
NEW METHODS FOR DYNAMIC PROGRAMMING OVER AN

INFINITE TIME HORIZON

a dissertation

submitted to the department of management science and engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Michael Justin O’Sullivan

September 2002

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

Arthur F. Veinott, Jr.
(Principal Co-Adviser)

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

Michael A. Saunders
(Principal Co-Adviser)

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

Benjamin Van Roy

Approved for the University Committee on Graduate Studies:

ii

Abstract

Two unresolved issues regarding dynamic programming over an infinite time horizon are addressed

within this dissertation. Previous research uses policy improvement to find a strong-present-value

optimal policy in such systems, but the time complexity of policy improvement is not known. Here,

a method is presented for substochastic systems that breaks the problem of finding a strong-present-

value optimal policy into a number of smaller dynamic programming subproblems. Each of the sub-

problems may be solved using linear programming, giving the entire process a polynomial running

time with regard to the size of the original dynamic programming problem. Also, for unique transi-

tion systems (a specialization of substochastic systems that includes general deterministic systems),

other solution methods may be applied and the time complexity becomes strongly polynomial.

For normalized systems, policy improvement is still the method of choice. However, policy

improvement requires the solution of linear systems that may not always have full rank. In a finite

precision environment, the stability of solution methods for these linear systems is critical. One

may simplify the computations associated with policy improvement by classifying the states and

considering each class separately. Here, a method is presented that applies to any policy with

substochastic classes. The method uses the state classification to break the linear system into many

smaller linear systems that are either of full rank or rank-deficient by one. Each of the smaller linear

systems is then solved in a numerically stable way.

During the development of the previous numerically stable method, the need for a sparse rank-

revealing LU factorization became apparent. No such factorization exists in current literature. Here,

a new sparse LU factorization is presented that uses a threshold form of complete pivoting. It is

found to be rank-revealing for all but the most pathological matrices.

iii

Acknowledgements

I would first like to thank my wife Śıobhán and my two children Sophia and Cróı. They continue to

provide the love, support and inspiration necessary to my existence. I would also like to thank my

parents, Alison and Mike, and my siblings, Susannah, John and Matthew. They have shaped me

throughout my life and any success I have is a direct result of their love and support.

Professor Arthur F. Veinott, Jr. introduced me to the subject of dynamic programming and has

guided me throughout my time at Stanford. I am always impressed by the extent of his knowledge.

This dissertation is largely a direct result of his patience, insightful mind, and hard work. I would

like to express my sincere appreciation for all his time and effort.

Professor Michael A. Saunders shakes my hand every time I see him. He has been a friend as

well as an advisor during my time at Stanford. Anytime I had a question about linear algebra, he

would not only supply the answer but also give useful insight into the problem. I would like to thank

Mike for his kindness, thoughtfulness, and hard work throughout my time with him.

I would like to thank Professor Benjamin Van Roy for his input during the writing of this

dissertation. His suggestions and comments were always useful and never failed to improve this

work.

I would like to express my thanks to the faculty and staff of the Management Science and

Engineering department at Stanford for their help and advice over the years. I would also like to

thank Julie Ward and Hewlett-Packard for an exceptional work experience.

To my friends from Stanford and the Bay Area—you know who you are—I appreciate every

moment we spent together. I hope I will see you again soon. Special thanks to those from the

ex-colonies, New Zealand, South Africa and Australia, for helping me maintain my accent and sense

of humor. Also, to my friends from the many football games I played, thanks for helping me retain

my sanity through exercise.

Finally I would like to thank James Deaker and Karen McNay. James has been a good friend

throughout my time at Stanford and I have never quite been able to thank him properly. Thanks

mate. Karen adopted a poor, disorganized Kiwi boy and made me feel like part of the family. I

hope Karen and her family realize how much this meant to me. Thanks to you all.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Strong-Present-Value Optimality . 1

1.2 Substochastic Systems . 2

1.3 Normalized Systems . 3

1.4 Dissertation Outline . 3

2 Polynomial-Time Dynamic Programming 5

2.1 Introduction . 5

2.2 Preliminaries . 6

2.2.1 Formulation . 6

2.2.2 Optimality Concepts and Conditions . 6

2.2.3 Policy Improvement . 7

2.2.4 Maximum-Transient-Value Policies . 8

2.2.5 Maximum-Reward-Rate Policies . 8

2.3 Strong-Present-Value Optimality in Polynomial Time 9

2.4 Efficient Implementation via State-Classification . 13

2.4.1 Recurrent Classes . 13

2.4.2 Communicating Classes . 14

2.4.3 Solving the Maximum-Reward-Rate Subproblem 14

2.4.4 Solving the Maximum-Transient-Value Subproblem 15

2.5 Strongly Polynomial-Time Methods for Unique Transition Systems 15

2.6 Prior Decomposition Methods . 19

2.7 Contributions . 20

v

3 Numerically Stable Present-Value Expansion 21

3.1 Introduction . 21

3.2 Preliminaries . 22

3.2.1 Formulation . 22

3.2.2 Systems with Substochastic Classes . 22

3.2.3 Laurent Expansion . 22

3.3 Using the Class Structure . 23

3.4 Substochastic, Irreducible Classes . 23

3.4.1 Rank-revealing LU factors . 24

3.4.2 Transient classes . 24

3.4.3 Recurrent classes . 25

3.5 Numerical Stability . 28

3.6 Contributions . 29

4 On a Rank-Revealing Sparse LU Factorization 30

4.1 Introduction . 30

4.2 LU Factorization . 31

4.2.1 Dense Partial and Complete Pivoting . 32

4.2.2 Stability and Rank Detection . 32

4.2.3 Threshold Partial Pivoting (TPP) . 33

4.2.4 Threshold Rook Pivoting (TRP) . 33

4.2.5 Threshold Complete Pivoting (TCP) . 34

4.2.6 Triangular Preprocessing . 34

4.2.7 The Test for Singularity . 36

4.3 Rank-Revealing Tests on Classical Examples . 36

4.4 Dynamic Programming Application . 40

4.5 Optimization Application . 46

4.6 Contributions . 48

A Counterexample to Method for Finding 1-Optimal Policies 52

B Matlab Help Files 54

Bibliography 56

vi

List of Figures

2.1 Three Subproblems have Distinct Solutions . 12

2.2 Circuit-Rooted Tree . 16

4.1 Comparing the condition of the factors for MS and MCS 41

4.2 Comparing the sparsity of the factors for MS and MCS 42

4.3 Comparing time per factorization for MS and MCS 43

4.4 Comparing the condition of the factors . 44

4.5 Comparing the sparsity of the factors . 45

4.6 Comparing the time per factorization . 46

4.7 Comparing the condition of the factors as FactorTol changes 47

4.8 Comparing the sparsity of the factors as FactorTol changes 48

4.9 Comparing the time per factorization as FactorTol changes 49

4.10 Time per factorization as a function of the nonzeros in A 50

4.11 Time per factorization as a function of the sparsity of the factors 51

A.1 Counterexample for Denardo’s Method . 52

vii

Chapter 1

Introduction

Many diverse applications exist for infinite-time-horizon dynamic programming (DP), e.g., develop-

ing medical treatment programs, determining harvest limits, and optimizing stock portfolios. This

dissertation develops results in infinite-horizon DP and numerical linear algebra with applications to

DP. The infinite-horizon results consist of polynomial-time and strongly polynomial-time methods

for finding strong-present-value optimal policies in substochastic systems. The numerical linear alge-

bra results include a stable method for calculating the present-value Laurent expansion coefficients

for policies with substochastic classes. This method benefits from the other numerical linear algebra

result, a sparse rank-revealing LU factorization.

The rest of this chapter is organized as follows. Section 1.1 discusses the appropriateness of

strong-present-value optimality as the optimality criterion of choice. Previous research on sub-

stochastic systems is introduced in §1.2 and the lack of time complexity results discussed. Section

1.3 introduces the extension of the work on substochastic systems to normalized systems, and dis-

cusses implementation issues arising from a finite-precision environment. Finally, §1.4 summarizes

the contributions of this dissertation in more detail.

1.1 Strong-Present-Value Optimality

Consider a finite-state-and-action Markov decision chain (referred to here as a DP system, or system

for short). How does one solve the DP problem of selecting a policy to control this process? For

finite time horizons, the total (expected) reward a policy earns over the lifetime of the process gives

a measure with which to compare policies. However, an infinite time horizon may allow policies to

earn infinite total reward. Previous research uses concepts such as maximum reward rate, present-

value optimality, and strong-present-value optimality to differentiate between policies in the infinite

horizon case.

The concept of maximum reward rate compares policies by looking at the average reward per

1

CHAPTER 1. INTRODUCTION 2

period each policy earns over the lifetime of the process. However, this optimality concept ignores the

initial (possibly transient) behavior of a policy, focusing on long-term rewards. On the other hand,

present-value optimality assumes a (positive) interest rate and compares policies by discounting all

future rewards to the present. This optimality concept focuses on short-term rewards generated by a

policy, since the importance of any long-term behavior will be reduced by discounting. Under strong-

present-value optimality, optimal policies are those that simultaneously maximize present-value for

all small (positive) interest rates. Such policies also earn maximum reward rate. Strong-present-

value optimality considers short, intermediate, and long-term behavior when comparing policies.

1.2 Substochastic Systems

In a substochastic system, the transition matrix for each stationary policy is substochastic. Blackwell

[Bla62] introduces the problem of finding a strong-present-value optimal policy, i.e., a policy that has

maximum present value for all sufficiently small positive interest rates, and shows non-constructively

that a stationary strong-present-value optimal policy exists. Miller and Veinott [MV69] give a

constructive proof by developing a policy-improvement method for finding such a policy. This

method exploits the fact that the present value of the expected rewards that a policy earns has a

Laurent expansion in the interest rate.

Previous work builds towards strong-present-value optimality by developing the weaker concept

of finding a stationary policy that is n-optimal, i.e., lexicographically maximizes the first n+2

coefficients of the Laurent expansion of the present value. Where n = −1, this is the classic concept

of finding a stationary maximum-reward-rate policy. Howard [How60]1 and Blackwell [Bla62] show

how to solve that problem by policy improvement. Manne [Man60], de Ghellinck [dG60], Derman

[Der62] and Denardo [Den70b] develop one linear programming method for doing this, and Balinski

[Bal61], Denardo and Fox [DF68], and Hordijk and Kallenberg [HK79] give another. Blackwell

[Bla62] introduces the stronger concept of finding a stationary 0-optimal policy. Veinott [Vei66]

shows how to solve this problem by policy improvement and Denardo [Den70a] shows how to do this

by linear programming.

Veinott [Vei66, Vei68, Vei69, Vei74] introduces the problem of finding a stationary n-optimal

policy and shows its equivalence to finding a stationary n-present-value (resp., n-Cesàro-overtaking)

optimal policy. A stationary policy is strong-present-value optimal if and only if it is S-optimal

where S is the number of states. The papers [Vei69, Vei74] refine the policy-improvement algorithm

of [MV69] to find a stationary n-optimal policy and suggest that a good way to implement that

algorithm is to find a stationary m-optimal policy for m = −1, . . . , n in that order.

Veinott [Vei69] and Avrachenkov and Altman [AA98] show how to find an n-optimal policy in

specialized systems (transient and irreducible, respectively) using a sequence of smaller problems

1See [Vei66, pp. 1291–1293] for a development that fills a lacunae in the proof in [How60].

CHAPTER 1. INTRODUCTION 3

that may be solved using linear programming.

Denardo [Den71, p. 491] sketches a method for finding an n-optimal policy using either policy

improvement or a combination of linear programming and some intermediate algorithms to solve

a sequence of simpler DP problems. However, his method is subject to counterexample. Indeed,

appendix A gives an example in which his method fails to find a 1-optimal policy.

No previous work successfully shows how to use linear programming alone to find either an n-

optimal policy for n > 0 or a strong-present-value optimal policy. Since the time complexity of

policy improvement is unknown, the time required to find a strong-present-value optimal policy is

not currently known.

1.3 Normalized Systems

In a normalized system, the transition matrix of every stationary policy has spectral radius not

exceeding one. As Rothblum [Rot75] notes, Blackwell’s [Bla62] proof of existence of a stationary

strong-present-value optimal policy for substochastic systems extends in a straightforward way to

normalized systems. Rothblum [Rot75] extends the methods from Miller and Veinott [MV69] and

Veinott [Vei69, Vei74] by giving an augmented Laurent expansion of the present value and general-

izing their policy improvement method to normalized systems.

The (more general) policy improvement requires the coefficients of the (augmented) Laurent ex-

pansion. These coefficients are the unique solution of a set of linear equations (identical to those

from Veinott [Vei69] except for the number of arbitrary variables). Veinott [Vei69] shows how to

efficiently solve these linear equations (for substochastic systems) by identifying recurrent classes,

solving within each such (stochastic, irreducible) class by repeated application of a Gaussian elim-

ination matrix, and using these solutions to solve the remainder of the system. Rothblum [Rot75]

notes that Veinott’s [Vei69] method may be extended to normalized systems, but this requires extra

work to partition the system into communicating classes and identify which classes are recurrent. No

previous work discusses the numerical properties of the linear equations (although Veinott [Vei69]

uses the linear dependence of these equations within recurrent classes) or the numerical stability of

solution methods.

1.4 Dissertation Outline

Chapter 2 presents a new method for finding an n-optimal (resp., strong-present-value optimal) pol-

icy within a substochastic system by solving a sequence of 3n+5 simpler, well-studied DP subprob-

lems. Previous work shows that these subproblems may be solved using either policy improvement

or linear programming. Since linear programming can be solved in time that is polynomial in the

size of the problem, this method finds an n-optimal (resp., strong-present-value optimal) policy in

CHAPTER 1. INTRODUCTION 4

polynomial time when using linear programming.

For a special refinement of substochastic systems, referred to here as unique transition systems,

this method finds an n-optimal (resp., strong-present-value optimal) policy in strongly polynomial

time. This result is especially appealing because the refinement includes general deterministic sys-

tems.

Chapter 3 presents a new method similar to Veinott’s [Vei69] for determining the coefficients of

the Laurent expansion in a system with substochastic classes. This method reduces the problem to

that of finding the coefficients within a number of irreducible, substochastic systems. By partitioning

the state space into communicating classes and following the induced dependence partial ordering,

the coefficients for the entire system are found by considering each class separately. Within each

(irreducible, substochastic) class, the new method determines if the class is recurrent or transient

using a rank-revealing LU (RRLU) factorization, then computes the coefficients by solving the linear

equations (for that class) in a numerically stable way.

The research contained in Chapter 4 arose during the development of the numerically stable

computations from Chapter 3. In large, sparse DP problems, solving the linear equations (for each

class) may require factorizing a large, sparse matrix with a possible singularity. Since many of

these coefficient matrices are encountered within each iteration, a fast, sparse RRLU factorization

is desirable. Chan [Cha84], Hwang, Lin and Yang [HLY92], and Hwang and Lin [HL97] give dense

RRLU factorizations. The LUSOL package of Gill, Murray, Saunders, and Wright [GMSW87]

contains a fast, sparse LU factorization using threshold partial pivoting. This is sometimes, but

not always, rank-revealing. Chapter 4 shows that adding a threshold form of complete pivoting to

LUSOL gives a sparse RRLU factorization. This is compared with several other factorizations using

different measures.

