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Abstract

Topological data analysis seeks to understand and utilize topological features of data,
such as clusters and holes. One such problem is to characterize topological spaces
from sampled data in order to build mathematical models of how the data was gener-
ated. However, many common constructions for this purpose become computationally
intractable for even a moderate number of samples as the topological feature dimen-
sion increases. Unfortunately, many samples may be necessary to resolve higher-
dimensional topological features, making it challenging to use standard techniques.

This dissertation investigates several ways in which topological data analysis can
be made more digestible by structuring computations and models. First, we introduce
a new method for computing algebraic invariants of diagrams of topological spaces
using matrices associated with quiver representations. This computational frame-
work allows for parallel algorithms to compute persistent and zigzag homology in the
most general case, with arbitrary induced maps on homology. Next, we extend the
classical techniques of acyclic carriers to the filtered setting and demonstrate how
these tools can be used to construct interleavings to compare persistent homology of
filtered spaces. We introduce a class of geometric complexes parameterized by a cover
of a data set and use carriers to analyze the relationship between these complexes
to the unparameterized geometric complexes. Finally, we investigate spaces of data
generated from sampling small cubes of voxels (patches) from three-dimensional im-
ages. We show how to generalize a well-known Klein bottle model for two-dimensional
patches to the higher-dimensional setting by using a map that captures the direction
of the largest variation. We combine this model with computational tools to investi-
gate the distribution of patches in different three-dimensional image data sets.
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Chapter 1

Introduction

Topological data analysis is a term used to refer to a collection of techniques devel-
oped for data exploration and analysis in the early 21st century which trace their
roots to mid-20th century algebraic topology. The power of these techniques lie in
how little structure in data is required, which allows them to be adapted to many
different situations and strengthened as structure is added. In contrast to versions of
data analysis which view data as vectors of features stacked into matrices to form a
data set, topological data analysis views data as points in some space, often endowed
with a notion which encodes which points are similar and which are dissimilar. This
viewpoint can be applied equally well to a single molecule, defined by how its con-
stituent atoms are arranged, as well as to databases of molecules, which seek to group
molecules with similar structure together.

This dissertation originated as an attempt to understand why a Klein bottle ap-
peared in a data set derived from natural images [25], and then to make the discovery
process systematic. The culmination of these efforts can be found in Chapter 5 which
discusses how structure, specifically maps to a parameter space, can be used both to
aid in topological modeling of data and additionally structure and simplify computa-
tions. In order to reach this destination, we will also visit other topics. Chapters 2
and 3 will cover algebraic invariants of diagrams of topological spaces, and introduce
new algorithms for computing these invariants using quiver representations. Chap-
ter 4 will then develop techniques to compare invariants across different constructions,

1



CHAPTER 1. INTRODUCTION 2

or when data is perturbed or approximated, and apply these techniques to understand
complexes that use a cover to impose structure on a space. Together, this collection of
work offers one version (certainly not unique) of an end-to-end pipeline for topological
data analysis.

1.1 Topological Data Analysis

Topological data analysis is concerned with computing invariants of topological spaces
derived from data, and understanding the stability of these invariants under pertur-
bation and approximation. One set of applications seeks to understand the structure
of data sets using these invariants [1, 2, 16, 25, 87]. A second set of applications seeks
to produce topological features for each data point, which then can be used by other
data analysis techniques [21, 89]. A third set of applications seeks to use topological
features to regularize machine learning models (see [17] for a review of recent work).

Topological data analysis offers a set of tools that both extend and complement
other techniques found in data science. Persistent homology can be viewed as an
extension of single-linkage clustering to higher-dimensional features of data sets. The
mapper algorithm [92] can be viewed as a topologically motivated version of nonlinear
dimensionality reduction.

1.1.1 Geometric Constructions

A fundamental problem that we will study is how to compute topological invariants
of point clouds. A set of points X sampled near the unit circle S1 in two dimensions,
as seen in Figure 1.1. We would like to capture information about the sample X that
shows that it is “close” to the circle S1, for instance, encoding that the points are close
to one cluster (connected component), but that there is a region in the middle of the
cluster that is not sampled (a hole). However, as a topological space, the points in
X naively have the discrete topology. We need to augment topology with additional
information, in this case using geometry (pairwise distance information) to capture
the desired features of the space.
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Figure 1.1: Points sampled from the unit circle, with some noise.

We will consider spaces built from simplices, called simplicial complexes. A k-
simplex (x0, . . . , xk) is simply the convex hull of the points {x0, . . . , xk}. A 0-simplex
is a point, a 1-simplex is an edge, a 2-simplex triangle, and higher order simplices
are simply higher-order tetrahedra. Further detail will be found in Section 2.2. As a
matter of notation, we will use standard capital letters such asX to refer to topological
spaces (continuous or discrete), bold face letters such as X to indicate a sample from
a larger space X, and caligraphic letters such as X to denote a simplicial complex
(often with a vertex set of points in X or X). All the following constructions will
assume that a sample X is equipped with a dissimilarity dX (such a metric), often
the restriction of a larger dissimilarity space (X, dX) to the points X ⊂ X.

Definition 1.1.1. Let X ⊆ (X, dX). The Čech complex at parameter r, denoted
Č(X; r), is a simplicial complex on the vertex set X, where the simplex (x0, . . . , xk) ∈
Č(X; r) if and only if there exists some x ∈ X such that dX(xi, x) ≤ r for all xi ∈
{x0, . . . , xk}.

A related construction is the α-complex [44], which restricts the simplices of the
Čech complex to the Delaunay triangulation of a point cloud.

Definition 1.1.2. Let X be a set with dissimilarity dX . The Vietoris-Rips complex
at parameter r, denoted R(X; r) is a simplicial complex on the vertex set X, where
the simplex (x0, . . . , xk) ∈ R(X; r) if and only if dX(xi, xj) ≤ r for all (xi, xj) ∈
{x0, . . . , xk}2.
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Both Čech and Rips complexes are built using the full data set X as the vertex
set of the complex, and for large parameters of r, will contain a very large number
of simplices. One approach which can significantly reduce the size of the vertex set,
and thus the maximum number of simplices, is by using a set of landmarks L ⊂ X,
and witnesses W ⊆ X (we will typically use W = X).

Definition 1.1.3. Let L,W be sets, and d : L ×W → R be any function. The
Dowker complex [31,42,52] D(L,W; r) is a simplicial complex with vertex set L. The
simplex (`0, . . . , `k) ∈ D(L,W; r) if there exists some w ∈W so that d(`i, w) ≤ r for
all i = 0, . . . , k.

Note that for X ⊆ (X, dX), that Č(X; r) = D(X, X; r). The advantage of Dowker
complexes which use some sample W instead of an ambient space X is that it is
straightforward to determine when a simplex should be added without needing to
compute whether metric balls intersect. Just as the Dowker complex offers a discrete
version of the Čech complex, the witness complex [36, 37] offers a discrete version of
the α-complex.

Definition 1.1.4. Let L,W be sets and d : L ×W → R. The witness complex
W(L,W; r) is a simplicial complex with vertex set L. The simplex (`0, . . . , `k) ∈
W(L,W; r) if all its faces are also in W(L,W; r), and there exists some witness
w ∈W so that d(`i, w) ≤ d(`, w)+r for all i = 0, . . . , k and for all ` ∈ L\{`0, . . . , `k}.

There are several potential modifications to the definition of witness complexes
which can be found in [37], and we use the present definition to coincide with the
one used to obtain results in [31, 32]. The condition that a witness be closer to the
landmarks in the witnessed simplex than other landmarks can make the complex
sensitive to the choice of landmarks (see [31] for an example), which will make the
Dowker complex easier to analyze.

Verifying conditions for high-dimensional simplices can be potientially difficult
and computationally expensive. In practice, it can be easier to use complexes defined
on lower dimensional skeleta. We define D∞(L,W; r) to be the standard (strict)
Dowker complex. Now, fix some k ≥ 1, and we define Dk(L,W; r) to be the maximal
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simplicial complex on the k-skeleton of D∞(L,W; r). Similarly, we can defineWk for
Witness complexes, and Čk for Čech complexes (note that the Vietoris-Rips complex,
R, is already defined on its 1-skeleton). The case of D1 also appears as a version
of the lazy witness complex in [37]. Note that if (X, dX) is a geodesic metric, and
X ⊂ X, then Č1(X; r) = R(X; 2r).

There is nothing canonical about any of these constructions – they each produce
spaces on sampled points which will allow us to compute topological signatures of a
point cloud, and each has its merits in different settings. The Čech complex is useful
for relating a sample from a manifold to the manifold itself [82]. The Vietoris-Rips
complex is computationally attractive because it only requires pairwise comparisons,
and the α-complex can reduce the number of simplices [44]. Dowker and Witness com-
plexes produce smaller complexes (also computationally attractive), but potentially
lose some information.

1.1.2 Persistent Homology at a Glance

In Definitions 1.1.1, 1.1.2, 1.1.3 and 1.1.4, we defined complexes on point clouds that
depend on a parameter r. In practice, choosing a single parameter that captures
the desired topological features of the space may be an impossible task. Instead,
we consider a filtration of spaces at all parameters, and consider invariants of these
constructions.

Definition 1.1.5. A filtered (simplicial) complex X over R+ is a nested family of
complexes

X 0 ⊆ · · · ⊆ X r ⊆ . . .

Note that simplicial complexes built on finite point cloud data such as those in
Definitions 1.1.1, 1.1.2, 1.1.3 and 1.1.4, only add simplices at a finite number of
parameters, we will only consider filtrations which have a finite number of critical
values, where the complex actually changes. By reparameterizing the filtration index
r, we can consider filtrations which take integer values X 0 ⊂ X 1 ⊂ . . . .

Homology of a simplicial complex X with coefficients in a ring R is computed by
first forming a chain complex C∗(X ), where Ck(X ) is a free R-module obtained by
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considering formal R-linear sums of k-simplices in X , with differential (boundary)
operators ∂k : Ck(X ) → Ck−1(X ) that send a simplices to linear combinations of
simplices in their boundaries. The differential maps ∂ have the property that ∂k ◦
∂k+1 = 0. The homology quotient R-module in dimension k is defined to be

Hk(X ) = ker ∂k/ img ∂k+1 (1.1)

Details concerning this sequence of constructions will be found in Chapter 2. From a
data analysis perspective, what is important is that the quotient modules Hk(X ) con-
tain topological information about X . The free rank of H0(X ) is equal to the number
of connected components in X , H1(X ) contains information about non-contractible
“holes”, and higher-dimensional homology contains information about higher dimen-
sional voids. Unless otherwise noted, we will consider the situation in which the ring
R is a field F, in which case modules become vector spaces – see Section 1.3 for further
discussion.

Homology is functorial, meaning that it not only captures information about
topological spaces, but also maps between topological spaces. For every map of
simplicial complexes f : X → Y , there is an induced linear map on homology
Fk : Hk(X )→ Hk(Y ) so that the following diagram commutes:

X Y

Hk(X ) Hk(Y)

f

Fk

(1.2)

Persistent homology is an algebraic invariant of diagrams of spaces where the maps
go in a single direction

X 0 X 1 . . .

Hk(X 0) Hk(X 1) . . .

f0 f1

F 0
k F 1

k

(1.3)
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In the case of filtrations, we can study this diagram where the maps f i are inclusions
X i ⊆ X i+1.

We will use PHk(X t) to refer to the full bottom row of Equation (1.3), which
consists of homology vector spaces as well as the induced maps, and PH∗(X t) =

{PHk(X t)}k≥0. The persistent homology of a filtered complex can be represented as
a set of birth-death pairs for each homology dimension

PHk(X t) = {bi, di} (1.4)

Each birth bi corresponds to a new homology basis element that appears in the filtra-
tion at parameter bi (meaning it is not in the image of F bi−1

k ). This element persists
through the maps induced by inclusion until it finally enters the kernel of a map at pa-
rameter di. Further interpretation, discussion, and algorithms for computing {bi, di}
will be covered in Chapters 2 and 3. The collection of birth-death pairs for PHk(X t)

is also known as a “barcode” or “persistence diagram” (when plotted as points in the
plane), as seen in Figure 1.2.

H 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

H 1

0.0 0.5 1.0 1.5 2.0 2.5
Birth

0.0

0.5

1.0

1.5

2.0

2.5

De
at

h

H0
H1

Figure 1.2: Persistence barcode and diagram for the Rips filtration on the points in
Figure 1.1. There is one connected component that persists, and one prominent H1

generator, which corresponds to the hole in the circle. Left: Persistence barcode.
Each bar represents a birth-death pair that persists for the length of the bar. Blue
bars are finite, and red bars indicate a death at∞. Right: Persistence diagram. Each
point is a birth-death pair. No points can appear below the dashed diagonal, and
points that appear above the dashed red line have deaths at ∞.
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1.1.3 Quiver Representations

In Equation (1.3) we considered the homology functor applied to a diagram of spaces
with maps go in a single direction. More generally, we can consider diagrams of spaces

X 0 X 1 X 2 . . . X nf0 f1 f2 fN−1

where the bi-directional arrows can be given either direction, and the functions f i

can be arbitrary maps (not necessarily inclusions). Zigzag homology [22] studies the
situation in which the direction of maps generally alternates, and we consider the
most general case where any sequence of directions can be given. If we now look at
induced maps on homology in dimension k we obtain the following diagram of vector
spaces

Hk(X 0) Hk(X 1) Hk(X 2) . . . Hk(X n)
F 0
k F 1

k F 2
k FN−1

k

This diagram of vector spaces is an example of a quiver representation of type An+1

(n+ 1 vector spaces and n linear transformations arranged on a line graph).
Like persistent homology, zigzag homology diagrams can be characterized by birth-

death pairs (or barcodes). An important practical and theoretical question is whether
or not persistence and zigzag barcodes depend on choices of bases for vector spaces
in the above diagram. A theorem due to Gabriel [50] assures that this is not the
case, by showing that type-A quiver representations have a finite indecomposable
representation (although the proof is not constructive). In fact, bars in the barcodes
of topological data analysis are exactly the indecomposables of the associated quiver
representation, called interval indecomposbales, and so are basis independent.

1.2 The Need for Structured Methods

The procedure described in Section 1.1.2 is straightforward to apply to point cloud
data as well as other situations which produce filtrations. However, as the size of
point clouds increase, the practitioner will quickly run into problems with the sheer
size of the computations. The fundamental issue is that if X is a simplicial complex
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on a vertex set of size n, there can be up to
(
n
k+2

)
(k + 1)-simplices, which are

needed in order to compute Hk(X ) = ker ∂k/ img ∂k+1. In practice, all these simplices
will be formed in geometric filtrations if we let the filtration parameter r grow until
all points are connected. This makes it practically impossible to naively compute
persistent homology in even moderately high dimensions on point clouds with more
than several hundred points.

In practice, however, the situation is not so dire. Over the past decade, there
has been tremendous progress in accelerating computation of persistent homology,
through high quality implementations and improvements to fundamental algorithms
[9, 11, 59, 72, 79, 105], as well as approximation schemes that can greatly reduce the
number of simplices that are needed to be formed [15,85,91]. Many real-world datasets
of interest have implicit low-dimensional structure that allow these approximation
schemes to work reasonably well.

In contrast to methods that take advantage of implicit structure, we will be inter-
ested in developing methods that use explicit structure tailored to a particular data
set. This explicit structure might come from known information about a data set,
or might emerge as part of an iterative process in data analysis. For example, in
Section 1.2.1 we’ll see how topological structure was discovered in a data set derived
from images, first by considering only the most dense regions of the space, and then
adding more points to reveal additional structure. Methods that take advantage of
such explicit structure have been very important in modern algebraic topology, often
taking the form of various long exact sequences or spectral sequences, and have al-
lowed topologists to compute the homology of fairly complex spaces “by hand”. We
will review several examples in Section 1.2.3.

We will seek to develop methods that use explicit structure in the persistent ho-
mology of data. This will allow for simplified computations, and also for an additional
layer of interpretability when we perform topological modeling.
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Figure 1.3: Primary circle in image patches. Patches are represented by idealized
grayscale circles, which would be discretized on a grid in image data. The patches
shown are a discrete sample of the continuous primary circle.

1.2.1 The Topology of Image Patches

In 2003, Lee et al [66] began the study of the distribution of 3 × 3 high-contrast
pixel arrays (“patches”) derived from grayscale images of natural scenery in the van
Hatern database [101]. Empirically, the most common behavior of these patches is to
have little variation in pixel value (for example, a blue sky has little color variation).
Attention is next naturally focused on high-contrast patches, that is patches in which
pixel values have large variations. In the literature these patches are typically mean-
centered and then normalized. Henceforth, we shall refer simply refer to the objects of
study as “patches”, with the understanding that these patches have already undergone
selection for their high-contrast behavior, have been mean-centered, and have had
variance normalized.

This data was first investigated using topological data analysis techniques by de
Silva and Carlsson in 2004 [37], who found a circle in a high-density region. This
circle (see Figure 1.3) can be parameterized by all unit gradients in two dimensions,
and was labeled the “primary circle”. Two additional (“secondary”) circles appeared
for lower-density thresholds, which did not correspond to orientation, but a phase
on the type of edges appearing in horizontal and vertical directions (see Figure 1.4).
Collectively, these observations are referred to as the “three-circle model.”

In 2008, Carlsson et al. [25] proposed that the three-circle model lies near a
Klein bottle (a 2-dimensional manifold) that includes the three circle model as a
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Figure 1.4: Secondary circles in image patches.

1-dimensional skeleton (Figure 1.5). This was supported by augmenting the three-
circle data with the Klein bottle model, and observing that the Klein bottle homology
was preserved. One interesting application of this model is in rotation-invariant tex-
ture recognition [86], which considers distributions of patches on the parameterized
Klein bottle. This application also incorporated larger patch sizes into the model,
as large as 11 × 11. Analysis of range images extended to larger patch sizes (5 × 5

and 7 × 7) in the work of Adams and Carlsson [2], demonstrating the existence of a
primary circle in these larger patch sizes. More recently, Adams et al. showed the
existence of a torus in optical flow image data [1].

Ten years before the Klein bottle was proposed for image patches in the topological
data analysis community, Tanaka proposed a Klein bottle to explain a orientation
and phase-sensitive population of neurons in the primary visual cortex [97]. The
correlation between natural image statistics and the sensitivities of the visual cortex
was a primary motivation for the creation of the image patch dataset [66], which
offers some explanation as to why similar topological structures appear in both the
visual cortex and image patches. This has also inspired several attempts to improve
image-based algorithms. Attempts to incorporate the Klein bottle into the first layer
of convolutional neural networks in image recognition tasks have shown some promise
[16], and a compression scheme for images that uses the Klein bottle [71] has been
proposed.

The study of image patches in topological data analysis has laid bare a two chal-
lenges for the field. The first challenge is interpretablity. The Klein bottle model
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Figure 1.5: A Klein bottle for image patches. The primary circle lies in the two
horizontal green bands. Two secondary circles are seen in the vertical blue bands.
The horizontal red band is equivalent to RP 1.
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proposed in [25] is based on a family of degree-2 polynomials in two variables, and
required several pages of analysis to show that the model space was indeed a Klein
bottle. While aspects of the structure (such as orientation of patches) have been used
in applications [86], to the best of our knowledge, this structure has not yet been used
to explain why the Klein bottle appears in the first place. Related to this challenge
is the fact that the proposed Klein bottle was used to augment the dataset, meaning
that it covered regions that were never sampled (or removed by filtering). Can the
Klein bottle be observed without this augmentation?

The second challenge is in general topological modeling. Modeling is the process
of coming up with a description of a system that can be used to test hypotheses
and generate new ones. It took several years to go from the discovery of the three-
circle model [37] (2004), and the Klein bottle model [25] (2008), and one question is
whether this could could have been accelerated given better tools. Subsequent works
investigating the topology of different types of imaging data [1, 2] would similarly
benefit. In all these examples, an iterative process occurs in which high-density regions
are first investigated, revealing some structure, for instance the primary circle. After
this initial structure is discovered, the density threshold is lowered, and additional
structure is revealed which must be incorporated into the initial model. As topological
spaces become more complicated (and perhaps less intuitive), it can be difficult for a
practitioner to do this process manually, and so the challenge is to develop tools that
incorporate discovered structures automatically. Topological modeling is not confined
to image patch data, and techniques that allow for these data-driven workflows could
ease topological investigations in a variety of scientific applications.

1.2.2 Topological Parameterization

Parameterization refers to the process of controlling some output or quantity of in-
terest by using a parameter from a space B. We’ll consider parameterizations of a



CHAPTER 1. INTRODUCTION 14

space X through a surjective map p : X → B, which we may write vertically as

X

B

p (1.5)

In this context, X is called the total space, and B is called the base space. p may be
called the projection or parameter map. We’ll be interested in fibers of p, meaning
subspaces p−1(b) ⊆ X where b ∈ B.

Given a map f : Y → X, the homotopy lifting problem asks whether a homotopy
h̃ : I × Y → B can be lifted to a homotopy h : I × Y → X so that the following
diagram commutes

0× Y X

I × Y B

f

p
h

h̃

(1.6)

If homotopies can be lifted for all maps f : Y → X, then p : X → B is called
a fibration. This implies that all fibers f−1(b) are homotopy equivalent to some
common space F , and we write a general fibration:

F X

B

p (1.7)

A related notion to a fibration is that of a fiber (fibre) bundle [62,95], where the British
spelling is often used. These are important objects of study in differential topology,
but the more general notion of fibration is all that is necessary for homotopy theory,
and thus homology (fiber bundles are a special sub-class of fibrations).

In the case where the space X is a simplicial complex built from data X, the
situation is rarely so clean as it is in the case of continuous spaces. In practice, it is
often easiest to break data into smaller subsets.
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Definition 1.2.1. Let X be a set. A cover of X is a collection of sets U that contain
X

X ⊆
⋃
U∈U

U

We will only consider covers of X where each U ∈ U is a subset of X, implying
X =

⋃
U∈U U in Definition 1.2.1.

We can view a cover of X as a parameterization of the data as well. To take this
view, we might take p : X → U to be a choice of assignment from a point x ∈ X to
some set U ∈ U that contains the point. One might also consider pullbacks of a cover
of B in Equation (1.5). When U ⊆ B has some notion of locality, we’ll also refer to
f−1(U) as a fiber instead of the more general inverse image.

The viewpoint of treating covers as topological spaces in their own right is encoded
in the Nerve of a cover:

Definition 1.2.2. The Nerve of a cover U , denoted N (U) is a simplicial complex
with the sets in U serving as the underlying vertex set. The simplex (U0, . . . , Uk) is
present if

⋂k
i=0 Ui 6= ∅.

For example, Čech and Dowker complexes both are explicitly defined as Nerves of
covers of balls of radius r. Under certain conditions, the Nerve of a cover can actually
give us complete topological information about the underlying set X.

Theorem 1.2.3. (Nerve Theorem [14]) Let U be a cover of a paracompact space X,
where if ∩Ui 6= ∅, then ∩Ui is contractible. Then N (U) ' X.

A proof can be found in [57]. The mapper algorithm [92] is a prominent example
of how the nerve of cover has been used in topological data analysis. Specifically,
the Mapper construction takes a map p : X → B, and constructs the nerve of
the pullback of a cover of B, where the inverse image of sets are broken up into
connected components. We will investigate a generalization of these ideas to geometric
complexes built on data in Chapter 4.
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1.2.3 Calculation Tools in Algebraic Topology

For the most part, algorithms for topological data analysis have focused on making
general-purpose persistent homology calculations very fast on a computer. This lies
against a backdrop of calculations performed in pure algebraic topology, which for the
better part of a century has developed techniques for calculations that are done “by
hand.” In contrast to general purpose algorithms, these techniques typically exploit
some structure in the problem in order to make these calculations tractable on paper.
We’ll review how several techniques might be used to compute the integral homology
of the Klein bottle.

Exact and Spectral Sequences

We’ll first provide algebraic definitions for certain types of diagrams that feature
prominently in homological algebra.

Definition 1.2.4. An exact sequence is a sequence of R-modules {Ai} connected by
maps {φi : Ai → Ai+1}

. . . Ai Ai+1 Ai+2 . . .
φi φi+1 (1.8)

with the property that kerφi+1 = img φi.

Exact sequences of indeterminate length as in Equation (1.8) are typically referred
to as long exact sequences, whereas short exact sequences typically include at most
three non-zero terms:

0 A B C 0 (1.9)

The utility of exact sequences is that because kerφi+1 = img φi, only partial informa-
tion in diagrams such as the one in Equation (1.9) is needed to determine the whole
diagram. Examples will be found later in this section.

Spectral sequences are more complicated objects. First, we define a differential on
a graded R-module as a collection of maps {∂} such that ∂2 = 0. One such example
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of this are the boundary maps ∂ in chain complexes (the grading is given by the
dimension of the cells).

Definition 1.2.5. A spectral sequence (of homological type) is a collection of differ-
ential bigraded R-modules {Er

∗,∗, ∂
r}, where r = 1, 2, . . . . The differentials ∂r are of

bidegree (−r, r − 1), and for all p, q, r, Er+1
p,q = Hp,q(E

r
∗,∗, ∂

r).

The collection Er
∗,∗ is known as the Er page of the spectral sequence. The de-

velopment of spectral sequences is discussed in much more depth than we will here
in McCleary’s book [75], as well as other sources in homological algebra [35, 51]. As
a calculation tool, we will primarily be using the Leray-Serre spectral sequence [90],
which is a first-quadrant spectral sequence defined beginning on the E2 page (meaning
E2
p,q = 0 if p < 0 or q < 0), so has differentials of bidegree (−2, 1):

0 E2
0,2 E2

1,2 E2
2,2 E2

3,2

0 E2
0,1 E2

1,1 E2
2,1 E2

3,1

0 E2
0,0 E2

1,0 E2
2,0 E2

3,0

0 0 0 0 0

(1.10)

where we have only displayed arrows for the differentials which have both source and
target displayed, and the diagram extends in all directions to include E2

p,q for all p, q.
Spectral sequences collapse at the Er page when the ∂N = 0 for all N ≥ r.

This means that E∗p,q terms cease to change for all subsequent pages, since then
ker ∂rp,q = Er

p,q, and img ∂rp−r,q+r−1 = 0, so Er+1
p,q = Hp,q(E

r
∗,∗, ∂

r) = Er
p,q. Typically

the sparsity structure of the non-zero terms allows this condition to be verified. We
will only encounter situations in which spectral sequences collapse at a finite page, in
which case the colimit E∞p,q = colimr→∞E

r
p,q is determined at the point at which the

sequence collapses.



CHAPTER 1. INTRODUCTION 18

a

b v

S

Figure 1.6: CW structure for the Klein bottle.

A spectral sequence {Er
∗,∗, d

r} converges to a graded R-module H∗ if H∗ has a
filtration F∗, meaning

· · · ⊆ FpH∗ ⊆ Fp+1H∗ ⊆ . . . (1.11)

such that
E∞p,q
∼= FpHp+q/Fp+1Hp+q (1.12)

this means that Hk is determined by E∞i,k−i up to an extension problem.
We’ll now turn to actual computations.

