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Abstract

We address the nonlinearly constrained optimization problem: to find a local minimizer
for an objective function subject to nonlinear inequality constraints, where all functions
are twice continuously differentiable. A key challenge in developing a fast algorithm for
solving this problem is to find an accurate approximation to the Hessian of the Lagrangian
V2L(z,)), the second-derivative matrix that reflects the curvature of the objective and
constraints. In this dissertation we develop a new technique for forming a quasi-Newton
approximation to the Hessian of the Lagrangian and apply it to a sequential quadratic
programming (SQP) method.

The common approach in approximating V2L£(z,\) has been to follow quasi-Newton
techniques used for unconstrained optimization. A single, positive-definite approximation
matrix is maintained using the BFGS quasi-Newton update, and typically the dependence of
the Lagrangian on the multipliers is ignored. This direct approzimation may be poor even on
ideal problems. We aim to improve the quality of the quadratic model and the convergence
rate of the SQP algorithm with the following alternative approach. We first approximate
the Hessian of the objective function and the Hessian of each constraint function using
the symmetric rank-one (SR1) update, and then we combine these individual estimates to
obtain an estimate of V%E(m, A). This disaggregated approximation can be applied efficiently
to large, sparse problems.

An important challenge in this technique is that it can result in an indefinite approxi-
mation, which when used within an SQP method creates a nonconvex subproblem. When
the direct approximation is used, the QP subproblems that arise in SQP algorithms are
strictly convex and have unique solutions. An extensive theory of SQP methods is based on
the property that the solution of the QP is a descent direction for various merit functions.
When the QP is not convex, this property may not hold. To obtain a descent direction

may require modifying the QP subproblem. Our objective is to construct a suitable search



direction without modifying the subproblem unnecessarily.

Murray and Prieto’s second-derivative SQP algorithm [MP99] uses an indefinite Hes-
sian approximation, but constructs search directions based on terminating QP subproblems
(even convex ones) at the first stationary point. We develop rules and Hessian modifications
that eliminate the need to stop at the first stationary point. If the QP is strictly convex,
the rules enable the minimizer to be determined without any modification to the subprob-
lem. A MATLAB implementation of this SQP algorithm with the disaggregated Hessian
approximation and the SR1 quasi-Newton update achieves superior performance on certain

problems when compared to the direct BFGS Hessian approximation.
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Chapter 1

Introduction

The problem of finding a local minimizer z € IR" for a nonlinear function f(z) subject to
a set of nonlinear constraints c¢(z) > 0, where c¢(z) € IR™, is the nonlinearly constrained
optimization problem NP. There are many alternative forms of this problem. Initially, we

will focus on the inequality constrained nonlinear program

INP minimize f (z)

subject to ¢(z) >0,

where f(x) and ¢;(x) are assumed to be twice continuously differentiable functions. Later,
and in particular for subproblems, we will convert to the equality and bound constrained

nonlinear program

BNP minimize f(z)

subject to ¢(z) =0, z>0.

Nonlinear optimization problems have applications in chemical processing, trajectory
optimization, mechanical structure design, and many other areas. Optimization problems
with nonlinear constraints are significantly more difficult to solve than unconstrained or
linearly constrained optimization problems. Algorithms to solve INP may take many itera-
tions and function evaluations, with each function evaluation being an expensive operation
in some cases. Performance in practice can be measured by counting iterations, function

evaluations, gradient evaluations, and the computational cost of determining an iterate.
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Sequential quadratic programming (SQP) is a popular class of methods considered to
be effective and reliable for solving INP. At each iteration of an SQP method, one solves a
quadratic program (QP) that models INP at the current iterate. The solution to the QP
is used as a search direction to determine the next iterate. The QP objective is usually
assumed to be strictly convex.

In this thesis, we introduce a quasi-Newton approximation that produces a nonconvex
QP subproblem!, and we describe an SQP method that allows for such a subproblem. In
certain cases, the approach advocated performs better than the standard positive-definite
approximation. The quality of the quadratic model is better, and this impacts the efficiency
and the convergence rate of the method.

This chapter begins by introducing the problem INP, defining what we mean by a “so-
lution,” and summarizing the common features of methods for solving INP. The rest of the
chapter gives background on SQP methods, including local and global convergence prop-
erties, quasi-Newton Hessian approximations, and the QP subproblem. Finally there is a

preview of later chapters.

1.1 Properties of a solution to NP

Local minimizer
A neighborhood N(z*) is defined as the set of all = such that ||z — z*|| < §, for some § > 0.
Definition 1.1.1 A point z is a local minimizer of INP if

1. * is feasible with respect to all the constraints, i.e., c(z*) > 0;

2. there exists a neighborhood N(z*) such that

f(£") < f(z) for all feasible z € N(z¥). (1.1)

Methods for solving INP are based on seeking a point satisfying conditions that hold at
a local minimizer. Fundamental to the understanding of these conditions is the Lagrangian,

a function in the variables z and the Lagrange multipliers A, defined as

L(z,N) = f(z) — ATe(z).

1“QP subproblem that might not be strictly convex” is more accurate, but the correct meaning should
be clear from context.
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The Lagrangian is used to express first-order and second-order optimality conditions for a

local minimizer. The first-order optimality conditions are also known as the Karush-Kuhn-
Tucker (KKT) conditions.

Optimality conditions

The term active constraint will be used to designate a constraint that is satisfied exactly at
the current point, and the set of all constraints active at a given point will be referred to as
the active set at the point. Let &(x) be the vector of active constraints at z, and let A(z)
be the matrix whose row i is the transposed gradient vector ¢;(x)T.

A constraint qualification must hold to permit the analysis of feasible arcs required by
the optimality conditions. One such constraint qualification is that the gradients of the
active constraints at z* be linearly independent, i.e., the matrix A(x*) should have full row
rank. A point that satisfies this particular constraint qualification is known as a regular
point. For more background on the optimality conditions, see [BSS93, pp. 131-195].

If z* is a local minimizer and a regular point of INP, then for some Lagrange multiplier
X >0,

c(z®) > 0, c(z®)I'N =0, Vo L(z", X)) =V (") — AN =0, (1.2)

where A(z) = Ve(z) is the Jacobian matrix. These conditions are known as the first-order
necessary optimality conditions, and a point that satisfies these conditions is known as a
KKT point. Note that 2* is a stationary point of the Lagrangian (with respect to z), but not
necessarily an unconstrained minimizer of the Lagrangian. For the special case of convex
programs, V2f(z*) = 02.
Suppose z* is a local minimizer and a regular point of INP. Then, z* is a KKT point
and
Vv e N(AY) vIV2L(z", X ) v >0, (1.3)

where N'(A*) denotes the null-space of A* = A(z*). These are known as the second-order
necessary optimality conditions. Unless z* is a vertex, second derivatives are required to
determine if 2* satisfies (1.3). Since the algorithms we explore require only first derivatives,

we cannot hope to prove such algorithms terminate at a point satisfying (1.3), and so we

2The symbol > is used to indicate a matrix is positive definite, and > indicates positive semi-definiteness.
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consider a “solution” to be any KKT point. We use the term stationary point for a point

z that is feasible and for which X exists such that V,L(z,\) = 0.

1.2 Common features of methods

Measuring algorithmic performance

Successful algorithms for INP need to be both efficient and robust. Under reasonable as-
sumptions, a robust algorithm must be globally convergent (convergent from any starting
point), and able to solve in practice both well-conditioned and ill-conditioned problems.
The ability of an algorithm to achieve a high level of accuracy in the solution also depends
on its convergence rate in the neighborhood of the solution. For small dense problems,
the efficiency of an algorithm can be measured by counting operations such as function
evaluations and gradient evaluations. For sparse problems, storage requirements and the
cost of operations, such as factorizing a matrix or matrix-vector multiplication, must also
be considered, and computation time is frequently reported. Analysis of this type has been
applied to large-scale algorithms such as MINOS [MS78, MS82] and SNOPT [GMS97].

Techniques for global convergence

Linesearch methods Nearly all techniques for nonlinear programming are iterative, pro-
ducing a sequence of subproblems related in some way to the original problem. Certain
methods in their elementary form (such as Newton methods) have rapid local convergence
rates, but may fail to converge from all starting points. Linesearch methods are one means
of ensuring global convergence while attempting to maintain fast local convergence.
Linesearch methods limit the size of the step taken from the current point to the next

iterate. Such methods generate a sequence of iterates of the form
I =z+ ap, (1.4)

where p is the search direction obtained from the subproblem, and « is a positive scalar
steplength. For unconstrained minimization, or if feasibility is maintained for the con-
straints, the best steplength is one that minimizes the objective function f(z). However,
determining a minimizer along p is also an iterative process, and this time-consuming op-

eration is typically not done in practice. Instead, z is determined by a finite process that
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ensures a sufficient reduction in f(z). For an overview of linesearch methods (for uncon-

strained optimization), see Chapter 1 of Fletcher [F1e87].

Trust-region methods Linesearch methods are our focus; however, the results obtained
for quasi-Newton approximations are equally applicable to trust-region methods, the main
alternative to linesearch methods. The motivation behind the trust-region approach is that
the minimum of the local quadratic model should be accepted so long as the model ade-
quately reflects the behavior of the function(s) under consideration. Trust-region methods
choose a radius A and then determine Z that is the global minimizer of a model of the
function subject to || T — z|| < A.

For unconstrained problems, if f(z) is sufficiently lower than f(x) (compared to the
change predicted by the model), A is reduced according to some rule, and the process is
repeated. If the reduction in f(z) is acceptable, A can be made larger. For an overview of

trust-region methods (for unconstrained optimization), see Chapter 5 of Fletcher [F1e87].

Merit functions Regardless of whether a linesearch or trust-region method is used,
when feasibility of the iterates is not maintained, it can be difficult to guide the choice
of steplength. For problems with only linear constraints, it is straightforward to maintain
feasibility at every iteration. But, when even a single constraint is nonlinear, maintaining
feasibility at every iteration becomes difficult, if not impossible. For infeasible iterates, it
is not immediately obvious how to choose a steplength ay; we would like the next iterate
to minimize the objective function, but we might also like to reduce the infeasibilities of
the constraints. To ensure that progress is made towards the solution we define a merit

function that can be used to measure whether one point is better than another.

Quadratic model of Lagrangian

A wide variety of methods have been proposed for solving constrained optimization prob-
lems; these include reduced-gradient methods (attributed to Wolfe [Wol62]), penalty and
barrier function methods (see [FM68]), methods based on augmented Lagrangians [AS58,
Hes69, Pow69] or projected augmented Lagrangians [Rob72], and SQP methods. (For a
survey on constrained optimization methods, refer to the chapter by Gill et al. in the opti-
mization volume edited by Nemhauser et al. [GMSW89, pp. 171-210].) All of these methods



6 CHAPTER 1. INTRODUCTION

form quadratic approximations to composite functions of the objective function and con-
straints, this being the Lagrangian in the case of SQP methods. Quasi-Newton methods

are used to approximate the Hessians.

Quasi-Newton methods were originally developed for unconstrained optimization, where
steps are taken that minimize a quadratic model of a single function, the objective function.
A key feature of quasi-Newton methods is that the Hessian approximation is based on first
derivatives only. For linesearch methods, the Hessian approximation needs to be positive
definite, but trust-region methods allow the matrix to be indefinite. Quasi-Newton tech-
niques have been extended directly to constrained optimization, despite the structure of
the Hessian being more complex. (For a constrained problem, the Hessian of the quadratic
model incorporates the objective function and the constraints, and often includes Lagrange
multiplier estimates or penalty parameters.) Typically the composite Hessian is approxi-

mated using a single matrix and the BFGS quasi-Newton update.

We propose to disaggregate the Hessian of the Lagrangian and form a separate quasi-
Newton approximation for the Hessian of each constraint function and the objective func-
tion. While the BFGS update is the clear choice for positive-definite Hessian approximations
in unconstrained optimization, in the constrained case using the symmetric rank-one (SR1)
update has advantages. Along with the SR1 update, disaggregation is used to improve the

properties of the Hessian approximation.

Disaggregating the quasi-Newton Hessian approximation has benefits not only for SQP,
but for other methods as well. For example, augmented Lagrangian methods have sub-
problems that minimize the Lagrangian plus an additional quadratic penalty term in the
constraints, and such subproblems may be solved using a quasi-Newton method. Disag-
gregating the Hessian approximation allows easy incorporation of exact second derivatives
for components of the Hessian that can be computed analytically. Moreover, quasi-Newton

estimates from one iteration can be used as a starting point for the next major iteration.

On the other hand, disaggregation can make the Hessian approximation indefinite and
may require significantly more storage. For trust-region methods, indefiniteness does not
present a problem. For penalty-function methods, the indefinite Hessian could be modified
to be positive definite by a modified Cholesky factorization, executed once per iteration.
But for SQP methods, it is necessary to revise both the QP subproblem and the method of

solution.
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1.3 SQP methods

1.3.1 Background

The original SQP method due to Wilson [Wil63] generates a sequence of directions p, each
of which is the minimizer to a QP subproblem that is a local model of INP. This is an
iterative method from some starting point zy, and at iteration k, the basic SQP method
takes the full step zyy1 ¢ zx + p. For simplicity, we omit the subscript & whenever clear
from context. In general, x = zy and T = xg41.

The QP subproblem directly corresponding to INP has the form

QP minimize ¢7p + %pTH P
P

subject to ¢+ Ap > 0,

where g = g(x) = Vf(x) is the gradient of the objective at the current iterate z, H =
V2,_L(z, ) is the Hessian of the Lagrangian with latest multiplier estimate A\, A = A(z) is
the Jacobian of the constraints, and ¢ = ¢(x). It is often assumed that H > 0, in which
case the QP has a unique solution.

The linear constraints of IQP are a first-order approximation to the nonlinear constraints
at the current iterate . The quadratic objective of the QP models the curvature of the
Lagrangian. For reasons to be discussed later, the QP gradient g equals the objective
gradient rather than the full gradient of the Lagrangian.

In the neighborhood of a solution and under certain other assumptions, the solution z*
to INP minimizes the quadratic model to the Lagrangian £(z, )\*) in the subspace defined
by the linearized active constraints at . In other words, z* is the solution to the IQP
subproblem at z = z* and A = X*.

In its original form, Wilson’s SQP method is neither easy to implement (it requires exact
second derivatives), nor guaranteed to converge, for the same reasons Newton’s method for
unconstrained optimization may fail to converge. Murray [Mur69] suggested a response to
the first problem, that the Hessian of the Lagrangian could be replaced by a quasi-Newton
approximation B. To ensure global as well as local convergence, we choose to analyze SQP
methods combined with a linesearch method (1.4), having updates of the form Z = z + ap,
where the steplength « is determined by a linesearch to reduce a merit function.

For an overview of SQP methods, see [GMW81] or Powell [Pow83]. For recent work on
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large-scale SQP, see [GMS97] or [Mur97].

1.3.2 Local and global convergence properties

In practice, SQP methods have proven to be extremely effective on general nonlinearly con-
strained problems. Favorable local convergence properties of SQP follow, under suitable
assumptions, from the fact that when B closely approximates V2L(z, \), the QP subprob-
lems generate the Newton direction. If unit steps are taken and the method converges, a
quadratic asymptotic rate of convergence ensues. With a carefully chosen merit function,

the method is globally convergent with no deterioration in the convergence rate.

Merit functions

Merit functions are used to define an “improving” sequence and to prevent the method from
diverging even from unfavorable starting points. If a merit function is used in conjunction
with a linesearch to choose the steplength « at each iteration, an SQP method can be proven
to converge globally.

Three important considerations when choosing an appropriate merit function for an

algorithm are
1. Choosing steplengths based on the merit function should lead to global convergence.

2. It should be possible to achieve sufficient decrease in the merit function given the

search direction defined by the subproblem (i.e., for some value of the steplength).

3. The merit function should not inhibit the rate of convergence (i.e., the steplength

should be 1 whenever possible).

Popular choices for the merit function with the SQP method include the absolute value
merit function and the augmented Lagrangian merit function. Both of these merit functions
use penalty parameters, and the choice of penalty parameter can have a substantial effect
on efficiency.

The absolute value (or 1) merit function is

Mi(z,p) = f(z) + 0D le; (@), (1.5)
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where

¢; = —min(0,¢).

It can be shown that if the penalty parameter p is sufficiently large, a local minimizer of
INP is also a local minimizer of (1.5). Like the above function, most merit functions involve
a parameter whose value is not known initially (e.g., p). The absolute value merit function
is an ezact penalty function, in the sense that for p sufficiently large, z* is an unconstrained
minimizer of M (z, p). In addition, p can always be chosen so that the SQP search direction
p from the QP subproblem is a descent direction. However, requiring a decrease in M; can
inhibit superlinear convergence (the “Maratos” effect).

The augmented Lagrangian merit functions are based on the fact, implied by the opti-
mality conditions, that z* is a stationary point of the Lagrangian (using optimal multipliers)
but not necessarily a minimizer of the Lagrangian. An augmented Lagrangian is created by
augmenting the Lagrangian with a new term that vanishes at z*, but alters the Hessian of
the Lagrangian to make it positive definite in the subspace of vectors defined by j(x*)

We shall be concerned mainly with a special augmented Lagrangian merit function
L(z, A\, s,p) that has continuous second derivatives; the Lagrange multipliers and con-
straint slacks are treated as variables that are updated during the linesearch. More will be
said about this merit function in Chapter 2.

To ensure global convergence, the search direction found from the QP is required to be
a direction of sufficient descent for the chosen merit function. For a positive-definite QP (a
QP with a positive-definite Hessian), the solution to the QP provides this descent direction
because, for a sufficiently large penalty parameter p, it can be shown that the following

inequality can always be satisfied:
(AzT, ANT, AsT)V L, < —%AmTBAx. (1.6)

An important point is that this inequality is satisfied for any positive value of p when ||c||

is sufficiently small (and B > 0).

Local convergence with exact second derivatives

Given an equality-constrained nonlinear problem ENP and a point z(, suppose exact second
derivatives and multiplier estimates are available, H is set to V2,L(zo,\o), and H > 0.

Then, the direction p that is the solution of the QP subproblem produced by the SQP
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method is the same as the “Newton step” p that is the step computed by Newton’s method

applied to the first-order necessary conditions for ENP.

The first-order necessary conditions for ENP that hold at a minimizer (z*, X*) are
>0, VoL@, XH)=0, =) =0, (1.7)

where g(z) = Vf(z), A(z) = Ve(z), and V. L(z", ") = g(z") — A(#*)TX*. The Newton
step (7, A) from (zg, \g) towards a KKT point (z*, \*) (a point that satisfies (1.7)) is the

solution to the system of equations

Vi L(wo, Xo)  Alzo)” p 9(wo) — A(zo)"A
A(JIQ) 0 —5\ C(-TO)

The first-order necessary conditions for a solution (p, )\*) to the QP subproblem,

EQP miﬂ%mize 9(z0)™p + 50" V2, L(x0, Xo)p

subject to ¢(zo) + A(zo)p =0,

are equivalent to (1.8) except that A in the QP is an estimate of X* itself rather than an
estimate of X* — )\g. It follows that p = 5, and hence the rate of convergence of the SQP
method under the above assumptions (exact second derivatives, H > 0, unit steps taken)
should be the same as for Newton’s method. Under mild additional assumptions, Newton’s
method has a quadratic asymptotic rate of convergence. This analysis generalizes to the
inequality case following a result by Robinson [Rob72] that shows the active set at the
solution of the QP is identical to that of the nonlinear program when sufficiently close to

the solution.

For more details on the quadratic convergence of SQP methods, see Fletcher [Fle74,
pp- 228-234] or Bertsekas [Ber82, pp. 234-256]. Goodman [Goo85] also proves quadratic
convergence for an algorithm derived from Newton’s method for minimizing nonlinear equal-
ity constraints and shown to be equivalent to SQP with least-squares Lagrange multiplier

estimates.
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Local convergence with approximate Hessian

When exact second derivatives of the objective function f and the constraints c are available,
the ideal choice for the QP Hessian at the kth iteration is V2L (zy, A\x), where z; and X
are the latest approximations to z* and X*.

If approximations are used in place of exact second derivatives, the steps taken are no
longer Newton steps, and the convergence rate may deteriorate. Let By be an approximation
to the Hessian of the Lagrangian at the kth iteration. If it is assumed, as by Boggs, Tolle,
and Wang [BTW82], that the {Bj} satisfy

T 2 X yk
12 (B = Ve LG, Xl _ (1.9)

lim

k=00 [Pkl
then superlinear convergence can be shown for the SQP method, under certain other as-
sumptions.

When an inexact Hessian approximation is used, the infeasibilities tend to converge to
zero faster than the reduced gradient converges to zero (that is, feasibility is reached faster
than optimality). This happens because the component of the search direction p in the
null-space of the constraints (the optimality component) is based on approzimate second-
derivative information, whereas the range-space component of p (and hence the degree of
infeasibility) is much less dependent on H. If unit steps are eventually taken and the
Jacobian of the active constraints at the solution has full rank, then the infeasibilities (and
hence the range-space component of p) converge to zero at a quadratic rate. Consequently,
final search directions tend to have null-space components that are large relative to the
range-space components. Sometimes the unit step is not taken because either the Hessian
approximation is poor or the Jacobian at the solution is singular (or ill-conditioned). Under
such circumstances, the range-space and null-space components of p; converge linearly at
best.

1.3.3 Approximating the Hessian

To assure a unique minimizer for the subproblem, some SQP methods require the QP Hessian
H to be positive definite. Since the Hessian of the Lagrangian can be indefinite even at
the solution, this requirement interferes with the effective use of exact second derivatives.

A further difficulty with exact second derivatives is that in many cases they are either
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unknown or too costly to compute.

In practice the Hessian of the Lagrangian is often approximated from first derivatives
using a quasi-Newton approach that produces a positive-definite matrix. Most often a
single symmetric matrix is updated at each iteration. We refer to this approach as the

direct approzimation of the Hessian.

