \rightarrow 382 \rightarrow 80 \rightarrow 130 \rightarrow 66 \rightarrow 122 \\ \rightarrow 201 \rightarrow 17 \rightarrow 198 \rightarrow 153 \rightarrow 406 \rightarrow 359 \rightarrow 193 \rightarrow 54 \rightarrow 197 \rightarrow 349 \\ \rightarrow 357 \rightarrow 373 \rightarrow 484 \rightarrow 478 \rightarrow 242 \rightarrow 205 \rightarrow 65 \rightarrow 433 \rightarrow 36 \rightarrow 1 \end{array}$

Figure A.1: Solution to 500-node graph (Hamiltonian cycle in red).

A.6.5 Adjacency list for 1000-node graph

1.	9	80	190	283	295	354	748	771	783	60 :	4	240	397	455	610	958
2.	7	71	405	714	741	801	888	911	915	61:	56	220	319	570	613	823
3.	84	108	188	219	260	315	627	984	010	62 :	59	293	355	513	617	840
4 :	34	60	118	251	296	661	677	724		63 :	85	375	436	567	617	628
5:	186	333	368	587	658	677	678	988		64 :	21	103	196	297	619	893
6:	209	240	327	338	456	479	687	710		65 :	218	301	316	319	628	631
7:	2	158	159	437	568	608	807	989		66:	34	385	488	550	635	695
8:	113	364	395	681	682	772	864	902		67 :	110	351	353	614	639	962
9 :	1	12	38	101	110	318	913	956		68 :	13	416	490	612	643	983
10 :	22	142	247	253	279	450	674			69 :	96	109	170	172	652	691
11:	19	38	104	112	263	477	916			70:	193	281	417	564	653	702
12 :	9	22	125	270	279	486	700			71:	2	127	134	175	653	835
13 :	14	22	68	382	549	593	636			72:	43	51	122	134	660	731
14:	13	55	200	436	559	599	720			73:	30	40	309	327	672	905
15 :	83	175	198	314	471	611	831			74:	30	95	169	502	681	872
16 :	138	176	274	322	341	629	755			75:	18	30	43	500	083	945
17 :	24	116	307	324	378	642	722			76:	120	106	323	508 492	600	087
18 :	75	95	160	500	618	645	866			77 :	32	106	414 686	423	690	971 750
19 :	11	174	264	394	456	645	853			70.	24	170	402	560	606	750
20 :	33	165	353	605	616	651	861			19. 80.	1	270	326	662	600	850
21 :	45	64	396	424	443	669	701			81 ·	200	201	370	372	701	763
22 :	10	12	13	446	453	675	815			82 ·	31	109	184	239	705	863
23 :	141	152	169	339	693	717	800			83 :	15	238	242	5 90	719	758
24 :	17	107	124	483	708	726	727			84 :	3	416	626	724	725	738
25 :	107	249	269	386	460	737	788			85 :	63	116	136	294	725	785
26 :	164	244	246	357	429	744	867			86 :	102	117	136	493	731	922
27:	127	137	205	324	415	746	876			87:	43	442	467	532	740	784
28 :	96	129	288	540	589	844	992			88 :	104	350	558	563	759	760
29 :	90	113	234	728	774	845	982			89:	159	256	294	692	760	800
30 :	73	74	103	257	291	847	930			90:	29	125	641	667	764	918
31 :	82	105	112	210	388	855	856			91:	222	236	547	767	770	785
32:	77	126	130	276	341	924	987			92 :	127	427	504	537	773	774
33:	20	35	122	149	641	931	981			93 :	105	143	388	718	785	904
34:	4	50	66 169	79	207	478				94 :	37	102	409	481	787	985
35:	33	70 E 4	103	210	250	002 622				95:	18	42	74	381	795	838
30 : 97 :	41	07	140	192	200	280				96 :	28	69	382	681	809	920
99.	94	11	141	161	210	440				97:	37	158	442	662	826	910
30.	137	201	310	340	358	378				98:	113	131	299	620	842	868
40 ·	73	145	164	342	359	669				99 :	271	369	402	857	865	914
41 ·	36	101	117	194	379	690				100:	135	228	383	821	881	907
42 :	95	135	232	345	385	803				101:	9	41	57	111	656	
43 :	72	75	87	143	445	919				102 :	57	86	94	122	519	
44:	274	304	308	343	459	792				103 :	30	64	133	143	934	
45 :	21	212	411	447	460	512				104:	11	88	148	161	193	
46 :	53	215	273	396	468	497				105 :	31	93	114	165	312	
47 :	49	123	154	458	481	977				106 :	77	132	153	167	325	
48 :	146	225	314	329	496	935				107:	24	25	174	186	624	
49 :	47	220	242	271	497	780				108 :	3	166	167	192	517	
50 :	34	231	245	415	504	636				109:	69	82	167	210	276	
51 :	72	293	296	392	505	732				110 :	9	101	182	232	301	
52 :	147	155	346	419	506	914				111 :	70 11	101	150	241 959	202 510	
53 :	46	321	368	412	523	698				112:	21 11	01 20	190	203 254	012 779	
54 :	36	118	404	548	554	683				110: 111.	0 58	29 105	90 144	204 254	708	
55 :	14	274	367	434	568	740				115.	153	206	1-1-1-1 	254	440	
56 :	61	162	293	391	580	645				116 -	17	200 85	190	258	263	
57:	101	102	144	431	592	912				117	41	86	244	259	408	
58 :	114	250	269	330	606	797				118 -	4	54	271	272	300	
59 :	62	133	351	420	606	980				119	126	182	211	277	565	

120 :	76	126	276	285	491	180 :	111	350	371	609	627
121 :	158	214	260	286	287	181 :	124	405	487	611	799
122 :	33	72	102	292	817	182 :	110	119	262	613	820
123 :	47	128	133	295	302	183 :	278	348	610	614	806
124 :	24	171	181	297	955	184 :	82	282	283	619	729
125 :	12	90	303	305	584	185 :	237	255	604	620	954
126 :	32	119	120	316	685	186 :	5	107	588	623	723
127 :	27	71	92	320	824	187 :	257	384	454	623	986
128 :	123	154	173	331	473	188 :	3	363	624	625	944
129 :	28	178	259	333	849	189 :	173	277	601	626	627
130 :	32	294	295	343	837	190 :	1	116	131	629	873
131 :	98	190	303	344	648	191 :	163	262	366	636	812
132 :	106	169	227	352	525	192 :	36	108	159	637	765
133 :	59	103	123	352	605	193 :	70	104	148	644	712
134 :	71	72	284	355	836	194 :	41	287	296	646	752
135 :	42	100	152	360	820	195 :	236	275	338	650	651
136 :	85	86	285	376	716	196 :	64	224	313	653	654
137 :	27	39	250	391	430	197 :	600	649	654	655	843
138 :	16	261	292	399	536	198 :	15	37	323	658	670
139:	156	218	272	420	663	199 :	226	259	658	659	949
140:	36	369	417	431	531	200 :	14	315	365	666	794
141 :	23	38	248	432	869	201 :	233	278	492	666	699
142:	10	205	280	435	709	202 :	304	314	320	670	671
143:	43	93	103	441	533	203 :	225	267	672	673	938
144 :	57	114	280	457	574	204 :	264	305	448	674	895
145 :	40	208	272	463	897	205 :	27	142	235	676	745
146:	48	247	422	465	886	206 :	115	223	534	690	841
147:	92 104	201	370	400	022	207 :	34	329	484	700	804
140:	22	246	240	470	640	208 :	145	340 249	620	700	070
149:	33 79	112	042 995	474	040	209 :	21	100	662	715	970
151 .	76	256	365	475	913	210 :	110	257	427	717	908
152 ·	23	135	426	485	964	212 :	45	293	425	733	850
153	106	115	335	487	488	213 -	326	439	643	737	885
154 :	47	128	332	499	516	210 :	121	215	489	739	948
155 :	52	254	379	511	619	215 :	46	214	545	740	804
156 :	139	265	337	511	936	216 :	35	306	679	742	766
157:	285	463	464	513	745	217 :	221	603	742	743	1000
158:	7	97	121	518	609	218 :	65	115	139	747	959
159:	7	89	192	521	801	219 :	3	275	366	756	875
160:	18	224	363	526	694	220 :	49	61	270	776	976
161 :	38	104	318	534	818	221 :	217	340	347	781	950
162 :	56	398	421	538	868	222 :	91	277	712	786	946
163 :	35	191	507	541	607	223 :	206	286	607	788	789
164 :	26	40	383	543	825	224 :	160	196	476	791	873
165 :	20	105	360	549	878	225 :	48	203	707	797	798
166 :	108	311	358	560	574	226 :	199	495	801	802	890
167 :	106	108	109	572	823	227 :	132	258	542	802	911
168 :	255	256	425	573	711	228 :	100	298	373	803	804
169 :	23	74	132	577	828	229 :	503	594	813	814	899
170 :	69	258	289	579	602	230 :	266	650	816	817	969
171 :	124	278	349	580	972	231 :	50	572	796	818	865
172 :	69	377	390	581	630	232 :	42	110	282	821	837
173 :	128	189	306	584	977	233 :	201	249	564	829	830
174:	19	107	265	590	957	23 4 :	29	263	280	834	996
175 :	15	71	280	591	970	235 :	205	395	413	839	937
176:	16	340	341	601	635	236 :	91	195	840	841	931
177:	347	418	529	602	879	237 :	185	251	331	858	859
178 :	129	312	461	607	608	238 :	83	249	302	869	908
179:	79	465	558	608	879	239 :	82	407	688	875	876

240 :	6	60	401	878	941	300 :	118	296	299	428
241 :	111	380	884	894	906	301 :	65	81	110	437
242 :	49	83	552	896	990	302 :	123	238	303	561
243 :	290	531	719	897	921	303 :	125	131	302	765
2 44 :	26	117	260	928	965	304 :	44	202	305	667
245 :	50	336	592	930	951	305 :	125	204	304	306
246 :	26	149	400	930	931	306:	173	216	305	925
247 :	10	146	273	934	974	307:	17	266	308	665
248 :	141	514	898	971	972	308 :	44	307	309	443
249 :	25	233	238	606		309 :	73	308	310	901
250 :	35	58	137	891		310 :	39	309	311	544
251 :	4	237	252	995		311 :	166	289	310	768
252 :	111	251	253	286		312 :	105	178	254	313
253 :	10	112	252	615		313 :	38	196	312	452
254 :	113	114	155	312		314 :	15	48	202	806
255 :	115	168	185	555		315 :	3	200	317	527
256 :	89	151	168	475		316 :	65	126	317	469
257 :	30	187	211	696		317 :	315	316	318	438
258 :	116	170	227	706		318 :	9	161	317	480
259 :	117	129	199	482		319 :	61	65	284	822
260 :	3	121	244	634		320 :	127	202	321	903
261 :	138	147	262	344		321 :	53	320	322	966
262 :	182	191	261	325		322 :	16	321	323	668
263 :	11	116	234	640		323 :	76	198	322	825
264 :	19	204	266	271		324 :	17	27	325	881
265 :	156	174	267	926		325 :	106	262	324	882
266 :	230	264	268	307		326 :	80	213	273	884
267:	203	265	268	880		327 :	6	73	328	893
268:	36	266	267	491		328 :	208	287	327	832
269 :	25	58	270	652		329 :	48	207	330	870
270 :	12	220	269	595		330 :	58	329	332	432
271:	49	99	118	264		331 :	128	237	332	522
272 :	118	139	145	281		332 :	154	330	331	929
273 :	37	46	247	326		333 :	5	129	334	362
274 :	16	44	55	689		334 :	283	333	336	877
275 :	37	195	219	667		335 :	150	153	336	699
276 :	32	109	120	376		336 :	245	334	335	337
277:	119	189	222	674		337 :	156	336	338	380
278:	171	183	201	509		338 :	6	195	337	339
279 :	10	12	80	634		339 :	23	338	340	351
280 :	142	144	175	234		340 :	176	221	339	540
281 :	70	272	282	551		341 :	16	32	176	925
282 :	184	232	281	284		342 :	40	149	343	638
283 :	1	184	284	334		343 :	44	130	342	932
284 :	134	282	283	319		344 :	131	261	345	647
285 :	120	136	157	717		345 :	42	344	346	922
286 :	121	223	252	441		346 :	52	345	347	589
287:	121	194	288	328		347 :	177	221	346	949
288:	28	287	289	624		348 :	183	209	349	615
289 :	170	288	290	311		349 :	39	171	348	350
290 :	81	243	289	412		350 :	88	180	349	973
291 :	30	39	292	387		351 :	59	67	339	352
292 :	122	138	291	535		352 :	132	133	351	981
293 :	51	56	62	212		353 :	20	67	354	749
294 :	85	89	130	757		354 :	1	353	356	814
295 :	1	123	130	386		355 :	62	134	356	618
296 :	4	51	194	300		356 :	354	355	357	919
297 :	64	124	298	641		357 :	26	356	359	918
298 :	228	297	299	751		358 :	39	166	361	885
299 :	98	298	300	997		359 :	40	357	361	670

360 :	135	165	362	492	420 :	59	139	499	858
361 :	358	359	364	778	421 :	162	386	501	838
362 :	333	360	367	407	422 :	78	146	503	947
363:	160	188	371	793	423 :	77	387	507	790
364 :	8	361	372	870	424 :	21	408	510	704
365:	151	200	373	974	425 :	168	212	514	727
366:	191	219	374	668	426 :	152	388	515	682
367:	55	362	375	839	427 :	92	211	516	647
368:	5	53	381	625	428 :	300	413	520	994
369 :	99	140	387	838	429 :	26	389	522	706
370 :	81	147	389	705	430 :	137	148	523	732
371 :	180	363	390	882	431 :	57	140	524	616
372 :	81	364	393	809	432 :	141	330	524	979
373:	228	365	397	782	433 :	390	410	525	940
374:	366	394	398	979	434 :	55	438	527	994
375 :	63	367	399	753	435 :	142	391	528	644
376:	136	276	401	673	436 :	14	63	528	937
377:	172	384	402	479	437 :	7	301	529	762
378 :	17	39	404	916	438 :	317	434	532	799
379 :	41	155	406	508	439 :	213	521	535	749
380 :	241	337	406	762	440 :	115	392	536	995
381 :	95	368	409	626	441 :	143	286	542	718
382:	13	96	411	716	442 :	87	97	544	661
383:	100	164	414	553	443 :	21	308	545	798
384 :	187	377	418	870	444 :	392	498	546	996
385:	42	66	419	923	445 :	43	393	550	977
386:	25	295	421	583	446 :	22	394	554	935
387:	291	369	423	648	447 :	45	480	556	614
388:	31	93	426	784	448 :	204	395	556	628
389:	37	370	429	509	449 :	38	396	557	702
390 :	172	371	433	735	450 :	10	397	562	783
391 :	56	137	435	657	451 :	398	543	562	914
392 :	51	440	444	775	452 :	313	502	566	779
393 :	372	410	445	808	453 :	22	519	571	727
394 :	19	374	446	678	454 :	187	399	571	752
395 :	8	235	448	938	455 :	60	400	575	756
396 :	21	46	449	605	456 :	6	19	577	1000
397 :	60	373	450	546	457 :	144	401	578	877
398 :	162	374	451	867	458 :	47	402	579	854
399 :	138	375	454	735	459 :	44	462	581	659
400 :	246	403	455	757	460 :	25	45	582	708
401 :	240	376	457	768	461 :	178	575	585	900
402 :	99	377	458	557	462 :	403	459	586	960
403 :	79	400	462	934	463 :	145	157	591	896
404 :	54	378	464	917	464:	157	404	593	710
405 :	2	181	466	610	465:	146	179	594	966
406:	379	380	467	754	466 :	147	405	595	621
407:	239	362	468	517	467 :	87	406	597	905
408:	117	424	471	901	468 :	46	407	598	720
409:	94	381	472	612	469 :	316	553	600	912
410:	393	433	473	850	470 :	148	576	603	713
411 :	45	382	477	823	471 :	15	408	609	902
412:	53 225	290	478	585 005	472 :	208	409	613	846
413:	235	428	482	995	473 :	128	410	610	913
414:	27	50	403	902	474:	149	090 056	601	017
415:	41 69	00 84	484	048	475:	150	200 204	621	033 879
410:	70	04 140	409	900 619	476:	11	444 //11	622	891
418 -	177	384	401	652	411:	24	419	625	7.24
419	52	385	494	791	478:	6	377	620	887
A . O .		000	100		410.	0	011	540	001

480 :	318	447	630	747	540	: 28	340	759	916
481 :	47	94	632	991	541	: 163	530	761	762
482 :	259	413	633	827	542	: 227	441	761	912
483 :	24	414	633	860	543	: 164	451	763	764
484 :	207	415	637	642	544	: 310	442	767	777
485 :	152	486	638	947	545	: 215	443	769	799
486 :	12	485	639	739	546	: 397	444	771	772
487 .	153	181	639	871	547	· 91	777	778	852
488	66	153	640	033	548	· 54	778	779	856
489	214	416	642	655	549	· 13	165	780	924
100 .	68	643	644	780	550	. 66	145	782	078
401 .	120	268	646	703	551	· 281	607	701	702
402 .	201	200	649	840	551	. 251	242	807	000
492.	201	417	640	6940	552		460	807	909
493 :	410	417	049	062	555	: 363	409	000	915
494 :	418	507	051	953	554	: 54	446	810	980
495 :	226	566	655	656	555	: 255	505	811	923
496 :	48	656	657	942	556	: 447	448	817	851
497 :	46	49	657	961	557	: 402	449	819	820
498 :	419	444	662	663	558	: 88	179	824	967
499 :	154	420	664	978	559	: 14	586	825	826
500 :	18	539	665	666	560	: 166	827	828	943
501:	421	515	673	839	561	: 302	714	828	829
502 :	74	452	680	786	562	: 450	451	829	915
503 :	229	422	680	948	563	: 88	753	830	831
504 :	50	92	684	685	564	: 70	233	831	832
505 :	51	555	684	812	565	: 119	835	836	967
506:	52	526	685	686	566	: 452	495	836	837
507 :	163	423	689	892	567	: 63	494	849	850
508:	76	379	691	766	568	: 7	55	851	852
509:	278	389	698	811	569	: 79	798	856	857
510 :	424	587	703	822	570	: 61	805	857	858
511 :	155	156	704	935	571	: 453	454	863	864
512 :	45	112	707	975	572	: 167	231	864	874
513 :	62	157	709	816	573	: 168	664	865	866
514 :	248	425	710	728	574	: 144	166	871	932
515:	426	501	713	714	575	: 455	461	871	872
516 :	154	427	713	718	576	: 470	633	876	877
517 :	108	407	719	819	577	: 169	456	883	999
518:	158	671	725	726	578	: 457	746	886	887
519:	102	453	726	999	579	: 170	458	887	888
520 :	428	728	729	779	580	: 56	171	888	889
521 :	159	439	729	730	581	: 172	459	889	933
522 :	331	429	730	731	582	: 460	533	891	927
523 :	53	430	732	782	583	: 386	604	897	898
524	431	432	733	734	584	· 125	173	900	976
525	132	433	733	851	585	· 412	461	901	993
526 ·	160	506	734	973	586	· 462	559	902	903
520.	215	424	794	800	597	. 402 . 5	510	002	903
527.	425	434	796	026	597	. 196	605	903	005
526:	433	430	730	930	500	: 160	246	904	905
529:	1// E/1	437	730	720	569	. 20	174	908	909
00U:	140	004	131	138	590	. 83	1(4	910	911
531:	140	243	738	739	591	: 175	463	917	971
532:	87	438	741	855	592	: 57	245	929	972
533 :	143	582	743	890	593	: 13	464	939	1000
534:	161	206	746	862	594	: 229	465	948	949
535 :	292	439	748	763	595	: 270	466	950	951
536 :	138	440	750	751	596	: 474	715	953	954
537 :	92	599	751	999	597	: 467	830	958	959
538:	162	753	754	980	598	: 468	730	959	960
539 :	500	675	754	755	599	: 14	537	963	998

600 :	197	469	967	968	660:	72	659	661
601 :	176	189	978	979	661 :	4	442	660
602 :	170	177	981	982	662 :	80	97	498
603 :	217	470	987	988	663 :	139	210	498
604 :	185	583	997	998	664 :	499	573	665
605 :	20	133	396		665:	307	500	664
606 :	58	59	249		666 :	200	201	500
607:	163	178	223		667:	90	275	304
608 :	7	178	179		668:	322	366	669
609 :	158	180	471		669 :	21	40	668
610:	60	183	405		670 :	198	202	359
611 :	15	181	612		671:	202	518	672
612:	61	182	479		672 :	73 202	205	501
614 -	67	182	412		674 -	10	204	277
615 ·	253	348	473		675 ·	22	539	676
616 :	20	431	474		676 :	205	675	677
617:	62	63	474		677 :	4	5	676
618 :	18	355	417		678 :	5	394	679
619 :	64	155	184		679 :	216	678	680
620 :	98	185	209		680 :	502	503	679
621 :	466	475	476		681 :	8	74	96
622 :	147	477	623		682 :	8	426	493
623 :	186	187	622		683 :	54	75	684
624 :	107	188	288		684 :	504	505	683
625 :	188	368	478		685 :	126	504	506
626 :	84	189	381		686:	76	78	506
627 :	3	180	189		687:	6	76	688
628 :	63	65	448		688 :	239	687	689
629 :	16	190	479		689 :	274	507	688
630 :	172	480	631		690 : 691	41	77	206
622.	26	491	621		602 -	09 80	207	602
633 -	482	483	576		693	23	692	694
634 ·	260	279	635		694 ·	78	160	693
635 :	66	176	634		695 :	66	78	588
636 :	13	50	191		696 :	79	257	697
637 :	192	484	638		697 :	551	696	698
638 :	342	485	637		698 :	53	509	697
639 :	67	486	487		699 :	80	201	335
640 :	149	263	488		700 :	12	208	701
641 :	33	90	297		701 :	21	81	700
642 :	17	484	489		702 :	70	449	703
643 :	68	213	490		703 :	491	510	702
644 :	193	435	490		704 :	424	511	705
645 :	18	19	56		705:	82	370	704
646 :	194	491	647		706 :	258	429	707
647:	344	427	646		707:	225	512	706
648 :	131	387	492		708 :	24	114	460
649:	197	493	640		709:	142	513 464	514
651 ·	20	105	1049		710.	168	200	719
652	20 69	269	418		712	103	209	711
653 :	70	71	196		713:	470	515	516
654 :	196	197	530		714 :	2	515	561
655:	197	489	495		715 :	210	596	716
656:	101	495	496		716 :	136	382	715
657 :	391	496	497		717 :	23	211	285
658 :	5	198	199		718 :	93	441	516
659 :	199	459	660		719 :	83	243	517