Computation using a CW Complex

We’ll begin with a description of the Klein bottle as a CW complex K The red lines
(b) are identified to form a cylinder, and the blue lines (a) are identified (note the
twist) to form the Klein bottle. There is a single 0-cell v. There are two 1-cells, a
and b, with ∂1a = ∂1b = v − v = 0, that is both a and b are cycles. There is a single
2-cell, S, with ∂2S = b− a− b− a = −2a. Now, we compute the homology groups of
the chain complex, Hi = ker ∂i/ img ∂i+1

H0(K) = ker ∂0/ img ∂1 = 〈v〉/0 = Z

H1(K) = ker ∂1/ img ∂2 = 〈a, b〉/〈2a〉 = Z⊕ Z2

H2(K) = ker ∂2/ img ∂3 = 0/0 = 0
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A

B

B

Figure 1.7: Klein bottle covered by two Möbius bands, denoted A and B.

where Z2 denotes the quotient ring Z/2Z. Since there are no higher-dimensional cells,
Hi(K) = 0 for i > 2. Thus,

Hi(K) =


Z i = 0

Z⊕ Z2 i = 1

0 i ≥ 2

(1.13)

The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence (c.f. [57] Chapter 2.2) computes the homology of a
space X by using a cover with two sets A and B. Suppose that A,B ⊂ X, such that
X = A ∪B. Then there is a long exact sequence of the form

· · · → Hn(A ∩B)
φ−→ Hn(A)⊕Hn(B)

ψ−→ Hn(X)
∂−→ Hn−1(A ∩B)→ . . . (1.14)

where φ(x) = (x,−x), and ψ(x, y) = x + y, and ∂ is determined by the conditions
necessary to make the sequence exact. Now, the trick is to find a cover of K that
lets us apply this sequence. We can create a Klein bottle by stitching together two
Möbius bands along their boundary.

The homology of a Möbius band M is

Hi(M) = Hi(S
1) =


Z i = 0

Z i = 1

0 i ≥ 2

(1.15)
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Since M is retracts to the circle S1. Now, by covering K by two Möbius bands, we
denote A = M1, B = M2, and A ∩B = S1. First, we note that the LES looks like

· · · → 0→ H2(K)→ Z φ−→ Z⊕ Z→ . . .

Where the maps φ : Z → Z ⊕ Z is given by 1 7→ (2,−2), since the boundary wraps
around the Möbius band twice. Since this map is injective, we must have H2(K) = 0.
Next, note that the H0 portion of the sequence is

H1(K)→ Z→ Z⊕ Z→ Z→ 0

This means that the map H1 → Z must be the zero map.
Now, since the sequence is exact, we have that H1(K) is Z⊕Z/(2,−2) ∼= Z⊕Z2,

seen by using a basis for Z⊕ Z as (1, 0), (1,−1).

The Mapping Torus Sequence

We’ll now turn to another long exact sequence associated with the mapping torus
(c.f. [57] Example 2.48). Suppose f, g : X → Y , and define Z = X × I tY/ ∼, where
(x, 0) ∼ f(x), and (x, 1) ∼ g(x). In the case that f is the identity, this is known as
the mapping torus of g, and can be expressed as X × I/ ∼, where (x, 0) ∼ (g(x), 1).
The exact sequence has the form

· · · → Hn(X)
f∗−g∗−−−→ Hn(Y )

i∗−→ Hn(Z)→ Hn−1(X)→ . . .

The Klein bottle is the mapping torus for the reflection g : S1 → S1, g : x 7→ −x. In
this case, the interesting part of the sequence is

0 H2(K) H1(S1) H1(S1) H1(K) H0(S1) H0(S1)

Z Z Z Z

I−g∗ I−g∗

2 0

(1.16)
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Thus, H2(K) = 0, and there is a short exact sequence

0→ Z2 → H1(Z)→ Z→ 0

Which splits, since Z is free, so H1(Z) = Z2 ⊕ Z.

The Leray-Serre Spectral Sequence

The Leray-Serre spectral sequence gives a way to compute the homology of a fibration.
In the case of the Klein bottle, there is a fibration p : K → S1, with fibers also S1.

S1 K

S1

p (1.17)

The fibration is not trivial, meaning there is a “twist” when connecting the fibers
when following a non-trivial path around the base space. This structure can be seen
in Figure 1.6, where the 1-cell b is the base space S1, and a fiber over v is the 1-cell
a. We can see the twist in the identification of the left and right sides of the 2-cell.

The Serre spectral sequence lets us compute homology of K by computing homol-
ogy of the base space S1 with local coefficients in homology of the fiber, also S1. For
a fibration F → E → B, and for a ring R, there is a first-quadrant spectral sequence
converging to H∗(E;R) where the terms on the E2 page are given by

E2
p,q = Hp(B;Hq(F ))

Where Hq(F ) is a local coefficient system over B in terms of the homology of the
fiber F .

In the case of the Klein bottle, the non-trivial fibration creates a non-trivial local
coefficient system over B. The fiber F = S1, so H0(F ) = H1(F ) = Z. For H0(F ),
we have the trivial coefficient system H0(F ) = Z. For H0(F ), we have a twisted
coefficient system Z−, corresponding to the non-trivial Z-automorphism x 7→ −x
induced by the antipodal map S1 → S1.
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We will use thatHi(S
1;Z−) = Z2 for i = 0, and is 0 for all other i (see Section 5.2.4

for calculations). Thus, the E2 page of the spectral sequence in the first quadrant
looks like

0 0 0

Z2 0 0

Z Z 0

(1.18)

The spectral sequence collapses at the E2 page, since all differentials either map to 0
or from 0 (see Equation (1.10) for illustration).

We can immediately see thatH0(K) = Z because E∞0,0 = Z, and all other E∞i,−i = 0.
This agrees with the fact that the Klein bottle has one connected component. In the
case of H1(K), the filtration across the first anti-diagonal includes Z2 and Z. We
have F1H1(K) = Z because preceding terms on the anti-diagonal are 0, and since
there are two terms on the anti-diagonal, F2H1(K) = H1(K). Writing conditions
for the convergence of the spectral sequence, we have F2H1(K)/F1H1(K) = Z2, so
H1(K)/Z = Z2. It follows that H1(K) = Z ⊕ Z2. Note that there are no non-zero
terms on higher anti-diagonals of the E∞ page, so Hk(K) = 0 for k ≥ 2.

1.3 Concerning Torsion

In algebraic topology, homology is often computed with coefficients in the integer
ring Z (as in Section 1.2.3). In the context of persistent and zigzag homology, field
coefficients F are used, which not only makes computations a bit more straightfor-
ward, but allows classification results from quiver representation theory and modules
over principal ideal domains to apply, as discussed in Section 3.2. We will briefly
review how different choices of coefficient play out when torsion is present in integral
homology, as this will play an important role for spaces, such as the Klein bottle, that
are featured in Chapter 5. Material in this section is standard, and as references, we
recommend [35,57].
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The field coefficients we will work with will be the integers modulo a prime p,
F = Z/pZ = Fp, and the rationals, F = Q. We can obtain chain complexes with
coefficients in F from chain complexes with coefficients in Z via the tensor product
F ∼= Z⊗ F. Explicitly, because ⊗ is a functor, when forming boundary matrices, we
can simply just apply the map a 7→ a ⊗ 1 to each entry a ∈ Z of the matrix. In the
case of the rationals Q, this just sends a 7→ a since Z ⊂ Q, and for Fp, this is the
map a 7→ a mod p.

We will use Hk(C∗;R) to denote homology with coefficients in R, and Hk(X;R)

when C∗ is obtained by applying the chain functor to a space X. It is perhaps easiest
to first see things play out in an example chain complex obtained from the CW
complex for the Klein bottle defined in Section 1.2.3

C∗(K;Z) = 0 Z Z⊕ Z Z 0
(×2)×0 0 (1.19)

In this case, one can easily compute, as in Section 1.2.3, H0(K;Z) = Z, H1(K;Z) =

Z ⊕ Z2, and Hi(K;Z) = 0 for i ≥ 2. In the case where F = F2 = Z/2Z, the “×2”
map in Equation (1.19) becomes the zero map.

C∗(K;F2) = 0 F2 F2 ⊕ F2 F2 00 0 (1.20)

and we can compute

Hk(K‘;F2) =


F2 k = 0, 2

F2 ⊕ F2 k = 1

0 k > 2

(1.21)

This has the effect of producing new nontrivial homology one dimension higher than
the torsion. Using F = Q or F = Fp = Z/pZ for p 6= 2 has the effect of making the
“×2” map an isormorphism, denoted 1:

C∗(K;F) = 0 F F⊕ F F 0
1×0 0 (1.22)
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and we can compute

Hk(K;F) =

F k = 0, 1

0 k > 1
(1.23)

This had the effect of “killing” the torsion. In general, tensoring with Q will kill all
torsion, whereas tensoring with Fp will have effects depending on the the integral
torsion submodule.

The more general way to obtain Hk(C∗;R) is through the universal coefficient
theorem for homology from the “universal” coefficient group Z. This will be useful in
situations where we don’t use explicit cellular methods to compute homology, as in
Chapter 5.

Theorem 1.3.1. (c.f. [57], 3A.3) If C∗ is a chain complex of free abelian groups,
there are natural short exact sequences

0 Hn(C∗;Z)⊗R Hn(C∗;R) Tor(Hn−1(C∗;Z), R) 0 (1.24)

for all n and rings R, and these sequences split, though not naturally. (Tor is the
TorZ1 functor).

A useful discussion of Tor can be found in Davis and Kirk [35], chapter 2. We can
use the following proposition to compute homology with Fp = Zp coefficients:

Proposition 1.3.2. ( [35], Prop 2.4.2) Let M be a Z-module, and a ∈ Z. Then

Tor(M,Za) = aM = {m ∈M | am = 0} (1.25)

Proof. We’ll use the fact that Tor(M,Za) ∼= Tor(Za,M) ( [35], Cor 2.7). We have a
short exact sequence

0 Z Z Z/aZ 0
×a (1.26)
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Applying the right-exact functor ⊗M , we have the exact sequence

0 Tor(Za,M) Z⊗M Z⊗M Za ⊗M 0
×a

(1.27)

The ×a map in the middle has kernel {m ∈M | am = 0}.

As a corollary, Tor(Za,Q) = Tor(Q,Za) = 0 because Q has no zero-divisors. We’ll
also use the fact that Tor(Z,Q) = 0 (because Z is free).

We’ll now compute homology of the Klein bottle K with F2 coefficients starting
with the integral homology (Equation (1.13)). For H0(K;F2), we have H0(K;Z) ⊗
F2 = F2, and H−1(K;Z) = 0, so the short exact sequence in Equation (1.24) becomes

0 F2 H0(K;F2) 0 0 (1.28)

from which we compute H0(K;F2) = F2. For H1(K;F2), we use (Z ⊕ Z2) ⊗ F2 =

F2 ⊕ F2, and Tor(Z;F2) = 0, so the short exact sequence becomes

0 F2 ⊕ F2 H1(K;F2) 0 0 (1.29)

from which we compute H1(K;F2) ∼= F2⊕F2. Finally, for H2(K;F2), we simply need
that Tor(Z⊕ Z2,F2) ∼= F2, from Proposition 1.3.2.

0 0 H2(K;F2) F2 0 (1.30)

from which, we have H2(K;F2) = F2. At this point, we agree with Equation (1.21).
We’ll now compute field coefficients for F = Fp, with p > 2 prime, or F = Q. Be-

cause Tor(Hk(K;Z),F) = 0 for all these fields, we have thatHk(K;F) = Hk(K;Z)⊗F,
which agrees with Equation (1.23).
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1.4 Roadmap & Contributions

The main contributions of this dissertation are found in Chapters 3, 4 and 5, and
detailed information about relevant prior work and contributions will be found in
each of these chapters. These chapters are more or less independent of each other, so
we will provide an overview to help an interested reader decide where to begin.

Chapter 2 contains technical background which explains the computation of ordi-
nary and persistent homology, as well as induced maps on homology. The majority of
this material is standard in algebraic topology and topological data analysis, but we
provide explicit algorithms to compute induced maps on homology using the output
of standard reduction algorithms in a way that, to the best of our knowledge, has not
yet appeared in the literature.

Chapter 3 lays out a new computational approach to computing persistent and
zigzag homology using matrix factorizations on quiver representations. In conjunc-
tion with Chapter 2, this provides a computational framework to compute persistent
and zigzag barcodes on diagrams of spaces using arbitrary induced maps on homol-
ogy. This capability is not present in existing topological data analysis packages,
and our implementation opens up new potential applications of these constructions.
In addition, our algorithms offer multiple opportunities for parallelization which, in
combination, do not exist in other computational frameworks. This chapter consists
of joint work with Gunnar Carlsson and Anjan Dwaraknath, and has appeared in
a preprint along with portions of Chapter 2 [24]. As part of this collaboration, I
surveyed the existing literature on the topic, worked closely with my co-authors in
the development of our algorithms, wrote significant portions of the code and paper,
and implemented the examples found at the end of the chapter.

Chapter 4 first extends the classical theory of carriers to the filtered setting, and
shows how this can be used to compare persistent homology of different filtrations
through the construction of interleavings. This is then used to compare persistent
homology of various geometric constructions. Finally, we introduce a new family of



CHAPTER 1. INTRODUCTION 27

complexes parameterized by a covers of data, and prove results relating the construc-
tion to the nerve of the cover, showing stability to perturbation of data, and relating
the construction to the non-parameterized construction.

Chapter 5 generalizes the Klein bottle in image patches introduced in Section 1.2.1
to higher-dimensional images. First, we introduce the Harris map, which sends
patches to their direction of largest variation, and show that this map is a fibra-
tion on a model Klein bottle. We then generalize this map and construction to
higher-dimensional patches and compute the homology of the total space using the
Leray-Serre spectral sequence. Finally, we investigate two three-dimensional image
data sets, and relate the topological structure of patches to subspaces of the model.



Chapter 2

Preliminaries

We will now introduce the algebraic and topological tools necessary for our algorithm.
Specifically, we will need to compute homology of cell complexes, and compute in-
duced maps on homology, which we will connect to existing methods for computing
persistent homology. Finally, we will present an approach for using existing persis-
tence algorithms for non-inclusion based maps using mapping cylinders.

While this section is reasonably self-contained for the purposes of setting up our
algorithm and establishing notation, this material is fairly standard and can be found
in a variety of locations. For a general reference for matrix computations, we defer
to Golub and Van Loan’s text [53]. For concepts in algebraic topology, we refer to
Hatcher [57]. Early sources for computing persistent homology and zigzag homology
are [46,106] and [22,23] respectively. Further background on computational topology
can be found in [45] and for an overview of modern TDA software we recommend [83].

2.1 Algebra and Notation

We will use Householder notation for linear algebra [53, 61]. Upper case Greek or
Latin letters such as A or Λ will refer to matrices, lower case Latin letters such as
a will refer to vectors, and lower case Greek letters such as λ will refer to scalars.
This is not always consistent with notation found in algebraic topology or the TDA
literature, which does not have conventions as strong as Householder notation, but we

28
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will attempt to use notation that is close to modern use. One special symbol, ∂, will
always refer to a boundary matrix. General topological spaces will be denoted with
upper case Latin letters such as X, samples with bold face, such as X, and simplicial
and cell complexes with calligraphic font as in X .

We will prefer to work with matrix factorizations when possible. Due to the
abundance of subscripts in other contexts, we will use square brackets instead of
subscripts for indexing. Vectors will be assumed to be column vectors, and vT will
denote the corresponding row vector. ei will refer to the vector with 1 in the i-th
entry and 0 elsewhere, with dimension determined by context. When we need to
access elements in vectors, we will use the notation x[i] to denote the scalar value
eTi x, or the i-th entry in x. When we need to access elements of matrices, we will use
the notation A[i, j] to denote the scalar eTi Aej, or the entry in the i-th row and j-th
column of A. When we want to indicate columns of matrices, we will use the notation
A[j] to denote the vector Aej, or the j-th column of A. As is standard in numerical
linear algebra, indices will begin with 1, meaning the valid range of indexes for a
vector x ∈ Fn is 1, . . . , n. Asterisks indicate that a subscript or superscript runs over
a range of values, determined by context. For example, F∗ is often used to represent
Fk, k = 0, 1, . . . .

Computations will be done in vector spaces over a fixed field F. Computations in
topological data analysis are typically done over finite fields, for example F = F2 =

Z/2Z, or the rationals Q, because homology requires exact computation of kernels
and images. Floating point arithmetic is typically avoided due to numerical issues.
One exception is Hodge theory, which uses the more familiar fields R or C – for a
numerical and application focused introduction see [70].

Rank-nullity theorem: Let A : V → W , where V,W are finite-dimensional vector
spaces. Then rankA+ dim kerA = dimV .

Change of Basis : Suppose that we have vector spaces V and W with bases
BV = {bVi } and BW = {bWi } respectively and a linear transformation T : V → W

represented by a matrix A in bases BV and BW . That is, TbVj =
∑

iA[i, j]bWi . Now,
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suppose that we have new bases CV = {cVi } and CW = {cWi }, where c∗i = U∗b∗i . Then
if we wish to write T in terms of bases CV and CW , we can write a new matrix

Â = (UW )−1AUV (2.1)

The matrix UV first maps coefficients in CV to coefficients in BV , then the linear
transformation T is applied, mapping to coefficients in BW , which are then mapped
to coefficients in CW via (UW )−1.

Quotient Vector Spaces: Homology is an example of a quotient vector space.
Simply, if V is a vector space, and W ⊆ V is a subspace, then the quotient space
V/W has elements (cosets) [v], where if v ∈ [v], then v+w ∈ [v] for any w ∈ W . The
set V/W is also endowed with a vector space structure, so is called a quotient vector
space. The quotient operation is a linear transformation V → V/W , meaning

[αx+ βy] = α[x] + β[y] (2.2)

We will often represent elements [v] ∈ V/W using a representative v ∈ [v]. The
choice of representative is not unique, as v+w for any w ∈ W may also be used as a
representative.

Four Fundamental Subspaces: Let T : V → W . There are four fundamental
subspaces associated with T : the kernel,

kerT ⊆ V = {v ∈ V | T (v) = 0}

the image
img T ⊆ W = {w ∈ W | w = T (v), v ∈ V }

the cokernel
cokerT = W/ img T
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and the coimage
coimg T = V/ kerT.

The cokernel and coimage both are quotient vector spaces. Note that Tv is identical
for all v ∈ [v] ∈ coimg T .

Triangular Matrices: Triangular matrices only contain non-zero elements on one
side of a diagonal. Common triangular forms are lower and upper triangular matrices,
where L ∈ Fm×n is lower-triangular if L[i, j] = 0 if j > i, and U ∈ Fm×n is upper
triangular if U [i, j] = 0 if j < i. Triangular matrices are well extremely useful because
solving linear systems using backward substitution [53] is as expensive as regular
matrix multiplication. That is, solving Tx = b for unknown x is as expensive as
forming the matrix-vector product Tx when T is upper or lower triangular. Backward
substitution can be used successfully even when a triangular matrix is not invertible,
either because it is not square or because it is rank deficient, as long as b is in the
column space of T (i.e. the linear system is consistent).

The J Matrix:

Definition 2.1.1. J is a square n× n matrix, such that

J [i, j] =

1, if i = n− j − 1

0, otherwise

In other words, it is the anti-diagonal permutation matrix. Specifically, when
applied to a matrix on the left, it reverses the row order, and when applied to a
matrix on the right it reverses the column order. It is its own inverse:

J−1 = J.

A common operation is to conjugate with the J matrix, which reverses both
row and column order and thus produces a reflection across the anti-diagonal. Note
that this operation is distinct from taking the transpose of a matrix and cannot be
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expressed in terms of it.
JAJ−1 = JAJ = A′

The following are useful commutation relations between the J matrix and other
matrix shapes

JL = UJ = (2.3)

JU = LJ = (2.4)

JEL = ÊUJ = (2.5)

JEU = ÊLJ = (2.6)

where E matrices are defined below.

Pivot Matrices:

Definition 2.1.2. A pivot matrix is a matrix in which every row and column has at
most one non-zero element.

In the context of matrix factorizations used in this work, the non-zero element
will always be 1 (the multiplicative identity of the field F) by convention. The term
pivot matrix refers to its use in recording pivots (last non-zeros of rows or columns)
when computing matrix factorizations. Pivot matrices are similar to permutation
matrices in the sense that they map a single basis element to a single basis element,
but contain the possibility that some rows and columns can be entirely zero. Thus
they are not generally invertible.

Lemma 2.1.3. The class of pivot matrices is closed under multiplication

Proof. For a pivot matrix Q, define i(j) to be the index of the non-zero row of column
j if column j has a pivot, and i(j) = ∞ otherwise. Additionally, define i(∞) = ∞.
Thus, we can write columns of Q as

Q[j] = ei(j)
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where e∞ = 0.
Let Q1 and Q2 be pivot matrices with compatible dimensions to form the product

A = Q2Q1, then column j of A can be written as

Aej = Q2(Q1ej) = Q2ei1(j) = ei2(i1(j))

So column A[j] has at most one nonzero, with pivot i2(i1(j)).

Echelon Pivot Matrices: Echelon pivot matrices are pivot matrices with added
structure. There are 4 types we consider

EL = EU = (2.7)

ÊL = ÊU = (2.8)

EL and ÊU contain the pivots for variants of the column echelon form of a matrix,
and EU and ÊL contain the pivots for variants of the row echelon form of a matrix.
The L and U subscript indicates whether the matrix is lower or upper triangular.

Definition 2.1.4. A matrix has the EL shape if it is the sum of rank 1 matrices
created from basis vectors

EL =
∑

(i,j)∈S

eie
T
j

The set S ⊂ {1, . . . ,m} × {1, . . . , n} contains the locations of the pivots. Since EL
is a pivot matrix, for every j, there must be a unique i, therefore the pairs can be
written as (i(j), j). The function i(j) is defined on the subset of columns that have a
pivot, and must satisfy the following properties

1. j1 < j2 =⇒ i(j1) < i(j2) on the domain of i(j)

2. For every j1, j2 s.t. j1 < j2 and A[j1] = 0 =⇒ A[j2] = 0

The other echelon pivot matrices can be defined in terms of the EL shape.

Definition 2.1.5. A matrix is of shape EU if its transpose is of shape EL

(EU)T = EL
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Symbol Meaning Shape
A Arbitrary matrix
D Diagonal matrix
L Lower-triangular
U Upper-triangular
T Any triangular form
S Schur Complement
P Permutations
I Identity
J Anti-diagonal permutation
E Echeleon-diagonal
EL Echelon pivot lower
ÊL Echelon pivot lower
EU Echelon pivot upper
ÊU Echelon pivot upper
Q Pivot matrix

Figure 2.1: Notation for different matrices, along with pictorial symbols

Definition 2.1.6. A matrix is of shape ÊL if its J-Conjugate is of shape EL

JÊLJ = EL

Definition 2.1.7. A matrix is of shape ÊU if its J-Conjugate is of shape EU

JÊUJ = EU

2.2 Cell Complexes

We will now turn to topological notions. First, we need to know how we can construct
topological spaces from basic building blocks such as cells or simplices. It turns out
that many topological spaces of practical interest can be represented as cellular or
simplicial complexes. See Hatcher [57] for a more complete discussion.
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A cell complex, or CW complex X can be built inductively by starting with a
discrete set of points (0-cells) X 0 called the 0-skeleton, and inductively forming the
k-skeleton X k from X k−1 by adding open k-dimensional balls along their boundary
to X k−1.

Cell complexes offer a general way to encode spaces, but in many applications the
need to specify all boundary maps can be onerous. Often it is easier to use simplicial
or cubical complexes, both of which are special cases of cell complexes, for which
the boundary maps come for free. We will focus on simplicial complexes, which are
commonly used for the purposes of triangulating spaces. A k-simplex is simply the
convex hull of k+ 1 points in general position, denoted s = (x0, . . . , xk). A k-simplex
has k + 1 faces which are (k − 1)-simplices in its boundary, each of which can be
obtained by removing a single vertex ∂(x0, . . . , xk) = {(x0, . . . , x̂i, . . . , xk)}, where x̂i
indicates that the ith point has been removed. A simplicial complex X is a collection
of simplices, where if a simplex s ∈ X , its boundary is in X : ∂s ⊂ X .

Definition 2.2.1. Let X be a cell complex with zero-skeleton X 0 = X, and let A ⊆ X.
We define 〈A〉 ⊆ X to be the maximal sub-complex of X that has A as its zero-skeleton.

We are also interested in maps between spaces. A map f : X → Y is cellular if
f(X k) ⊂ Yk for all k. All maps between topological spaces should be understood to
be continuous. For simplicial complexes, we say a map f : X → Y is simplicial if each
simplex of X maps linearly to a simplex of Y (possibly of lower dimension) by mapping
vertices to vertices and extending to higher dimensional simplices. Explicitly, once a
map on vertices f 0 : X 0 → Y0 has been specified, for higher order simplices we have

fk : (x0, . . . , xk) 7→ (f 0(x0), . . . , f 0(xk)) (2.9)

2.2.1 Homotopy

Homotopies are continuous deformations of maps. Algebraic topology typically stud-
ies homotopy invariants, and so understanding when maps are homotopic is important
for our purposes.
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Definition 2.2.2. Let f, g : X → Y be maps. We say that f and g are homotopic,
denoted f ' g, if there exists a map (homotopy) m : X × [0, 1]→ Y so that m(·, 0) =

f(·), and m(·, 1) = g(·).

Because m is just another map, we can naturally talk about cellular or simplicial
homotopies.

Homotopies can be used to describe deformations of spaces as well as maps. We
say spaces X and Y are homotopic, denoted X ' Y if there exist maps f : X → Y
and g : Y → X so that g ◦ f ' ιX , and f ◦ g ' ιY , where ι denotes an identity map.
If X ⊂ Y and X ' Y , we say that X is a retraction of Y .

2.3 Chain Complexes

A chain complex is a sequence of vector spaces {Ck} k = 0, 1, . . . with boundary maps
∂k : Ck → Ck−1 with the property that ∂k−1 ◦ ∂k = 0. While in general, k need not
start at 0, we will use this convention unless otherwise noted, which implies ∂0 = 0

0 C0 C1 · · · Ck · · ·∂1 ∂2 ∂k ∂k+1

We’ll use C∗ to refer to the set of vector spaces as well as the maps in the chain
complex. When considering more than one chain complex, for clarity we may use ∂C

to denote the boundaries in C∗. Elements of Ck are referred to as k-chains, elements of
ker ∂k are referred to as cycles, and elements of img ∂k+1 are referred to as boundaries.

A chain map between chain complexes C∗ and D∗ is a set of maps {Fk : Ck → Dk},
k = 0, 1, . . . with the property Fk ◦ ∂Ck+1 = ∂Dk+1 ◦ Fk+1, i.e. the following diagram
commutes

0 C0 C1 · · · Ck · · ·

0 D0 D1 · · · Dk · · ·

F0

∂C1

F1

∂C2 ∂Ck

Fk

∂Ck+1

∂D1 ∂D2 ∂Dk ∂Dk+1

(2.10)

We’ll use F∗ : C∗ → D∗ to denote a chain map.
There is a functor from the category of cell (simplicial) complexes to the category

of chain complexes over a field F, meaning that every cell (simplicial) complex X
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has an associated chain complex C∗(X ), and every cellular map f : X → Y has an
associated chain map F∗ : C∗(X )→ C∗(Y). We will consider the complex of cellular
chains, where Ck(X ) is constructed as the free vector space with basis given by the
k-cells of X - in other words elements of Ck(X ) are formal F-linear combinations
of k-cells in X . We will not distinguish between a cell s ∈ X and the basis vector
generated by s in C∗(X ) unless it is not clear from context.