Quasi-Newton methods for unconstrained optimization

Quasi-Newton methods were originally developed for unconstrained and linearly constrained
problems. They are “Newton-like” methods in which the Hessian of a function, say F, is
replaced by an approximation matrix B. This approximation is usually based on first-
derivative information of F. Beginning with an initial matrix such as the identity matrix,

it is updated at each iterate z in the form

B=B+E. (1.10)

The intent is that eventually the matrix B will become a close approximation of the exact
Hessian. At every iteration, a quasi-Newton method attempts to update the approximation
matrix with curvature information gained along the most recent search direction. This is

accomplished by choosing an update E that satisfies the quasi-Newton condition,

B(z —z)=VF - VF. (1.11)
Define
=% —uw, (1.12)
and
y =V, F(Z) — Vo F(z). (1.13)

Then the quasi-Newton condition can be expressed as

B =y. (1.14)
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The quasi-Newton condition (1.11, 1.14) comes from the first-order Taylor series ap-

proximation to the gradient of the objective function:
VF(z) = VF(z) + V F(2)(z — ) + o||z — z]]).

The error is zero for quadratic functions.

Equation (1.14) does not determine B umiquely. One can choose the unique update
that minimizes the complexity or size of the update E, for example, while satisfying (1.14).
Towards this end, we may prefer the SR1 update, which is the unique symmetric, rank-one
update to satisfy (1.14). A quasi-Newton update that can be used to maintain positive
definiteness is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. For this reason,
and because it has proven effective in practice for unconstrained and linearly constrained
problems, the BFGS update is widely used in SQP methods. BFGS is a rank-two update.

Most quasi-Newton methods, such as BFGS and SR1, are special cases of the one-
parameter family of updates introduced by Broyden [Bro70]. The BFGS update is given

by
B&§'B gyt
TBs  yIs

If B is a positive-definite matrix, it is well known that the BFGS update maintains pos-

B=B-—

(1.15)

itive definiteness if and only if y7¢ is positive. Fortunately, for unconstrained minimization
it is possible to terminate the linesearch where y”§ is positive. For unconstrained minimiza-
tion, it can be shown that a Broyden method with exact linesearches terminates after at
most n iterations on a quadratic function in n variables with a positive-definite Hessian,
and that if the number of iterations reaches n, the Broyden approximation equals the ex-
act Hessian. Note that this result requires exact line searches, and that given a random
independent set of n directions such an update is not guaranteed to converge.

For more background on quasi-Newton methods see Gill, Murray and Wright [GMW81],
Dennis and Schnabel [DS83], Fletcher [Fle81], and Fletcher[Fle87].

Quasi-Newton extension to constrained optimization

The idea of using a quasi-Newton update in an SQP method to estimate the Hessian of the
Lagrangian was proposed by Murray [Mur69]. The most common approach, which we call
the direct approzimation, models the Lagrangian Hessian V2, L(x,7) with a single matrix

B that combines the Lagrange multiplier estimates with the second-derivative estimates for
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the objective and constraints. The quasi-Newton condition (1.14) is extended to constrained

optimization by redefining the gradient difference as
y=VyL(z,m) -V L(x,). (1.16)

The BFGS update (1.15) can be applied with this definition of y to update the matrix B.

However, one of the properties that make BFGS methods appealing for unconstrained
problems—its maintenance of positive definiteness of B—is no longer assured. Since with
nonlinear constraints the Hessian of the Lagrangian is usually positive definite only in a
subspace, the linesearch cannot always be terminated where y76 > 0. When y7§ < 0, either
y must be modified or the update must be skipped. This could happen at every iteration,
at the cost of a poor Hessian approximation. For linear constraints, it could also happen
that 476 < 0, but only when a new bound or constraint is encountered in the linesearch,

and at a later iteration the update can be performed.

Large-scale quasi-Newton approaches

Problems generated by real-world applications are often large, but sparse in terms of the
number of variables appearing in any single constraint or the number of constraints in-
volving any single variable. Methods have been developed to reduce the storage and effort
required to handle large-scale problems, including limited-memory methods, reduced Hes-

sian approximations, sparse quasi-Newton approximations, and partial separability.

1.3.4 Solving the QP subproblem

When discussing algorithms to solve the QP subproblem, we convert the nonlinear program
to the form BNP having equality constraints and simple bounds. This naturally results in

only lower bounds on the QP subproblem variables:

BQP minimize ¢'p + %pTH P
P (1.17)
subject to Ap = —¢, p> —ux.

When H > 0 and the minimizer of the QP is used to define the search direction, it is not
necessary in a theoretical discussion of an SQP algorithm to define how the QP is solved.

If H % 0, there may be more than one local minimizer, so the method used to solve the
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subproblem, and well as the method to compute an initial starting point for EQP, must be
explicitly defined. Moreover, for the purpose of computing a search direction of sufficient
descent for the merit function, just having a minimizer may not be enough. More details

on finding search directions from QP’s are in Chapter 2.

Null-space active set methods

Null-space active-set methods are an efficient way of solving positive-definite QP’s when
the dimension of the null-space is not too large (< 1000) [GMWS81]. A typical active-set
procedure starts with a feasible point pg and a working set (a subset of the active constraints
and bounds). Variables whose bounds are in the active set are called fized, and the others
are called free.

The method proceeds to move to a constrained stationary point of the QP by holding
the fixed set of variables constant and temporarily ignoring the other bounds. Consider the
equality-constrained QP (EQP) defined by the free variables at the current point (see below).
If the solution d* to EQP is feasible with respect to all the bounds, the full step of length
one is taken and a stationary point is reached for the QP. Otherwise the maximum feasible
step with respect to the bounds is taken along the search direction d*, and a bound is added
to the working set. This sequence repeats until the full step is taken. At the stationary
point, if for any bound there exists a negative Lagrange multiplier, the associated bound is
dropped from the working set and the procedure starts over. If all multipliers are positive,
the algorithm stops. If the QP is feasible and has no degenerate vertices, this procedure
terminates in a finite number of iterations.

The EQP is a problem in the current set of free variables:

c e . T 1
minimize d+ 2d"H.pnd
demn . IrR@ T 20 Hen

subject to Aprd =0,

where d are the free variables from (1.17), Ay is the Jacobian in the free variables, Hyy is
the Hessian in the free variables, gy is the gradient of the QP objective computed at the
current point in the free variables, and 7 is the number of free variables. The solution to

this EQP is given by

d* = Zprd, where ZZRHFRZFRd = _ZFTRgFR7
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and Zyy is a basis for the null-space of the rows of Az;. For this process to work, H and
Hyr do not need to be positive definite, but the reduced Hessian ZgRHFRZFR needs to be
positive definite on every subspace encountered. Alternatively, d* may be found by solving
the KKT system

Hp AT d*

T - 9. (1.18)

Az 0 —u* 0

directly for d* and the Lagrange multipliers ;*.

For more details on the active-set method to solve a strictly convex QP, see Chapter 2.

Search directions not based on QP minimizer

In two recent papers, Murray and Prieto describe SQP algorithms where search directions
are based not on the minimizer of the QP but on a stationary point of the QP combined
with a descent direction formed from negative multiplier estimates [MP95, MP99]. Their
SQP algorithms are proven to converge despite using only incomplete solutions of the sub-
problems.

In the first paper [MP95], Murray and Prieto prove convergence results for an SQP
algorithm ETSQP that uses a positive-definite quasi-Newton approximation and permits
early termination of the active-set method to solve the QP subproblem at any stationary
point.

In the second paper [MP99], they describe an SQP algorithm SQP2D that replaces
the quasi-Newton approximation with a Hessian based on exact second derivatives. To
manage the nonconvex QP subproblems that result, this algorithm actually requires early
termination of the subproblems. An adaptation of their algorithm called IDSQP is described
in Chapter 2 and is the basis of a method we propose in Chapter 5 to find a search direction

from a nonconvex QP.

1.4 Main contributions

1.4.1 Disaggregated Hessian approximations

In Chapters 3 and 4, we explore how best to approximate the Hessian of the Lagrangian,
while addressing the issues of asymptotic convergence and sparsity. The direct quasi-Newton

approximation has not been shown to converge to the Hessian (and hence does not satisfy
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conditions for superlinear convergence) even on simple problems, and in certain cases a poor
convergence rate does eventuate.

We propose to disaggregate the Hessian approximation, that is, to approximate the
individual Hessians of V2F and V2¢; (i = 1,...,m) and form the weighted sum, instead
of approximating the Hessian of the Lagrangian directly. This approach is an application
of partial separability to quasi-Newton approximation of the Hessian of the Lagrangian,
and as such it addresses the challenges presented by sparse problems. As a side-effect, it
becomes necessary to relax the requirement for a positive-definite approximation.

There are several advantages to this approach. First, an indefinite Hessian approxi-
mation has the potential to be a more accurate estimate of the exact Hessian. If second
derivatives of some of the functions are known, they can be used. The approximations of the
individual Hessians are independent of the Lagrange multiplier estimates, so the estimate
of V2L can respond quickly to changes in the multiplier estimates. Lastly, if the individual
Hessians are quadratic functions, then after a small number of iterations the matrices will

be essentially exact.

1.4.2 Nonconvex QP subproblems

H might not be positive definite (or even semidefinite) if it is based on exact derivatives,
finite-differences, or a quasi-Newton method that does not ensure positive definiteness. In
Chapter 5, we describe how to find a search direction from a nonconvex QP.

Our approach is to modify the problem, but only as needed, during the null-space active-
set method. It is desirable not to modify the Hessian in the neighborhood of the solution,
where the reduced Hessian is expected to be positive definite. Away from the solution, if
the QP is modified to make the reduced Hessian positive definite at the initial point, it can
be shown (see [MP99]) that if a search direction is defined based on the first constrained
stationary point, the method does converge. We describe how to continue past the first

stationary point.

1.5 Overview of remaining chapters

e In Chapter 2 we describe two “framework” algorithms: a basic SQP algorithm for
positive-definite Hessian approximations and Murray and Prieto’s SQP algorithm that

allows indefinite Hessian approximations [MP99] but terminates QP subproblems at
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the first stationary point.
In Chapter 3 we describe the direct approximation for the Hessian of the Lagrangian.

In Chapter 4 we present the disaggregated approximation for the Hessian of the La-

grangian.

In Chapter 5 we discuss the issues introduced by the “nonconvex” subproblem and
present a new algorithm to find a direction of sufficient descent for the merit function
from a nonconvex QP subproblem that extends the QP subproblem past the first

stationary point.

Chapter 6 describes a MATLAB implementation of our algorithm and presents some

numerical results. We summarize our findings.



Chapter 2

SQP Framework Algorithms

In this chapter, we outline two framework SQP algorithms. PDSQP requires the Hessian or
Hessian approximation to be positive definite at every iteration, and consequently unique
solutions to the QP subproblems are guaranteed. IDSQP does not require the Hessian
or Hessian approximation to be positive definite at every iteration, so a unique (or even

bounded) solution to the original QP subproblem is no longer guaranteed.

IDSQP is based on work by Murray and Prieto [MP95, MP99], who generalized their
early-termination SQP algorithm ETSQP to incorporate exact second derivatives. The
second-derivative algorithm, called SQP2D, combines a descent direction with a direction of
negative curvature and performs a curvilinear search on the merit function at each major
iteration. What interests us, in the context of this thesis, is that since the exact Hessians are
not necessarily positive definite, Murray and Prieto developed a new strategy for finding
a descent direction from a nonconver QP subproblem. We present a simpler version of
their second-derivative algorithm SQP2D that uses indefinite quasi-Newton approximations
instead of exact second derivatives. We eliminate the use of directions of negative curvature
from SQP2D and replace the curvilinear search with a standard linesearch. We call the

remaining algorithm IDSQP, for “indefinite” or “indeterminate” SQP.

2.1 Positive-definite SQP algorithm (PDsqp)

PDSQP requires the Hessian or Hessian approximation to be positive definite at every iter-

ation, and consequently unique solutions to the QP subproblems are guaranteed. How the

19
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QP is solved is irrelevant to the convergence property of the SQP algorithm, but it is gen-
erally an iterative process with minor iterations (i.e., “QP iterations”). The quasi-Newton
approximation to the Hessian of the Lagrangian is usually maintained using the BFGS
quasi-Newton update to produce a positive-definite matrix By; this process is described in
more detail in Chapter 3.

The main steps of each major iteration of algorithm PDSQP are:

e Solve the QP subproblem for a search direction p; and multiplier estimate puy.

Compute optimal slacks and slack search direction gj.

Compute multiplier search direction &j.

Update penalty parameter py.

Select steplength 4, using a linesearch on the merit function.

Update iteration values Tgy1, gr+1, Cet1, Akt1, Akt1-

Update Hessian approximation By, .

2.1.1 Merit function and linesearch

What mainly distinguishes one positive-definite SQP algorithm from another is the choice
of merit function used in the linesearch, which determines the steplength.

The SQP algorithms we consider in detail feature the smooth augmented Lagrangian
merit function

La(z, ), 5,p) = f(2) = M(c(z) — ) + %P(C(ﬂ?) — 5)T(e(z) - 9), (2.1)

where p > 0 is the penalty parameter. The search space for this merit function includes the
iterate x and, in addition, the Lagrange multiplier estimates A and the slack variables s > 0.
This merit function was suggested by Gill et al. [GMSW92] and a version of it has been
successfully implemented in the dense SQP code NPSOL [GMSW86] and the large-scale
SQP code SNOPT [GMS97]. A discussion of the smooth augmented Lagrangian function

and other merit functions can be found in [Mur97].
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Some notation

Components of the search direction on the subspaces corresponding to x, A, and s will be
denoted p, &, and ¢g. For a fixed penalty parameter p, the value of the merit function ¢ as

a function of the steplength « is denoted
Pl 2,9, A&, 8,¢,p) = La(z + ap, A + o, s + aq, p). (2.2)

We may abbreviate ¢(; Tk, i, Aky Eks Sks Gk P) DY bk () or by ¢(a) when the meaning is
clear.
Slack variables

The slack variables appear within separable quadratic functions in the merit function; hence,
their optimal values can be computed. At a given iterate, the optimal values of the slacks

that minimize the merit function are

(2.3)

max(0, c) if p=0,
S =
max(0,c — A/p) otherwise.

Search direction
The search direction p comes directly from the QP subproblem. At each major iteration,

the search direction ¢ in the space of slack variables is computed to satisfy

Ap—q=—(c—s),
which ensures that the slacks remain at their optimal values for any linear constraints. The
search direction in the space of the multiplier estimates is £ = y — A.
Derivative of the merit function
Consider the gradient of the merit function L, with respect to =, A, and s,
9(z) = Ve(@)™A + pVe(z) (c(z) — 5)
VLa(z, A, 8) = —(c(z) — s) : (2.4)
A —plc(z) — )
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We may denote the derivative of ¢ with respect to a by ¢}. It follows from (2.1) and (2.2)
that ¢'(0) is given by
¢'(0) = g'p—pTATA+ ppTAT(c —5) — (¢ — 8)TE + NTg — pg’(c — 9)

= g'p+@x—m)(c—s) = plle—s|,

where g, A = Vc(z), and c are evaluated at x.

Penalty parameter

The penalty parameter is adjusted as necessary at each iteration to ensure that (p,&,q)

satisfies the desired descent condition

#(0) < —5p"Bp. (2.5)

If |lc — s|| = 0, it follows from the definition of the slack variables that py = 0 is an
initial feasible point for the QP subproblem. Let the QP objective function be denoted
¥(p) = pTg + 1pTHp. At the solution of the QP, 1(p) = p’g + 3p"Hp < 1(py) = 0. Hence,

! T 1 T
¢(0) =p'g < —5p" Hp,
implying that p does not need to be modified [MP95, pp. 603].

If ||c — s|| > 0, we obtain from (2.5) that for

(9"p+ 5p™Bp) + (2A — )T (c — s)
llc — s||?

p>

, (2.6)
we have
1
#(0) =g"p+ (2A = )" (c = 5) = plle — s||* < = p" Hp,
which implies the desired descent condition is satisfied.

In addition to satisfying (2.6), the penalty parameter must be adjusted in a manner

that ensures it is not modified too often and maintains a minimum value of 3, > 0.
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Steplength

The procedure to compute the steplength aj > 0 uses a linesearch to reduce ¢y (), then
backtracks to ensure the constraint violation is bounded. The linesearch depends on con-

stants v and 7, and the boundedness of constraint violations depends on (., where
O<v<n<l and B >|c (20)co-

Pseudocode for the linesearch procedure is in Figure 2.1.

Linesearch procedure

if ¢x(1) — éx(0) < v¢;(0)
a+1
else
Select & € (0,1) to satisfy
br(@) < ¢k (0) +vagy(0), [¢f(&)] < —ngj(0)
end if
while c(zy + éapi) < —fce or ¢p(&) > ¢x(0) + vag)(0) do
& &f2
end do
ap — &

Figure 2.1: Linesearch procedure.

2.1.2 Statement of the algorithm

The pseudocode for algorithm PDSQP is in Figure 2.2. We assume values are given for z,
go, Ao, co, an initial multiplier estimate Ag > 0, a positive-definite matrix By, an initial

penalty parameter p_; > 0, and a multiplier estimate bound £, > || Aol

2.1.3 Solving the QP subproblem

Although the method of solving the positive-definite QP subproblem is unimportant because
the solution is unique, for reference we provide an active-set procedure PDQP for solving a
positive-definite QP. The procedure PDQP is presented in Figure 2.3.

As in Chapter 1, we consider the QP subproblem to be in the form BQP (1.17) introduced
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Algorithm PDSQP

k<0
repeat
H + Bk
Obtain the search direction py by calling PDQP to solve the QP subproblem
min, g{p+ 5p"Hp
st.  Agp+cp >0
Optimize the slack variables sj (cf. (2.3))
Form search direction for slacks qi < Agpr + ¢k — Sk
Form p5, an estimate of X* such that ||ux|| < 8,
Form multiplier search direction & < pr — Mg
if ¢ (0) < —3p}Bipk
Pk < Pr—1
else
Increase py by at least a factor of 2, and
large enough to satisfy (2.5) and (2.6)
end
Perform linesearch on the merit function to choose oy, (Figure 2.1).

Tk+1 L Pk
() e () e (2
Evaluate gg+1, ckt1, and Agyg
Update By to form By
k< k+1

until convergence

Figure 2.2: Algorithm PDSQP.
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in Section 1.3.4:

BQP minimize (p) = g'p + %pTHp
P

subject to Ap=—¢, p> —uz.

Notation

To avoid additional notation, there is an overlap of notation between the descriptions of
the SQP algorithm and the QP algorithm, with p, A, and Z having separate meanings in
the context of the major (SQP) iterations and the minor (QP) iterations. To help avoid
confusion, the subscript & is used only to denote major iterations, while the subscript j is
used only in the QP iterations. Also note that in the minor iterations, the QP Hessian is

H, while the Hessian approximation in the major iterations is denoted B.

The following notation and definitions will be used whenever we solve or compute a
search direction from BQP. Suppose an initial feasible step py is given. Let Ay be the
matrix composed of the columns of A whose variables are free at py, and let Zy be the
matrix whose columns are a basis for the null space of Ay. Extending our notation, let
Aj denote the matrix composed of the columns of A whose variables are free at the jth
iteration and let Z; be the matrix whose columns span the null space of A;. Note that we
define “iteration” such that j is incremented whenever there is a change to the active set.
This includes both when a step is taken and p; changes, as well as when a constraint is

deleted from the active set but p; does not change.

We introduce a permutation matrix
P; = (Pj ﬁ] ) (2.7)

such that the elements of v = P]-Tu, where u; = i, give the reordering of the variables by

placing the indices of the free variables first followed by those of the fixed variables.

Define H; to be the Hessian restricted to the free variables, H; = PfH I-_"j. Let g; = Pfg.
Note that p; is the jth iterate in the full variable space.
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Algorithm PDQP for Positive-Definite Quadratic Programming

Obtain an initial feasible point pg
Identify initial working set and compute Py, Ay, Zy, and Hy
7+ 0
repeat
repeat
gj < P]T(g + Hpj)
stationary_point <— ZJ-ng =0

if not stationary_point then

Solve for d satisfying ( A0 = 0

0
Tr +pr

7M<—min7{ = IJT<O}
|d-|
hit_constraint < vy <1
v < if hit_constraint then -+, else 1
Pj+1 < pj+d
Update working set and compute Pjy1, A1, Z;41, and Hj 1
Jj«J+1
end
until stationary_point

Compute the Lagrange multipliers 6x for the active bounds from (2.11)

O < min; G;

converged < ¢, >0

if not converged then
Delete bound with multiplier &,
Update working set and compute Pj 1, Aj11, Zj11, and Hj
j+—i+1

end

until converged

Figure 2.3: Algorithm PDQP.
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Constrained stationary point

Moving to a constrained stationary point is a key component of algorithm PDQP. To explain
this key component in slightly more general terms, we consider the Hessian of the BQP to be
H©) ingtead of H, where H(®) may be indefinite as long as any reduced Hessian encountered
is positive definite. As before, let H ](-0) be the Hessian restricted to the free variables at

iteration j.

The necessary conditions that hold at a constrained stationary point p of BQP (1.17)

are, for some multiplier vectors m and &:

g+HOp=ATr+5
Ap+c=0
ﬁi _Cx (2.8)

51(p+x) = 0.

If at the stationary point we partition the variables into fized (FX) and free (FR) using

the permutation matrix P from (2.7), the Hessian can be written

PTHOp pPTHOp
gHO
PTgOp pTgOp

HY  HEN

(0) © |’
FRX FX

and the submatrices Hyx, Hrr, and Hpyx are defined accordingly.

In terms of the free and fixed variables, the constrained stationary point (Prg,Prx), 7,

and & then satisfy

AFR AFX ﬁFR _ —C (2.10)
0 Ipx DPrx —Trx
~ T
AgR T grr H g?z)pm —H gz)x Trx

AEX Irx g 9rx H g}?xﬁFR - H fv?gﬂ? FX
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Step to the stationary point

The null-space active-set method computes the step to the stationary point by starting
from an initial feasible point and then forming at every iteration an equality-constrained
QP (EQP) in the current set of free variables. The solution to the EQP is used as a search
direction for the active-set method. Suppose there are 7 free variables. At iteration j, the

EQP (where d represents the free variables only) is

C e T 1 (0)
EQP m}irgﬂl?ﬁlze g; d+ §dTHj d

subject to A;d = 0,

where g; = PJT(g + HOp,).