720 :	14	468	721	780 :	49	549	781
721 :	419	720	722	781 :	221	478	780
722 :	17	721	723	782 :	373	523	550
723 :	186	722	724	783 :	1	450	784
724 :	4	84	723	784 :	87	388	783
725 :	84	85	518	785 :	85	91	93
726 :	24	518	519	786 :	222	502	787
727:	24	425	453	787 :	94	786	788
728 :	29	514	520	788 :	25	223	787
729 :	184	520	521	789 :	223	490	790
730 :	521	522	598	790 :	423	789	791
731 :	72	86	522	791 :	224	551	790
732 :	51	430	523	792 :	44	551	793
733 :	212	524	525	793 :	363	792	794
734 :	524	526	527	794 :	200	793	795
735 :	390	399	736	795 :	95	794	796
736 :	528	529	735	796 :	231	795	797
737:	20	213 520	530	797 :	- 28 - 225	220	796 560
730 :	04 214	486	521	798 :	191	443	545
740 ·	55	400 87	215	800 -	23	438 89	527
740.	2	532	742	801 -	25	159	226
742	216	217	741	802 :	226	227	803
743 :	217	533	744	803 :	42	228	802
744 :	26	743	745	804 :	215	228	805
745 :	157	205	744	805 :	570	804	806
746:	27	534	578	806 :	183	314	805
747 :	218	480	748	807 :	7	552	808
748 :	1	535	747	808 :	393	553	807
749 :	353	439	750	809 :	96	372	810
750 :	78	536	749	810 :	554	809	811
751 :	298	536	537	811 :	509	555	810
752 :	79	194	454	812 :	191	505	813
753 :	375	538	563	813 :	148	229	812
754 :	406	538	539	814 :	229	354	815
755:	16	539	756	815 :	22	814	816
756:	219	455	755	816 :	230	513	815
757:	294	400	758	817 :	122	230	556
758 :	83	757	759	818 :	161	231	819
759:	88	540	758	819 :	517	557	818
760 :	88	89	761	820 :	135	182	557
761 :	280	542 427	760	821 :	210	232 510	822
763 -	360 81	407 535	541	822 :	61	167	021 411
764 ·	90	543	765	824 -	127	477	558
765	192	303	764	825 :	164	323	559
766 :	216	508	767	826 :	97	559	827
767 :	91	544	766	827 :	482	560	826
768 :	311	401	769	828 :	169	560	561
769 :	545	768	770	829 :	233	561	562
770 :	91	769	771	830 :	233	563	597
771 :	1	546	770	831 :	15	563	564
772 :	8	546	773	832 :	328	564	833
773:	92	113	772	833 :	475	832	834
774:	29	92	775	834 :	234	833	835
775 :	392	774	776	835 :	71	565	834
776 :	220	775	777	836 :	134	565	566
777:	544	547	776	837 :	130	232	566
778:	361	547	548	838 :	95	369	421
779 :	452	520	548	839 :	235	367	501

840 :	62	236	492	900 :	461	584	899
841:	206	236	842	901 :	309	408	585
842 :	98	841	843	902 :	8	471	586
843 :	197	842	844	903 :	320	586	587
844:	28	843	845	904 :	93	587	588
845:	29	844	846	905 :	73	467	588
846 :	472	845	847	906 :	241	709	907
847:	30	846	848	907 :	100	906	908
848:	415	847	849	908 :	238	589	907
849 :	129	567	848	909 :	552	589	910
850:	212	410	567	910 :	97	590	909
851:	525	556	568	911 :	2	227	590
852 :	547	568	853	912 :	57	469	542
853:	19	852	854	913 :	9	473	553
854 :	458	853	855	914 :	52	99	451
855:	31	532	854	915 :	2	150	562
856:	31	548	569	916 :	11	378	540
857:	99	569	570	917 :	404	591	918
858:	237	420	570	918 :	90	357	917
859:	80	237	860	919 :	43	356	920
860:	483	859	861	920 :	96	919	921
861:	20	860	862	921 :	243	920	922
862 :	534	861	863	922 :	86	345	921
863:	82	571	862	923 :	385	555	924
864:	8	571	572	924 :	32	549	923
865:	99	231	573	925 :	306	341	926
866:	18	573	867	926 :	265	925	927
867:	26	398	866	927 :	582	926	928
868:	98	162	869	928 :	244	927	929
869:	141	238	868	929 :	332	592	928
870 :	329	364	384	930 :	30	245	246
871 :	487	574	575	931 :	33	236	246
872:	74	476	575	932 :	343	574	933
873:	190	224	874	933 :	488	581	932
874 :	572	873	875	934 :	103	247	403
875 :	219	239	874	935 :	48	446	511
876:	27	239	576	936 :	156	528	937
877:	334	457	576	937 :	235	436	936
878 :	165	240	879	938 :	203	395	939
879:	177	179	878	939 :	593	938	940
880 :	267	529	881	940 :	433	939	941
881:	100	324	880	941 :	240	940	942
882:	325	371	883	942 :	496	941	943
883 :	0//	882	884	943 :	100	942	944
004:	241	320	000	944 :	75	945	945
000:	146	500	000	945 :	10	944	940
880 . 887 .	470	579	570	940.	422	1945	947
888.	419	570	580	947.	914	503	5940
889 -	580	581	890	949 -	100	347	594
890 -	226	533	889	950 -	221	416	595
891 ·	250	582	892	951	245	595	952
892 .	507	891	893	952 -	414	951	953
893 :	64	327	892	953 :	494	596	952
894 :	208	241	895	954 :	185	596	955
895 :	204	894	896	955 :	124	954	956
896 :	242	463	895	956 :	9	955	957
897 :	145	243	583	957 :	174	956	958
898 :	248	583	899	958 :	60	597	957
899:	229	898	900	959 :	218	597	598

A.6.6 Hamiltonian cycle for 1000-node graph

The Hamiltonian cycle that we found using the Wedged-MIP Heuristic for 1000-node graph is shown below. This Hamiltonian cycle is the one shown in Figure A.2.

 $1 \rightarrow 354 \rightarrow 814 \rightarrow 815 \rightarrow 816 \rightarrow 513 \rightarrow 709 \rightarrow 906 \rightarrow 907 \rightarrow 908 \rightarrow 589$ $\rightarrow 909 \rightarrow 552 \rightarrow 807 \rightarrow 808 \rightarrow 553 \rightarrow 383 \rightarrow 414 \rightarrow 952 \rightarrow 951 \rightarrow 595$ $\rightarrow 950 \rightarrow 416 \rightarrow 489 \rightarrow 655 \rightarrow 495 \rightarrow 656 \rightarrow 101 \rightarrow 57 \rightarrow 431 \rightarrow 616$ $\rightarrow 474 \rightarrow 617 \rightarrow 62 \rightarrow 355 \rightarrow 618 \rightarrow 417 \rightarrow 140 \rightarrow 36 \rightarrow 268 \rightarrow 266$ $\rightarrow 307 \rightarrow 308 \rightarrow 309 \rightarrow 901 \rightarrow 408 \rightarrow 424 \rightarrow 704 \rightarrow 705 \rightarrow 82 \rightarrow 863$ $\rightarrow 862 \rightarrow 861 \rightarrow 20 \rightarrow 605 \rightarrow 133 \rightarrow 103 \rightarrow 934 \rightarrow 403 \rightarrow 462 \rightarrow 960$ $\rightarrow 598 \rightarrow 730 \rightarrow 521 \rightarrow 729 \rightarrow 184 \rightarrow 619 \rightarrow 64 \rightarrow 297 \rightarrow 124 \rightarrow 955$ $\rightarrow 956 \rightarrow 957 \rightarrow 174 \rightarrow 107 \rightarrow 624 \rightarrow 288 \rightarrow 28 \rightarrow 96 \rightarrow 809 \rightarrow 810$ $\rightarrow 811 \rightarrow 555 \rightarrow 255 \rightarrow 185 \rightarrow 954 \rightarrow 596 \rightarrow 953 \rightarrow 494 \rightarrow 651 \rightarrow 195$ $\rightarrow 650 \rightarrow 649 \rightarrow 197 \rightarrow 654 \rightarrow 196 \rightarrow 653 \rightarrow 70 \rightarrow 702 \rightarrow 449 \rightarrow 396$ $\rightarrow 46 \rightarrow 468 \rightarrow 720 \rightarrow 721 \rightarrow 419 \rightarrow 498 \rightarrow 662 \rightarrow 80 \rightarrow 859 \rightarrow 860$ $\rightarrow 483 \rightarrow 633 \rightarrow 576 \rightarrow 876 \rightarrow 27 \rightarrow 746 \rightarrow 534 \rightarrow 161 \rightarrow 818 \rightarrow 231$ $\rightarrow 865 \rightarrow 573 \rightarrow 866 \rightarrow 867 \rightarrow 26 \rightarrow 246 \rightarrow 931 \rightarrow 33 \rightarrow 641 \rightarrow 90$ $\rightarrow 764 \rightarrow 765 \rightarrow 303 \rightarrow 125 \rightarrow 305 \rightarrow 306 \rightarrow 173 \rightarrow 977 \rightarrow 47 \rightarrow 458$ $\rightarrow 579 \rightarrow 888 \rightarrow 580 \rightarrow 171 \rightarrow 278 \rightarrow 509 \rightarrow 698 \rightarrow 697 \rightarrow 551 \rightarrow 792$ $\rightarrow 793 \rightarrow 794 \rightarrow 200 \rightarrow 666 \rightarrow 500 \rightarrow 665 \rightarrow 664 \rightarrow 499 \rightarrow 978 \rightarrow 601$ $\rightarrow 979 \rightarrow 374 \rightarrow 366 \rightarrow 668 \rightarrow 669 \rightarrow 40 \rightarrow 145 \rightarrow 463 \rightarrow 157 \rightarrow 745$ $\rightarrow 744 \rightarrow 743 \rightarrow 217 \rightarrow 603 \rightarrow 470 \rightarrow 713 \rightarrow 515 \rightarrow 714 \rightarrow 561 \rightarrow 828$ $\rightarrow 560 \rightarrow 827 \rightarrow 482 \rightarrow 259 \rightarrow 117 \rightarrow 41 \rightarrow 379 \rightarrow 406 \rightarrow 467 \rightarrow 905$ $\rightarrow 73 \rightarrow 672 \rightarrow 671 \rightarrow 202 \rightarrow 304 \rightarrow 667 \rightarrow 275 \rightarrow 37 \rightarrow 273 \rightarrow 247$ $\rightarrow 974 \rightarrow 365 \rightarrow 151 \rightarrow 76 \rightarrow 687 \rightarrow 688 \rightarrow 239 \rightarrow 407 \rightarrow 362 \rightarrow 367$ $\rightarrow 839 \rightarrow 501 \rightarrow 421 \rightarrow 386 \rightarrow 295 \rightarrow 130 \rightarrow 294 \rightarrow 757 \rightarrow 400 \rightarrow 455$ $\rightarrow 575 \rightarrow 872 \rightarrow 476 \rightarrow 621 \rightarrow 466 \rightarrow 405 \rightarrow 610 \rightarrow 60 \rightarrow 958 \rightarrow 597$ $\rightarrow 959 \rightarrow 218 \rightarrow 747 \rightarrow 748 \rightarrow 535 \rightarrow 439 \rightarrow 213 \rightarrow 326 \rightarrow 884 \rightarrow 883$ $\rightarrow 882 \rightarrow 371 \rightarrow 180 \rightarrow 111 \rightarrow 241 \rightarrow 894 \rightarrow 208 \rightarrow 700 \rightarrow 701 \rightarrow 21$ $\rightarrow 443 \rightarrow 545 \rightarrow 769 \rightarrow 770 \rightarrow 771 \rightarrow 546 \rightarrow 772 \rightarrow 773 \rightarrow 113 \rightarrow 98$ $\rightarrow 620 \rightarrow 209 \rightarrow 970 \rightarrow 175 \rightarrow 591 \rightarrow 917 \rightarrow 918 \rightarrow 357 \rightarrow 356 \rightarrow 919$ $\rightarrow 920 \rightarrow 921 \rightarrow 922 \rightarrow 345 \rightarrow 346 \rightarrow 52 \rightarrow 147 \rightarrow 370 \rightarrow 389 \rightarrow 429$ $\rightarrow 522 \rightarrow 731 \rightarrow 72 \rightarrow 660 \rightarrow 661 \rightarrow 442 \rightarrow 87 \rightarrow 740 \rightarrow 215 \rightarrow 804$ $\rightarrow 805 \rightarrow 806 \rightarrow 314 \rightarrow 15 \rightarrow 611 \rightarrow 181 \rightarrow 799 \rightarrow 438 \rightarrow 317 \rightarrow 315$ $\rightarrow 3 \rightarrow 627 \rightarrow 189 \rightarrow 626 \rightarrow 381 \rightarrow 409 \rightarrow 612 \rightarrow 68 \rightarrow 643 \rightarrow 490$ $\rightarrow 789 \rightarrow 790 \rightarrow 791 \rightarrow 224 \rightarrow 873 \rightarrow 190 \rightarrow 629 \rightarrow 479 \rightarrow 887 \rightarrow 578$ $\rightarrow 457 \rightarrow 877 \rightarrow 334 \rightarrow 333 \rightarrow 129 \rightarrow 849 \rightarrow 848 \rightarrow 415 \rightarrow 484 \rightarrow 642$ $\rightarrow 17 \rightarrow 722 \rightarrow 723 \rightarrow 724 \rightarrow 84 \rightarrow 738 \rightarrow 530 \rightarrow 737 \rightarrow 25 \rightarrow 788$ $\rightarrow 787 \rightarrow 786 \rightarrow 502 \rightarrow 452 \rightarrow 779 \rightarrow 520 \rightarrow 728 \rightarrow 514 \rightarrow 425 \rightarrow 727$ $\rightarrow 453 \rightarrow 22 \rightarrow 675 \rightarrow 539 \rightarrow 754 \rightarrow 538 \rightarrow 753 \rightarrow 375 \rightarrow 399 \rightarrow 138$ $\rightarrow 261 \rightarrow 262 \rightarrow 325 \rightarrow 324 \rightarrow 881 \rightarrow 100 \rightarrow 821 \rightarrow 822 \rightarrow 510 \rightarrow 703$

 $\rightarrow 491 \rightarrow 646 \rightarrow 647 \rightarrow 344 \rightarrow 131 \rightarrow 648 \rightarrow 387 \rightarrow 423 \rightarrow 507 \rightarrow 689$ $\rightarrow 274 \rightarrow 44 \rightarrow 343 \rightarrow 932 \rightarrow 933 \rightarrow 488 \rightarrow 66 \rightarrow 695 \rightarrow 588 \rightarrow 186$ $\rightarrow 623 \rightarrow 622 \rightarrow 477 \rightarrow 824 \rightarrow 127 \rightarrow 320 \rightarrow 903 \rightarrow 586 \rightarrow 559 \rightarrow 826$ $\rightarrow 97 \rightarrow 910 \rightarrow 590 \rightarrow 911 \rightarrow 2 \rightarrow 915 \rightarrow 562 \rightarrow 829 \rightarrow 233 \rightarrow 830$ $\rightarrow 563 \rightarrow 831 \rightarrow 564 \rightarrow 832 \rightarrow 833 \rightarrow 834 \rightarrow 835 \rightarrow 71 \rightarrow 134 \rightarrow 836$ $\rightarrow 566 \rightarrow 837 \rightarrow 232 \rightarrow 282 \rightarrow 281 \rightarrow 272 \rightarrow 118 \rightarrow 271 \rightarrow 264 \rightarrow 19$ $\rightarrow 853 \rightarrow 854 \rightarrow 855 \rightarrow 532 \rightarrow 741 \rightarrow 742 \rightarrow 216 \rightarrow 35 \rightarrow 75 \rightarrow 683$ $\rightarrow 54 \rightarrow 554 \rightarrow 980 \rightarrow 59 \rightarrow 420 \rightarrow 858 \rightarrow 570 \rightarrow 857 \rightarrow 569 \rightarrow 798$ $\rightarrow 225 \rightarrow 707 \rightarrow 706 \rightarrow 258 \rightarrow 116 \rightarrow 263 \rightarrow 640 \rightarrow 149 \rightarrow 342 \rightarrow 638$ $\rightarrow 637 \rightarrow 192 \rightarrow 159 \rightarrow 801 \rightarrow 226 \rightarrow 802 \rightarrow 227 \rightarrow 132 \rightarrow 106 \rightarrow 153$ $\rightarrow 115 \rightarrow 440 \rightarrow 536 \rightarrow 750 \rightarrow 749 \rightarrow 353 \rightarrow 67 \rightarrow 110 \rightarrow 301 \rightarrow 437$ $\rightarrow 762 \rightarrow 380 \rightarrow 337 \rightarrow 338 \rightarrow 339 \rightarrow 351 \rightarrow 352 \rightarrow 981 \rightarrow 602 \rightarrow 170$ $\rightarrow 289 \rightarrow 290 \rightarrow 81 \rightarrow 763 \rightarrow 543 \rightarrow 164 \rightarrow 825 \rightarrow 323 \rightarrow 322 \rightarrow 16$ $\rightarrow 755 \rightarrow 756 \rightarrow 219 \rightarrow 875 \rightarrow 874 \rightarrow 572 \rightarrow 864 \rightarrow 571 \rightarrow 454 \rightarrow 187$ $\rightarrow 986 \rightarrow 987 \rightarrow 32 \rightarrow 341 \rightarrow 925 \rightarrow 926 \rightarrow 265 \rightarrow 267 \rightarrow 880 \rightarrow 529$ $\rightarrow 736 \rightarrow 735 \rightarrow 390 \rightarrow 172 \rightarrow 630 \rightarrow 631 \rightarrow 632 \rightarrow 481 \rightarrow 94 \rightarrow 985$ $\rightarrow 984 \rightarrow 983 \rightarrow 982 \rightarrow 29 \rightarrow 845 \rightarrow 844 \rightarrow 843 \rightarrow 842 \rightarrow 841 \rightarrow 206$ $\rightarrow 690 \rightarrow 77 \rightarrow 971 \rightarrow 248 \rightarrow 972 \rightarrow 592 \rightarrow 929 \rightarrow 928 \rightarrow 927 \rightarrow 582$ $\rightarrow 460 \rightarrow 708 \rightarrow 24 \rightarrow 726 \rightarrow 518 \rightarrow 725 \rightarrow 85 \rightarrow 785 \rightarrow 91 \rightarrow 236$ $\rightarrow 840 \rightarrow 492 \rightarrow 201 \rightarrow 699 \rightarrow 335 \rightarrow 336 \rightarrow 245 \rightarrow 930 \rightarrow 30 \rightarrow 847$ $\rightarrow 846 \rightarrow 472 \rightarrow 613 \rightarrow 182 \rightarrow 820 \rightarrow 135 \rightarrow 360 \rightarrow 165 \rightarrow 878 \rightarrow 879$ $\rightarrow 179 \rightarrow 465 \rightarrow 966 \rightarrow 321 \rightarrow 53 \rightarrow 368 \rightarrow 625 \rightarrow 188 \rightarrow 363 \rightarrow 160$ $\rightarrow 18 \rightarrow 645 \rightarrow 56 \rightarrow 391 \rightarrow 657 \rightarrow 497 \rightarrow 961 \rightarrow 962 \rightarrow 963 \rightarrow 599$ $\rightarrow 998 \rightarrow 604 \rightarrow 997 \rightarrow 299 \rightarrow 300 \rightarrow 296 \rightarrow 4 \rightarrow 677 \rightarrow 676 \rightarrow 205$ $\rightarrow 142 \rightarrow 435 \rightarrow 644 \rightarrow 193 \rightarrow 148 \rightarrow 813 \rightarrow 812 \rightarrow 505 \rightarrow 684 \rightarrow 504$ $\rightarrow 685 \rightarrow 126 \rightarrow 316 \rightarrow 65 \rightarrow 628 \rightarrow 63 \rightarrow 567 \rightarrow 850 \rightarrow 410 \rightarrow 393$ $\rightarrow 372 \rightarrow 364 \rightarrow 870 \rightarrow 329 \rightarrow 48 \rightarrow 496 \rightarrow 942 \rightarrow 943 \rightarrow 944 \rightarrow 945$ $\rightarrow 946 \rightarrow 222 \rightarrow 712 \rightarrow 711 \rightarrow 168 \rightarrow 256 \rightarrow 475 \rightarrow 150 \rightarrow 112 \rightarrow 512$ $\rightarrow 975 \rightarrow 976 \rightarrow 584 \rightarrow 900 \rightarrow 461 \rightarrow 585 \rightarrow 412 \rightarrow 478 \rightarrow 34 \rightarrow 50$ $\rightarrow 636 \rightarrow 191 \rightarrow 163 \rightarrow 541 \rightarrow 761 \rightarrow 760 \rightarrow 89 \rightarrow 800 \rightarrow 23 \rightarrow 717$ $\rightarrow 211 \rightarrow 257 \rightarrow 696 \rightarrow 79 \rightarrow 752 \rightarrow 194 \rightarrow 287 \rightarrow 328 \rightarrow 327 \rightarrow 893$