Boundary matrices ∂k are obtained by examining how faces are attached to the
oriented boundary of cells. For general cell complexes this is obtained from the
specified attaching maps, but for simplicial complexes the formula is combinatorial

∂k(x0, . . . , xk) =
k∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xk)

For example, an edge (x0, x1) has boundary (x1)− (x0).
Given a map f : X → Y , one can also compute chain maps F∗ : C∗(X )→ C∗(Y).

Again, for cell complexes this may take some work to specify, but for simplicial maps,
one need only worry about how the vertices map (since higher order simplices are
extended linearly). For instance, we have

F0 : (x)→ (f(x))

and for higher order simplices

Fk : (x0, . . . , xk)→ (sgnP )(f(x0), . . . , f(xk))

Where P is the perumutation that sorts f(x0), . . . , f(xk). If multiple vertices of x
map to the same vertex in Y , then the simplex (f(x0), . . . , f(xk)) is degenerate, so is
not in the chain basis, and the coefficient for (x0, . . . , xk) in the chain map is zero.
This follows from considering the simplicial complex Y as a simplicial set [51].
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2.3.1 Augmented Chain Complexes

We will consider several situations in which augmented chain complexes will bring
some clarity. We will follow [81] for the notions we need. If C∗ is a chain complex,
an augmentation is a surjection ε : C0 → F, such that ε ◦ ∂1 = 0. The augmented
chain complex (C∗, ε) is the chain complex obtained by appending C−1 = F to C∗, to
obtain a chain complex

0 F C0 C1 . . .ε ∂1 ∂2 (2.11)

An augmentation-preserving chain map F∗ : C∗ → D∗ is a chain map on the
augmented complexes (C∗, ε), (D∗, ε

′), meaning ε′ ◦ F0 = ε.
One way to augment chain complexes obtained from cell complexes via the chain

functor is by defining ε : x 7→ 1 for all x in the cell basis for C0. The map is
certainly surjective, and because the boundary of any 1-cell (edge) can be expressed
as ∂1e = xi− xj, we see that ε ◦ ∂1 = 0. Furthermore, any cellular map preserves this
augmentation, because f : X → Y must map zero-cells to zero-cells, so εFx = 1 = εx

for all zero-cells x.

Definition 2.3.1. Let C∗ be a chain complex, with a specified basis B∗. The canonical
augmentation ε : C∗ → F is the augmentation x 7→ 1 for all x ∈ B0.

As above, we’ll typically use the canonical augmentation in the cell basis.

2.3.2 Chain Homotopy

Cellular homotopies lead naturally to a notion of chain homotopy:

Definition 2.3.2. We say two chain maps F∗, G∗ : C∗ → D∗ are homotopic if there
exists a chain homotopy consisting of maps Mk : Ck → Dk+1 so that

∂Dk+1Mk +Mk−1∂
C
k = Fk −Gk
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As in Section 2.2.1, we will use ' to denote homotopy in the category of chain
complexes, and can talk about homotopic chain maps as well as homotopic chain
complexes.

2.4 Homology

Given a chain complex C∗, the homology vector space in dimension k is defined as
the quotient vector space Hk(C∗) = ker ∂k/ img ∂k+1. Because ∂k ◦ ∂k+1 = 0, we know
that img ∂k+1 ⊆ ker ∂k, so the quotient vector space is defined.

A chain map F∗ : C∗ → D∗ produces an induced map in homology F̃k : Hk(C∗)→
Hk(D∗) [57]. We’ll make an argument using representatives. Let xk ∈ [xk] ∈ Hk(C∗),
and x′k ∈ img ∂Ck+1, meaning there is some y ∈ Ck+1 so that x′k = ∂Ck+1(y), and that
[xk + x′k] = [xk]. Then

Fk(xk + x′k) = Fkxk + Fk∂
C
k+1y

= Fkxk + ∂Dk+1Fk+1y

First, note that because xk is a homology representative, xk ∈ ker ∂Ck , and from the
commutation property of chain maps Equation (2.10), Fkxk must be in ker ∂Dk , so is
also a representative for some homology class in Hk(Dk). Next, since ∂Dk ◦ ∂Dk+1 = 0,
∂Dk+1Fk+1y ∈ ker ∂Dk , the homology class of Fkxk does not depend on the representative
of [xk] chosen. Thus

F̃k[xk] = [Fkxk]. (2.12)

It follows that the identity map on chains, denoted I, induces an identity map on
homology, Ĩ.

When homology is computed on a chain complex associated with a topological
space X , certain topological information can be extracted from the vector spaces
Hk(X ) = Hk(C∗(X )). The dimension of H0(X ) is equal to the number of connected
components in X , the dimension of H1(X ) counts the number of non-contractible
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loops, and Hk(X ) generally counts the number of k-dimensional voids in X . Rep-
resentatives of vectors in Hk are also known as generators, and consist of linear
combinations of cells in a subcomplex of X , and since Hk is a quotient vector space,
representatives are not unique. Because there are generally many choices of basis
for Hk(X ), as well as many choices of representative, representatives need not be
particularly interpretable, and may generally appear to be quite complex.

Induced maps on homology are often more revealing, and information about the
kernel and image of a map can be used to understand what features in X are collapsed
by a map to another space Y . The actual matrix representation is dependent on the
bases chosen for homology.

2.4.1 Homotopy Invariance

A standard result in homological algebra is that if chain maps F∗, G∗ : C∗ → D∗

are homotopic, then the induced maps on homology F̃∗, G̃∗ : H∗(C∗) → H∗(D∗) are
isomorphic [57]. When comparing homology in a restricted set of dimensions, we
would like to construct something less than a full homotopy, so we will give a variant
of this result

Lemma 2.4.1. Let F∗, G∗ : C∗ → D∗ be chain maps, and suppose M∗ : C∗ → D∗+1

satisfies
∂Dk+1Mk +Mk−1∂

C
k = Fk −Gk (2.13)

for some k. Then F̃k = G̃k

Proof. Let [x] ∈ Hk(C∗). We want to show that F̃k[x] = G̃k[x]. It will suffice to show
that Fkx − Gkx ∈ [0], by showing Fkx − Gkx ∈ img ∂Dk+1. First, note that because
[x] is a homology class, that x ∈ ker ∂Ck , so Mk−1∂

C
k x = 0. Now, by assumption in

Equation (2.13), we have
Fkx−Gkx = ∂Dk+1Mkx

so Fkx−Gkx ∈ img ∂Dk+1.

Corollary 2.4.2. Let F∗, G∗ : C∗ → D∗ be chain maps, and M∗ : C∗ → D∗+1 be a
chain homotopy. Then F̃∗ = G̃∗.
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Proof. This follows from Lemma 2.4.1, because Equation (2.13) is satisfied for all k.
Alternatively, see [57].

Another standard, but important result is

Corollary 2.4.3. If X ' Y, then H∗(X ) ∼= H∗(Y).

Proof. We have maps f : X → Y and g : Y → X that satisfy g ◦ f ' ιX , and
f ◦ g ' ιY . Passing through the homology functor, we have F̃∗G̃∗ = Ĩ∗ (the identity
map), and similarly G̃∗F̃∗ = Ĩ∗.

2.4.2 Acyclic Complexes

First, we define homology of an augmented cell complex to be

H̃k(C∗) = Hk((C∗, ε)) (2.14)

Note that regardless of the augmentation ε

Hk(C∗) =

H̃0(C∗)⊕ F, k = 0

H̃k(C∗), k > 0
(2.15)

Definition 2.4.4. C∗ is said to be acyclic if H̃k(C∗) = 0 for all k ≥ 0. We say a
space X is acyclic if C∗(X ) is acyclic.

In Chapter 4, we’ll see that acyclic sub-complexes have nice properties that will al-
low us to extend chain maps. The following result is standard for a variety of different
homology theories (referring to homology obtained via different chain functors from
topological categories), to the extent that it was encoded as the “dimension axiom”
in Eilenberg and Steenrod’s axiomatic treatment of homology [49].

Lemma 2.4.5. Let ∗ denote the space with a single point. ∗ is acyclic.

Proof. We’ll show this for the cellular homology functor. We note that ∗ has only a
single zero-cell. Thus, any augmented chain complex (C∗(∗), ε) must take the form

0 F F 0 . . .' (2.16)
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Computing the quotient vector spaces for the augmented chain complex confirms that
H̃k(∗) = 0 for all k ≥ 0, and so ∗ is acyclic.

Corollary 2.4.6. Suppose X ' ∗, meaning X is contractible. Then X is acyclic.

Proof. This follows immediately from the homotopy invariance of homology.

2.5 Computing Homology

Given matrices ∂k and ∂k+1, with the property ∂k∂k+1 = 0. We seek to compute
the quotient space ker ∂k/ img ∂k+1. This will require finding a basis for ker ∂k (the
k-cycles), and finding a sub-basis which is not in img ∂k+1.

Definition 2.5.1. A homology revealing basis for Ck is a pair (Bk, Ik), where Bk is
a basis for Ck, and Ik is an index set such that {bi ∈ Bk}i∈Ik ⊆ Bk generates a basis
for Hk(C∗). Explicitly, a basis for Hk is

{[bi] | bi ∈ Bk, i ∈ Ik}

In practice, a homology revealing basis for Ck is computed by first finding a basis
for cycles ker ∂Ck , and then finding a sub-basis for cycles which are not boundaries
img ∂Ck+1. A homology-revealing basis is certainly not unique - there may be other
choices of Ik that would also give representatives that generate a basis for homology,
or we can always modify the representatives by adding arbitrary boundaries from
img ∂k+1. Once we have chosen a basis Bk and a set Ik, we will say a homology
representative x ∈ [x] is the preferred representative of [x] if x is written as linear
combination of cycles exclusively in the set Ik.

Proposition 2.5.2. Given a homology-revealing basis (Bk, Ik) for Ck, every homology
class [x] ∈ Hk(C∗) has a unique preferred representative.

Proof. Existence comes by definition, since (Bk, Ik) generates a basis.
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Now, suppose that a homology class has two preferred representatives
∑

i∈Ik αibi

and
∑

i∈Ik βibi. Then using Equation (2.2), we have

[∑
i∈Ik

αibi
]

=
[∑
i∈Ik

βibi
]

∑
i∈Ik

αi[bi] =
∑
i∈Ik

βi[bi]

because {[bi]} is the generated basis for homology, we must have αi = βi for all
i ∈ Ik.

The advantage of working with homology revealing bases explicitly is that we can
reason about vectors in H∗(C∗) in the generated basis using preferred representatives
in the chain complex.

2.5.1 The Reduction Algorithm

In this section we’ll review a common approach for finding a homology-revealing
basis known as the reduction algorithm [106], which has also has useful properties
for computing persistent homology of filtrations. It involves putting the boundary
matrices ∂k in a reduced form ∂kUk = Rk, or written as a factorization ∂k = RkU

−1
k ,

and extracting homology information from Uk and Rk. We define the pivot of a
column piv v to be the largest index i so that v[i] that has a non-zero value.

piv v = max{i | v[i] 6= 0}

If there are non non-zero values in v, we say piv v = 0.
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Algorithm 1 [106] Reduction Algorithm with formation of basis U .
1: Input: m× n matrix A
2: Result: Factorization AU = R.
3: U = In

4: R = A

5: for j = 1, . . . , n do

6: while piv(R[j]) > 0 and j′ < j exists so that i = piv(R[j]) = piv(R[j′]) do

7: α = R[i, j]/R[i, j′]

8: Update R[j] = R[j]− αR[j′]

9: Update U [j] = U [j]− αU [j′]

10: end while

11: end for

12: return U,R

In practice, pivots can be remembered using a data structure that permits fast
look-up, and A can be modified in-place to form R. We will call the matrix R the
reduced matrix. The rest of this section parallels the analysis found in [106], but we
provide some additional care to explain why U is a homology-revealing basis in the
context of applying the reduction algorithm to chain boundary matrices.

Proposition 2.5.3. Algorithm 1 produces a valid factorization AU = R, where U is
upper-triangular, and no two columns of R share the same non-zero pivot.

Proof. At the beginning of the algorithm, we have the trivial identity AU0 = R0,
where U0 = I. We will count iterations over the columns using j, and iterations of
the while-loop using `.

Suppose that at step ` − 1, we have maintained the invariant AU`−1 = R`−1.
Each iteration of the while loop performs a column operation that is equivalent to
multiplying the matrices R`−1 and U`−1 on the right by a matrix U ′` = I − ej′αej.
Then we have AU`−1U

′
` = R`−1U

′
`. Writing R` = R`−1U

′
` and U` = U`−1U

′
`, we see that

we have AU` = R`. Note that these updates are done in-place in the matrices R and
U . By induction, the invariant AU` = R` is maintained throughout the algorithm.
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Note that U0 = I is upper-triangular. Suppose that U`−1 is upper-triangular.
Note that U ′` = I − ej′αej is upper-triangular as well, and because the class of upper
triangular matrices is closed under multiplication, U` = U`−1U

′
` will also be upper

triangular. By induction, U` is upper-triangular throughout the algorithm.
Now, we will show that we maintain the invariant that columns j′ ≤ j in R have

unique non-zero pivots. We consider an arbitrary column j in R. Note that the j-th
column of R is only modified during the j-th iteration of the for-loop. Note that at
each iteration of the while loop, if j shares a pivot with column j′ < j, then that
pivot of j is eliminated, and the pivot of column j decreases (because adding R[j′]

can not introduce non-zeros after the pivot). This process continues until there are
no columns j′ < j that share a pivot with j, or the pivot becomes zero. Thus, j
shares no pivots with columns j′ < j. Because this holds for all columns j, the final
R can not have two columns with the same pivot (otherwise this principle would be
violated for the column with larger index).

When the loops terminate, we take U to be the final state U`, and R to be the
final state R`. Thus, AU = R, U is upper-triangular, and R has unique non-zero
pivots.

Proposition 2.5.4. The worst case run-time of Algorithm 1 is O(m2n).

Proof. For a single column, the updates take worst case O(m) time each (to loop over
every entry), and we can iterate through at most m pivots, for at most O(m2) time
for each column. For all n columns, the total time is O(m2n).

Note that due to sparsity of the boundary matrices, the worst case runtime is
generally pessimistic.

As a consequence of Proposition 2.5.3, the set of non-zero columns in R is linearly
independent because they have distinct pivots. Finally, note that imgR = imgA

because U is just a change of basis in the columns.
Now, we’ll explain how to extract information about homology assuming we have

reduced boundary matrices for each dimension k as ∂kUk = Rk. First, note that
we can extract a basis for cycles from Uk by examining which columns of Rk are
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zero. Specifically, if Rkej = 0, then Rkej = ∂kUkej = ∂kUk[j] = 0, so Uk[j] ∈
ker ∂k. Because Uk is unit upper-triangular its columns are linearly independent, so
the collection of cycles found in this way forms a basis for ker ∂k.

Now that we have a basis for cycles, we want to find a basis for homology by
finding cycles that are not in img ∂k+1.

Lemma 2.5.5. Consider column Uk[i]. If there exists some j, such that pivRk+1[j] =

i, then Uk[i] is a cycle.

Proof. We know ∂kRk+1[j] = ∂k∂k+1Uk+1[j] = 0. Thus,

∂k

[
Rk+1[i, j]ei +

∑
`<i

Rk+1[`, j]e`

]
= 0.

This means that
∂kei =

∑
`<i

(Rk+1[`, j]/Rk+1[i, j])∂ke`,

so ∂kei = ∂k[i] can be written as a linear combination of columns ∂ke` = ∂k[`], ` < i.
This means that Rk[i] = 0, so Uk[i] is a cycle.

Proposition 2.5.6. The set of cycles in Uk whose column index do not appear as a
pivot in Rk+1 form a basis for Hk = ker ∂k/ img ∂k+1.

Proof. We’ll first show that if Uk[i] is a cycle, and i does not appear as a pivot in Rk+1,
that Uk[i] /∈ imgRk+1 = img ∂k+1. Suppose Uk[i] ∈ imgRk+1. Because Uk[i, i] = 1,
there must be some linear combination of columns of R that produces a 1 in the i-th
entry.

1 =
∑
j

αjRk+1[i, j]

Let j′ be the index column with largest pivot and αj′ 6= 0. We know that pivRk+1[j′] >

i because i does not appear as a pivot in Rk+1, and because Uk[i, i] = 1], some column
with pivot greater than i must be used. Next, note that because only one column in
Rk+1 can have pivot i′ = pivRk+1[j′], we must have Uk[i′, i] = αj′Rk+1[i′, j′]. How-
ever, since i′ > i and Uk is upper-triangular, we must have Uk[i′, i] = 0, introducing
a contradiction. Thus, Uk[i] is not in imgRk+1.
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Next, note that the set of such cycles is linearly independent since they are distinct
columns in an upper-triangular matrix. Furthermore, by Lemma Lemma 2.5.5, each
non-zero column in Rk+1 is matched with a cycle in Uk.

Finally, we can count dimensions. Note that dimHk = dim ker ∂k − dim img ∂k+1,
and img ∂k+1 = imgRk+1. The number of cycles that do not appear as pivots in Rk+1

is exactly dim ker ∂k − dim imgRk+1, and since these cycles are linearly independent
and represent non-trivial homology classes, they must form a basis for Hk.

What we have shown is that the columns of Uk form a homology-revealing basis
for the chain complex, where the subset of the basis that gives the homology basis
is determined by looking at columns of Rk that have zero pivot, and which do not
appear as a pivot in Rk+1. This produces an algorithm to get the indices Ik for Uk
that give the homology basis.

Algorithm 2 Extraction of homology-revealing bases from reduced boundary matri-
ces.
1: Input: Matrices Uk, Rk k = 0, 1, . . . from reduction algorithm.
2: Result: Index sets Ik for homology bases.
3: for k = 0, 1, . . . do

4: Ik ← {}
5: nk ← dimCk

6: for j = 1, . . . , nk do

7: if piv(Rk[j]) = 0 and j is not a pivot in Rk+1 then

8: Ik ← Ik ∪ {j}
9: end if

10: end for

11: end for

12: return {Ik}

Proposition 2.5.7. Algorithm 2 takes O(nk) time for dimension k, where nk is the
number of columns in Rk.

Proof. We assume that it takes O(1) time to find the pivot of a column in Rk (e.g.
this can be stored in an array while performing the reduction algorithm, or simply
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computed if Rk is in a sparse format such as CSC or list of lists). We also assume
that we can check if a column of Rk+1 has a given pivot in O(1) time, for instance this
can be stored using an array or dictionary when running the reduction algorithm.

With these assumptions, it takes O(1) time to check whether each column of Rk

will be used to represent homology, for a total time of O(nk) in dimension k.

2.5.2 Induced Maps

A final ingredient we need is the ability to compute induced maps on homology.
Assume we have a chain map F∗ : C∗ → D∗, and that we’ve found homology-revealing
bases represented by (UC

∗ , IC∗ ) and (UD
∗ , ID∗ ) for C∗ and D∗. Note that we wish to use

preferred representatives to obtain the induced map F̃k : Hk(C∗)→ Hk(D∗) in terms
of the generated bases by using linearity of the quotient Equation (2.2)

F̃k[x] = [
∑
i∈IDk

αui] =
∑
i∈IDk

αi[ui]. (2.17)

We’ll consider how a homology basis vector [x] ∈ Hk(C∗), represented by a pre-
ferred representative x = UC

k [i], i ∈ ICk passes through the chain map Fk. The image
in the basis UD

k is given by Equation (2.1) as y = (UD
k )−1Fkx. We know from Equa-

tion (2.12) that y is a representative for the induced map on homology of F̃k[x], but
it may not be the preferred representative determined for the homology revealing ba-
sis (UD

k , IDk ). Because Hk(D) = ker ∂Dk / img ∂Dk+1, we can arbitrarily add boundaries
(elements of img ∂Dk+1) to y without changing the homology class. Furthermore, by
Proposition 2.5.2, we know there exists a unique linear combination

∑
i∈IDk

αiei that
is in the same homology class as y in Hk(D), which can be obtained by adding an ele-
ment of img ∂Dk+1. If we have used the reduction algorithm to obtain ∂Dk = RD

k (UD
k )−1,

we can write ∂Dk in the bases UD
k−1, U

D
k as (UD

k−1)−1∂kU
D
k = (UD

k−1)−1Rk. Combining
these observations, the linear system

(UD
k )−1RD

k+1[ĪDk , :]z = y[ĪDk ] (2.18)
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is consistent and can be solved for z, and then y2 = y − (UD
k )−1RD

k+1z will be in the
same homology class as y, but will only have non-zero coefficients in the preferred
basis IDk . We then can obtain the induced map on homology by reading off the
coefficients y2[IDk ].

When we use the reduction algorithm to obtain RD
k and UD

k , we can write down
an explicit algorithm to obtain y2 via the solution of Equation (2.18). First note
that RD

k+1 can be made upper triangular via a column permutation, and that the
application of the upper triangular (UD

k )−1 will not affect the pivots. Thus, we can
perform a variant of backward-substitution for upper-triangular matrices.

Algorithm 3 Computation of induced map on homology.
1: Input: Homology representative x = UC

k [i] in Hk(C∗), UD
k , R

D
k+1, from reduction

algorithm applied to ∂D∗ , with index set IDk . Chain map Fk in original basis.
2: Result: Induced map on homology, F̃k[x]

3: y ← (UD
k )−1Fkx

4: n← dimDk

5: ∂̂Dk+1 ← (UD
k )−1Rk+1

6: for j = n, n− 1, . . . , 1 do

7: if y[j] 6= 0 and j is a pivot of column i of ∂̂Dk+1 then

8: α← y[j]/∂̂Dk+1[j, i]

9: y ← y − α∂̂Dk+1[i]

10: end if

11: end for

12: return y[IDk ]

Proposition 2.5.8. The homology class of y in Algorithm 3 is invariant.

Proof. Only boundaries are added to y, as columns of ∂̂Dk+1, so the homology class is
invariant.

Proposition 2.5.9. In Algorithm 3, at the end of the for-loop, y will be the preferred
representative for its homology class with respect to the basis (UD

k , IDk ).
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Proof. This means that y will only have non-zeros in indices that are in the index set
IDk .

First, note that IDk was constructed to be the indices of cycles in Dk that did not
appear in pivots of Rk, and ∂̂Dk has the same pivots as Rk. Second, note that because
x is a cycle, and Fk is a chain map, y must be a linear combination of cycles in the
basis given by UD

k . Finally, the for-loop removes non-zero coefficients for any cycle
that has a non-zero pivot in ∂̂Dk . Thus, y can only have non-zero coefficients for the
cycles indexed by IDk .

As a result, the coefficients returned by Algorithm 3 will be the coefficients for the
induced map on homology as seen in Equation (2.17). We can construct a full matrix
representing F̃k in the bases generated by the homology revealing bases by applying
this procedure for every preferred basis element in UC

k given by the index set ICk .

Proposition 2.5.10. Let nCk and nDk denote the dimension of Ck, Dk respectively,
and βCk , βDk denote the respective homology dimensions. Then Algorithm 3 runs in
O((nDk )2nDk+1 + (nCk n

D
k + (nDk )2)βCk ) time.

Proof. We’ll assume that the matrix ∂̂Dk+1 is formed once for all represenatives x, for
a cost of O((nDk )2nDk+1).

The application of the map Fk takes O(nCk n
D
k ) time, and the application of (UD

k )−1

takes O((nDk )2)) time. The for-loop makes at most nDk iterations, and each update
takes at most nDk time for an additional cost of O((nDk )2)) time per representative.
We then multiply the cost per representative by βCk representatives.

Example 2.5.11. Let X = {(x0), (x1), (x0, x1)} and Y = {(y0), (y1), (y0, y1)} be
simplicial complexes, and let f : X → Y be the simplicial map that sends (x0) 7→ (y1),
(x1) 7→ (y0). The chain boundaries and chain map can be expressed in the cell basis
as

∂X0 = ∂Y0 =
[
0 0

]
, ∂X1 = ∂Y1 =

[
−1

1

]
, F0 =

[
0 1

1 0

]
, F1 =

[
1
]
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The reduction algorithm, Algorithm 1, will find the boundaries are already in reduced
form, meaning UX

0 = UY
0 = I, and we find H0(X) = H0(Y ) = F, with x0 and y0

selected as homology representatives.
Note that

F0x0 =

[
0 1

1 0

][
1

0

]
=

[
0

1

]
= y1

is not a preferred representative for homology of H0(Y ), so we need to use Algorithm 3
to find the induced map. Note that ∂̂Y1 = ∂Y1 , which has a non-zero pivot in index 2.
Thus, the algorithm will eliminate the non-zero entry for y1, and introduce a non-zero
entry for y0: [

0

1

]
−

[
−1

1

]
=

[
1

0

]
= y0

which is a preferred representative of the homology class. Finally, we just read off the
coefficient, to obtain F̃0 =

[
1
]
.

In summary, the calculation confirms that the map f sends the single connected
component of X to the single connected component of Y .

2.6 Persistent Homology of Filtrations

We will first consider persistent homology of filtrations before moving to the more
general setting. This special case of persistent homology has been the focus of a lot
of attention both for applications and algorithmic improvements in topological data
analysis and we will focus on the special structure that aids in computation.

Recall that a filtration is a nested sequence of spaces

X0 ⊆ X1 ⊆ · · · ⊆ Xn (2.19)

The persistent homology of the filtration studies how homology changes through the
sequence of spaces.

Hk(X0)→ Hk(X1)→ · · · → Hk(Xn) (2.20)
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Filtrations are not constrained to have integer parameters, for example the Rips
and Čech filtrations both take real valued parameters. Our focus is on filtrations
of finite cell complexes, in which case the filtration can be re-parameterized to take
integer parameters with a distinct value for each real parameter that adds cells to the
complex. For simplicity, we will consider filtrations where every cell is added one at
a time. In general, multiple cells may appear at the same filtration value, in which
case we can choose any arbitrary ordering that only ensures that a cell’s boundary is
present before a cell is added [93].

We can analyze what occurs at each step in this discrete filtration. The following
result is standard in the literature [45].

Proposition 2.6.1. Adding a k-dimensional cell x to a cell complex X either creates
homology in dimension k or destroys homology in dimension k − 1.

Proof. The addition of a k-dimensional cell x appends a single column to ∂k. Note
that the only two subspaces that this can affect are ker ∂k ⊆ Ck and img ∂k ⊆ Ck−1.
There are two possibilities for reduction:

1. ∂kx is already in img ∂k, meaning that ∂kx = ∂ky for some other chain y ∈ Ck.
In this case, the chain x− y will have boundary 0, so the dimension of ker ∂k is
incremented by 1. However, the dimension of img ∂k+1 does not change, so the
dimension of Hk = dim ker ∂k − dim img ∂k+1 is also extended by 1. Because
img ∂k does not change, Hk−1 does not change.