For a minimizer d* of the EQP to exist, Z]-TH ](0) Z; must be positive definite (but H ](0)
is not necessarily positive definite). The KKT system representing the necessary conditions

for the minimizer of the EQP are

(0 g1 * .
Aj 0 —T 0
The solution to the EQP can also be represented in terms of the null-space matrix Z;, as

d* = 7;d°,  where ZFH\"Z;d” = -Z¥y;.

After the direction d* is computed, the iterate p is incremented by a step taken, in that
direction, of length v <1
d*
pp+yP"
0
The steplength - is chosen to maintain feasibility with respect to all bounds. Eventually

either a vertex is reached or the unit step is taken, at which point the requirements for a

stationary point (2.10) are satisfied at the current point p = p and .
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Releasing a variable from its bound

The multipliers &y for the active bounds are computed from

Opx = (grx + Hz(r(z)ac)XﬁFR - Hz(r())()iUFx - Agxﬂ'a (2'11)

or in the extended multipliers,
¢ = g+HOP; Py - HO PPNz — A™n. (2.12)

If one of the multipliers is negative, j is incremented, the corresponding variable is
released from its bound, and new values are computed for P;, A;, Z;, and H;. The algorithm

terminates with the solution when &5, > 0.

2.1.4 Convergence results for positive-definite SQP algorithm

The convergence results we give for PDSQP are based on results by Murray and Prieto
[MP95] for a related but more general algorithm. What makes their algorithm (called
ETSQP) more general is that it allows a wider variety of multiplier estimates and allows
an incomplete solution of the subproblem. ETSQP allows any constrained stationary point
of the QP subproblem, when combined with a descent direction taken from the stationary
point and formed using the negative multiplier estimates at the stationary point, to be a
search direction for the QP subproblem. Their approach limits the amount of work required
in the subproblems by allowing “early termination” (hence the name ETSQP).

Under certain assumptions, global convergence for PDSQP follows from Murray and
Prieto’s results for ETSQP. In particular, the sequence {zj} generated by PDSQP converges
to a unique KKT point and )\ converges to X*. Moreover, under additional assumptions
on the quality of the Hessian approximation, it can be shown that the penalty parameter
is bounded and the rate of convergence is superlinear.

We list below the precise assumptions needed to prove these results. Assumption A5,
that every subproblem has a feasible solution, may be satisfied by modifying the SQP
algorithm to allow infeasible constraints (see [MP95, GMS97, Bom99]). With this caveat,
the first set of general assumptions all relate to properties of the problem, not the iterates
or the algorithm. Assumptions MC3 and HC3 are needed only to prove the superlinear

rate of convergence, not for global convergence. Note, it is not necessary to assume the
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iterates lie in a compact region. See [MP95, MP99] for a more detailed discussion of these
assumptions.
Except for assumption HC2 (that the Hessian approximation is positive definite), we

shall continue to make these assumptions for all SQP algorithms discussed.

General assumptions

A1l. For some constant (3, > 0, the global minimum of the problem

minimize F(z)
zeIR™
s.t. c(z) > —pee,

exists.

A2. There exist no KKT points at infinity for problem NP (we use the definition of “KKT
point at infinity” given in [MP95]).

A3. F(z), c(z) and their first and second derivatives are continuous and uniformly bounded

in norm on a compact set.
A4. The Jacobian corresponding to the active constraints at all KKT points has full rank.

A5. A feasible point pg, exists to all the QP subproblems, satisfying

llpo,. Il < Bpoll& I, 9 po, < Bpoll&; 1],

for some constant £,y > 0, where ¢, denotes the normalized constraints, (é); =

Ck/(l + ||(ak),||), and (ak)z is the ith row of Ay.

AB6. Strict complementarity holds at all stationary points of NP, including stationary points

at infinity, if they exist.

A7. The reduced Hessian of the Lagrangian is nonsingular at all KKT points.

Assumptions on the multiplier estimates

MC1. The estimates pj are uniformly bounded in norm; that is, ||ux|| < 8, < oco.

MC2. The complementarity condition uf(Agpy+ci) = 0 is satisfied at all major iterations.
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Assumptions on the Hessian approximation

HC1. B5,5 < 00 is an upper bound on the largest eigenvalue of {By}.

HC2. i, > 0 is a lower bound on the smallest eigenvalue of {By}.

Assumptions needed to prove superlinear rate of convergence

MC3. ||pr — || = O(||zx, — 2*||), where X* denotes the multiplier vector associated with
a KKT point £* closest to zj.

HC3. Following Boggs, Tolle and Wang [BTW82], we assume
1Z](By — VaL(zy, \)pr|l = o(llpk]);

where By, is the approximation to V2L£(z, ), and Zk is a basis for the null space of
A\k, the Jacobian at zj of those constraints active at z*, that is bounded in norm and

has its smallest singular value bounded away from 0.

2.2 SQP algorithm with indefinite Hessian approximations

The indefinite SQP algorithm does not require the Hessian or Hessian approximation to be
positive definite at every iteration, so a bounded solution to the original QP subproblem is
no longer guaranteed, let alone a unique solution. Consequently, it does matter both how the
QP is solved and how the initial feasible point is computed. Depending on convenience and
availability, the QP Hessian may be formed from exact second derivatives or approximated
by any general quasi-Newton update (for more detail refer to Chapter 4).

The indefinite and positive-definite algorithms (IDSQP and PDSQP) are similar in many
ways. They both use the same merit function (2.1). The main differences have to do
with the way of computing the search direction from the subproblem and the algorithm for
adjusting the penalty parameter p to ensure a descent direction at every iteration.

As before, we consider the QP to have the form BQP (1.17), which was introduced in
Section 1.3.4 and repeated in Section 2.1.3.



32 CHAPTER 2. SQP FRAMEWORK ALGORITHMS

2.2.1 Computing a search direction from the indefinite QP subproblem

Murray and Prieto’s strategy for computing a search direction from a nonconvex QP is based
on modifying the QP Hessian at the initial feasible point so the initial reduced Hessian is
positive definite. For the modified QP subproblem there exists a constrained stationary
point, which can be found by the null-space active-set method. Combining the step to the
stationary point with a certain direction of descent provides a satisfactory search direction
for the merit function.

The main steps of the procedure IDQP to compute a search direction are:
e Find an initial feasible step po for the BQP.

e Modify the initial reduced Hessian to be positive definite.

e Compute the step to the (first) stationary point.

e Compute a descent step from the stationary point.

Initial feasible point

The initial point py must be feasible (Apy = —c and py > —z) and for some Gy > 0 satisfy
lIpoll < Boo(llEl* + Iz~ 1), g"po < ByolllEll> + [l=7|%) "2 (2.13)

When the minimizer of a positive-definite QP is used as the search direction, then since
the solution p is unique, the choice of pg is irrelevant. If we determine the search direction
from a stationary point that is not a minimizer, the sequence of stationary points that
we compute depends directly on the value of py. These conditions on pg ensure that all

stationary points are satisfactory points at which to terminate the solution process.

Modified reduced Hessian

If the initial reduced Hessian ZOTH Zo is not positive definite, H is modified. Let H(©)
be a modification of H for which ZOTH(SO)ZO > 0. If ZIHZy can be formed, Murray and
Prieto suggest determining H(®) using the method described in [FGM95]. Let 1»(© be the
corresponding QP objective

1
O (p) = §pTH ©p + ¢7p.



2.2. SQP ALGORITHM WITH INDEFINITE HESSIAN APPROXIMATIONS 33

In the large-scale case, the issue is more difficult, since merely forming ZIHZ, may
be prohibitively expensive. Fortunately, the nature of this matrix may be deduced from a
factorization of the KKT matrix
H A}
Ay O
Forsgren and Murray [FM93] describe how to determine H(®) using the KKT matrix.

Alternatives for how to compute H(® in both the large-scale and the small-scale cases

are described in more detail in Chapter 5.

Existence of constrained stationary point

We shall prove a constrained stationary point exists in the case where H(¥ is indefinite.

Lemma 2.2.1 Consider the problem BQP with objective (0 (p). If ZgH(O)Zo 18 positive
definite, the active-set method starting from po will reach a constrained stationary point

(2.8) in a finite number of iterations.

Proof. The initial working set, the set of free and fixed variables, and the nullspace matrix
Zo all depend on the initial feasible point pg. A consequence of H(® being chosen such that
ZgHéO) Zp > 0 is that the solution to the EQP on the initial fixed variables,

minimize g¢'p+ %pTH(O)p
peIR™

subject to Ap =0, prx = —Zpx,

is bounded below, hence a minimizer exists to this problem. If the minimizer satisfies
Prr > —Ipr, a constrained stationary point has been reached. Otherwise, a step towards
the minimizer is taken, the working set changes and the problem is solved again.

From pg, bounds are not deleted from the working set until a minimizer is reached.
Since the first EQP is bounded below, when additional bounds are added the EQP remains
bounded, and the steps taken are in a subset of the initial free variables. This manner of
changing the working set ensures the reduced Hessian is positive definite on every subspace
encountered. The algorithm continues until the working set defines a unique point or the
unit step is taken so a minimizer is reached. In either case we have reached a constrained

stationary point in a finite number of iterations. 1
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Acceptable stationary stopping points

Under a certain stronger positivity assumption on the Hessian of the modified QP, the
proof of convergence for Murray and Prieto’s second-derivative algorithm SQP2D allows the
algorithm to continue to a stationary point p past the first one. In such a case, the algorithm
would proceed as in PDQP, where the bound corresponding to the minimum eigenvalue is
deleted from the set of active bounds, the reduced Hessian is updated, etc., until the next
stationary point is reached. We need to ensure that the reduced Hessian is positive definite
on all subspaces encountered, otherwise a minimizer on the subspace would not exist.

Suppose the Hessian has been modified at most once, at the initial feasible point. Let p
be a stationary point, and let H = H(® be the Hessian at 7.

The general positivity assumption made in [MP99] requires that the modified Hessian
be sufficiently positive definite on the union of the nullspaces encountered when determining
a stationary point. In other words, VTHV > 0, where the columns of V are a basis for all
null-spaces encountered. For example, this ensures that (5 — po)TH (j — po) > 0, where pg

is the initial feasible point and p is the final stationary point.

Descent step off stationary point

In SQP2D, when the stationary point p is not a minimizer, it is combined with a multiple 4 of
a sufficient descent step u that moves off several of the constraints with negative multipliers.

In the discussion that follows, let p be a stationary point but not a minimizer of the QP.
Let ¢ be the multiplier estimates at p for the bounds and let 7 be the multiplier estimates
at p for the general constraints.

Let H be the Hessian at p (for algorithm IDQP, H = HO®_ but in Chapter 5 it could
vary). Let uyx be the components of u corresponding to fixed variables at p, and uzx be
the components of u corresponding to free variables. The descent step w is required to be

a direction of sufficient descent from p satisfying the following conditions:

DD1. The direction is feasible and of unit length:
Au =0, upx >0, and ||ullcc = 1.

DD2. The rate of descent along u is “sufficiently” large, i.e., for some 0 < 8, < 1, u
satisfies
§u < Bugtu’, (2.14)
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where § = Hp + g and u* solves

miny, dtu
.t. Au=0
° " (2.15)
Upx > 0
[l < 1.

Note that (2.14) and (2.15) imply g7 u < 0.

Murray-Prieto descent direction

The following descent direction was suggested in [MP99]. Assuming A has a bounded

condition number, let (4,7, d) be the solution of

Hi—ATh—6 = —§
Ad = 0
Gpx = Oy (2.16)

Since p is not a minimizer of the QP, min; 5; < 0 (so 5, # 0). System (2.16) is the set

of first-order necessary conditions for the EQP

minimize %’U,TH u+glu
u

subject to Au =10, uUpx = G-

The following argument shows that the direction u = 4/||4||« satisfies conditions DD1
and DD2. First, the direction u is well-defined because under the assumptions on A, ||4||so

is bounded. Clearly |ul/cc = 1, and the rest of DD1 follows from (2.16). Since at the

stationary point § = A7 + &,

&le (min; ;)2

~T ~Tp | = ~T
Ju=FA+6Nu=6"u=——-—< -
[l 1l

(2.17)

Together with

Ju* = (7TA + 61" = 6Tu* = 6L 4%, > nmin(.x);, (2.18)
3
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this implies

1]

If not for the general constraints, the resulting direction % would be precisely a steepest
descent direction. One might ask why we select a descent direction that fixes one or more
newly freed variables at their multipliers (see (2.16)), and in doing so select the steepest-
descent direction in those variables, rather than compute the Newton step to the minimizer.
The reason is because this ensures the updated reduced Hessian is still positive definite.
In Section 5.4.4, we describe an alternative descent direction that is the Newton step to
a minimizer of a problem with a modified Hessian. There we address the problem of the

updated reduced Hessian becoming indefinite.
Steplength
After normalizing the descent step @ so u = 4/||4||, a steplength 4 is computed, such that
e p + Au is a feasible point for the QP,
o if uTHu > 0, B
Fo (ot Hp)"u
uT Hu

that is, the steplength is less than
. Ty 1 . TEry~
argmin g™ (p +yu) + 5 (6 + yu) H (5 + yu).

e ¥ <ym (¥ is bounded above), and

e ||p +7ul| > ||p|| (to ensure the resulting direction is sufficiently large).

Summary

At each iteration of IDSQP an inner iteration is performed to compute the search direction
from the indefinite QP subproblem. The algorithm endeavors to solve the QP subproblem
using an active-set method but terminates early in order to satisfy the positivity condition.
In Figures 2.4-2.6, we provide pseudocode summarizing the algorithm. It is broken into

three parts:

e Main subroutine IDQP: Compute-search-direction-from-indefinite-QP
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e Subroutine Move-to-stationary-point

e Subroutine Compute-descent-direction

37

We assume that positive constants By, Bae, Buz, Bz and vy > 1 have been defined.

The subscript j refers to the QP (inner) iterations.

Algorithm IDQP: Compute-search-direction-from-indefinite-QP

Obtain a feasible point pg satisfying (2.13)
Identify initial working set and compute Py, Ay, Zy, and H
if Amin(ZgH0Z0) > ,BHZ, then
HY « Hy
else select H(go) so that /\min(ZOTH(gO)ZO) > Buz and |HO| < By
end
j+0

Move-to-stationary-point

D pj
H <+ HO
Compute the Lagrange multipliers ¢y for the active bounds from (2.11)
if Gpx >0, then
Y40, u<+0
else

Compute-descent-direction

end

Figure 2.4: Algorithm IDQP.

2.2.2 Adjusting the penalty parameter

We return to a feature of the merit function in the outer SQP algorithm, the penalty

parameter. Let p = p + yu. The penalty parameter is adjusted as necessary at each

iteration to ensure (p,¢&,q) is a descent direction for the merit function, i.e.,

¢I(0) S —w,

(2.20)



38

CHAPTER 2. SQP FRAMEWORK ALGORITHMS

Subroutine Move-to-stationary-point

repeat

until stationary_point

g; < P¥(g+ Hp;)
stationary_point < Z]ng =0
if not stationary_point then

o g0 gyr d _ [ —9
Solve for d satisfying ( /{j 0] ) ( -7 ) B ( 0

d PjT(d>
0
Tr +pr

7M<—min7{ = IJT<O}
|dr|

hit_constraint < vy <1
v < if hit_constraint then -, else 1
pj+1 < pj+d
Update working set and compute Pjy1, Aj11, Zj41, and H](-g_)l
j—iji+1

end

Figure 2.5: Subroutine Move-to-stationary-point.

Subroutine Compute-descent-direction

H AT T i —q
Compute 4 that satisfies: A 0 O - | = 0
PT 0 o0 —6 Trx

Let «; denote the largest feasible step from p along u = 4/||4||
if —(g+ Hp)Tu < 'ylnyIu, then

else

if [[p+qull <[pll, then 5+« 0
if ¢g"u >0, then 5«0

(g+Hp) u )
~ y VM

v min(— T

’? «— min(vla fYM)

Figure 2.6: Subroutine Compute-descent-direction.
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where
¢'(0) = g'p+ (2x — ) "(c — s) — pllc — s|? (2.21)

and
1/, E2 ~
w =35 (= po) HE—po) + e — ][> — 279" u) . (2:22)

If (2.20) does not hold with the penalty parameter from the previous iteration, p is modified

to satisfy
Lo+ g"p+ (22— )7 (e - s)
lle — s[|?

(2.23)

If |c — s|| = 0, then py = 0 and ¢7p + %ﬁTI:Iﬁ < 0, implying
. 1 per
#(0) = g'p+7g"u < —p" Hp+79"u = —w,
so no adjustment to p is necessary.

2.2.3 Statement of the algorithm

Given xg, go, Ao, co, Bo, and Xy, select p_1 > 0,0 < 0 < %, % <n<1, B> e (z0)|oo,
Bu > | Xoll, B > 1 and B, > 0. The algorithm IDSQP is presented in Figure 2.7.

2.2.4 Convergence results for the indefinite SQP algorithm

For their second-derivative algorithm SQP2D, Murray and Prieto prove global convergence
to a KKT point satisfying the second-order optimality conditions, quadratic convergence of
both zj and Ag, and boundedness of the penalty parameter [MP99] (see Theorems 3.3, 4.1,
and 4.2).

Under weaker assumptions, weakened versions of these results carry over to IDSQP. In
particular, for any indefinite quasi-Newton Hessian approximation satisfying HC3, the same

proofs imply IDSQP has global convergence to a KKT point at a superlinear rate [MP99].

Assumptions

The proofs of convergence that apply to IDSQP permit the stationary point p to be any
constrained stationary point encountered by the active-set method, not only the first sta-

tionary point, as long as “the reduced Hessians of the modified QP are sufficiently positive
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Algorithm IDSQP

k<0
repeat
H < By
Obtain a feasible step pg, a QP stationary point p,
a modified Hessian H, a sufficient descent direction u,
and a feasible steplength 4 in the direction u from p,
by calling IDQP on the QP subproblem
min, g{p+ 3p" Hp
st. Agp+c >0
Bk — ﬁ[
Pk < P+ Yu
Optimize the slack variables s (cf. (2.3))
Form search direction for slacks qi < Agpr + cx — Sk
Form s, an estimate of \*
Form multiplier search direction & < pr — Mg
w  2((p — po)T Bk (P — po) + llck — skl|® — 27gf u)
it #(0) < —dw
Pk < Pk—1
else

Pk < max <2Pk—1,

3@ + e pr + 2\ — )" (e — 1)

D) ’ ﬂp
llek — skl

end

Perform a linesearch on the merit function to choose ay (Figure 2.1).

Tk+1 Tk Dk
(o) (5 ) e ()
Evaluate gg+1, Ag+1 and cx41
Update By to form By
k+—k+1

until converged

Figure 2.7: Algorithm IDSQP.
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definite on all the subsets of constraints encountered when determining a stationary point.”
This requirement will be explored further in Chapter 5.

All assumptions made for PDSQP (A1-A7, MC1-MC3, HC1-HC3) in Section 2.1.4
are made here again, with one exception. We no longer assume the Hessian approximation
is positive definite, but we do assume the matrix has bounded norm, that is, its eigenvalues

are bounded above and below. Assumption HC2 is replaced by

HC2b. There exists G, > —oo such that Vk, the eigenvalues of By are bounded below
by /Bl'uB-
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Chapter 3

Direct Hessian Approximation

3.1 Introduction

In this chapter, we describe how the quasi-Newton approach to approximating the Hessian
of the Lagrangian in SQP is most commonly implemented, using the BFGS update and
a single, positive-definite approximation matrix. We refer to this approach as the direct
approximation to the Hessian of the Lagrangian. This approach is analyzed and its various
drawbacks are discussed, mainly in the context of how they affect the convergence rate,
storage, and computation time of the SQP algorithm.

A close relationship exists between the choice of Hessian in the QP subproblem and the
convergence rate of the SQP algorithm. Under certain assumptions, when the QP Hessian
is the exact Hessian of the Lagrangian, the SQP method can be shown to attain a quadratic
rate of convergence in the neighborhood of the solution. In practice, however, the Hessian
of the Lagrangian is often approximated from first derivatives, leading to a deterioration in

the convergence rate of the SQP algorithm.

3.2 Overview of direct approximation

As mentioned in Chapter 1, the quasi-Newton approach was developed originally for uncon-
strained and linearly constrained optimization. In the nonlinearly constrained case, we need
to estimate the Hessian of a composite function including the objective function, constraint

functions, and Lagrange multipliers.

43
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The direct approach is initialized with an approximation matrix By, typically the iden-
tity matrix. In the unconstrained case, this makes pg the steepest descent direction. Al-
ternatively, one pre-scales the first iteration by setting the initial matrix By to a positive
diagonal matrix or any positive-definite matrix.

At each iteration, a quasi-Newton update is performed that satisfies condition (1.14).
Usually this is the BFGS update

T T
B_B_ BkgkékBk yl%yk,
0 Brog Yi Ok

(3.1)

but even if not, the update clearly depends on the gradient difference of the Lagrangian yy,

a function of z; and two, possibly different, multiplier estimates 7 and 7:
Yk = Vol(@pi1,T) — Vi L(zg, ). (3.2)

At each iteration a current multiplier estimate 71 is updated from 7. To compute yg
accurately, it is necessary to decide which multiplier estimates to use at each iteration and
to consider how the multiplier estimates themselves are functions of x. Incidentally, initial
multiplier estimates are unnecessary because on the first iteration y; can be computed using
only the first multiplier estimates 7; for both 7 and 7.

SNOPT [GMS97] bases the QP Hessian not on the Lagrangian but on a related function
called the modified Lagrangian. In Section 3.3 we describe the modified Lagrangian and
give reasons for its use.

In Section 3.4 we discuss the multiplier estimates and the definition of the gradient of the
Lagrangian to be used in defining the quasi-Newton condition. In Section 3.5 we describe
how the BFGS update is modified to preserve positive definiteness.

Large-scale approaches are described in Section 3.6. An overall analysis of this approach

is discussed in Section 3.7.

3.3 Modified Lagrangian

The modified Lagrangian is

L(x,zk, ) = f(z) — ﬂgc(w) + Wch(x,:vk), (3.3)
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where c;, is the constraint linearization:
c(z, o) = clzg) + Alzg)(z — z1);

see Robinson [Rob72], Van der Hoek [Van82], and Gill et al. [GMS97].