 $\rightarrow 892 \rightarrow 891 \rightarrow 250 \rightarrow 137 \rightarrow 430 \rightarrow 523 \rightarrow 732 \rightarrow 51 \rightarrow 293 \rightarrow 212$ $\rightarrow 45 \rightarrow 411 \rightarrow 382 \rightarrow 716 \rightarrow 715 \rightarrow 210 \rightarrow 663 \rightarrow 139 \rightarrow 156 \rightarrow 936$ $\rightarrow 528 \rightarrow 436 \rightarrow 937 \rightarrow 235 \rightarrow 395 \rightarrow 448 \rightarrow 204 \rightarrow 895 \rightarrow 896 \rightarrow 242$ $\rightarrow 990 \rightarrow 991 \rightarrow 992 \rightarrow 993 \rightarrow 994 \rightarrow 428 \rightarrow 413 \rightarrow 995 \rightarrow 251 \rightarrow 237$ $\rightarrow 331 \rightarrow 128 \rightarrow 123 \rightarrow 302 \rightarrow 238 \rightarrow 249 \rightarrow 606 \rightarrow 58 \rightarrow 797 \rightarrow 796$ $\rightarrow 795 \rightarrow 95 \rightarrow 838 \rightarrow 369 \rightarrow 99 \rightarrow 914 \rightarrow 451 \rightarrow 398 \rightarrow 162 \rightarrow 868$ $\rightarrow 869 \rightarrow 141 \rightarrow 432 \rightarrow 330 \rightarrow 332 \rightarrow 154 \rightarrow 516 \rightarrow 427 \rightarrow 92 \rightarrow 774$ $\rightarrow 775 \rightarrow 392 \rightarrow 444 \rightarrow 996 \rightarrow 234 \rightarrow 280 \rightarrow 144 \rightarrow 114 \rightarrow 254 \rightarrow 155$ $\rightarrow 511 \rightarrow 935 \rightarrow 446 \rightarrow 394 \rightarrow 678 \rightarrow 679 \rightarrow 680 \rightarrow 503 \rightarrow 948 \rightarrow 214$ $\rightarrow 739 \rightarrow 531 \rightarrow 243 \rightarrow 897 \rightarrow 583 \rightarrow 898 \rightarrow 899 \rightarrow 229 \rightarrow 594 \rightarrow 949$ $\rightarrow 347 \rightarrow 177 \rightarrow 418 \rightarrow 384 \rightarrow 377 \rightarrow 402 \rightarrow 557 \rightarrow 819 \rightarrow 517 \rightarrow 719$ $\rightarrow 83 \rightarrow 758 \rightarrow 759 \rightarrow 540 \rightarrow 916 \rightarrow 378 \rightarrow 404 \rightarrow 464 \rightarrow 710 \rightarrow 6$ $\rightarrow 240 \rightarrow 941 \rightarrow 940 \rightarrow 433 \rightarrow 525 \rightarrow 733 \rightarrow 524 \rightarrow 734 \rightarrow 527 \rightarrow 434$ $\rightarrow 55 \rightarrow 14 \rightarrow 13 \rightarrow 549 \rightarrow 924 \rightarrow 923 \rightarrow 385 \rightarrow 42 \rightarrow 803 \rightarrow 228$ $\rightarrow 298 \rightarrow 751 \rightarrow 537 \rightarrow 999 \rightarrow 519 \rightarrow 102 \rightarrow 122 \rightarrow 292 \rightarrow 291 \rightarrow 39$ $\rightarrow 358 \rightarrow 885 \rightarrow 886 \rightarrow 146 \rightarrow 422 \rightarrow 947 \rightarrow 485 \rightarrow 152 \rightarrow 964 \rightarrow 965$ $\rightarrow 244 \rightarrow 260 \rightarrow 121 \rightarrow 158 \rightarrow 609 \rightarrow 471 \rightarrow 902 \rightarrow 8 \rightarrow 681 \rightarrow 74$ $\rightarrow 169 \rightarrow 577 \rightarrow 456 \rightarrow 1000 \rightarrow 593 \rightarrow 939 \rightarrow 938 \rightarrow 203 \rightarrow 673 \rightarrow 376$ $\rightarrow 401 \rightarrow 768 \rightarrow 311 \rightarrow 310 \rightarrow 544 \rightarrow 767 \rightarrow 766 \rightarrow 508 \rightarrow 691 \rightarrow 207$ $\rightarrow 692 \rightarrow 693 \rightarrow 694 \rightarrow 78 \rightarrow 686 \rightarrow 506 \rightarrow 526 \rightarrow 973 \rightarrow 350 \rightarrow 349$ $\rightarrow 348 \rightarrow 183 \rightarrow 614 \rightarrow 447 \rightarrow 480 \rightarrow 318 \rightarrow 9 \rightarrow 913 \rightarrow 473 \rightarrow 615$ $\rightarrow 253 \rightarrow 252 \rightarrow 286 \rightarrow 223 \rightarrow 607 \rightarrow 178 \rightarrow 608 \rightarrow 7 \rightarrow 989 \rightarrow 988$ $\rightarrow 5 \rightarrow 587 \rightarrow 904 \rightarrow 93 \rightarrow 718 \rightarrow 441 \rightarrow 542 \rightarrow 912 \rightarrow 469 \rightarrow 600$ $\rightarrow 968 \rightarrow 969 \rightarrow 230 \rightarrow 817 \rightarrow 556 \rightarrow 851 \rightarrow 568 \rightarrow 852 \rightarrow 547 \rightarrow 777$ $\rightarrow 776 \rightarrow 220 \rightarrow 49 \rightarrow 780 \rightarrow 781 \rightarrow 221 \rightarrow 340 \rightarrow 176 \rightarrow 635 \rightarrow 634$ $\rightarrow 279 \rightarrow 10 \rightarrow 674 \rightarrow 277 \rightarrow 119 \rightarrow 565 \rightarrow 967 \rightarrow 558 \rightarrow 88 \rightarrow 104$ $\rightarrow 11 \rightarrow 38 \rightarrow 313 \rightarrow 312 \rightarrow 105 \rightarrow 31 \rightarrow 856 \rightarrow 548 \rightarrow 778 \rightarrow 361$ $\rightarrow 359 \rightarrow 670 \rightarrow 198 \rightarrow 658 \rightarrow 199 \rightarrow 659 \rightarrow 459 \rightarrow 581 \rightarrow 889 \rightarrow 890$ $\rightarrow 533 \rightarrow 143 \rightarrow 43 \rightarrow 445 \rightarrow 550 \rightarrow 782 \rightarrow 373 \rightarrow 397 \rightarrow 450 \rightarrow 783$ $\rightarrow 784 \rightarrow 388 \rightarrow 426 \rightarrow 682 \rightarrow 493 \rightarrow 86 \rightarrow 136 \rightarrow 285 \rightarrow 120 \rightarrow 276$ $\rightarrow 109 \rightarrow 69 \rightarrow 652 \rightarrow 269 \rightarrow 270 \rightarrow 12 \rightarrow 486 \rightarrow 639 \rightarrow 487 \rightarrow 871$

 $\rightarrow 574 \rightarrow 166 \rightarrow 108 \rightarrow 167 \rightarrow 823 \rightarrow 61 \rightarrow 319 \rightarrow 284 \rightarrow 283 \rightarrow 1$

Figure A.2: Solution to 1000-node graph (Hamiltonian cycle in red).

A.6.7 Adjacency list for 2000-node graph

1.	196	207	224	460	509	581	883	1051	1521	60 :	25	585	598	691	696	1439
	57	169	224	202	1082	1121	1101	1961	1549	61 :	99	109	242	256	708	1079
4 ·	11	108	201	292	1082	1201	1191	1201	1014	62 :	28	87	331	610	713	1375
3: 4	11	070	184	330	1511	1501	1477	1551	1014	63 :	16	76	120	157	717	1102
4:	611	978	999	1244	1511	1578	1579	1/9/	1954	64 :	38	124	546	688	753	1716
5:	82	409	533	680	1230	1287	1648	1934	1995	65 :	68	174	278	404	755	1267
6:	329	428	451	518	522	581	789	1963		66 :	21	211	457	574	773	1259
7:	20	83	105	505	529	671	893	1367		67:	37	479	512	514	780	1371
8:	31	182	205	552	746	816	1077	1108		68 :	65	129	187	212	789	1263
9:	24	296	531	613	625	1014	1103	1283		69 :	51	545	754	762	791	1073
10:	12	17	76	156	231	900	1148	1734		70 ·	213	221	425	796	820	1631
11:	3	147	465	507	683	733	1228	1686		71 :	43	128	177	237	844	1018
12:	10	77	245	565	638	1056	1393	1751		72 -	10	155	436	618	845	1010
13 :	119	188	281	574	582	842	1404	1949		72.	74	100	430	796	954	1205
14:	147	185	355	377	503	622	1570	1577		73.	14	230	050	077	004	1205
15 :	48	284	325	424	1236	1304	1698	1980		74:	47	13	200	211	002	1380
16 :	19	42	63	253	366	650	1586			75 :	19	331	608	732	867	1315
17:	10	178	325	338	356	657	678			76 :	10	63	446	652	880	1161
18:	98	418	484	578	848	914	995			77:	12	40	189	671	896	1859
19 :	16	72	75	508	737	947	1147			78 :	26	155	240	626	915	1296
20 :	7	213	220	537	539	949	1311			79:	295	298	385	669	918	1612
21:	66	287	579	667	790	988	1788			80:	3	348	614	833	932	1390
22 .	181	187	304	390	1043	1061	1062			81:	92	221	436	570	933	1328
23 -	50	136	140	200	203	1104	1382			82:	5	24	130	251	960	1412
20.	90	82	513	609	200	1133	1108			83 :	7	172	742	797	962	1955
24. 05.	9	600	745	1015	1017	1150	1061			84:	167	520	588	714	994	1394
20:	70	000	140	1015	1017	1152	1901			85 :	545	581	665	788	1012	1426
26:	78	375	4/4	549	604	1171	1314			86:	242	636	637	767	1016	1638
27:	189	288	747	884	968	1181	1625			87:	62	586	825	1054	1063	1493
28:	62	145	511	681	1214	1219	1744			88 :	161	517	569	977	1075	1265
29:	161	396	967	987	1192	1234	1759			89:	48	193	595	882	1076	1891
30 :	31	201	233	400	536	1253	1289			90:	134	300	778	1033	1097	1388
31 :	8	30	184	265	437	1254	1869			91 :	125	607	1004	1046	1111	1343
32 :	36	439	659	890	1083	1308	1921			92 :	81	261	386	965	1123	1565
33 :	51	262	846	1217	1333	1368	1710			93 :	461	533	583	692	1128	1655
34 :	54	672	705	802	1250	1409	1809			94 :	153	295	536	906	1138	1186
35 :	149	210	344	349	1266	1412	1731			95	585	586	907	946	1163	1436
36 :	32	288	380	929	1238	1442	1529			96 :	249	683	897	903	1178	1886
37:	67	183	267	380	1058	1453	1819			97 :	157	277	384	703	1206	1533
38 :	52	64	237	311	620	1473	1834			08.	107	204	501	672	1200	1000
39 :	159	185	519	637	702	1479	1562			98.	61	294	264	626	1221	1237
40 :	77	780	791	1082	1157	1495	1742			99. 100.	100	200	204	1056	1245	1050
41 :	252	452	804	941	1132	1554	1563			100 :	190	240	210	1030	1247	1232
42 :	16	584	822	839	1068	1636	1986			101 :	422	612	835	1233	1248	1970
43 :	71	449	511	556	843	1699	1976			102:	417	621	1080	1248	1249	1407
44 :	55	195	422	1322	1373	1714	1715			103 :	351	597	850	1049	1254	1372
45 :	562	871	1262	1316	1465	1806	1879			104 :	147	159	514	877	1258	1990
46 :	162	279	497	1461	1462	1832	1989			105 :	7	206	524	711	1268	1420
47:	74	461	866	1446	1828	1847	1867			106:	322	525	661	787	1269	1845
48:	15	89	493	723	1388	1899	1972			107:	530	546	938	1172	1273	1275
49 :	572	873	1665	1666	1728	1916	1933			108:	199	209	569	930	1285	1421
50:	23	111	159	197	215	1029				109:	61	320	533	1091	1288	1943
51 .	33	52	69	208	259	717				110:	139	837	870	933	1297	1554
52.	38	51	230	462	463	1668				111 :	50	264	728	730	1298	1520
52.	54	285	230	305	510	1812				112 :	493	658	948	1282	1299	1739
53:	24	200 52	214	206	510	1604				113:	642	694	891	1109	1302	1872
04: EF	34	03 096	314	390	919	1202				114 :	267	761	958	1302	1303	1677
00: Fa	44	230	319	444	523	1323				115 :	547	643	997	1010	1303	1987
əti:	177	203	460	264	594	1475				116 :	640	711	1008	1281	1327	1957
57:	2	126	181	446	611	1007				117:	211	306	629	690	1329	1526
58:	194	306	324	594	628	753				118 :	223	551	629	709	1339	1628
59:	179	466	565	576	634	1332				119:	13	330	590	821	1348	1461

120 .	63	426	518	1002	1357	1358	180 -	162	222	306	315	1344
101	174	907	410	5052	1950	1280	100.	102	222	102	261	071
121:	1/4	207	419	323	1000	1380	181 :	22	014	195	301	971
122 :	541	682	879	955	1375	1903	182 :	8	214	345	361	387
123 :	158	266	526	1115	1377	1878	183 :	37	218	317	397	1521
124 :	64	920	1251	1287	1378	1757	184 :	3	31	192	401	1550
125 :	91	299	578	980	1381	1476	185 :	14	39	169	408	503
126 :	57	260	343	874	1395	1456	186:	209	258	260	409	1229
127 :	176	554	590	1317	1399	1444	187 :	22	68	295	427	794
128 :	71	704	922	1401	1402	1497	188 :	13	192	211	430	912
129 :	68	381	663	1251	1410	1452	189:	27	77	415	455	1702
130 :	82	383	668	1359	1413	1713	190:	100	191	197	471	657
131:	539	579	1018	1073	1417	1770	191 :	169	190	239	472	544
132 :	628	669	691	1065	1426	1564	192 :	184	188	404	473	703
133 :	641	652	1254	1335	1438	1736	193:	89	181	394	506	640
134 ·	90	633	1269	1403	1440	1511	194 ·	58	225	500	507	1416
135	680	958	1059	1295	1455	1506	195	44	178	477	509	1975
126	22	595	557	1250	1400	1490	106 .	1	207	494	512	1297
197.	23 640	608	1101	1200	1401	1965	190.	50	100	205	515	1007
137 :	649	098	1191	1302	1494	1000	197 :	30	190	305	517	1280
138 :	623	925	1325	1374	1497	1816	198 :	204	387	422	522	642
139:	110	537	601	914	1508	1900	199:	108	269	485	530	708
140:	23	291	362	733	1518	1866	2 00 :	23	209	268	531	1210
141 :	208	981	1231	1398	1555	1595	201 :	30	144	312	534	651
142 :	176	467	910	1577	1581	1760	202 :	220	237	283	555	1428
143 :	225	703	1114	1459	1593	1857	203:	56	179	519	557	1330
144:	201	346	516	545	1600	1645	204 :	198	454	542	567	1481
145 :	28	351	645	1220	1608	1884	205 :	8	179	555	568	1334
146 :	229	723	1008	1166	1612	1613	206:	105	170	572	573	1887
147:	11	14	104	506	1613	1959	207:	1	121	379	578	1022
148:	510	559	1253	1523	1615	1766	208:	51	141	482	580	1076
149:	35	566	1306	1615	1616	1683	209 :	108	186	200	582	583
150:	327	1090	1391	1392	1618	1653	210 :	35	412	592	597	721
151 :	332	414	560	1003	1619	1893	211 :	66	117	188	599	1866
152 :	171	344	602	1445	1621	1737	212 :	68	568	588	599	1849
153 :	94	504	816	1185	1622	1812	213 :	20	70	377	602	1432
154 :	664	867	1119	1449	1626	1790	214 :	182	344	420	604	1548
155 .	72	78	540	857	1639	1671	215	50	266	411	616	1101
156	10	300	650	1372	1641	1837	216 :	345	491	542	624	1331
157.	62	07	540	1170	1652	1799	210.	010	445	501	644	802
159.	192	200	610	780	1659	1791	211.	192	416	645	646	1060
150.	20	509	104	1104	1692	1052	210.	240	410	577	654	1149
109:	39	30	104	1194	1005	1952	219 :	249	445	011	054	1142
160 :	000	697	764	996	1703	1707	220 :	20	202	623	054	973
161 :	29	88	492	691	1719	1960	221 :	70	81	615	658	1614
162:	46	180	1415	1676	1732	1733	222 :	180	318	405	660	1435
163 :	256	747	1468	1736	1737	1882	223 :	118	508	663	664	814
164 :	250	716	1535	1536	1743	1779	22 4 :	1	272	281	667	1626
165 :	355	998	1243	1542	1746	1898	225 :	143	194	238	670	1458
166 :	372	515	1125	1764	1765	1935	226 :	389	521	593	670	1652
167:	84	301	538	1290	1774	1928	227 :	288	317	632	673	743
168 :	2	702	1754	1771	1778	1838	228 :	241	242	580	674	1257
169 :	185	191	822	1156	1808	1906	229 :	146	239	556	675	676
170 :	206	895	896	1795	1821	1998	230 :	52	579	647	677	1410
171 :	152	457	665	1546	1835	1984	231 :	2	10	178	679	1366
172 :	83	498	539	1338	1848	1912	232 :	268	368	610	683	1721
173 :	472	1057	1347	1701	1905	1906	233 :	30	332	470	687	1584
174:	65	121	340	1270	1925	1953	23 4 :	256	517	578	696	1478
175 :	301	563	807	1216	1966	1998	235 :	298	441	642	697	865
176:	127	142	263	275	911		236 :	55	676	679	699	1927
177 :	56	71	255	279	1261		237	38	71	202	700	859
178	17	195	231	287	1945		238	73	217	225	701	1543
179	59	203	205	292	939		230	191	229	447	704	734
							-30 :	-01				

240 :	78	398	404	708	1853	300	90	156	813	964	1543
241 :	228	274	512	712	1802	301	167	175	596	966	1948
242	61	86	228	715	1572	302	323	332	350	970	1389
242.	257	216	220	719	1072	202	612	640	775	075	1065
240.	201	602	642	710	795	303	015	543	605	080	1010
244 :	10	100	504	720	1007	304	107	577	095	980	1919
245 :	12	100	584	722	1997	305	197	532	842	981	1355
246:	371	453	730	739	782	306	58	117	180	983	1773
247:	391	524	590	752	1433	307 :	196	260	624	990	1167
248 :	563	719	725	763	1160	308 :	354	537	547	992	1118
249 :	96	219	269	764	1047	309	158	567	923	993	1737
250 :	164	733	742	776	1270	310	499	566	573	1001	1675
251 :	82	526	528	783	1389	311 :	38	375	841	1010	1170
252 :	41	350	710	784	872	312	201	278	652	1019	1929
253 :	16	99	548	785	787	313	362	522	774	1020	1314
254 :	458	575	677	786	972	314	54	406	731	1029	1259
255 :	177	643	644	792	1700	315	180	423	485	1032	1352
256 :	61	163	234	796	1705	316	243	617	766	1034	1137
257:	243	668	770	800	1920	317	183	227	448	1035	1520
258 :	74	186	543	805	1306	318	222	487	814	1039	1418
259:	51	393	442	809	993	319	55	511	979	1052	1324
260 :	126	186	307	815	1351	320	109	745	746	1065	1384
261	92	414	495	817	889	321	411	756	801	1069	1727
262.	33	276	686	820	1332	322	106	334	338	1072	1530
202.	176	400	654	824	1756	222	202	602	000	1072	1400
203:	170	409	450	024	1750	323	502	470	900	1072	1409
264 :	99	111	459	820	800	324	58	478	541	1074	1218
265 :	31	419	551	827	1817	325	15	17	505	1079	1324
266:	123	215	574	830	1380	326 :	268	587	811	1081	1348
267 :	37	114	467	836	1485	327 :	150	700	1041	1086	1777
268 :	200	232	326	839	1674	328 :	290	575	845	1086	1718
269 :	199	249	274	840	1769	329	6	507	957	1087	1201
270 :	352	361	461	847	1448	330 :	3	119	996	1089	1673
271 :	458	598	748	858	1314	331	62	75	565	1094	1851
272:	224	353	490	861	1646	332	151	233	302	1095	1585
273:	335	346	399	875	1763	333 :	510	558	593	1096	1155
274 :	241	269	534	878	1643	334	322	401	633	1109	1116
275 :	176	286	719	880	1472	335 :	273	484	881	1112	1247
276 :	262	534	552	886	1203	336	413	497	631	1114	1274
277:	74	97	655	892	1361	337	53	742	785	1117	1252
278:	65	312	365	892	1871	338	17	322	665	1125	1507
279:	46	177	555	894	1318	339	358	491	506	1129	1849
280 :	359	462	620	898	1882	340	174	527	630	1130	1841
281:	13	224	632	902	1644	341	412	576	577	1130	1923
282 :	456	731	781	906	1510	342	603	685	727	1134	1404
283 :	202	509	527	909	1514	343	126	686	999	1139	1950
284 :	15	384	690	916	1686	344	35	152	214	1141	1148
285	53	622	873	919	1424	345	182	216	541	1144	1836
286	275	388	587	922	1307	346	144	273	886	1144	1764
200.	210	179	866	026	1620	247	580	605	847	1145	1459
201.	21	26	207	920	1030	347		201	547	1140	1452
200:	21	30	221	927	930	346	00	291	1044	1104	1070
289 ∶	303	106	(40 75-	931	1496	349	35	846	1044	1109	1336
290 :	328	658	757	934	1782	350	252	302	438	1184	1388
291:	140	348	568	940	1598	351	103	145	719	1190	1888
292 :	2	179	570	943	1502	352	270	709	1124	1197	1290
293 :	23	713	724	943	1635	353	272	289	985	1197	1972
294 :	98	538	792	950	1942	354	308	505	1180	1205	1821
295 :	79	94	187	952	1164	355	14	165	398	1209	1541
296 :	9	540	639	955	1908	356	17	714	848	1211	1830
297 :	392	508	915	957	1877	357	666	1189	1195	1212	1349
298 :	79	235	613	959	1116	358	339	525	526	1217	1501
299 :	125	638	855	961	1055	359	280	1006	1071	1223	1837