Chapter 2

Polynomial-Time Dynamic

Programming

2.1 Introduction

This chapter presents a method that finds a strong-present-value optimal policy for a finite-state-

and-action infinite-horizon Markov decision chain in polynomial time. Using the weaker notion of

n-optimality, this new method starts with an arbitrary policy and sequentially improves the policy

until a strong-present-value optimal policy is found. The problem of finding an n-optimal policy

from an (n−1)-optimal policy is decomposed into three simpler subproblems, each of which may be

solved in polynomial time using linear programming. If n is the number of states the method yields

a strong-present-value optimal policy in polynomial time.

Section 2.2 formulates the problem of finding a strong-present-value optimal policy. That section

defines the system, introduces relevant optimality concepts and conditions, and discusses previous

approaches for finding such policies. It also introduces the subproblems at the core of the new

method. The method itself is introduced in §2.3, taking the form of a theorem that demonstrates

how to move from an (n−1)-optimal policy to a n-optimal policy using three simple (dynamic

programming) subproblems. The extension of this theorem to find a strong-present-value optimal

policy in polynomial time is then given. Next, by classifying the states, §2.4 shows how to efficiently

implement the new method. The running time of this method becomes strongly polynomial for

unique transition systems, a refinement of the original system definition that includes standard

deterministic finite-state-and-action infinite-horizon dynamic programs. Section 2.5 describes three

different forms of these systems, and gives the new running time in each case. Finally, §2.6 compares

earlier decomposition methods with the new method and §2.7 summarizes the contributions within

this chapter.

5

CHAPTER 2. POLYNOMIAL-TIME METHODS 6

2.2 Preliminaries

2.2.1 Formulation

Consider a substochastic system observed in periods 1, 2, In each period, the system is in one

of a finite collection S of S states or is in the stopped state. In each state s ∈ S, a finite set As of

actions is available. The set of state-action pairs {(s, a) | s ∈ S, a ∈ As} has cardinality A. If one

observes in a period that the system is in state s ∈ S and chooses action a ∈ As, the system earns

expected reward r(s, a) and next period moves to state t ∈ S with probability p(t|s, a) ≥ 0 and the

stopped state with probability 1−
∑

t∈S p(t|s, a). Once a system enters the stopped state it remains

there and earns no further reward.

Since Blackwell [Bla62] proves the existence of a stationary strong-present-value optimal policy,

it suffices to restrict attention to stationary policies within this chapter. Throughout, a (stationary)

policy is a function δ that assigns an action δs ∈ As to each state s ∈ S. Each policy δ induces an

S-vector rδ ≡ (r(s, δs)) of expected rewards and an S × S transition matrix Pδ ≡ (p(t|s, δs)). Let ∆

be the set of all policies.

The N -period transition matrix for a policy δ is the N th power PN
δ of Pδ. This leads to the

definition of a stationary transition matrix P ∗δ ≡ limN→∞
1
N

∑∞
i=1 P

i−1
δ for a policy δ. Now each

policy δ partitions S into the transient states Tδ ≡ {t ∈ S | P
∗
δst = 0 for all s ∈ S} under δ and the

recurrent states Rδ ≡ S \ Tδ under δ.1 If Tδ = S (i.e., P ∗δ = 0), then δ is said to be transient.

2.2.2 Optimality Concepts and Conditions

Strong-present-value optimality. Suppose that rewards carried from one period to the next

earn interest at the rate 100ρ% (ρ > 0) and let β ≡ 1
1+ρ be the discount factor. The present value

V ρ
δ of a policy δ is the (expected) present value of the rewards that δ earns in each period discounted

to the beginning of period 0, i.e., V ρ
δ ≡

∑∞
N=1 β

NPN−1
δ rδ. A policy δ is present-value optimal if

V ρ
δ ≥ V ρ

γ for all γ ∈ ∆. Finally, δ is strong-present-value optimal if it is present-value optimal for all

sufficiently small ρ.

n-Optimality. It is computationally challenging to discern directly whether or not a policy is

strong-present-value optimal. However, building a sequence of n-optimal policies is more efficient

and attains strong-present-value optimality (when n = S).

A policy δ is n-present-value optimal if

lim
ρ↓0

ρ−n
(

V ρ
δ − V ρ

γ

)

≥ 0 for all γ ∈ ∆. (2.1)

1The classification of states as transient or recurrent under a given policy leads to the concept of recurrent classes
defined in §2.4.

CHAPTER 2. POLYNOMIAL-TIME METHODS 7

Evidently

V ρ
δ = βrδ + βPδV

ρ
δ . (2.2)

Also, V ρ
δ has the Laurent expansion

V ρ
δ =

∞
∑

n=−1

ρnvnδ (2.3)

in small ρ > 0 [MV69]. By substituting (2.3) into (2.2), multiplying by 1+ρ and equating coefficients

of like powers of ρ, ones sees that V n+1 ≡
(

v−1, v0, . . . , vn+1
)

=
(

v−1δ , v0δ , . . . , v
n+1
δ

)

satisfies

rjδ +Qδv
j = vj−1, j = −1, 0, . . . , n+ 1, (2.4)

where Qδ = Pδ − I, r0δ = rδ, r
j
δ = 0, j 6= 0, and v−2δ = 0 [MV69]. Conversely, if the matrix

V n+1 ≡
(

V n, vn+1
)

satisfies (2.4) then V n = V n
δ ≡

(

v−1δ , v0δ , . . . , v
n
δ

)

[Vei69]. Thus, (2.4) uniquely

determines the vector V n = V n
δ , but not vn+1.

Writing B º C for two matrices of like size means that each row of B − C is lexicographically

nonnegative. Combining (2.1) and (2.3), a policy δ is n-present-value optimal if and only if δ is

n-optimal, i.e., V n
δ º V n

γ for all γ ∈ ∆.

Denote the set of n-optimal policies by ∆n and notice that the n-optimal sets are nested, i.e.,

∆ ⊇ ∆−1 ⊇ ∆0 ⊇ ∆1 ⊇ · · · . Extending [MV69], [Vei69] shows that there exists an 1 ≤ m ≤ S such

that ∆ ⊇ ∆−1 ⊇ · · · ⊇ ∆m = ∆m+1 = · · · . Moreover, an S-optimal policy is strong-present-value

optimal.

2.2.3 Policy Improvement

Veinott [Vei69, Vei74] refines the policy improvement method given in [MV69] to find an n-optimal

policy as follows. For γ, δ ∈ ∆, let

gjγδ ≡ rjγ +Qγv
j
δ − vj−1δ , j = −1, 0, . . . (2.5)

and Gn
γδ ≡ (g−1γδ , . . . , g

n
γδ) for n ≥ −1. If δ is n-optimal, then

Gn
γδ ¹ 0 for all γ ∈ ∆. (2.6)

Conversely, if

Gn+1
γδ ¹ 0 for all γ ∈ ∆, (2.7)

then δ is n-optimal. Therefore, (2.6) is necessary and (2.7) is sufficient for n-optimality of δ. We

say that δ satisfies the n-optimality conditions if (2.7) holds. If Gn
γδ Â 0 for some γ ∈ ∆ and

γs = δs wherever Gn
γδs = 0, call γ an n-improvement of δ. In that event V n

γ Â V n
δ . If δ has no

(n+1)-improvement, then it satisfies the n-optimality conditions.

CHAPTER 2. POLYNOMIAL-TIME METHODS 8

Let E−2δ ≡ ∆ and Enδ ≡ {γ ∈ ∆ : Gn
γδ = 0} for n ≥ −1, so Enδ = {γ ∈ En−1δ : gnγδ = 0} for n ≥ −1.

Since V n = V n
δ satisfies (2.4) for −1 ≤ j ≤ n, δ ∈ Enδ . Also, for any two policies γ and δ, Lemma 9

of [Vei69, p. 1648] implies that V n
γ − V n

δ is a linear function of Gn+1
γδ . In particular,

γ ∈ Enδ implies that V n−1
γ = V n−1

δ and vnγ − vnδ = P ∗γ g
n+1
γδ = P ∗γ

(

rn+1γ − vnδ
)

(2.8a)

and so

V n−1
γ = V n−1

δ implies that γ ∈ En−1δ and 0 = vn−1γ − vn−1δ = P ∗γ g
n
γδ. (2.8b)

It is immediate from the first assertion in (2.8a) and the definitions involved that

if δ is (n−1)-optimal, then Enδ ⊆ ∆n−1 ⊆ E
n−1
δ . (2.9)

Policy improvement may be implemented inductively as follows [Vei69, Vei74]. Given a policy

δ that is (n−1)-optimal, search En−1δ for an (n+1)-improvement γ of δ (so γ is (n−1)-optimal),

replace δ by γ, and repeat this procedure until a policy is found with no (n+1)-improvement. The

last policy satisfies the n-optimality conditions and so is n-optimal.

2.2.4 Maximum-Transient-Value Policies

If δ is transient (see §2.2.1), its value Vδ =
∑∞

i=1 P
i−1
δ rδ is finite, and δ has maximum transient value

if Vδ ≥ Vγ for all transient γ ∈ ∆. The maximum-transient-value problem is to find a transient

policy with maximum value among all such policies. Note that there is no requirement that every

policy be transient. The paper [EV75] establishes the following facts about this problem. A policy

δ has maximum transient value if and only if δ is transient and Vδ is the least fixed point of the

optimal return operator R defined by RV ≡ max γ∈∆ (rγ + PγV) for V ∈ RS . Such a policy exists

if and only if there is a transient policy and R has an excessive point, i.e., a V ∈ RS for which

V ≥ RV . It is possible to find a maximum-transient-value policy either by policy iteration or by

solving a linear program with S rows and A columns similar to that of d’Epenoux [d’E60].

2.2.5 Maximum-Reward-Rate Policies

The reward rate, i.e., the expected reward per period, of δ is v−1δ = P ∗δ rδ. The maximum-reward-rate

problem is to find a policy with maximum reward rate. This problem is well-studied and previous

work shows that there is such a policy and it can be found by policy iteration [How60, Bla62] or by

solving a linear program [Bal61, DF68, HK79] with 2S rows and 2A columns.

CHAPTER 2. POLYNOMIAL-TIME METHODS 9

2.3 Strong-Present-Value Optimality in Polynomial Time

Given an (n−1)-optimal policy, this section shows how to construct an n-optimal policy. It follows

that the construction of such a policy takes polynomial time, so a strong-present-value optimal policy

may be found in polynomial time.

To that end, let (v−1∗ , v0∗, v
1
∗, . . .) be the lexicographic maximum of (v−1δ , v0δ , v

1
δ , . . .) over δ ∈ ∆,

V n
∗ ≡ (v−1∗ , . . . , vn∗) and En∗ ≡ {γ ∈ E

n−1
∗ : rnγ + Qγv

n
∗ − vn−1∗ = 0} for n ≥ −1 where v−2∗ ≡ 0 and

E−2∗ ≡ ∆.

For each policy ζ, observe that Enζ has the product property, i.e., is a product Enζ =×s∈S E
n
ζs

of subsets Enζs ⊆ As of actions for each state s ∈ S. Let E nζ be a set of policies such that

(i) E nζ has the product property E nζ =×s∈S E
n
ζs for some subsets ∅ 6= E nζs ⊆ E

n
ζs

for all s ∈ S, and

(ii) for each s ∈ S, E nζs contains each action that is used by some policy in Enζ for which state s is

recurrent under that policy.

Thus, ∅ 6= E nζ ⊆ E
n
ζ . The simplest example of such a set E nζ is Enζ itself. Section 2.4 gives other

examples that lead to substantially more efficient algorithms for solving the maximum-reward-rate

subproblem in (b) of Theorem 2.1 below. Note that ζ /∈ E nζ is possible.

Theorem 2.1 Sequential Decomposition into Subproblems.

Suppose n ≥ −1.

(a) (n−1)-Optimality Conditions. If δ is (n−1)-optimal, then vn = vnζ is the least solution

of

vn = max
γ∈En−1

∗

(

rnγ − vn−1∗ + Pγv
n
)

∨ vnδ (2.10)

for some ζ ∈ En−1∗ that is transient on the states s for which vnζs > vnδs and that agrees with δ

otherwise. Moreover, each such γ = ζ maximizes vnγ over all such γ and satisfies the (n− 1)-

optimality conditions.2

(b) n-Optimality for Recurrent States. If ζ satisfies the (n−1)-optimality conditions, then

max
γ∈E n

ζ

vnγ = vnζ + max
γ∈E n

ζ

P ∗γ
(

rn+1γ − vnζ
)

. (2.11)

Moreover, the sets of maximizers on both sides of (2.11) are nonempty and coincide. Also, each

such common maximizer γ = η is (n−1)-optimal and is n-optimal on each state that is recurrent

under some n-optimal policy.

2It is not efficient to implement part (a) when n = −1. In that case, it is better to omit (a) and begin with a
modification of part (b) that omits the hypothesis about ζ, replaces v−1

ζ
by 0 and E−1

ζ
by ∆. Then the modified

version of (b) evidently holds. If also one sets E −1
ζ
= ∆, then the policy γ = η found in (b) is −1-optimal, so part

(c) is unnecessary. However, as §2.4 discusses, it is necessary to solve subproblem (c) for other (often better) choices
of E −1

ζ
.

CHAPTER 2. POLYNOMIAL-TIME METHODS 10

(c) n-Optimality. If η is (n−1)-optimal and is n-optimal on each state that is recurrent under

some n-optimal policy, then vn = vnθ is the least solution of

vn = max
γ∈En−1

∗

(

rnγ − vn−1∗ + Pγv
n
)

∨ vnη (2.12)

for some θ ∈ En−1∗ that is transient on the set of states s for which vnθs > vnηs and that agrees with η

otherwise. Moreover, each such θ is n-optimal.

Role of the Three Subproblems It seems useful to explain briefly the role of each of the three

subproblems therein. Consider a policy δ that is (n−1)-optimal. Then it is necessary to find a γ

in ∆n−1 that maximizes vnγ over ∆n−1. Unfortunately, this is generally hard to do for two reasons.

First, it is difficult to find ∆n−1. Second, even if one has ∆n−1, it may not have the product property,

which significantly complicates the problem of optimizing over that set. However, it follows from

(2.9) that ∆n−1 has inner and outer approximations Enδ and En−1δ = En−1∗ , respectively, that are

easy to compute, have the product property and can be used as follows.

First solve the maximum-transient-value subproblem in (a) to find a policy γ = ζ that maximizes

vnγ over the γ in En−1∗ that are transient on states where γ differs from δ. The policy ζ also satisfies

the (n−1)-optimality conditions. Now solve the maximum-reward-rate subproblem in (b) to find a

policy γ = η that maximizes vnγ over E nζ . Since ζ satisfies the (n−1)-optimality conditions ((n−1)-

optimality is not enough), it turns out that η is n-optimal on the states where some n-optimal

policy is recurrent (though it doesn’t find those states). Finally, solve the maximum-transient-value

subproblem in (c) to find a policy γ = θ that maximizes vnγ over γ in En−1∗ that are transient on

states where γ differs from η. The policy θ is n-optimal.