The first and second derivatives of the modified Lagrangian with respect to z are

VL(z,mp,m) = g(z) — (Alz) — Alak)) m,

ViL(z,zp, ) = Vf(x) =Y (m)iVZei(x).
i
Observe that V2L is independent of zj (and is the same as the Hessian of the conventional
Lagrangian). At z = zj, the modified Lagrangian has the same function and gradient values

as the objective:

L(zg, T, Tk) = f(T), VL(z, zk, 7) = g(Tk)-

The first-order term of the QP objective is the linear approximation g(x)’p, where g(z) =
V f(z) rather than g(z) = VL(z, ).

3.3.1 Benefits of using the modified Lagrangian

There are several benefits to modeling the quadratic objective on the modified Lagrangian.
First, when the quadratic objective of the subproblem is modeled after the pure Lagrangian,
the multipliers of the subproblem do not approximate the multipliers of the main problem.
Instead, the QP multipliers approximate the error in the previous multiplier estimate. In
the best case the error converges to zero, but this may cause numerical difficulties when
solving the QP subproblem. On the other hand, if the modified Lagrangian is used, the

multipliers of the QP subproblem do approximate the multipliers of the original problem.

Using the modified Lagrangian does not affect the minimizer of the QP subproblem.
Moreover, at the solution (z; = z* and 7, = 7*), the optimality conditions of the QP
subproblem match the optimality conditions of the original problem, so the multipliers of
the QP subproblem at the solution are 7*. For these reasons and others, the modified

Lagrangian was incorporated in SNOPT [GMS97].
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3.4 Multiplier estimates and the quasi-Newton update

Since our goal is for the Hessian approximation to converge to a matrix related to the
Hessian of the Lagrangian at z* (i.e., for the BTW condition (1.9) to be satisfied), if it
were possible we would set both 7 and 7 in (3.2) to optimal Lagrange multipliers 7*. In
practice, 7 is not known but is approximated at each iteration by m;, in such a manner that
if z;, converges to a solution, then 7, converges to n*. Potential sources for the multiplier

estimates 7 include
e the QP multipliers,
o the least-squares multipliers (see, e.g., [GMT79]), or

e the multiplier estimates used in the merit function and updated at each iteration via

linesearch.

The typical procedure for computing y; in the direct approximation of the Hessian
assumes 7 and 7 are equal and constant with respect to = (that is # = 7 = 7 and dn/0z =

0), and yx from (3.2) simply reduces to

ye = VL(@g41,m) — VL(TE, T)
= gkt1— gk — (App1 — Ap) T (3.4)

Of course, 7* is approximated by varying estimates 7, that are updated at every itera-
tion. The question arises whether a single estimate should be used for 7 and 7 (e.g., both
7 or both 7 1) or whether different values should be used in each gradient term of (3.4).
Each of these choices has questionable validity because 7 is no longer constant between it-
erations (as was assumed); in one case, it is not even constant within the iteration. Despite

these reservations, three obvious choices for y;, are

ye = VL(Tgy1,Tks1) — VL(zk, k) (3.5)

= (gk+1 — gk) — (Aps1 — Ap) Tp1 + AL (1 — Th41),

ye = VL(@pt1,Tk41) — VL(Tk, Thy1) (3.6)

= gk+1— gk — (Ap1 — Ap) T,
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yr = VL(rgy1, ) — VL(Tk, Tx) (3.7)

= grt+1 — gk — (App1 — Ap) .

In (3.5), yx incorporates two different values of 7. This formula may be the easiest
to implement, since VL(zg, ;) can be computed at iteration k£ and VL(zg41,Tg41) can
be computed at iteration k + 1, each with the latest values of z and 7. If the multiplier
estimates are nearly equal (mg41 &~ mg), the final term AT (), — mg41) of (3.5) drops off, and
the decision to use different values of 7 has little effect. More generally, however, we expect
Tk+1 % Tk, so the final term AT (), — m41) could contribute significantly to (3.5). This
is essentially an error term that would not be present if the constant 7 assumption were
satisfied.

Consider next (3.6), where the newer multiplier estimate 71 is used for both gradient
evaluations. When only one multiplier estimate is used, the term corresponding to A{(wk —
Tk+1) in (3.5) disappears. The third case (3.7) also has no such error term. We conclude
that using the same multiplier estimate in both terms is preferable, although in all cases

the constant 7 assumption is violated.

3.4.1 Multiplier estimates with the modified Lagrangian

Surprisingly, the decision to use the same or different multiplier estimates can be avoided
altogether by using the modified Lagrangian instead of the Lagrangian. Applying the quasi-
Newton condition to the modified Lagrangian simplifies the choice of 7 and & because
depends solely on the multiplier estimate used in the first term, 7. The obvious thing is to
let T = mg41, and it is irrelevant what is used for 7, since

yg = VL(Tgs1, Tk, Tkr1) — VL(Tk, Tk, T)

(3.8)
= gk+1 — gk — (Akt1 — A) T mpeqr.

The Hessian of the modified Lagrangian is independent of the second parameter xj.
However, it is important that the same z; be used in both terms of (3.8). If y, were
computed as

Yk = VL(Tkt1, Tht1, Tht1) — VL(Tk, Th, Tk)

(3.9)
= Gk+1 — Gk,
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then the update would only take into account the curvature of the objective function,
implying that the resulting quasi-Newton approximation would have the curvature of f(z)

only.

3.5 Modifications to maintain positive definiteness

Powell emphasized in [Pow77] the importance of maintaining positive definiteness in quasi-
Newton methods for constrained optimization. First, keeping the matrix By > 0 ensures
that a descent direction to a suitable merit function can be found from the QP subprob-
lem. Second, Powell observed that positive definiteness propagates a feature of the BFGS
method for unconstrained optimization, namely, that the method is invariant under a lin-
ear transformation of the variables. The method could not be guaranteed invariant if the
solution to the subproblem were not unique.

Furthermore, as long as it maintains positive definiteness, the BFGS update has the
special property that it is the unique update satisfying the quasi-Newton condition that
minimizes || Eg| r, the Frobenius norm of the modification Ej (1.10).

The BFGS update maintains positive definiteness if and only if the approximate curva-
ture y,{ék is positive. When there are no constraints, it is possible to terminate the linesearch
so that this condition holds. In the nonlinear inequality constrained case, it is not possible
to define linesearch termination conditions that ensure y,{ék > 0. Since the Hessian of the
Lagrangian need not be positive definite at a local minimizer, the approximate curvature
y,{ék can be negative or very small at points arbitrarily close to (z*, 7r*).

When y,{ék is negative or nearly zero, performing the BFGS update leads to an indefinite
or poorly conditioned Hessian approximation. On the other hand, if the update is skipped
when y,{&k < 0, new information about curvature of the Lagrangian is ignored. It has been
observed in practice that skipped updates causes the convergence rate of the SQP algorithm

to deteriorate.

3.5.1 Powell’s modification

To deal with this difficulty, Powell suggested that whenever the curvature is not sufficiently
positive, y, be replaced by a convex combination of y; and Bidg. If the BFGS update

1.15) was made properly at the last iteration, then Bydy = yr_1. Powell’s test for positive
y Y
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curvature is
Yio, > 0.2 6} By, (3.10)

where 0.2 is an empirically chosen constant (see [Pow77, Pow78a, Pow78b]). When this test
fails, Powell replaces y;, in the BFGS update (3.1) by

e = Oyg + (1 — 0)Bk5k, 0<o<1. (3.11)
The parameter 6 is chosen so that positive curvature is attained, i.e.,
Ts _ o T T
nkék = Hykék + (1 - 0)5193165]6 > 0.2 5kBk5k- (3.12)

This condition is clearly attainable at § = 0 since 7j 0y = i By0g. But setting 6 to zero is
undesirable because it would be equivalent to skipping the update.
Of the possible values that satisfy (3.12), Powell selects € € [0, 1] to minimize ||ng — yk||-

By this measure the optimal value of 8 is

0.8 6} By

Op = B EK_
k 5£Bk5k — y,:fék

Incidentally, this is also the maximum value of @ to satisfy the criterion for positive curvature
(3.12). Substituting 8 back into the formula for 7, we see that the curvature of the modified

update is exactly equal to 0.26,7;Bk6k, independent of the amount of negative curvature y{ék.

3.5.2 Approach used in SNOPT

The SQP algorithm implemented within SNOPT uses an elaborate procedure to alter the
update [GMS97] when the curvature is considered not sufficiently positive. SNOPT performs
the matrix update based upon the modified Lagrangian, with §; and ¥, defined as

0k = Tp41 — Tk, Yk = VL(Tpt1, Thy Tht1) — VL(Tk, Tp, Tp1)- (3.13)

The update is modified when y,{ék does not exceed some positive threshold. Two attempts
are made to modify the update: first, modifying d; and ¥y, and second, modifying only yy.
If neither modification provides sufficiently positive approximate curvature, no update is

made.
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First modification

This procedure attempts to make y,f&k sufficiently positive by substituting a new point zj
for the previous iterate x; when computing y; and d;. One disadvantage is that additional
work is required; in order to apply formula (3.13), it is necessary to reevaluate the functions

and their gradients at the newly defined point zj.

The rationale behind the first modification is to seek a subspace in which the curvature
is positive and to use this information to alter the update. Such a subspace is suggested by

the properties of the reduced Hessian at a local minimizer of NP.

Before defining zj, we identify several other terms. Let Zj be the solution of the QP

subproblem. The update xx; to z; depends on a stepsize oy in the manner

Tk+1 = Tk + APk

where

Pk = Tp — Ty

The range-space and null-space portions of the QP direction p; will be denoted pr and py.
Let z; be the first feasible iterate found for the QP subproblem.

We now define the new point z; as
2 = T + ap(Tg — k) = T + WUPp-
The corresponding values for d; and y;, are
0k = Tp+1 — 2k = apy, and Yk = VL(Tkt1, Tp, Ter1) — VL(2k, Ty Trt1)-
Substituting for J; and recognizing that yi ~ V2L(xk, Tk, T )xpy, We have
YOk = Y Py R 0y VL ( Tk, Tk, TP

Hence, y,:fék approximates the curvature along py. If py is small compared with py, it follows
that y%&k approximates the curvature for the reduced Hessian, which must be positive semi-

definite at a minimizer of NP.
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Second modification

If the first modification attempt fails, a second approach is tried in SNOPT. The ratio-
nale behind the second modification is that we may replace the Hessian of the (modified)
Lagrangian by the Hessian of an augmented Lagrangian without impacting the rate of con-
vergence. Indeed, this is the basis of the proof by Powell that an SQP algorithm with a
positive-definite Hessian approximation has the potential for superlinear convergence even

when the Hessian of the Lagrangian is indefinite.

For this modification, choose Ay so that (yx + Ayg)T 6 = o (if possible), and redefine
Yk as Yk + Ayg. To obtain Ayy, consider the augmented modified Lagrangian [MS82]:

1
£A($;$ka77k) = f(-'E) - ngL(-Wa-Tlc) + §dL($a$k)TQdL(37a$k)a (3-14)

where (2 is a matrix of parameters to be determined: 2 = diag(w;), w; > 0,i=1,...,m.
The perturbation
Ayp, = (A(zpp1) — Alzr)) " 02dL (Tt 21) (3.15)

is equivalent to redefining the gradient difference as

Y = V,CA(JTk+1,.’13k,7Tk+1) — VEA(.’IIk,xk,WIH_l). (3.16)

Choose the smallest (minimum two-norm) w;’s that increase y[d) to 0. They are deter-

mined by the linearly constrained least-squares problem

LSP minimize ||w]|?
w

subject to alw =6, w>0,

where 8 = o — Yoy, and a; = vyw; (i = 1, ..., m), with v = (A(zx41) — A(zk))dk, and
w = di(Tk41, k). The optimal w can be computed analytically [GMSW86, E1d91]. If no
solution exists, or if ||w|| is very large, the second modification attempt fails and no update

is made.
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3.6 Computational cost and scalability

Dense quasi-Newton updates require O(n?) multiplications per iteration (for a matrix of
size n) and O(n?) storage space. The BFGS update in particular requires 4n? + 2n multi-
plications per iteration. Its memory requirement is %n2 + 2n locations to store By, y, and
Ok -

Large-scale optimization Since both storage requirements and computational time
grow quadratically in n, special care is taken to reduce the storage and effort required
to perform the BFGS update on large-scale problems.

Much of the work done on extending quasi-Newton methods to large problems has
been directed at the unconstrained case. Research in this area may be classified under the

following general approaches:
(i) Limited-memory approximation.
(ii) Sparse quasi-Newton approximation.
(iii) Reduced Hessian approximation.

(iv) Partial separability.

Limited-memory approximations In this sparse method, the BFGS approximation
matrix By is not stored ezplicitly; rather, the initial approximation is stored (usually a
diagonal matrix) together with the information required to perform the updates. Since
each update is a rank-two matrix, at most two vectors and two constants are required per
update. Instead of By being a result of k£ updates, only a limited number of updates are
used. There are various ways to implement this approach. We could, for instance, keep the
last ¢ updates, where ¢ is small, say less than 25 and typically less than ten. Depending on
the form of the update, the storage requirements are at worst 2nt and at best nt.
Limited-memory approximations have been the subject of considerable research and
experimentation (see [Noc80, ZBLN97, BL85, GL89, BNS94, Leo95]). Much of the work
on limited-memory methods has been directed at the unconstrained case. Although the
concept is simple, there are many ways to implement a limited-memory method. How the

updates are stored and in what form impacts the cost of operations, such as matrix-vector
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multiplications, with By. Since By is not stored explicitly this limits the methods of solution
of the QP subproblems.

The limited-memory approach has the property that it does not depend on the Hessian
of the Lagrangian being sparse. The hope is that a good approximation of the Hessian is
not critical to success provided a good approximation of the reduced Hessian is obtained.
The potential exists for a good approximation after a small number of iterations when the

dimension of the reduced Hessian is much smaller than that of the Hessian.

Sparse quasi-Newton The success of quasi-Newton methods on small dense uncon-
strained problems prompted research on methods that could update sparse approximations
having the same sparsity pattern as the exact Hessian. For constrained problems we are
concerned with the sparsity pattern of V2£(z, \). Despite considerable work, few useful re-
sults have emerged, especially for constrained optimization. Moreover, it is computationally
costly to perform the updating. A key difficulty is to preserve the correct sparsity pattern
and the property of hereditary positive definiteness. This approach determines an explicit

representation of B. Hence, it is only applicable to problems for which W is sparse.

Reduced-Hessian approximation Given a nonsingular matrix (J; and an approxima-
tion QkaQk to the projected Hessian QfVQE(:I:k)Qk, it is not necessary to know Bj ex-
plicitly to implement an SQP method, provided @) is chosen appropriately and a null-space
method is used to solve the QP subproblem.

The reduced Hessian approach stores an approximation to the reduced Hessian instead
of the larger full Hessian (see [E1d91, BNS95]). The reduced-Hessian approach is likely to be
successful whenever the number of constraints active at the solution is similar to the number
of variables. For efficiency, the difference may be anything from zero to a few hundred.
This is known to be true for many important problems, such as trajectory optimization and
process control. Indeed, it is likely to be true for most control problems, since the number

of control variables is often small compared to the number of state variables.

Partial separability An approach advocated for determining a compact Hessian approx-
imation for unconstrained optimization problems is to use the property of partial separabil-

ity [GT82a, GT82b]. A function f(x) is partially separable if it can be written as a sum of
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smaller “element functions” f;(z), that is,

fz) =) fil=).
i=1
Given the structure of f, one can approximate V2f(z) by a partitioned quasi-Newton up-
date. Storing a separate BFGS approximation for each of the element Hessians V2 fi(x)
provides a sparse representation of V2 f(z) if each of the f; involves a (small) subset of the
variables z. If V2 f(z) is not sparse, it need never be stored explicitly. Application of partial
separability generally requires the user to provide information describing the structure of
the problem. The idea of applying partial separability to approximating the Hessian of
the Lagrangian was first suggested by Griewank and Toint in [GT82b]. This application of
partial separability would be easy to implement because the structure of the Lagrangian is

already known.

Disaggregation Thisis a special case of partial separability in which the precise structure
of the compound function (the Lagrangian) is known and for which the nature of the
dependence on the constraint functions may be deduced directly from the sparsity pattern
of the Jacobian. The basic assumption being made is that the largest rank of the individual

Hessians is small. This approach is explored in the next chapter.

3.7 Analysis of the direct BFGS approximation

Our analysis begins by examining the effect of the direct BFGS approximation on the
convergence rate of the SQP algorithm. We also discuss the memory and computation time
per iteration required by the estimates.

The BTW sufficient condition (1.9) for superlinear convergence was presented in the
introduction. For general functions, it is unknown whether the Hessian approximations
computed by the direct BFGS update ever converge, let alone satisfy this condition. Even
for the case where f and ¢ are quadratic functions, if the Hessian is not assumed to be
positive definite, no one has been able to show (1.9) holds for the BFGS update.

Two features of the direct BFGS approximation described in the previous section detract

further from the performance of the SQP algorithm:

1. Adjustments made to the BFGS update to preserve positive definiteness.
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2. Fluctuating multiplier estimates and different choices for y.

3.7.1 Positive definiteness

Maintaining positive-definite approximations to the Hessian of the Lagrangian has certain
disadvantages. Most importantly, as mentioned earlier, the true Hessian of the Lagrangian
is not guaranteed to be positive definite. Even in the neighborhood of a minimizer, the
Lagrangian need only have positive curvature in the null-space of the active constraints. As
demonstrated by Powell’s modification to BFGS (3.11), the assumption of positive definite-
ness makes the BFGS update (3.1) difficult to perform.

Powell’s modification has other disadvantages as well. First, the modified BFGS update
no longer minimizes the Frobenius norm. Second, Powell’s modified update no longer
satisfies the quasi-Newton condition. Despite this, Powell showed it was possible for an SQP
algorithm with a positive-definite Hessian approximation to give superlinear convergence
even when the exact Hessian of the Lagrangian is indefinite. He concluded that his modified
method could still attain superlinear convergence, although superlinear convergence is not
guaranteed, even for quadratic functions. Implementing the two SNOPT modifications is
even more complicated than Powell’s modification but has the same drawbacks. It is not
guaranteed to work, and the update no longer satisfies the quasi-Newton condition.

In addition, positive definiteness is incompatible in practice with maintaining sparsity.
Limited-memory methods applied to large-scale problems ignore the sparsity structure of

the problem.

3.7.2 Invariance under linear transformation

In other ways, Powell’s modification is robust. In particular, Powell’s BFGS modification
and his test for positive curvature are both invariant under linear transformation.

Consider a linear transformation of variables y = Az. It is desirable that an SQP
algorithm be invariant under such a transformation for several reasons. For one, the initial
scaling of the variables would not affect the outcome of the algorithm. Second, algorithms
that are invariant behave better on poorly conditioned problems. Newton’s method is
invariant under linear transformation while steepest descent is not. It may be true that an
algorithm is invariant under scaling, even if not under a more general linear transformation.
See [Fle81] for further background.
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All Broyden family quasi-Newton updates for unconstrained optimization (including
BFGS) are invariant under linear transformation as long as the initial Hessian approxi-
mation is also appropriately transformed. For a linesearch method to be invariant, the
linesearch termination criterion, which determines the stepsize, must also be invariant. The
linesearch termination criterion is invariant for the unconstrained BFGS method as long as
the termination criterion depends only on g’p.

For constrained optimization methods such as SQP, there are additional requirements
for invariance under linear transformation. The Hessian update needs to be invariant, the
search direction found from the subproblem needs to be invariant (which would present
a problem if the QP subproblem did not have a unique solution), and the termination
criterion of the linesearch (for SQP methods usually based on a merit function) is required

to be invariant.

3.7.3 Interpretation of the different choices for y;

Although the formulas for y; (3.5)—(3.7) were designed under the assumption that 7 is a
constant (see (3.4)), certain weaker assumptions would justify these formulas for the quasi-
Newton update even if the multiplier estimates vary from iteration to iteration. Such weaker
assumptions still rely on a consistent value for = within the iteration; it is not possible to
justify using different estimates of 7 in each term of yg, as in (3.5).

Some additional notation needs to be introduced. Let By (m) be the matrix at iteration
k that approximates the Hessian of the Lagrangian V2L(zg, 7). Let By, 1(mp41) be the
updated matrix to approximate V2L(Zgy1, Tr41)-

Weaker assumptions that justify updating By () via the formulas for y; in (3.6) and

(3.7) are as follows:

e For y; based on the newer 71 in (3.6), one needs to assume
By(mi) = Bi(mg11)- (3.17)
Applying the quasi-Newton update to By(mg11) gives Bi1(mg11)-

e For y; based on the older 7 in (3.7), one needs to assume

Bk_|_1(7rk) ~ Bk_|_1(7rk+1). (3.18)
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The quasi-Newton update can be applied initially to By(7), letting the parameters
7 and 7 both equal 7 (see 3.7). The update is a correct estimate for By 1(m), but

by assumption (3.18), we have the desired By (mg1)-

Neither of these assumptions would be needed if the quasi-Newton update treated =« as
a differentiable function of z, e.g., mx = 7(z) and 71 = w(xky1). Let A(x) and P(z) be

the Jacobians of ¢(z) and m(z). The generalized formula for the gradient difference is

yr = Va(L(Tgs1,m(xpr1)) — VL(zk, m(zk)) (3.19)

= get1 — 9k — (Afmer — Afmi) — (Plyscr1 — Pileg), (3.20)

where Ay = A(zy) and Py, = P(zg)-

This approach has drawbacks, not least of which is that 7 = 7(z) must be well-defined
and differentiable, and computing the derivatives of 7(x) may be difficult. For the least-
squares multiplier estimates it is possible to describe explicitly how 7, varies as a dif-
ferentiable function m;(z) of z, but w(z) is highly nonlinear. The quasi-Newton update
works best when the Lagrangian is a quadratic function, and the performance of the SQP

algorithm will suffer the more nonlinear it is.

3.7.4 Why does direct BFGS sometimes work well?

Given our criticism of the direct quasi-Newton update, the question arises as to why at least
some of the time the SQP method is observed to achieve superlinear convergence when using
the direct BFGS approximation.