2. ∂kx is not already in img ∂k. In this case, the dimension of img ∂k increases by
1, but because ∂k−1 is the same, so is ker ∂k−1. Thus the dimension of Hk−1 will
be reduced by 1. Because x is not in ker ∂k, Hk will be unaffected. However, a
new pivot will be added to Ik, so Hk−1 will be reduced by one dimension.

Definition 2.6.2. The birth of a homology class is the index in the filtration that the
homology class first appears. The death of a homology class is the index in the filtra-
tion that the class disappears. Each homology class in the filtration has an associated
birth-death pair (b, d), where d =∞ if the class is present at the end of the filtration.
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Definition 2.6.3. The persistence barcode of a filtered complex X∗ is a multiset of
birth-death pairs (bi, di), one for each homology class that appears at some point in
the filtration.

2.7 Reduction Revisited

The reduction algorithm, Algorithm 1, can be used un-modified to compute persistent
homology. All that is necessary is a little more nuance in its interpretation. Recall
that the chain complex Ck(X ) has as a basis all k-cells in X . Henceforth, we will
assume that this basis is ordered by the order of appearance of cells in the filtration,
and that the boundary matrices ∂k are given in this basis (i.e. the first column
corresponds to the first k cell, and the first row corresponds to the first k − 1 cell in
the filtration).

The key observation is that because the reduction of column j only looks to the
left for pivots, the reduction for the first j columns for ∂jk and ∂

j2
k , j < j2 will proceed

in exactly the same manner. This means that instead of computing a homology
revealing basis for each filtration parameter and examining the maps on homology
induced by inclusion we can simply run the reduction algorithm once for the final cell
complex Xn, and add an additional layer of analysis to the discussion in Section 2.5.1.

Suppose we have performed the reduction algorithm ∂kUk = Rk, k = 0, 1, . . . for
Xn. Recall that if a column j of Rk is zero, then the jth column of Uk gives a cycle
in Ck(Xn), and if j appears as a pivot in Rk+1, then that cycle is a boundary, so the
index set Ik for the homology revealing basis is found by identifying the zero columns
of Rk that do not appear as pivot indices in Rk+1, following Algorithm 2. However, if
the reduction had been performed when column j was first added, no corresponding
pivot column in Rk+1 would yet be added, so the column would generate homology
(causing a birth at the filtration parameter for column j). Finally, at some filtration
parameter a column would be added to ∂k+1 producing a pivot in row j, killing that
homology class. If no such column ever appears in ∂k+1, the homology class will be
present in the final complex Xn, and the corresponding death will be at ∞.
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The reason why the induced maps never need to be explicitly computed can be
seen in the following proposition

Proposition 2.7.1. Let (U i
k, I ik) and (U j

k , I
j
k) be homology revealing bases for a filtra-

tion Xi ⊆ Xj computed using the ordered cell basis and the reduction algorithm. Then
the induced map on homology Hk(Xi) → Hk(Xj) from inclusion either (a) sends a
basis element [x] ∈ Hk(Xi) to [0], or (b) sends a basis element [x] ∈ Hk(Xi) to exactly
one other basis element [x′] ∈ Hk(Xj). Furthermore, in case (b), the chain map sends
the preferred representative of [x] to the preferred representative of [x′].

Proof. Let x be a preferred representative for [x] ∈ Hk(Xi). Note that because the
reduction algorithm will produce the same result for the first ni columns of ∂k, the
inclusion map Ck(Xi)→ Ck(Xj) has the form

Fk =

[
I

0

]

where I denotes an identity and (U j
k)−1FkU

i
k = Fk takes the exact same form. We

know that because x is a preferred representative, that it is a column of U i
k, and the

block identity in the chain map will map x to the corresponding column in U j
k . Either

that column is in Ijk, in which case it is a preferred representative for a basis element
of Hk(Xj), or there must be a pivot with the corresponding index in Rj

k+1 indicating
that the column is a boundary, so is in [0].

Corollary 2.7.2. The induced map on homology F̃k : Hk(Xi) → Hk(Xj) is in EU

form.

Proof. This follows from using the ordering inherited on the basis for homology from
the ordering on the basis for the cell complex.
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2.8 From Inclusion to General Maps

2.8.1 Cylinders to Filtrations

Much of this section has focused on the use of persistent homology in the specific case
where all maps between spaces are inclusions. As we saw in the introduction, the more
general case that uses arbitrary maps is well-defined, even if it isn’t popularly used.
We’ll briefly cover how one may re-purpose existing tools to compute the more general
case before we see how quiver algorithms solve it more gracefully.

The key construction we’ll use is based on the mapping cylinder between two
spaces [57]. Given a map f : X → Y , the mapping cylinder is defined as the quotient
space

Cyl f = X × [0, 1] t Y/[(x, 1) ∼ f(x)]

where t is the disjoint union. That is, Cyl f is obtained by taking the cylinder
X × [0, 1] and attaching to a copy of Y by gluing X × {1} to the image of f . The
space is homotopic to Y (there is a retraction of X onto the image of f along the
interval) so the space itself will have the same homology as Y . However, if we add a
filtration where (X , 0) appears at time 0, and the rest of the space appears at time
1, we see that homology in X that is killed by f dies at time 1 in the filtration, and
homology in X in the image of f survives, while homology in Y that is in the cokernel
of f is born at time 1.

There are several potential difficulties that may be encountered when attempting
to use mapping cylinders in existing TDA packages. In the case where the map
f : X → Y is simplicial, the cylinder has the structure of a simplicial set, which
has desirable combinatorial properties. However, simplicial sets are not generally
supported in TDA packages, and so one must fall back to either using general cell
complexes, or triangulating the space to form a simplicial complex. In the more
general case, the mapping cylinder of a cellular map is a cell complex. This can be
encoded explicitly if desired and passed to any persistent homology package that can
take cell complexes as input.



CHAPTER 2. PRELIMINARIES 56

General cell complexes require one to know the boundary of each cell. We can use
the product rule ∂(a× (0, 1)) = −∂a× (0, 1) + a× ∂(0, 1) to compute the boundary
of cells in the cylinder. Given this information, one can either store the space as a
general cell complex, or just form the boundary directly to pass to a solver. For a
mapping cylinder Cyl f : X → Y , the boundary in dimension k is

∂Cyl f
k =


∂Xk −I

∂Yk Fk−1

−∂Xk−1

 (2.21)

One can check explicitly that ∂2 = 0. The utility of the mapping cylinder is that the
map on homology induced by inclusion X ↪→ Cyl f is equivalent to the map induced
by f : X → Y . Details will be found in Section 2.8.2. Thus, if we consider a filtration
on Cyl f , at which X × {0} appears at parameter t0, and the rest of the cylinder
appears at parameter t1 > t0, in persistent homology the number of bars that survive
from t0 to t1 will be equal to the rank of F̃k : Hk(X )→ Hk(Y).

2.8.2 The Mapping Cylinder

The mapping cylinder can be viewed as the pushforward of the map f : X → Y and
the inclusion of X → X × I.

X Y

X × I Cyl f

f

' '

We’d like to show that the induced maps on homology do indeed commute. Because Y
is a deformation retract of Cyl f , this would imply that the induced map on homology
from the inclusion X ↪→ Cyl f is the same as the induced map on homology of
f : X → Y .

The inclusionG∗ : C∗(X)→ C∗(Cyl f) traversing the left and bottom arrows of the
diagram is given by G(x) = x×{0}, and the map through Y G∗ : C∗(X )→ C∗(Cyl f)

traversing the top and right arrows of the diagram is given by F (x) = f(x) × {1},
where if f(x) =

∑
i αiyi, then f(x)× {1} =

∑
i αi(yi × {1}).
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We now define maps Mk : Ck(X ) → Ck+1(Cyl f) mapping x to the image of
x×[0, 1] in the cylinder. Explicitly, the basis element x ∈ Ck(X ) is mapped to the basis
element x×[0, 1]/f ∈ Ck+1(Cyl f) with boundary−(∂x)×[0, 1]/f+f(x)×{1}−x×{0},
appearing in the left block of Equation (2.21). Now, we simply verify

∂Cyl f
k Mk(x) +Mk−1∂

X
k (x)

= −(∂x)× [0, 1]/f + f(x)× {1} − x× {0}+Mk−1∂
X
k (x)

= −(∂x)× [0, 1] + f(x)× {1} − x× {0}+ (∂x)× [0, 1]/f

= f(x)× {1} − x× {0}

= F (x)−G(x)

so M∗ is a chain homotopy. Thus the induced maps on homology are isomorphic:
F̃∗ ' G̃∗.

2.8.3 Persistent Homology

More generally, if we have a sequence of maps

X0
f0−→ X1

f1−→ . . .
fN−1−−−→ XN

we can construct the mapping telescope [57]

Tel fi =

[
(XN × {N}) t

N−1⊔
i=0

(Xi × [i, i+ 1])

]
/[(x, i+ 1) ∼ (fi(x), i+ 1)]

And we can use a filtration that adds each subsequent cylinder at times t = 1, 2, . . . N .
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For the mapping telescope of cellular maps, the construction of the cell complex
for the mapping cylinder can be extended in a straightforward way

∂Tel fi
k =



∂X0
k −I

∂X1
k F0,k−1 −I
−∂X0

k−1

∂X2
k F1,k−1

−∂X1
k−1

. . .


Using a filtration that adds each cylinder at parameter i+1, we can compute persistent
homology of the sequence of maps {fi} using Algorithm 1.

This construction can also be adapted for use with inclusion-based algorithms for
zigzag homology in a straightforward way.



Chapter 3

Quiver Representations and

Algorithms

In Section 1.1.3, we introduced persistent and zigzag homology barcodes as invari-
ants of A-type quiver representations obtained through the homology functor. This
chapter will introduce new algorithms for computing these barcodes using an explicit
matrix factorization framework.

We will focus on classification of A-type quiver representations by putting an as-
sociated companion matrix into a canonical form. We consider a matrix A associated
with the representation, which has a block structure of the directed adjacency matrix
of the underlying graph, and each non-zero block contains the map of vector spaces
along each edge (induced maps on homology). The goal is to find a factorization of
the matrix

A = BΛB−1 (3.1)

In which B is an invertible block diagonal matrix, and Λ has the same block structure
as A, but blocks are put in a canonical form which is unique up to permutation. Once
we have a factorization A = BΛB−1, it is easy to read off the persistence or zigzag
barcode from the matrix Λ, which we will cover in Section 3.2.

59
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This is a powerful conceptual viewpoint. First, it shows that the barcodes used
and studied in persistent and zigzag homology are as fundamental as matrix decom-
positions studied in other areas of linear algebra. Second, it lays the groundwork for
a new set of algorithms for topological data analysis.

3.1 Prior Work on Computing Zigzag Homology

The study of persistent and zigzag homology as examples of type-A quiver repre-
sentations was begun in [22], which is the theoretical basis for our algorithm. This
has led a variety of interesting theoretical and applied work as surveyed in [84], but
algorithmic implementations so far have not significantly leveraged this connection.

An algorithm for computing persistent homology was first described in [46] (for
F2 coefficients) and was extended to general fields in [106], and an algorithm for
computing zigzag homology was first described in [23]. These approaches operate on
inclusion maps between spaces, and computations work directly on chain complex
boundary matrices. While both persistent and zigzag homology are known to be
computable in matrix-multiplication time [77], sparsity considerations are typically
much more important in practice, and in order to compute on large data sets, several
approaches have been pursued. First, there have been efforts to speed up computation
of persistence through various optimizations [10,33,38] and high performance imple-
mentations [9,11,59,72,79,105]. Second, there have been efforts to reduce the inherent
size of computations using methods that preserve the homotopy type of a space while
reducing the size of its combinatorial representation [13,43,78,103]. Zigzag homology
has received less attention than persistence, but similar efforts can be found in [73,74].
The use of non-inclusion maps in persistent and zigzag homology has been somewhat
limited in topological data analysis, although the case of simplicial maps has been
investigated in [40, 63], based on a strategy that uses zigzag homology to compute
a persistence barcode, and the implementation of zigzag homology in Javaplex [99]
contains tools to compute induced maps for the bivariate witness construction [22,98].
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Our approach has several notable differences compared to existing computational
approaches for persistent and zigzag homology. First, we consider a two step ap-
proach, where first induced maps on homology are computed to form a quiver rep-
resentation, and then our algorithm extracts the barcode. In contrast, existing ap-
proaches work almost exclusively on the level of chain complexes, missing out on
the abstraction and compression that induced maps on homology afford. We believe
that the two approaches are complementary, and that many existing optimizations
could be applied when computing homology and induced maps. Second, our approach
works for general cell complexes, and general cell maps, whereas some existing ap-
proaches are focused on the simplicial (or cubical) complexes and simplicial maps. We
also work with arbitrary field coefficients, when some existing approaches for induced
maps are limited to F2 coefficients [40]. Third, our approach offers multiple opportu-
nities for parallelization, whereas most existing approaches are sequential in nature.
Computing induced maps on homology is trivially parallelizable, and our quiver al-
gorithm also admits a divide and conquer parallelization scheme. The first divide
and conquer approach for zigzag homology was described at a high level in [23]. The
approach operates on chain complexes instead of induced maps on homology, and
has not been implemented. Another approach observed the embarassingly parallel
computation of induced maps, and provided a divide and conquer scheme for induced
maps based on pullbacks [94], but again, these observations were not implemented
in any parallel framework. Greg Henselman has also had thoughts on an approach
for divide and conquer [58]. A scheme to simplify complexes that is trivially par-
allelizable for reasons similar to the trivial parallelization of induced maps is found
in [13]. Our parallelization scheme is different and complementary to existing efforts
to use spectral sequences to parallelize homology calculations [69, 104]. Finally, we
unify computations for persistent and zigzag homology to a degree that is not seen
in existing algorithms, in the sense that modifications to handle arrows of different
directions are trivial when stated in terms of matrix factorizations.

Our approach is closest in spirit to the original paper on zigzag homology [22],
which started with induced maps on homology, and gave a constructive algebraic algo-
rithm for the interval decomposables for A-type quivers. In Chapter 2, we addressed
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the computational questions that are necessary for computing arbitrary induced maps
on homology, and in this chapter, we will provide an explicit algorithm for comput-
ing interval indecomposables. In contrast to [22] and existing algorithms for zigzag
homology [73, 74, 79, 99], our algorithm does not explicitly use right filtrations, and
instead uses an approach that involves producing a matrix factorization. Available
zigzag homology implementations can be found in Javaplex [99], which is based on
the algebraic algorithm in [22], and Dionysus [79], which is based on the algorithm
in [23], but neither of these implementations employs parallelization.

As a companion to this work, we have released a new open-source package for the
algorithms we describe. Inspired by the basic linear algebra subprograms (BLAS) [65],
we call it the basic applied topology subprograms (BATS). The library includes high-
level C++ templates for the algorithms described, employing OpenMP for paralleliza-
tion. The code is publicly available at https://github.com/bnels/BATS.

3.2 Classification of Quiver Representations and Bar-

codes

The application of quiver representations to persistent and zigzag homology has been
of interest ever since it was used in the context of zigzag barcodes. A fairly complete
survey of existing results and applications to topological data analysis can be found
in [84]. In this section, we will introduce the necessary background to understand our
algorithm.

3.2.1 Quiver Representations

A quiver is a mathematical term for what is known in computer science as a directed
multi-graph. A quiver representation is a directed multi-graph Q(V,E) where every
vertex vi ∈ V has an associated vector space Vi over a common field F, and each
directed edge (vi, vj) ∈ E has an associated F-linear transformation Ai,j : Vi → Vj.
Two quiver representations Q1(V 1, E1),Q2(V 2, E2) are said to be isomorphic if the
underlying graphs are isomorphic and there are isomorphisms Bi for each V 2

i so

https://github.com/bnels/BATS
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that A1
i,j = (Bj)

−1A2
i,jBi. Quiver representation theory is concerned with classifying

quivers up to isomorphism, a problem that originated with classification of Lie Al-
gebras [39]. The ability to classify arbitrary quiver representations relies entirely on
the underlying undirected graph, and not on the dimensions of the vector spaces or
ranks of maps. Both persistent and zigzag homology are quiver representations of
type An, for which the underlying graph is a line graph on n vertices, where n can be
any finite positive integer.

· · · · · · ·

A theorem due to Gabriel shows that the collection of underlying graphs of quiver
representations that have a finite number of indecomposable representations are
known as the Dynkin diagrams, which include An, as well as several other classes
of graph [50]. We will refer to type An quivers where all arrows point in the same di-
rection persistence-type quivers, and type An quivers where arrows alternate direction
zigzag-type quivers.

3.2.2 From Topology to Quiver Representations

Quiver representations arise naturally from diagrams of topological spaces through
the homology functor. In Section 2.4, we saw that homology (with coefficients in a
field F) is a functor that associates topological vector spaces X with vector spaces
Hk(X), and maps f : X → Y to linear transformations F̃k : Hk(X) → Hk(Y ). This
means that the homology functor turns diagrams of topological spaces into diagrams
of vector spaces (quiver representations)

Example 3.2.1. The homology functor creates the following transformation of dia-
grams

X Y

Z

f

g

i

j ⇒
Hk(X) Hk(Y )

Jk(Z)

F̃k

G̃k
Ĩk

J̃k

where F̃k = Hk(f), G̃k = Hk(g), J̃k = Hk(j), and Ĩk = Hk(i)
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Note that neither the diagram of topological spaces nor the diagram of vector
spaces is required to commute.

Example 3.2.2. Persistent homology studies diagrams of spaces

X0 X1 . . .
f0 f1

which produces a quiver representation

Hk(X0) Hk(X1) · · ·(F0)k (F1)k

which corresponds to a Dynkin diagram of type A.

Similarly, zigzag homology studies diagrams of type A.
The advantage of using quiver representations to study persistent and zigzag ho-

mology instead of using an approach such as the one introduced in Section 2.8 is that
the application of the homology functor is embarassingly parallelizable. In fact, this
can be applied to general diagrams of spaces.

When it comes to representing diagrams of topological spaces or vector spaces, we
will think of using the same data structure: a directed multi-graph

Definition 3.2.3. A directed multi-graph (V,E) is a collection V of vertices (nodes),
and a multiset E of edges in V × V .

A directed multi-graph is a more general version of a graph, in that edges are
directed, and multiple edges can share the same source and target. We will only
consider directed multi-graphs consisting of a finite number of nodes and edges.

A diagram in a category is then just a directed multi-graph with an additional
datum for each node and edge.

Example 3.2.4. A diagram in Top is a directed multi-graph where every node i ∈ V
has an associated space Xi, and every edge (i, j) ∈ E has an associated map fi,j :

Xi → Xj.
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Example 3.2.5. A diagram in VectF is a directed multi-graph where every node i ∈ V
has an associated vector space Vi, and every edge (i, j) ∈ E has an associated linear
transformation Ti,j : Vi → Vj. In other words, a quiver representation.

The homology functor turns a diagram in Top to a diagram in VectF which has
the same underlying directed multi-graph structure, meaning the vertex and edge sets
are the same, but the associated data is different.

Algorithm 4 Obtain a quiver representation from a diagram of spaces
1: Input: Directed multi-graph (V,E) with associated spaces Xi and maps fi,j
2: Result: Directed multi-graph (V,E) with associated vector spaces Hk(Xi) and

maps F̃i,j = Hk(fi,j)
3: for i ∈ V do
4: Obtain chain complex C∗(Xi)
5: Obtain homology revealing bases (U i

∗, I i∗) as well as reduced boundaries Ri
∗

using Algorithm 1.
6: end for
7: for (i, j) ∈ E do
8: obtain (F̃i,j)∗ = H∗(fi,j) using Algorithm 3.
9: end for

The important observation is that both for loops of Algorithm 4 have completely
independent iterations. That is, computing homology of Xi can be done completely
independently of computing homology for Xj. Similarly, computing the induced
maps F̃i,j only requires the pre-computed information for the source and target of the
associated edge, and is independent of the computation on any other edge. This means
the algorithm is embarassingly parallelizable, meaning that each for-loop iteration
can be computed in parallel given enough processors. Furthermore, this is true for
any diagram of spaces, meaning it will apply not only to the persistent and zigzag
homology diagrams that we will study in this paper, but also other situations such
as multiparameter persistence [26].

3.2.3 Type A Quiver Representations

We will now focus on classification of type An quiver representations, which appear for
both persistent and zigzag homology. The indecomposable representations of these
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quiver representations are known as interval indecomposables [22, 50, 84], and have
the form

I[b, d] = · · · 0 F · · · F 0 · · ·

where b denotes the first index at which a copy of F appears, and d denotes the final
index where F appears, all vector spaces with index i ∈ [b, d] also have a copy of F,
with identity maps along all edges connecting two copies of F and zero maps along
all other edges. In other words, any quiver representation of type An is isomorphic
to the direct sum of these indecomposables

Q ∼=
⊕
i

I[bi, di]

As a convention, we will use the lexicographical (total) order on Z2 when ordering
interval indecomposables, using the parameters b, d. When the quiver representation
is produced from induced maps on homology, the multiset {(bi, di)} is the barcode.

Definition 3.2.6. The companion matrix of a quiver representation Q is the block
matrix which has non-zero blocks in the non-zero entries of the adjacency matrix of
the underlying directed graph, where blocks are filled by the linear transformations
along the corresponding edges. By necessity, the size of the i-th block must be the
dimension of Vi in the quiver representation.

These matrices act on the vector space V =
⊕

i Vi by sending vectors to their
images in each linear transformation in Q. While general quiver representations may
have multiple arrows between vector spaces, companion matrices can only represent
those which have a underlying graph with at most one linear transformation on each
directed edge – this will not limit our study of type An quiver representations which
satisfy this property.
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For example a persistence quiver P4 = · · · · will have a companion
matrix of the form 

0 A1

0 A2

0 A4

0


whereas a zigzag quiver Z4 = · · · · will have a companion matrix of the
form 

0

A1 0 A2

0

A3 0


Quiver representation isomorphism classes are maintained by conjugation of the

companion matrix by block-diagonal change of bases matrices. For example two
persistence quivers of type P3 = · · · with companion matrices A and B

respectively are isomorphic if there exists an invertible matrix M = M1 ⊕M2 ⊕M3

acting on V such that
0 A1

0 A2

0

 =


M1

M2

M3




0 B1

0 B2

0



M−1

1

M−1
2

M−1
3


From this, it is clear that two quiver representations can not be isomorphic if they do
not share the same underlying directed multi-graph, and the dimensions of the vector
spaces are not identical.

An indecomposable factorization of the companion matrix A is a factorization
A = BTB−1, where B is an invertible (change of basis) matrix, and T =

⊕
i I[bi, di]

is the matrix of indecomposables. We will allow for the indecomposable block to
appear in any order but for exposition we will use the lexicographic partial order on
Z2 to order the pairs (bi, di). For example, in the case where P4 and Z4 both have
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indecomposable matrices T = I[1, 1]⊕ I[1, 4]⊕ [2, 3], the corresponding matrices are

TP4 =



0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 1

0 0


TZ4 =



0

0 0 0 0

1 0 1 0

0 0 0 0

0 0 1 0

0 1

0 0


(3.2)

where the information for the indecomposable I[1, 4] is colored in red. Note the inde-
composable blocks all appear as adjacency matrices of sub-graphs of the underlying
directed graph of the quiver. This means that even though the indecomposables are
written with the same symbolic notation, the indecomposable matrices are not iden-
tical due to the different directions of arrows. The advantage of the indecomposable
factorization is that it is easy to determine the lengths the indecomposables, but
information about which vector spaces participate is obscured.

A barcode factorization of the companion matrix A is a factorization A = BΛB−1,
where B is a block-diagonal invertible matrix (representing a quiver representation
isomorphism), where the block sizes are compatible with dimensions of the associated
vector spaces, and

Λ = PTP T

is the barcode matrix, where P is a permutation that preserves the block structure of
A. Alternatively, we’ll say Λ is the barcode form of the companion matrix A, or simply
the barcode form of the quiver representation. Continuing the previous example, in
the case where P4 and Z4 both have barcode matrices Λ ∼= I[1, 1]⊕ I[1, 4]⊕ [2, 3], the
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corresponding matrix representations are

ΛP4 =



0 0

1 0

1 0

0 1

1

0


ΛZ4 =



0 1 1 0

0 0 0 1

1 0


(3.3)

The information for the indecomposable I[1, 4] is colored in red. Note that because
the underlying graphs are different the matrices Λ are not equal even though the
interval decomposition is superficially the same. In both quivers, the ranks of the
vector spaces are 2, 2, 2, 1. The advantage of the barcode factorization is that B
clearly represents a quiver isomorphism due to its block structure.

Extracting the intervals I[a, b] from a barcode factorization requires tracing the
image of maps through the quiver, and the advantage compared to the indecomposable
decomposition is that the starting point of an interval is clear. We extract the intervals
from Λ by sweeping through the blocks left-to-right If we keep track of the indices used
in each extension of a bar, we have the information necessary to form the permutation
P so that PΛP T = T .

Proposition 3.2.7. A companion matrix is in barcode form if and only if its blocks
are pivot matrices.

Proof. If all blocks of a companion matrix are pivot matrices, then every iteration of
the for-loop in Section 3.2.3 will find at most one index that can be used to extend a
bar. The set of bars found by the algorithm gives the indecomposables, so the matrix
is in barcode form.

If the matrix is in barcode form, we’ll consider the representation of the map
Ai : V → W , where either V = Vi,W = Vi+1 or V = Vi+1,W = Vi. Because
the matrix is in barcode form, every basis vector v ∈ V maps to either exactly one
basis vector of W (continuing a bar), in which case the corresponding column of Ai
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Algorithm 5 Barcode Extraction
1: Input: Barcode matrix Λ, ranks of vector spaces Vi and directions of arrows in

quiver.
2: Result: Barcode B
3: for i = 1, . . . , n do
4: for j = 1, . . . , rankVi do
5: if Vi−1 → Vi then
6: if Row j in block i contains a non-zero in column j′ of block i− 1 then
7: Extend the bar at index j′ of block i− 1 to have index j in block i.
8: else
9: Begin a bar with index j in block i

10: end if
11: else if Vi−1 ← Vi then
12: if Column j in block i contains a non-zero in row j′ of block i− 1 then
13: Extend the bar at index j′ of block i− 1 to have index j in block i.
14: else
15: Begin a bar with index j in block i
16: end if
17: else
18: (i = 1)
19: Begin bar with index j in block 1
20: end if
21: end for
22: end for
23: return B
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has exactly one non-zero, or maps to zero (the bar ends at V ), in which case the
corresponding column of Ai is zero. Every basis vector w ∈ W is either in the image
of a basis vector of V , in which case the corresponding row of Ai has exactly one
non-zero, or is the start of a new bar, in which case the row of Ai is zero. Thus Ai is
a pivot matrix because it has at most one non-zero in each row and column.