The following corollary is a direct result of the subproblem decomposition of Theorem 2.1.

Corollary 2.2 Polynomial Running Time. The problem of finding an n-optimal, and hence a

strong-present-value optimal, policy is solvable in polynomial time.

Proof. One may find an n-optimal policy by sequentially solving subproblems (a), (b) (with

E nζ = Enζ), and (c) of Theorem 2.1 to find an m-optimal policy in the order m = −1, 0, . . . , n. Each

of these 3n+5 subproblems is solvable using a linear program whose size is polynomial in the size

of the dynamic program. Khachian [Kha79] shows that a linear program is solvable in time that is

polynomial in its size. Also, the size of the solution of a linear program is polynomial in the size of

the linear program itself. The size of each linear program for solving subproblems (a), (b), and (c)

depends only on the size of the dynamic program and the solutions of the previous linear program.

Therefore, the size of each linear program for solving subproblems (a), (b), and (c) is polynomial

in the size of the dynamic program, so the time required to solve each subproblem is polynomial in

the size of the dynamic program. Therefore, the time to find an n-optimal policy is polynomial in

CHAPTER 2. POLYNOMIAL-TIME METHODS 11

the size of the dynamic program. Also, since an S-optimal policy is strong-present-value optimal, a

strong-present-value optimal policy may be found in polynomial time. ¥

The rest of this section contains a proof for Theorem 2.1 and an example that demonstrates that

the three subproblems produce distinct solutions.

Proof of Theorem 2.1. Suppose that α is n-optimal. Also, for parts (b) and (c), let R ≡ Rα

(resp., T ≡ Tα) be the set of states where α is recurrent (resp., transient). Remember the sets R

and T partition S.

(a) Suppose δ is (n−1)-optimal. Define a new system by first restricting the policies to En−1∗ ,

letting the one-period rewards be rnγ − vn−1∗ for γ ∈ En−1∗ , and appending a new action in every

state s ∈ S that stops and earns the one-period reward vnδs. The policy that stops in each state and

period is transient in the new system. Then for all γ ∈ ∆, V n
α º V n

γ and, from (2.6), Gn
γα ¹ 0.

Also V n−1
δ = V n−1

α , so for γ ∈ En−1∗ = En−1α , Gn−1
γα = 0 and gnγα ≤ 0. The last fact and vnα ≥ vnδ

imply that vnα is an excessive point of the operator on the right-hand side of (2.10). Therefore, from

[EV75], there is a transient policy κ in the new system whose value Vκ therein is the least solution

of (2.10) and majorizes the value of every other transient policy in that system.

Next construct a policy ζ ∈ En−1∗ in the original system with ζ being (n−1)-optimal and vnζ = Vκ.

To that end, let E = {s ∈ S : Vκs = vnδs}, so VκG À vnδG where G ≡ S \E. Define ζ by ζE ≡ δE and

ζG ≡ κG. Now PδEG = 0, for otherwise PδEG > 0 and so VκE = vnδE = rnδE − vn−1∗E + PδEEv
n
δE +

PδEGv
n
δG < rnδE − vn−1∗E + PδEEVκE + PδEGVκG ≤ VκE , which is a contradiction. Therefore, by

suitably permuting the states,

Pζ =

(

PκGG PκGE

0 PδEE

)

and P ∗ζ =

(

P ∗κGG P ∗ζGE

0 P ∗δEE

)

=

(

0 P ∗ζGE

0 P ∗δEE

)

, (2.13)

the last since κ is transient, so ζ is transient on G. Also from (2.10), the definition of κ and

δ ∈ En−1δ = En−1∗ , it follows that ζ ∈ En−1∗ . These facts and (2.8a) imply that V n−2
ζ = V n−2

∗ and

vn−1ζ − vn−1∗ = P ∗ζ g
n
ζδ = P ∗ζSEg

n
δδE = 0, so ζ is (n−1)-optimal. Now since PζGG = PκGG is transient,

V = Vκ is the unique solution of

V =

(

rnζG − vn−1∗G

vnδE

)

+

(

PζGG PζGE

0 0

)

V. (2.14)

However, V = vnζ also satisfies this equation. To see this for states in G, substitute vn−1ζG = vn−1∗G

into gnζζG = 0, while for states in E, recall that PζEG = PδEG = 0 and so vnζE = vnδE . Thus since the

above equation has a unique solution, Vκ = vnζ .

Since ζ ∈ En−1∗ = En−1δ , V n−1
ζ = V n−1

δ by (2.8a), so Gn−1
γζ = Gn−1

γδ ¹ 0 for all γ ∈ ∆ by (2.6).

Also, since vnζ satisfies (2.10), gnγζ ≤ 0 for all γ ∈ En−1∗ = En−1ζ , i.e., for all γ with Gn−1
γζ = 0. Hence

Gn
γζ ¹ 0 for all γ ∈ ∆, i.e., ζ satisfies the (n−1)-optimality conditions.

CHAPTER 2. POLYNOMIAL-TIME METHODS 12

(b) Suppose ζ satisfies the (n−1)-optimality conditions. Now since ∅ 6= E nζ ⊆ E
n
ζ and E nζ has the

product property, it follows from (2.8a) that (2.11) holds and the sets of maximizers on both sides

thereof coincide. Thus, from [How60] and [Bla62], there is a γ = η maximizing the right-hand, and so

the left-hand, side of (2.11) because the former is a maximum-reward-rate problem with one-period

rewards rn+1γ − vnζ for γ ∈ E nζ . Since η ∈ E nζ ⊆ E
n
ζ , V

n−1
η = V n−1

ζ by (2.8a), so η is (n−1)-

optimal. Now Gn−1
αζ = 0, from V n−1

α = V n−1
ζ (both (n−1)-optimal) and (2.8b), so gnαζ ≤ 0 because ζ

satisfies the (n−1)-optimality conditions. Also, (2.8b) gives 0 = vn−1α − vn−1ζ = P ∗αg
n
αζ = P ∗αSRg

n
αζR,

so gnαζR = 0 (since P ∗α ≥ 0). Hence Gn
αζR = 0 and there is a λ ∈ E nζ with λR = αR and λ

recurrent on R because α is recurrent thereon. Therefore vnλ ≤ vnη by (2.11). Also PαRT = 0, so

vnαR = vnλR ≤ vnηR ≤ vnαR, whence vnηR = vnαR.

(c) Suppose η is (n−1)-optimal and is n-optimal on each state that is recurrent under some n-

optimal policy. Then from (a) of the Theorem, there is a θ ∈ En−1∗ satisfying the assertions of (c) of

the Theorem except perhaps for θ ∈ ∆n. To show the last fact, observe that since vnθ satisfies (2.12),

vnα ≥ vnθ ≥ vnη . Moreover, by hypothesis vnηR = vnαR and so vnθR = vnαR. Also since vnθ satisfies (2.12)

and α ∈ ∆n ⊆ E
n−1
∗ , vnθ ≥ rnα − vn−1∗ + Pαv

n
θ = vnα + Pα(v

n
θ − vnα) implying vnθ − vnα ≥ Pα(v

n
θ − vnα).

Iterating this inequality yields vnθ − vnα ≥ PN
α (vnθ − vnα) for N = 0, 1, Taking the (C, 1) limit of

the last inequality yields vnθ − vnα ≥ P ∗α (vnθ − vnα) = P ∗αSR (vnθR − vnαR) = 0, so θ ∈ ∆n. ¥

The following example illustrates the above ideas for n-optimality and that the subproblems

produce distinct solutions.

Example 2.1 Three Subproblems have Distinct Solutions. Consider the deterministic system

in Figure 2.1 with 2m + 3 states labeled σ, 0, 1, . . . ,m, 0′, 1′, . . . ,m′ where m ≥ 0. There are two

PSfrag replacements

σ

a

ab

b

mm′

0′

1′

2um0 2um1

2umm−12umm

um0um1

umm−1 umm

0

0

0 0

1

Figure 2.1: Three Subproblems have Distinct Solutions

actions a and b in states σ and 0, and a single action a in every other state. In state σ, actions a and

b move the system to states 0 and 0′ respectively, and each earns zero one-period reward. Action a

in states s and s′ moves the system to the respective states s+ 1 and (s+ 1)′ modulo (m+ 1) and

CHAPTER 2. POLYNOMIAL-TIME METHODS 13

earns the respective one-period rewards 2ums and ums for s = 0, . . . ,m, where ums ≡ (−1)s
(

m
s

)

for

s = 0, 1, Finally, action b in state 0 earns zero one-period reward and moves the system to the

stopped state.

A policy is a pair of actions for states σ and 0. For example, ba is the policy that takes action

b in state σ and action a in state 0. Let n = m − 1. Then all four policies are (n−1)-optimal. If

one starts with the policy δ = ab, solving subproblems (a), (b) and (c) of Theorem 2.1 yields the

respective policies ζ = bb, η = ba and θ = aa. Also, vnδ < vnζ < vnη < vnθ and only θ is n-optimal.

2.4 Efficient Implementation via State-Classification

The subproblems (a) and (c) are maximum-transient-value problems and the subproblem (b) is

a maximum-reward-rate problem. One may solve both problems by policy iteration or linear pro-

gramming. This section first describes two state space partitions and then proceeds to implement

both approaches efficiently by partitioning the state space.

2.4.1 Recurrent Classes

As Bather [Bat73, pp. 542–545] shows, it is useful to classify the states of a Markov decision chain

as recurrent or transient in a manner that generalizes that for Markov chains. In particular call a

state recurrent or transient according as it is recurrent under some policy or transient under every

policy. The sets of recurrent and transient states partition the state space.

Bather also gives a recursive procedure for finding the set of recurrent states and a partition

thereof that is useful for computations. Ross and Varadarajan [RV91, pp. 197–198] show that the

members of this partition are precisely the maximal subsets of recurrent states that form a recurrent

class under some randomized stationary Markov policy. For this reason, call each member of the

partition a recurrent class.3 Bather [Bat73, pp. 542–545] and Ross and Varadarajan [RV91, pp. 197–

198] give different methods of finding the recurrent classes in O(S2 + SA) time.

Incidentally, there is a second characterization of the recurrent classes in terms of the (non-

randomized stationary Markov) policies considered herein. To describe it, form an (undirected)

recurrent-state graph whose nodes are the recurrent states and whose arcs are the pairs (s, t) of

states s, t that both belong to a common recurrent class of some policy. Then it is easy to see that

the recurrent classes are precisely the node sets of the maximal connected subgraphs (or components)

of the recurrent-state graph.

3Ross and Varadarajan [RV91] use the term strongly communicating class for what we call a recurrent class.

CHAPTER 2. POLYNOMIAL-TIME METHODS 14

2.4.2 Communicating Classes

While recurrent classes are useful for solving the maximum-reward-rate subproblem in (b) solving

the maximum-transient-value subproblems in (a) and (c) of Theorem 2.1, requires a different (well-

known) partition of the state space. It is easiest to explain this in terms of a (directed) graph called

the state-graph. The nodes of this graph are the states and the stopped state and the arcs are the

ordered pairs of states (s, t), s ∈ S, for which p(t|s, a) > 0 for some a ∈ As and t ∈ S or for which t

is the stopped state and
∑

t∈S p(t|s, a) < 1. State s is accessible to state t if there is a chain from

s to t in the state graph. A state is accessible to itself with a chain of consisting of only that state.

A communicating class (or strong component of the state graph) is a maximal subset of mutually

accessible states. The communicating classes partition the state space. Tarjan’s [Tar72] depth-first

search method can be used to find the communicating classes and the communicating-class graph,

i.e., the strong component graph of the state-graph, in O(S + A) time. Call a stochastic system

communicating if S forms a communicating class.

2.4.3 Solving the Maximum-Reward-Rate Subproblem

Classifying the states into recurrent classes permits the maximum-reward-rate subproblem in (b)

of Theorem 2.1 to be divided into smaller subproblems of the same type. The key to doing this is

a felicitous choice of the action sets E nζs. To that end, first form the restricted system by limiting

the actions in each state s to those in Enζs. Next use one of the above algorithms to find the

recurrent classes for the restricted system. Now for each state s in some recurrent class C of the

restricted system, let E nζs be the set of actions in Enζs that keep the system in C, i.e., E nζs =
{

a ∈ Enζs :
∑

c∈C p(c|s, a) = 1
}

. For each state s that is transient in the restricted system, let E nζs =

{ζs}. This definition of E nζ assures that the required conditions (i) and (ii) hold. Finally, choosing

action a ∈ E nζs in state s results in the reward rate rn+1(s, a) − vnζs. The transition rates are the

original ones.

Since each recurrent class C of the restricted system has access only to states in C with every

policy in E nζ , it suffices to solve the maximum-reward-rate subproblem separately on each such class

C. Then one common maximizer γ = η of both sides of the subproblem (b) is formed by letting

ηs = ζs for each state s that is transient in the restricted system and, for each recurrent class C of the

restricted system, letting ηC be a maximum-reward-rate policy for the restriction of the subproblem

to C.

To sum up, the above development shows how to divide the maximum-reward-rate subproblem in

(b) of Theorem 2.1 (with E nζ defined as above) into a collection of state-disjoint maximum-reward-

rate problems. In each of these state-disjoint problems, the system is stochastic and the state-space

is a single recurrent class. It is known and easy to see that a stochastic system has a state-space

that forms a single recurrent class if and only if the system is communicating. Moreover, much more

CHAPTER 2. POLYNOMIAL-TIME METHODS 15

efficient algorithms are available for communicating stochastic systems than for general ones.

Solving a Maximum-Reward-Rate Problem in a Communicating Stochastic System.

Consider a communicating stochastic system. Call a policy unichain if its recurrent states form a

single class; naturally, the remaining states are transient. It is known from Denardo [Den70b] that

one maximum-reward-rate policy for this problem is unichain. A unichain maximum-reward-rate

policy can be found by linear programming or policy iteration.

• Linear Programming It is immediate from Denardo [Den70b] that the basic solutions of

Manne’s [Man60] and de Ghellinck’s [dG60] linear program are precisely the stationary distributions

of unichain policies. Thus, application of the simplex method, for example, to that linear program

iterates within the class of unichain policies until one with maximum reward rate is found. Manne’s

and de Ghellinck’s linear program has only S +1 rows and A columns, and so is much smaller than

the linear program required for general systems, which has, as discussed above, 2S rows and 2A

columns.

• Policy Iteration Haviv and Puterman [HP91] show how to carry out the policy iteration

within the class of unichain policies. This is much more efficient than use of general policy iteration

for communicating stochastic systems.

2.4.4 Solving the Maximum-Transient-Value Subproblem

One can use the communicating-class graph to solve a maximum-transient-value problem as follows.

Let v∗ = (v∗s) be the desired maximum transient value. Choose a communicating class C whose

maximum transient values have not been found and that is accessible in one step only to classes

for which those values have been found. (Note that the transient value for the stopped state is

zero.) Denote by TC the union of the classes to which C has access in one step. Let the one-period

reward associated with each state s ∈ C and each action a in that state be the sum of its one-period

reward and its expected future reward in other classes, i.e., r(s, a) +
∑

t∈TC
p(t|s, a)v∗t . Solve the

maximum-transient-value problem for that class. The maximum transient values for the class are

the desired values v∗s for each s ∈ C. Repeat this procedure until the maximum transient values for

all classes have been found.