Consider the issue of fluctuating multiplier estimates. All terms with derivatives P(z)
of w(z) (see (3.19)) are ignored in the direct BFGS update. In general this should cause
problems, but in some cases it can be justified. Omitting P(z) terms would be acceptable
if the term P(z)%c(z) in (3.19) were dominated by the remaining terms in the gradient of
the Lagrangian, g(z) — A(z)"r(z). In particular, if | P(x)|| were bounded, it would suffice
for ||c|| < ||g(x) — A(z)Tn(z)||, and this is true when the final search directions are in or
nearly in the null-space of the constraints. If this is the pattern of convergence near the
solution, it may be justified to treat the multiplier estimates as constant.

Under certain favorable conditions the BFGS update need not be modified near the
solution, despite the exact Hessian not being positive definite. If the final search direc-

tions are in the null-space of the active constraints (6 = axZkp,), the curvature y,{ék is
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approximately
YOk = ki Zips = oip;, Ziy (VaL(xg, X)) Zgps.

Hence the curvature is nonnegative if the reduced Hessian is positive semi-definite, as at
a minimizer of NP. In practice it has been observed that for NPSOL and SNOPT, usually
yL8), > 0 near the solution [GMSW89, GMS97].

If zy, is in the neighborhood of the solution, if the {py} are in or are close to the null-space
of the active constraints, and if the dimension of the null-space of the active constraints is
small as well, then at least the potential exists for an accurate Hessian approximation in
the null-space of the constraints after few iterations. For final search directions to be in
the null-space of the constraints, it is critical that the unit step be taken in the linesearch
and that the Jacobian have full rank at the solution, so that the infeasibilities converge at
a quadratic rate. We may expect the direct BFGS update not to work well whenever the
Jacobian is ill-conditioned at the solution because we are then no longer assured of positive
curvature along the search direction and because the search directions may no longer lie in
a small subspace.

To sum up, the direct, positive-definite BFGS Hessian approximation has several short-
comings that reduce the likelihood of satisfying the conditions for superlinear convergence.
First, while the BFGS update for unconstrained optimization could be proven to converge
to the exact Hessian, the BFGS update for constrained optimization cannot be. Second, the
BFGS update enforces positive definiteness, but at a price—one is periodically forced to skip
or modify the update. Third, using changing multiplier estimates violates an assumption

of the BFGS update and hinders convergence to the exact Hessian.



Chapter 4

Disaggregated Hessian

Approximation

4.1 Introduction

Direct, positive-definite, BFGS approximation to the Hessian of the Lagrangian ignores the
dependence of the Lagrangian on the multipliers and enforces a positive-definite approxi-
mation. For these and other reasons, the direct approach may perform poorly even on ideal
problems.

In this chapter we explore alternative ways of approximating the Hessian of the La-
grangian W (z, \) using quasi-Newton methods. The approaches described in this chapter
are designed to avoid the shortcomings of the direct, positive-definite, BFGS approximation.

We consider strategies to improve the update, which include
1. relaxing positive definiteness,
2. disaggregating the estimation problem into smaller parts, and
3. substituting the symmetric rank-one update for the BFGS update.

We analyze these approaches, compare to the direct approach, and describe the compu-

tational cost of implementation. Finally, some computational examples are given.

59
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4.2 Relaxing positive definiteness

Suppose the approximation matrix B were allowed to be indefinite. The indefinite BFGS
update (1.15) could then be applied if y{ék were positive or negative. As before, the BFGS
update would still be undefined when yid; = 0, and in addition it would be undefined if
5,{Bk5k = 0 (before, this term was guaranteed to be positive). The zero-denominator case
is not a serious concern, but the indefinite BFGS update needs to be otherwise compared
to the other indefinite quasi-Newton updates. Once the assumption of positive definiteness
is dropped, the indefinite BFGS update can no longer be proven to minimize the Frobenius
norm of the change Ej to Bg. The symmetric rank-one (SR1) quasi-Newton update is

attractive for its simplicity and other properties.

4.3 Symmetric rank-one update

The SR1 update is an intuitively preferable choice of quasi-Newton update because at each
iteration it imposes a rank-one change that corresponds to the information gained about the
curvature of the Lagrangian in only one direction (the search direction). The SR1 update is
thus simpler than the rank-two BFGS update, and each update can be stored with a single
vector and a constant.

Suggested independently around 1967 by a number of authors, the SR1 update is the
unique rank-one update that preserves symmetry and satisfies the quasi-Newton condition.

We first present the SR1 update for the unconstrained case. Suppose we wish to estimate
the Hessian of a twice continuously differentiable function F(z) : R™ — IR with g(zx) =
VF(zy). Let By be the approximation matrix for V2F(z}), with 6, = zx,1 — 7 and

vk = g(zr41) — g(zk)- (4.1)
The SR1 update is
T
VU
Byyi = Bp+ -k, (4.2)

where v, = yr — Bidg. It is well-defined if the denominator v,{ék is nonzero. (For handling
of exceptions, see below.)

In the nonlinearly constrained case, the SR1 update can be extended in a straightforward
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manner to estimate the Hessian of the Lagrangian. Simply substitute y and § from (1.12)
and (1.16).

Undefined updates with SR1

Like the indefinite BFGS update, the SR1 update (4.2) becomes undefined as certain quan-
tities, in this case v’d, approach zero. Moreover, it is ill-advised to complete the update if
v1§ is small in relative terms. (For simplicity, we omit the subscripts on § and v.)

A practical algorithm requires safeguards to handle these difficulties. Conn et al.

[CGT88] suggested that the update be skipped when either of

075 < el (43)
or T
(Y
1Biss = Bell = 2zl > . (14)

where €1 € (0,1) is a constant (set to 1078) and y; = 108. Condition (4.3) handles the case
where ¢ and v are nearly perpendicular. Condition (4.4) handles the case where the norm
of the update ||vv?/v7d|| is large (equivalently, |v76| small relative to ||vv?]|); under this
condition if the update were performed the new approximation matrix could immediately
become extremely large and close to a rank-one matrix.

Checking condition (4.4) does not, however, altogether prevent the updated matrix from
becoming nearly equal to a rank-one matrix after a single update. There is still danger of
this happening if |[vv?/v76|| is large relative to ||Bg||, even if not large in absolute terms.

For that reason, we suggest expanding (4.4) to exclude situations where
vl
1Bt = Bill = 153511 > Bl (4.5)
A simpler alternative is to replace (4.4) by
vol
1Bis = Bill = |51 > (1 + Bl (46)

Rather than skip the update when the SR1 update is ill-defined, we could modify the SR1
update, just as the BFGS update was modified in certain cases. Because the denominator

of the SR1 update differs from the BFGS update, steps that preclude one of the updates
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may allow the other. On iterations where the SR1 update is ill-defined, a well-defined BFGS
update could be substituted for the SR1 update (at the risk of losing theoretical convergence
properties for the quasi-Newton updates).

The problem of occasionally needing to skip SR1 updates is less serious and less common
than needing to skip or modify BFGS updates in order to maintain positive definiteness
for an approximation of the Hessian of the Lagrangian. Admittedly, tests (4.3) and (4.4)
could fail even on well-defined and well-conditioned minimization problems. But if this
happens at all, it is most likely to happen when the current approximation By is already
very good, since v = y — B4 goes to zero. Skipping an update under such circumstances is
not necessarily bad. This contrasts with the BFGS update, which may need to be modified
or skipped anywhere negative curvature is encountered, preventing new information from

being incorporated into By.

SR1 performance properties

The performance of the SR1 update has been analyzed and compared to the BFGS update in
the literature, but the analysis has been limited mainly to unconstrained optimization. The
traditional supremacy of the BFGS update was first challenged by Conn, Gould, and Toint
[CGT88], who conducted numerical experiments on bound-constrained problems within the
trust-region framework showing the SR1 update to be substantially more efficient than
any of several other quasi-Newton methods tested, including BFGS, DFP, and PSB. They
suggested this behavior could be linked to better convergence of the SR1 matrix updates
to the true Hessian.

In theory, BFGS should perform well for unconstrained optimization problems because
the usual linesearch termination conditions ensure that y76 > 0.

For the SR1 update to perform well, all that is required is that the search directions
be independent. A key property of the rank-one update is that for a quadratic function
the exact Hessian can be computed exactly in n iterations. This well-known result, which
seems to have been proven first by Fiacco and McCormick [FM68], is stated here without

proof.

Theorem 4.3.1 Suppose F(z) is a quadratic function with rank-n Hessian H. If the ma-
trices {By} obtained using the SR1 update are all well-defined, and if dp,02,...,0n—1 are
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independent directions (n' < n), then
Bnlék = Yk, k:O,...,n'—l,
where the SR1 update and yy, are defined in (4.2) and (4.1), respectively.

Let A be the n x n’ matrix whose kth column is ;_;. Since the quasi-Newton condition

holds at each update, the theorem implies
By A=HA and ATB, A=ATHA.

In other words, the matrix approximation is correct in the subspace spanned by the n’

search directions. If the n' search directions span the null-space of the constraints, then
Z'B,Z =Z"HZ.
Under the above assumptions, the SR1 update “terminates” after n iterations with
B, = H.

Exact linesearches are not required for these results. In fact, no property of the search
directions is required except independence.

Conn, Gould, and Toint [CGT91] extended this known convergence result for the SR1
matrices on quadratics to the general class of sufficiently smooth nonlinear functions.

Later, Khalfan, Byrd, and Schnabel [KBS93] conducted numerical experiments showing
the SR1 update to be competitive with or even more efficient than BFGS in trust-region

methods for unconstrained optimization.

4.4 Aggregation/disaggregation model

Direct approximation of the Hessian of the Lagrangian, which combines multipliers and
second derivatives into one function, has drawbacks regardless of whether one uses the
SR1 update or the BFGS update. In theory, the update treats the Lagrange multipliers as
constants, rather than as functions of the current iterate, yet in practice the implementation

uses the latest multiplier estimates at each iteration. This has negative implications for both
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theory and practice. Another significant drawback is that we are unable to incorporate full
or partial second-derivative information easily using direct approximation.

Both difficulties are overcome by disaggregating the problem. That is, rather than
estimate the Hessian of the Lagrangian as a single entity, we shall estimate V2£(zy,\) by
estimating its sub-components and then aggregating to form the Hessian approximation.

Since

V2L (g, ) = V2 f(x) — Z(Tf’k)iVQCi(.’I)k), (4.7

7

we estimate

By =By = (m)i Bi, (4.8)

%
where BY is our estimate for V2f(zy), B for V2¢;(zy), and 7 is the multiplier estimate.
Here we can easily use exact second derivatives for B,g or B,ic, if they are available.
Otherwise the Hessians are approximated directly, using a quasi-Newton update or some
other method. The Lagrange multipliers must be estimated whether we have exact second

derivatives or not.

Lagrange multiplier estimates

Many choices are involved in forming the multiplier estimates, and several goals must be
considered. To prove convergence only requires {m;} to be bounded. To show superlinear
convergence a necessary condition is 7, — 7. We seek an estimate that is easy to compute
and that converges to the optimal multipliers 7*. Four possibilities to consider are the

following.
1. The QP multipliers: the multipliers at the solution of the most recent QP subproblem.

2. The merit function multipliers: the multiplier estimates used in the linesearch on the

merit function.

3. The least-squares multipliers: the value 7y that minimizes || A} 7, — g/ (an expensive

estimate).

4. The Murray-Prieto [MP99] estimate 7, = Ay — pg—1(ck — Sk), where A is the cur-
rent Lagrange multiplier estimate used in the merit function and pg_; is the penalty

parameter. When exact derivatives are known, this choice is necessary if we wish to
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match negative curvature in the Hessian of the Lagrangian to that of the Hessian of
the merit function. When second derivatives are approximated, we shall not normally

be interested in negative curvature, so this choice of estimate is not essential.

4.5 Estimating individual constraint Hessians

When exact second derivatives are not available, we approximate the individual constraint
Hessians using a quasi-Newton update. Two candidates to consider for this update are
BFGS and SR1. Since maintaining positive definiteness is not a concern, and since SR1
is simpler and more intuitive, we favor the SR1 update over BFGS. Theorem 4.3.1 implies
in certain situations that the SR1 update will converge to the correct matrix in a finite
number of iterations.

The SR1 quasi-Newton update can be easily applied to the estimation of the constraint

Hessians V2¢;. Let the gradient difference for the ith constraint be

Yi, = Vei(zp1) — Veilzp), (4.9)
and define the residual
vk = Yk — Bidk, (4.10)
where Jj, is the change z; 1 — k. Then the SR1 update for B,i is
T

)"
(v,) 0%

Bi.,=DBj+ (4.11)

4.6 Initialization

It is not immediately clear how to initialize the Hessian estimates Bj. Since the component
matrices are not necessarily positive definite, it is unclear whether the identity is a suitable
initial approximation. A finite-difference estimate is a good choice but may be prohibitively
expensive. On the other hand, we would like to initialize { B§} so that the initial reduced

Hessian ZJ ByZy is positive definite. Quite how to do this is unclear.

If we set the objective Hessian to the identity (or a positive diagonal) and the constraint

Hessians to zero, we can achieve a first iteration result similar to that attained by direct
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updates. This eliminates the need for initial multiplier estimates. It also ensures a positive-

definite initial Hessian (and hence, reduced Hessian).

4.7 Computational cost and scalability

A naive or dense implementation of the disaggregation approach would require storing m+1
symmetric matrices of dimension n, where m is the number of nonlinear constraints, for a
total of n?(m +1)/2 elements. That storage requirement, m + 1 times greater than required
by the direct Hessian update, could easily be prohibitive. Even if the limited-memory ap-
proach is applied to the disaggregation model, retaining the L most recent updates would
still require %(m + 1) times the storage needed for the direct BFGS limited-memory ap-
proach.

Fortunately, in many cases sparse techniques can be applied to reduce storage and
computational cost dramatically without losing accuracy in the estimate. The sparsity
structure of the constraint Hessians can be deduced easily from information already required
by codes for large-scale nonlinear constrained optimization such as MINOS [MS78, MS82,
MS95] and SNOPT [GMS97]. Large problems are assumed to be sparse by MINOS and
SNOPT. With few exceptions, that usually means that the objective and constraint functions
are functions of very few variables, typically less than 10. A distinction is made in MINOS
and SNOPT between variables that occur nonlinearly (in any constraint or the objective
function) and those that occur only linearly, and the nonlinear variables are generally placed
first before the linear variables. The Jacobian is input by the user in a compact form
representing the values and locations of the nonzero elements. Alternatively, it may be
possible to determine derivatives and sparsity patterns automatically using a package for
automatic differentiation such as ADIFOR for Fortran or ADOL-C for C/C++. Suppose
there are 7 nonlinear variables. We refer to the subset of the Jacobian in the nonlinear
variables only, i.e. the first 7 columns of the Jacobian, as J-.

An efficient sparse representation of the component Hessians can be computed using
information already available about the sparsity structure of the Jacobian and gradient.
The component Hessian for a given constraint can be represented as a square dense matrix
in any superset of the nonlinear variables in that constraint. The nonzero elements of the
associated row of J corresponds to such a superset. A similar result follows for the objective

function and gradient. Lagrange multiplier estimates are stored in a separate vector that is
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updated at every major iteration.

Sparse storage of the disaggregated Hessian of the Lagrangian is much easier to imple-
ment than applying partial separability to estimate Hessians of general functions for one
important reason. When applying partial separability to general functions, the user needs
to provide additional structural information about the problem. There is no such drawback
in our case. Although it may still be necessary for the user to provide the sparsity structure

of the objective function, this is only a single function and represents a minor inconvenience.

The storage requirements for a sparse representation of the approximation to the Hessian
of the Lagrangian are easy to compute. Suppose there are at most ¢ nonzeros in any row of
J or the gradient. It follows from the above discussion that we might reasonably assume
t is small (¢ < n), i.e., all rows of the Jacobian are sparse. A transformation of variables
may lead to even further decrease in the number of nonconstant values in the Jacobian.
The individual constraint Hessians are stored and updated as dense symmetric matrices of
dimension ¢. The total number of values that needs to be stored is bounded by %(m +1)¢2.
If ¢ is small and m < n, that could easily be less than the %nQ required for the direct Hessian
approximation. Typically, for n large, t* < n. Consequently, the storage required for all

the Hessians is similar to that required for the sparse Jacobian matrix.

It is possible for the number of nonlinear variables in the Hessian of the Lagrangian
V2L(z,A) to be large even when ¢ is small, and V2L£(z,)) could have little or no sparse
structure. While it is necessary to store each component Hessian, storing the full ap-
proximation matrix By can be avoided by using the objective and constraint Hessians for
matrix-vector products with By as needed. By contrast, a direct matrix update cannot
automatically take advantage of the sparse structure of the problem. Even if the initial

approximation matrix is sparse, fill-in is not easily prevented by the BFGS update.

But the assumption that ¢ is small fails even if there is just one constraint with O(n)
nonlinear variables. Though the other constraints may be sparse, the storage requirement
goes up to %n2+0(m), which may be prohibitive for large-scale problems. For the case where
t is large, the disaggregated model can be implemented using a limited-memory approach
to approximate some or all of the component Hessians. For each function with ¢ nonlinear
variables, this would require storage of L(¢+ 1) elements, where L is the number of limited-
memory updates stored. Such an approach is recommended only if ¢ > 2L(t + 1)/t = 2L.
The total storage requirement all component Hessians would add up to L(¢t + 1)(m + 1)

elements.
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4.8 Analysis of the disaggregation model

Our analysis of the disaggregated SR1-based Hessian approximation examines first the
consequences for convergence rate and second the memory requirements and computation

time involved in this method.

4.8.1 Accuracy and convergence rate

As mentioned earlier, the convergence rate is highly dependent on the accuracy of the
Hessian approximation. Several components of the disaggregation model contribute to

Hessian accuracy:

e Because we allow an indefinite approximation, the update can be performed at more

iterations. Skipping updates leads to poor performance of the SQP algorithm.

e Because the approximation is independent of the multiplier estimates, the Hessian

approximations can converge even while the multiplier estimates are rapidly changing.

e Because the estimate is disaggregated, exact second derivatives can be easily incorpo-

rated.

For quadratic functions, the disaggregated SR1 update will satisfy the requirement (1.9)
for superlinear convergence after a bounded number of iterations. No such claim can be
made for the direct BFGS update.

Suppose the objective function and all constraints are quadratic functions. Then, after
n linearly independent search directions we could estimate the constraint Hessians exactly.
This follows directly from Theorem 4.3.1. Consequently, the sufficient condition on the
Hessian approximation for superlinear convergence is satisfied after n iterations.

Still supposing the functions are all quadratics, in some cases the Hessian approximation
can be proven to converge in fewer than n iterations. Let S; be the subspace corresponding
to the nonlinear variables for each constraint ¢, and Sy for the objective function. For
example, if the 7th constraint is a function of o and z3, c;(72,z3), then S; = IR?(xo, x3).
Suppose there are at most ¢ nonlinear variables for any constraint or objective function, and
that the individual Hessians are all nonsingular. Then the Hessian approximations converge
as soon as for each constraint 4, the search directions projected into S; span S; (we cannot

require linear independence because they will surely be linearly dependent if the dimension
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of S; is less than t). This can occur in as few as t iterations. It follows that the sufficient

condition for superlinear convergence could be satisfied in as few as ¢ iterations.

4.8.2 Resources: storage and computation time

A naive implementation of the disaggregation approach for the dense case requires signif-
icantly more memory to store the Hessian approximation than the direct approach. The
disaggregation approach may require more computation time because m quasi-Newton up-
dates could involve more work than a single direct update.

But for the large-scale case where the constraint and objective Hessians are sparse, the
approach described in Section 4.7 allows us to compute the Hessian approximation with
greater accuracy and lower storage requirements than the direct method. Moreover, in the
sparse case the total computation time also could be less than for the direct method, if a
complete quasi-Newton update is computed.

For the large-scale case (limited-memory or sparse) it can take up to m times longer
to compute the matrix-vector product Biyz. However, many of these more time consuming
operations can take advantage of parallel computer architectures. Hessian updates can be
computed in parallel, as can the matrix-vector product in some cases. Owing to greater
Hessian accuracy we expect the disaggregated method to converge in fewer major iterations.
There is a tradeoff, but in certain cases the disaggregated approach promises to be more

efficient.

4.9 Numerical example

The following quadratically constrained quadratic program (QCQP) illustrates
1. the problem with changing multiplier estimates,
2. the advantages of disaggregation over aggregation, and
3. the advantages of SR1 over BFGS.

The problem has a relatively simple form, but if the aggregated BFGS Hessian approxima-
tion cannot succeed on this type of problem, there is little hope it can be shown to perform

well on general problems.
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For three quasi-Newton Hessian approximation strategies and for several combinations of
initializations for z, the multiplier estimate 7, and the Hessian approximation matrix B, we
applied the SQP method to the problem given below and compared their performance. Tests
on this problem showed that the disaggregated SR1 Hessian gave a more accurate approxi-
mation than either the aggregated (direct) or the disaggregated BFGS update. Moreover,
the SQP method converged most rapidly using the SR1 Hessian approximation.

4.9.1 Test problem

Given a fixed, positive-definite H € IR5*®, consider the problem

minimize 2 Hz — e’z (4.12)
5
z€IR

st 3(zlz—1) =0,

where e denotes the vector of all ones. This test problem is small (five variables) and
relatively easy. It has a strictly convex quadratic objective and a single quadratic equality
constraint, and hence a nonconvex feasible region.

For problem (4.12) let

(4.13)

o o o
=T
o
L
o
_ O
Ne)
o © o o o

Given H, the solution (to four digits precision) has the optimal Lagrange multiplier 7* =

—1.7869 and the optimal primal variable

0.5516
0.3694
z = | 0.4021 |- (4.14)
0.5059

0.3764
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Within the SQP method, the QP subproblem at z = Z is

P T, , 1. T
e sp'B 4.15
minimiz 9'p+3p Bp (4.15)
st. Ap=-1i(3"z-1), (4.16)

where g = HZ —e, A = Z!, and B is an approximation for the Hessian of the Lagrangian:
Bx=V: L(z,r) = H-—nl.