3.2.4 The Graded Module Structure of Persistent Homology

For persistence-type quivers, there is a relationship between the indecomposable fac-
torization and the Jordan normal form of a matrix, observed in equation Equa-
tion (3.2). Because interval indecomposables have the structure of a sub-graph of
the directed graph underlying the quiver, in the case of persistence quivers they will
all have the form of a Jordan zero block. That is the sub-matrix associated with
I[a, b] is equal to J[1+b−a](0), where

Ji(λ) =


λ 1

λ
. . .
. . . 1

λ


is an i × i matrix. This immediately shows that the characteristic polynomial of A,
det(tI − A) = tN , where N =

∑
dimVi in the quiver representation, and that A

is nilpotent with index corresponding to the length of the longest interval 1 + b− a.
While the Jordan form does not generally exist for non-algebraically closed fields, Greg
Henselman showed in his thesis that nilpotent operators can always be decomposed
into Jordan-zero blocks [60], and applied this along with the use of Schur complements
to computing persistent homology of nested chain complexes. We also note that
because homology of spaces starts with integer chain complexes, that we only need
to use the field of fractions Q for computation, and so H∗( · ;R) ∼= H∗( · ;Q).
In practice, we avoid any issues with finite precision observed when computing the
Jordan form with real coefficients [54] through use of rational numbers.
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Classification of persistent homology modules was established in [106] by showing
that the persistent homology of inclusions has a F[T ] module structure, where T
acts by incrementing the filtration parameter. This first showed that the persistence
barcode of a filtration is unique and computable. Explicitly, because F[T ] modules
are principal ideal domains, there is a unique description of the persistence module
as ⊕

i∈I

T biF[T ]/T di ⊕
⊕
i∈J

T biF[T ]

where I is the set of finite bars in a persistence diagram, and J is the set of infinite
bars. bi and di correspond to the birth and death parameters in the discrete-time
filtration.

In order to see the equivalence of the quiver representation and F[T ] module
viewpoints, we will consider infinite extensions of persistence quivers, where after a
finite N all maps are isomorphisms

V0 V1 · · · VN VN+1 · · ·A0 A1 AN−1 I I

In this case, any interval that is present at parameter N will extend infinitely to the
right. Persistence quivers of this form appear naturally when considering homology
of a filtered space

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ XN = XN+1 = · · · = X

The interval indecomposables will appear as transposed Jordan zero blocks, which are
equivalent to the ordinary Jordan blocks via conjugation by the anti-diagonal matrix
J

JT


0

1 0
. . . . . .

1 0

 J = Ji(0) (3.4)
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The infinite extension of the quiver requires infinite indecomposables I[b,∞), repre-
sented by blocks of the form 

0

1 0
. . . . . .


If we take V =

⊕
i Vi, and A to be the companion matrix of the quiver, there

is F[A] module structure on V . The block structure of A shows that this is a
graded module, graded by the index i of Vi, and the barcode factorization A ∼=
Λ =

⊕
i∈I I[bi, di]

⊕
j∈J I[bj,∞) shows gives a way to extract a basis for the module:

{vi}i∈I ∪ {vj}j∈J , where vi is the vector with grade bi that generates the subspace of
the associated Jordan block. In the case of finite bars, these generate a torsion sub-
module that disappears at grade di, so the sub-module is isomorphic to T biF[T ]/T di .
In the case of infinite bars, the sub-module is free and so is isomorphic to T biF[T ].

We note that in practice, infinite extensions of quivers are not necessary for com-
putation. We can simply take any bars that are present in the last vector space and
extend them infinitely.

The module structure of persistent homology offers some insight into why the
reduction algorithm works. The reason why only columns to the left can be used to
eliminate pivots is that the grade of a basis element can not be altered under a change
of basis. In other words, to maintain a F[T ] module isormorphism it is valid to add
elements with lower grades to elements with higher grades, but not vice versa.

3.2.5 Generic Quiver Computations

There is a correspondence between diagrams encoding quiver representations and
block matrices encoding their companion matrices, and certain operations are easier
to express using one notation or the other. In this section we establish some lemmas
that apply to any quiver representation.

Lemma 3.2.8. A change of basis (quiver representation isomorphism) at a single
vertex via an invertible matrix M can be represented as
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· · · ·

... · ... ∼=
... · ...

· · · ·

A
0

A
0MB0

B
m

M
−1 B

0

M −
1
B
mAn An

M

Proof. This follows immediately from a change of basis on the central vector space in
the diagram via Equation (2.1).

If the quiver representation is representable by a companion matrix, this diagra-
matically encodes the isomorphism

B0 . . . Bm

A0

...
An



=


M

I
. . .

I




M−1B0 . . . M−1Bm

A0M
...

AnM




M−1

I
. . .

I


We see that this only affects linear transformations that have the center vertex as a
source or target. For any vector spaces that do not have an arrow to or from the center
vector space are multiplied by an identity on both left and right and are unaffected.

Lemma 3.2.8 implies the following two corollaries which set forth the rules for our
matrix passing algorithms.

Corollary 3.2.9. Passing an invertible matrix M through a target yields

· · · ·

... · ... ∼=
... · ...

· · · ·

A
0

A
0M

M
B̃0

B
m

B̃0

M −
1
B
mAn An

M
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Corollary 3.2.10. Passing an invertible matrix M through a source yields

· · · ·

... · ... ∼=
... · ...

· · · ·

Ã
0M Ã

0B0

B
m

M
B0

M
B
mAn

An
M
−1

Notice that we draw arrows from right to left in the above diagrams. This is
simply because the matrix M is closest to the vertex undergoing a change of basis.
If we write arrows right to left we would have the correct, but less natural looking
example

· · · ∼= · · ·B0 Ã0M MB0 Ã0

One can use this to easily verify the change of basis formula for induced maps on
homology Equation (2.12) by tracking the extraction of the cycle-revelealing bases
in a chain map F∗ : C∗ → D∗, using factorizations ∂k = RkU

−1
k and looking at the

relevant sub-quiver:

Ck−1 Ck

Dk−1 Dk

RCk (UCk )−1

Fk

RDk (UDk )−1

∼=
Ck−1 Ck

Dk−1 Dk

RCk

(UDk )−1FkU
C
k

RDk

Generally, quiver representations encoding induced maps on homology can be
derived from diagrams of chain maps.

The generic quiver representation computations are useful in representing a wide
variety of computations. For example we can cast the problem of computing persistent
homology from chain complex information as a factorization on the following grid
quiver. Since computing the barcodes entails a change of basis, it can be expressed
using matrix passing algorithms using the generic quiver computation.
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· · · · · · ·

· · · · · · ·

...
... · · · ...

...

∂1,0

φ1,1

∂1,1

φ1,2

∂1,n−2 ∂1,n−1

φ1,n−1 φ1,n
∂2,0

φ2,1

∂2,1

φ2,2

∂2,n−2 ∂2,n−1

φ2,n−1 φ2,n

As another example, here is the standard type A quiver representation equipped
with some extra identity maps going in and out of each vertex. When the factorization
algorithm is applied to the type A sub-quiver, the identity maps will be modified and
will record the basis change matrices required for the factorization. In this way we
see that these quiver diagrams and associated quiver computations are a useful tool
for expressing these algorithms.

· · · ·

· · · · · · ·

· · · ·

I I I I

A0 A1 An−2 An−1

I I I I

· · · ·

· · · · · · ·

· · · ·

B0 B1 Bn−1 Bn

E0 E1 En−2 En−1

B−1
0 B−1

1 B−1
n−1 B−1

n

3.3 Algorithms for Canonical Forms of Type-A Quiver

Representations

In this section, we will describe our algorithm for computing the canonical form of
a type-A quiver representation (Equation (3.1)). As we will see, the details of the
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algorithm depends on the direction of the maps in the quiver, but there are core
components which are the same.

There are two basic linear algebra operations we need as primitives for the algo-
rithm.

1. Triangular factorizations

2. Shape commutation results with E-type matrices

We will first discuss these. Next we will consider the algorithm when all the the
arrows point in the same direction. We will then show how this algorithm can be
modified to the case of alternating arrow directions. Finally we will specify the full
general algorithm.

3.3.1 Triangular Factorizations

In this section, we will discuss computing decompositions of a matrix A into triangular
matrices with row or column pivoting. Specifically we will start with the LEUP
decomposition. Variants include PLEU, UELP and PUEL form, which can be derived
using the LEUP decomposition of either transposed or J-Conjugated versions of A.
These factorizations are all variants of the standard LU decomposition [53], but we
will need these specific forms for our algorithm.

Given a matrix A, we will describe an algorithm that will maintain a block invari-
ant at each step i

A =

[
L11

L21 I

][
E11

Ã

][
U11 U12

I

]
P (3.5)

Proof of Correctness: We will show that the invariant Equation (3.5) is main-
tained at each step of the algorithm. Note that the loop increments i each iteration,
so we use i as our index. For rows of A, as well as rows and columns of L, we will use
the block index set 1 = {0, . . . , i− 1}, and the block index set 2 = {i+ 1, . . . ,m− 1},
and for columns of A, as well as rows and columns of U we will use the block index
set 1 = {0, . . . , j − 1} and block index set 2 = {j + 1, . . . , n− 1}.
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Algorithm 6 LEUP factorization
1: Input: m× n matrix A
2: Result: Factorization A = LEUP
3: L = Im
4: E = A
5: U = In
6: P = In
7: i = 1, j = 1
8: while i <= m & j <= n do
9: if row i has a non-zero in column j′ ≥ j of E then

10: Swap columns j, j′ in E
11: Take Schur complement with respect to i, j entry
12: i = i+ 1
13: j = j + 1
14: else
15: i = i+ 1
16: end if
17: end while

Assume the invariant is maintained at the beginning of iteration i. We can break
up the matrices into

A =


L11

Li1 1

L21 I



E11

Aij Ai2

A2j A22



U11 U1j U22

1

I

P
In the case that there are no non-zero entries in Aij or Ai2, we simply increment i (in
the else clause of the while loop), and the invariant is trivially maintained.

In the case there is a non-zero entry in Aij or Ai2, assume we have already per-
muted it to the Aij position, and used the relation Equation (3.10) to move the
permutation to the right. We can write the interior matrix as

E11

Aij Ai2

A2j A22

 =


I

I

A2jA
−1
ij I



E11

Aij

S



I

I A−1
ij Ai2

I


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where S is the Schur complement S = A22 − A2jA
−1
ij Ai2. We can then pass off the

left matrix to L and the right matrix to U , and now group Aij with the echelon block
E11.

Note that because we may increment i without incrementing j, that the matrix
E will be of type EL.

Other Triangular Factorizations

A = LELUP = (3.6)

A = PLEUU = (3.7)

A = UÊULP = (3.8)

A = PUÊLL = (3.9)

All of the above factorizations can be shown to be equivalent to the LELUP
factorization, using transposes and conjugation with J matrices.

For example consider the case,

A = (AT )T = (LELUP )T = P TUT (EL)TLT = P̃ L̃EU Ũ

Thus the PLEUU factorization is equivalent to the LELUP factorization of the
transpose.

Similarly the UÊULP can be expressed using J conjugation,

A = JJAJJ = J(JAJ)J = JÂJ

Now we can replace Â with its LELUP factorization, and apply the commutation
relations of J.

JÂJ = JLELUPJ = ÛJELUPJ = Û ÊUJUPJ = Û ÊU L̂JPJ = Û ÊU L̂P̂

Thus we have found the UÊULP factorization of A.
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If we apply the PLEUU factorization for Â instead, we get,

JÂJ = JPLEUUJ = P̂ JLEUUJ = P̂ ÛJEUUJ = P̂ Û ÊLJUJ = P̂ Û ÊLL̂

This gives us the PUÊLL factorization for the matrix A.

3.3.2 Shape Commutation Relations

Now, we’ll consider shape commutation relations of echelon matrices with triangular
matrices. We will first show the following commutation relationship, and derive others
from this.

Proposition 3.3.1. Given an echelon pivot matrix EL and lower triangular matrix
L, we can rewrite the product ELL in the following way

ELL = L̃EL (3.10)

Where L̃ matrix is also a lower triangular matrix.

Proof. In terms of matrix shapes this commutation looks like the following

=

Note that this is just the commutation of the shapes, In general L and L̃ are not the
same matrices, or even the same dimensions. We will first characterize left and right
multiplication by the EL matrix.

Consider the product of EL with an arbitrary matrix A

(ELA)[k, l] =
∑
p

EL[k, p]A[p, l]

From the definition of the shape of EL, we know that its entries are 1 only when
p = j(k), thus we get
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(ELA)[k, l] =
∑
p

EL[k, p]A[p, l] = EL[k, j(k)]A[j(k), l] = A[j(k), l]

Here we use the convention that if the entry for a particular k, l index pair is
not assigned any value, it is by default 0. Similarly, if we are attempting to apply
the function j(·) on an index not in its domain, the appropriate matrix element is 0.
Multiplication on the right follows similarly

(AEL)[k, l] =
∑
p

A[k, p]EL[p, l] = A[k, i(l)]EL[i(l), l] = A[k, i(l)]

We will now show that L̃, constructed in the following way will satisfy the propo-
sition.

L̃[k, l] =


L[j(k), j(l)], if k ∈ Domain(j(·)) and l ∈ Domain(j(·))

1, if k = l and k /∈ Domain(j(·))

0, otherwise

Note that the above construction is not unique, we have opted to set the diagonal
of otherwise zero columns to 1, this makes the matrix invertible, which will be useful
later on. Next we will show that this construction is indeed lower triangular.

Suppose k < l, then we have from the definition of the shape of EL that j(k) < j(l)

which implies that L[j(k), j(l)] = 0, as L is a lower triangular matrix. This shows
that for k < l, L̃[k, l] = 0, hence L̃ is lower triangular. Now we will compute ELL
and L̃EL and show that they are equal.

(ELL)[k, l] = L[j(k), l]

(L̃EL)[k, l] = L̃[k, i(l)] = L[j(k), j(i(l))] = L[j(k), l]

Since i(·) is the inverse function of j(·), i(l) will always be in the domain of j(·), thus

ELL = L̃EL
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=

=

Figure 3.1: Pictoral representation of the shape commutation relationship in Propo-
sition 3.3.1

Proposition 3.3.2. The following shape commutation relations also hold

LÊL = ÊLL̃ = (3.11)

UEU = EU Ũ = (3.12)

ÊUU = Ũ ÊU = (3.13)

Proof. Taking transpose on the commutation result for EL

(ELL)T = (L̃EL)T

LTET
L = ET

L L̃
T

Rewriting to denote the shapes we get,

UEU = EU Ũ
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Taking the J-Conjugate of the EL commutation result we have,

J(ELL)J = J(L̃EL)J

JELLJ = ÊUJLJ = ÊUU

JL̃ELJ = ŨJELJ = Ũ ÊU

We get the commutation result for ÊU

ÊUU = Ũ ÊU

Taking the transpose of the above result, we get,

(ÊUU)T = (Ũ ÊU)T

UT ÊT
U = ÊT

U Ũ
T

Rewriting to denote shapes,
LÊL = ÊLL̃

3.3.3 Algorithm for Persistence-type Quivers

At a high level, the algorithm will put each matrix in a type-A quiver representation
in pivot matrix form. This is accomplished in two passes - we will work from left
to right on the first pass, and then right to left on the second pass. Note that we
could equally work in the opposite order (see Figure 3.3). We will use diagrams to
notate the steps of the algorithm, keeping in mind that we can keep track of the
invertible basis transformation for each of the steps. We will first apply the LELUP
factorization to A0

· · · · · · ·

· · · · · · ·

A0 A1 An−1

L0E0U0P0 A1 An−1
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We can now use matrix passing to move both U0 and P0 matrices, as they are both
invertible. We then multiply the matrices to get Ã1 = U0P0A1

· · · · · · ·

· · · · · · ·

L0E0 U0P0A1 An−1

L0E0 Ã1 An−1

We can now apply this procedure to Ã1 and then iterate through the rest of the maps
in the quiver representation

· · · · · · ·

...
...

· · · · · · ·

L0E0 L1E1U1P1 An−1

L0E0 L1E1 Ln−1En−1Un−1Pn−1

Applying matrix passing on the final edge, we can remove the factor Un−1Pn−1

· · · · · · ·

· · · · · · ·

L0E0 L1E1 Ln−1En−1Un−1Pn−1

L0E0 L1E1 Ln−1En−1

Next we can initiate the leftward pass by moving the lower triangular matrices left-
ward using the shape commutation relations at each step. We do so, as follows,

· · · · · · ·

· · · · · · ·

· · · · · · ·

L0E0 Ln−2En−2 Ln−1En−1

L0E0 Ln−2En−2Ln−1 En−1

L0E0 L̃n−2En−2 En−1

Here we have used the following shape commutation relation

Ln−2En−2Ln−1 = L̃n−2En−2

Applying iteratively the the rest of the edges in a right-to-left sweep, we obtain

· · · · · · ·

...
...

· · · · · · ·

L0E0 L̃n−2En−2 En−1

L̃0E0 En−2 En−1
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Finally, we can remove the last factor L̃0, by matrix passing

· · · · · · ·

· · · · · · ·

L̃0E0 En−2 En−1

E0 En−2 En−1

We have reduced all the matrices to pivot matrix form.

3.3.4 Alternating arrow directions

In the general A-type Quiver diagram, the arrows can be in either direction. So far
we have seen an algorithm that works when all the arrows are in the same direction.

To illustrate how the algorithm would work with arbitrary arrow directions, con-
sider the following zigzag quiver.

· · · ·

· · · ·

· · · ·

· · · ·

A0 A1 A2

L0E0U0P0 A1 A2

L0E0 A1P
−1
0 U−1

0 A2

L0E0 Ã1 A2

The above transformation is easier to see if the diagram is in the following form:

·

·

·

·

A0

A1

A2

→

·

·

·

·

L0E0U0P0

A1

A2

→

·

·

·

·

L0E0

A1P
−1
0 U−1

0

A2

→

·

·

·

·

L0E0

Ã1

A2

In the next step, as the arrow is reversed we cannot use the LELUP factorization.
This would result in matrices that cannot be commuted during the second sweep. To
handle this case, we use the PUÊLL factorization instead.
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Ã1 = P1U1Ê1L1

Applying matrix passing to move the factored matrices to the next edge, we get

·

·

·

·

L0E0

Ã1

A2

→

·

·

·

·

L0E0

P1U1Ê1L1

A2

→

·

·

·

·

L0E0

Ê1L1

U−1
1 P−1

1 A2

→

·

·

·

·

L0E0

Ê1L1

Ã2

For the last edge, we can again apply the LELUP factorization,

·

·

·

·

L0E0

Ê1L1

Ã2

→

·

·

·

·

L0E0

Ê1L1

L2E2U2P2

→

·

·

·

·

L0E0

Ê1L1

L2E2

Now we can perform the reverse sweep as follows,

·

·

·

·

L0E0

Ê1L1

L2E2

→

·

·

·

·

L0E0

L−1
2 Ê1L1

E2

→

·

·

·

·

L0E0

Ê1L̃1

E2

→
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→

·

·

·

·

L0E0L̃
−1
1

Ê1

E2

→

·

·

·

·

L̃0E0

Ê1

E2

→

·

·

·

·

E0

Ê1

E2

During the reverse sweep we used the following commutation relations

L−1
2 Ê1L1 = Ê1L̃1

L0E0L̃
−1
1 = L̃0E0

Thus we have reduced all matrices to pivot matrices, the barcodes can be directly
read of from them.

Here we had to use a different factorization depending on the arrow direction, we
can now use this to generalize the algorithm to a type-A quiver with arbitrary arrow
directions.

3.3.5 General Sequential Algorithm

For arbitrary directions of the arrows, as long as we use the correct factorization
for each of the arrow directions, we can use the shape commutation relations in the
reverse sweep to reduce all the matrices to echelon pivot form.

We can also initiate the first sweep from the right to the left, to obtain a leftward
initial algorithm. All the examples shown above initiate the first sweep from the left.
For a general initial sweep direction and arrow direction, The tables Figure 3.2 and
Figure 3.3 specify the factorization and commutation relation to use.

We note that the commutation relations established in Section 3.3.2 do not change
the nonzero structure of the E matrices. Thus, it is possible to extract the barcode



CHAPTER 3. QUIVER REPRESENTATIONS AND ALGORITHMS 88

Algorithm 7 Obtain Barcode factorization of type A quiver: Rightward-initial
1: Input: Type A quiver representation.
2: Result: Barcode form of quiver representation.
3: for forward pass do
4: if ← then
5: Apply LELUP Factorization
6: Matrix pass UP factors
7: else
8: Apply PUÊLL Factorization
9: Matrix pass PU factors

10: end if
11: end for
12: Matrix pass L factor on the last edge
13: for backward pass do
14: if ← then
15: Commute L1ELL2 = L̃1EL
16: else
17: Commute L1ÊLL2 = ÊLL̃2

18: end if
19: end for
20: Matrix pass the remaining L factor on the first edge.

Rightward Initial Leftward Initial
← LELUP PLEUU

→ PUÊLL UÊULP

Figure 3.2: The factorization to use for the first sweep.

Rightward Initial Leftward Initial
← U1EUU2 = EU Ũ2 L1ELL2 = L̃1EL
→ U1ÊUU2 = Ũ1ÊU L1ÊLL2 = ÊLL̃2

Figure 3.3: The commutation to use for the second sweep.
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without performing the backward pass of Algorithm 7 if one does not care to form
the change of basis.

3.3.6 Parallel Quiver Algorithm

We can also parallelize the algorithm for computing the barcode factorization of a
quiver representation using a divide and conquer approach. The protocol of matrix
factorizations and matrix passing will be different.

LQU Factorization

The LQU factorization is different from the triangular factorizations introduced be-
fore. It does not perform any pivoting and therefore there is no auxiliary permutation
matrix produced. Instead, we sacrifice structure in the pivot matrix and obtain a gen-
eral pivot matrix Q as opposed to echelon pivot matrices.

Proof. In order to see that the above algorithm is correct, we first note that both the
row operations and column operations are triangular, i.e. row i is used to eliminate
rows at positions greater than i and column j is used to eliminate columns at positions
greater than j. Thus the recorded L and U matrices are indeed lower and upper
triangular respectively.

Now it is left to prove that the resultant matrix Q, has pivot structure. If we
prove that the only non-zeros at the end of the algorithm are the pivots then we are
done, as pivots are chosen such that no two of them share a row or column. We will
argue by contradiction: suppose there is a non-zero that was not eliminated at the
end of the algorithm. It has to be either in a non-pivot row or its column position is
before a pivot in a pivot row, otherwise it would have been eliminated by the column
operations. Such an element cannot exist as it should have been eliminated by row
operations by a pivot above it in the same column. The pivot cannot be below as it
would imply that we did not pick the first non-zero in a non-pivot row when choosing
the pivot for this column.
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Algorithm 8 LQU factorization
1: Input: m× n matrix A
2: Result: Factorization A = LQU
3: L = Im
4: Q = A
5: U = In
6: j = 1
7: while j <= n do
8: if column j has a non-zero in a non-pivot row, let the first such row be i then
9: Zero out all elements in non-pivot rows in column j below i

10: Record row operations in L
11: Mark i as pivot row
12: j = j + 1
13: else
14: j = j + 1
15: end if
16: end while
17: i = 1
18: while i <= m do
19: if row i is a pivot-row with pivot at j then
20: Zero out all elements after j in row i.
21: Record column operations in U
22: i = i+ 1
23: else
24: i = i+ 1
25: end if
26: end while
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E Matrix Transformations

We will now see how we can factorize any pivot matrix Q into a permutation and an
echelon pivot matrix

Proposition 3.3.3. Given any pivot matrix Q, we can rewrite it as the following

Q = ELP (3.14)

Q = PEU (3.15)

Q = ÊUP (3.16)

Q = PÊL (3.17)

(3.18)

where P is an appropriate permutation matrix.

Proof. We apply the LELUP , PLEUU , UÊULP and PUÊLL factorizations to Q and
note that the triangular matrices are just the identity matrices. This is because the
triangular matrices are produced to eliminate one entry with another entry in the
same row or column, but such a situation cannot occur in a pivot matrix Q, so only
permutation operations are performed in the factorization, resulting in a permutation
matrix and an echelon pivot matrix.

Divide and Conquer

Now, we will show how we can divide a type-A quiver into two parts and perform
the computation in parallel for each of the parts. The results can then be combined
to give the full barcode factorization of the entire quiver. Consider a quiver Qγ with
general arrow directions,

· · · · · · ·A0 A1 An−1

We will divide it into two parts at position m, to give us two sub-quivers Qα and Qβ

· · · · · · · · · · ·A0 Am−1 Am An−1
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Next we will introduce three auxiliary edges containing identity maps to aide us in
the computations by acting as a place holder for matrices.

· · · · · · · · · · · · · ·I A0 Am−1 I Am An−1 I

We can now perform two versions of the sequential algorithm in parallel. For quiver
Qα, we will use the rightward-initial algorithm (Algorithm 7). Notice that the ter-
minal matrices are collected in the auxiliary edges, they will be important when we
merge the results of the two sub-quivers.

· · · · · · · · · · · · · ·Lα E0 Em−1 UαPα Am An−1 I

For the quiver Qβ, we will use the leftward-initial sequential algorithm. This allows
us to collect both the permutation matrices in the center auxiliary edge.

· · · · · · · · · · · · · ·Lα E0 Em−1 UαPαPβLβ Em En−1 Uβ

We can now multiply out the matrices in the center auxiliary edge and perform an
LQU factorization using Algorithm 8

UαPαPβLβ = Cγ

Since all the matrices Uα, Pα, Pβ, Lβ are invertible, the pivot matrix Qγ, will be full
rank, and thus turn out to be a permutation matrix Pγ

Cγ = LγQγUγ = LγPγUγ

· · · · · · · · · · · · · ·Lα E0 Em−1 LγPγUγ Em En−1 Uβ

The matrices E0 to Em−1 were produced by the rightward-intial algorithm, so they are
of shape EL or ÊL depending on the arrow directions. They can be used to commute
the Lγ factor all the way to the left. This process is very similar to the second sweep
of the rightward-initial algorithm. Similarly, the matrices Em to En−1 are of shape
EU or ÊU . These matrices can be used to commute the Uγ factor towards the right
in a manner similar to the second sweep of the leftward-initial algorithm.



CHAPTER 3. QUIVER REPRESENTATIONS AND ALGORITHMS 93

· · · · · · · · · · · · · ·LαL̂γ E0 Em−1 Pγ Em En−1 ÛγUβ

These propagated factors can now be multiplied and we get one lower triangular
factor L̃γ on the left auxiliary edge and one upper triangular factor Ũγ on the right
auxiliary edge leaving a permuation matrix Pγ in the center auxiliary edge. At this
stage we can think of the result as the “LQU” factorization of the quiver Qγ

· · · · · · · · · · · · · ·L̃γ E0 Em−1 Pγ Em En−1 Ũγ

At this stage, we technically have a valid barcode factorization and if this is the entire
quiver we could stop here, but since we want to apply this algorithm recursively, we
want to convert this into the result of either a leftward-intial or rightward-initial algo-
rithm. This can be done by propagating the permutation matrix Pγ either leftwards
or rightwards using the E matrix transformations discussed in Section 3.3.6. If we
wish to obtain the result of the rightward-initial algorithm, then we propagate right.
Note this transforms the EU and ÊU matrices in Qβ to EL and ÊL. We will denote
the transformed matrices by Ẽm to Ẽn−1.