2.5 Strongly Polynomial-Time Methods for Unique Transi-

tion Systems

In this section we show how to find a strong-present-value optimal policy in strongly polynomial

time in a unique transition system. A unique transition system is one in which each state s ∈ S and

action a ∈ As determines a unique t(s, a) such that either

CHAPTER 2. POLYNOMIAL-TIME METHODS 16

• t(s, a) ∈ S, p(t(s, a)|s, a) > 0 and p(t|s, a) = 0 for t ∈ S \ {t(s, a)}, or

• t(s, a) is the stopped state and p(t|s, a) = 0 for each t ∈ S.

Such systems include standard deterministic dynamic programs. Remember A is the number of

state-actions pairs (s, a) with s ∈ S and a ∈ As.

A unique transition system induces a state-action graph with gains on the arcs. The nodes are

the states and the stopped state. Each arc corresponds to a state-action pair (s, a) with s ∈ S

and a ∈ As, the tail and head of the arc are s and t(s, a) respectively, and the arc’s gain p(s, a) is

p(t(s, a)|s, a) if t(s, a) ∈ S and 0 < p(s, a) ≤ 1 if t(s, a) is the stopped state. Note that this graph

may have multiple arcs from one node to another.

A policy induces a subgraph of the state-action graph with each state being the tail of a single

arc. Examination of the strong-component graph of the subgraph reveals that the latter is a set of

node-disjoint circuit-rooted trees that spans the nodes of the state-action graph. A circuit-rooted

tree is a subgraph of the state-action graph whose strong-component graph is a tree with all arcs

directed towards a distinguished root node. The root node is a strong component consisting of either

a simple circuit or the stopped state, and every other strong component consists of a single node.

Figure 2.2 illustrates a circuit-rooted tree with the solid nodes forming the simple circuit.

Figure 2.2: Circuit-Rooted Tree

It is possible to classify the states under a policy with the aid of its induced subgraph. Call

a simple circuit in the subgraph recurrent if the gains on all arcs in the circuit are one; otherwise

call the simple circuit transient. A state in the subgraph is recurrent if it lies in a recurrent simple

circuit; otherwise the state is transient. A circuit-rooted tree in the subgraph is transient if its simple

circuit, if any, is transient.

Corollary 2.3 Unique Transition Systems. In a unique transition system, the problem of find-

ing an (n− 2)-optimal policy, −1 ≤ n− 2 ≤ S, is solvable in4

(a) Undiscounted O(nS[A ∧ S2] +A) time if p(s, a) = 1 for each s ∈ S and a ∈ As;

4The assumption that n− 2 ≤ S is without loss of generality since if n− 2 > S, a policy is (n− 2)-optimal if and
only if it is S-optimal, or equivalently, strong-present-value optimal.

CHAPTER 2. POLYNOMIAL-TIME METHODS 17

(b) Discounted O(nS2[A ∧ S2] +A) time if p(s, a) = β < 1 for each s ∈ S and a ∈ As; and

(c) General O(nS2A logS) time.

Proof. For both (a) and (b), consider a pair of states (s, t) where t is here possibly the stopped

state and t is accessible from s in one step with some action a ∈ As. Then, of course, one can choose

an action a ∈ As that maximizes r(s, a) subject to t(s, a) = t and eliminate the other actions α ∈ As

for which t(s, α) = t. This step requires O(A) time and assures that at most O(A∧S2) state-action

pairs must be examined, viz., one for each pair (s, t) of states.

(a) Undiscounted Suppose the hypotheses of part (a) of Corollary 2.3 hold. Then all circuits

in the corresponding collection of circuit-rooted trees are recurrent. Thus each transient policy

corresponds to a circuit-rooted tree in which the root component is the stopped state. Then the

maximum-transient-value problem may be solved using the Bellman-Ford method [For56, Bel58] for

finding a maximum-value rooted tree with root the stopped state. The time to find this tree is

O(S[A ∧ S2]). An efficient way to do this is to use state-partitioning as discussed in §2.4.

The maximum-reward-rate problem may be solved by implementing Bather’s state-partitioning

method as follows. For each class, use Karp’s [Kar78] algorithm to find a maximum-reward-rate

circuit and then use breadth-first search backwards from the circuit to create a circuit-rooted tree

and hence a maximum-reward-rate policy on the class. Finally, solve the system-maximum-reward-

rate problem discussed in §2.4 by the Bellman-Ford method. The time to solve both of these problems

is O(S[A ∧ S2]).

Thus the time to solve each subproblem (a), (b) or (c) of Theorem 2.1 is O(S[A ∧ S2]). Since

3n such subproblems must be solved, part (a) of the Corollary follows immediately.

(b) Discounted Suppose the hypotheses of part (b) of the Corollary hold. Then the maximum-

transient-value problem may be solved with the aid of state-partitioning. The method entails solving

a maximum-transient-value problem on each class. Thus, it suffices to consider the case in which the

system consists of a single class. On such a system and for each σ ∈ S, find the maximum-transient-

value Cσ over all circuits that start in σ. Then solve an augmented maximum-transient-value

problem where in each state σ ∈ S one also allows stopping and earning the terminal reward Cσ.

One may find a maximum-transient-value circuit that starts in state σ ∈ S as follows. Calculate

the maximum value V N
s among all N -step chains from s ∈ S to σ as follows:

V N+1
s = max

t(s,a)∈S

[

r(s, a) + βV N
t(s,a)

]

, N ≥ 1 (2.15)

where V 1s = maxt(s,a)=σ r(s, a), the maximum being −∞ if the set over which a maximum is taken

is empty. Then,

Cσ = max
1≤N≤S

V N
σ

1− βN
= max
1≤N≤S

[

V N
σ + βNCσ

]

. (2.16)

CHAPTER 2. POLYNOMIAL-TIME METHODS 18

Now let UN
s be the maximum value among all chains of length N or less that begin at s ∈ S and

earn the terminal reward Cσ if the chain ends in σ. Then for each s ∈ S,

UN+1
s = max

a∈As

[

r(s, a) + βUN
t(s,a)

]

, N ≥ 0 (2.17)

where UN
t ≡ 0 if t is the stopped state and U 0s = Cs. Then Us ≡ US

s is the maximum-transient-value

among all policies and satisfies

Us = max
a∈As

[

r(s, a) + βUt(s,a)
]

.5

Furthermore, any policy δ such that δs = a achieves the maximum on the right-hand side of the

above equation for each s ∈ S has maximum transient value.

The time to find δ is O(S2[A ∧ S2]). Thus the time to solve the subproblem (a) of Theorem 2.1

is O(S2[A ∧ S2]). Since the system is transient, any policy that solves subproblem (a) also solves

subproblems (b) and (c), so the latter two are not needed. Since n such subproblems must be

solved, part (b) of Corollary 2.3 follows immediately.

(c) General Consider the general case of part (c) of Corollary 2.3. The maximum-transient

value problem can be solved in O(S2A logS) time as follows. Use the method of Hochbaum and

Naor [HN94, pp. 1181–1184, 1186] to find the least excessive point of the optimal return operator

in O(S2A logS) time.6 Then from [EV75], the least excessive point is the maximum-transient-value

v∗; there is a transient policy δ such that v∗ = rδ + Pδv
∗; and each such policy has value v∗.

As shown in [EV75], one such transient policy δ = (δs) can be found in O(SA) time as follows.

Form a revised state-action graph in two steps. First delete arcs (s, a) in the state-action graph for

which v∗s 6= r(s, a) + p(s, a)v∗t (s, a). Next, for each state s for which there is an arc (s, a) in the

remaining graph for which p(s, a) < 1, append an arc (s, a)′ from s to the stopped state. Then fan

out backwards from the stopped state in the revised state-action graph to form a maximal subtree

with all arcs directed towards the stopped state. The subtree spans the states and the stopped state

because there is a maximum-value transient policy δ such that v∗ = rδ + Pδv
∗. Then for each state

s, let δs be the action associated with the unique arc in the subtree leading out of s. The policy δ

is transient since each state is accessible to the stopped state with positive probability under δ.

The maximum-reward-rate problem can also be solved in O(S2A logS) time as follows:

1. remove all arcs (s, a) with p(s, a) < 1 to form an undiscounted system;

2. solve the maximum-reward-rate problem on the undiscounted system as outlined in the proof

for part (a) above;

5It is possible to cut the running time to find U = (Us) using a refinement of Dijkstra’s algorithm. However, this
improvement does not reduce the order of the leading term of the overall running time.

6Their method repeatedly calls the Grapevine Algorithm 1 of Aspvall and Shiloach [AS80, pp. 834–835] to check
whether a given number Vs is or is not as large as the maximum transient value in state s in O(SA) time.

CHAPTER 2. POLYNOMIAL-TIME METHODS 19

3. restore all arcs, augment the system by allowing stopping in each state with the maximum

reward-rate from that state in the undiscounted system, and solve the maximum-transient-

value problem using the method given above.

Thus, the time to find a maximum-reward-rate policy is O(S2A logS).

Hence, the time to solve each subproblem (a), (b) or (c) of Theorem 2.1 is O(S2A logS). Since,

by Theorem 2.1, 3n such subproblems must be solved, part (c) of Corollary 2.3 follows. ¥

Remark. Hartman and Arguelles [HA99, p. 437], Theorem 17 give an algorithm for finding a

maximum-transient-value policy under the hypotheses of (a) of Corollary 2.3 and the assumption

that the actions in each state consist of choosing the next state to visit. In this event, there are S

actions in each state, so A = S2. Under this hypothesis, their method runs in O(S4) time. The

running time of the new method for this case agrees with theirs, but is faster where A < O(S2).

2.6 Prior Decomposition Methods

The idea of decomposing the problem of finding an n-optimal policy into subproblems related to

those proposed here has been explored previously in some special cases. Following is a review of

some of this work and it’s relationship to the approach presented here.

−1-Optimality (Maximum-Reward-Rate) Problem. Denardo [Den70b] shows how to solve

the maximum-reward-rate problem in general by solving Manne’s [Man60] and de Ghellinck’s [dG60]

linear program on a sequence of up to 2n “nested” restrictions of the problem. Here, n is the number

of recurrent classes under the maximum-reward-rate policy and “nested” means that each restriction

has a state-space that is a proper subset of its predecessor.

Bather [Bat73] finds a maximum-reward-rate policy in two steps. First, he separately considers

each recurrent class together with those transient classes that feed directly into that class, finding a

maximum-reward-rate policy in the subsystem using a simplified version of Howard’s policy iteration.

Then he uses a maximum-transient-value problem to decide if it is optimal to stay in a recurrent

class (using the policy found within it’s subsystem), or to move down to another accessible recurrent

class. The resulting policy has maximum reward rate for the original system.

0-Optimality Problem. Building on an idea in [Vei66], Denardo [Den70a] shows how to decom-

pose the problem of finding a 0-optimal policy into three subproblems. His first subproblem amounts

to finding a maximum-reward-rate policy by policy iteration or linear programming, and so is quite

different from subproblem (a) for finding a 0-optimal policy. But his second two subproblems are

close to subproblems (b) and (c), the difference being minor if Blackwell’s [Bla62] policy iteration

is used to solve these subproblems and being greater if linear programming is used.

CHAPTER 2. POLYNOMIAL-TIME METHODS 20

n-Optimality Problem. Two prior decompositions for transient and irreducible systems and a

decomposition outline for the general case currently exist.

• Transient Systems For transient systems, i.e., where every policy is transient, results of

Veinott [Vei69, pp. 1638, 1648–1649] imply that it is possible to decompose the problem of finding

an n-optimal policy into a sequence of n+1 subproblems like subproblem (c) except that one can

omit the vector vnη . This is possible in transient systems because, as he shows, ∆n−1 = En−1∗ and

θ ∈ En−1∗ is n-optimal if and only if maxγ∈En−1
∗

gnγθ = 0, i.e., vn = vnθ is the unique fixed point of

(2.12). This result also follows from Theorem 2.1 on observing that a policy θ that solves subproblem

(c) for n also solves subproblems (a) and (b) for n+1.

• Irreducible Systems For irreducible systems, i.e., where every policy is irreducible, Avrachenkov

and Altman [AA98] show how to decompose the problem of finding an n-optimal policy into a se-

quence of n+2 subproblems like subproblem (b). This result also follows from Theorem 2.1 on

observing that a policy η that solves subproblem (b) for n also solves subproblem (c) for n and

subproblem (a) for n+1.

2.7 Contributions

This chapter presents a new three-step decomposition for finding strong-present-value optimal poli-

cies in substochastic systems. None of the three steps require a specific methodology, so the entire

decomposition is independent of the solution methods used at each step. If linear programming is

used to solve each step of the decomposition, the entire process runs in polynomial time with respect

to the size of the dynamic program. Also, this chapter shows how to use two different state space

partitions (recurrent and communicating classes) to solve each step efficiently (again, no particular

solution method is specified). Finally, this chapter defines unique transition systems and shows that

the decomposition presented here may solve in strongly polynomial time (with respect to the size of

the dynamic program) for these systems, with the exact running time depending on the properties

of the system (and the specialized methods used to solve each step of the decomposition).

Acknowledgement The work contained within this chapter is joint work with Prof. Arthur F.

Veinott, Jr.

Chapter 3

Numerically Stable Present-Value

Expansion

3.1 Introduction

One of the most important steps in implementing any method is ensuring the method remains valid

under finite precision. Both Miller and Veinott’s [MV69] and Veinott’s [Vei69] policy improvement

for substochastic systems and Rothblum’s [Rot75] extended policy improvement for normalized

systems require the computation of Laurent expansion coefficients via a set of linear equations. If

these coefficients are not computed to a high degree of accuracy, then these policy improvement

methods may be invalidated. This chapter presents a method for solving the linear equations (thus

computing the coefficients) for systems with substochastic classes (a subset of normalized systems).

Section 3.2 presents the DP formulation, describes the systems considered in this chapter, and

gives the modified Laurent expansion and linear equations for these systems. Then, Section 3.3 shows

how to use a the classes of a policy to decompose the problem of solving the linear equations for a

policy into many problems that solve the linear equations within a substochastic, irreducible class.

Section 3.4 shows how to perform numerically stable computations to solve these linear equations

within a substochastic, irreducible class. This provides the necessary building block to compute the

coefficients for the entire system in a numerically stable way. Finally, the question of numerical

stability is addressed in detail in §3.5 and the contributions of this chapter are summarized in §3.6.

21

CHAPTER 3. NUMERICALLY STABLE METHOD 22

3.2 Preliminaries

3.2.1 Formulation

Consider a general system observed in periods 1, 2, The system exists in a finite set S of S states.

In each state s ∈ S the system takes one of a finite set As of actions. The number of state-action

pairs is given by A. Taking action a ∈ As from s ∈ S earns reward r(s, a) and causes a transition to

state t ∈ S with rate p(t|s, a).

Each (stationary) policy δ ∈ ∆ is a function that assigns a unique action δs ∈ As to each s ∈ S,

and induces a single-period S-column reward vector rδ ≡ (r(s, δs)) and an S × S transition matrix

Pδ ≡ (p(t|s, δs)).