360 -	544	083	1153	1228	1637	420 -	914	1450	1454	1455	1480
0.01	101	100	070	1220	1007	420.	214	1400	494	1400	1900
361 :	181	182	270	1248	1262	421:	383	401	434	1407	1880
362 :	140	313	771	1250	1272	422 :	44	101	198	1469	1470
363:	527	767	1246	1255	1379	423 :	315	982	1196	1470	1776
364 :	611	612	827	1258	1341	424:	15	549	1479	1480	1815
365:	278	637	736	1260	1504	425 :	70	666	1394	1483	1484
366:	16	516	1199	1263	1890	426 :	120	1332	1425	1487	1488
367:	488	516	1025	1264	1968	427 :	187	934	1352	1488	1490
368:	232	243	679	1264	1453	428 :	6	618	633	1491	1602
369:	452	535	1159	1265	1294	429 :	755	766	979	1500	1843
370 :	522	571	606	1266	1447	430 :	188	1430	1506	1507	1560
371	246	729	881	1267	1985	431	709	1135	1240	1509	1624
970.	166	502	1010	1969	1964	490	500	624	1049	1519	1040
072.	100	525	1019	1208	1504	432.	510	054	1048	1512	17940
373 :	575	(12	1051	1268	1588	433 :	512	803	949	1513	1731
374 :	405	586	587	1271	1667	434 :	421	632	1529	1530	1894
375 :	26	311	635	1272	1548	435 :	648	1151	1155	1530	1531
376 :	529	562	612	1274	1454	436 :	72	81	1218	1536	1632
377:	14	213	917	1277	1413	437 :	31	562	625	1543	1749
378:	675	752	938	1279	1738	438 :	350	810	1011	1545	1546
379 :	207	531	660	1284	1795	439 :	32	663	1128	1546	1844
380 :	36	37	1233	1293	1294	440 :	868	1550	1551	1565	1910
381:	129	454	1215	1293	1590	441 :	235	1098	1540	1565	1566
382 :	489	727	778	1298	1862	442 :	259	1009	1200	1566	1679
383 -	130	421	455	1300	1579	443 -	219	947	1362	1569	1758
284	07	221	749	1200	1976	440	55	652	762	1592	1692
	51	204	050	1205	1670	444.	017	510	1540	1503	1023
385 :	79	653	852	1305	1660	445 :	217	518	1542	1594	1785
386 :	92	544	807	1307	1804	446 :	57	76	1036	1601	1647
387:	182	198	684	1310	1747	447 :	239	810	863	1604	1723
388:	286	956	1084	1312	1939	448:	317	449	684	1607	1712
389 :	226	523	939	1316	1969	449 :	43	448	546	1608	1706
390 :	22	410	1275	1318	1437	450 :	639	657	1591	1616	1727
391 :	247	726	1092	1319	1449	451 :	6	662	1371	1620	1763
392 :	297	407	1078	1321	1322	452 :	41	369	1089	1620	1872
393 :	259	676	1280	1326	1364	453 :	246	1226	1621	1622	1824
394 :	193	804	1305	1327	1597	454 :	204	381	569	1625	1656
395 :	53	1141	1337	1338	1617	455 :	189	383	1549	1630	1753
396	29	54	1222	1339	1762	456	282	501	1192	1639	1640
207	192	754	11222	1240	1605	457	66	171	1112	1644	1679
001	0.40	055	540	1041	1000	401.	00	071		1044	1701
396 :	240	300	342	1341	1092	458	204	271	005	1045	1791
399 :	273	806	1000	1349	1956	459 :	264	799	1471	1649	1650
400:	30	573	644	1351	1578	460 :	1	56	1200	1654	1809
401:	184	334	421	1357	1605	461 :	47	93	270	1656	1720
402 :	638	784	1356	1357	1974	462 :	52	280	826	1667	1741
403 :	470	515	860	1361	1952	463 :	52	844	1558	1667	1827
404 :	65	192	240	1369	1817	464 :	655	731	1185	1680	1861
405 :	222	374	1023	1379	1400	465 :	11	1321	1398	1681	1682
406 :	314	524	1195	1383	1384	466 :	59	659	926	1686	1687
407:	392	883	904	1385	1551	467 :	142	267	1283	1687	1688
408:	185	543	544	1391	1911	468 :	675	833	1061	1690	1691
409 :	5	186	263	1394	1603	469	416	1142	1545	1712	1713
410 .	300	757	779	1305	1498	470	222	403	1791	1799	100/
A11 ·	91E	201	1379	1406	1500	470.	100	740	1146	1796	1850
411:	210	041	10/0	1411	1505	471:	190	149	1140 F02	1720	1950
412:	210	341	928	1411	1087	472:	173	191	100	1730	1/59
413 :	336	613	935	1412	1498	473 :	192	615	1311	1733	1907
414 :	151	261	716	1414	1852	474 :	26	699	1405	1741	1761
415 :	189	741	1356	1425	1854	475 :	606	1176	1744	1745	1971
416 :	218	469	1149	1430	1431	476 :	489	589	590	1748	1820
417 :	102	694	1108	1437	1533	477 :	195	1573	1574	1752	1983
418 :	18	647	808	1442	1462	478 :	324	543	853	1754	1881
419 :	121	265	596	1448	1816	479 :	67	532	1113	1761	1914

480 .	520	520	1997	1779	1962	540	155	157	206	664
400.	552	0.039	1207	1702	1702	540.	100	204	290	004
481:	576	801	1260	1783	1793	541:	122	324	345	8/8
482 :	208	682	1784	1785	1842	542:	204	216	398	1023
483 :	646	837	1107	1805	1806	543 :	258	408	478	566
484 :	18	196	335	1807	1930	544:	191	360	386	408
485 :	199	315	712	1814	1901	545 :	69	85	144	1803
486 :	614	672	674	1823	1868	546 :	64	107	449	550
487 :	318	693	1721	1825	1839	547 :	115	308	548	715
488 :	367	799	1381	1826	1827	548 :	253	547	550	1297
489 :	382	476	1158	1835	1836	549 :	26	424	550	1094
490 :	272	831	852	1843	1915	550:	546	548	549	904
491 :	216	339	605	1846	1848	551:	118	265	553	900
492 :	161	1152	1213	1853	1909	552 :	8	276	554	614
493 :	48	112	1853	1854	1937	553:	517	551	554	718
494 :	732	768	790	1862	1873	554 :	127	552	553	1090
495 :	261	1353	1487	1864	1865	555 :	202	205	279	1719
496 ·	670	781	1219	1871	1876	556 ·	43	229	557	1670
497 -	46	336	653	1872	1873	557	136	203	556	1320
108 -	172	771	1107	1806	1045	558	333	550	561	1183
400 .	210	507	1010	1019	1010	550.	149	559	561	610
499. 500.	104	1669	1015	1010	1020	559.	140	520	561	1249
500 :	194	1008	1915	1919	1920	500 :	151	520	501	1342
501:	456	1805	1922	1923	1988	561:	558	559	006	990
502:	1118	1402	1559	1930	1931	562:	45	376	437	564
503 :	14	185	838	1984	1985	563 :	175	248	564	1329
504 :	153	795	1104	1987	1988	564 :	56	562	563	921
505 :	7	325	354	1822		565 :	12	59	331	1331
506:	147	193	339	1423		566:	149	310	543	951
507:	11	194	329	499		567:	204	309	348	1001
508 :	19	223	297	744		568:	205	212	291	1284
509 :	1	195	283	1895		569:	88	108	454	641
510 :	53	148	333	785		570 :	81	292	571	1013
511 :	28	43	319	1255		571 :	370	570	572	1313
512 :	67	241	433	608		572:	49	206	571	798
513 :	24	196	514	910		573 :	206	310	400	1352
514 :	67	104	513	528		574 :	13	66	266	1351
515 :	54	166	403	1258		575 :	254	328	373	864
516 :	144	366	367	1687		576:	59	341	481	809
517 :	88	197	234	553		577:	219	304	341	817
518 :	6	120	445	521		578:	18	125	207	234
519 :	39	203	520	1345		579:	21	131	230	986
520 :	84	519	521	560		580 :	208	228	347	1077
521 :	226	518	520	602		581 :	1	6	85	1427
522 :	6	198	313	370		582 :	13	209	432	1431
523	55	372	389	687		583 :	93	209	244	1401
524 ·	105	247	406	1269		584	42	245	585	634
525 -	106	191	358	720		585 .	60	05	584	1001
526	100	251	259	1026		586	97	05	274	1021
520.	120	201	262	520		597.	286	206	274	1976
527.	265	540	505	1091		501.	200	010	574	1270
528:	251	514	527	1081		588:	84	212	589	1393
529:	105	370	530	1936		589:	3	476	045	1432
530 :	107	199	529	1174		590:	119	127	247	476
531 :	9	200	379	689		591:	98	217	592	1411
532 :	305	479	480	715		592 :	210	591	593	876
533 :	5	93	109	1027		593 :	226	333	592	595
534 :	201	274	276	1573		594 :	56	58	595	748
535 :	136	369	536	601		595:	89	593	594	1443
536 :	30	94	535	1295		596 :	301	419	597	951
537:	20	139	308	538		597:	103	210	596	598
538 :	167	294	537	1167		598:	60	271	597	961
539 :	20	131	172	480		599 :	211	212	600	1014

	~ ~	2 00							
600 :	25	599	601	1190	660 :	222	379	662	1380
601 :	139	535	600	1663	661 :	106	659	662	1398
602 :	152	213	521	603	662 :	451	660	661	1621
603 :	244	342	602	1446	663 :	129	223	439	1354
604 :	26	214	605	1292	664 :	154	223	540	1662
605 :	347	491	604	607	665 :	85	171	338	458
606 ·	370	475	607	812	666 -	357	425	667	1350
607 .	01	605	606	651	667	21	224	666	1647
007.	51	510	600	1000	001	120	057	660	1047
608 :	(5	512	609	1026	668 :	130	257	669	1651
609 :	24	608	610	1070	669 :	79	132	668	670
610 :	62	232	609	1452	670 :	225	226	496	669
611 :	4	57	364	1467	671 :	7	77	672	1665
612 :	101	364	376	692	672 :	34	486	671	1657
613 :	9	298	303	413	673 :	98	227	674	1509
614 :	80	486	552	1106	674 :	228	486	673	1163
615 :	221	473	616	1210	675 :	229	378	468	1658
616 :	215	615	617	1584	676 :	229	236	393	678
617	316	616	618	1085	677 :	230	254	678	869
619	72	428	617	610	679 .	17	676	677	765
010	150	420	610	750	078.	11	010	969	105
619 :	158	559	618	759	679 :	231	230	308	1659
620 :	38	280	621	1729	680 :	5	135	681	1659
621 :	102	620	622	1260	681 :	28	680	682	732
622 :	14	285	621	623	682 :	122	482	681	923
623 :	138	220	622	627	683 :	11	96	232	1661
624 :	216	307	626	1003	684 :	387	448	685	1294
625 :	9	437	627	1208	685 :	342	684	686	773
626 :	78	624	627	1330	686 :	262	343	685	831
627 :	623	625	626	1661	687 :	233	523	688	729
628 -	58	132	630	1443	688 -	64	687	680	1510
620.	117	1102	621	1940	680	5.21	6001	600	870
029.	240	c00	031	1970	089.	117	000	090	1005
630 :	340	628	631	1379	690 :	117	284	689	1685
631 :	336	629	630	877	691 :	60	132	161	1718
632 :	227	281	434	1508	692 :	93	612	693	1468
633 :	134	334	428	1040	693 :	323	487	692	855
634 :	59	432	584	635	694 :	113	417	695	1129
635 :	375	634	636	1419	695 :	304	694	696	1740
636 :	86	99	635	950	696 :	60	234	695	1741
637 :	39	86	365	1792	697 :	160	235	698	1571
638 :	12	299	402	1514	698 :	137	697	699	1279
639 :	296	450	640	1119	699 :	236	474	698	1742
640 :	116	193	639	641	700 :	237	327	701	1726
641 -	133	560	640	1607	701 :	238	700	702	1725
649	112	109	040	1540	702 -	200	169	701	1755
649.	115	244	255	1543	702	149	100	701	1940
043 :	115	244	200	1301	703 :	145	192	705	1249
644 :	217	255	400	645	704 :	128	239	707	795
645 :	145	218	644	888	705 :	34	703	707	1433
646 :	218	483	647	1607	706 :	289	472	707	1143
647 :	230	418	646	648	707 :	704	705	706	1758
648 :	435	647	649	1416	708 :	61	199	240	1770
649 :	137	303	648	1573	709 :	118	352	431	1028
650 :	16	156	651	1059	710 :	100	252	711	1799
651 :	201	607	650	1577	711 :	105	116	710	1800
652 :	76	133	312	970	712 ·	241	373	485	1815
653	385	444	497	1584	719.	62	203	714	1188
654 .	210	220	262	656	714.	Q1	255	719	750
004:	219	420	203	1000	(14:	04	500	- 13	700
005:	2/7	404	000	1009	715 :	242	532	547	(16
656:	160	654	655	1711	716 :	164	414	715	1105
657:	17	190	450	1048	717 :	51	63	718	1519
658 :	112	221	290	1615	718 :	243	553	717	1839
659 :	32	466	661	1070	719 :	248	275	351	722

700	044	505	701	1.007	7 80	40	07	770	1054
720:	244	525	121	1027	780 :	40	07	119	1954
721 :	210	720	722	751	781 :	282	496	783	1028
722:	245	719	721	1026	782 :	158	246	783	1944
723 :	48	146	724	1839	783 :	251	781	782	784
724 :	293	723	725	1097	784 :	252	402	783	1722
725 :	248	724	726	854	785 :	253	337	510	1959
726 :	391	725	728	1035	786 :	73	254	787	1309
797 -	349	380	728	1946	787 -	106	253	786	788
721.	111	706	720	1050	701.	100	200	700	1714
726 :	111	120	727	1850	788 :	65	101	769	1/14
729:	371	687	730	925	789 :	0	68	188	1960
730 :	111	246	729	859	790 :	21	494	791	819
731 :	282	314	464	732	791 :	40	69	790	1574
732 :	75	494	681	731	792 :	255	294	793	1291
733 :	11	140	250	741	793 :	97	792	794	1596
734 :	239	735	736	953	794 :	187	793	797	1967
735 :	244	734	737	975	795 :	504	704	798	1794
736:	365	734	738	815	796 :	70	256	800	901
737 ·	19	735	738	1829	797 -	83	794	801	1179
799.	726	797	720	1020	709.	572	705	802	1224
738.	046	731	739	1999	798.	150	190	002	1224
739 :	246	738	740	966	799 :	459	488	803	860
740 :	289	739	741	1492	800 :	257	796	805	1256
741 :	415	733	740	1426	801 :	321	797	806	1726
742 :	83	250	337	1867	802 :	34	798	811	1996
743 :	227	384	744	1512	803 :	217	799	812	1951
744 :	508	743	745	1506	804 :	41	394	813	1932
745 :	25	320	744	945	805 :	258	800	818	1747
746 :	8	320	747	808	806 :	399	801	818	1764
747 .	27	163	746	1877	807 -	175	386	819	1278
749.	271	504	740	1692	202 .	419	746	801	12/7
740	471	740	743	1052	808.	410	F 740	021	1247
749:	4/1	740	750	10//	809 :	209	570	020	1507
750 :	714	749	751	977	810 :	438	447	823	1722
751:	721	750	752	1037	811 :	326	802	824	986
752 :	247	378	751	1878	812 :	606	803	825	1958
753 :	58	64	756	1315	813 :	300	804	828	1690
754 :	69	397	758	1524	814 :	223	318	828	1750
755:	65	429	758	762	815 :	260	736	829	948
756 :	321	753	759	1898	816 :	8	153	829	1735
757:	290	410	760	1286	817 :	261	577	830	1833
758 :	754	755	760	1844	818 :	805	806	832	1064
759 :	619	756	761	884	819 :	790	807	832	1234
760 -	757	758	761	1354	820 -	70	262	834	008
700.	114	750	701	1004	820.	110	202	0.04	1517
701 :	114	759	700	1699	821 :	119	100	000	1700
762:	69	100	763	918	822 :	42	169	830	1798
763 :	248	444	762	765	823 :	809	810	838	1184
764 :	160	249	765	1611	824 :	263	811	840	1334
765 :	678	763	764	1942	825 :	87	812	841	1093
766 :	316	429	768	1473	826 :	264	462	843	885
767:	86	363	769	937	827 :	265	364	849	1110
768 :	494	766	769	1037	828 :	813	814	850	1796
769 :	767	768	770	1241	829 :	815	816	851	1513
770:	257	769	771	1864	830 :	266	817	856	1326
771 .	362	498	770	772	831 -	490	686	857	1723
779.	79	410	771	10//	222	200	£10	QEQ	1044
779.	66	410	774	1795	632 :	010	460	000	1094
	00	060	((4	1/20	833 :	80	408	862	1021
774 :	313	773	775	1941	834 :	820	849	863	1093
775 :	303	774	776	1724	835 :	101	821	864	1515
776:	250	775	777	1676	836 :	267	822	865	1199
777:	24	776	779	851	837 :	110	483	868	1273
778:	90	382	779	1067	838 :	503	823	870	1989
779 :	777	778	780	1953	839 :	42	268	871	1834

840 :	269	824	872	1845	900 :	10	551	984	991
841:	311	825	874	1154	901 :	796	855	984	1606
842 :	13	305	875	1704	902	281	856	987	1024
843 :	43	826	876	1696	903 :	96	887	989	1828
844:	71	463	882	1475	904 :	407	550	991	1938
845 :	72	328	887	1827	905 :	857	858	992	1728
846 :	33	349	888	1386	906 :	94	282	994	1885
847:	270	347	890	1525	907 :	95	972	995	1011
848:	18	356	891	1346	908 :	859	860	997	1156
849 :	827	834	893	1177	909 :	283	861	1002	1855
850:	103	828	894	1503	910	142	513	1002	1576
851:	777	829	895	1681	911	176	862	1004	1204
852 :	385	490	897	1914	912	188	899	1005	1904
853:	433	478	898	1120	913	863	889	1005	1540
854:	73	725	899	1856	914	18	139	1009	1444
855:	299	693	901	1249	915	78	297	1012	1548
856:	264	830	902	1309	916	284	885	1015	1053
857:	155	831	905	1684	917 :	377	864	1017	1180
858:	271	832	905	1748	918 :	79	762	1020	1941
859:	237	730	908	1177	919 :	285	865	1021	1276
860:	403	799	908	1634	920 :	124	866	1022	1083
861:	272	481	909	1259	921	564	867	1025	1982
862 :	74	833	911	1487	922 :	128	286	1031	1106
863:	447	834	913	1940	923 :	309	682	1031	1660
864:	575	835	917	1803	924	868	869	1032	1308
865 :	235	836	919	1038	925	138	729	1033	1310
866:	47	287	920	1610	926	287	466	1036	1789
867:	75	154	921	1027	927 :	288	869	1039	1753
868:	440	837	924	1274	928 :	412	870	1041	1296
869:	677	924	927	1752	929 :	36	871	1042	1263
870:	110	838	928	1282	930 :	108	872	1042	1178
871:	45	839	929	1486	931	289	873	1045	1492
872 :	252	840	930	1959	932	80	1016	1045	1524
873:	49	285	931	1580	933 :	81	110	1046	1340
874:	126	841	935	1640	934 :	290	427	1049	1377
875 :	273	842	937	1924	935 :	413	874	1050	1497
876:	592	843	940	1319	936 :	288	959	1052	1255
877:	104	631	941	1505	937 :	767	875	1053	1703
878:	274	541	942	1293	938 :	107	378	1058	1278
879:	122	689	942	1071	939 :	179	389	1063	1315
880:	76	275	944	1098	940 :	291	876	1064	1377
881:	335	371	945	1955	941	41	877	1066	1383
882 :	89	844	952	1365	942	878	879	1066	1520
883:	1	407	953	1939	943	292	293	1067	1829
884 :	27	759	954	1631	944 :	880	1006	1078	1629
885 :	826	916	954	1666	945 :	745	881	1085	1203
886:	276	346	956	1552	946 :	95	1074	1087	1088
887 :	845	903	960	1946	947 :	19	443	1088	1363
888 :	645	846	963	1385	948 :	112	815	1091	1281
889:	261	913	963	1541	949 :	20	433	1099	1732
890:	32	847	964	1447	950 :	294	636	1099	1831
891:	113	848	965	1347	951	566	596	1100	1333
892 :	277	278	969	1403	952	295	882	1101	1765
893 :	7	849	969	1710	953 :	734	883	1102	1476
894 :	279	850	971	1589	954	884	885	1103	1905
895 :	170	851	974	1677	955	122	296	1105	1236
896:	77	170	976	1532	956 :	388	886	1110	1220
897:	96	852	976	1660	957 :	297	329	1111	1689
898 :	280	853	978	1787	958 :	114	135	1112	1115
899:	854	912	982	1979	959 :	298	936	1121	1435