· · · · · · · · · · · · · ·L̃γ E0 Em−1 I Ẽm Ẽn−1 P̃γ Ũγ

We can now drop the auxiliary identity map in the center, to obtain the rightward-
initial merge.

· · · · · · · · · · · · ·L̃γ E0 Em−1 Ẽm Ẽn−1 P̃γ Ũγ

Alternatively, we can also propagate the permutation matrix leftwards, to obtain the
result of the leftward intial algorithm. This would transform the EL and ÊL matrices
into EU and ÊU in Qα

· · · · · · · · · · · · · ·L̃γ P̃γ Ẽ0 Ẽm−1 I Em En−1 Ũγ

· · · · · · · · · · · · ·L̃γ P̃γ Ẽ0 Ẽm−1 Em En−1 Ũγ

Note that the results are not exactly equal to the result you would obtain from
applying either a rightward-intial or leftward-intial algorithm on the entire quiver.



CHAPTER 3. QUIVER REPRESENTATIONS AND ALGORITHMS 94

While the echelon matrices are of the right shape, the terminal matrices P̃γŨγ or
L̃γP̃γ appear in reversed order. However this does not matter if this is used to merge
barcode factorizations at a higher level. At a higher level of the recursion, we would
have the following product in the center auxiliary edge,

· · · · · · · · · · · · · ·Lα E0 Em−1 PαUαLβPβ Em En−1 Uβ

They can still be multiplied out and the LQU factorization can be performed without
affecting the rest of the algorithm.

PαUαLβPβ = Cγ

Cγ = LγPγUγ

Thus we have seen how a divide an conquer algorithm can be used to compute the
barcode factorization of a quiver representation in two parts. We can now apply this
recursively until the size of the quiver is small enough that it is more efficient to apply
one of the sequential algorithms.

3.3.7 Correctness and Uniqueness of the Barcode Factoriza-

tion

We have presented sequential and divide and conquer parallel algorithms to produce
a barcode matrix Λ from the companion matrix A of a finite dimensional quiver
representation of type An. In this section we’ll show the algorithm produces a quiver
isomorphism A ∼= Λ, and that Λ uniquely defines the quiver isomorphism class.

Proposition 3.3.4. Every finite dimensional quiver representation of type An has a
barcode form.

Proof. This follows immediately from the existence of the LEUP and PLEU factor-
izations at each step, and the commutations established.

Proposition 3.3.5. The barcode factorization A = BΛB−1 is a quiver isomorphism.



CHAPTER 3. QUIVER REPRESENTATIONS AND ALGORITHMS 95

Proof. We have shown that the factorizations at each step exist, and by Lemma 3.2.8
each matrix passing step is a quiver isomorphism.

The following theorem recasts the known fact that a barcode determines the iso-
morphism class of a zigzag or persistence module in terms of the barcode form.

Theorem 3.3.6. The barcode form Λ of a quiver representation of type An uniquely
determines its isomorphism class.

Proof. This is known to be the case through Gabriel’s theorem [50] and the origi-
nal work on zigzag homology [22] showing that the barcode is equivalent to interval
indecomposables, but we will provide a self-contained proof in our notation for com-
pleteness.

If two quiver representations with companion matrices A,A′ have the same bar-
code factorization, then Λ = B−1AB = (B′)−1A′B′, so A′ = B′B−1AB(B′)−1. Thus,
the quiver representations are isomorphic via the isomorphsim represented by B′B−1.

Now, suppose that two quiver representations with companion matrices A,A′ are
isomorphic, that is, A′ = MAM−1 for some block-diagional invertible matrix M . In
general, the barcode factorization algorithm will play out very differently on the two
companion matrices, with different L, E, U , and P factors at each step, and it isn’t
obvious that the intervals recovered by Section 3.2.3 will be the same.

Let A = BΛB−1 and A′ = B′Λ′(B′)−1 be barcode factorizations. Then

Λ = B−1M−1B′ Λ′ (B′)−1MB

Let v ∈ Vb be the basis element for an indecomposable I[b, d] in A, and v′ = Mv.
Note that v′ may be a mix of basis elements for indecomposables of A′. We can now
trace v through the quiver.

Vi Vi+1 · · ·

V ′i V ′i+1 · · ·

Ai

Mi

Ai+1

Mi+1

A′i A′i

There are two cases: either Vi → Vi+1, in which case either both the image Aiv and
the image A′iv′ are nonzero, or both images must be nonzero (otherwise the diagram
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does not commute and M is not a quiver isomorphism). In the other case, Vi+1 → Vi,
in which case either both v and v′ are images of elements in V ∗i+1, or both are not
images. Thus, since we can propagate v from Vb to Vd, its image v′ must propagate
from V ′b to V ′d , and if we consider v′ in the indecomposable basis, there must be an
element for the indecomposbable I[b, d]. We choose to associate v′ with this element.
Now, suppose that w is also a basis element for an indecomposable I[b, d] in A, and
is associated with the same basis element for I[b, d] in A′. Then M(v − w) would
have a zero coefficient for an element of I[a, b], and could not be propagated the full
length of the bar in A′, so we must have v = w for the diagram to commute. Thus,
the indecomposables of A map injectively to the indecomposables of A′.

We can then use an identical argument to see that the inverse map M−1 maps
the indecomposbales of A′ inectively to indecomposables of A. Thus, there is a
bijection between the indecomposables, and the barcode forms must be identical (up
to permutation).

Theorem 3.3.6 is equivalent to the statement that the indecomposables of An-
type quivers are interval indecomposables. Note that the uniqueness of the Jordan
normal form for companion matrices is a special case of Theorem 3.3.6 that applies
to persistence-type quivers, following Section 3.2.4.

3.4 Experiments

We’ll now investigate several experiments which demonstrate the flexibility of our
methodology. Several preliminary timing results are presented based on computations
done on an Intel i7-6820HQ CPU capable of running 8 threads concurrently.

3.4.1 Subsets and Rips Complexes

Let X0,X1, · · · ⊆ X be finite subsets of a space, and r0, r1, · · · ∈ R be parameters for
the Rips construction. We can construct a zigzag through unions of subsets

R(X0; r0) R(X0 ∪X1,max{r0, r1}) R(X1; r1) . . . (3.19)
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Figure 3.4: Time to compute zigzag homology of a zigzag diagram computed on
subsamples of a noisy circle. Normal noise with variance 0.1 is added to points
sampled from a unit circle. 200 points are contained in each subsample, and r = 0.35.
The horizontal axis indicates the number of samples used in the diagram. Left: time
to compute zigzag homology for both BATS and Dionysus. Right: Speedup seen
using BATS instead of Dionysus. At the right hand side, BATS is over 600x faster.

The case where r = r0 = r1 = . . . was proposed in [22] as a “topological bootstrap-
ping” method to investigate the robustness of homological features for samples Xi

sampled uniformly from some larger point cloud X, and initial investigations were
performed by Tausz [98]. A single value of r is also used in the case of [23] where the
Xi come from thickened level sets of a map f : X→ R

Xi = f−1((ai, bi))

where (ai, bi) ∩ (ai+1, bi+1) 6= ∅.
As seen in Figure 3.4, the implementation in BATS displays a large performance

advantage over Dionysus for subsampled Rips constructions, especially as the length
of the diagram grows.

Another application of a zigzag of this form is to approximate the persistent
homology of the full Rips filtration. This was originally implemented by Morozov
in his Dionysus software [79], and several variants with theoretical guarantees are
investigated in [85]. In this situation, X0 ⊆ X1 ⊆ · · · , and r0 ≥ r1 ≥ · · · . An
example can be found in Figure 3.5. At the time of this writing, the computational
bottleneck in this experiment is in a dense linear algebra implementation of the quiver
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Figure 3.5: Left: persistence diagram for Rips filtration on 200 points sampled from
the unit circle. The unoptimized reduction algorithm runs in 20 seconds in BATS.
Right: An approximate persistence diagram created using the discrete Morozov zigzag
construction in [85] using the suggested parameters. The zigzag computation takes
approximately 0.5 seconds in BATS. While the birth and death times are not identical,
both diagrams qualitatively display the same information, namely a single connected
component and a robust H1 class, agreeing with the homology of the circle.

algorithm, which grows cubically with the size of the point cloud. This is due to the
largeH0 dimension at the end of the diagram, and we expect performance will improve
significantly if replaced by a sparse computation.

3.4.2 Bivariate Nerve

Another application of zigzag homology is to investigate the relationship between
algebraic features in nerves of two or more covers. This question arises naturally
when generating covers algorithmically, where one might wonder how sensitive the
Nerve is to choices that might be made or randomness in initialization. A related
question is the stability of witness complexes to the choice of landmark set, and
a bivariate witness complex was proposed in [22] and subsequently investigated by
Tausz [98].

Definition 3.4.1. Given two covers U , V of a space X, the bivariate cover is the
fibered product U ×X V ⊆ U × V. Explicitly,

U ×X V = {U × V | U ∈ U , V ∈ V , U ∩ V 6= ∅}
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H 0

0 2 4 6 8

H 1

H 0

0 2 4 6 8

H 1

Figure 3.6: Zigzag barcodes of bivariate Nerve diagram on 5 covers of 500 points on
the unit circle. Covers are computed by selecting 20 random landmarks. Left: each
point is assigned to closest 2 landmarks. Right: each point is assigned to closest 3
landmarks. Note that both diagrams have single long bars in dimensions 0 and 1,
agreeing with the homology of the circle.

and U × V can be identified as the interesection U ∩ V to form another cover of X.
We will denote the nerve of U ×X V as N (U ,V).

Due to the product structure on U×V , there are projection maps pU : U×V 7→ U

and pV : U × V 7→ V . These maps extend to simplicial maps on the nerves:

N (U) N (U ,V) N (V)
pU pV (3.20)

We will consider covers based on landmark sets, as described in Section 4.4.4.
Briefly, we choose a landmark set L ⊂ X, and assign each point in X to the k-nearest
landmarks. An example is performed in Figure 3.6, where covers of a noisy circle are
created. We see that if each point belongs to only 2 sets that while there is a single
long H1 class, there are also many short-lived H1 classes since there are no non-empty
3-way intersections to fill in small holes. However, if every point is assigned to 3 sets,
then there is a single H1 class that persists the length of the diagram.
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3.4.3 Sierpinski Triangle

Our final application is an example of how persistent homology may be used with
more general cell maps. We’ll consider a sequence of spaces converging to a Sierpinksi
triangle:

. . .

(3.21)

Where each map above sends vertices to the vertex in the same location in the
image to the right. Then each edge is subdivided in the image, introducing a new
node and two new edges, and additional edges are introduced to fill in new interior
triangles.

The maps are not simplicial because each edge is subdivided at each iteration. One
could also consider a filtration of simplicial complexes based on the finest Sierpinski
mesh, but the advantage of the mapping construction is that it is easy to add another
iteration of the subdivision to the end of the sequence without recomputing every
space. We compute the persistence barcode in Figure 3.7. There is a single connected
component, and the kth iteration (starting at k = 0) adds another 3k H1 classes.

This is a fairly simple example in which the maps are easy to specify. In general,
it can be difficult to specify arbitrary cell maps, and in Section 4.1 we will see one
potential algorithmic approach to generating cell maps through solving an extension
problem which could potentially simplify the problem for practical applications. An
implementation is beyond the scope of this work, but our methodology opens up the
possibility of using these constructions and general cellular maps in future work.

3.5 Conclusion & Future Directions

We have presented a matrix factorization method for computing the indecomposables
(barcodes) of finite type-A quiver representations. A natural question that arises is
whether similar algorithms might exist for other types of quiver representations, which
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Figure 3.7: Persistence barcode showing 4 iterations of the sequence in Equa-
tion (3.21).

then might be used to extract information about different diagrams of spaces, as in
Section 3.2.2. Representations on the other Dynkin diagrams almost certainly are
amenable to similar techniques, as a result of Gabriel’s theorem [50], but it would
be necessary to go beyond sequential application of LU factorizations. However, it is
questionable whether type-D and type-E quiver representaitons would find applica-
tions in applied topology. A more promising direction is to develop general algorithms
for type-Ã representations, whose underlying graphs discretize a circle. Burghelea [19]
has shown topologicially interesting applications, and in collaboration with Dey [20]
developed an algorithm that works in certain limited situations.

It is generally much more difficult to compute invariants of wild-type quiver repre-
sentations, as has been seen in multi-parameter persistence [26]. However, one might
hope that for certain specialized situations, the problem becomes more tractable. This
could be through choosing a specific field F to work with, or by considering situations
in which induced maps on homology satisfy certain properties.

We have considered using arbitrary induced maps on homology in our quiver rep-
resentations. In the special case of inclusion maps, enormous compression can be
achieved by working at the chain level, as seen in our analysis of Algorithm 1. One
might ask whether there are other situations in which such compression is achievable.
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Finally, we have worked exclusively with homology, whereas cohomology has addi-
tional structure in the form of various cohomology operations [80]. An interesting
question is whether these cohomology operations could potentially aid in accelerating
computations when computing barcodes for all dimensions simultaneously, both at
the chain level, and at the level of induced maps.



Chapter 4

Extensions of Maps and Interleavings

So far, we have discussed a computational framework for computing algebraic in-
variants of diagrams of topological spaces. However, in order to effectively use this
computational tool in practical situations we need to be able to

1. Create diagrams of spaces from data.

2. Analyze how the algebraic output is affected by perturbation or approximation.

These two topics are related through the notion of interleavings. In this chapter,
we develop a general-purpose framework for generating maps between filtered spaces
using carriers. Section 4.1 will introduce the classical carrier construction, and Sec-
tion 4.2 will introduce the use of interleavings to compare persistent homology of two
filtered spaces. In Section 4.3, we will extend the classical notion of carrier to the fil-
tered setting and use this to prove several results on geometric complexes concerning
stability of persistent homology to perturbations of underlying data, and comparing
the persistent homology of different geometric constructions. Finally, in Section 4.4,
we will introduce complexes parameterized by a cover, and use filtered carriers to ex-
amine stability of these complexes and compare these complexes to other geometric
constructions.
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4.1 Carriers and Extensions of Maps

We have seen how simplicial maps are completely defined by initial data on the vertex
set in Equation 2.9. This makes simplicial maps easy to define and use in practice,
but unfortunately does not meet all needs. Fortunately, a general-purpose tool exists,
based on carriers, which allows for extensions of maps outside the simplicial setting,
and which requires the same, or even weaker initial data.

The extension problem in topology can be stated as follows: given a subset A ⊂ X,
and a map f : A → Y , when can f be extended to a continuous map f ∗ : X → Y

so that f ∗ |A= f? The earliest general result in this direction is the Tietze extension
theorem [100], which gives an affirmative answer for closed subsets A of a metric space
X mapped to the real line. By 1940, a variety of results in this direction had been
found, as discussed in [47], which gives the negative example: The identity mapping
Sn ↪→ Sn has no extension to Bn+1 → Sn.

Carriers are a general-purpose tool in algebraic topology, which, for instance, are
useful for establishing equivalence of different homology theories. See [49, 81] for
introductions in this context, and [80] for an equivariant application. The notion
of “carrying” cells dates back at least to the development of homology of simplicial
complexes [4]. The use of carriers in algebraic topology has been largely superseded
by acyclic models [48], but as we’ll see the concept of carrier will translate nicely to
explicit algorithms, and to the filtered setting. This section will develop the classical
theory of carriers from an algorithmic viewpoint, in the spirit of Chapter 2.

Because our applications are to finite simplicial complexes built from data, through-
out this section we will assume that complexes are simplicial unless otherwise noted,
and that filtrations can be described using a discrete subset of the real numbers.

4.1.1 Carriers

We’ll begin by defining parallel notions of ‘carrying’ for both cell complexes and chain
complexes.

Definition 4.1.1. Let A ⊆ X be a sub-cell complex. A cell x ∈ X is carried by A if
x ∈ A.



CHAPTER 4. EXTENSIONS OF MAPS AND INTERLEAVINGS 105

The similar notion for chain complexes is

Definition 4.1.2. Let L∗ ⊆ C∗ be a sub-chain complex. A chain x ∈ C∗ is carried
by L∗ if x is zero everywhere outside of L∗ in C∗.

Definition 4.1.3. A carrier C : X → Y is a map between cells x ∈ X and sub-cell
complexes C(x) ⊆ Y so that if z ⊂ x is a face, then C(z) ⊆ C(x).

and for chain complexes,

Definition 4.1.4. A carrier C : C∗ → D∗ between chain complexes is a map between
elements of a (chosen) basis B∗ of C∗ and sub-chain complexes of D∗. We denote the
subcomplex associated to a basis element b ∈ B∗ as C(b) ⊆ D∗. The carrier must have
the property that if b′ has a nonzero coefficient in ∂b, then C(b′) ⊆ C(b). We say the
carrier C is proper with respect to a basis BD

∗ of D∗ if C(x) is generated by a sub-basis
of BD

∗ for each x ∈ B∗.

In this section, we will always use B∗ to denote the basis of C∗ used by the carrier.
Our chain complexes will always arise from cell complexes, so we will take the basis
B∗ to be given by the cell basis. In this situation, the chain functor preserves carriers,
so we will use C to denote the carrier on cell complexes and the associated carrier
on chain complexes interchangeably, with the meaning determined by context. Note
that carriers of cell complexes always produce carriers of chain complexes that are
proper with respect to the cell basis.

Definition 4.1.5. Let f : X → Y be a cellular map, and C : X → Y be a carrier.
We say f is carried by C if f(x) ⊆ C(x) for all x ∈ X .

Definition 4.1.6. Let C∗, D∗ be chain complexes, C : C∗ → D∗ be a carrier, and
Fk : Ck → D` be a map. We say Fk is carried by C if Fk(b) ∈ C(b) for all b ∈ Bk ⊂ Ck.

Using this definition, we can talk about both chain maps and chain homotopies
being carried by C.

Definition 4.1.7. We say a carrier C of chain complexes is acyclic if C(b) is acyclic
(Definition 2.4.4) for every b ∈ B∗.
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We say a carrier of cell complexes C : X → Y is acyclic if the associated carrier
of chain complexes is acyclic.

Theorem 4.1.8. (Acyclic carrier theorem) If C : C∗ → D∗ is acyclic, and L∗ ⊂ C∗

is a sub-chain complex of C∗, then any chain map F̂∗ : L∗ → D∗ can be extended
to a chain map F∗ : C∗ → D∗. Furthermore, this extension is unique up to chain
homotopy.

Proofs can be found in [49, 80, 81]. A similar proof will be given for Proposi-
tion 4.1.10. Note that because the extension is unique up to chain homotopy, the
induced maps on homology will be isomorphic.

To see why Theorem 4.1.8 is so useful from a practical perspective, we can take
L∗ = C0 (i.e. the zero-chains), and extend to a full chain map, just as we are able to do
for simplicial maps, but without restrictions on the map (or spaces) being simplicial.
This is particularly useful in the context of point-cloud data, where we typically will
begin with a map between points.

Proposition 4.1.9. A carrier between cell complexes C : X → Y is acyclic if C(x) is
contractible for each x ∈ X .

This follows readily from the fact that contractible spaces have trivial homology,
corollary 2.4.6..

Proposition 4.1.10. Let C∗, D∗ be chain complexes. Let F∗, G∗ : C∗ → D∗ be chain
maps carried by an acyclic carrier C : C∗ → D∗, and H : C0 → D1 be a homotopy of
F∗ and G∗ on 0-chains carried by C. That is ∂1H(x) = F (x)−G(x) and H(x) ∈ C(x).
Then H can be extended to a full chain homotopy H∗ of F∗ and G∗ carried by C.

Proof. As usual, we will use B to denote the basis for the carrier. Proof is by induction
on dimension of the map. Let H0 = H. We have that ∂1H0 = F0−G0 (note ∂0 = 0),
so H is a homotopy of 0-chains.

Now, suppose that we have extended H to Hi, carried by C so that

Hi−1∂i + ∂i+1Hi = Fi −Gi
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and Hi(x) ∈ C(x) for all x ∈ Bi. Note that

∂i+1[Fi+1 −Gi+1 −Hi∂i+1] = ∂i+1Fi+1 − ∂i+1Gi+1 − ∂i+1Hi∂i+1

= Fi∂i+1 −Gi∂i+1 − ∂i+1Hi∂i+1

= Fi∂i+1 −Gi∂i+1 − [Fi −Gi −Hi−1∂i]∂i+1

= Hi−1∂i∂i+1

= 0

Let x ∈ Bi+1 be a basis element, with boundary ∂i+1x =
∑

j αjyj where yj ∈ Bi

is in the carrier basis. Because Fi+1, Gi+1 and Hi are all carried by C, we have that
(Fi+1−Gi+1−Hi∂i+1)(x) ∈ C(x), and from the above ∂i+1(Fi+1−Gi+1−Hi∂i+1)(x) = 0,
so it is a cycle. Because the carrier is acyclic, this cycle must be a boundary of an
(i+ 2)-chain in C(x), which we will denote Hi+1(x). Thus,

∂i+2Hi+1(x) +Hi∂i+1(x) = Fi+1(x)−Gi+1(x)

By choosing such a chain for each x ∈ Bi+1, we have extended the chain homotopy
to dimension (i + 1) in a way that is carried by C. By induction on dimension, we
construct a chain homotopy H∗ between F∗ and G∗.

Maps carried by the same acyclic carrier are typically homotopic to similar maps,
as in the following example.

Proposition 4.1.11. Suppose F∗, G∗ : C∗ → D∗ are augmentation-preserving chain
maps carried by an acyclic carrier C. Then F∗ and G∗ are chain-homotopic, and thus
produce identical induced maps on homology.

Proof. For each basis element x ∈ C0, F0(x), G0(x) ∈ C(x), and because F∗ and G∗
are augmentation preserving, εx = εF (x) = εG(x), so ε

(
F (x) − G(x)) = 0. Because

C is acyclic, ker ε = img ∂1, so there must exist a 1-chain H(x) ∈ C(x) so that
∂1H(x) = F (x) − G(x), which is a homotopy of zero-chains. We can then apply
4.1.10 to extend this to a homotopy H∗ : F∗ → G∗.
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Note, that as discussed in Section 2.3.1, chain maps obtained through the cellular
chain functor are augmentation preserving. This leads to the following corollary:

Corollary 4.1.12. Let f, g : X → Y be cellular maps carried by an acyclic carrier
C : X → Y. Then f and g induce isomorphic maps on homology.

Furthermore, just the existence of an acyclic carrier implies the existence of an
augmentation-preserving chain map.

Proposition 4.1.13. Let C : C∗ → D∗ be an acyclic carrier that is proper with respect
to a basis BD

∗ of D∗. Then there exists a canonical augmentation-preserving chain
map F∗ : C∗ → D∗ carried by C.

Proof. For each x ∈ B0, we simply assign F0(x) = y for some y ∈ BD
0 |C(x). Such a y

must exist because C(x) is non-empty and proper with respect to BD
∗ . We can then

extend this map to higher dimensions using Theorem 4.1.8. This map preserves the
canonical augmentation (Definition 2.3.1) on both complexes because it sends basis
elements of 0-chains to basis elements of 0-chains.

Proposition 4.1.11 shows that this map is unique up to chain homotopy. We’ll
now turn to specializations of carriers for simplicial complexes.

Definition 4.1.14. Let X and Y be simplicial complexes. We say a carrier C : X →
Y is simplicial if C(x) is a simplex for all x ∈ X .

Note that simplicial carriers are acyclic because simplices are contractible.

Definition 4.1.15. Let f, g : X → Y be simplicial maps. We say f and g are
contiguous if for each simplex (x0, . . . , xk) ∈ X , the (possibly degenerate) set of points

f(x0), . . . , f(xk), g(x0), . . . , g(xk)

span a simplex in Y.

Given contiguous simplicial maps f, g : X → Y , we can define a simplicial carrier
C : X → Y via

C(x0, . . . , xk) = 〈f(x0), . . . , f(xk), g(x0), . . . , g(xk)〉 (4.1)
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The carrier is simplicial by definition of contiguous simplicial map. It follows imme-
diately from corollary 4.1.12 that f and g induce isomorphic maps on homology. An
alternative proof can be found in [81] 1.12.

4.1.2 Algorithmic Extensions of Maps

In the preceding section, we established some useful theoretical properties of acyclic
carriers. In this section, we will provide explicit algorithms for extending maps using
carriers in the flavor of Chapter 2.

The key observation is that if a carrier is acyclic, then all cycles in C(σ) are
boundaries. This means that if a vector y ∈ C(σ)k is a cycle, then the linear system

y = ∂
C(σ)
k+1 z (4.2)

is consistent, meaning a solution z exists.

Algorithm 9 Extension of Map Using Carrier
1: Input: basis element x ∈ Ck+1. Chain map extended up to dimension k: Fk, and

carrier C(x) ⊆ D∗

2: Result: Extension of F∗ : C∗ → D∗ by computing Fk+1x

3: compute y = Fk∂
C
k+1x

4: compute Rk+1Uk+1 = ∂
C(x)
k+1

5: solve y = Rk+1w

6: solve w = Uk+1z

7: return z

Note that because Uk+1 is invertible, that the only place where the algorithm may
fail is in Line 5, if y is not in the column space of Rk+1 (i.e. y is not a boundary). If
y is always a boundary, then the algorithm will terminate successfully.

Proposition 4.1.16. If Algorithm 9 terminates successfully, then the resulting map
is valid chain map.

Proof. By construction, the maps commute with the boundary operators.
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Remark 4.1.17. Algorithm 9 may succeed even when the carriers are not acyclic. If
this is the case, the map is a valid chain map, but is not unique up to homotopy, so
the induced map on homology will generally not be unique.

Proposition 4.1.18. If the carrier C is acyclic, then Algorithm 9 will terminate
successfully.

Proof. Because y = Fk∂
C
k+1x is a cycle, and C is acyclic, the linear system in Line 5

is consistent. This holds for every x ∈ B ⊂ Ck+1.

Remark 4.1.19. This means the construction of an acyclic carrier has two nice
properties:

1. Algorithm 9 is guaranteed to successfully extend a chain map

2. That extension is unique up to homotopy, so while the algorithm makes a partic-
ular choice of extension, any other valid choice would produce the same induced
map on homology.

4.1.3 From Relations to Maps

We will now develop an approach to obtaining carriers (and therefore maps) from
complexes built from data.

Definition 4.1.20. A binary relation (or simply, relation) between two sets X and
Y is a subset Ω ⊆ X × Y .

With a slight abuse of notation, we will use the following shorthand

Ω(x) = {y | (x, y) ∈ Ω}, Ω(y) = {x | (x, y) ∈ Ω} (4.3)

And more generally,

Ω(x0, . . . , xk) =
k⋃
i=0

Ω(xi), Ω(y0, . . . , y`) =
⋃̀
j=0

Ω(yj) (4.4)
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Following [64], we’ll say a relation is left total if for all x ∈ X, Ω(x) is not empty,
and a relation is right total if for all y ∈ Y , Ω(y) is not empty.

Definition 4.1.21. A binary relation Ω ⊆ X × Y is a correspondence if it is both
left-total and right-total. We will use C(X, Y ) to denote the set of all correspondences
on X and Y .

In practice, binary relations will arise naturally by identifying points in X with
points in Y in some way, for instance by taking all points within a certain distance
or with high enough similarity.