3.2.2 Systems with Substochastic Classes

The matrix Pδ defines a Markov chain, complete with recurrent and transient classes under δ. If

every class C (under δ) has 0 ≤ p(t|s, a) ≤ 1 and
∑

t∈C p(t|s, a) ≤ 1, s, t ∈ C, a ∈ As, then δ has

substochastic classes. Also, since the blocks of Pδ corresponding to these classes lie on the diagonal

and have spectral radius not exceeding one, Pδ has spectral radius not exceeding one. If every

(stationary) policy has substochastic classes, then the system has substochastic classes. Also, since

the spectral radius of the transition matrix for every (stationary) policy does not exceed one, the

system is normalized. Hereafter, this chapter only considers system with substochastic classes.

Blackwell’s [Bla62] existence theorem holds for normalized systems, so it suffices to restrict

attention to stationary policies throughout this chapter. Rothblum [Rot75] shows how to extend the

policy improvements from Miller and Veinott [MV69] and Veinott [Vei69] (for substochastic systems)

to normalized systems. The only differences arise in the Laurent expansion and the linear equations

needed to find the coefficients of this expansion.

3.2.3 Laurent Expansion

For each policy δ, let the degree of δ be the smallest nonnegative integer dδ ≡ i such that Qi
δ and

Qi+1
δ have the same null space (where Qδ ≡ Pδ − I). Let the system degree d ≡ max δ∈∆ dδ. For

normalized systems, the Laurent expansion becomes

V ρ
δ =

∞
∑

n=−d

ρnvnδ . (3.1)

If V n+d ≡
(

v−d, . . . , vn+d
)

is a solution of

rjδ +Qδv
j = vj−1, j = −d, . . . , n+ d, (3.2)

CHAPTER 3. NUMERICALLY STABLE METHOD 23

where r0(s, a) ≡ r(s, a), rj(s, a) ≡ 0 for j 6= 0, rjδ ≡
(

rj(s, δs)
)

and v−d−1δ = 0, then V n ≡
(

v−dδ , . . . , vnδ
)

=
(

v−d, . . . , vn
)

. The variables vn+1, . . . , vn+d are not uniquely determined.

The remainder of this chapter presents a numerically stable method for finding V n
δ for a given

δ ∈ ∆ and −d ≤ n. More generally, the method finds a solution of

c j +Qδv
j = vj−1, j = m+ 1, . . . , n+ d (3.3)

given δ ∈ ∆, vm and c j , j = m + 1, . . . , n + d. Again, only vj , j = m + 1, . . . , n are uniquely

determined.

3.3 Using the Class Structure

Given a policy δ (in a system with substochastic classes), the transition matrix Pδ not only defines

(recurrent and transient) classes, but also induces a dependence partial ordering amongst the classes.

In substochastic systems, the only classes that don’t depend on any other class are recurrent. All

other classes are transient. Veinott solves for the Laurent coefficients by solving the linear equations

within each recurrent class separately (accounting for the singularity present in these classes) and

using these coefficients to solve for the rest of the system (that is transient). However, in systems

with substochastic classes, recurrent classes may depend on other (recurrent or transient) classes.

Let D0 be the set of classes that are independent, i.e., don’t depend on any other classes. Let Di

be the set of classes that depend only on classes in ∪i−1j=0Dj and let Si ≡
{

s ∈ C ∈ ∪i−1j=0Dj
}

.

For each class C in Di, consider (3.2) for s ∈ C. The dependence partial ordering shows that

p(t|s, δs) > 0 only for t in C ∪ Si. If one has already calculated V n+d
t ≡

(

V n
δt, v

n+1
t , . . . , vn+dt

)

for

t ∈ Si, then solving (3.2) within C reduces to solving (3.3) within C, with m ≡ −d−1, v−d−1δ ≡ 0 and

c js ≡ rj(s, δs)+
∑

t∈Si
p(t|s, δs)v

j
t for s ∈ C. By solving (3.3) within the classes in Di, i = 0, 1, . . . , in

order one may solve (3.2) for the entire system efficiently. Also, this is done by solving (3.3) within

substochastic, irreducible classes.

3.4 Substochastic, Irreducible Classes

This section presents a method for solving the linear system (3.3) within a single (substochastic,

irreducible) class. Throughout, the notation for system parameters denotes those same parameters

restricted to the class, e.g., S refers to the states within the class, Pδ refers to the transition matrix

restricted to the states in the class, etc.

Each class may be either transient or recurrent. In a transient class, limN→∞ PN
δ = 0, so

Q−1δ ≡ (Pδ − I)
−1

= −
(

I + Pδ + P 2δ + · · ·
)

is well-defined (i.e., Qδ is non-singular). If the class is

recurrent, then it must be stochastic, i.e.,
∑

t∈S p(t|s, δs) = 1 for every s ∈ S. Then the rows of

Qδ sum to zero, so Qδ is singular. Since the class is irreducible, eliminating any (single) state s

CHAPTER 3. NUMERICALLY STABLE METHOD 24

from the class causes the remainder to become transient. This is equivalent to removing the row

corresponding to the state-action pair (s, δs) and the column corresponding to s from Pδ. Removing

this row and column from Qδ causes it to become non-singular. Therefore, Qδ has rank S − 1, i.e.,

it is rank-deficient by one.

3.4.1 Rank-revealing LU factors

Given a (substochastic, irreducible) class, one may deduce if it is transient or recurrent by means

of a rank-revealing LU (RRLU) factorization of Qδ. Moreover, regardless of the nature of the class,

the LU factors may still be used to solve (3.3).

The RRLU takes the form

T1QδT
T
2 ≡ T1

(

Q̂ q̂

qT ϕ

)

T T
2 =

(

L 0

lT 1

)(

U u

0 ε

)

,

where T1 and T2 are permutations, Q̂ = LU is an (S − 1) × (S − 1) non-singular matrix, qT and

lT are (S − 1)-row vectors, q̂ and u are (S − 1)-column vectors, and ε is a valuable indicator if the

permutations are chosen correctly (according to the Threshold Complete Pivoting strategy described

in Chapter 4). If |ε| is suitably large Qδ is taken as full rank, but if |ε| = O(ε), where ε is the machine

precision, Qδ is regarded as singular. In particular, it is rank-deficient by one.

For simplicity, assume the permutations T1 and T2 are the identity and write the LU factorization

as

Qδ ≡

(

Q̂ q̂

qT ϕ

)

=

(

L 0

lT 1

)(

U u

0 ε

)

.

Regardless of the nature of the class, the LU factors may be used to solve (3.3) because the system

is consistent even if Qδ is singular.

3.4.2 Transient classes

If the RRLU factorization shows that Qδ has full rank, then the linear system (3.3), equivalently















Qδ

−I Qδ

. . .
. . .

−I Qδ





























vm+1

vm+2

...

vn+d















=















vm − cm+1

−cm+2

...

−cn+d















, (3.4)

is nonsingular and block triangular. It may therefore be solved sequentially by block forward substi-

tution:

Qδv
j = vj−1 − c j (3.5)

CHAPTER 3. NUMERICALLY STABLE METHOD 25

in order for j = m+ 1, . . . , n+ d (using the full LU factors of Qδ).

3.4.3 Recurrent classes

If the RRLU factorization shows that Qδ is rank-deficient by one, then the linear system (3.3) may

be represented in matrix form































Q̂ q̂

qT ϕ

−I

−1

Q̂ q̂

qT ϕ

. . .
. . .

−I

−1

Q̂ q̂

qT ϕ





























































v̂m+1

vm+1S

v̂m+2

vm+2S

...

v̂n+d

vn+dS































=































v̂m − ĉm+1

vmS − cm+1S

−ĉm+2

−cm+2S

...

−ĉn+d

−cn+dS































, (3.6)

where v̂j and ĉj represent the first S− 1 elements of vj and c j respectively. Rearranging (3.6) gives





































Q̂ q̂

−I Q̂ q̂

. . .
. . .

. . .

−I Q̂ q̂

qT ϕ

qT −1 ϕ

. . .
. . .

. . .

qT −1 ϕ









































































v̂m+1

v̂m+2

...

v̂n+d

vm+1S

vm+2S

...

vn+dS





































=





































v̂m − ĉm+1

−ĉm+2

...

−ĉn+d

vmS − cm+1S

−cm+2S

...

−cn+dS





































.

Since Qδ is rank-deficient by one, the last row of the system

Qδv
m+1 = vm − cm+1,

i.e., qT v̂m+1 + ϕvm+1S = vmS − cm+1S , is redundant and may be omitted. Also, since vn+d is not

determined uniquely, one may assign vn+dS ≡ 0 and eliminate the column corresponding to this

CHAPTER 3. NUMERICALLY STABLE METHOD 26

variable. The remaining system











































Q̂ q̂

−I Q̂ q̂

. . .
. . .

. . .

−I Q̂ q̂

−I Q̂

qT −1 ϕ

. . .
. . .

. . .

qT −1 ϕ

qT −1





















































































v̂m+1

v̂m+2

...

v̂n+d−1

v̂n+d

vm+1S

vm+2S

...

vn+d−1S











































=











































v̂m − ĉm+1

−ĉm+2

...

−ĉn+d−1

−ĉn+d

−cm+2S

...

−cn+d−1S

−cn+dS











































(3.6’)

has a unique solution (as it has full rank). Label the various components shown in (3.6’) as

[

A B

C D

][

v̂

vS

]

=

[

ĉ

cS

]

. (3.7)

Since Q̂ is nonsingular (and Q̂ = LU has already been found) it is easy to solve a system Ax = b

sequentially. Hence a block LU factorization,

[

A B

C D

]

=

[

A

C I

][

I Y

Z

]

,

solves the full system efficiently. First, solve AY = B and calculate the Schur complement Z =

D − CY , then use block-forward and block-backward substitution, i.e., solve

[

A

C I

][

x̂

xS

]

=

[

ĉ

cS

]

and

[

I Y

Z

][

v̂

vS

]

=

[

x̂

xS

]

,

to solve (3.6’). The remainder of this section breaks down each step of the process.

Solving AY = B. Expanding A and B into matrix form gives



















Q̂

−I Q̂

. . .
. . .

−I Q̂

−I Q̂



















Y =



















q̂

q̂

. . .

q̂



















.

CHAPTER 3. NUMERICALLY STABLE METHOD 27

Therefore, the first column of Y solves the following block-diagonal system:



















Q̂

−I Q̂

. . .
. . .

−I Q̂

−I Q̂





































ym+1

ym+2

...

yn+d−1

yn+d



















=



















q̂

0
...

0

0



















.

One may solve the system sequentially (cf. §3.4.2), i.e., LUyj = yj−1 in order for j = m+1, . . . , n+d

(where ym ≡ q̂). The blocks of the first column of Y give all elements of the following Toeplitz matrix:

Y =





















ym+1

ym+2 ym+1

... ym+2
. . .

yn+d−1
...

. . . ym+1

yn+d yn+d−1 ym+2





















.

Forming Z = D − CY . Since C is block-diagonal and Y is block-upper triangular, the product

CY has the form

CY =















qT ym+2 qT ym+1

qT ym+3 qT ym+2
. . .

...
...

. . . qT ym+1

qT yn+d qT yn+d−1 qT ym+2















,

giving

Z =















−1 ϕ

−1
. . .

. . . ϕ

−1















−















qT ym+2 qT ym+1

qT ym+3 qT ym+2
. . .

...
...

. . . qT ym+1

qT yn+d qT yn+d−1 qT ym+2















= −















1 + qT ym+2 qT ym+1 − ϕ

qT ym+3 1 + qT ym+2
. . .

...
...

. . . qT ym+1 − ϕ

qT yn+d qT yn+d−1 1 + qT ym+2















.

CHAPTER 3. NUMERICALLY STABLE METHOD 28

However, Q̂ym+1 = q̂, so qT ym+1 = ϕ (because Qδ is rank-deficient by one), so Z is both lower

triangular and Toeplitz:

Z = −















1 + qT ym+2

qT ym+3 1 + qT ym+2

...
...

. . .

qT yn+d qT yn+d−1 1 + qT ym+2















.

Block-forward substitution. The solution x̂ of Ax̂ = ĉ is found sequentially. Then xS may be

calculated directly from xS = cS − Cx̂.

Block-backward substitution. If Z is large, the solution of ZvS = xS may be found using

special methods for (lower) triangular Toeplitz systems [Tre87]. Otherwise (Z is of moderate size)

and ordinary forward substitution suffices to find vS . Then, v̂ is obtained directly from v̂ = x̂−Y vS .

3.5 Numerical Stability

Regardless of whether a class is transient or recurrent, one will always solve a block-lower trian-

gular system sequentially (block-forward substitution) using a nonsingular matrix Q (≡ Qδ for

transient classes, ≡ Q̂ for recurrent classes). Since the block-forward substitution is equivalent

to using (Q)
j−m

, j = m + 1, . . . , n + d, any errors in solving with Q will grow exponentially. If

Q is ill-conditioned, one may reduce this effect by keeping the interval n + d − m in (3.3) small.

Implementing policy improvement as suggested by Veinott [Vei69], i.e., finding m-optimal policies

for m = −d, . . . , n sequentially, gives V m−1
δ throughout and one only searches for m, . . . ,m + d-

improvements (again in order). Finding an (m+ d)-improvement requires V m+d
δ , so the interval for

(3.3) is (at most) m+ 2d− (m− 1) = 2d+ 1. Therefore, the smaller the degree of the system, the

more reliable calculations become.

The RRLU is essential in this method. If a class is recurrent, but the LU fails to identify the

singularity in Q, then Q will be extremely ill conditioned and computational errors may become

prominent.

For recurrent classes, the methods works with the block LU factorization (3.7). The factorization

is stable as long as A is not almost singular and the elements of either B or C (or both) are not

much larger than the biggest element of A.

The Schur complement Z is lower triangular with the constant diagonal element φZ ≡ 1+qT ym+2.

The condition of Z will be reasonable if φZ is not close to zero and not significantly smaller than

the off-diagonal elements qT ym+3, · · · , qT yn+d.

CHAPTER 3. NUMERICALLY STABLE METHOD 29

3.6 Contributions

Given a policy in a system with substochastic classes, this chapter presents a new method for

finding Laurent expansion coefficients (for the present value of the policy). A rank-revealing LU

factorization indicates if each (communicating) class is transient or recurrent. For transient classes,

the LU factors provide a numerically stable method for finding the coefficients. For recurrent classes,

this chapter gives a matrix decomposition based on well defined submatrices of the LU factors to

find the coefficients. Finally, this chapter discusses where numerical instability may arise during

computation of the coefficients.

Acknowledgement The work contained within this chapter is joint work with Prof. Michael A.

Saunders.

Chapter 4

On a Rank-Revealing Sparse LU

Factorization

4.1 Introduction

This chapter presents a rank-revealing LU (RRLU) factorization for general sparse matrices (which

may be square or rectangular). Although dense RRLU factorizations exist [Cha84, HLY92], as do

sparse LU factorizations ([DR96, DEG+99] and many others), no previous sparse LU factorizations

have focused on rank-revealing properties. The method presented here is implemented as a new

option within LUSOL, the sparse LU factorization described by Gill, Murray, Saunders, and Wright

[GMSW87]. LUSOL uses a Markowitz pivot strategy to maintain sparsity, along with threshold

partial pivoting (TPP) to preserve stability. The new option implements threshold complete piv-

oting (TCP). While requiring relatively few changes to the code, it provides significant rewards.