4.9.2 Test method

We tested a simplified SQP method using three different Hessian approximation strategies
and two ways of initializing the Hessian approximation, for a total of 6 combinations. The

three Hessian approximation strategies were
1. Direct, aggregated BFGS.
2. Disaggregated BFGS.
3. Disaggregated SRI1.
The two ways of initializing the Hessian approximations were :

1. Exact (complete information). Given a Lagrange multiplier estimate g, the initial

approximation to the Hessian of the Lagrangian is By = V2, L(x, 7).
2. General (zero information). Initialize with identity matrix, i.e., By = I.
At first we tried three different initial point estimates for  and A:
1. an arbitrary point
2. a feasible point
3. a point close to the solution

However, for the cases run, the results obtained were very similar.
The SQP method was applied as follows. Since the example is small, the QP subprob-
lems were solved directly from the KKT system to get the search direction and multiplier

estimate. For simplicity, there was no linesearch, and the full step of size one was always
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taken. The multiplier estimates were updated by setting them to be the QP multipliers,
and only the most recent multiplier estimates were used in the quasi-Newton update. For
this test problem the exact Hessian of the Lagrangian is positive definite at all z including
7* and for all # < 0. The initial starting points were selected so the Hessian approxima-
tion update would usually not need to be skipped (except when close to the solution). No
modifications were made but Powell’s rule for BFGS and corresponding rules for SR1 were
used to decide when to skip the update.

With the SQP method implemented as above, the Hessian approximation methods were
compared according to the convergence rate of the algorithm and the error in the Hessian
approximation. The convergence rate is measured by the rate of decrease in the norm of
the gradient of the Lagrangian. Note that the convergence of the norm of the infeasibilities
to zero is independent of the Hessian approximation. Generally, the norm of the constraint
violations converges to zero faster than the norm of the gradient of the Lagrangian. The rel-
ative error in the Hessian approximation (that is, compared to the Hessian of the Lagrangian

using exact second derivatives and the current QP multiplier estimates) is measured by

(B, — V2L (zg, m) |

V2L (g, ) | (4.17)

4.9.3 Performance results

The comparative performance of a simple SQP routine with different quasi-Newton approx-
imations is summarized in Figures 4.1 and 4.2. In the first figure the Hessian approximation
is initialized to the identity matrix (By = I). In the second figure the Hessian approximation
is initialized using exact second derivatives, i.e., By = V2, L(xg, 7).

For each figure, there are two graphs:

1. on the left, the log of the norm of the gradient of the Lagrangian versus the number

of iterations, and

2. on the right, the “relative error” in the Hessian approximation (4.17) versus the num-

ber of iterations.

Note that both performance measures are graphed in log plots to allow a large range of
values to be depicted.

The relative error of the Hessian approximation was much smaller for the disaggregated
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SR1 than for the aggregated BFGS. Several observations about the Hessian approximation
for the QCQP might explain why:

o If an aggregated Hessian approximation is used, it is possible to start with an approx-
imation based on the exact second derivatives but inexact multiplier estimates, and

have the entire approximation rapidly deteriorate as the multiplier estimates change.

e If the disaggregated SR1 Hessian approximations (components updated using either
SR1 or BFGS) are initialized using the exact Hessian at the initial point (z,7), the
Hessian approximations do not deteriorate. Rather, the exact Hessian of the La-
grangian (with updated multiplier estimates) is produced at all iterations. The SR1
update is actually skipped if the quasi-Newton condition is already satisfied. The
BFGS update is not skipped; however, the two terms of the BFGS update cancel
each other out (subject to numerical error) if the quasi-Newton condition, y = B¢,
is already satisfied (which it is for quadratic functions as long as the BFGS update
is not modified for positive definiteness). Note that the approximations will satisfy
the quasi-Newton condition at all iterations because the functions are quadratic and

hence the true Hessians are constant.

e Even if not initialized with exact second derivatives, the SR1 disaggregated approach
is proven to converge in fewer iterations than the number of variables, if the search

directions are independent (see Theorem 4.3.1).

It is another matter whether the SQP method itself will converge much faster with the
better Hessian approximation. According to the sufficient condition, the Hessian approxi-
mation need not be exact in order for the algorithm to converge superlinearly.

With the direct BFGS update, the gradient of the Lagrangian converged to zero linearly
(with a small constant) for each of the three starting points. Using the disaggregated SR1

update, superlinear convergence, sometimes even quadratic, was observed.
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Hessian approximation error (log plot)

Convergence to optimality (log plot)
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Figure 4.1: Comparative performance with Hessian approximation initialized to the identity

matrix.
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Figure 4.2: Comparative performance with Hessian approximation initialized using exact

second derivatives.



Chapter 5

Nonconvex QP Subproblems

5.1 Introduction

The use of the disaggregated, SR1 quasi-Newton approximation to the Hessian of the La-
grangian leads to approximations, and hence QP subproblems, that are indefinite. The
SQP algorithm PDSQP described in Chapter 2 will not work with such Hessian approxi-
mations, but IDSQP does allow nonconvex subproblems. The null-space active-set method
based subroutine IDQP that finds a descent direction for IDSQP has certain drawbacks,
namely that in order to ensure convergence of IDSQP it always terminates at the first con-
strained stationary point, and that the descent step off the stationary point is based on the
steepest-descent direction.

The purpose of this chapter is to explore alternative ways to compute the descent di-
rection. We also describe how to compute the initial modified reduced Hessian, which is
needed for an implementation of IDQP. We present an alternative algorithm and show that
the descent direction produced satisfies requirements for the outer SQP algorithm IDSQP
to be convergent. Requirements for convergence are based on the algorithms described in
Chapter 2.

The options explored include modifying the active-set method by altering the QP Hes-
sian and/or terminating the procedure before reaching a minimizer. While not a require-
ment, a strong preference is that the modification be minimal, in the sense that no change
should be made to the original method for solving the QP if the solution to the unmodified
problem is satisfactory. For example, when the reduced Hessian is positive definite at a

solution, we do not want to alter the subproblem in the neighborhood of the solution, even

75
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though the Hessian may be indefinite. The modified Newton method for unconstrained
optimization follows similar principles and was the basis for our approach to constrained
optimization with indefinite subproblems.

We begin by describing the issues involved in generalizing the modified Newton approach

and outlining the range of options for modifying the QP.

5.1.1 Generalizing the modified Newton approach
Modified Newton methods for unconstrained optimization

Newton methods for unconstrained optimization take steps that minimize local quadratic
models of the function based on the exact Hessians at each iterate. A requirement that the
quadratic model be positive definite ensures a minimum exists, and the minimizer is a search

“modified Newton” approach attempts to use the exact

direction of sufficient descent. The
Hessian even when it is not positive definite. To ensure the subproblem has a minimizer,
this approach sets the model Hessian equal to a positive-definite “approximation” of the
true Hessian.

The modified Newton procedure follows two principles:
1. The algorithm is required to produce a descent direction.

2. The modification should be minimal; no change should be made to the model Hessian

when it is positive definite, as it usually is in the neighborhood of the solution.

For unconstrained optimization, the first principle is satisfied as long as the modified Hessian
is sufficiently positive definite. Unfortunately, it is not immediately obvious whether a given
matrix is positive definite. To increase the likelihood that the matrix is positive definite,
one could add a large multiple of the identity matrix, but that would not be a minimal

change, violating the second principle.

Cholesky factorization A simple way to make a minimal change to the Hessian, without
unnecessary computational expense, is to use the Cholesky factorization both to solve the
system of equations for the search direction and to modify the Hessian. For background on
the Cholesky factorization, see [GV89] or [GMWS8I1, pp. 36-37]. The Cholesky factorization
only exists for positive-definite matrices, but if in the course of performing the factorization

it becomes apparent that the matrix is not positive definite, at that point the matrix can
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be modified to enable the algorithm to continue. It may be necessary to make a series of
changes to the original matrix. On completion, we have Cholesky factors for some matrix
that is obviously positive definite. A nice feature of the methods to find Cholesky factors
is that the work required is little more than if the final matrix were known initially and the
pure Cholesky algorithm used. For more details about the modified Cholesky factorization,
see [GMWS81, pp. 108-111].

Modified Newton methods for constrained problems

Consider now the constrained case where the local model is a quadratic program and the
Hessian of the QP is indefinite. The same principle applies to the desired modification:
while providing a descent direction satisfactory for a convergent SQP algorithm, the change

should also be minimal, with a computational cost similar to the convex case.

As in the unconstrained case, if the full Hessian H is not positive definite, the QP may
not have a solution, or when a minimizer exists, it may not be a descent direction from
po for the QP or the merit function. On the other hand, for constrained problems the
important curvature is of the reduced Hessian rather than the full Hessian. In contrast to
the full Hessian (a large matrix not assumed to be positive definite even at the solution), the
reduced Hessian is a smaller matrix that can be assumed positive definite at the solution. If
the initial reduced Hessian is modified to be positive definite, a first constrained stationary
point will exist. We do not want to modify the full Hessian because that would not be
minimal, would be expensive, and could impede the rate of convergence. But, modifying
the Cholesky factorization of the reduced Hessians while solving the QP would not require
much additional work. If the Hessian could be modified initially, in a minimal way, to
be positive definite when projected into all subspaces encountered and the union of all
subspaces encountered, then the result would be a descent direction for the merit function.
Unfortunately, if the active set at the initial point is not the active set at the solution,
it is difficult to ensure the reduced Hessian will remain positive definite on all subspaces

encountered.

5.1.2 Options for modifying the QP

Five possible ways to modify the QP subproblem follow.
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(if)
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Alter the full Hessian to be positive definite. For example, for some v > 0, let
H <« H +~I,

then solve the positive definite QP. One way to determine )\ so that H is positive
definite would be to perform a spectral decomposition and set A to be greater in
magnitude than the smallest negative eigenvalue. To avoid computing the eigenvalues
(an expensive operation), Betts et al. [BH93] applied the Gershgorin theorem [GV89,

pp. 341-2] to determine a lower bound on the smallest eigenvalue.

A significant drawback to this approach is that it may alter even a well-conditioned,
positive-definite matrix. Since the Hessian is not positive definite in the neighborhood
of a solution, this approach is likely to cause a serious deterioration in the rate of

convergence. The next three approaches aim to avoid unnecessary modification.

To avoid modifying matrices unnecessarily, we could first determine whether the initial
reduced Hessian is positive definite (see Section 5.2). If not, we could then apply (i).
Unfortunately, the fact that the initial reduced Hessian is positive definite does not
ensure a satisfactory solution exists to the QP. Later reduced Hessians may still be

indefinite.

Murray and Prieto’s approach, described in Chapter 2, alters the QP Hessian at the
initial feasible point so the initial reduced Hessian is positive definite, ensuring the ex-
istence of the first constrained stationary point. Their algorithm finds the constrained
stationary point using an active-set method and computes a descent direction based
on Lagrange multiplier estimates at the stationary point. Continuing to a later sta-
tionary point is allowed as long as the modified QP Hessian is positive definite on the
subspace spanned by all search directions encountered, but it is difficult to ensure or

even check that this condition holds without stopping at the first stationary point.

Start by following (iii), then move past the first stationary point. Attempt to solve the
QP using a null-space active-set method. At each iteration, alter the QP as necessary
to ensure the reduced Hessian is positive definite on every subspace encountered. Then
show the solution obtained is the solution of a related QP that is the same except for

having a positive-definite Hessian.

Unfortunately, there is a counterexample (provided in Section 5.3.2) that shows such



5.1. INTRODUCTION 79

a strictly convex problem may not exist even if the reduced Hessian is positive definite
on every subspace. If no such strictly convex problem exists, the solution may not be

a sufficient descent direction for the merit function.

(v) Follow (iv), but stop if necessary in order to guarantee a sufficient descent direction

and satisfy requirements for the SQP method to converge.

This last approach does not alter the problem in the neighborhood of the solution,

yet it produces a descent direction for the merit function.

The above approaches to dealing with a nonconvex QP focus on modifying the ap-
proximation to the Hessian of the Lagrangian. A different approach, which we have not
considered, would have been to add constraints or bounds to the QP instead of modifying

the Hessian.

5.1.3 Preview

The remainder of this chapter is organized as follows.

e In Section 5.2 we describe modifications to the initial reduced Hessian that satisfy the
requirements of the indefinite SQP algorithm IDSQP described in Chapter 2.

e In Section 5.3 we explore how one might proceed with the null-space active-set method
beyond the first stationary point. We provide a cautionary counterexample to show
the need for early termination conditions even when no changes need be made to the
QP Hessian.

e In some cases, the termination conditions allow modifying the Hessian additional
times at or after the first constrained stationary point in order to maintain a positive-
definite reduced Hessian. This allows the algorithm to continue towards a minimizer.
Implementation details for such modifications are given for the dense and sparse cases
in Section 5.4. After analyzing properties of the modification procedure, we show
how a descent step off the final stationary point can be constructed by a natural

continuation of the algorithm past the final stationary point.
e In Section 5.5, we present a detailed statement of the algorithm with pseudocode.

e [t is shown that the algorithm terminates in Section 5.6.1.
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5.2 Initial modifications to the QP Hessian H©

We describe how to modify the full Hessian and the reduced Hessian initially in both the
dense and sparse cases, in order to produce a positive-definite reduced Hessian. We use the

notation introduced in Sections 2.1.3 and 2.2.1.

The initial reduced Hessian may require extensive modification, but since changes to the
objective do not affect the choice of initial feasible point and can be assumed to have been
made before we start to solve the subproblem, we have a lot of freedom in choosing this
modification. A variety of initial modifications to the reduced Hessian have been proposed
[FGM95, GM74]. While the spectral decomposition would produce a minimal modification
with nice properties, it is inefficient and impractical to compute for large problems. We
wish the modification to have certain properties. The modification should be minimal and
economical to compute, H® must be bounded, and the reduced Hessian needs to have

positive, bounded eigenvalues.
One approach is based on the partial Cholesky factorization [FGM95]. For clarity of
exposition we omit the symmetric permutation used by the partial Cholesky algorithm.
The set of equations to be solved at the initial point is ZgHOZOd = —Zggo. If ZgHoZo b
0, this system can be solved using a full Cholesky factorization. Even if Z{HyZy ¥ 0, the
Cholesky factorization (with permutations) can proceed until there are no remaining positive

diagonals or no positive diagonals greater than some 8y, > 0:

L I T
ZTHyZg = | R (5.1)
Ly I S I

where L; is a lower-triangular matrix with a bounded condition number. This is called
the “partial Cholesky factorization.” The modified reduced Hessian that results from this

factorization is
L ¥ 7
2aVz, = [ S (5.2)
Ly T I
Since the resulting modified Hessian is bounded, as long as Hy is bounded, the size of the

modification is also bounded.

There are other bounded options for modifying the reduced Hessian, such as the “mod-

ified Cholesky factorization” [GMT74]. For the current discussion we simply assume 7' is
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known such that ||T|| < oo and
ZIH\" 7y = ZTHZy + T (5.3)

is sufficiently positive definite. Note that T is an n, X n; matrix, where n, is the number

of columns in Zj.

The question is, what does this imply about H(®)? This matrix is needed to compute
the gradient V(9 (p). Let M be a matrix such that

HO = H+ M, (5.4)

subject to (5.3) also holding. It is obvious that M is not uniquely defined by (5.3) and
(5.4).

5.2.1 Dense case

Suppose Zy has orthonormal columns, so Z3 Zg = I. Then
HY = Hy + 2,777, (5.5)
clearly satisfies (5.3). From the definition of Py in (2.7),
PTHO Py = PTHP, + ZyTZ] (5.6)
is equivalent to (5.5). It follows that
HO = H + Py(ZoTZ])PL.
When Z; has orthonormal columns, H ) can be computed simply by defining
M = Py(ZyTZ{)P}. (5.7)

This is the choice of M satisfying (5.3) that minimizes the Frobenius norm of M.
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5.2.2 Sparse case

For large, sparse problems, it is inefficient for Zy to have orthonormal columns, but H ©) can
be determined as follows. Start by expanding the relationship between 7" and M. Multiply
equation (5.4) by P} on the left and Py on the right, yielding

It follows that
HY = Hy+ PTMP,. (5.8)

Given the definition of T from (5.3), multiplying (5.8) by Z{ on the left and Zy on the right
implies

Z{(P§MPy)Zy =T. (5.9)

For sparse problems a common form for Zj is

w
Zy = ,
I,

nz

where I, is the identity matrix with dimension equal to the number of columns in Z (that

is, n — rank(Ap)). It follows that a convenient choice for M satisfying (5.9) is given by

M = PyTPY, (5.10)
where
_ 0 0
T =
0T

5.3 Moving beyond the first constrained stationary point

The subroutine IDQP to find a descent direction, described in Chapter 2, stops at the
first constrained stationary point. We wish to have the option of moving beyond the first
constrained stationary point and perhaps finding a minimizer. We would like to follow the
positive-definite QP subroutine PDQP described in Chapter 2 as closely as possible, but

as explained earlier this procedure might fail because the reduced Hessian could become
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indefinite, and even if it did not fail, other conditions for convergence might not hold.

5.3.1 Further modifications to the Hessian of the Lagrangian

It is possible to extend IDQP past the first stationary point, in such a way that at least
it does not fail immediately. We repeatedly change the QP problem being solved, at the
initial point replacing H by H® and subsequently replacing HY) by HU*D to ensure a
positive-definite reduced Hessian. The objective minimized at the jth QP iteration would
be

. 1 .
¥ (p) = p"HYp + g'p.

The choice of HY+1) would depend on whether Z]-T+1Hj(-j)Zj+1 > 0. If so, then HUTD =
HW. If not, HU*D is chosen such that Z]-T+1HJ(-j+1)Zj+1 > 0. Later in this chapter,
we discuss algorithms for modifying the matrix as necessary. Since earlier constrained
stationary points may no longer be stationary points after the Hessian is modified, it needs
to be proven that the algorithm terminates if the Hessian is modified more than once.

Recall that the QP subproblem being solved is of the form BQP (1.17), having equality
constraints and lower bounds on the variables. When an additional variable moves onto
its bound, the reduced Hessian remains positive definite. The only occasion on which a
reduced Hessian is encountered that is not positive definite is after a stationary point is
reached, when a variable is released from its bound (increasing by one the number of free
variables). In this case, Z; differs from Z;,; by the addition of an extra row and column.
(In general, we need only consider modifying the Hessian at the initial feasible point and
immediately after a bound is deleted from the working set; in all other cases the Hessian

remains the same.)

Desirable Properties

We desire the following properties to hold for modifications to the Hessian and reduced

Hessian.

1. Low rank change to H. The change from HY) to HUTY should be of low rank

(e.g., rank one).

2. Positivity of reduced Hessian. If the algorithm terminates after J iterations, we
would like ZIH()Z; - 0 for j =0,...,J.
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. Condition of reduced Hessian. The minimum eigenvalue of the reduced Hessian

ZJ-TH ](-j )Zj should be positive, bounded away from zero, and bounded above. Provided

a finite number of modifications are made, it would follow that H(Y) is bounded above.

. Constancy of reduced Hessian. The previous reduced Hessian should remain

unchanged, i.e., ZJ-THJ(-j+1)Zj = ZfHJ(.j)Zj.

. Stationary point. After H ](-j ) is replaced by H J(-j H), it is desirable that p; remain a

constrained stationary point of the new problem. Otherwise, at the next iteration we

will continue moving on the same subspace, regardless of how the multipliers change.

. Multipliers. It is desirable for the multipliers to remain the same, or at least for the

sign of the multiplier corresponding to the deleted bound to remain negative, so that

we move off the bound at the next iteration.

5.3.2 Cautionary example

Unfortunately, even if all the above objectives are achieved, this approach cannot ensure

the final point is an adequate search direction. The following example shows that even if

the reduced Hessian remains positive definite on every subspace without modification and

a local minimizer is reached, the step to the minimizer may not be a descent direction for

the merit function.

Consider the QP

. . . T 1 T
mlmﬂr%lze g'p+sp Hp

where

pe
—0o0 )
subject to 0 <p< |
0 1.5
1 5 —.9 -1
H=] 5 1 =25 and g= [ —-1.25
-5 =25 1 1.25

When one applies PDQP starting from the initial feasible point of zero, on every subspace
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up to the minimizer the reduced Hessian is positive definite, so no modifications appear to

be needed. The minimizer p* is

While the objective function is lower than at the initial point, we have ¢’p* = 0.125 >
0 and p* cannot be a descent direction for the merit function for any value of p. The
fundamental problem is that p* is a direction of negative curvature (p*7 Hp" = —4.25).

Also note that there is no positive-definite H for which p* would be a solution of the QP,
given the same g. This shows you cannot just solve an indefinite QP for p* and afterwards

expect to find a positive-definite QP for which p* is a descent direction.

5.3.3 Theoretical considerations

The proof of convergence for Murray and Prieto’s second-derivative algorithm SQP2D allows
moves to other than the first stationary point, but only under a stronger positivity assump-
tion on the Hessian of the modified QP than that the initial reduced Hessian be positive
definite (see Section 2.2.1). Moreover, it is assumed the Hessian is modified at most once,
at the initial feasible point. Unfortunately, the positivity assumption is difficult to check
and unlikely to hold true in all cases.

We need to eliminate our reliance on the positivity assumption in order to construct a
practical algorithm that can move beyond the first stationary point. Let us examine how
the positivity condition of Section 2.2.1 is used in the proofs of Lemmas 3.4 and 3.5 in
[MP99], upon which Murray and Prieto’s theorems asserting global convergence of the SQP

algorithm, at a superlinear rate and with a bounded penalty parameter, rely.

Lemma 3.4

Lemma 3.4 of [MP99] relies on the positivity assumption to show positive curvature in the

total direction from the initial feasible point pg, that is,

(B — po)TH (B — po) > Buz|lp — poll?, (5.11)
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at the final stationary point p reached by the QP algorithm. (The lemma also shows that
the modified Hessians H over the set of SQP iterations k are bounded, but assuming the
Lagrange multiplier estimates are bounded, this follows from the way we construct the
Hessian approximations and the Hessian modifications within the QP. Another portion of
the lemma deals with directions of negative curvature, but that is irrelevant because we are

ignoring directions of negative curvature.)