Definition 4.1.22. Let f : X × Y → R. The sublevelset relation of f at level r is
the relation

Ωf,r = {(x, y) ∈ X × Y | f(x, y) ≤ r} (4.5)

We can obtain carriers from relations in the following way

Definition 4.1.23. Let Ω ⊂ X × Y be a left-total binary relation. Let X and Y be
cell complexes with zero-skeleta X0 = X and Y0 = Y . Then we can define a carrier
CΩ : X → Y via

CΩ(σ) = 〈Ω(σ0)〉 (4.6)

where σ0 is the zero-skeleton of the cell σ.

Note that CΩ satisfies Definition 4.1.3 because if τ ⊂ σ is a face, then τ0 ⊆ σ0,
and so CΩ(τ) ⊆ CΩ(σ). We’ll say that the relation Ω is acyclic if CΩ is acyclic. We
can similarly define a carrier DΩ : Y → X if Ω is right-total.

A natural way to define a chain map F∗ : C∗(X ) → C∗(Y) given a (left-total)
relation Ω is to start with a map of points F∗ : x 7→ y ∈ Ω(x) that is carried by Ω, and
then extending to higher-order cells using the carrier. Applying Proposition 4.1.11,
we see that the choice of point-wise map does not matter when computing induced
maps on homology when Ω is acyclic:

Corollary 4.1.24. (to Proposition 4.1.11) Let Ω be an acyclic relation and F∗, G∗ be
extensions of vertex maps carried by CΩ. Then F∗ and G∗ are chain homotopic.
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Corollary 4.1.25. Suppose that X ⊂ Y , and X ⊆ Y, and there is an acyclic relation
Ω carrying the inclusion map, i.e. x ∈ Ω(x). Then any vertex map carried by CΩ is
chain homotopic to the inclusion map.

Proof. This is a special case of corollary 4.1.24, where f = ι, the inclusion map.

4.1.4 Composition of Carriers

Carriers of cell complexes can be composed in a well-defined way. If C : X → Y and
D : Y → Z are carriers, then we can define D ◦ C : X → Z

D ◦ C(x) =
⋃

y∈C(x)

D(y) (4.7)

Note that composition of carriers of chain complexes may not be well-defined, since
if C : C∗ → D∗ is a carrier the sub-chain complex C(b) ⊆ D∗ need not admit a basis
that is a sub-basis of D∗. In the case where C(b) proper, then Equation (4.7) can be
applied. This is the case when the chain carriers are obtained from cell carriers.

Remark 4.1.26. Composition of acyclic carriers need not be acyclic. For example,
we can define a cell carrier from the cycle graph on 4 edges (the boundary of a square)
to itself, sending a vertex to its star, and an edge to the union of the two stars of its
boundary vertices. This carrier is acyclic, but if we compose the carrier with itself
and apply to any cell, the composite carrier is the whole space, which has a cycle.

In certain situations, acyclic carriers can have stronger properties.

Proposition 4.1.27. Let C : X → Y be a simplicial carrier, and D : Y → Z be an
acyclic carrier. Then D ◦ C is acyclic.

Proof. Let x ∈ X . Then C(x) = y is a simplex in Y , whose carrier D(y) is acyclic.
Thus, D ◦ C is acyclic for all x ∈ X .

Corollary 4.1.28. If C : X → Y and D : Y → Z are simplicial carriers (thus
acyclic), then D ◦ C is simplicial (thus acyclic).
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Proof. Let x ∈ X . Because C is simplicial, C(x) = y is a simplex in Y , and because
D is simplicial, D(y) is a simplex in Z. Thus, D ◦ C(x) = D(y) is a simplex in Z,
and because this holds for all simplices x ∈ X , the composite D ◦ C is simplicial.

Corollary 4.1.29. Let C : X → Y and D : Y → X be simplicial carriers, so that
idX is carried by D ◦ C, and idY is carried by C ◦D. Then H∗(X ) ∼= H∗(Y).

Proof. Because C and D are simplicial, C ◦D and D ◦ C are both simplicial and thus
acyclic. We can take any cellular map f : X → Y carried by C, and any cellular map
g : Y → X carried by D. Applying the chain functor, because g ◦ f is carried by
D◦C, the corresponding chain map is homotopic to the chain map for idX . Similarly,
f ◦ g is homotopic to idY at the chain level.

Maps of cell complexes can be used to generate carriers

Definition 4.1.30. Let f : X → Y be a cellular map. We define the carrier Cf :

X → Y to be Cf (x) = f(x) ⊆ Y, for each cell x ∈ X . When composing carriers, we
will use the notation D ◦ f to denote the composition D ◦ Cf .

Note that Cf carries f by definition. In the case where f is a simplicial map, then
the carrier Cf is simplicial.

4.1.5 From Acyclic Carriers to Equivalence

We’ll now investigate conditions under which we can use acyclic carriers to demon-
strate that two spaces have identical homology.

Proposition 4.1.31. Let X ,Y be cell complexes, with carriers C : X → Y acyclic;
D : Y → X acyclic; A : X → X acyclic, carrying the identity, with D ◦ C ⊆ A; and
B : Y → Y acyclic, carrying the identity, with C ◦D ⊆ B. Then H∗(X ) ' H∗(Y).

Proof. Because C is acyclic, there exists an augmentation-preserving chain map F∗ :

C∗(X )→ C∗(Y) carried by C, and becauseD is acyclic, there exists and augmentation-
preserving chain map G∗ : C∗(Y ) → C∗(X ) carried by D. The composition G∗ ◦ F∗
is augmentation preserving and carried by D ◦ C ⊆ A, which is acyclic, so G∗ ◦ F∗ is
chain homotopic to idC∗(X ) : C∗(X )→ C∗(X ). Similarly, F∗ ◦G∗ ' idC∗(Y).
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Thus the induced maps on homology are isomorphims, so H∗(X ) ' H∗(Y).

We’ll now use this to show the equivalence of a variant of the Nerve of a cover to
the Nerve itself.

Definition 4.1.32. Let U be a cover of a set X. The maximal self-refinement of U ,
denoted Ū , is defined as

Ū = {V | V =
⋂
k

Uk 6= ∅, {Uk} ⊆ U} (4.8)

Definition 4.1.33. Let U be a cover of a set X. The subdivision of the Nerve of
U , denoted N (Ū) is a simplicial complex on the vertex set Ū , where (V0, . . . , Vk) ∈
N (Ū) if there is some permutation of the indices so that Vi0 ⊆ Vi1 ⊆ · · · ⊆ Vik .
This definition coincides with the definition of the Nerve of Ū considered as a poset
(category).

In the case that Ū is non-degenerate, meaning that ∩{Uk} 6⊆ Ui for all Ui 6∈ {Uk}
for all non-empty intersections, N (Ū) is simply the standard subdivision of N (U).
This immediately implies that N (Ū) ' N (U) [51]. We will prove equivalence on
homology even with degeneracy.

Proposition 4.1.34. H∗(N (U)) ' H∗(N (Ū)).

Proof. We define a carrier C : N (U)→ N (Ū) via

C(U0, . . . , Uk) = 〈V = ∩{Ui} | {Ui} ⊆ {U0, . . . , Uk}〉 (4.9)

This carrier is acyclic because it forms a cone with the vertex V = ∩ki=0Ui.
We define a carrier D : N (Ū)→ N (U) via

C(V0, . . . , Vk) = 〈U | U ⊃ Vi ∈ {V0, . . . , Vk}〉 (4.10)

Note that if (V0, . . . , Vk) is a simplex inN (Ū), there is a smallest set Vi0 in the simplex,
and so C(V0, . . . , Vk) = C(Vi0). This also implies that C is simplicial, thus acyclic.
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Now, we have that D ◦ C(U0, . . . , Uk) is a the simplex (U0, . . . , Uk, U
′
0, . . . ) where

the extra simplices U ′i are added if ∩ki=0Ui ⊆ U ′i , which can appear for degenerate Ū .
This carrier is simplicial, thus acyclic, and clearly carries the identity.

The composition C ◦D is acyclic because C ◦D(V0, . . . , Vk) forms a cone with the
vertex on the minimal element Vi0 ∈ {V0, . . . , Vk}. This composite carrier also carries
the identity map.

We can now apply Proposition 4.1.31 to obtain the result.

4.2 Interleavings

An important question that we have put off until now is how to compare the persistent
homology of two constructions. For instance, we would like to understand how the
persistent homology of a Rips filtration changes if we perturb the underlying point
cloud, or if we compare two samples from the same distribution. Other important
applications are in simplifying computation - for instance, Rips filtrations tend to
have a large number of simplices at large distances. Is there a way to perform a
computation on a simplified complex that captures the large features while perturbing
the small features?

Because homology is a homotopy invariant, if X ,Y are topological spaces and
f : X → Y , g : Y → X are maps such that g ◦ f ' idX and f ◦ g ' idY , then
H∗(X ) ∼= H∗(Y). On the chain level, C∗, D∗ have isomorphic homology if there exist
maps F∗ : C∗ → D∗ and G∗ : D∗ → C∗, so that G∗F∗ ' IC∗ , and F∗G∗ ' ID∗ .

In the setting of persistent homology, if X T and YT are filtrations then if X t ' Y t

for all t ∈ T , then PH∗(X T ) ' PH∗(YT ). However, the requirement that two filtered
spaces be homotopic at each filtration value is too strong to work in the setting of
perturbed point clouds, or approximations of complexes. In general, we care about
relating homological features that persist for a long range of filtration parameters,
but want the capacity to ignore features that are only present for a brief interval,
since these are typically interpretable as artifacts of sampling/perturbation.

These issues are addressed through the notion of interleaving. The basic idea is
to construct maps F̃ t

k, G̃
t
k, t ∈ T , that can increase the filtration parameter so that
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the following diagram commutes:

Hk(X t) Hk(X t+ε) Hk(X t+2ε)

Hk(Y t) Hk(Y t+ε) Hk(Y t+2ε)

F̃ t
k

F̃ t+εk

G̃
t
k G̃

t+
ε

k
(4.11)

which can be accomplished if we construct chain maps F t
k, G

t
k, t ∈ T

Ck(X t) Ck(X t+ε) Ck(X t+2ε)

Ck(Y t) Ck(Y t+ε) Ck(Y t+2ε)

F t
k

F t+εk

G
t
k G

t+
ε

k
(4.12)

so that Gt+ε
k ◦F t

k ' I t,t+2ε
k and F t+ε

k ◦Gt
k ' I t,t+2ε

k for all t, where Ik denote the relevant
inclusion maps. In this situation, we say that the chain complexes are ε-interleaved.

The rest of Section 4.2 will give a more formal development of interleavings, in-
troduce the interleaving distance, and discuss geometric interpretations of the inter-
leaving on persistence diagrams using the bottleneck distance.

The notion of interleaving was first introduced in [28], and a thorough reference
for 1-dimensional interleavings is [30]. Interleavings of multi-parameter persistence
modules are discussed in [67, 68], and more general posets in [18]. A homotopy-
theoretic version of interleaving is also discussed in [12, 68], but we will focus on the
algebraic version.

4.2.1 Filtrations, Posets, and Non-decreasing Maps

We will primarily be interested in comparing real-valued filtrations using interleavings,
but it can be instructive to consider generalizations. Recall a filtered topological
space, or filtration, is a sequence of spaces

X 0 ⊂ · · · ⊆ X t ⊆ . . .
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Alternatively, we can define a filtration as a functor from the totally ordered set R+

to the category of topological spaces where all maps are inclusions.
More generally, we can consider functors from partially ordered sets (posets) to

topological categories.

Definition 4.2.1. A partially ordered set, or poset, is a small category T where there
is a unique arrow ti → tj iff ti ≤ tj

The notion of filtration can be expanded to posets

Definition 4.2.2. A filtration over a poset T is a functor from T to a topological
category where all maps are inclusions.

For our applications (real-valued filtrations), we will consider posets T which
are finite strict total orderings, considered as discrete subsets of R. In the case
where T ⊆ Rd, the study of the diagrams of induced maps on homology is known as
multi-parameter persistence [67], and for more general posets is known as generalized
persistence [18]. While our applications do not use these fully generalized notions,
the language of posets offers a clean description of the objects we will study and can
give insight into some possible extensions.

Definition 4.2.3. A filtered basis over a poset T is a collection of bases Bt where
Bt ⊆ Bt′ for all t ≤ t′ ∈ T .

Definition 4.2.4. A filtered chain complex over a poset T is a functor from T to the
category of chain complexes where Ct

∗ ⊆ Ct′
∗ for all t ≤ t′.

We note that the chain functor applied to a filtration of cell complexes produces
a filtered basis (from the filtration on cells) for a filtered chain complex.

In order to discuss interleavings, we need a notion of non-decreasing map, which
is encoded as a poset functor

Definition 4.2.5. Let S, T be posets. A poset functor, or non-decreasing map, α :

S → T satisfies the condition α(si) ≤ α(sj) whenever si ≤ sj.
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In the case of real-valued filtrations, we will simply refer to non-decreasing maps.
There is a partial ordering on non-decreasing maps. We say α ≤ β : S → T if
α(s) ≤ β(s) for all s ∈ S.

Definition 4.2.6. We will refer to the non-decreasing map ε : t 7→ t+ ε as the ε-shift
map.

When dealing with filtered objects in a category, we can also talk about morphisms
indexed by a poset functor.

Definition 4.2.7. Let X S,YT be filtered objects in a category over posets S, T re-
spectively. Let α : S → T be a non-decreasing map. An α-graded map fα : X S → YT

is a collection of maps f s : X s → Yα(s) for each s ∈ S so that the following diagram
commutes.

X s X s′

Yα(s) Yα(s′)

fs fs
′ (4.13)

For example, in Equation (4.11), the maps {F t
k}t∈T , {Gt

k}t∈T are ε-graded maps
because they apply the ε-shift functor to the filtration indices.

Definition 4.2.8. Let Fα
∗ , G

α
∗ : CS

∗ → DT
∗ be α-filtered maps of chain complexes. We

say Fα, Gα are β-chain homotopic, where β : T → T is a non-decreasing map if there
exists a collection of maps Hs

k : Cs
k → D

β◦α(s)
k+1 k = 0, 1, . . . , and s ∈ S, so that

∂Dk+1H
s
k +Hs

k−1∂
C
k = Gs

k − F s
k (4.14)

4.2.2 Persistence Vector Spaces and Interleavings

Definition 4.2.9. Let T be a poset, and fix a field F. A persistence vector space over
T , denoted V T is a functor T → VectF (the category of vector spaces over F).

Note that this is different from the notion of a filtered vector space, because the
maps need not be inclusions (note that maps on homology induced by inclusions are
not necessarily inclusions of sub-spaces).
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The information in a persistence vector space V T can be encoded in a quiver
representation Q over the underlying graph DAG(T ). The information contained
in a persistence vector space V T is a vector space V t for each t ∈ T , and maps
At,t

′
: V t → V t′ for each t < t′ ∈ T which are consistent via composition.

Definition 4.2.10. Let V S,W T be persistence vector spaces over S, T respectively.
An α-graded map Fα : V S → W T for a nondecreasing map α : S → T is a collection
of linear maps

F s = F s,α(s) : V s → Wα(s)

for each s ∈ S, which commute with the maps in V S and W T , meaning the following
diagram commutes

V s V s′

Wα(s) Wα(s′)

As,s
′

F s F s
′

Aα(s),α(s
′)

(4.15)

Clearly, one way to obtain an α-graded map of persistence vector spaces is to
apply the homology functor to an α-graded map of filtered chain complexes.

Definition 4.2.11. Let γ : T → T be a poset functor, and V T be a persistence vector
space over T . We define Iγ : V T → V T to be the γ-shift map where I t,γ(t) : V t →
V γ(t) = At,γ(t).

We’ll now return to the case of real-valued filtrations. Consider the diagram in
Equation (4.11). Applying the homology functor, we obtain a diagram

Hk(X t) Hk(X t+ε) Hk(X t+2ε)

Hk(Y t) Hk(Y t+ε) Hk(Y t+2ε)

F̃ t
k

F̃ t+εk

G̃
t
k G̃

t+
ε

k
(4.16)

The top row is a persistent vector space PHk(X
T ), and the bottom row is a persistent

vector space PHk(Y
T ). The diagonal maps are ε-graded maps F̃ ε

k and G̃ε
k, where ε

is the ε-shift map in Definition 4.2.6, and the conditions on homotopy imply that
F̃ εG̃ε = Ĩ2ε on Hk(X T ) and G̃εF̃ ε = Ĩ2ε on Hk(YT ).
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We are now ready to define the general notion of interleaving on persistence vector
spaces.

Definition 4.2.12. An (α, β)-interleaving between V S and W T is a pair of graded
maps Fα : V S → W T , Gβ : W T → V S so so that Gβ ◦Fα ∼= Iβ◦α and Fα ◦Gβ ∼= Iα◦β.

If S, T ⊆ R, and α, β = ε, then we refer to an (ε, ε)-interleaving as simply an
ε-interleaving. If α ≤ α′ and β ≤ β′, then we can construct an (α′, β′)-interleaving
from a (α, β)-interleaving by appending inclusion maps: Fα′ = {Iα(s),α′(s) ◦ F s,α(s)},
and Gβ′ = {Iβ(t),β′(t) ◦Gt,β(t)}.

Proposition 4.2.13. Suppose fα : X S → YT and gβ : YT → X S are graded maps,
such that fα ◦ gβ ' ια◦β on YT and gβ ◦ fα ' ιβ◦α on X S. Then H∗(X S) and H∗(YT )

are (α, β)-interleaved.

Proof. Applying the homology functor we obtain maps F̃α and G̃β. Because homology
is homotopy invariant, because compositions of the graded maps are homotopic to
the inclusions we have F̃αG̃β = Iα◦β on H∗(YT ) and G̃βF̃α = Iβ◦α on H∗(X T ).

Note that Proposition 4.2.13 applies equally well to homotopy in topological cat-
egories and chain complex categories.

4.2.3 The Interleaving and Bottleneck Distances

Definition 4.2.14. Let T be a poset equipped with a dissimilarity measure on objects
d : (ti, tj)→ R+. The distortion of a functor α : T → T is defined as

d(α) = sup
t∈T

d(t, α(t)) (4.17)

The distortion of a persistence map, d(Fα), is the distortion of α, d(α).

For example, if we take the diagram in Equation (4.16), because both filtrations
are over the real numbers, by taking d(t, t′) = |t′ − t|, we see that d(ε) = ε, and
d(Fε) = d(Gε) = ε, and d(GεFε) = d(FεGε) = 2ε.

We will now only consider dissimilarity measures d on the objects of T which are
metrics, as in the example above.
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Definition 4.2.15. Let T be a poset, and d be a metric on the objects of T . The
interleaving distance between two persistence vector spaces V T ,W T over T , denoted
dI(V

T ,W T ) is the smallest distortion incurred by an interleaving between V T and
W T .

dI(V
T ,W T ) = inf{max(d(α), d(β)) | ∃(α, β)-interleaving of V T ,W T} (4.18)

The interleaving distance can be checked to satisfy the definition of a metric. As
an example, the diagram in Equation (4.11) bounds the interleaving distance between
PH∗(X T ) and PH∗(YT ) by ε.

In the special case of ordinary real-valued persistence, the interleaving distance
between two persistence vector spaces is equivalent to a geometric notion of distance
on persistence diagrams known as the bottleneck distance.

Definition 4.2.16. Let D1 = {(bi, di)} and D2 = {(bj, dj)} be two persistence dia-
grams, augmented with an infinite number of zero-length pairs. The bottleneck dis-
tance is defined as

db(D1, D2) = inf
γ

sup
bi,di

‖(bi, di)− γ(bi, di)‖∞ (4.19)

where γ is a bijection between D1 and D2

For 1-dimensional persistent homology, dI = dB [67]. This means that if two
persistence modules are ε-interleaved, their barcodes are closely related, and vise-
versa.

The importance of the interleaving and bottleneck distances are that they give a
way to characterize how sensitive persistent homology of a filtration is to perturba-
tions of the data that was used to construct the filtration. Ideally, we would like to
use constructions that are stable, meaning that the persistent homology of a filtration
is not overly sensitive to the input data. In general this will be accomplished by
bounding the interleaving distance by constructing a specific interleaving.
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4.3 Filtered Carriers and Interleavings

In Section 4.1, we covered the classical notion of a carrier between cellular or chain
complexes, and how carriers can be used to extend maps from initial data. In Sec-
tion 4.2 we introduced how interleavings can be used to compare persistence vector
spaces, and in the case of ordinary persistence, can be related to the bottleneck dis-
tance.

In this section, we will develop a notion of filtered carrier. This will provide a
general-purpose tool for use in constructing explicit interleavings. We will then apply
this tool to analyze the relationship between the persistent homology of a variety of
filtered complexes on point cloud data.

4.3.1 Preliminary Notions

Definition 4.3.1. A filtered carrier of chain complexes over a poset T , denoted CT :

CS
∗ → DT

∗ is an assignment of basis vectors of CS
∗ to filtered sub-complexes of DT

∗ .
In situations where T is understood, we will drop the superscript, and simply write
C : CS

∗ → DT
∗ .

Note that while a basis element x ∈ CS
∗ may appear at parameter s ∈ S, the

carrier CT (x) is filtered by T . The notion of filtered carrier can also be applied to
filtrations of cell complexes.

Definition 4.3.2. We say a filtered chain complex CT
∗ is acyclic at t if Ct

∗ is acyclic.

Definition 4.3.3. We say a filtered chain complex CT
∗ is α-acyclic if every cycle in

Ct
∗ has a boundary in Cα(t)

∗ .

Note that Definition 4.3.2 is just a special case of Definition 4.3.3, where α ≤ id

for all t′ ≥ t.

Definition 4.3.4. Let CS
∗ , D

T
∗ be filtered chain complexes, and CT : CS

∗ → DT
∗ be a

filtered carrier, and α : S → T , β : T → T be non-decreasing maps. We say CT is
(α, β)-acyclic if CT (x) is β-acyclic after t = α(s) for all x ∈ Cs

∗ and for all s ∈ S. In
the case where β = id, then we just say CT is α-acyclic.
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We can also extend the notion of carrying a map

Definition 4.3.5. Let CT : CS
∗ → DT

∗ be a filtered carrier, and Fα
∗ be an α-filtered

chain map. We say that Fα
∗ : CS

∗ → DT
∗ is carried by CT if Fα(x) ∈ CT (x) at

parameter α(s) for all basis elements x ∈ Cs
∗.

Theorem 4.3.6. [Filtered acyclic carrier theorem] Let CT : CS
∗ → DT

∗ be an (α, β)-
acyclic carrier of filtered chain complexes, with S a strict total order with an initial
object 0 ∈ S. Let LS∗ ⊆ CS

∗ be a filtered sub-complex generated by a filtered sub-basis
of CS

∗ , and F̃α : LS∗ → DT
∗ be an α-filtered chain map carried by CT . Then F̃α extends

to a filtered chain map F βk◦α : CS
∗ → DT

∗ , where k is the maximal dimension of the
chain map, and the extension is unique up to β-chain homotopy (Definition 4.2.8).

Proof. We will proceed by induction on the dimension k of the map, and on the
total order on S. First, we start with F̃ 0,α(0)

0 : L0
0 → D

α(0)
0 . From the acyclic carrier

theorem, Theorem 4.1.8, we can extend to a chain map F 0,α(0)
0 → C0

0 → D
α(0)
0 .

Now, let s > 0. Assume that we have extended Fα
0 for all r < s so that if r′ < r,

F
r,α(r)
0 |Cr′∗ = F

r′,α(r′)
0 (4.20)

Note that this is satisfied trivially for s = 0. Let L′S0 = LS0 ∪
⋃
r<sC

r
0 , and F̃α

0 denote
the extended map up to all r < s. We can now apply Theorem 4.1.8 again to extend to
F s,α(s) to Cs

0 . Since S is a strict total order, Equation (4.20) continues to be satisfied
because the function is extended on each basis element exactly once. By induction,
we can extend to a map of 0-chains Fα : CS

0 → DT
0 .

Now, we’ll extend to higher-dimensional chains. Assume that we have extended
to F βk◦α

k : CS
k → DT

k . Again, we’ll start with the initial object 0 of S. We take
L′0∗≤k+1 = C0

∗≤k ∪ L0
∗≤k. We have extended F βk◦α

∗≤k : C0
∗≤k → D

βk◦α(s)
∗≤k . Let x ∈ Bk+1

be a basis element that we must extend at filtration parameter s = 0. We need
∂k+1Fk+1x = Fk∂k+1x. The image of the boundary Fk∂k+1x lies in Dβk◦α(0)

k , but since
C is (α, β)-acyclic, the cycle need not have a boundary until we increase the filtration
parameter T by another factor of β. We can increase the grade on the map F βk+1◦α,
taking F βk+1◦αx = ιβF βk◦αx for x ∈ L′0, and then apply Theorem 4.1.8 to extend the
map for x ∈ C0

k+1.
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Now, we’ll extend to higher dimensional chains for s > 0. Assume that so far we
have satisfied for r′ < r < s

F
r,βk+1◦α(r)
k+1 |Cr′k = F

r,βk+1◦α(r)
k+1 (4.21)

and furthermore, that we have shifted the chain maps in lower dimensions via F βk+1◦α =

ιβF βk◦α. Let x ∈ Bk+1 via a basis element that we must extend at filtration parameter
s. The image of the boundary Fk∂k+1x lies in Dβk◦α(s)

k , and we have already shifted
the grade to βk+1 ◦α(s) at which point the cycle is a boundary of some y ∈ Dβk+1◦α(s)

k+1

in C(x). Thus, we can extend the map via F βk+1◦α
k+1 x = y. Again, because S is a

strict total order, the map is extended for every basis element exactly once, so Equa-
tion (4.21) is satisfied.

To see that the map is unique up to β-chain homotopy, we simply need to note
that we need to increase grades by a factor of β to produce homotopies between maps
as in Proposition 4.1.10.

Note that to compute induced maps in homology in dimension k, it is only neces-
sary to extend maps up to dimension k. In many cases, β will be the identity id, in
which case there is no additional penalty for extending to higher-dimensional chains.

Remark 4.3.7. In Theorem 4.3.6 we used the strict total ordering on S to extend
the initial map so that we guaranteed that Equation (4.20) is always satisfied. If S is
not a strict total ordering, then additional restrictions on the extension are needed to
satisfy this condition.

Proposition 4.3.8. Let C : CS
∗ → DT

∗ be an (α, β)-acyclic carrier that is proper with
respect to a T -filtered basis BD

∗ of D∗. Then there exists a canonical augmentation-
preserving chain map Fα

0 : CS
0 → DT

0 carried by C.

Proof. As in Proposition 4.1.13, we map 0-dimensional basis elements in CS
0 to 0-

dimensional basis elements in DT
0 that are carried by C. Such elements exist at

level α(s) for 0-dimensional basis elements at parameter s in Cs
0 , so the map is α-

filtered.
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Note that the map Fα
0 in Proposition 4.3.8 can then be extended to F βk◦α

k using
Theorem 4.3.6.