In particular, the stricter stability test is guaranteed to move the smaller pivots (if any) to the

end of the factorization. This is sufficient to reveal the rank of most matrices except for the best-

known pathological example. The TCP factorization also tends to preserve sparsity well. The main

challenge is to stay as near as possible to the linear running time that is usually achieved by the

conventional TPP factorization.

Section 4.2 describes various forms of LU factorization, including the original TPP factorization

and the modifications made to LUSOL to implement the TCP pivoting strategy. Section 4.3 illus-

trates the rank-revealing property of the new factorization on some small classical test cases. Next,

§4.4 describes experiments on many sparse examples from a dynamic programming application. The

complexity appears to be polynomial but less than quadratic in the number of nonzeros in the LU

factors. Section 4.5 describes the usefulness of the new factorization within optimization codes.

Finally, §4.6 summarizes the contributions within this chapter.

30

CHAPTER 4. RANK-REVEALING SPARSE LU 31

4.2 LU Factorization

The LU factors of a matrix A may be written as A = LU =
∑

k lku
T
k , where lk and uTk are the

columns of L and the rows of U . With A(1) = A, the kth factorization step produces

A(k+1) = A(k) − lku
T
k ,

in which some nonzero element A
(k)
ij is chosen as “pivot”, and the associated row i and column j

become zero. (Thus, A(k+1) contains k empty rows and columns.) For simplicity k is omitted and

each step is written as

l = A.j/Aij , uT = Ai., A← A− luT ,

The resulting L and U are permuted triangles. In pivot order, the diagonals of L are 1 and the

pivots Aij become the diagonals of U .

The process is stable if the elements of A do not grow large at any stage, and the factors tend to

be sparse if the rank-one updates luT are formed from sparse pivot rows and columns. In practice,

one attempts to control element growth by bounding the elements of L. The following terms are

needed (where “A” still means A(k)):

FactorTol A stability tolerance for controlling the magnitude of |Lij |. Pivots are chosen so that

1 ≤ ‖l‖∞ ≤ FactorTol ≤ 100 (say).

DropTol A tolerance for ignoring negligible entries. Updated elements are treated as zero if |Aij | <

DropTol. Since the concern is rank estimation, a suitable value is DropTol = ε‖A‖, where

ε ≈ 2.2× 10−16 is the precision of most of today’s machines.

Markowitz strategy A method for choosing sparse updates [Mar57]. A potential pivot Aij is

desirable if the merit function Mij ≡ (ri− 1)(cj − 1) is low, where ri and cj are the number of

nonzeros in the associated row and column of the current matrix A. (Mij bounds the number

of new nonzeros created by luT .)

Threshold Partial Pivoting A strategy for balancing stability and sparsity. A pivot chosen from

the remaining columns of A should not be too small compared to other nonzeros in its own

column.

Threshold Complete Pivoting A strategy with stricter stability test. A pivot chosen from the

remaining columns of A should not be too small compared to other nonzeros in all columns.

Modified columns Those that change during the luT update (excluding the pivot column and

columns whose element of u is zero).

nnz(A) The number of nonzeros in the sparse matrix A.

CHAPTER 4. RANK-REVEALING SPARSE LU 32

4.2.1 Dense Partial and Complete Pivoting

For a dense n×nmatrix, LU factorization requires about 13n
3 arithmetic operations. Partial pivoting

is usually employed with FactorTol = 1 (since sparsity is not an issue). Finding the largest element

in each pivot column requires O(n2) comparison operations in total (negligible compared to the

arithmetic operations).

Complete pivoting is known to be numerically preferable, as it is even more likely to prevent

element growth. Finding the largest element in all remaining rows and columns requires about 13n
3

comparisons, almost doubling the cost of dense LU factorization. (Note that in the sparse case, one

would be delighted if complete pivoting cost only twice as much as sparse partial pivoting.)

Businger [Bus71] has shown how to avoid most of the extra cost by switching from partial

to complete pivoting only in rare circumstances: when the elements of uk become too large, not

counting the pivots. (This involves monitoring the off-diagonal elements of the current rows of U .)

For dense matrices only O(n2) comparisons are required. Businger’s approach also seems suitable

in the sparse case (to ensure stability). It will be considered for future implementation.

4.2.2 Stability and Rank Detection

By definition, a stable method computes LU factors for any matrix, regardless of condition or

singularity, with the relation A = LU holding to high accuracy in all cases. If A is ill-conditioned,

at least one of L or U must be also. For example, consider n× n matrices of the form

Bn =

















0.1 1

0.1 1

· ·

0.1 1

0.1

















,

for which cond(Bn) ≈ 10n with only one small singular value. For n ≥ 15, Bn is essentially singular

and rank(Bn) = n − 1. Partial pivoting exhibits perfect stability by returning L = I and U = Bn.

Complete pivoting cannot be more stable, but by disallowing the diagonal 0.1 pivots, it ultimately

returns a U with one small diagonal Unn, clearly indicating the rank.

Note that Matlab’s condest [HT00] correctly estimates cond(B15) ≈ 1015 and returns a vector v

for which B15v = O(ε). However, the elements of v are smoothly graded: v = [0.9, −0.09, 0.009, . . . ,

−9× 10−14, 9× 10−15]T , giving no indication of the source or degree of singularity. For the appli-

cations discussed later, the requirements are these:

• An RRLU factorization should be stable in the sense that A = LU holds to high accuracy, and

sparse whenever A is sparse.

• The factors should indicate which columns of A could be removed (as few as possible) to

improve the condition significantly.

CHAPTER 4. RANK-REVEALING SPARSE LU 33

4.2.3 Threshold Partial Pivoting (TPP)

Threshold pivoting methods balance stability and sparsity by using FactorTol > 1. For TPP the

Markowitz strategy suggests sparse pivots Aij and the stability test requires

|Aij | ≥ Ajmax / FactorTol, (4.1)

where Ajmax is the largest element in column j. This is the strategy used by traditional sparse LU

packages, including LA05, MA28, MA48, Y12M, LUSOL and MOPS [Rei82, Duf77, DR96, ZWS81,

GMSW87, SS90] (some of them oriented by rows rather than columns).

Typically, nnz(L+ U) is 1–3 times as many as nnz(A) for the original A (and rarely as much as

10 times). Since A tends to have only 1–10 entries per column and the average Markowitz count Mij

tends to be low, the total storage and work required are both typically O(n). Various implementation

strategies have been proposed to achieve this efficiency. In particular:

S1: Zlatev [Zla80] searches only a few of the sparsest rows and columns of the updated A for

suitable pivots.

S2: Suhl and Suhl [SS90] store the largest element of each column of the updated A at the beginning

of the column’s data structure, to facilitate the stability test.

Both strategies are used in the current version of LUSOL. Strategy S2 is especially important for our

rank-revealing implementation. Note that the largest element must be found in each modified column

(defined above), but the total searching involved in Strategy S2 tends to be linear in nnz(L+ U),

as desired.

4.2.4 Threshold Rook Pivoting (TRP)

A stricter stability test would be

|Aij | ≥ Ajmax / FactorTol and |Aij | ≥ Aimax / FactorTol, (4.2)

where Aimax is the largest element row i. This threshold rook pivoting (TRP) strategy has been

implemented by Gupta [Gup00] in the WSMP package for judicious use when the preferred TPP

strategy fails. For the dense case with FactorTol = 1, Foster [Fos97] has shown that rook pivoting

prevents exponential growth in the size of |Aij |, and suggests that it has rank-revealing properties.

The threshold form therefore warrants future study. In the LUSOL context, TRP would complicate

the Markowitz strategy (perhaps requiring the nonzeros to be stored by rows as well as columns),

but it may involve less searching overall than the TCP strategy described next.

CHAPTER 4. RANK-REVEALING SPARSE LU 34

4.2.5 Threshold Complete Pivoting (TCP)

This is the new option implemented in LUSOL. The stability test is

|Aij | ≥ Amax / FactorTol, (4.3)

where Amax is the largest element in the current A. While the changes in the pivot selection scheme

are conceptually minor, they allow the rank of the matrix to be accurately revealed by moving small

elements to the later pivot positions. The Markowitz strategy becomes slightly simpler, but may

continue longer before an acceptable pivot is found. There are two significant costs:

• Decreased sparsity in L and U compared to TPP.

• The need to maintain Amax at each stage.

The first cost seems inevitable, but Strategy S2 helps with the second. With the largest element of

each column known, Amax could be found at stage k by searching n − k elements. However, this

approach entails O(n2) comparisons in total. To economize, after each elimination we find

Amod ≡ the largest element in the modified columns

and then consider four cases. Suppose column jmax contains Amax before the elimination.

1. If column jmax was modified (or deleted as pivot column),

1a. if Amax ≤ Amod then Amax ← Amod

1b. else search all columns for a new Amax

2. else

2a. if Amax < Amod then Amax ← Amod

2b. else Amax remains the same.

Only case 1b requires a search of n−k elements. The complexity now depends on how often this case

arises, i.e., how often does Amax decrease? For matrices with many nonzeros of equal magnitude,

it may not be often. Otherwise, it may be rather often, especially when FactorTol is rather low.

For the sparse test matrices of §4.4, the total work appears to be less than O(n2) but significantly

more than O(n). However, for those results the implementation avoided a full search only in case 1a.

More detailed experiments are needed with the current implementation on a larger range of sparse

examples.

4.2.6 Triangular Preprocessing

As in several other codes, LUSOL’s Markowitz strategy has the effect of isolating a “backward

triangle” U1 and a “forward triangle” L1 before any elimination is performed on the remaining

CHAPTER 4. RANK-REVEALING SPARSE LU 35

block B. The structure revealed is of the form

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

U1 V

L1

M B

.

With the normal TPP partial pivoting option, LUSOL accepts all rows of U1 and V as they come,

without numerical tests on the pivots. (On the other hand, columns of L1 and M must satisfy test

(4.1) to ensure that L is well-conditioned for LUSOL’s updating routines.)

For the TCP option, more care is needed with U1 to obtain an RRLU factorization. At first sight

it seems that all diagonals of U1 should be subjected to the complete pivoting test (4.3). However,

in optimization algorithms it is common for “A” to contain many unit vectors corresponding to

slack variables. Ideally they should find their way into U1, but if A contains a nonzero larger than

FactorTol, the TCP test would reject them all. Looking more closely, we see that the top rows

have the following structure:

@
@

@
@

@
@

@
@

±I U11

U12

V1

V2

.

The matrix ±I denotes columns associated with slack variables (and any other unit vectors in A).

When the LU factors are used to solve linear systems, each solve with U will involve a system of the

CHAPTER 4. RANK-REVEALING SPARSE LU 36

form








±I U11 V1

U12 V2

U2

















x

y

z









=









b

c

d









,

where z, y and x are determined in that order by back-substitution. As long as the TCP test is

applied to all diagonals after ±I, any singularities there will be detected and (we assume) corrected.

Thus, z and y will not be pathologically large and x = ±(U11y + V1z) will be well defined. (Since

the matrices U11 and V1 are original data, they should not contain extremely large numbers.)

4.2.7 The Test for Singularity

After completing a factorization, LUSOL examines the diagonals of U and flags any that are “small”

in absolute terms or relative to other elements in the same column of U :

|Ujj | ≤ Utol1

or |Ujj | ≤ Utol2 ×maxi |Uij |
(4.4)

Typical values for Utol1 and Utol2 are ε2/3 ≈ 3.7× 10−11 when the factors are being used to solve

linear systems. For rank determination in the Matlab environment, we have used

Utol1 = n‖A‖ε, Utol2 = 0,

with ‖A‖ obtained from norm or normest for dense or sparse A respectively. This matches the

tolerance Matlab uses for determining rank via svd.

4.3 Rank-Revealing Tests on Classical Examples

For dense matrices, Chan [Cha84], Hwang, Lin, and Yang [HLY92], and Hwang and Lin [HL97]

describe two-pass procedures for detecting one or more singularities. These RRLU factorizations

reduce P1AP2 to

(

L

I

)(

U11 U12

U22

)

, where P1 and P2 are permutations and U22 is close to zero.

The first pass performs an LU factorization using partial pivoting. The second pass uses inverse

iteration (involving several solves) to find a rank-revealing permutation. The [HLY92] procedure then

performs another (modified partial pivoting) LU factorization that preserves this permutation and

stops once U22 is found (leaving U22 unfactorized). The work required is given as 23n
3+2Jn2r+2nr

operations, where r is the rank-deficiency of the n×nmatrix and J is the number of inverse iterations

used.

Since TCP is a variant of LU factorization (producing complete factors L and U), no second pass

or inverse iteration is needed to reveal the rank of A. For dense matrices, the work required is also

CHAPTER 4. RANK-REVEALING SPARSE LU 37

about 23n
3 operations.

Both [Cha84] and [HLY92] give examples of matrices where normal LU factorizations will not

detect (near) singularities. In this section, the examples are used to compare five different factor-

izations:
MD Matlab Dense LU

MS Matlab Sparse LU

MCS Matlab Sparse LU with colmmd preprocessing

TPP Sparse LU with threshold partial pivoting

TCP Sparse LU with threshold complete pivoting

All Matlab factorizations use partial pivoting. MS and MCS have a parameter thresh that cor-

responds to 1/FactorTol. (See Matlab help for lu and colmmd in appendix B.) For these small

examples the Matlab codes used thresh = 1.0 (the most reliable value), while TPP and TCP used

FactorTol = 1.25 to allow at least a little emphasis on sparsity.

The tests here and later were performed on an SGI Origin 2000 with 195 MHz R10000 CPUs,

running Irix 6.5 and Matlab version 6.0.0.88 (R12) with machine precision ε = 2−52 = 2.2×10−16.

Example 4.1 [Cha84, p. 543]. The matrix Tn ≡ T with

Tij =



















1 i = j

−1 i < j, 1 ≤ i, j ≤ n

0 i > j

, e.g., T4 =













1 −1 −1 −1

1 −1 −1

1 −1

1













,

is nearly singular for large n. Chan [Cha84] shows that, for a certain permutation of Tn, an LU

factorization has the nth pivot equal to 2−(n−2). Once 2−(n−2) is less than machine precision, the

matrix is effectively singular. Since ε = 2−52, T50 has effective rank 49. None of the factorizations

tested uncovered the singularity correctly. All returned U with a unit diagonal, except MCS, which

gave U50,50 = 4.8× 10−7.

This is an extremely pathological case in being already triangular with all nonzero elements of

equal magnitude. MD and MS find there is nothing to eliminate, returning L = I, U = T . MCS

happens to reorder the columns and carry out some elimination, but gives only a small hint of

singularity.

Some column re-ordering is certainly required (cf. [Cha84]). However, given T with any ordering

of its rows and columns, LUSOL reconstructs the original ordering during its “backward triangle”

phase. TPP accepts all +1 pivots without numerical testing, and TCP would not reject them even

with FactorTol = 1.0.