Even without the general positivity assumption, condition (5.11) holds for the very first
stationary point p, by the following argument. Suppose N steps were taken from the initial

feasible point to the first stationary point p = py. The value of p can be written as a sum,

where Jj denotes the QP search direction in the jth QP iteration and «y; < 1 the step taken
along Jj. Let py denote the /-th partial sum, p, = py + E;;é yrdy, associated with the
£-th QP iteration. Since bounds have only been added, not deleted, the null-space matrix
has become progressively smaller, allowing every Jj to be written as ZOJJ-Z , where Zj is the

null-space matrix at pg.

Thus, we can write (p — pg) as a vector in the initial null-space:

and

N—-1 N-1
B—po)THB—po) = (D vd) " Z{THZo( Y v;d?)
=0 Jj=0

\%

N—-1
Buzll Y vidj (5.12)
i=0

if ZTH Zy > 0. This satisfies (5.11).

If p is not the first stationary point, instead of checking the general positivity assumption

(too difficult!) we can verify (5.11) directly.
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Lemma 3.5

The positivity assumption is also used in [MP99] to prove Lemma 3.5, which states that

there exists a constant (3,, > 0 such that at the stationary point p,
. 1 . Ea .
9'p < =5 —po) H(p — po) + Bypll - (5.13)

Murray and Prieto’s proof of Lemma 3.5 (5.13) cites the “positive definiteness of H on
the relevant subspaces, and the convexity of ¢(y) = yTHy on those subspaces.” The main

purpose of citing convexity is to justify the bound
N-1 o )
N Y vjdi Hdj > (5 —po)" H(p — po)- (5.14)
i=0

Their proof also relies upon having (g + H pj)TJj < 0 for all j. By the definition of the QP
step Jj, this holds as long as H=HO,

Thus, as long as the Hessian has not been modified after the initial feasible point, the
positivity assumption can be replaced by checking (5.11) (which is needed anyway) and
(5.14). But, suppose at a stationary point p, H has been modified at least once after the
first stationary point (i.e., H # H®). Even if we could determine at each step whether
(5.14) holds, the proof of Lemma 3.5 [MP99] is invalidated, because it is no longer necessarily
true that (g + H pj)Tch < 0. The lemma might still hold, however, as can be determined by
testing (5.13) directly.

5.3.4 Conditions for satisfactory stationary point

The counterexample showed that even if we reach a minimizer of some QP, the fact that the
problem is still nonconvex leaves open the possibility that it may not be a descent direction,
ie.,

(g + Hpo)L(p* — po) > 0. (5.15)

If the Hessian is modified during the algorithm, the objective value is altered at both
the current point and the initial feasible point. Since we always increase the objective at

both points, it is possible for the final point to be worse than the initial point, i.e.,

$(p") > p(po)- (5.16)
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Making a more extensive change from H to H© would reduce the likelihood of needing
further changes, but would not eliminate the difficulty altogether.

The convergence results proved in [MP99] hold as long as the following three conditions
hold at the terminal stationary point p. The first condition requires the QP objective value
to be decreasing. The second condition is the directional positive curvature (5.11). The
third condition is (5.13) or (5.14), needed to prove Lemma 3.5 of [MP99].

(i)
$(B) < 1(po)- (5.17)

(ii)
(B —po) "H(p — po) > Buzlp — poll>- (5.18)

(iii)
(B —po)"H( — po) < 2(Bllé | — 9" p), (5.19)

where ¢&; denotes the normalized constraints ¢; = ¢;/(1 + ||a;||) and a; is the ith row
of A. If the Hessian has not been modified since the initial feasible point, the weaker
bound
N-1 B
(7~ po) HO (B —po) <N Y- vid; HO, (5-20)
=0
will suffice, where N is the number of steps taken to compute p (the QP stationary

point).

Remark 5.3.1 Conditions (5.17) and (5.18) imply that the direction p — pgy is a descent
direction for 4 at po, i.c., Vib(po)"(F — po) = (9 + Hpo)" (5 — po) < 0.

Proof.
(9+Hpo) 5 —po) = 9"~ g"po+pdH®B — po)
1 R B BN
= ¢'p+ §pTHp — 9"y — Engpo — EpTHp — ipoTHPO + pTHpy
. ~ 1, . ~
(®) — ¥(po) — E(P — po)"H (5 — po)

I
e =
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The three conditions (5.17)—(5.19) hold for 4(%) at the first stationary point. Unless the
Hessian is modified, and it need not be modified before a variable is released from its bound,
condition (5.17) holds because the QP objective value will not increase. The second two
conditions hold because ¢(y) = y*(Zg H®) Zy)y is strictly convex and the directions Pj — Do
and each of the d; are in the subspace defined by Z (i.e., d; = ZOJJZ-).

After the first stationary point, it is possible that one of the conditions will fail to hold,
whether or not the Hessian has been modified more than once. The conditions must be
checked at every stationary point reached, and the QP algorithm is terminated once any
of the conditions fail. If the QP subroutine returns the last stationary point at which all
three conditions held along with a descent step computed from that point, the validity of

the SQP convergence results is preserved.

5.4 Implementing more modifications

When a variable is moved off a bound, the dimensions of Z;,; increase by one over the
dimensions of Z;. Let the index 7 correspond to the variable being released from its bound.
At this point, two quantities need to be computed: the null-space matrix Z;; and the

Hessian in the new set of free variables:

where h, is the vector composed of the elements of the 7th column of HY), and h,, = HQT)

Given Z;;1 and H 4)  we can compute the Cholesky factorization of the reduced Hessian

j+1
ZjTHH ](-QIZJ-H. Then,J if the new reduced Hessian is not sufficiently positive definite, i.e., if
Amin(RTR = ZTH" Zy) < By, the new reduced Hessian is modified and the modification
reflected back onto the full Hessian. We differentiate the dense case from the sparse case.
The motivation for using a different update in the dense case versus the sparse case is to
achieve a modification that is smaller in norm, at the expense of being more expensive to

store.
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5.4.1 Dense case

Null-space representation On small problems, Z; can be presumed to have orthonor-

mal columns, and the updated null-space matrix takes the form
Zi w w

Zj+1 = ! s zZ = s (521)
0 ¢ 0

where 0 < § < 1, ZTw = 0, and A;;1z = 0. Note that w cannot be equal to zero. If a is
7 7+

the new column of A;4,

w

O:AJ+1Z:<A] (J,) 0 ’

which implies Ajw + 0a = 0. If we let w = 0, then 6 > 0 implies a = 0. But that is a

contradiction, since the columns of A are assumed to be nonzero, so w # 0.

Reduced Hessian The reduced Hessian in the new set of free variables is

Try(d) Trr(9) T

; . (5.22)
wTHY Z; + 0172; w H w + 200"h, + 6%h,,

I
Zj+1H9(ZL)1ZJ'+1 -

If in the process of updating the Cholesky factors it emerges that ZJ-THH §2L)1Zj+1 > 0, then
HG+Y) — g0,

If the reduced Hessian is not sufficiently positive definite, it can be made positive definite
in the following manner. We modify the 7! diagonal element of the Hessian by adding

5]’? > 0 to it:

gUu+) H(j)_l_(;feTe’{
B = HY 4 6Ten, el (5.23)

for some 5;-’ > 0 chosen sufficiently large, where n, is the number of rows in Z;,,. Note
that this modification leaves HY ™Y = HY . 1t follows from (5.21) and (5.23) that
J J

2 HO 7500 = 25 B, Z; + 67 6%en 6T (5.24)
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If we choose (5f sufficiently large, ZJTHH ](-ﬂl)ZjH > 0. The reduced Hessian is positive

definite if and only if its Cholesky factors are well-defined. Since the reduced Hessian at
iteration j was positive definite, we can assume its factors

T _ Trp() o
RjR]—ZjHj Z;

were well-defined. When Z; changes to Z; 1, the Cholesky factor R; changes to

R; r
Rj_|_1 — , (525)
0 o
and
RTRj Ry i1
R, Rjy1 = ’ ’ = Zf+1HJ('ﬂ Zj . (5.26)

rTR; rTr + o

From (5.22), (5.24), and (5.26), it follows that the vector r of R;; is uniquely defined
as the solution to
Rly = Z'HYw + 0Z1h,. (5.27)

For the new reduced Hessian to be positive definite, the last diagonal element g of the

Cholesky factor R; 1 must be positive and bounded away from zero. By (5.26),
rTr + 0% = wTHD w + 20wh; + 62hr + 6267

Finally, o > € as long as

o € (wTH w + 20w™h; + 8%, — 77r)
P>

! 7 : (5.28)

5.4.2 Sparse case

Null-space representation In the large-scale case, A; is partitioned into basic and

superbasic variables [MS78]. Let
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where B is a square nonsingular basis. At a given iteration, the corresponding constraints

are given by

dp
A]‘d = ( B S) = 0.
ds
A matrix Z that spans the null-space of A; is
-B1l§

Z; =
I

Sparse LU factors of B allow products Z;v and Zij to be computed without storing Z;

explicitly. Note that the columns of Z; are not orthonormal (or even orthogonal).

When a bound is deleted, one of the nonbasic variables becomes superbasic. The updated

null-space matrix Z; 1 has the form

—B7'S —-B7ls
1

The relationship A;;1Z;,1 = 0 is maintained.

Reduced Hessian Let v = —B~'s. In terms of v, the reduced Hessian in the new set of
free variables is

ZTHY 7 ZTHD o + Z7h,

ZfH ), Z = (5.30)

oTHY Z; + 17Z; v"H v + 20Thy + her

If in the process of updating the Cholesky factors it emerges that ZJT il g('i—)lzjﬂ is suffi-
ciently positive definite then HU+Y) = ),

If the reduced Hessian is not sufficiently positive definite, we modify the diagonal element

hr; of the Hessian by adding d;" > 0 to it just as in the dense case (5.23), i.e.,



5.4. IMPLEMENTING MORE MODIFICATIONS 93

It follows from (5.29) and (5.23) that

ZT H(j+1)Zj+1 — ZT H(])

J+HL 41 G+1 j+1Zj—|—1+6]HenzeT (5.31)

nzg*

The updated Cholesky factor also has the same form as in the dense case. The vector

r of Rj1 is uniquely defined, given equations (5.30), (5.31), and (5.26), as the solution to
Ry = ZTHD v + Z7Th,. (5.32)
If the last diagonal element p of the Cholesky factor is strictly positive, then
rTr + 0® = UTH](-j)v +20Thj + hyr + o7
Thus a sufficiently large 67" for o > € is
6; > — (vTHJ(-j)v +20Thj + hyr — 7). (5.33)

5.4.3 Properties of the modification

For each of the desirable properties for the Hessian modification stated in Section 5.3.1, we

show if and how it holds for the particular modification described above.

1. Low rank change to H. Our algorithm requires at most a rank-one change each

time a bound is deleted from the active set.

2. Positivity of reduced Hessian. Since the updates to H only modify the matrix by
the addition of a positive semi-definite matrix, it follows that if Z/H™Z; - 0 then
so is Z]-TH(S)ZJ' > 0 for s > r. Hence, the form of the update guarantees that if the
algorithm terminates after J iterations, Z]TH(J*UZ]- >~0forj=0,....,.J -1

3. Condition of reduced Hessian. Our update allows for the reduced Hessian to be
modified so g > € for some € (see (5.25), (5.28), and (5.33)). By doing this we can
ensure the minimum eigenvalue of the updated reduced Hessian is bounded away from

Zero.

4. Constancy of reduced Hessian. Z]H ](-j g, = Z'H ](-j )Z, is true by design because

the modification to H ](-j ) is orthogonal to Z;.
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5. Stationary point and multipliers. Lemma 5.4.1 below states that p; remains a
stationary point after the modification to H. Regarding the multipliers, the n’s do
not change and the ¢’s may change after the Hessian modification, but only the one

corresponding to the new free variable, and it can only decrease.

Conditions at stationary point and multipliers after Hessian modification

Let m; be the multipliers for the constraints and ¢; be the multipliers for the bounds (both
active and inactive) at the stationary point p;, and let 71 and 0,41 be the corresponding

values after the Hessian has been modified.

Lemma 5.4.1 Suppose the Tth fized variable is set free and the Hessian HY) is modified
to HUTY qccording to the formula in the previous section (either sparse or dense).

Then pj remains a constrained stationary point of the new problem. The updated mul-
tiplier values for the constraints stay the same (wj = wj1), and the updated multipliers for
the bounds are

H T
oj+1 =05 — 6 ere;x < 0j.

Proof. In order to establish that p; remains a stationary point for the new problem, we
need to show that
T T
Zjgj = Z;g; =0,

where
g; = Pllg+ HUp;).

The difference between the two is

o= ZJ-TPJT(H(HU _ H(j))pj.

It remains to be shown that ¢ = 0.

Since for both the dense and the sparse case,

it follows that
¢ = ZjP{(8" ereq)p; = 6" Z[Pler(p;)r-



5.4. IMPLEMENTING MORE MODIFICATIONS 95

Since 15]-TeT =0, we have ¢ = 0.

To show the multipliers change only as specified, we first refer to the notation for
partitioning of the variables into fixed and free defined in (2.9) and (2.10), and to the
definition of the multipliers for the bounds in (2.11). Let FX, FR, and FRX be defined at
the stationary point, before a bound is released.

The Hessian modification affects only Hpy and not Hz or Hyzy. The multipliers
corresponding to the general constraints are unaffected because the equation defining the
multipliers,

AER'"' = grr + Hprprr — HppxTrx,

is independent of Hpy.
Note that the only modified component affecting the o’s as defined in (2.11) is the term
Hyixxzpx. The change to this term, projected into the full space, is 6;-1 erelr. The multipliers

oj+1 corresponding to the bounds, projected into the full space, become

H T,
Oj+1 = O'j—éj €re.T

S 5.

Since z > 0, if (0;); <0, then (0j41); < 0. If (0;), was the smallest multiplier, it remains

the smallest. |

5.4.4 Modified descent step

In Section 2.2.1, we described how to find a sufficient descent step d, from the first stationary
point, that would satisfy conditions DD1 and DD2 given in Section 2.2.1. Even after
multiple modifications to H, this algorithm for computing a descent step could also be
applied at any “good” stationary point, a point p satisfying conditions (5.17)-(5.19).

Here, we show that a sufficient descent step d satisfying DD1 and DD2 can also be
computed by another algorithm-—this one based on the next step(s) that would ordinarily be
taken by an active-set method that did not stop at the “good” stationary point p. We show
how d can be computed from the accumulation of steps taken from p until the first “bad”
stationary point. (A “bad” stationary point is one that does not satisfy all of conditions
(5.17)—(5.19), or is unsatisfactory for another reason such as a failed attempt to modify H.)

Consider the very next step that would normally be taken by the active-set method after
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a “good” stationary point is reached. First, the variable corresponding to the minimum
multiplier estimate would be released from its bound. Let the index of the released variable
be 7 = arg min;(6rx )i, and assume the corresponding multiplier estimate is strictly negative.
Let dpy be d restricted to the set of fixed variables excluding the newly freed 7th variable.

Let H be the Hessian at $ (which may have been modified one or more times since H(®).

Direction without modifying H

After that variable is released, the next EQP (in the full variable space) is

minimize %dT Hd + g'd
d

subject to Ad =0, dpx =0,

with the necessary conditions for optimality

Ad = 0 (5.34)
dpyr = 0.

Suppose that without modifying the Hessian from H there exists a solution dy to (5.34).

The following lemima states that a descent step can be derived from dy.

Lemma 5.4.2 If a solution dy exists to (5.84) then

By min; Ui) ~T *
b

~T i 7
g (dn/]ldn|lco S( —
(dn/lldn|loo) nldn o

and the direction dy/||dn|lc 5 a descent step satisfying conditions DD1 and DD2 (see
Section 2.2.1).

Proof. It can be shown there exists 3, > 0 such that if 5, < 0 then (dy); > —3,6,. Since
dy satisfies (5.34),
Ady/|ldn oo = 0.

We show sufficient descent along dn/||dn|lc. Let ¢ = g;. Since at a stationary point
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§=AT% + 6 and #TAdy = 0,

g'dn/ldnllce) = (FA+6T)(dn/lldN]loo)
= &'dv/|ldn]lo

- (dn)r/lldnlloo

(=3:)(—(dn)7)/lldn oo

(—=5:)(Bs67)/ldn |loo

_IBU(Iniinai)Q/HJNHoo

min; g;\ _
(;80 1 z>gTu*'

nlldy]loo

IN

(5.35)

The last inequality follows from (2.18). 1

Direction after modifying H

If the reduced Hessian is indefinite after (d), is released from its bound, it may be necessary

to modify H to H to ensure a minimizer exists. Let dy be the solution to the modified

problem
Ad = 0 (5.36)
dpyr = 0.

Lemma 5.4.3 If a solution dy exists to (5.36) then

= - min; 0;\
Tl /|l lso) < (5—) i,
nlldn oo

and the direction dy /| dn||s is a descent step satisfying conditions DD1 and DD2.

Proof. Let Z be the null-space of the constraint matrix directly after the bound 7 is
dropped. H is chosen so ZTHZ > 0. By Lemma 5.4.1, the change made to the Hessian
has no effect on the multipliers 7 corresponding to the general constraints, and does not

change the bounds multipliers ¢ except for ¢, and &, does not increase but may decrease.
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Denoting the new value by .., we note that (J ~)r moves off its bound and satisfies

(dN)T > _1805'7' > _/806'7'-

Inequality (5.35) therefore holds and Lemma 5.4.2 is satisfied by the same argument
as before. Hence dy/||dn ||« is still a direction of sufficient descent even if H needs to be
modified. |

Additional steps

If one continues to minimize the QP (with the modified Hessian H), the descent step dy can
be augmented by all steps taken until the next stationary point is reached. Let the sequence
of directions be JN,JN+1, ...,dp—_1, with feasible steplengths yn,YN+1,---,Ym—1, Where

1> +; > 0. After the M — N step dpr_1, a new stationary point is reached.

Every direction Jj lies in the null-space Z and can be written Jj = ZJJZ . Given
S = Yjd; (537)

(the step to the next stationary point after p), there exists 57 such that 5§ = Z57. It follows
that
5THs = (5%)1(ZTH Z)5% > 0. (5.38)

Lemma 5.4.4 s = 5/||5||oc is a descent step satisfying conditions DD1 and DD2.

Proof. We need to show there exists a constant £ > 0 such that §7s < kg u".

Since the QP objective v (H) is strictly decreasing for yndn, YN +1dN+1,-- -, YM—1dM—1,
S T35 L o rpms
g5+ 353 Hs < yng dny + §7NdNHdN. (5.39)
Moreover, since dy is the optimal step on the first subspace,

dXHdy = —gldy. (5.40)
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It follows from (5.38), (5.39), and (5.40) that

T T 1 - 1.
§'s < yngldw + Evaa?vadN — isTHs
T3 1 =<

< gy + 57]2Vd_TVH dn

s 1 5 -
= yngldy — gv?ngdN

" 1
= §gldn(v — 5712\/)-

Since 0 < yn < 1, it follows that (yx — 37%) > 0.
Finally, by Lemma 5.4.3 and (5.41),

g < - %V?v)ﬁTJN/Ilglloo
R
= (- %ygv) HZ: Ndﬁvoo ||ﬁ1;\|r||(|:
< o=y (i) 7
Defining K= (v — 17]2\]) “Cji\[Hoo (ﬁ(, min, &T>
2% l5llee \ nlldnlloo

gives the required result.

5.5 Statement of the algorithm

99

(5.41)

(5.42)

In Figures 5.1-5.3, we provide pseudocode summarizing our new algorithm to compute the

search direction from the indefinite QP subproblem. Algorithm xIDQP can be compared to

IDQP presented in Section 2.2.1 of Chapter 2. As before, it is broken into three parts:

e Algorithm xIDQP: x-Compute-search-direction-from-indefinite-QP

e Subroutine x-Move-to-stationary-point

¢ Subroutine x-Compute-descent-direction
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Algorithm xIDQP: x-Compute-search-direction-from-indefinite-QP

Obtain a feasible point pg satisfying (2.13)

Identify initial working set and compute Py, Ay, Zy, and H

R <+ modified Cholesky factor R (such that Amin(RTR = ZOTH(SO) Zy) > Buz)
HO « H 4+ M (M computed by (5.7) for dense, (5.10) for sparse case)
j<0

repeat

x-Move-to-stationary-point

Compute Lagrange multipliers ozx for the active bounds (cf. (2.11))
if conditions (5.17)—(5.19) all hold then
ppj
H«+ HY
Oy < min; o;
converged < o; > 0
if not converged then
Delete bound with multiplier &,
Update working set and compute Pjy1, A;41, and Z;
Compute HU+D), Hj(i_’;l)
Update RTR = ZjT 1HJ(-fil)Zﬁq and HU+L)
Dj+1 < Pj
j+—i+1
end
else
forced_stop < true

x-Compute-descent-direction

end
until converged or forced_stop

Figure 5.1: Algorithm xIDQP.
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Subroutine x-Move-to-stationary-point

repeat
gj + PT(g+ HU)p;)
stationary_point < Zjng =0
if not stationary_point then

@) gr o
Solve for d satisfying ( Iiﬂ ‘%J ) ( _dﬂ> — ( 099 )

- d
T
d(—Pj <0>

Yr — min; § —

T C-lfpz' | d < 0}
hit_constraint < ')/ZT <1
v < if hit_constraint then v, else 1

pj+1 < pj+d
HU+D) o g0
Update working set and compute Pj 1, Aji1, Z;41, and H](f;l)
j+—g3+1
end
until stationary_point

Figure 5.2: Subroutine x-Move-to-stationary-point.

Subroutine x-Compute-descent-direction
U<pj—p
w < af
if —(g+Hp)"u< 4]l (u"Hu), then
- . (g + Hp)Tu
v min(= )
else
7 < min(||al, )
end
if [|p+4ul <|[p[l, then ¥+« 0
if ¢"u>0, then 7+ 0

Figure 5.3: Subroutine x-Compute-descent-direction.
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5.6 Theoretical results

5.6.1 Finite termination of the QP algorithm

One consequence of multiple modifications to the Hessian is that we are repeatedly changing
the QP being “solved”. This raises the issue of whether xIDQP (see Figure 5.1) is guaranteed
to terminate in a finite number of iterations. It is possible to show that some earlier
constrained stationary points may no longer be constrained stationary points of the QP
after the Hessian has been modified at a later stage of xIDQP, as described in Section 5.4.
It may be necessary, therefore, to revisit a particular working set many times. Despite this,

we show in the next lemma that xIDQP terminates after a finite number of iterations.
Lemma 5.6.1 zIDQP terminates after a finite number of iterations.