000	0.0	007	1101	1500	1000	919	010	1079	1409
960 :	82	887	1121	1562	1020	: 313	918	1273	1483
961 :	299	598	1123	1515	1021	: 833	919	1277	1337
962 :	83	1084	1126	1490	1022	: 207	920	1279	1280
963:	888	889	1126	1825	1023	: 405	542	1284	1285
964 :	300	890	1127	1313	1024	: 902	1285	1286	1466
965 :	92	891	1127	1564	1025	: 367	921	1291	1501
966:	301	739	1132	1443	1026	: 608	722	1298	1299
967:	29	1034	1133	1810	1027	: 533	867	1299	1300
968:	27	1117	1135	1779	1028	: 709	781	1301	1958
969:	892	893	1136	1711	1029	: 50	314	1303	1304
97 0 :	302	652	1138	1235	1030	: 1187	1239	1304	1305
971 :	181	894	1140	1502	1031	: 922	923	1308	1422
972 ·	254	907	1140	1581	1032	· 315	924	1309	1951
073	220	080	1146	1586	1033	. 00	025	1311	13/3
074	220	1000	1150	1507	1030	. 216	067	1212	1020
974 . 075	202	705	1150	1404	1034	. 310	507	1012	1950
975 :	303	735	1151	1464	1035	: 517	120	1012	1600
976 :	896	897	1153	1796	1036	: 446	926	1313	1535
977 :	88	750	1157	1645	1037	: 751	768	1317	1474
978 :	4	898	1158	1648	1038	: 865	985	1318	1319
979:	319	429	1159	1910	1039	: 318	927	1328	1474
980:	125	304	1160	1365	1040	: 633	1334	1335	1861
981 :	141	305	1162	1399	1041	: 327	928	1335	1438
982 :	423	899	1165	1909	1042	: 929	930	1336	1922
983 :	306	360	1166	1669	1043	: 22	1147	1336	1613
984 :	900	901	1168	1720	1044	: 349	832	1337	1688
985 :	353	1038	1168	1973	1045	: 931	932	1338	1339
986:	579	811	1171	1505	1046	: 91	933	1344	1840
987 :	29	902	1173	1643	1047	: 249	1131	1346	1612
988 :	21	323	1173	1916	1048	: 432	657	1350	1590
989 :	903	973	1174	1698	1049	: 103	934	1353	1360
990 :	307	561	1176	1327	1050	: 935	1353	1354	1553
991 :	900	904	1179	1316	1051	: 1	373	1355	1633
992	308	905	1181	1207	1052	· 319	936	1358	1359
003 -	250	300	1182	1738	1053	· 016	037	1362	1611
004 -	84	906	1187	1500	1054	. 910	1323	1363	1364
005	19	007	1106	1472	1054	. 200	1160	1266	1690
990 . 00 <i>e</i> .	160	307	1100	1947	1055	. 299	100	1267	1030
990 :	100	330	1198	1547	1058	: 12	100	1007	1917
997 :	115	908	1201	1572	1057	: 173	1368	1369	1709
998 :	165	820	1202	1941	1058	: 37	938	1370	1664
999 :	4	343	1207	1685	1059	: 135	650	1373	1614
1000 :	399	974	1208	1508	1060	: 218	1062	1373	1374
1001 :	310	567	1209	1297	1061	: 22	468	1374	1568
1002 :	909	910	1212	1317	1062	: 22	1060	1375	1786
1003 :	151	624	1215	1252	1063	: 87	939	1376	1755
1004 :	91	911	1225	1846	1064	: 818	940	1376	1669
1005 :	912	913	1226	1745	1065	: 132	320	1378	1463
1006:	359	944	1227	1568	1066	: 941	942	1382	1913
1007:	57	1202	1229	1788	1067	: 778	943	1387	1715
1008:	116	146	1232	1522	1068	: 42	1376	1392	1393
1009 :	442	914	1237	1567	1069	: 321	655	1395	1396
1010:	115	311	1240	1549	1070	: 609	659	1397	1962
1011 :	438	907	1242	1472	1071	: 359	879	1408	1836
1012 :	85	915	1243	1547	1072	: 322	323	1410	1889
1013 :	570	1250	1251	1685	1073	: 69	131	1411	1644
1014 :	9	599	1257	1306	1074	: 324	946	1415	1740
1015 :	25	916	1261	1610	1075	: 88	1397	1417	1418
1016 :	86	932	1262	1523	1076	: 89	208	1421	1732
1017	25	917	1264	1265	1077	: 8	580	1422	1672
1018	71	131	1270	1271	1078	. 302	944	1497	1569
1010	310	379	1271	1979	1070	. 61	305	1490	1833
1010.	014	014	1011	1414	1079	. 01	020	1-140	1000

1080	100	1196	1491	1570	114	. .	071	072	1500	1091
1080.	200	500	1401	1450	114		971	912	1502	1981
1081 :	326	528	1432	1458	114	L:	344	395	1582	1010
1082 :	2	40	1433	1434	114	2:	219	469	1585	1767
1083 :	32	920	1434	1666	114	3:	706	1172	1589	1590
1084:	388	962	1434	1489	114	1:	345	346	1596	1597
1085 :	617	945	1436	1437	114	5:	347	1603	1604	1694
1086 :	327	328	1439	1441	114	3:	471	973	1611	1858
1087:	329	946	1441	1800	114	7:	19	1043	1614	1724
1088:	946	947	1442	1591	114	8:	10	344	1617	1769
1089 :	330	452	1445	1871	114):	416	1538	1623	1624
1090 :	150	554	1446	1447	115):	974	1460	1626	1627
1091 :	109	948	1448	1449	115	L: -	435	975	1636	1637
1092 :	120	391	1450	1556	115	2:	25	492	1637	1852
1093	825	834	1451	1464	115	3.	360	976	1638	1826
1004 -	331	549	1451	1500	115	1.	3/8	8/1	1641	1762
1005	222	1270	1452	1454	115		999	425	1649	1642
1095.	002	1370	1455	1454	115).	100	400	1042	1043
1096 :	333	1396	1457	1458	115	o : _	169	908	1642	1857
1097 :	90	724	1457	1840	115	(:	40	977	1646	1659
1098 :	441	880	1459	1854	115	8:	489	978	1647	1780
1099 :	949	950	1469	1830	115	9:	369	979	1649	1909
1100 :	951	1471	1472	1527	116	D:	248	980	1650	1855
1101 :	215	952	1474	1938	116	1:	76	1653	1654	1831
1102 :	63	953	1477	1599	116	2:	981	1320	1654	1655
1103 :	9	954	1482	1904	116	3:	95	674	1658	1993
1104 :	23	504	1484	1682	116	1:	295	1537	1664	1665
1105 :	716	955	1485	1832	116	5:	982	1534	1668	1669
1106:	614	922	1486	1875	116	3:	146	983	1670	1897
1107:	483	498	1490	1491	116	7:	307	538	1671	1672
1108:	8	417	1491	1534	116	3:	984	985	1673	1674
1109:	113	334	1492	1493	116):	349	1055	1679	1850
1110 :	827	956	1496	1705	117):	157	311	1683	1684
1111 :	91	957	1498	1499	117	L :	26	986	1691	1995
1112 :	335	958	1498	1929	117	2:	107	1143	1693	1694
1113 :	457	479	1499	1762	117	3:	987	988	1693	1917
1114 ·	143	336	1504	1776	117	1.	530	989	1697	1735
1115	123	058	1505	1858	117	<. 1	120	1608	1600	1704
1116	200	224	1510	1974	117	2.	475	000	1701	1702
1110.	290	069	1510	1779	117	.	940	990	1701	1072
1117:	200	500	1510	1770	117	r: •	049	039	1704	1973
1116 :	308	302	1518	1519	117	5:	90	930	1700	1707
1119 :	154	639	1521	1522	117	9:	797	991	1708	1709
1120 :	853	1175	1522	1523	118):	354	917	1708	1802
1121 :	959	960	1524	1561	118	1:	27	992	1717	1729
1122 :	397	1204	1525	1547	118	2:	993	1383	1719	1720
1123 :	92	961	1526	1527	118	3:	558	1592	1723	1724
1124 :	352	1241	1530	1793	1184	1:	350	823	1725	1988
1125 :	166	338	1538	1655	118	5:	153	464	1733	1734
1126 :	962	963	1539	1824	118	3:	94	1288	1734	1905
1127 :	964	965	1544	1992	118	7:	994	1030	1738	1739
1128 :	93	439	1547	1583	118	8:	713	1489	1742	1743
1129 :	339	694	1550	1964	118	9: :	357	1640	1743	1744
1130 :	340	341	1551	1552	119):	351	600	1756	1757
1131 :	2	1047	1552	1553	119	L :	2	137	1757	1758
1132 :	41	966	1553	1902	119	2:	29	456	1763	1810
1133:	24	967	1557	1809	119	3 : 1	134	1765	1766	1870
1134 :	342	1193	1563	1564	119	1:	159	1651	1768	1769
1135 :	431	968	1567	2000	119	5: 3	357	406	1773	1774
1136 :	969	1080	1569	1609	119	3:	423	995	1775	1856
1137	316	1350	1575	1999	119	7:	352	353	1780	1781
1138	94	970	1578	1892	110	 	24	996	1781	1782
1120 .	3/12	1363	1570	1580	110	- ·	366	836	1789	1782
1100.	0.40	1000	1013	1000	113			000	1104	1,00

1000	4.40	100	1 50 4	1000	10		0.05	401	001
1200:	442	460	1784	1808	12	260 :	305	481	621
1201 :	329	997	1785	1786	12	261:	2	177	1015
1202 :	998	1007	1787	1799	12	262:	45	361	1016
1203 :	276	945	1789	1956	12	263:	68	366	929
1204 :	911	1122	1794	1795	12	264:	367	368	1017
1205 :	73	354	1811	1822	12	265:	88	369	1017
1206 :	97	1503	1813	1814	12	266:	35	370	1267
1207 :	992	999	1822	1823	12	267:	65	371	1266
1208 :	625	1000	1828	1829	12	268:	105	372	373
1209 :	355	1001	1831	1832	12	269:	106	134	524
1210 :	200	615	1835	1881	12	270 :	174	250	1018
1211	356	1768	1837	1838	12	271 .	374	1018	1019
1212	357	1002	1840	1841		272 .	362	375	1019
1919	492	1516	1842	1843	12		107	837	1020
1213.	492	1820	1840	1040	12	273.	226	276	1020
1214:	20	1850	1649	1050	12	s74:	330	370	000
1215 :	381	1003	1851	1852	12	275 :	107	390	1276
1216 :	175	1566	1859	1860	12	276:	587	919	1275
1217 :	33	358	1867	1868	12	277:	377	1021	1278
1218 :	324	436	1868	1869	12	278:	807	938	1277
1219 :	28	496	1870	1996	12	279:	378	698	1022
1220 :	145	956	1873	1874	12	280:	393	1022	1281
1221 :	98	1775	1883	1884	12	281:	116	948	1280
1222 :	396	1888	1889	1978	12	282:	112	870	1283
1223 :	359	1585	1894	1895	12	283:	9	467	1282
1224 :	798	1392	1901	1902	12	284:	379	568	1023
1225 :	1004	1256	1907	1908	12	285:	108	1023	1024
1226 :	453	1005	1908	1918	12	286:	197	757	1024
1227 :	1006	1910	1911	1977	12	287 :	5	124	480
1228 :	11	360	1912	1913	12	288 :	109	1186	1289
1229 :	186	1007	1921	1922	12	289:	30	1288	1290
1230	5	1646	1927	1928		290 -	167	352	1289
1231	141	1292	1927	1933	12	200.	792	1025	1200
1020	1008	1260	1025	1026	19	001.	604	1020	1202
1022.	1008	280	1933	1930	12	194 . 109 .	280	201	070
1233 :	101	380	1942	1945	12	193 : 193 :	380	361	010
1234 :	29	819	1952	1953	12	294 :	369	380	084
1235 :	970	1657	1954	1955	12	295 :	135	536	1296
1236 :	15	955	1957	1958	12	296:	78	928	1295
1237 :	98	1009	1963	1964	12	297:	110	548	1001
1238 :	36	1801	1964	1965	12	298:	111	382	1026
1239 :	1030	1883	1970	1971	12	299:	112	1026	1027
1240 :	431	1010	1974	1975	13	300 :	383	384	1027
1241 :	769	1124	1976	1977	13	301 :	3	1028	1302
1242 :	1011	1541	1981	1982	13	302 :	113	114	1301
1243 :	165	1012	1982	1983	13	303 :	114	115	1029
1244 :	4	1333	1983	1984	13	304 :	15	1029	1030
1245 :	99	1544	1989	1990	13	305 :	385	394	1030
1246 :	363	727	1992	1993	13	306 :	149	258	1014
1247 :	100	335	808		13	307 :	286	386	809
1248 :	101	102	361		13	308 :	32	924	1031
1249 :	102	703	855		13	309:	786	856	1032
1250	34	362	1013		13	810 -	99	387	925
1251	124	129	1013		19	311 -	20	473	1033
1252	100	327	1003		10	812	388	1034	1025
1059	200	196	140		13	219 ·	500	064	1026
1253:	0U 21	100	148		13	,19 : 14	011	904	1030
1454 :	31	103	133		13)14:)1F	20 7-	2/1	000
1255 :	363	511	936		13	312 :	75	753	939
1256 :	800	1225	1257		13	316 :	45	389	991
1257 :	228	1014	1256		13	317 :	127	1002	1037
1258 :	104	364	515		13	318 :	279	390	1038
1259 :	66	314	861		13	319 :	391	876	1038

1320 :	557	1162	1321	1380 :	121	266	660
1321 :	392	465	1320	1381 :	125	488	1382
1322 :	44	392	1323	1382 :	23	1066	1381
1323 :	55	1054	1322	1383 :	406	941	1182
1324 :	319	325	1325	1384 :	320	406	1385
1325 :	138	1324	1326	1385 :	407	888	1384
1326 :	393	830	1325	1386 :	74	846	1387
1327 :	116	394	990	1387 :	196	1067	1386
1328 :	81	1039	1329	1388 :	48	90	350
1329 :	117	563	1328	1389 :	251	302	1390
1330 :	203	626	1331	1390 :	80	1389	1391
1331 :	216	565	1330	1391 :	150	408	1390
1332 :	59	262	426	1392 :	150	1068	1224
1333 :	33	951	1244	1393 :	12	588	1068
1334 :	205	824	1040	1394 :	84	409	425
1335 :	133	1040	1041	1395 :	126	410	1069
1336 :	349	1042	1043	1396 :	1069	1096	1397
1337 :	395	1021	1044	1397 :	1070	1075	1396
1338 :	172	395	1045	1398 :	141	465	661
1339 :	118	396	1045	1399 :	127	981	1400
1340 :	397	629	933	1400 :	405	1399	1401
1341 :	364	398	1342	1401 :	128	583	1400
1342 :	560	1341	1343	1402 :	128	502	1403
1343 :	91	1033	1342	1403 :	134	892	1402
1344 :	180	1046	1345	1404 :	13	342	1405
1345 :	519	1344	1346	1405 :	474	1404	1406
1346 :	848	1047	1345	1406 :	411	1405	1407
1347 :	173	891	996	1407 :	102	1406	1408
1348 :	119	326	1349	1408 :	1071	1407	1409
1349 :	357	399	1348	1409 :	34	323	1408
1350 :	666	1048	1137	1410 :	129	230	1072
1351 :	260	400	574	1411 :	412	591	1073
1352 :	315	427	573	1412 :	35	82	413
1353 :	495	1049	1050	1413 :	130	377	1414
1354 :	663	760	1050	1414 :	414	1413	1415
1355 :	305	1051	1356	1415 :	162	1074	1414
1356:	402	415	1355	1416 :	194	648	1417
1357 :	120	401	402	1417 :	131	1075	1416
1358 :	120	121	1052	1418 :	318	1075	1419
1359 :	130	1052	1360	1419 :	635	1418	1420
1360 :	1049	1359	1361	1420 :	105	1419	1421
1361 :	277	403	1360	1421 :	108	1076	1420
1362 :	137	443	1053	1422 :	1031	1077	1423
1363 :	947	1054	1139	1423 :	506	1422	1424
1364 :	372	393	1054	1424:	285	1423	1425
1365 :	882	980	1366	1425 :	415	426	1424
1366 :	231	1055	1365	1426 :	85	132	741
1367:	7	1056	1368	1427 :	581	1078	1428
1368 :	33	1057	1367	1428 :	202	1427	1429
1369:	404	1057	1370	1429 :	1079	1428	1430
1370 :	1058	1095	1369	1430 :	416	430	1429
1371 :	67	451	1372	1431 :	416	582	1080
1372:	103	156	1371	1432 :	213	589	1081
1373 :	44	1059	1060	1433 :	247	705	1082
1374:	138	1060	1061	1434 :	1082	1083	1084
1375 :	62	122	1062	1435 :	222	959	1436
1376:	1063	1064	1068	1436 :	95	1085	1435
1377:	123	934	940	1437 :	390	417	1085
1378:	124	411	1065	1438 :	133	410	1041
1379:	303	405	030	1439 :	00	1080	1440

1440 :	134	1439	1441	1500 :	429	1094	1499
1441 :	1086	1087	1440	1501 :	358	1025	1502
1442 :	36	418	1088	1502 :	292	971	1501
1443 :	595	628	966	1503 :	850	1206	1504
1444 :	127	914	1445	1504:	365	1114	1503
1445 :	152	1089	1444	1505 :	877	986	1115
1446 :	47	603	1090	1506 :	135	430	744
1447 :	370	890	1090	1507 :	338	430	974
1448:	270	419	1091	1508 :	139	632	1000
1449 :	154	391	1091	1509 :	431	673	994
1450 :	420	1092	1451	1510 :	282	1116	1117
1451 :	1093	1094	1450	1511 :	4	134	1512
1452 :	129	347	610	1512 :	432	743	1511
1453 :	37	368	1095	1513 :	433	829	1514
1454 ·	376	420	1095	1514 -	283	638	1513
1455	135	420	1456	1515 -	835	961	1516
1456	126	1455	1457	1516 -	1213	1515	1517
1450.	120	1405	1457	1510.	1213	1515	1517
1457.	1090	1097	1450	1517 .	140	1110	1516
1456 :	220	1081	1090	1518 :	140	717	1017
1459:	143	1098	1460	1519 :	688	717	0.40
1460 :	1150	1459	1461	1520 :	111	317	942
1461 :	46	119	1460	1521 :	1	183	1119
1462 :	46	418	1463	1522 :	1008	1119	1120
1463 :	1065	1462	1464	1523 :	148	1016	1120
1464 :	1093	1463	1465	1524 :	754	932	1121
1465 :	45	1464	1466	1525 :	847	1122	1526
1466 :	1024	1465	1467	1526 :	117	1123	1525
1467 :	421	611	1466	1527 :	1100	1123	1528
1468 :	163	692	1469	1528 :	411	1527	1529
1469 :	422	1099	1468	1529 :	36	434	1528
1470 :	422	423	1471	1530 :	434	435	1124
1471 :	459	1100	1470	1531 :	3	435	1532
1472 :	275	1011	1100	1532 :	896	1531	1533
14 73 :	38	766	995	1533 :	97	417	1532
1474 :	1037	1039	1101	1534 :	1108	1165	1535
1475 :	56	844	1476	1535 :	164	1036	1534
1476 :	125	953	1475	1536 :	164	436	1537
1477 :	3	1102	1478	1537 :	1164	1536	1538
1478 :	234	1477	1479	1538 :	1125	1149	1537
14 7 9 :	39	424	1478	1539 :	322	1126	1540
1480 :	420	424	1481	1540 :	441	913	1539
1481 :	136	204	1480	1541 :	355	889	1242
1482 :	136	1103	1483	1542 :	2	165	445
1483 :	425	1020	1482	1543:	238	300	437
1484 :	425	975	1104	1544 :	1127	1245	1545
1485 :	267	1105	1486	1545 :	438	469	1544
1486 :	871	1106	1485	1546 :	171	438	439
1487:	426	495	862	1547 :	1012	1122	1128
1488:	426	427	1489	1548 :	214	375	915
1489 :	1084	1188	1488	1549 :	455	642	1010
1490 :	427	962	1107	1550 :	184	440	1129
1491 :	428	1107	1108	1551 :	407	440	1130
1492 :	740	931	1109	1552 :	886	1130	1131
1493 :	87	1109	1494	1553 :	1050	1131	1132
1494 :	137	1493	1495	1554 :	41	110	1555
1495 :	40	1494	1496	1555 -	141	1554	1556
1496	289	1110	1495	1556 -	1092	1555	1557
1497	128	138	935	1550.	1132	1556	1558
1408	412	1111	1119	1850 .	463	1557	1550
1400	1111	1119	1500	1550 -	403	1550	1560
1499 :	1111	1119	1000	1998 :	304	1008	1000

1560 :	430	1559	1561	1620 :	451	452	1619
1561 :	643	1121	1560	1621 :	152	453	662
1562 :	39	960	1563	1622 :	153	453	1623
1563 :	41	1134	1562	1623 :	444	1149	1622
1564 :	132	965	1134	1624 :	431	1149	1625
1565 :	92	440	441	1625 :	27	454	1624
1566:	441	442	1216	1626 :	154	224	1150
1567 :	1009	1135	1568	1627 :	720	1150	1628
1568	1006	1061	1567	1628 -	118	1627	1620
1560	442	1079	1126	1620 .	044	1629	1620
1550	14	1000	1571	1023	007	1020	1000
1570:	14	1080	1571	1630 :	201	455	1029
1571 :	697	1570	1572	1631 :	70	884	1632
1572 :	242	997	1571	1632 :	436	1631	1633
1573 :	477	534	649	1633 :	1051	1632	1634
1574:	477	791	1575	1634 :	860	1633	1635
1575 :	1137	1574	1576	1635 :	293	1634	1636
1576 :	348	910	1575	1636 :	42	1151	1635
1577 :	14	142	651	1637 :	360	1151	1152
1578 :	4	400	1138	1638 :	86	1153	1639
15 7 9 :	4	383	1139	1639 :	155	456	1638
1580:	873	1139	1581	1640 :	456	874	1189
1581 :	142	972	1580	1641 :	156	1154	1642
1582	1140	1141	1583	1642 :	1155	1156	1641
1592.	444	11.00	1590	1642 .	274	087	1155
1505.	444	616	1562	1043 .	274	901	1070
1584 :	233	010	003	1644 :	281	457	1073
1585 :	332	1142	1223	1645 :	144	458	977
1586 :	16	973	1587	1646 :	272	1157	1230
1587 :	412	1586	1588	1647 :	446	667	1158
1588 :	373	1587	1589	1648 :	5	978	1649
1589 :	894	1143	1588	1649 :	459	1159	1648
1590 :	381	1048	1143	1650 :	459	1160	1651
1591 :	450	1088	1592	1651 :	668	1194	1650
1592 :	1183	1591	1593	1652 :	157	226	1653
1593 :	143	1592	1594	1653 :	150	1161	1652
1594 :	445	1593	1595	1654 :	460	1161	1162
1595 :	141	1594	1596	1655 :	93	1125	1162
1596:	793	1144	1595	1656 :	454	461	1657
1597 :	394	1144	1598	1657 :	672	1235	1656
1598	291	1597	1599	1658 -	158	675	1163
1500 .	1102	1508	1600	1659 -	679	680	1157
1000	144	1590	1000	1009.	079	080	1157
1600 :	144	1599	1601	1660 :	385	897	923
1601 :	446	1600	1602	1661 :	027	083	1002
1602 :	428	1601	1603	1662 :	664	1661	1663
1603 :	409	1145	1602	1663 :	601	1662	1664
1604 :	447	1145	1605	1664 :	1058	1164	1663
1605 :	401	1604	1606	1665 :	49	671	1164
1606 :	901	1605	1607	1666 :	49	885	1083
1607 :	448	646	1606	1667 :	374	462	463
1608 :	145	449	1609	1668 :	52	500	1165
1609:	1136	1608	1610	1669 :	983	1064	1165
1610 :	866	1015	1609	1670 :	556	1166	1671
1611:	764	1053	1146	1671 :	155	1167	1670
1612 :	79	146	1047	1672 :	1077	1167	1673
1613 :	146	147	1043	1673 :	330	1168	1672
1614	221	1059	1147	1674 -	268	1168	1675
1615	1/8	1/0	658	1675.	200	1674	1676
1616	140	450	11/1	1073 :	160	776	1675
1010:	149	400	1141	1676 :	102	110	1070
1617:	395	1148	1618	1677 :	114	895	1678
1618 :	150	1617	1619	1678 :	457	1677	1679
1619 :	151	1618	1620	1679 :	442	1169	1678