Example 4.2 [Cha84, p. 544]. This example actually comes from [Wil65, p. 308 and p. 325]

CHAPTER 4. RANK-REVEALING SPARSE LU 38

and demonstrates that partial pivoting may not produce diagonals small enough to reveal the rank

successfully. The 21× 21 matrix

W =







































10 1

1 9 1

· · ·

1 1 1

1 0 1

1 −1 1

· · ·

1 −9 1

1 −10







































has one singularity (i.e., exact rank 20). MD and MS both give |U21,21| = 8.2× 10−11, just missing

the indication of singularity. MCS successfully reveals the singularity (one zero pivot), as do TPP

and TCP.

Example 4.3 [HLY92, p. 133]. Starting with the matrix A =
(

T40

T40

)

and making the following

changes:

for i = 1 : 40,

A(1 : 40, 81− i) = A(1 : 40, 81− i) + A(1 : 40, i)

A(i, 41 : 80) = A(i, 41 : 80) + A(81− i, 41 : 80)

end

gives a matrix

A =











































1 −1 · · −1 −1 · · −1 2

1 −1 · · · 2 −1

· · · · · · · ·

· −1 −1 2 · ·

1 2 −1 · · −1

1 −1 · · −1

1 −1 ·

· · ·

· −1

1











































.

The three smallest singular values are [0.62, 1.9 × 10−12, 1.9 × 10−12] and Hwang, Lin, and Yang

[HLY92] find U22 =
(

1.0×10−15 3.6×10−12

−3.6×10−12 1.3×10−23

)

. MD and MS both give U = A (failure). With MCS,

the two smallest diagonals of U are [−0.5, 1.5× 10−11]. TPP also produces U = A, but TCP gives

the last three pivots as [−0.67, −7.3× 10−12, −3.6× 10−12] (success).

Example 4.4 [HLY92, pp. 133–134]. Starting with the matrix A =

(

T30

T30

T30

)

and making

the following changes:

CHAPTER 4. RANK-REVEALING SPARSE LU 39

for i = 1 : 30,

A(1 : 90, 61− i) = A(1 : 40, 61− i) + A(1 : 90, i)

A(i, 1 : 90) = A(i, 1 : 90) + A(61− i, 1 : 90)

end

for i = 1 : 30,

A(1 : 90, 91− i) = A(1 : 40, 91− i) + A(1 : 90, 30 + i)

A(30 + i, 1 : 90) = A(30 + i, 1 : 90) + A(91− i, 1 : 90)

end

gives a matrix

A =





































































1 −1 · · −1 −1 · · −1 2 2 −1 · · −1

1 −1 · · · 2 −1 −1 2 · ·

· · · · · · · · · · · · ·

· −1 −1 2 · · · · 2 −1

1 2 −1 · · −1 −1 · · −1 2

1 −1 · · −1 −1 · · −1 2

1 −1 · · · 2 −1

· · · · · · · ·

· −1 −1 2 · ·

1 2 −1 · · −1

1 −1 · · −1

1 −1 ·

· · ·

· −1

1





































































with three near-singularities. The four smallest singular values are [0.40, 2.8×10−9, 1.4×10−9, 1.4×

10−9], and Hwang, Lin, and Yang [HLY92] find U22 with values ranging in magnitude from 3.7×10−9

to 5.9× 10−26. MD and MS both return U = A. For MCS the last three pivots (the smallest) were

[0.33, 3.3 × 10−4, −1.5 × 10−5]. TPP also produces U = A, but TCP gives the last four pivots as

[−0.67, −7.4× 10−9, 3.7× 10−9, −3.7× 10−9].

Example 4.5 [HLY92, pp. 134–136]. Starting with the matrix A = (W W) and making the

following changes:

for i = 1 : 21,

A(1 : 21, 43− i) = A(1 : 21, 43− i) + A(1 : 21, i)

A(i, 22 : 42) = A(i, 22 : 42) + A(43− i, 22 : 42)

end

CHAPTER 4. RANK-REVEALING SPARSE LU 40

gives a matrix

A =

































































10 1 2 0

1 9 1 2 0 2

· · · · · ·

1 0 1 2 0 2

· · · · · ·

1 −9 1 2 0 2

1 −10 0 2

10 1

1 9 1

· · ·

1 0 1

· · ·

1 −9 1

1 −10

































































with two singularities (i.e., exact rank 40). Hwang, Lin, and Yang [HLY92] find U22 with values

between 10−16 and 10−17. MD and MS both give 8.2 × 10−11 for the last pivot. MCS successfully

reveals the singularity (two zero pivots), as do TPP and TCP.

The above examples demonstrate that, of all the factorizations tested, only TCP is likely to be

rank-revealing (for all but the most pathological example), as long as FactorTol is suitably low. For

triangular matrices A or permuted triangles, a necessary condition is 1 ≤ FactorTol < max |Aij |,

which is possible for matrices with at least some variation in the magnitude of the nonzero elements.

4.4 Dynamic Programming Application

The sparse TCP factorization was developed to enhance stability within the computation of Lau-

rent expansion coefficients (see Chapter 3). Dr. Richard Grinold (Barclays Global Investments,

San Francisco) provided a large, sparse, substochastic dynamic programming problem, and solving

this example by policy improvement requires the Laurent expansion coefficients for many different

policies. The method from Chapter 3 finds these coefficients by solving multiple linear systems of

varying size, each involving a sparse matrix Q with at most one singularity. Correct rank detection

of each Q is crucial for the method. This motivated the sparse, RRLU factorization presented here.

Extracting a subset of the Q matrices from the Barclays example provided a test-bed. Each Q

(n× n, Q ≡ P − I for P substochastic) has the following special properties:

• Q has at most 1 singularity;

• 0 ≤ qij ≤ 1, i 6= j;

• qii = −
∑

j 6=i qij ;

CHAPTER 4. RANK-REVEALING SPARSE LU 41

500 1000 1500 2000 2500 3000 3500 4000
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

PSfrag replacements

Condition of Factors

Matrix Dimension

co
n
d
it
io
n
(L

)
*
co

n
d
it
io
n
(U

)

MS (thresh = 0.2)

MCS (thresh = 0.2)

MS (thresh = 1.0)

MCS (thresh = 1.0)

Figure 4.1: Comparing the condition of the factors for MS and MCS

for 1 ≤ i, j ≤ n. The same five factorizations used in §4.3 were applied to these matrices, but

different values for thresh, FactorTol and DropTol were used. The results confirmed that TCP is

at least competitive with all the other factorizations for the measures taken. Comparisons between

the factorizations were made using four different measures:

Rank-revealing property Does the diagonal of the U factor reveal the rank of the matrix? As in

§4.3, the rank estimation is given by the number of diagonal elements of U > tol ≡ n×‖Q‖× ε

(see §4.2.7).

Condition of the factors Numerically stable policy improvement (see Chapter 3) solves systems

of linear equations using only the the nonsingular submatrices of L and U . If Q is nonsingular,

these are the factors L and U in their entirety. If Q has a singularity, then these submatrices are

the factors L and U with the last row and column removed. If a factorization is numerically

stable, then the condition of the non-singular submatrices should be (relatively) low. The

condition of L multiplied by the condition of U gives a single measure of the condition of the

CHAPTER 4. RANK-REVEALING SPARSE LU 42

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8
x 10

5

PSfrag replacements

Sparsity of Factors

Matrix Dimension

n
on

ze
ro

s(
L
)
+

n
on

ze
ro

s(
U
)

MS (thresh = 0.2)

MCS (thresh = 0.2)

MS (thresh = 1.0)

MCS (thresh = 1.0)

Figure 4.2: Comparing the sparsity of the factors for MS and MCS

factors. Since L and U are sparse, this quantity is estimated by condest(L) * condest(U).1

Sparsity of factors Good sparse LU factorizations keep the number of nonzeros in the factors to

a minimum. The total number of nonzeros in the factors (i.e., sum of the nonzeros in L and

U) gives a measure of the sparsity of the factors.

Time per factorization If a factorization is to be used repeatedly on different matrices (as is the

case in many applications of sparse LU factorizations, including the numerically stable policy

improvement from Chapter 3), then the time for a single factorization needs to be small.

Timing the CPU during each factorization gives this measure.

Figures 4.1-4.3 show a comparison of MS and MCS for two values of thresh (0.2 and 1). Notice

that for thresh = 1, the condition of the factors decreases (representing greater numerical stability).

In fact, with thresh = 0.2, MS fails to reveal the rank for five of the test matrices. The condition

1See Matlab help for condest in appendix B.

CHAPTER 4. RANK-REVEALING SPARSE LU 43

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

PSfrag replacements

Time per Factorization

Matrix Dimension

T
im

e
(s
)

MS (thresh = 0.2)

MCS (thresh = 0.2)

MS (thresh = 1.0)

MCS (thresh = 1.0)

Figure 4.3: Comparing time per factorization for MS and MCS

of the factors for these five cases were so high they are omitted from Figure 4.1 (to provide a clearer

comparison of this measure when the factorizations are rank-revealing). For both Figure 4.2 and

Figure 4.3 different values of thresh give the same result for MCS. However, different values of

thresh affect MS in the expected way (i.e., higher values for thresh improve the condition of the

factors, decrease the sparsity of the factors, and slow the factorization down). All three figures

show that MCS works considerably better as a sparse rank-revealing factorization for the given

test matrices. Also, it shows that using thresh = 1 improves the conditions of the factors without

significantly decreasing sparsity or slowing the factorization down. Hereafter, MCS refers to Matlab

Sparse LU with colmmd preprocessing and thresh = 1.

Of the other factorizations tested, TPP and TCP were tested using FactorTol = 5 and 10.

These factorizations along with MD all successfully revealed the rank of every test matrix. It may

be that the special structure of the test matrices allows partial pivoting to become rank revealing.

Figure 4.4 shows that TPP performs the worst numerically (for FactorTol = 5 and 10), but

TCP with FactorTol = 5 and MCS both perform almost as well as MD using this measure. For the

CHAPTER 4. RANK-REVEALING SPARSE LU 44

500 1000 1500 2000 2500 3000 3500 4000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

PSfrag replacements

Condition of Factors

Matrix Dimension

co
n
d
it
io
n
(L

)
*
co

n
d
it
io
n
(U

)

MD

MCS (thresh = 1.0)

TPP (FactorTol = 5.0)

TCP (FactorTol = 5.0)

TPP (FactorTol = 10.0)

TCP (FactorTol = 10.0)

Figure 4.4: Comparing the condition of the factors

sparsity of factors and the time per factorization measures, MD is omitted since it performs so poorly

as to obscure differences between the other factorizations. When comparing the factorizations using

the sparsity of factors measure (see Figure 4.5), the performance order is reversed. TPP performs

the best (with either FactorTol), then TCP, and lastly MCS. Even with FactorTol = 5, TCP

shows a considerable improvement over MCS.

Next, Figure 4.6 compares the time per factorization and shows the one weakness of TCP. Even

with FactorTol = 10 (allowing more flexibility in choosing diagonals, and therefore faster execution),

the time per factorization appears to be growing faster for TCP than either MCS or TPP. It appears

that both TCP and MCS take polynomial time with respect to the number of nonzeros in the original

matrix, whereas TPP appears to grow linearly.

A further test helped discern the merits of the different sparse LU factorizations. The largest

test matrix was used (3699×3699 with one singularity). With FactorTol ranging from 1 to 50 (and

thresh = 1/FactorTol), it became clear how MCS, TPP and TCP could be changed to improve

performance in any of the measures used. All successfully reveal the rank of the matrix, but it

CHAPTER 4. RANK-REVEALING SPARSE LU 45

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

PSfrag replacements

Sparsity of Factors

Matrix Dimension

n
on

ze
ro

s(
L
)
+

n
on

ze
ro

s(
U
)

MCS (thresh = 1.0)

TPP (FactorTol = 5.0)

TCP (FactorTol = 5.0)

TPP (FactorTol = 10.0)

TCP (FactorTol = 10.0)

Figure 4.5: Comparing the sparsity of the factors

appears that finding the rank of these particular test matrices is not difficult. Figures 4.7–4.9 shows

that for MCS only the condition of the factors is affected by changes in thresh. Setting thresh

= 1 appears to give the optimal performance for MCS. For both TPP and TCP, the condition of

the factors improves as FactorTol drops towards 1, but the sparsity of the factors and time per

factorization both deteriorate. It appears that FactorTol = 10.0 would be a reliable yet efficient

value.

Finally, Figure 4.10 compares the running times of MCS, TPP, and TCP. It also shows O(p)

and O(p2) times (the lower line and upper line, respectively), where p = nnz(A), the number of

nonzeros in A. The running time for TPP appears to be O(p) (very satisfactory). TCP appears

to be competitive with MCS (with more variability), but both factorizations display times that are

O(pk), 1 < k < 2. The cost of maintaining Amax is evident. On the other hand, since p¿ m× n if

catastrophic fill-in doesn’t occur, these factorizations will generally perform better than the O(n3)

time for dense LU factorizations.

Figure 4.11 changes the horizontal axis of Figure 4.10 from the number of nozeros in A to the

CHAPTER 4. RANK-REVEALING SPARSE LU 46

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

PSfrag replacements

Time per Factorization

Matrix Dimension

T
im

e
(s
)

MCS (thresh = 1.0)

TPP (FactorTol = 5.0)

TCP (FactorTol = 5.0)

TPP (FactorTol = 10.0)

TCP (FactorTol = 10.0)

Figure 4.6: Comparing the time per factorization

sparsity of the factors (total nonzeros in L and U). Only the TCP factorization (with FactorTol =

5.0 and 10.0) are shown, along with O(p) and O(p2) times. Now p = nnz(L+ U) represents density

of the factors. Ideally the running time should be O(p), but it appears that TCP is again O(pk) for

1 < k < 2. TCP also runs in polynomial time with respect to the sparsity of its factors, but the

degree of the polynomial is less than 2.

4.5 Optimization Application

One major application of sparse LU factorizations is within large-scale optimization systems. In

particular, LUSOL is used within MINOS and SNOPT [MS83, GMS97] to implement the simplex

method and various quadratic programming and nonlinear programming algorithms. In this context,

if a basis matrix appears to be singular, certain columns are replaced by unit vectors (corresponding

to slack variables) and the factorization is repeated. LUSOL signals singularity or ill-conditioning

by flagging small diagonals of U as described in §4.2.7. The new TCP option has proved invaluable

CHAPTER 4. RANK-REVEALING SPARSE LU 47

0 5 10 15 20 25 30 35 40 45 50
10

8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

PSfrag replacements

Condition of Factors
co

n
d
it
io
n
(L

)
*
co

n
d
it
io
n
(U

)

FactorTol

MCS (thresh = 1 / FactorTol)

TPP

TCP

Figure 4.7: Comparing the condition of the factors as FactorTol changes

for ensuring reliability in these tests. Preliminary experience with SNOPT is described in [GMS02].