Proof. Assume xIDQP does not terminate. Then there exists a subsequence of iterations,
say T, such that for j € T' we have HU) # HU=D_ Let {t;} be a subsequence of T" such that
the active set at the f;-h iteration is constant. Such a subsequence must exist because there is
a finite number of choices for the set of free variables. At iteration ¢; the reduced Hessian is
modified to make it positive definite. Although in the intervening iterations between ¢; and
t5 the Hessian may be modified, it is only modified by adding a positive-semidefinite matrix.
It is, therefore, not necessary to modify the Hessian at iteration o, which contradicts that

this is an iteration where a modification was required. 1

5.6.2 Global convergence properties

Theorem 5.6.1 Algorithm IDSQP in combination with zIDQP has the property that

lim |z — 2| =0,
k—00

where ©* is a KKT point for INP.

Proof.
If we set the direction of negative curvature equal to zero at every iteration and substitute
quasi-Newton estimates of the Hessian of the Lagrangian for the exact second derivatives,

Murray and Prieto’s algorithm SQP2D [MP99] reduces to IDSQP and IDQP. It follows from
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Theorem 3.2 and Corollary 3.2 of [MP99] that for algorithms IDSQP and IDQP:

lim [pgl| =0, and
k—00

Jim ||z — 2| =0, where z* is a KKT point for NP. (5.43)
— 00

It remains to show that when IDQP is replaced by xXIDQP, these results still hold. Lemma
5.6.1 proves that xXIDQP terminates after a finite number of iterations. We examine how the
search direction from xIDQP, combining the step to a stationary point with a descent step
off the stationary point, affects the proofs in [MP99]. The only lemmas from [MP99] signif-
icantly affected by the changes to the step to the stationary point and by the modifications
to the Hessian within xIDQP are Lemma 3.4 (condition (5.11)) and Lemma 3.5 (condition
(5.13)).

The proof of Lemma 3.4 relies on the general positivity assumption, i.e., that “the
reduced Hessians of the modified QP are sufficiently positive definite on all the subsets

»

of constraints encountered when determining a stationary point.” Moving past the first
stationary point may cause this assumption to be violated. It was shown in Section 5.3.3
that Lemma 3.4 is guaranteed to hold at the first stationary point. Because algorithm xIDQP
checks condition (5.18) (equivalent to (5.11)) at every stationary point before proceeding,
it ensures that Lemma 3.4 holds at the final stationary point p. For more details, please
refer to the earlier discussion of Lemma 3.4 and Lemma 3.5 in Section 5.3.3.

Two points in the proof of Lemma 3.5 need to be justified in light of changes introduced
by xIDQP. First, it is necessary to justify the bound (5.14), an upper bound on the direc-
tional positive curvature. Second, we need (g + H pj)TJj < 0 for all j. The latter condition
holds as long as the Hessian has not been modified after the initial feasible point (i.e.,
H = H©), in which case the third condition, (5.19), is equivalent to (5.14). Otherwise, the
third condition is equivalent to the main result of Lemma 3.5, (5.13).

Finally, the descent step off the final stationary point, a step from the last “good”
stationary point (satisfying (5.17)—(5.19)) to the next “bad” stationary point (violating one
of the conditions) was shown to satisfy DD1 and DD2 in Lemmas 5.4.2-5.4.4. &
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Chapter 6

Computational Results and

Conclusions

In this chapter we present numerical results supporting the following hypotheses:

e The direct BFGS quasi-Newton approximation to the Hessian of the Lagrangian (dis-
cussed in Chapter 3) may perform poorly even on simple problems with quadratic

functions, preventing a superlinear rate of convergence in the SQP algorithm.

e Superlinear convergence of the SQP method is attainable on the same problems using

the disaggregated SR1 quasi-Newton Hessian approximation (presented in Chapter 4).

In Section 6.1, we describe the details of our MATLAB implementation of an SQP method
based on subroutines IDSQP and xIDQP from Chapters 2 and 5. In the following sections,
we introduce test problems and present corresponding results in graphical form. We finish

by reviewing our hypotheses and summarizing the findings suggested by our results.

6.1 Implementation

The MATLAB code is based on a set of routines originally written by Murray and Prieto
to implement their second-derivative algorithm SQP2D [MP99]. Their code constructed a
search direction based upon the first constrained stationary point encountered in the QP
subproblem (see algorithm IDQP, Chapter 2). Our code allows the option of continuing

past the first stationary point and in some cases continuing all the way to a minimizer (see

105
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algorithm xIDQP, Chapter 5). We call the main program sqpgn.m (implements IDSQP),
and we call the subprogram that computes the descent direction from the QP subproblem
igp.m (implements xIDQP). We compared the two quasi-Newton Hessian approximations,
the positive-definite, direct BFGS Hessian approximation and the disaggregated SR1 Hes-
sian approximation, using the MATLAB programs sqpgn.m and igp.m. Recall that given a
positive-definite Hessian approximation and well-defined and conditioned Jacobians, algo-
rithm IDSQP reduces to the positive-definite SQP algorithm PDSQP and xIDQP reduces to
PDQP.

The code was written solely for the purpose of testing the hypotheses and not as a robust
efficient code for solving practical problems. Many details were left open in the description
of the algorithms (e.g., “perform a linesearch”) given and described in Chapters 2 and 5.
When choices needed to be made for the implementation, we usually took the simplest path
from a programming perspective.

Our MATLAB implementation uses dense linear algebra, except for the representation of
the disaggregated quasi-Newton Hessian approximation. We make use of sparsity in storing,
evaluating, and updating the disaggregated quasi-Newton approximation. The nonzero
elements of the component Hessian matrices are concatenated and stored as one long vector.
The full Hessian is computed once per major iteration, using the latest multiplier estimates.
Sparse linear algebra techniques are not used within the QP subroutine igp.m. When a
system of equations needs to be solved, MATLAB’s backslash operand is called (finding the
least-squares solution, for the rectangular case). The nullspace matrix for the working set
is computed with MATLAB’s QR factorization, initially and every time a bound is added to

the working set.

6.1.1 SQP main algorithm

Linesearch The linesearch routine uses cubic interpolation (with some safeguards) and is

followed by a loop to limit the infeasibilities.

Penalty parameters A vector of penalty parameters is used, one for each constraint,
rather than a constant p for all constraints. The algorithm for adjusting the vector
p of penalty parameters is similar to that described by Eldersveld in [Eld91] and
implemented in NPSOL [GMSWS86]. The initial penalty parameters are set to p = e.
To adjust p we set a threshold of jw instead of w, i.e., ¢'(0) < —iw (see (2.22)). We
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maintain a minimum value of p > pmin = 10-S.

Initial multiplier estimates After identifying a working set at the initial point, we set
the initial multiplier estimates A to the least-squares solution of AT\ = g, where A s
the constraint matrix in terms of the free variables and working set of constraints and

g is the gradient in terms of the free variables.

Quasi-Newton approximations The aggregate BFGS approximation was initialized to
the identity matrix. The Powell modification rule was used to maintain positive

definiteness.

The initial SR1 component approximations were initialized to zero, but the identity
was used as the approximation for the Hessian of the Lagrangian for the first two

iterations. Exceptions were handled according to the rules described in Chapter 4.

Infeasible subproblems There are good ways to handle infeasible QP subproblems (such
as adding elastic variables; see [Bom99, GMS97]). However, we do not handle infeasi-
ble subproblems well. When a feasible point satisfying (2.13) cannot be found, igp.m
is skipped. The point pg found by the feasible point routine is used in the linesearch

by setting p = pg and the multiplier estimates are left at their previous value.

Lagrange multiplier estimates The Lagrange multiplier estimates used for the line-
search are the multipliers at the last stationary point generated in the QP subprob-
lem. In certain situations these estimates are first modified: when one is negative,
it is changed to zero, and when the norm of the search direction in the Lagrange
multipliers or the QP multiplier estimate itself becomes too large, the whole vector is
scaled down. The multiplier estimates used for the quasi-Newton update at the end

of each major iteration are then taken from the result of the linesearch.

Convergence test To compute the reduced gradient for the convergence test, the work-
ing set (active constraints and active bounds) is inherited from the search direction

subroutine igp.m. Then the QR factorization is applied to compute Z.

6.1.2 Search direction subroutine

Feasible point The feasible point routine we use starts with a point satisfying the upper

and lower bounds. It then proceeds to use an active-set method to minimize the sum
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of the infeasibilities, subject to the constraints and bounds currently satisfied. The
objective and constraints are modified each time a new constraint becomes satisfied,

until all constraints and bounds are satisfied.

It is preferable to arrive at the “correct” active set for the initial feasible point (i.e.,
the active set at the solution of the original nonlinear problem) so that eventually
the initial reduced Hessian in iqp.m will be positive definite and will not need to be
modified. To initialize the feasible point routine, we adjusted the free variables (those
some distance from their bounds) by computing the shortest step to satisfy the active
constraints. Close to the solution, this will be a feasible step. Away from the solution

we may need to modify this step to satisfy the bounds.

Problem format At every major iteration the QP is converted from the inequality-con-
strained form (IQP) to the equality-constrained form (EQP) by adding slack variables

to the inequality constraints.

Modified Cholesky The modified Cholesky algorithm is used to compute an initial mod-
ified reduced Hessian; see [GMWS81, pp. 111]. The performance of the disaggregated
SR1 method is sensitive to the choice of the parameter er designating the minimum
value along the diagonal of the Cholesky factor. We set er to be an affine function of
the largest element of the reduced Hessian (in absolute value). In fact, we used two
different affine functions to allow e to be smaller in the neighborhood of the solution

(determined by whether the constraint infeasibilities were small).

Bounded Hessian There is a four-part strategy for keeping the Hessian matrices bounded.
First, measures are taken to ensure the quasi-Newton updates are bounded so the
Hessian components remain bounded. Second, the multipliers used to form the full
Hessian (once per major iteration) are scaled back if necessary to ensure bounded-
ness. Third, the modified Cholesky factorization used to compute the initial modified
Hessian in igp.m produces only bounded modifications to the Hessian. Fourth, the
QP is terminated early if further modifications to the Hessian (see Section 5.4) are

too large.

Degeneracy and working sets To choose a working set, we simply identify variables
close to their bounds. The algorithm we have implemented in MATLAB assumes no de-

generacy in the resulting working-set matrix will occur. When a bound is deleted from
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the working set, we solve a system of equations to determine the modified nullspace
matrix. If the working-set matrix is degenerate or near-degenerate, this system of
equations is ill-conditioned and there may be difficulties updating Z. In such a case
we may resort to terminating at the current stationary point and computing a descent

step (in the manner of Figure 2.6).

6.2 Test problems

Hanging chain and springs problems

The hanging chain problem appeared as an example in [Lue84]. A chain, consisting of n
links of stiff steel, is suspended from two hooks that are w feet apart on a horizontal line.
Each link is one foot in length. The problem is to determine the equilibrium shape of the

chain by minimizing the potential energy of the chain.

Let link j span a horizontal distance of z; and a vertical distance of 77;. Then x? —i—y?- =1.
The potential energy of a link is its weight times its vertical height (from some reference)
times the gravitational constant g (approximately 9.8). The potential energy of the chain
is the sum of the potential energies of each link. Take the top of the chain as reference and
assume that the mass of each link is one unit, concentrated at its center. The potential

energy is then

Fly) =g (2

2

n
y1+(y1+2y2 Zy]+ ~Un)) = Z +——]

The chain is subject to two constraints: the total vertical displacement is zero, and the

total horizontal displacement is w. The vertical displacement being zero means };y; =0,

which implies
n

F(y)=gZ(n+%—J —gZJyJ

=1

Thus, the equilibrium shape is the solution of
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n
minimize Fly)=-g> iy
’ j=1

n
subject to Z y; =0
j=1

n
Z.’L‘j =w
7=1

Z+y;=1, j=1,...,n

(Subtracting a multiple of an equality constraint from the objective affects the optimal
multipliers, but not z* or 3*.)

The hanging chain problem can be solved in closed form [Lue84, pp. 304]. However,
depending on the formulation and the size of n and w, the problem can be quite challenging
for SQP software. Moreover, there are variations of this problem that cannot be solved in
closed form.

Before introducing one such variation, we introduce a slightly different formulation of the
chain problem. Let (z;,y;) be the coordinates at the right node-end, for j =1,...,n -1
(so z; is the horizontal distance from the left end of the chain, not just the horizontal
displacement of one link). We define the constants zp = 0 and yy = 0, so the left end of
the chain is fixed at the point (0,0). The linear inequality constraints from the previous
formulation are satisfied by setting y, = 0 and z,, = w to be fixed values. The resulting

problem formulation is

n—1
mna};l’mlze F(y)=g Z Yj
Jj=1
subject to (z; —zj_1)* + (yj —yj-1) =1, 1<j<n-—1
(w—2p1)*+ (yn1)? =1

z >0, y < 0.

The hanging springs problem is to find the shape of a hanging chain, where each link is
a spring. In addition, each node may have a weight hanging from it. This problem is based
on an AMPL model obtained from Robert Vanderbei and originally appeared in [LVBL98].

As before, let the variables (z;,y;) be the coordinates of the nodes, for j =1,...,n—1.
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Let t;, j = 1,...,n, be the nonnegative extension of each spring. By default the mass of
each node is 1, and the resting length of each spring is 1. Let the stiffness of the springs be
described by the constant £ = 100 and the gravitational constant be denoted g. Fix zy = 0,
1o =0, y, = 0, and z,, = w. The resulting problem formulation has 3n — 2 variables and n

inequality constraints:

k
minimize g Z Yyi + = Z t?
Ty j=1 2 j=1
subject to  (t; +1)* — (zj —zj-1)* — (y; —y;-1)° >0, j=1....n

x>0, y <0, t>0.

For a starting point, let

sz%w forj=1,...,n—-1
n . n .
yj:d<—§+\j—§|) forj=1,...,n—1
t;=0 forj=1,...,n,

where
d=14/1-—(w/n)?.

We ran several problem instances for different values of n and w. For each problem
instance, we present a pair of graphs. The graph on the left shows how the norm of the
infeasibilities converges to zero as the iterations increase. The one on the right shows | VL],
a measure of the convergence to optimality, versus number of iterations. To show the fullest
range of values along the vertical axis, we use log plots, and on each plot overlay results

from two different SQP algorithms:

1. The traditional algorithm, PDSQP, using the direct BFGS Hessian approximation and
solving the positive-definite QP subproblem to optimality.

2. Algorithm IDSQP using the disaggregated SR1 Hessian approximation and computing
the search direction with xIDQP.

The problem instances are described in Table 6.1. The number of degrees of freedom at

the solution is in the column labelled nd. Computational results are displayed in Figures
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Problem # | n | w | variables | constraints | nd
1 12 | 11 34 12 22
2 24 | 12 70 24 46
3 40 | 20 118 40 78

Table 6.1: Hanging springs problem instances.

6.1-6.3. We see that the disaggregated SR1 Hessian approximation performs significantly
better than the direct BFGS approximation. Many fewer iterations are needed, and only
the disaggregated method has a superlinear asymptotic rate of convergence.

We discussed in Chapter 3 that the aggregate BFGS update might work well if the
infeasibilities converge quickly and the final search directions are in the null-space of the
constraints. For the infeasibilities to converge at a quadratic rate, it is critical that the unit
step be taken in the linesearch, but on the hanging springs problem, unit steps were not
taken until after many iterations. The search direction in the nullspace of the constraints was
so poor that it inhibited the search direction in the constraints, preventing rapid convergence
of the infeasibilities. When the algorithm finally begins to take unit steps, the plot of the

infeasibilities turns sharply downward, and the reduced gradient begins to converge faster

as well.
Convergence of Infeasibilities Reduced gradient convergence
10 10
10 ‘ ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘ ‘
10° 10°
10° 10°
0107 5 107
107" 107"
107°f : 3 107°} :
— Disaggregated SR1 — Disaggregated SR1
— Aggregated BFGS — Aggregated BFGS
107 : : : : : 107 : : : : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
iterations iterations

Figure 6.1: Results for hanging springs problem 1.
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Figure 6.2: Results for hanging springs problem 2.
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Figure 6.3: Results for hanging springs problem 3.
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On this class of test problems the constraints are no more nonlinear than quadratic,
so we would expect the disaggregated SR1 Hessian approximation to perform particularly
well. At the same time, one would hope the direct BFGS approximation would also perform
well on such simple examples.

Consider the following non-quadratic formulation of the hanging springs problem:

k
minimize g z yj + 3 z t?
Y j=1 j=1

subject to  (t; +1) > \/(a:] —z )2+ (yi—yi1)? j=1,...,m.

z >0, y < 0.

For this formulation, the Jacobian is highly nonlinear, as is the Hessian of the Lagrangian.
Computational results displayed in Figures 6.4-6.6 show that both algorithms take slightly

longer but their relative performance is about the same as before.

Convergence of Infeasibilities Reduced gradient convergence

10 10
10° 10°
10° 10°
b 107 5> 107
107° 107%}
107 , 107} ,
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— Aggregated BFGS — Aggregated BFGS
107 107
0 10 20 30 40 50 0 10 20 30 40 50
iterations iterations

Figure 6.4: Results for hanging springs non quadratic formulation, problem 1.

Rocket fastest trip problem

The rocket fastest trip problem is based on an AMPL model obtained from Robert Van-

derbei. The objective of this problem is to minimize the total time T that it takes for a
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Convergence of Infeasibilities Reduced gradient convergence
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Figure 6.5: Results for hanging springs non quadratic formulation, problem 2.
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Figure 6.6: Results for hanging springs non quadratic formulation, problem 3.
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rocket to get from an initial point to the final destination. Time is broken up into n equal

intervals summing to 7. The variables are
e z;, the position of the rocket at time j7'/n for j =1,...,n—1
e v, the velocity at time (j + 0.5)7/n for j =1,...,n —2
e aj, the acceleration at time j7'/n for j=1,...,n—1
e T the total flight time.

Note that zg, =, vo, and v,_; are not variables. The initial and final position (zg,z)
and the initial and final velocity (vp,vn—1) are boundary conditions (constants). There
are upper and lower bounds on velocity and acceleration: vyin, Vmax and @min, @max- The
rocket position is not bounded above or below. Nonlinear equalities define velocity and

acceleration at each time point.

minimize T

z,v,a,T

subject to  n(r; —z;—1) =v;1 T j=1,...,n
n(v; —vj—1) = a;T j=1...,n—1
Umin < V5 < Umax j=1,...,n—2
Omin < @5 < Gmax j=1...,n—1
T>0

The problem instances we consider vary over n. For all of them we set

Umax = O zg = 0
Umin = —9 z, = 100
Gmax = 1 vg = 0
Qmin = —1 v, = 0.

All variables are initialized at 0.1 except for the final time T', which is initialized at 100.
The problem instances are described in Table 6.2. The results are displayed in Fig-
ures 6.7-6.8. The test results here are very different from the hanging springs problem

because the solution is at a vertex. The reduced gradient is zero at any vertex. Once
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Problem # | n | variables | constraints
1 30 87 59
2 40 117 79

Table 6.2: Rocket fastest trip problem instances.
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the correct working set is identified, the constraint infeasibilities should converge to zero

quadratically, since both methods reduce to Newton’s method applied to a set of equations.

However, it can be seen that the algorithm using the disaggregated SR1 Hessian approxima-

tion still performs significantly better than the one using the direct BFGS approximation,

as the correct vertex is identified sooner.

Convergence of Infeasibilities Reduced gradient convergence

10" : : : : 10

10° ] 10° M‘T“‘—T :
N 0
o >
ET =107}

-20 -20
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— Aggregated BFGS — Aggregated BFGS
0 10 20 30 40 0 10 20 30 40
iterations iterations

Figure 6.7: Results for rocket problem 1.

6.3 Conclusions

From the experimental results, we see that the standard direct BFGS quasi-Newton ap-

proximation to the Hessian of the Lagrangian does not work especially well even on these

simple quadratic examples. As described in Chapter 3, the direct approximation uses a sin-

gle update matrix, assumes the multiplier estimates are constant, and maintains positive-

definiteness using the BFGS update. Treating the multiplier estimates as constant when
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Convergence of Infeasibilities Reduced gradient convergence
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Figure 6.8: Results for rocket problem 2.

they actually vary as functions of z impacts the accuracy of the approximation. If eventu-
ally the null-space component of the search direction dominates the range-space component,
the error of the approximation is mitigated. However, many iterations may be required for
this to happen, if at all.

We developed a new technique for forming the quasi-Newton approximation, based on
disaggregating V2L(z,\) into its component functions and using the SR1 update for each
component. The SR1 update in combination with the disaggregated approach has many
beneficial properties. It is a rank-one rather than a rank-two update. The multiplier
estimates are no longer assumed constant. On quadratic functions the SR1 update can be
proven to converge quickly. In the large-scale case this approximation can be updated and
stored efficiently. This method also has the advantage that exact second derivatives can be
incorporated into the update.

The challenge is how to work with an approximation of V2L£(x, \) that is more accu-
rate but perhaps not positive definite. The algorithm of Murray and Prieto handles such
Hessian approximations, but mandates terminating at the first stationary point on all QP
subproblems. There are certain advantages to reaching a solution of a QP subproblem. At
the minimizer, one has a better guess at the active set for the original nonlinear program,

and the multiplier estimates are positive on the active constraints. We cannot be worse off
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and we may be much better off by allowing the option of continuing, in some cases all the
way to the solution of the indefinite QP subproblem.

The method we developed to address this challenge enables the algorithm of Murray
and Prieto to proceed past the first stationary point of the QP subproblem. We have shown
it is not trivial to decide how long one may continue past the first stationary point, since
even a minimizer of a nonconvex QP may not lead to a sufficient descent direction for the
merit function. The rules we developed always lead to a sufficient descent direction, and if
the QP subproblem is strictly convex they allow the QP minimizer to be reached with no
modification. Our algorithm does not modify the QP subproblem in the neighborhood of
the solution even when the Hessian is indefinite. Consequently, when the approximation to
V2L(z, ) is good, we can hope an SQP algorithm based on IDSQP and xIDQP will achieve

a fast asymptotic rate of convergence.
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