1680 :	464	1055	1681	1740	: 695	1074	1739
1681 :	465	851	1680	1741	: 462	474	696
1682 :	465	748	1104	1742	: 40	699	1188
1683 :	149	159	1170	1743	: 164	1188	1189
1684 :	54	857	1170	1744	: 28	475	1189
1685 :	690	999	1013	1745	: 475	1005	1746
1686:	11	284	466	1746	: 165	1745	1747
1687 :	466	467	516	1747	: 387	805	1746
1688 :	467	1044	1689	1748	: 476	858	1749
1689:	957	1688	1690	1749	: 437	1748	1750
1690 :	468	813	1689	1750	: 814	1749	1751
1691	468	1171	1692	1751	· 12	1750	1752
1602 -	308	1601	1603	1752	. 177	860	1751
1602	1179	1172	1600	1752	. 411 . 455	005	1754
1093.	11/2	1170	1092	1755	. 400	921	1754
1694 :	1145	1172	1695	1754	: 108	478	1753
1695 :	397	1694	1696	1755	: 702	1063	1756
1696 :	843	1695	1697	1756	: 263	1190	1755
1697:	641	1174	1696	1757	: 124	1190	1191
1698 :	15	989	1175	1758	: 443	707	1191
1699 :	43	1175	1700	1759	: 29	472	1760
1700 :	255	1699	1701	1760	: 142	1759	1761
1701 :	173	1176	1700	1761	: 474	479	1760
1702:	189	1176	1703	1762	: 396	1113	1154
1703 :	160	937	1702	1763	: 273	451	1192
1704 :	842	1175	1177	1764	: 166	346	806
1705 :	256	1110	1706	1765	: 166	952	1193
1706:	449	1178	1705	1766	: 148	1193	1767
1707 :	160	1178	1708	1767	: 1142	1766	1768
1708	1179	1180	1707	1768	· 1194	1211	1767
1709	1057	1179	1710	1769	· 269	1148	1194
1710	33	803	1700	1770	· 131	708	1771
1710.	656	060	1719	1770	. 169	1770	1772
1710.	448	909	1712	1771	. 100	1771	1772
1712:	440	409	1711	1772	: 480	1105	1773
1713:	130	469	1/14	1773	: 306	1195	1//2
1714:	44	788	1713	1774	: 167	1195	1775
1715 :	44	1067	1716	1775	: 1196	1221	1774
1716 :	64	1715	1717	1776	: 423	1114	1777
1717 :	1181	1716	1718	1777	: 327	1776	1778
1718 :	328	691	1717	1778	: 168	1117	1777
1719 :	161	555	1182	1779	: 164	968	1780
1720 :	461	984	1182	1780	: 1158	1197	1779
1721 :	232	470	487	1781	: 158	1197	1198
1722 :	470	784	810	1782	: 290	1198	1199
1723 :	447	831	1183	1783	: 481	1199	1784
1724 :	775	1147	1183	1784	: 482	1200	1783
1725 :	701	773	1184	1785	: 445	482	1201
1726 :	471	700	801	1786	: 1062	1201	1787
1727:	321	450	1728	1787	: 898	1202	1786
1728 :	49	905	1727	1788	: 21	157	1007
1729 :	620	1181	1730	1789	: 926	1203	1790
1730 :	472	1729	1731	1790	: 154	1789	1791
1731	35	433	1730	1701	: 458	1790	1792
1799 -	169	9/0	1076	1709	. 637	1701	2000
1799.	169	343 179	1195	1792	. 007 . 701	1191	1704
1794	102	1105	1100	1793	. 401 . 705	124	1702
1705	10	1174	1790	1794	. 195	1204	1004
1735:	810	1174	1736	1795	: 170	379	1204
1736 :	133	163	1735	1796	: 828	976	1797
1737 :	152	163	309	1797	: 4	1796	1798
1738 :	378	993	1187	1798	: 822	1797	1799
1739 :	112	1187	1740	1799	: 710	1202	1798

1800 :	711	1087	1801	1860	: 1216	1232	1861
1801:	1238	1800	1802	1861	: 464	1040	1860
1802 :	241	1180	1801	1862	: 382	494	1863
1803 :	545	864	1804	1863	: 480	1862	1864
1804 :	386	1803	1805	1864	495	770	1863
1805 :	483	501	1804	1865	: 137	495	1866
1806:	45	483	1807	1866	5 : 140	211	1865
1807 :	484	1806	1808	1867	: 47	742	1217
1808 :	169	1200	1807	1868	3 : 486	1217	1218
1809:	34	460	1133	1869	: 31	1218	1870
1810:	967	1192	1811	1870): 1193	1219	1869
1811 :	1205	1810	1812	1871	: 278	496	1089
1812 :	153	1811	1813	1872	113	452	497
1813	53	1206	1812	1873	· 494	497	1220
1814	3	485	1206	1874	·· 1116	1220	1875
1815	494	719	1816	1875	. 1106	1874	1876
1816	138	/12	1815	1876	. 384	496	1875
1010.	130	419	1010	1970	·	490	740
1017.	205	1017	1010	1077	. 291	750	1970
1010 :	499	1017	1019	1870	123	102	1079
1819 :	37	1818	1820	1878	1: 45	1878	1880
1820 :	476	1819	1821	1880	1: 421	1879	1881
1821 :	170	354	1820	1881	.: 478	1210	1880
1822 :	505	1205	1207	1882	: 163	280	1883
1823 :	486	1207	1824	1883	: 1221	1239	1882
1824 :	453	1126	1823	1884	: 145	1221	1885
1825 :	487	963	1826	1885	: 906	1884	1886
1826 :	488	1153	1825	1886	i: 96	1885	1887
1827 :	463	488	845	1887	': 206	1886	1888
1828 :	47	903	1208	1888	5: 351	1222	1887
1829 :	737	943	1208	1889): 1072	1222	1890
1830 :	356	1099	1214	1890): 366	1889	1891
1831 :	950	1161	1209	1891	: 89	1890	1892
1832 :	46	1105	1209	1892	: 1138	1891	1893
1833 :	817	1079	1834	1893	: 151	1892	1894
1834 :	38	839	1833	1894	: 434	1223	1893
1835 :	171	489	1210	1895	: 509	1223	1896
1836 :	345	489	1071	1896	: 498	1895	1897
1837 :	156	359	1211	1897	': 1166	1896	1898
1838 :	168	243	1211	1898	: 165	756	1897
1839 :	487	718	723	1899	: 48	761	1900
1840 :	1046	1097	1212	1900	: 139	1899	1901
1841 :	340	1212	1842	1901	: 485	1224	1900
1842 :	482	1213	1841	1902	: 1132	1224	1903
1843 :	429	490	1213	1903	: 122	1902	1904
1844 :	439	758	1845	1904	: 912	1103	1903
1845 :	106	840	1844	1905	: 173	954	1186
1846 :	491	1004	1847	1906	i : 169	173	1907
1847:	47	1846	1848	1907	': 473	1225	1906
1848:	172	491	1847	1908	s: 296	1225	1226
1849 :	212	339	1214	1909	: 492	982	1159
1850 :	1169	1214	1851	1910) : 440	979	1227
1851 :	331	1215	1850	1911	: 408	1227	1912
1852 :	414	1152	1215	1912	: 172	1228	1911
1853 :	240	492	493	1913	: 1066	1228	1914
1854 :	415	493	1098	1914	1: 479	852	1913
1855 :	909	1035	1160	1915	i: 490	500	1916
1856	728	854	1196	1016	i: 49	988	1915
1857	143	1156	1858	1015	· · 1056	1172	1918
1858	1115	1146	1857	1016	. 1000 . 1000	1996	1017
1850	77	1140	1916	1910	. 499	1440	1917
1998 :	11	4±/1	1210	1918	. 304	499	300
1920 :	257	500	1921				
---------------	------------	------	------				
1921 :	32	1229	1920				
1922 :	501	1042	1229				
1923 :	341	501	1924				
1924 :	875	1923	1925				
1925 :	174	1924	1926				
1926 :	526	1925	1927				
1927 :	236	1230	1926				
1928 :	167	1230	1929				
1929:	312	1112	1928				
1930 :	484	502	1034				
1931 :	502	280	1932				
1932 :	40	1231	1024				
1934 -	5	1933	1934				
1935	166	1232	1934				
1936 :	529	1232	1937				
1937 :	493	1936	1938				
1938 :	904	1101	1937				
1939 :	388	883	1940				
1940 :	432	863	1939				
1941 :	774	918	998				
1942 :	294	765	1233				
1943 :	109	1233	1944				
1944 :	772	782	1943				
1945 :	178	498	1946				
1946 :	887	1945	1947				
1947:	72	1946	1948				
1948:	301	1947	1949				
1949 :	13	1948	1950				
1950 :	343 803	1949	1951				
1952 :	159	403	1234				
1953 :	174	779	1234				
1954 :	4	780	1235				
1955 :	83	881	1235				
1956 :	399	1203	1957				
1957 :	116	1236	1956				
1958 :	812	1028	1236				
1959 :	147	785	872				
1960 :	161	789	1961				
1961 :	25	1960	1962				
1962 :	1070	1901	1963				
1964 ·	1129	1237	1238				
1965 :	303	1238	1966				
1966 :	175	1965	1967				
1967 :	794	1966	1968				
1968 :	367	1967	1969				
1969 :	389	1968	1970				
1970 :	101	1239	1969				
1971 :	475	1239	1972				
1972 :	48	353	1971				
1973 :	985	1177	1974				
1974 :	402	1240	1973				
1975 :	195	1240	1976				
1976:	43 1997	1241	1975				
1978 ·	1222	1977	1979				
1979 :	899	1978	1980				

A.6.8 Hamiltonian cycle for 2000-node graph

The Hamiltonian cycle that we found using the Wedged-MIP Heuristic for 2000-node graph is shown below. This Hamiltonian cycle is the one shown in Figure A.3. $1 \rightarrow 883 \rightarrow 1939 \rightarrow 1940 \rightarrow 863 \rightarrow 834 \rightarrow 820 \rightarrow 998 \rightarrow 1202 \rightarrow 1799 \rightarrow 710$ $\rightarrow 711 \rightarrow 1800 \rightarrow 1801 \rightarrow 1238 \rightarrow 1964 \rightarrow 1237 \rightarrow 1963 \rightarrow 1962 \rightarrow 1961 \rightarrow 1960$ $\rightarrow 789 \rightarrow 788 \rightarrow 1714 \rightarrow 1713 \rightarrow 130 \rightarrow 1413 \rightarrow 1414 \rightarrow 1415 \rightarrow 162 \rightarrow 180$ $\rightarrow 1344 \rightarrow 1046 \rightarrow 1840 \rightarrow 1212 \rightarrow 357 \rightarrow 1349 \rightarrow 399 \rightarrow 1000 \rightarrow 1208 \rightarrow 1828$ $\rightarrow 903 \rightarrow 887 \rightarrow 1946 \rightarrow 1947 \rightarrow 1948 \rightarrow 1949 \rightarrow 1950 \rightarrow 343 \rightarrow 686 \rightarrow 685$ $\rightarrow 773 \rightarrow 1725 \rightarrow 701 \rightarrow 700 \rightarrow 1726 \rightarrow 801 \rightarrow 321 \rightarrow 411 \rightarrow 1378 \rightarrow 1065$ $\rightarrow 1463 \rightarrow 1462 \rightarrow 46 \rightarrow 1461 \rightarrow 1460 \rightarrow 1459 \rightarrow 1098 \rightarrow 1854 \rightarrow 493 \rightarrow 1937$ $\rightarrow 1938 \rightarrow 904 \rightarrow 550 \rightarrow 549 \rightarrow 1094 \rightarrow 1500 \rightarrow 429 \rightarrow 766 \rightarrow 316 \rightarrow 617$ $\rightarrow 1085 \rightarrow 1437 \rightarrow 390 \rightarrow 1275 \rightarrow 107 \rightarrow 546 \rightarrow 64 \rightarrow 688 \rightarrow 1519 \rightarrow 717$ $\rightarrow 63 \rightarrow 1102 \rightarrow 953 \rightarrow 1476 \rightarrow 1475 \rightarrow 844 \rightarrow 882 \rightarrow 89 \rightarrow 1891 \rightarrow 1892$ $\rightarrow 1893 \rightarrow 151 \rightarrow 414 \rightarrow 1852 \rightarrow 1152 \rightarrow 1637 \rightarrow 360 \rightarrow 544 \rightarrow 191 \rightarrow 190$ $\rightarrow 471 \rightarrow 1859 \rightarrow 1216 \rightarrow 1566 \rightarrow 442 \rightarrow 1679 \rightarrow 1678 \rightarrow 1677 \rightarrow 895 \rightarrow 974$ $\rightarrow 1507 \rightarrow 338 \rightarrow 665 \rightarrow 85 \rightarrow 545 \rightarrow 1803 \rightarrow 1804 \rightarrow 1805 \rightarrow 501 \rightarrow 1922$ $\rightarrow 1229 \rightarrow 186 \rightarrow 209 \rightarrow 583 \rightarrow 1401 \rightarrow 1400 \rightarrow 1399 \rightarrow 981 \rightarrow 1162 \rightarrow 1655$ $\rightarrow 1125 \rightarrow 1538 \rightarrow 1149 \rightarrow 1623 \rightarrow 444 \rightarrow 55 \rightarrow 523 \rightarrow 687 \rightarrow 233 \rightarrow 332$ $\rightarrow 1095 \rightarrow 1370 \rightarrow 1369 \rightarrow 404 \rightarrow 65 \rightarrow 755 \rightarrow 762 \rightarrow 763 \rightarrow 765 \rightarrow 678$ $\rightarrow 676 \rightarrow 236 \rightarrow 679 \rightarrow 1659 \rightarrow 680 \rightarrow 681 \rightarrow 732 \rightarrow 494 \rightarrow 768 \rightarrow 1037$ $\rightarrow 1474 \rightarrow 1101 \rightarrow 952 \rightarrow 1765 \rightarrow 166 \rightarrow 1935 \rightarrow 1934 \rightarrow 1933 \rightarrow 1231 \rightarrow 1292$ $\rightarrow 604 \rightarrow 214 \rightarrow 182 \rightarrow 8 \rightarrow 1108 \rightarrow 1491 \rightarrow 428 \rightarrow 633 \rightarrow 334 \rightarrow 1109$ $\rightarrow 1493 \rightarrow 87 \rightarrow 825 \rightarrow 841 \rightarrow 311 \rightarrow 1010 \rightarrow 1549 \rightarrow 642 \rightarrow 235 \rightarrow 697$ $\rightarrow 698 \rightarrow 1279 \rightarrow 378 \rightarrow 938 \rightarrow 1058 \rightarrow 37 \rightarrow 1453 \rightarrow 368 \rightarrow 1264 \rightarrow 1017$ $\rightarrow 1265 \rightarrow 369 \rightarrow 452 \rightarrow 1872 \rightarrow 113 \rightarrow 1302 \rightarrow 1301 \rightarrow 1028 \rightarrow 709 \rightarrow 118$ $\rightarrow 551 \rightarrow 900 \rightarrow 991 \rightarrow 1316 \rightarrow 389 \rightarrow 1969 \rightarrow 1970 \rightarrow 1239 \rightarrow 1971 \rightarrow 1972$ $\rightarrow 353 \rightarrow 985 \rightarrow 1168 \rightarrow 984 \rightarrow 901 \rightarrow 796 \rightarrow 70 \rightarrow 213 \rightarrow 602 \rightarrow 603$ $\rightarrow 342 \rightarrow 727 \rightarrow 728 \rightarrow 1856 \rightarrow 1196 \rightarrow 1775 \rightarrow 1774 \rightarrow 1195 \rightarrow 1773 \rightarrow 306$ $\rightarrow 58 \rightarrow 594 \rightarrow 595 \rightarrow 593 \rightarrow 333 \rightarrow 510 \rightarrow 53 \rightarrow 54 \rightarrow 515 \rightarrow 1258$ $\rightarrow 104 \rightarrow 1990 \rightarrow 1245 \rightarrow 1989 \rightarrow 838 \rightarrow 503 \rightarrow 1985 \rightarrow 1986 \rightarrow 1987 \rightarrow 115$

 $\rightarrow 547 \rightarrow 548 \rightarrow 1297 \rightarrow 110 \rightarrow 933 \rightarrow 1340 \rightarrow 629 \rightarrow 117 \rightarrow 1526 \rightarrow 1123$ $\rightarrow 961 \rightarrow 299 \rightarrow 1055 \rightarrow 1169 \rightarrow 1850 \rightarrow 1214 \rightarrow 28 \rightarrow 1744 \rightarrow 1189 \rightarrow 1640$ $\rightarrow 874 \rightarrow 935 \rightarrow 1050 \rightarrow 1553 \rightarrow 1131 \rightarrow 2 \rightarrow 1542 \rightarrow 165 \rightarrow 1898 \rightarrow 1897$ $\rightarrow 1896 \rightarrow 1895 \rightarrow 509 \rightarrow 195 \rightarrow 1975 \rightarrow 1976 \rightarrow 1241 \rightarrow 1977 \rightarrow 1227 \rightarrow 1911$ $\rightarrow 1912 \rightarrow 172 \rightarrow 539 \rightarrow 20 \rightarrow 949 \rightarrow 1732 \rightarrow 1076 \rightarrow 1421 \rightarrow 1420 \rightarrow 105$ $\rightarrow 1268 \rightarrow 372 \rightarrow 1364 \rightarrow 1054 \rightarrow 1323 \rightarrow 1322 \rightarrow 44 \rightarrow 1715 \rightarrow 1716 \rightarrow 1717$ $\rightarrow 1181 \rightarrow 1729 \rightarrow 620 \rightarrow 280 \rightarrow 1882 \rightarrow 1883 \rightarrow 1221 \rightarrow 98 \rightarrow 591 \rightarrow 592$ $\rightarrow 876 \rightarrow 1319 \rightarrow 391 \rightarrow 1449 \rightarrow 154 \rightarrow 867 \rightarrow 1027 \rightarrow 1300 \rightarrow 383 \rightarrow 1579$ $\rightarrow 4 \rightarrow 999 \rightarrow 1685 \rightarrow 690 \rightarrow 284 \rightarrow 1686 \rightarrow 466 \rightarrow 1687 \rightarrow 516 \rightarrow 144$ $\rightarrow 1600 \rightarrow 1599 \rightarrow 1598 \rightarrow 291 \rightarrow 940 \rightarrow 1377 \rightarrow 123 \rightarrow 526 \rightarrow 1926 \rightarrow 1927$ $\rightarrow 1230 \rightarrow 5 \rightarrow 533 \rightarrow 93 \rightarrow 461 \rightarrow 1720 \rightarrow 1182 \rightarrow 1383 \rightarrow 406 \rightarrow 1384$ $\rightarrow 1385 \rightarrow 407 \rightarrow 1551 \rightarrow 1130 \rightarrow 1552 \rightarrow 886 \rightarrow 956 \rightarrow 388 \rightarrow 1312 \rightarrow 1034$ $\rightarrow 967 \rightarrow 1810 \rightarrow 1192 \rightarrow 1763 \rightarrow 273 \rightarrow 335 \rightarrow 1247 \rightarrow 100 \rightarrow 245 \rightarrow 722$ $\rightarrow 721 \rightarrow 751 \rightarrow 752 \rightarrow 1878 \rightarrow 1879 \rightarrow 1880 \rightarrow 421 \rightarrow 1467 \rightarrow 1466 \rightarrow 1465$ $\rightarrow 1464 \rightarrow 1093 \rightarrow 1451 \rightarrow 1450 \rightarrow 1092 \rightarrow 1556 \rightarrow 1557 \rightarrow 1133 \rightarrow 1809 \rightarrow 460$ $\rightarrow 1654 \rightarrow 1161 \rightarrow 1831 \rightarrow 950 \rightarrow 636 \rightarrow 99 \rightarrow 1310 \rightarrow 925 \rightarrow 1033 \rightarrow 1311$ $\rightarrow 473 \rightarrow 1733 \rightarrow 1185 \rightarrow 1734 \rightarrow 1186 \rightarrow 1288 \rightarrow 109 \rightarrow 1091 \rightarrow 1448 \rightarrow 270$ $\rightarrow 352 \rightarrow 1290 \rightarrow 1289 \rightarrow 30 \rightarrow 1253 \rightarrow 136 \rightarrow 1481 \rightarrow 1480 \rightarrow 424 \rightarrow 1479$ $\rightarrow 1478 \rightarrow 1477 \rightarrow 3 \rightarrow 1531 \rightarrow 1532 \rightarrow 896 \rightarrow 77 \rightarrow 40 \rightarrow 780 \rightarrow 1954$ $\rightarrow 1235 \rightarrow 970 \rightarrow 1138 \rightarrow 1578 \rightarrow 400 \rightarrow 644 \rightarrow 217 \rightarrow 803 \rightarrow 1951 \rightarrow 1032$ $\rightarrow 1309 \rightarrow 856 \rightarrow 830 \rightarrow 1326 \rightarrow 1325 \rightarrow 1324 \rightarrow 325 \rightarrow 15 \rightarrow 1698 \rightarrow 989$ $\rightarrow 1174 \rightarrow 1697 \rightarrow 1696 \rightarrow 843 \rightarrow 826 \rightarrow 264 \rightarrow 111 \rightarrow 1520 \rightarrow 317 \rightarrow 1035$ $\rightarrow 726 \rightarrow 725 \rightarrow 248 \rightarrow 719 \rightarrow 351 \rightarrow 1888 \rightarrow 1887 \rightarrow 1886 \rightarrow 96 \rightarrow 683$ $\rightarrow 1661 \rightarrow 1662 \rightarrow 664 \rightarrow 540 \rightarrow 155 \rightarrow 1671 \rightarrow 1670 \rightarrow 1166 \rightarrow 983 \rightarrow 1669$ $\rightarrow 1064 \rightarrow 1376 \rightarrow 1063 \rightarrow 1755 \rightarrow 1756 \rightarrow 1190 \rightarrow 1757 \rightarrow 1191 \rightarrow 1758 \rightarrow 443$ $\rightarrow 219 \rightarrow 654 \rightarrow 220 \rightarrow 973 \rightarrow 1146 \rightarrow 1611 \rightarrow 764 \rightarrow 249 \rightarrow 269 \rightarrow 274$ $\rightarrow 1643 \rightarrow 1155 \rightarrow 1642 \rightarrow 1156 \rightarrow 908 \rightarrow 859 \rightarrow 730 \rightarrow 729 \rightarrow 371 \rightarrow 1267$ $\rightarrow 1266 \rightarrow 35 \rightarrow 1731 \rightarrow 1730 \rightarrow 472 \rightarrow 706 \rightarrow 289 \rightarrow 740 \rightarrow 1492 \rightarrow 931$ $\rightarrow 873 \rightarrow 1580 \rightarrow 1139 \rightarrow 1363 \rightarrow 947 \rightarrow 1088 \rightarrow 1591 \rightarrow 1592 \rightarrow 1593 \rightarrow 143$ $\rightarrow 1857 \rightarrow 1858 \rightarrow 1115 \rightarrow 1505 \rightarrow 877 \rightarrow 941 \rightarrow 41 \rightarrow 1554 \rightarrow 1555 \rightarrow 141$ $\rightarrow 208 \rightarrow 51 \rightarrow 69 \rightarrow 791 \rightarrow 1574 \rightarrow 1575 \rightarrow 1137 \rightarrow 1999 \rightarrow 738 \rightarrow 739$