In particular, the first basis matrix is often ill-conditioned as it is chosen heuristically by the

optimizer’s Crash procedure, or input by the user (with unpredictable properties). In one case with

n = 10000, the usual TPP factorization with FactorTol= 4.0 indicated 243 singularities. After

slacks were inserted, the next factorization indicated 47 additional singularities, the next a further

25, then 18, 14, 10, and so on. Nearly 30 TPP factorizations and 460 new slacks were required

before the basis was regarded as suitably nonsingular. Since L and U each had about a million

nonzeros in all factorizations, the repeated failures were rather expensive. In contrast, a single TCP

factorization with FactorTol = 2.5 indicated 100 singularities, after which the modified B proved

to be very well conditioned. Although L and U were more dense (1.35 million nonzeros each) and

much more expensive to compute, the subsequent optimization required significantly fewer major

and minor iterations.

In general, TCP is the primary recourse when unexpected growth occurs in ‖x‖ following solution

of Ax = b. (If necessary, FactorTol is gradually reduced towards 1.1 until x appears to be accurate.)

CHAPTER 4. RANK-REVEALING SPARSE LU 48

0 5 10 15 20 25 30 35 40 45 50
5

6

7

8

9

10

11

12

13
x 10

4

PSfrag replacements

Sparsity of Factors

n
on

ze
ro

s(
L
)
+

n
on

ze
ro

s(
U
)

FactorTol

MCS (thresh = 1 / FactorTol)

TPP

TCP

Figure 4.8: Comparing the sparsity of the factors as FactorTol changes

The new option has proved valuable for some optimization problems arising from partial differential

equations. A regular “marching pattern” is sometimes present in A, particularly in the first basis

from Crash (as mentioned). With threshold partial pivoting the factors display no small diagonals

in U , yet the TCP factors reveal a large number of dependent columns.

4.6 Contributions

This chapter presents a new pivoting strategy for sparse LU factorizations, threshold complete pivot-

ing (TCP). As in the dense case, this pivoting strategy is likely to be more stable than the traditional

threshold partial pivoting, and most importantly it appears to be rank-revealing for all but the most

pathological matrices. The rank-revealing property is discussed and compared for some classical ex-

amples as well as the DP application that motivated developing TCP. Finally, this chapter describes

the benefits of TCP within classical optimization algorithms.

CHAPTER 4. RANK-REVEALING SPARSE LU 49

0 5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

PSfrag replacements

Time per Factorization
T
im

e
(s
)

FactorTol

MCS (thresh = 1 / FactorTol)

TPP

TCP

Figure 4.9: Comparing the time per factorization as FactorTol changes

Acknowledgement The work contained within this chapter is joint work with Prof. Michael A.

Saunders.

CHAPTER 4. RANK-REVEALING SPARSE LU 50

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.5

1

1.5

2

2.5

PSfrag replacements

Time per Factorization

Nonzeros in A

T
im

e
(s
)

MCS (thresh = 1.0)

TPP (FactorTol = 5.0)

TCP (FactorTol = 5.0)

TPP (FactorTol = 10.0)

TCP (FactorTol = 10.0)

Figure 4.10: Time per factorization as a function of the nonzeros in A

CHAPTER 4. RANK-REVEALING SPARSE LU 51

2 3 4 5 6 7 8 9 10 11 12 13

x 10
4

0

0.5

1

1.5

2

2.5

PSfrag replacements

Time per Factorization

nonzeros(L) + nonzeros(U)

T
im

e
(s
)

TCP (FactorTol = 5.0)

TCP (FactorTol = 10.0)

Figure 4.11: Time per factorization as a function of the sparsity of the factors

Appendix A

Counterexample to Method for

Finding 1-Optimal Policies

Denardo [Den71, p. 491] sketches two methods he states will find a 1-optimal policy. One method uses

policy improvement and the other uses linear programming together with some auxiliary routines.

Both methods can fail to find a 1-optimal policy as the following example shows.

Example A.1 Consider the deterministic system in Figure A.1. A policy is an ordered pair of

PSfrag replacements

−1

−2

−3

−4

1

1
2

2

3

4

4

a

a

b

b

Figure A.1: Counterexample for Denardo’s Method

actions for the states 1 and 2. For example, ba is the policy that takes action b in state 1 and action

a in state 2. In this example, all policies are 0-optimal, but only α ≡ aa is 1-optimal.

Starting with δ ≡ bb and implementing either of Denardo’s methods shows first that δ is 0-

optimal [Den70a]. Next Denardo finds a column S-vector v1 that satisfies Qδv
1 = v0δ . One such

52

CHAPTER A. COUNTEREXAMPLE FOR 1-OPTIMALITY METHOD 53

vector is v1 =
(

1 −1 0 2
)T

. He then defines the set E1 of policies γ for which Qv1 = v0δ and

solves a maximum-reward-rate problem over E1. Since E1 is the singleton set {δ}, δ is the unique

solution of that problem whether solved by policy improvement or linear programming. The final

step of each of Denardo’s methods finds a policy γ that is transient on states where δ is transient,

viz., states 1 and 2. Consequently, γ cannot be α because states 1 and 2 are recurrent under α.

Thus Denardo’s methods both fail to find a 1-optimal policy.

Appendix B

Matlab Help Files

LU LU factorization.

[L,U] = LU(X) stores an upper triangular matrix in U and a

"psychologically lower triangular matrix" (i.e. a product of

lower triangular and permutation matrices) in L, so that X =

L*U. X must be square.

[L,U,P] = LU(X) returns lower triangular matrix L, upper

triangular matrix U, and permutation matrix P so that P*X = L*U.

LU(X), with one output argument, returns the output from LAPACK’S

DGETRF or ZGETRF routine.

LU(X,THRESH) controls pivoting in sparse matrices, where THRESH

is a pivot threshold in [0,1]. Pivoting occurs when the diagonal

entry in a column has magnitude less than THRESH times the

magnitude of any sub-diagonal entry in that column.

THRESH = 0 forces diagonal pivoting. THRESH = 1 is the default.

See also LUINC, QR, RREF.

COLMMD Column minimum degree permutation.

P = COLMMD(S) returns the column minimum degree permutation

vector for the sparse matrix S. For a non-symmetric matrix S,

S(:,P) tends to have sparser LU factors than S.

See also SYMMMD, SYMRCM, COLPERM.

54

APPENDIX B. MATLAB HELP FILES 55

CONDEST 1-norm condition number estimate.

C = CONDEST(A) computes a lower bound C for the 1-norm

condition number of a square matrix A.

C = CONDEST(A,T) changes T, a positive integer parameter equal

to the number of columns in an underlying iteration matrix.

Increasing the number of columns usually gives a better condition

estimate but increases the cost. The default is T = 2, which

almost always gives an estimate correct to within a factor 2.

[C,V] = CONDEST(A) also computes a vector V which is an

approximate null vector if C is large. V satisfies NORM(A*V,1)

= NORM(A,1)*NORM(V,1)/C.

Note: CONDEST invokes RAND. If repeatable results are required

then invoke RAND(’STATE’,J), for some J, before calling this

function.

Uses block 1-norm power method of Higham and Tisseur.

See also NORMEST1, COND, NORM.

Bibliography

[AA98] K. E. Avrachenkov and E. Altman, Sensitive discount optimality via nested linear pro-

grams for ergodic Markov decision processes, Unpublished manuscript, 1998.

[AS80] B. Aspvall and Y. Shiloach, A polynomial time algorithm for solving systems of linear

inequalities with two variables per inequality, SIAM J. Comput. 9 (1980), no. 4, 827–845.

[Bal61] M. Balinski, On Solving Discrete Stochastic Decision Problems, Study 2. Mathematica,

Princeton, New Jersey, 1961.

[Bat73] J. A. Bather, Optimal decision procedures for finite Markov chains. Part III: General

convex systems, Adv. Appl. Prob. 5 (1973), 541–558.

[Bel58] R. A. Bellman, On a routing problem, Quart. Appl. Math. 16 (1958), 87–90.

[Bla62] D. Blackwell, Discrete dynamic programming, Ann. Math. Statist. 33 (1962), no. 2,

719–726.

[Bus71] P. A. Businger, Monitoring the numerical stability of Gaussian elimination, Numer.

Math. 16 (1971), 360–361.

[Cha84] T. F. Chan, On the existence and computation of LU-factorizations with small pivots,

Math. Comp. 42 (1984), no. 166, 535–547.

[d’E60] F. d’Epenoux, Sur un problème de production et de stockage dans l’aléatoire, Revue

Française de Recherche Opérationnelle 4 (1960), no. 14, 3–13, An English translation

appears as: A Probabilistic Production and Inventory Problem. Management Sci. 10, 1,

98–108.

[DEG+99] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, Xiaoye S. Li, and J. W. H. Liu, A super-

nodal approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl. 20 (1999), no. 3,

720–755.

[Den70a] E. V. Denardo, Computing a bias-optimal policy in a discrete-time Markov decision

problem, Oper. Res. 18 (1970), 279–289.

56

BIBLIOGRAPHY 57

[Den70b] , On linear programming in a Markov decision problem, Management Sci. 16

(1970), no. 5, 281–288.

[Den71] , Markov renewal programs with small interest rates, Ann. Math. Statist. 42

(1971), no. 2, 477–496.

[Der62] C. Derman, On sequential decisions and Markov chains, Management Sci. 9 (1962),

no. 1, 16–24.

[DF68] E. V. Denardo and B. L. Fox, Multichain Markov renewal programs, SIAM J. Appl.

Math. 16 (1968), no. 3, 468–487.

[dG60] G. de Ghellinck, Les problèms de décisions séquentielles, Cahiers du Centre d’Etudes

de Recherche Opérationnelle 2 (1960), no. 2, 161–179.

[DR96] I. S. Duff and J. K. Reid, The design of MA48: A code for the direct solution of sparse

unsymmetric linear systems of equations, ACM Trans. Math. Software 22 (1996), no. 2,

187–226.

[Duf77] I. S. Duff, MA28—a set of Fortran subroutines for sparse unsymmetric linear equations,

Report AERE R8730, Atomic Energy Research Establishment, Harwell, England, 1977.

[EV75] B. C. Eaves and A. F. Veinott, Jr., Policy improvement in positive, negative and stopping

Markov decision chains, Unpublished manuscript, 1975.

[For56] L. R. Ford, Network flow theory, Tech. Report P-923, The RAND Corporation, Santa

Monica, CA, 1956.

[Fos97] L. V. Foster, The growth factor and efficiency of Gaussian elimination with rook pivoting,

J. Comput. Appl. Math. 86 (1997), 177–194.

[GMS97] P. E. Gill, W. Murray, and M. A. Saunders, User’s guide for SNOPT 5.3: A For-

tran package for large-scale nonlinear programming, Numerical Analysis Report 97-5,

Department of Mathematics, University of California, San Diego, La Jolla, CA, 1997,

Revised May 1998.

[GMS02] , SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM J.

Optim. (2002).

[GMSW87] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Maintaining LU factors of

a general sparse matrix, Linear Algebra Appl. 88/89 (1987), 239–270.

[Gup00] A. Gupta, WSMP: Watson Sparse Matrix Package, Part II—direct solution of general

sparse systems, IBM Research Report RC 21888 (98472), T. J. Watson Research Center,

Yorktown Heights, NY, 2000, http://www.cs.umn.edu/~agupta/wsmp.html.

BIBLIOGRAPHY 58

[HA99] M. Hartman and C. Arguelles, Transience bounds for long walks, Math. Oper. Res. 24

(1999), 414–439.

[HK79] A. Hordijk and L. C. M. Kallenberg, Linear programming and Markov decision chains,

Management Sci. 25 (1979), no. 4, 352–362.

[HL97] T. Hwang and W. Lin, Improved bound for rank-revealing LU factorizations, Linear

Algebra Appl. 261 (1997), 173–186.

[HLY92] T. Hwang, W. Lin, and E. K. Yang, Rank-revealing LU factorizations, Linear Algebra

Appl. 175 (1992), 115–141.

[HN94] D. S. Hochbaum and J. Naor, Simple and fast algorithms for linear and integer programs

with two variables per inequality, SIAM J. Comput. 23 (1994), no. 6, 1179–1192.

[How60] R. A. Howard, Dynamic Programming and Markov Processes, Technology Press-Wiley,

Cambridge, Massachusetts, 1960.

[HP91] M. Haviv and M. L. Puterman, An improved algorithm for solving communicating av-

erage reward Markov decision processes, Ann. Oper. Res. 28 (1991), 229–242.

[HT00] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with

an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl. 21 (2000), no. 4,

1185–1201.

[Kar78] R. M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math.

23 (1978), 309–311.

[Kha79] L. G. Khachian, A polynomial algorithm for linear programming, Doklady Akad. Nauk

SSSR 244 (1979), no. 5, 1093–1096, English translation in Soviet Math. Doklady 20,

191–194.

[Man60] A. S. Manne, Linear programming and sequential decisions, Management Sci. 6 (1960),

no. 3, 259–267.

[Mar57] H. M. Markowitz, The elimination form of inverse and its applications to linear pro-

gramming, Management Sci. 3 (1957), 255–269.

[MS83] B. A. Murtagh and M. A. Saunders, MINOS 5.0 User’s Guide, Report SOL 83-20,

Department of Operations Research, Stanford University, Stanford, CA, 1983.

[MV69] B. L. Miller and A. F. Veinott, Jr., Discrete dynamic programming with a small interest

rate, Ann. Math. Statist. 40 (1969), no. 2, 366–370.

BIBLIOGRAPHY 59

[Rei82] J. K. Reid, A sparsity-exploiting variant of the Bartels-Golub decomposition for linear

programming bases, Math. Prog. 24 (1982), 55–69.

[Rot75] U. G. Rothblum, Normalized Markov decision chains I: Sensitive discount optimality,

Oper. Res. 23 (1975), no. 4, 785–795.

[RV91] K. W. Ross and R. Varadarajan, Multichain Markov decision processes with a sample

path constraint: A decomposition approach, Math. Oper. Res. 16 (1991), no. 1, 195–207.

[SS90] U. H. Suhl and L. M. Suhl, Computing sparse LU factorizations for large-scale linear

programming bases, ORSA J. Comput. 2 (1990), 325–335.

[Tar72] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972),

146–160.

[Tre87] W. F. Trench, A note on solving nearly triangular Toeplitz systems, Linear Algebra

Appl. 93 (1987), 57–65.

[Vei66] A. F. Veinott, Jr., On finding optimal policies in discrete dynamic programming with no

discounting, Ann. Math. Statist. 37 (1966), no. 5, 1284–1294.

[Vei68] , Discrete dynamic programming with sensitive optimality criteria, Ann. Math.

Statist. 39 (1968), 1372, Preliminary Report.

[Vei69] , Discrete dynamic programming with sensitive discount optimality criteria, Ann.

Math. Statist. 40 (1969), no. 5, 1635–1660.

[Vei74] , Markov decision chains, Studies in Optimization. MAA Studies in Mathematics

(B. C. Eaves and G. B. Dantzig, eds.), vol. 10, Mathematical Association of America,

1974, pp. 124–159.

[Wil65] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London,

1965.

[Zla80] Z. Zlatev, On some pivotal strategies in Gaussian elimination by sparse technique, SIAM

J. Numer. Anal. 17 (1980), no. 4, 18–30.

[ZWS81] Z. Zlatev, J. Wasniewski, and K. Schaumburg, Y12M: Solution of Large and Sparse

Systems of Linear Algebraic Equations, Number 121 in Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 1981.