 $\rightarrow 246 \rightarrow 782 \rightarrow 158 \rightarrow 1781 \rightarrow 1197 \rightarrow 1780 \rightarrow 1779 \rightarrow 968 \rightarrow 27 \rightarrow 747$ $\rightarrow 1877 \rightarrow 749 \rightarrow 750 \rightarrow 714 \rightarrow 84 \rightarrow 1394 \rightarrow 409 \rightarrow 1603 \rightarrow 1602 \rightarrow 1601$ $\rightarrow 446 \rightarrow 1647 \rightarrow 1158 \rightarrow 978 \rightarrow 1648 \rightarrow 1649 \rightarrow 1159 \rightarrow 1909 \rightarrow 492 \rightarrow 1853$ $\rightarrow 240 \rightarrow 708 \rightarrow 1770 \rightarrow 131 \rightarrow 1073 \rightarrow 1411 \rightarrow 412 \rightarrow 210 \rightarrow 597 \rightarrow 598$ $\rightarrow 60 \rightarrow 696 \rightarrow 1741 \rightarrow 462 \rightarrow 1667 \rightarrow 374 \rightarrow 586 \rightarrow 1931 \rightarrow 1932 \rightarrow 804$ $\rightarrow 813 \rightarrow 1690 \rightarrow 1689 \rightarrow 1688 \rightarrow 467 \rightarrow 267 \rightarrow 1485 \rightarrow 1486 \rightarrow 871 \rightarrow 839$ $\rightarrow 1834 \rightarrow 38 \rightarrow 1473 \rightarrow 995 \rightarrow 907 \rightarrow 1011 \rightarrow 1472 \rightarrow 275 \rightarrow 176 \rightarrow 263$ $\rightarrow 824 \rightarrow 840 \rightarrow 1845 \rightarrow 1844 \rightarrow 758 \rightarrow 754 \rightarrow 1524 \rightarrow 932 \rightarrow 80 \rightarrow 833$ $\rightarrow 1021 \rightarrow 1337 \rightarrow 1044 \rightarrow 349 \rightarrow 1336 \rightarrow 1042 \rightarrow 929 \rightarrow 1263 \rightarrow 68 \rightarrow 187$ $\rightarrow 22 \rightarrow 181 \rightarrow 193 \rightarrow 506 \rightarrow 147 \rightarrow 1613 \rightarrow 1043 \rightarrow 1147 \rightarrow 1614 \rightarrow 221$ $\rightarrow 615 \rightarrow 1210 \rightarrow 1881 \rightarrow 478 \rightarrow 1754 \rightarrow 1753 \rightarrow 455 \rightarrow 189 \rightarrow 1702 \rightarrow 1703$ $\rightarrow 160 \rightarrow 656 \rightarrow 1711 \rightarrow 1712 \rightarrow 448 \rightarrow 1607 \rightarrow 1606 \rightarrow 1605 \rightarrow 401 \rightarrow 184$ $\rightarrow 1550 \rightarrow 1129 \rightarrow 694 \rightarrow 695 \rightarrow 1740 \rightarrow 1739 \rightarrow 1187 \rightarrow 1738 \rightarrow 993 \rightarrow 259$ $\rightarrow 393 \rightarrow 1280 \rightarrow 1281 \rightarrow 948 \rightarrow 112 \rightarrow 1299 \rightarrow 1026 \rightarrow 1298 \rightarrow 382 \rightarrow 1862$ $\rightarrow 1863 \rightarrow 1864 \rightarrow 770 \rightarrow 769 \rightarrow 767 \rightarrow 937 \rightarrow 875 \rightarrow 842 \rightarrow 13 \rightarrow 1404$ $\rightarrow 1405 \rightarrow 1406 \rightarrow 1407 \rightarrow 1408 \rightarrow 1409 \rightarrow 323 \rightarrow 302 \rightarrow 1389 \rightarrow 1390 \rightarrow 1391$ $\rightarrow 408 \rightarrow 185 \rightarrow 39 \rightarrow 702 \rightarrow 168 \rightarrow 1771 \rightarrow 1772 \rightarrow 480 \rightarrow 1287 \rightarrow 124$ $\rightarrow 1251 \rightarrow 1013 \rightarrow 570 \rightarrow 571 \rightarrow 370 \rightarrow 522 \rightarrow 198 \rightarrow 422 \rightarrow 1470 \rightarrow 1471$ $\rightarrow 459 \rightarrow 799 \rightarrow 860 \rightarrow 403 \rightarrow 1952 \rightarrow 1234 \rightarrow 1953 \rightarrow 174 \rightarrow 1925 \rightarrow 1924$ $\rightarrow 1923 \rightarrow 341 \rightarrow 577 \rightarrow 304 \rightarrow 1919 \rightarrow 499 \rightarrow 1918 \rightarrow 1917 \rightarrow 1056 \rightarrow 1367$ $\rightarrow 7 \rightarrow 505 \rightarrow 1822 \rightarrow 1207 \rightarrow 992 \rightarrow 308 \rightarrow 1118 \rightarrow 1518 \rightarrow 1517 \rightarrow 821$ $\rightarrow 808 \rightarrow 746 \rightarrow 320 \rightarrow 745 \rightarrow 945 \rightarrow 881 \rightarrow 1955 \rightarrow 83 \rightarrow 797 \rightarrow 1179$ $\rightarrow 1708 \rightarrow 1707 \rightarrow 1178 \rightarrow 1706 \rightarrow 1705 \rightarrow 256 \rightarrow 234 \rightarrow 517 \rightarrow 88 \rightarrow 569$ $\rightarrow 641 \rightarrow 640 \rightarrow 639 \rightarrow 296 \rightarrow 955 \rightarrow 1236 \rightarrow 1958 \rightarrow 812 \rightarrow 606 \rightarrow 475$ $\rightarrow 1176 \rightarrow 1701 \rightarrow 173 \rightarrow 1905 \rightarrow 954 \rightarrow 1103 \rightarrow 1482 \rightarrow 1483 \rightarrow 425 \rightarrow 1484$ $\rightarrow 975 \rightarrow 735 \rightarrow 737 \rightarrow 1829 \rightarrow 943 \rightarrow 292 \rightarrow 179 \rightarrow 939 \rightarrow 1315 \rightarrow 753$ $\rightarrow 756 \rightarrow 759 \rightarrow 884 \rightarrow 1631 \rightarrow 1632 \rightarrow 436 \rightarrow 1536 \rightarrow 1537 \rightarrow 1164 \rightarrow 1664$ $\rightarrow 1663 \rightarrow 601 \rightarrow 535 \rightarrow 536 \rightarrow 1295 \rightarrow 1296 \rightarrow 928 \rightarrow 870 \rightarrow 1282 \rightarrow 1283$ $\rightarrow 9 \rightarrow 1014 \rightarrow 1306 \rightarrow 149 \rightarrow 1683 \rightarrow 159 \rightarrow 1194 \rightarrow 1769 \rightarrow 1148 \rightarrow 10$ $\rightarrow 231 \rightarrow 1366 \rightarrow 1365 \rightarrow 980 \rightarrow 125 \rightarrow 1381 \rightarrow 1382 \rightarrow 1066 \rightarrow 1913 \rightarrow 1228$ $\rightarrow 11 \rightarrow 507 \rightarrow 329 \rightarrow 957 \rightarrow 297 \rightarrow 508 \rightarrow 744 \rightarrow 743 \rightarrow 227 \rightarrow 632$

 $\rightarrow 1508 \rightarrow 139 \rightarrow 537 \rightarrow 538 \rightarrow 1167 \rightarrow 307 \rightarrow 624 \rightarrow 626 \rightarrow 1330 \rightarrow 203$ $\rightarrow 56 \rightarrow 564 \rightarrow 562 \rightarrow 437 \rightarrow 625 \rightarrow 627 \rightarrow 623 \rightarrow 622 \rightarrow 285 \rightarrow 919$ $\rightarrow 1276 \rightarrow 587 \rightarrow 286 \rightarrow 922 \rightarrow 1106 \rightarrow 1875 \rightarrow 1874 \rightarrow 1220 \rightarrow 1873 \rightarrow 497$ $\rightarrow 336 \rightarrow 631 \rightarrow 630 \rightarrow 340 \rightarrow 1841 \rightarrow 1842 \rightarrow 482 \rightarrow 682 \rightarrow 122 \rightarrow 1375$ $\rightarrow 1062 \rightarrow 1786 \rightarrow 1787 \rightarrow 898 \rightarrow 853 \rightarrow 433 \rightarrow 512 \rightarrow 67 \rightarrow 1371 \rightarrow 1372$ $\rightarrow 103 \rightarrow 1254 \rightarrow 31 \rightarrow 1869 \rightarrow 1218 \rightarrow 1868 \rightarrow 1217 \rightarrow 358 \rightarrow 1501 \rightarrow 1502$ $\rightarrow 971 \rightarrow 1140 \rightarrow 1582 \rightarrow 1583 \rightarrow 1128 \rightarrow 439 \rightarrow 1546 \rightarrow 438 \rightarrow 350 \rightarrow 252$ $\rightarrow 784 \rightarrow 1722 \rightarrow 810 \rightarrow 447 \rightarrow 1604 \rightarrow 1145 \rightarrow 1694 \rightarrow 1695 \rightarrow 397 \rightarrow 183$ $\rightarrow 1521 \rightarrow 1119 \rightarrow 1522 \rightarrow 1120 \rightarrow 1523 \rightarrow 1016 \rightarrow 86 \rightarrow 242 \rightarrow 61 \rightarrow 1079$ $\rightarrow 1833 \rightarrow 817 \rightarrow 261 \rightarrow 92 \rightarrow 81 \rightarrow 1328 \rightarrow 1329 \rightarrow 563 \rightarrow 175 \rightarrow 1966$ $\rightarrow 1965 \rightarrow 303 \rightarrow 613 \rightarrow 413 \rightarrow 1412 \rightarrow 82 \rightarrow 251 \rightarrow 783 \rightarrow 781 \rightarrow 496$ $\rightarrow 1876 \rightarrow 384 \rightarrow 97 \rightarrow 1533 \rightarrow 417 \rightarrow 102 \rightarrow 621 \rightarrow 1260 \rightarrow 365 \rightarrow 637$ $\rightarrow 1792 \rightarrow 2000 \rightarrow 1135 \rightarrow 1567 \rightarrow 1009 \rightarrow 914 \rightarrow 18 \rightarrow 578 \rightarrow 207 \rightarrow 1022$ $\rightarrow 920 \rightarrow 866 \rightarrow 1610 \rightarrow 1609 \rightarrow 1608 \rightarrow 449 \rightarrow 43 \rightarrow 511 \rightarrow 1255 \rightarrow 363$ $\rightarrow 1379 \rightarrow 405 \rightarrow 222 \rightarrow 1435 \rightarrow 1436 \rightarrow 95 \rightarrow 585 \rightarrow 1991 \rightarrow 1992 \rightarrow 1246$ $\rightarrow 1993 \rightarrow 1163 \rightarrow 1658 \rightarrow 675 \rightarrow 468 \rightarrow 1691 \rightarrow 1171 \rightarrow 1995 \rightarrow 1994 \rightarrow 470$ $\rightarrow 1721 \rightarrow 232 \rightarrow 610 \rightarrow 1452 \rightarrow 129 \rightarrow 1410 \rightarrow 1072 \rightarrow 322 \rightarrow 1539 \rightarrow 1540$ $\rightarrow 441 \rightarrow 1565 \rightarrow 440 \rightarrow 1910 \rightarrow 979 \rightarrow 319 \rightarrow 1052 \rightarrow 1359 \rightarrow 1360 \rightarrow 1361$ $\rightarrow 277 \rightarrow 655 \rightarrow 1069 \rightarrow 1396 \rightarrow 1397 \rightarrow 1070 \rightarrow 609 \rightarrow 608 \rightarrow 75 \rightarrow 19$ $\rightarrow 72 \rightarrow 618 \rightarrow 619 \rightarrow 559 \rightarrow 558 \rightarrow 561 \rightarrow 990 \rightarrow 1327 \rightarrow 394 \rightarrow 1597$ $\rightarrow 1144 \rightarrow 346 \rightarrow 1764 \rightarrow 806 \rightarrow 818 \rightarrow 832 \rightarrow 819 \rightarrow 790 \rightarrow 21 \rightarrow 579$ $\rightarrow 986 \rightarrow 811 \rightarrow 326 \rightarrow 1348 \rightarrow 119 \rightarrow 590 \rightarrow 247 \rightarrow 524 \rightarrow 1269 \rightarrow 106$ $\rightarrow 525 \rightarrow 720 \rightarrow 244 \rightarrow 643 \rightarrow 1561 \rightarrow 1121 \rightarrow 960 \rightarrow 1562 \rightarrow 1563 \rightarrow 1134$ $\rightarrow 1564 \rightarrow 965 \rightarrow 1127 \rightarrow 1544 \rightarrow 1545 \rightarrow 469 \rightarrow 416 \rightarrow 1430 \rightarrow 1429 \rightarrow 1428$ $\rightarrow 1427 \rightarrow 581 \rightarrow 6 \rightarrow 518 \rightarrow 521 \rightarrow 226 \rightarrow 1652 \rightarrow 1653 \rightarrow 150 \rightarrow 1392$ $\rightarrow 1224 \rightarrow 1901 \rightarrow 1900 \rightarrow 1899 \rightarrow 761 \rightarrow 114 \rightarrow 1303 \rightarrow 1029 \rightarrow 1304 \rightarrow 1030$ $\rightarrow 1305 \rightarrow 385 \rightarrow 653 \rightarrow 1584 \rightarrow 616 \rightarrow 215 \rightarrow 266 \rightarrow 574 \rightarrow 1351 \rightarrow 260$ $\rightarrow 815 \rightarrow 736 \rightarrow 734 \rightarrow 239 \rightarrow 704 \rightarrow 707 \rightarrow 705 \rightarrow 1433 \rightarrow 1082 \rightarrow 1434$ $\rightarrow 1083 \rightarrow 1666 \rightarrow 885 \rightarrow 916 \rightarrow 1053 \rightarrow 1362 \rightarrow 137 \rightarrow 1494 \rightarrow 1495 \rightarrow 1496$ $\rightarrow 1110 \rightarrow 827 \rightarrow 849 \rightarrow 893 \rightarrow 1710 \rightarrow 1709 \rightarrow 1057 \rightarrow 1368 \rightarrow 33 \rightarrow 262$ $\rightarrow 1332 \rightarrow 59 \rightarrow 576 \rightarrow 481 \rightarrow 1783 \rightarrow 1784 \rightarrow 1200 \rightarrow 1808 \rightarrow 169 \rightarrow 1906$

 $\rightarrow 1907 \rightarrow 1225 \rightarrow 1908 \rightarrow 1226 \rightarrow 453 \rightarrow 1622 \rightarrow 153 \rightarrow 94 \rightarrow 295 \rightarrow 79$ $\rightarrow 1612 \rightarrow 1047 \rightarrow 1346 \rightarrow 1345 \rightarrow 519 \rightarrow 520 \rightarrow 560 \rightarrow 1342 \rightarrow 1343 \rightarrow 91$ $\rightarrow 607 \rightarrow 605 \rightarrow 347 \rightarrow 580 \rightarrow 1077 \rightarrow 1672 \rightarrow 1673 \rightarrow 330 \rightarrow 996 \rightarrow 1347$ $\rightarrow 891 \rightarrow 848 \rightarrow 356 \rightarrow 1830 \rightarrow 1099 \rightarrow 1469 \rightarrow 1468 \rightarrow 163 \rightarrow 1737 \rightarrow 309$ $\rightarrow 923 \rightarrow 1660 \rightarrow 897 \rightarrow 852 \rightarrow 1914 \rightarrow 479 \rightarrow 1761 \rightarrow 474 \rightarrow 699 \rightarrow 1742$ $\rightarrow 1188 \rightarrow 1743 \rightarrow 164 \rightarrow 250 \rightarrow 1270 \rightarrow 1018 \rightarrow 1271 \rightarrow 1019 \rightarrow 1272 \rightarrow 375$ $\rightarrow 1548 \rightarrow 915 \rightarrow 78 \rightarrow 26 \rightarrow 1314 \rightarrow 271 \rightarrow 748 \rightarrow 1682 \rightarrow 465 \rightarrow 1398$ $\rightarrow 661 \rightarrow 659 \rightarrow 32 \rightarrow 1921 \rightarrow 1920 \rightarrow 257 \rightarrow 243 \rightarrow 1838 \rightarrow 1211 \rightarrow 1768$ $\rightarrow 1767 \rightarrow 1142 \rightarrow 1585 \rightarrow 1223 \rightarrow 1894 \rightarrow 434 \rightarrow 1530 \rightarrow 1124 \rightarrow 1793 \rightarrow 1794$ $\rightarrow 795 \rightarrow 798 \rightarrow 802 \rightarrow 34 \rightarrow 1250 \rightarrow 362 \rightarrow 313 \rightarrow 774 \rightarrow 1941 \rightarrow 918$ $\rightarrow 1020 \rightarrow 1273 \rightarrow 837 \rightarrow 483 \rightarrow 1107 \rightarrow 1490 \rightarrow 427 \rightarrow 934 \rightarrow 1049 \rightarrow 1353$ $\rightarrow 495 \rightarrow 1865 \rightarrow 1866 \rightarrow 140 \rightarrow 733 \rightarrow 741 \rightarrow 1426 \rightarrow 132 \rightarrow 628 \rightarrow 1443$ $\rightarrow 966 \rightarrow 1132 \rightarrow 1902 \rightarrow 1903 \rightarrow 1904 \rightarrow 912 \rightarrow 188 \rightarrow 192 \rightarrow 703 \rightarrow 1249$ $\rightarrow 855 \rightarrow 693 \rightarrow 692 \rightarrow 612 \rightarrow 101 \rightarrow 1248 \rightarrow 361 \rightarrow 1262 \rightarrow 45 \rightarrow 1806$ $\rightarrow 1807 \rightarrow 484 \rightarrow 1930 \rightarrow 502 \rightarrow 1402 \rightarrow 1403 \rightarrow 134 \rightarrow 1511 \rightarrow 1512 \rightarrow 432$ $\rightarrow 582 \rightarrow 1431 \rightarrow 1080 \rightarrow 1570 \rightarrow 1571 \rightarrow 1572 \rightarrow 997 \rightarrow 1201 \rightarrow 1785 \rightarrow 445$ $\rightarrow 1594 \rightarrow 1595 \rightarrow 1596 \rightarrow 793 \rightarrow 794 \rightarrow 1967 \rightarrow 1968 \rightarrow 367 \rightarrow 488 \rightarrow 1826$ $\rightarrow 1825 \rightarrow 963 \rightarrow 888 \rightarrow 846 \rightarrow 1386 \rightarrow 74 \rightarrow 862 \rightarrow 1487 \rightarrow 426 \rightarrow 1488$ $\rightarrow 1489 \rightarrow 1084 \rightarrow 962 \rightarrow 1126 \rightarrow 1824 \rightarrow 1823 \rightarrow 486 \rightarrow 614 \rightarrow 552 \rightarrow 554$ $\rightarrow 553 \rightarrow 718 \rightarrow 1839 \rightarrow 487 \rightarrow 318 \rightarrow 1039 \rightarrow 927 \rightarrow 288 \rightarrow 936 \rightarrow 959$ $\rightarrow 298 \rightarrow 1116 \rightarrow 1510 \rightarrow 1117 \rightarrow 1778 \rightarrow 1777 \rightarrow 1776 \rightarrow 1114 \rightarrow 1504 \rightarrow 1503$ $\rightarrow 850 \rightarrow 828 \rightarrow 814 \rightarrow 223 \rightarrow 663 \rightarrow 1354 \rightarrow 760 \rightarrow 757 \rightarrow 290 \rightarrow 658$ $\rightarrow 1615 \rightarrow 148 \rightarrow 1766 \rightarrow 1193 \rightarrow 1870 \rightarrow 1219 \rightarrow 1996 \rightarrow 1997 \rightarrow 1998 \rightarrow 170$ $\rightarrow 1795 \rightarrow 1204 \rightarrow 911 \rightarrow 1004 \rightarrow 1846 \rightarrow 1847 \rightarrow 1848 \rightarrow 491 \rightarrow 339 \rightarrow 1849$ $\rightarrow 212 \rightarrow 588 \rightarrow 1393 \rightarrow 1068 \rightarrow 42 \rightarrow 584 \rightarrow 634 \rightarrow 635 \rightarrow 1419 \rightarrow 1418$ $\rightarrow 1075 \rightarrow 1417 \rightarrow 1416 \rightarrow 194 \rightarrow 500 \rightarrow 1915 \rightarrow 1916 \rightarrow 988 \rightarrow 1173 \rightarrow 987$ $\rightarrow 29 \rightarrow 1759 \rightarrow 1760 \rightarrow 142 \rightarrow 1581 \rightarrow 972 \rightarrow 254 \rightarrow 575 \rightarrow 373 \rightarrow 1051$ $\rightarrow 1633 \rightarrow 1634 \rightarrow 1635 \rightarrow 1636 \rightarrow 1151 \rightarrow 435 \rightarrow 648 \rightarrow 649 \rightarrow 1573 \rightarrow 477$ $\rightarrow 1983 \rightarrow 1243 \rightarrow 1012 \rightarrow 1547 \rightarrow 1122 \rightarrow 1525 \rightarrow 847 \rightarrow 890 \rightarrow 1447 \rightarrow 1090$ $\rightarrow 1446 \rightarrow 47 \rightarrow 1867 \rightarrow 742 \rightarrow 337 \rightarrow 1252 \rightarrow 1003 \rightarrow 1215 \rightarrow 1851 \rightarrow 331$ $\rightarrow 62 \rightarrow 713 \rightarrow 293 \rightarrow 724 \rightarrow 723 \rightarrow 48 \rightarrow 1388 \rightarrow 90 \rightarrow 1097 \rightarrow 1457$

 $\rightarrow 1096 \rightarrow 1458 \rightarrow 1081 \rightarrow 1432 \rightarrow 589 \rightarrow 476 \rightarrow 489 \rightarrow 1835 \rightarrow 171 \rightarrow 1984$ $\rightarrow 1244 \rightarrow 1333 \rightarrow 951 \rightarrow 1100 \rightarrow 1527 \rightarrow 1528 \rightarrow 1529 \rightarrow 36 \rightarrow 1442 \rightarrow 418$ $\rightarrow 647 \rightarrow 646 \rightarrow 218 \rightarrow 645 \rightarrow 145 \rightarrow 1884 \rightarrow 1885 \rightarrow 906 \rightarrow 994 \rightarrow 1509$ $\rightarrow 673 \rightarrow 674 \rightarrow 228 \rightarrow 1257 \rightarrow 1256 \rightarrow 800 \rightarrow 805 \rightarrow 258 \rightarrow 543 \rightarrow 566$ $\rightarrow 310 \rightarrow 1001 \rightarrow 567 \rightarrow 204 \rightarrow 542 \rightarrow 1023 \rightarrow 1285 \rightarrow 108 \rightarrow 930 \rightarrow 872$ $\rightarrow 1959 \rightarrow 785 \rightarrow 253 \rightarrow 787 \rightarrow 786 \rightarrow 73 \rightarrow 854 \rightarrow 899 \rightarrow 982 \rightarrow 423$ $\rightarrow 315 \rightarrow 1352 \rightarrow 573 \rightarrow 206 \rightarrow 572 \rightarrow 49 \rightarrow 1665 \rightarrow 671 \rightarrow 672 \rightarrow 1657$ $\rightarrow 1656 \rightarrow 454 \rightarrow 1625 \rightarrow 1624 \rightarrow 431 \rightarrow 1240 \rightarrow 1974 \rightarrow 1973 \rightarrow 1177 \rightarrow 1704$ $\rightarrow 1175 \rightarrow 1699 \rightarrow 1700 \rightarrow 255 \rightarrow 177 \rightarrow 1261 \rightarrow 1015 \rightarrow 25 \rightarrow 600 \rightarrow 599$ $\rightarrow 211 \rightarrow 66 \rightarrow 457 \rightarrow 1644 \rightarrow 281 \rightarrow 902 \rightarrow 1024 \rightarrow 1286 \rightarrow 197 \rightarrow 50$ $\rightarrow 23 \rightarrow 1104 \rightarrow 504 \rightarrow 1988 \rightarrow 1184 \rightarrow 823 \rightarrow 809 \rightarrow 1307 \rightarrow 386 \rightarrow 807$ $\rightarrow 1278 \rightarrow 1277 \rightarrow 377 \rightarrow 14 \rightarrow 1577 \rightarrow 651 \rightarrow 201 \rightarrow 534 \rightarrow 276 \rightarrow 1203$ $\rightarrow 1956 \rightarrow 1957 \rightarrow 116 \rightarrow 1008 \rightarrow 146 \rightarrow 229 \rightarrow 556 \rightarrow 557 \rightarrow 1320 \rightarrow 1321$ $\rightarrow 392 \rightarrow 1078 \rightarrow 1569 \rightarrow 1136 \rightarrow 969 \rightarrow 892 \rightarrow 278 \rightarrow 1871 \rightarrow 1089 \rightarrow 1445$ $\rightarrow 1444 \rightarrow 127 \rightarrow 1317 \rightarrow 1002 \rightarrow 910 \rightarrow 1576 \rightarrow 348 \rightarrow 1154 \rightarrow 1641 \rightarrow 156$ $\rightarrow 1837 \rightarrow 359 \rightarrow 1071 \rightarrow 1836 \rightarrow 345 \rightarrow 216 \rightarrow 1331 \rightarrow 565 \rightarrow 12 \rightarrow 638$ $\rightarrow 402 \rightarrow 1357 \rightarrow 120 \rightarrow 1358 \rightarrow 121 \rightarrow 1380 \rightarrow 660 \rightarrow 379 \rightarrow 1284 \rightarrow 568$ $\rightarrow 205 \rightarrow 1334 \rightarrow 1040 \rightarrow 1335 \rightarrow 1041 \rightarrow 327 \rightarrow 1086 \rightarrow 1439 \rightarrow 1440 \rightarrow 1441$ $\rightarrow 1087 \rightarrow 946 \rightarrow 1074 \rightarrow 324 \rightarrow 541 \rightarrow 878 \rightarrow 942 \rightarrow 879 \rightarrow 689 \rightarrow 531$ $\rightarrow 200 \rightarrow 268 \rightarrow 1674 \rightarrow 1675 \rightarrow 1676 \rightarrow 776 \rightarrow 775 \rightarrow 1724 \rightarrow 1183 \rightarrow 1723$ $\rightarrow 831 \rightarrow 857 \rightarrow 1684 \rightarrow 1170 \rightarrow 157 \rightarrow 1788 \rightarrow 1007 \rightarrow 57 \rightarrow 611 \rightarrow 364$ $\rightarrow 1341 \rightarrow 398 \rightarrow 1692 \rightarrow 1693 \rightarrow 1172 \rightarrow 1143 \rightarrow 1590 \rightarrow 381 \rightarrow 1293 \rightarrow 380$ $\rightarrow 1294 \rightarrow 684 \rightarrow 387 \rightarrow 1747 \rightarrow 1746 \rightarrow 1745 \rightarrow 1005 \rightarrow 913 \rightarrow 889 \rightarrow 1541$ $\rightarrow 355 \rightarrow 1209 \rightarrow 1832 \rightarrow 1105 \rightarrow 716 \rightarrow 715 \rightarrow 532 \rightarrow 305 \rightarrow 1355 \rightarrow 1356$ $\rightarrow 415 \rightarrow 1425 \rightarrow 1424 \rightarrow 1423 \rightarrow 1422 \rightarrow 1031 \rightarrow 1308 \rightarrow 924 \rightarrow 868 \rightarrow 1274$ $\rightarrow 376 \rightarrow 1454 \rightarrow 420 \rightarrow 1455 \rightarrow 1456 \rightarrow 126 \rightarrow 1395 \rightarrow 410 \rightarrow 1438 \rightarrow 133$ $\rightarrow 1736 \rightarrow 1735 \rightarrow 816 \rightarrow 829 \rightarrow 1513 \rightarrow 1514 \rightarrow 283 \rightarrow 527 \rightarrow 528 \rightarrow 514$ $\rightarrow 513 \rightarrow 24 \rightarrow 1198 \rightarrow 1782 \rightarrow 1199 \rightarrow 366 \rightarrow 1890 \rightarrow 1889 \rightarrow 1222 \rightarrow 1978$ $\rightarrow 1979 \rightarrow 1980 \rightarrow 1981 \rightarrow 1242 \rightarrow 1982 \rightarrow 921 \rightarrow 1025 \rightarrow 1291 \rightarrow 792 \rightarrow 294$ $\rightarrow 1942 \rightarrow 1233 \rightarrow 1943 \rightarrow 1944 \rightarrow 772 \rightarrow 771 \rightarrow 498 \rightarrow 1945 \rightarrow 178 \rightarrow 17$ $\rightarrow 657 \rightarrow 1048 \rightarrow 1350 \rightarrow 666 \rightarrow 667 \rightarrow 224 \rightarrow 1626 \rightarrow 1150 \rightarrow 1627 \rightarrow 1628$

 $\rightarrow 1629 \rightarrow 1630 \rightarrow 287 \rightarrow 926 \rightarrow 1789 \rightarrow 1790 \rightarrow 1791 \rightarrow 458 \rightarrow 1645 \rightarrow 977$ $\rightarrow 1157 \rightarrow 1646 \rightarrow 272 \rightarrow 490 \rightarrow 1843 \rightarrow 1213 \rightarrow 1516 \rightarrow 1515 \rightarrow 835 \rightarrow 864$ $\rightarrow 917 \rightarrow 1180 \rightarrow 1802 \rightarrow 241 \rightarrow 712 \rightarrow 1815 \rightarrow 1816 \rightarrow 138 \rightarrow 1497 \rightarrow 128$ $\rightarrow 71 \rightarrow 237 \rightarrow 202 \rightarrow 555 \rightarrow 1719 \rightarrow 161 \rightarrow 691 \rightarrow 1718 \rightarrow 328 \rightarrow 845$ $\rightarrow 1827 \rightarrow 463 \rightarrow 1558 \rightarrow 1559 \rightarrow 1560 \rightarrow 430 \rightarrow 1506 \rightarrow 135 \rightarrow 958 \rightarrow 1112$ $\rightarrow 1498 \rightarrow 1111 \rightarrow 1499 \rightarrow 1113 \rightarrow 1762 \rightarrow 396 \rightarrow 1339 \rightarrow 1045 \rightarrow 1338 \rightarrow 395$ $\rightarrow 1617 \rightarrow 1618 \rightarrow 1619 \rightarrow 1620 \rightarrow 451 \rightarrow 662 \rightarrow 1621 \rightarrow 152 \rightarrow 344 \rightarrow 1141$ $\rightarrow 1616 \rightarrow 450 \rightarrow 1727 \rightarrow 1728 \rightarrow 905 \rightarrow 858 \rightarrow 1748 \rightarrow 1749 \rightarrow 1750 \rightarrow 1751$ $\rightarrow 1752 \rightarrow 869 \rightarrow 677 \rightarrow 230 \rightarrow 52 \rightarrow 1668 \rightarrow 1165 \rightarrow 1534 \rightarrow 1535 \rightarrow 1036$ $\rightarrow 1313 \rightarrow 964 \rightarrow 300 \rightarrow 1543 \rightarrow 238 \rightarrow 225 \rightarrow 670 \rightarrow 669 \rightarrow 668 \rightarrow 1651$ $\rightarrow 1650 \rightarrow 1160 \rightarrow 1855 \rightarrow 909 \rightarrow 861 \rightarrow 1259 \rightarrow 314 \rightarrow 731 \rightarrow 282 \rightarrow 456$ $\rightarrow 1639 \rightarrow 1638 \rightarrow 1153 \rightarrow 976 \rightarrow 1796 \rightarrow 1797 \rightarrow 1798 \rightarrow 822 \rightarrow 836 \rightarrow 865$ $\rightarrow 1038 \rightarrow 1318 \rightarrow 279 \rightarrow 894 \rightarrow 1589 \rightarrow 1588 \rightarrow 1587 \rightarrow 1586 \rightarrow 16 \rightarrow 650$ $\rightarrow 1059 \rightarrow 1373 \rightarrow 1060 \rightarrow 1374 \rightarrow 1061 \rightarrow 1568 \rightarrow 1006 \rightarrow 944 \rightarrow 880 \rightarrow 76$ $\rightarrow 652 \rightarrow 312 \rightarrow 1929 \rightarrow 1928 \rightarrow 167 \rightarrow 301 \rightarrow 596 \rightarrow 419 \rightarrow 265 \rightarrow 1817$ $\rightarrow 1818 \rightarrow 1819 \rightarrow 1820 \rightarrow 1821 \rightarrow 354 \rightarrow 1205 \rightarrow 1811 \rightarrow 1812 \rightarrow 1813 \rightarrow 1206$ $\rightarrow 1814 \rightarrow 485 \rightarrow 199 \rightarrow 530 \rightarrow 529 \rightarrow 1936 \rightarrow 1232 \rightarrow 1860 \rightarrow 1861 \rightarrow 464$ $\rightarrow 1680 \rightarrow 1681 \rightarrow 851 \rightarrow 777 \rightarrow 779 \rightarrow 778 \rightarrow 1067 \rightarrow 1387 \rightarrow 196 \rightarrow 1$

A.6. Adjacency lists and solutions for 250, 500, 1000 and 2000-node $$_{\rm GRAPH}$$

Figure A.3: Solution to 2000-node graph (Hamiltonian cycle in red).

References

- E. Altman. Constrained Markov decision processes. Chapman and Hall/CRC, 1999.
- [2] M. Andramonov, J. A. Filar, A. Rubinov, and P. Pardalos. Hamiltonian cycle problem via Markov chains and min-type approaches. *Approximation and* complexity in numerical optimization: Continuous and discrete problems, 42:31– 47, 2000.
- [3] R. B. Bapat and T. E. S. Raghavan. An extension of a theorem of Darroch Rateliff in loglinear models and its application to scaling multi-dimensional matrices. *Linear Algebra and its Applications*, 114-115:705-715, 1989.
- [4] D. Blackwell. Discrete dynamic programming. Annals of Mathematical Statistics, 33(2):719–726, 1962.
- [5] J. A. Bondy and U. S. R. Murty. *Graph Theory with Applications*. The Macmillan Press Ltd., 1976.
- [6] V. S. Borkar. Topics in controlled Markov chains. Pitman Lecture Notes in Mathematics. Longman Scientific and Technical, Harlow, Essex, UK, 1991.
- [7] V. S. Borkar, V. Ejov, and J. A. Filar. Directed graphs, Hamiltonicity and doubly stochastic matrices. *Random Structures and Algorithms*, 25:376–395, 2004.
- [8] V. S. Borkar, V. Ejov, and J. A. Filar. On the Hamiltonicity gap and doubly stochastic matrices. *Random Structures and Algorithms*, 34(4):502–519, 2008.

- [9] M. Chen and J. A. Filar. Hamiltonian cycles, quadratic programming, and ranking of extreme points. In *Recent advances in global optimization*, pages 32–49. Princeton University Press, Princeton, 1992.
- [10] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a Large-Scale Traveling-Salesman Problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954.
- [11] D. den Hertog. Interior Point Approach to Linear, Quadratic and Convex Programming. Kluwer Academic Publishers, 1994.
- [12] J. E. Jr. Dennis. Nonlinear least-squares. In State of the Art in Numerical Analysis, pages 269–312. Academic Press, 1977.
- [13] M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. *IEEE Transactions* on Evolutionary Computing, 1:53–66, 1997.
- [14] V. Ejov, J. Filar, W. Murray, and G. T. Nguyen. Determinants and longest cycles of graphs. SIAM Journal on Discrete Mathematics, 22(3):1215–1225, 2009.
- [15] V. Ejov, J. A. Filar, and J. Gondzio. An interior point heuristic for the Hamiltonian cycle problem via Markov decision processes. *Journal of Global Optimization*, 29(3):315–334, 2004.
- [16] V. Ejov, J. A. Filar, M. Haythorpe, and G. T. Nguyen. Refined MDP-based branch-and-fix algorithm for the Hamiltonian cycle problem. *Mathematics of Operations Research*, 34(3):758–768, 2009.
- [17] V. Ejov, J. A. Filar, S. K. Lucas, and J. L. Nelson. Solving the Hamiltonian cycle problem using symbolic determinants. *Taiwanese Journal of Mathematics*, 10:327–338, 2006.
- [18] V. Ejov, J. A. Filar, S. K. Lucas, and P. Zograf. Clustering of spectra and fractals of regular graphs. *Journal of Mathematical Analysis and Applications*, 333:236–246, 2007.

- [19] V. Ejov, J. A. Filar, and M. Nguyen. Hamiltonian cycles and singularly perturbed Markov chains. *Mathematics of Operations Research*, 19:223–237, 2004.
- [20] V. Ejov, J. A. Filar, and F. Spieksma. On regularly perturbed fundamental matrices. *Journal of Mathematical Analysis*, 336:18–30, 2007.
- [21] V. Ejov, J. A. Filar, and J. Thredgold. Geometric interpretation of the Hamiltonian cycle problem via singularly perturbed Markov decision processes. *Optimization*, 52:441–458, 2003.
- [22] A. Eshragh, J. A. Filar, and M. Haythorpe. A hybrid Simulation-Optimization Algorithm for the Hamiltonian cycle problem. DOI 10.1007/s10479-009-0565-9, 2009.
- [23] E. Feinberg. Constrained discounted Markov decision processes and Hamiltonian cycles. *Mathematics of Operations Research*, 25(1):130–140, 2000.
- [24] E. Feinberg and M. T. Curry. Generalized pinwheel problem. Mathematical Methods of Operations Research, 62:99–122, 2005.
- [25] E. Feinberg and A. Shwartz. Constrained discounted dynamic programming. Mathematics of Operations Research, 21:922–945, 1996.
- [26] J. A. Filar, M. Haythorpe, and G. T. Nguyen. A conjecture on the prevalence of cubic bridge graphs. *Discussiones Mathematicae Graph Theory*, 30(1):175–179, 2010.
- [27] J. A. Filar and D. Krass. Hamiltonian cycles and Markov chains. *Mathematics of Operations Research*, 19:223–237, 1994.
- [28] J. A. Filar and J-B. Lasserre. A non-standard branch and bound method for the Hamiltonian cycle problem. ANZIAM Journal, 42(E):556–577, 2000.
- [29] J. A. Filar and K. Vrieze. Competitive Markov decision processes. Springer, 1996.

- [30] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.
- [31] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.
- [32] B. Gavish and S. C. Graves. The travelling salesman problem and related problems. Working Paper OR-078-78, Operations Research Center, MIT, 1978.
- [33] P. Gill, W. Murray, and M. Wright. *Practical Optimization*. Academic Press, New York, NY, 1981.
- [34] G. H. Golub and C. F. Van Loan. *Matrix Computations*. Johns Hopkins University Press, 1996.
- [35] J. Gross and J. Yellen. *Graph theory and its application*. CRC Press, 2005.
- [36] D. Heyman. A decomposition theorem for infinite stochastic matrices. Journal of Applied Probability, 32:893–901, 1995.
- [37] R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge University Press, 1990.
- [38] D. S. Johnson and L. A. McGeoch. The travelling salesman problem: a case study in local optimization. Local Search in Combinatorial Optimization. John Wiley and Sons, London, 1997.
- [39] L. C. M. Kallenberg. Linear Programming and Finite Markovian Control Problems. Mathematics Centre Tracts 148, Amsterdam, 1983.
- [40] J. G. Kemeny and J. Laurie Snell. *Finite Markov chains*. Springer-Verlag, 1976.
- [41] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. *Science*, 220:671–680, 1983.
- [42] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons, Chichester, 1985.

- [43] K. May. Derivatives of Determinants and Other Multilinear Functions. Mathematics Magazine, 38(5):307–308, 1965.
- [44] M. Meringer. Fast generation of regular graphs and construction of cages. Journal of Graph Theory, 30:137–146, 1999.
- [45] G. T. Nguyen. Hamiltonian cycle problem, Markov decision processes and graph spectra. PhD thesis, University of South Australia, 2009.
- [46] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research. Springer, 1999.
- [47] A. J. Orman and H. P. Williams. A survey of different integer programming formulations of the traveling salesman problem. Technical Report LSEOR 04.67. London School of Economics and Political Science, 2004.
- [48] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. Wiley-Interscience, 1994.
- [49] G. Reinelt. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. University of Heidelberg.
- [50] R. Robinson and N. Wormald. Almost all regular graphs are Hamiltonian. Random Structures and Algorithms, 5(2):363–374, 1994.
- [51] C. R. Ronald and G. C. Derek. The graph isomorphism disease. Journal of Graph Theory, 1(4):339–363, 1977.
- [52] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statistics, 35:876–879, 1964.
- [53] A. Tucker. Applied Combinatorics. John Wiley & Sons, 1980.
- [54] S. Vajda. Mathematical Programming. Addison-Wesley, London, 1961.
- [55] E. W. Weisstein. Horton Graph. http://mathworld.wolfram.com/HortonGraph.html. MathWorld–A Wolfram Web Resource.

[56] D. R. Woodall. Sufficient conditions for circuits in graphs. Proceedings of the London Mathematics Society, 24:739–755, 1972.