We’ll now extend Definition 4.1.14 to the filtered setting

Definition 4.3.9. Let X S and YT be filtered simplicial complexes over posets S, T ,
and α : S → T be a non-decreasing map. We say CT : X S → YT is α-simplicial if
CT (x) is a simplex at level α(s) for all x ∈ X s.

An α-simplicial carrier is equivalent to an α-simplicial multi-valued map defined
in [31]. Note that an α-simplicial carrier is α-acyclic (or (α, id)-acyclic). This allows
for a proposition analgous to corollary 4.1.28

Proposition 4.3.10. If CT : X S → YT is α-simplicial and DU : YT → ZU is
β-simplicial, then DU ◦ CT is (β ◦ α)-simplicial.

Proof. Let x ∈ X s. Then C(x) is simplicial at level α(s). Let y = Cα(s)(x) be the
simplex in Y . Since D is β-simplicial, D(y) is simplicial at level β ◦ α(s).

4.3.2 Filtered Carriers to Interleavings

We’ll now turn to examining the conditions under which interleavings can be con-
structed from filtered carriers.

Proposition 4.3.11. Let X S and YT be filtered cell complexes, and suppose that
C : X S → YT is an α-acyclic carrier, D : YT → X S is a β-acyclic carrier, A ⊇ D ◦C
is a (β ◦ α)-acyclic carrier that carries the inclusion map on YT , and B ⊇ C ◦D is
(α ◦ β)-acyclic and carries the inclusion map on X S. Then PH∗(X S) and PH∗(YT )

are (α, β)-interleaved.

Proof. First, we construct augmentation-preserving filtered maps Fα : C∗(X s) →
C∗(Yα(s)) and Gβ : C∗(Y t) → C∗(X

β(t)) using Proposition 4.3.8 and Theorem 4.3.6.
Now, note that Gβ ◦ Fα is augmentation preserving, and is carried by D ◦ C ⊆ A

which also carries the inclusion map, so Gβ ◦ Fα ' IX . Similarly, Fα ◦ Gβ ' IY .
Thus, the maps Fα and Gβ give an (α, β)-interleaving.
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In practice, more specific situations reduce the number of conditions that we need
to satisfy. Often, we will find it convenient to take A = C ◦D, and B = D ◦ C when
we can show that the composites are acyclic and carry inclusions.

Corollary 4.3.12. Suppose fα : X s → Yα(s) is a surjective simplicial map for every
s ∈ S, and suppose C : YT → X S, defined by C(y) = 〈f−1(y)〉 be a β-acyclic carrier.
Then PH∗(X S) and PH∗(YT ) are (α, β)-interleaved.

Proof. Because fα is simplicial, the carrier Cf is an α-acyclic carrier that carries fα.
Because fα is a surjective simplicial map, C(y) is nonempty and maps to proper sub-
complexes of X S for each y ∈ YT , so is a well-defined filtered carrier. By definition,
of C, the composition C ◦ fα carries the inclusion map ιX . Additionally, C ◦ fα is
(β ◦ α)-acyclic, because C is β-acyclic for the simplex fα(x) for each x ∈ X S (a
filtered version of Proposition 4.1.27). Because C(y) = 〈f−1(y)〉, fα ◦ C(y) = 〈y〉,
which is a simplicial carrier and thus acyclic. Note that y ∈ fα ◦ C(y), so fα ◦ C
carries ιY . We can now apply Proposition 4.3.11 to complete the proof.

In the case where carriers are obtained from a correspondence Ω, we need not
satisfy that the composition of carriers is acyclic.

Lemma 4.3.13. Let X S and YT be simplicial complexes with underlying vertex sets
X and Y respectively. Let Ω ⊂ X × Y be a correspondence, with induced carriers
CΩ : X S → YT , and DΩ : YT → X S. Then if (y0, . . . , y`) ∈ CΩ(x0, . . . , xk), then
(x0, . . . , xk) ∈ DΩ(y0, . . . , y`).

Proof. (y0, . . . , y`) ∈ CΩ(x0, . . . , xk) implies y0, . . . , y` ∈ Ω(x0, . . . , xk). Because Ω is a
relation, this means x0, . . . , xk ∈ Ω(y0, . . . , y`), so (x0, . . . , xk) ∈ DΩ(y0, . . . , y`).

4.3.3 Stability of Flag Filtrations

We’ll now examine a construction that is commonly used when producing filtrations
on data.

Definition 4.3.14. A simplicial complex is a flag complex if it is the maximal sim-
plicial complex on its 1-skeleton. A flag filtration is a filtration of flag complexes, and
is completely determined by a filtration on its edges.
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Flag complex constructions are often easy to work with because they only require
pairwise comparisons. We’ll consider examples where all edges eventually appear,
such as in Vietoris-Rips filtrations and D1, and Č1 filtrations.

Let X and Y be finite sets of points, and let f : X × X → R, g : Y × Y → R.
We’ll denote the sub-levelset flag filtrations on X and Y as X f , Yg respectively, with
X f (r),Yg(r) denoting the complexes at parameter r ∈ R.

X f (r) = 〈(xi, xj) | f(xi, xj) ≤ r〉 (4.22)

We will assume that f(x, x) ≤ f(x, x′) for all x′ ∈ X, which will allow us to assume
that the zero-simplex (x) appears at parameter f(x, x) in X f .

Let Ω ⊆ X × Y be a binary relation between the sets X and Y . Let d(f, g; Ω)

denote the distortion of the functions f and g over Ω:

d(f, g; Ω) = sup
(x,y),(x′,y′)∈Ω

|f(x, x′)− g(y, y′)| (4.23)

We’ll consider situations in which f and g are dissimilarities (or metrics) on X and
Y respectively. When X and Y are safely assumed to be equipped with f and g

respectively, we’ll use the notation d(Ω) = d(f, g; Ω). It follows immediately that
if f(x, x) = 0 for x ∈ X, then for any y, y′ ∈ Ω(x), g(y, y′) ≤ d(Ω). A similar
statement may be made if g(y, y) = 0. Note that these conditions generally hold for
dissimilarites.

Proposition 4.3.15. Suppose Ω ⊂ X × Y is a left-total binary relation. Then the
carrier CΩ : X f → Yg (Definition 4.1.23) is d(Ω)-simplicial.

Proof. Let (x0, . . . , xk) ∈ X f (r). We have that

CΩ(x0, . . . , xk) = 〈Ω(x0, . . . , xk)〉

Suppose y, y′ ∈ Ω({x0, . . . , xk}). Then there is some x, x′ ∈ {x0, . . . , xk} such that y ∈
Ω(x), y′ ∈ Ω(x′). Since (x0, . . . , xk) ∈ X f (r), f(x, x′) ≤ r, and |f(x, x′) − g(y, y′)| ≤
d(Ω), we obtain g(y, y′) ≤ r+ d(Ω). Thus, (y, y′) ∈ Yg(r+ d(Ω)). Because this holds
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for every pair y, y′ ∈ CΩ(x0, . . . , xk), all possible edges are in the carrier, forming
a clique. Because Yg is a flag complex, CΩ(x0, . . . , xk) is a simplex of dimension
|Ω(x0, . . . , xk)|. This holds for all simplices in X f (r), so the carrier is simplicial after
applying a d(Ω)-shift to the filtration index.

In the case that f(x, x) = 0 for all x ∈ X and g(y, y) = 0 for all y ∈ Y , and a
binary relation Ω ⊂ X×Y is both left-total and right-total, we obtain d(Ω)-simplicial
carriers CΩ : X f → Yg, and DΩ : Yg → X f .

As a result of proposition 4.3.10, the composition of carriers DΩ ◦CΩ : X f → X f is
2d(Ω)-simplicial. Furthermore, because y ∈ Ω(x) implies x ∈ Ω(y), the inclusion map
X f (r)→ X f (r+ 2d(Ω)) is carried by DΩ ◦ CΩ. We can thus apply Proposition 4.3.11
to obtain the following interleaving stability theorem for flag filtrations:

Theorem 4.3.16. Let X f and Yg be sub-levelset flag filtrations with vertex sets X and
Y respectively, based on the edge filtration functions f : X×X → R and g : Y ×Y →
R. Let Ω ∈ C(X, Y ) be a correspondence. Then there exists a d(Ω)-interleaving of
PH∗(X f ) and PH∗(Yg).

Proof. We apply Proposition 4.3.11 to the above discussion.

4.3.4 Stability of Geometric Filtrations

Theorem 4.3.16 encompasses a variety of results that have been proven for flag filtra-
tions in topological data analysis. The first such result was a bound on the bottleneck
distance between persistence diagrams of Vietoris Rips filtrations, found in [29]. The-
orem 4.3.16 was established in its full generality in [31], which uses contiguous simpli-
cial maps in its proof technique. Our approach using carriers is equivalent, as a result
of the construction found in Equation (4.1). This section will review several applica-
tions of Theorem 4.3.16 as found in [31] which we will use in Section 4.4. In addition,
we will provide an interleaving on Dowker and Rips filtrations in Theorem 4.3.27,
which to the best of our knowledge is the first such result explicitly relating the two
constructions.



CHAPTER 4. EXTENSIONS OF MAPS AND INTERLEAVINGS 129

Distances

First, we want to define several notions of distances on spaces and sets that we will
use in the rest of the chapter.

If (X, dX) is a metric space, then there are two notions of induced distance on sets
U, V ⊆ X we will use:

Definition 4.3.17. The Hausdorff distance between two sets U, V ⊆ (X, dX) is

dH(U, V ) = max(sup
x∈U

inf
y∈V

dX(x, y), sup
y∈V

inf
x∈U

dX(x, y)) (4.24)

There is also a premetric

Definition 4.3.18. The set premetric on U, V ⊆ X is defined as

dp(U, V ) = inf
x∈U,y∈V

dX(x, y) (4.25)

Note that Definition 4.3.18 does not satisfy the identity of discernibles or triangle
inequality conditions of a metric.

We also want to be able to compare different metric spaces:

Definition 4.3.19. The Gromov-Hausdorff distance between two compact metric
spaces (X, dX) and (Y, dY ) is

dGH((X, dX), (Y, dY )) = inf
Ω∈C(X,Y )

sup
(x,y),(x′,y′)∈Ω

|dX(x, x′)− dY (y, y′)|

We think of dGH as measuring the amount unavoidable distortion incurred if we
seek to form a correspondence between X and Y .

Vietoris-Rips Stability

An immediate application of theorem 4.3.16 is the Gromov-Hausdorff distance bound
for Vietoris-Rips persistence.
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Theorem 4.3.20. [29] For any finite metric spaces (X, dX) and (Y, dY ), for any
k ∈ N,

dI(PHk(R(X, dX)), PHk(R(Y, dY ))) ≤ dGH((X, dX), (Y, dY ))

Proof. This follows immediately from Theorem 4.3.16 by using f = dX , g = dY and
using the correspondence in C(X, Y ) that realizes the Gromov-Hausdorff distance.

Lazy Dowker Stability

We now turn to the use of Theorem 4.3.16 in the investigation of the stability of the
lazy Dowker complex D1, also known as the lazy Witness complex [37]. Let (L,X)

be a landmark-space pairs in an ambient space (X, dX). We define the witnessed
dissimilarity on L as

dWX(`i, `j) = inf
r
{r | ∃x ∈ X s.t. dX(`i, x), dX(`j, x) ≤ r}

Note that dWX(`i, `i) may be strictly greater than zero. If dWX(`i, `i) = 0 for all
`i ∈ L (for instance, if L ⊆ X), then the Rips filtration R(L, dWX ; r) is the same as
the lazy dowker filtration D1(L,X; r).

Proposition 4.3.21. Suppose that dH(X,X′) ≤ εX , and dH(L,L′) ≤ εL in an ambi-
ent metric space with metric dX . Let Ω ∈ C(L,L′) be the sublevel-set correspondence
Ω = Ω(dX , εL). Then d(dWX , dWX′ ; Ω) ≤ εX + εL

Proof. We need to show that for any (`i, `
′
i), (`j, `

′
j) ∈ Ω that

|dWX(`i, `j)− dWX′(`
′
i, `
′
j)| ≤ εX + εL

Let ` ∈ L, and `′ ∈ Ω(`). Because dX is a metric, by triangle inequality we have
dX(`′, x′) ≤ dX(`, x′) + εL for any x′ ∈ X′. Additionally, because dH(X,X′) ≤ εX ,
for any x′ ∈ X′, there exists some x ∈ X such that dX(x, x′) ≤ εX . Thus, for every
x′ ∈ X′, there is some x ∈ X so that

dX(`′, x′) ≤ dX(`, x) + εL + εX
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The choice of ` and `′ was arbitrary, and holds for any pair.
Now, let (`i, `

′
i), (`j, `

′
j) ∈ Ω. Using the above, we have

dWX′(`
′
i, `
′
j) = inf

r
{r | ∃x′ ∈ X′ s.t. dX (`′i, x

′), dX(`′j, x
′) ≤ r}

≤ inf
r
{r | ∃x ∈ X s.t. dX (`′i, x)dX (`′j, x) ≤ r + εX}

≤ inf
r
{r | ∃x ∈ X s.t. dX (`i, x)dX (`j, x) ≤ r + εX + εL}

≤ inf
r
{r | ∃x ∈ X s.t. dX (`i, x), dX (`j, x) ≤ r}+ εX + εL

≤ dWX(`i, `j) + εX + εL

By reversing the roles of `, `′ above, we obtain a bound

dWX(`i, `j) ≤ dWX′(`
′
i, `
′
j) + εX + εL

Combining the two bounds yields the desired result

dΩ((L, dWX), (L′, dWX′)) = sup
(`i,`′i),(`j ,`

′
j)∈Ω

|dWX(`i, `j)− dWX′(`
′
i, `
′
j)| ≤ εX + εL

Note that the above proof relied on the triangle inequality, so does not generally
hold if dX is not a metric.

Corollary 4.3.22. Suppose that dH(X,X ′) ≤ εX , and dH(L,L′) ≤ εL in an ambient
space with metric dX . Then

dI(PH∗(D1(L,X; r)), PH∗(D1(L′, X ′; r)) ≤ εL + εX

Proof. This follows immediately from Proposition 4.3.21 applied to Theorem 4.3.16.

Corollary 4.3.22 states that the persistence diagram of the lazy Dowker filtration
is stable both to perturbations of X and perturbations of the set L.



CHAPTER 4. EXTENSIONS OF MAPS AND INTERLEAVINGS 132

Dowker-Rips Interleaving

A fundamental question regarding the Dowker filtration on the pair (L,X) is how it
can be related to a “full” Vietoris-Rips computation on the set X. In this section, we
answer this question via an interleaving between Dk(L,X; r) and R(X; r).

One trivial interleaving (related to one presented for witness complexes in [37]) is
based on the inclusions (assuming L ⊂ X)

Dk(L,X; r) ⊆ R(L; 2r) ⊆ Dk(L,X; 2r) (4.26)

Unfortunately, this interleaving may have little to say about R(X; r) if landmarks are
not sampled in a representative way. For this reason, it is difficult to tell if the features
in the witness complex capture features in the ambient space from Equation (4.26).

Suppose A,B ⊆ X where X is a metric space with metric dX . We use the
notation dX(x,B) = infb∈B dX(x, b). We define dS(A,B) = supa∈A dX(a,B). Note
that dS is not symmetric, so it is a quasimetric. Note that the Hausdorff distance is
dH(A,B) = max{dS(A,B), dS(B,A)}.

Let (L,X) be a landmark-space pair, let ε1 = dS(L,X) and ε2 = dS(X,L). Note
that if L ⊆ X then ε1 = 0, and generally ε2 > 0 if L ( X.

Lemma 4.3.23. Let (x0, . . . , xp) ∈ R(X, r). Then the carrier from the Rips complex
to witness complex Dk(L,X; r) given by

CRW : (x0, . . . , xp) 7→
〈{

l ∈ L | dX(l, {x0, . . . , xp}) ≤ ε2
}〉

is ε2-simplicial..

Proof. By definition of ε2, CRW is not empty. Let l ∈ C(x0, . . . , xp). Then d(l, xi) ≤ ε2

for some xi ∈ (x0, . . . , xp). dX(xi, xj) ≤ r for xi, xj ∈ (x0, . . . , xp), because the
simplex is in R(X, r). By triangle inequality, we have that d(l, xj) ≤ r + ε2 for any
xj ∈ (x0, . . . , xp).

This means that any q-simplex (l0, . . . , lq) ∈ C(x0, . . . , xp) is witnessed by every
vertex in (x0, . . . , xp) at level r + ε2, so the simplex is in Dk(L,X; r + ε2). Since this



CHAPTER 4. EXTENSIONS OF MAPS AND INTERLEAVINGS 133

holds for every q-simplex q = 0, 1, . . . , k, and the k-skeleton defines Dk, the carrier
forms the maximal simplex on the vertices of C(x0, . . . , xp), and thus the carrier is
ε2-simplicial.

Lemma 4.3.24. Let (l0, . . . , lp) ∈ Dk(L,X; r). Then the carrier to R(X, r) given by

CWR : (l0, . . . , lp) 7→
〈{

x ∈ X | dX(x, {l0, . . . , lp}) ≤ ε1
}〉

is α-simplicial, where α : r → 2r + 2ε1.

Proof. Suppose (l0, . . . , lp) appears at parameter r. Let li, lj ∈ {l0, . . . , lp}. Then there
exists some x ∈ X so that dX(li, x) ≤ r and dX(lj, x) ≤ r, which implies dX(li, lj) ≤ 2r

by triangle inequality. Now, let xi, xj ∈ CWR(l0, . . . , lp). Then dX(xi, li) ≤ ε1 and
dX(xj, lj) ≤ ε1 for some li, lj ∈ {l0, . . . , lp}. By triangle inequality, this means that

dX(xi, xj) ≤ dX(li, lj) + 2ε1 = 2r + 2ε1.

Because this holds for all xi, xj ∈ CWR(l0, . . . , lp), the carrier is a simplex at level
α(r) = 2r + 2ε1. Thus, the carrier is α-simplicial.

Unfortunately, the compositions of these carriers do not carry the inclusion maps
on one of the filtrations (needed for Proposition 4.3.11), unless ε1 = ε2. Thus, we need
to construct acyclic carriers to show that the composition of augmentation-preserving
maps between Dk(L,X; r) and R(X; r) are homotopic to the relevant inclusion maps.

Lemma 4.3.25. Let (`0, . . . , `p) ∈ Dk(L,X; r). Then the carrier to D(L,X; r) given
by

CWW : (`0, . . . , `p) 7→
〈{

` ∈ L | dX(`, {`0, . . . , `p}) ≤ ε1 + ε2
}〉

is (α ◦ ε2)-simplicial.

Proof. Note α ◦ ε2 : r 7→ 2r + 2ε1 + 2ε2. Suppose that m0, . . . ,m1 ∈ CWW (`0, . . . , `p).
Then there exists some `0, . . . , `1 ∈ `0, . . . , `p such that d(`i,mi) ≤ ε1 + ε2, i =

0, . . . , q. Because (`0, . . . , `q) ∈ Dk(L,X, r), there exists an x such that dX (x, `i) ≤ r,
i = 0, . . . , q. By triangle inequality, we have dX (x,mi) ≤ r+ ε1 + ε2 ≤ 2r+ 2ε1 + 2ε2.
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Thus, (m0, . . . ,mq) is witnessed by x at level (α ◦ ε2)(r), and is in Dk(L,X;α ◦ ε2(r)).
Since this holds for all q-simplices q = 0, . . . , k the carrier is (α ◦ ε2)-simplicial.

Lemma 4.3.26. Let (x0, . . . , xp) ∈ R(X; r). Then the carrier to R(X; r) given by

CRR : (x0, . . . , xp) 7→
〈{

x ∈ X | dX(x, {x0, . . . , xp}) ≤ ε1 + ε2
}〉

is (ε2 ◦ α)-acyclic.

Proof. Note ε2 ◦ α : r 7→ 2r + 2ε1 + ε2. Fix x ∈ {x0, . . . , xp}. Suppose that y ∈
CRR(x0, . . . , xp). Then there exists some x′ ∈ {x0, . . . , xp} such that d(x′, y) ≤ ε1 + ε2.
Because (x′, x) ∈ R(X; r), d(x′, x) ≤ r, and by triangle inequality, dX(y, x) ≤ r +

ε1 + ε2. Thus CRR(x0, . . . , xp) forms a cone with x at level r+ ε1 + ε2 ≤ 2r+ 2ε1 + ε2,
and so is (ε2 ◦ α)-acyclic.

Theorem 4.3.27. PH∗(Dk(L,X; r)) and PH∗(R(X; r)) are (ε2, α)-interleaved.

Proof. First, note that CWR ◦ CRW ⊆ CWW , and CRW ◦ CWR ⊆ CRR, and furthermore
CWW and CRR both carry the inclusion maps on Dk(L,X; r) and R(X; r) respectively.

Now, because CWR is ε2-simplicial (thus ε2-acyclic), we can construct an augmentation-
preserving map F ε2 : C∗(Dk(L,X; r))→ C∗(R(X; r)), and because CRW is α-simplicial
(thus α-acyclic), we can construct an augmentation preserving mapGα : C∗(R(X; r))→
C∗(Dk(L,X; r)). The composition Gα ◦ F ε2 is carried by CWW , which is (α ◦ ε2)-
simplicial and carries the identity, so Gα ◦ F ε2 ' Iα◦ε2 . Similarly, F ε2 ◦Gα is carried
by CRR, which is (ε2 ◦ α)-acyclic, and carries the identity so F ε2 ◦Gα ' Iε2◦α.

In practice, this bound may be quite conservative, although triangle inequality
bounds admit examples in which the factors are tight in Lemmas 4.3.23 and 4.3.24.
This interleaving offers theoretical justification for the greedy landmarking procedure
employed in [37], as it attempts to minimize the ε2 term. Note that if we have ε2 =

ε1 = 0 (i.e. if dH(L,X) = 0), we obtain the Čech-Rips multiplicative 2 interleaving,
as we expect, since Dowker complexes are motivated as a data-driven versions of the
Čech complex.
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4.4 Cover Complexes

In this section, we will introduce families of complexes that use a cover to constrain
the appearance of simplices.

Definition 4.4.1. Let X T be a filtered cell complex over a poset T , with vertex set
X T

0 = X, and let U be a cover of X. We define the cover complex X T (U) to be the
restriction of X T to cells whose 0-skeleton lies in some U ∈ U .

We will specifically consider cover complexes complexes on geometric construc-
tions. We will denote the Vietoris-Rips cover complex as R(X,U ; r), and Čech cover
complex as Č(X,U ; r).

In particular, we will focus on Vietoris-Rips cover complexes R(X,U ; r), and seek
to answer the following questions:

1. For a fixed cover U , how sensitive is R(X,U ; r) to perturbations of the under-
lying data X?

2. For a fixed dataset X, how sensitive is R(X,U ; r) to the choice of cover U?

3. How does R(X,U ; r) relate to the full Vietoris-Rips complex R(X; r)?

While we will focus on Vietoris-Rips cover complexes, similar results may be obtained
for other geometric constructions.

Our definition of cover complex (Definition 4.4.1) coincides with a similar def-
inition which appeared in an early pre-print of [55], but which was abandoned in
subsequent versions. The goal of [55], as well as associated literature [27, 32] is to
understand when a filtered nerve can effectively be used to approximate a larger com-
putation, a question which we will address for cover complexes in Section 4.4.1. In
contrast, we will seek to use the actual cover complex in computations in situations
where the complex restricted to each set is not necessarily close to acylic, which we
will investigate in Sections 4.4.2 and 4.4.3. For instance, in Chapter 5, we will see a
situation in which fibers may lie near a circle.

Another related definition is the Rips system found in Yoon’s 2018 disserta-
tion [104] which is used for distributed computation of persistent homology of Rips
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complexes via cellular (co)-sheaves. Yoon shows that if the Nerve is 1-dimensional,
and the system covers the full Rips complex, that the Rips system can be used to
obtain the Homology of the full complex, and develops a distributed algorithm for
computation. We will consider more general coverings, and characterize regimes where
the cover complex and full complex are interleaved, but not identical. Distribution
schemes for computing persistent homology of cover complexes in their full generality
are beyond the scope of this work.

Finally, there are some similarities between the complexes we will see and the
multiscale mapper construction [41]. This also uses inverse images of sets in covers,
but applies this to simplicial complexes generated using the mapper algorithm [92],
and is only measures connected components in the inverse image of sets.

4.4.1 A Generalized Nerve Theorem

We’ll now prove a version of the Nerve theorem for cover complexes. This result can
be viewed as a special case of of the approximate nerve theorems in [27, 55]. While
our proof is narrower in scope than the aforementioned results, the use of carriers
will considerably simplify the proof, compared to [55] which used the Mayer-Vietoris
spectral sequence, and [27] which used a construction using the blowup complex.

Theorem 4.4.2. [an α-Acyclic Nerve Theorem] Let U be a cover of a vertex set
X, and let X T (U) be a simplicial cover complex, with T a strict order with initial
object 0. If X T (V ) is α-acyclic for every V ∈ Ū , then Hk(N (U)) and Hk(X T (U)) are
(αk+1, id)-interleaved.

Proof. We’ll construct an interleaving with N (Ū), which has isomorphic homology to
N (U) by Proposition 4.1.34.

We’ll first define a carrier D : N (Ū) → X T . We take D(V ) = X T (V ), and
D(V0, . . . , Vk) = X T (V0 ∪ · · · ∪ Vk) = X T (Vik), where Vik is the maximal set in
{V0, . . . , Vk}. This forms a (0, α)-acylic carrier by assumption, where 0 denotes the
map to the initial object of T .
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Now, we define a carrier C : X T (U)→ N (Ū). We take

C(x0, . . . , xk) =

〈{ ⋂
V⊇S

V

}
S⊆{x0,...,xk}

〉
(4.27)

Let V ′ =
⋂
V⊇{x0,...,xk} V . The carrier above forms a cone with V ′, so is acyclic.

D ◦C carries the identity because Equation (4.27) ensures that some V ′ for which
{x0, . . . , xk} ⊆ V ′ is included in C(x0, . . . , xk), and D(V ) 3 (x0, . . . , xk) for that V .
Because all other sets in Equation (4.27) are contained in V ′, D ◦ C(x0, . . . , xk) =

D(V ′), which is (0, α)-acyclic by assumption.
Any (x0, . . . , xk) ∈ D(V ), implies {x0, . . . , xk} ⊆ V . Thus, every Vi generating the

carrier in Equation (4.27) satisfies Vi ⊆ C(x0, . . . , xk). We can define A(V ) to be the
star of V inside N (Ū). This carrier is acyclic because it forms a cone with the vertex
for V , and contains C ◦ D(V ). For (V0, . . . , Vk) ∈ N (Ū), we take A(V0, . . . , Vk) =

A(Vik), where Vik is the maximal set in the simplex. Again, this carrier is acyclic and
carries the identity.

We have now constructed carriers for maps in the following diagram

X T (U) X T (U)

N (Ū) N (Ū)

C C

A

D (4.28)

We can now construct a map P∗ : C∗(X T (U)) → C∗(N (Ū)) carried by C by apply-
ing Proposition 4.1.13. We can also construct maps Fαi

i : Ci(N (Ū)) → Ci(X αi(0))

using Theorem 4.3.6, where ∂iF
αi

i x = Fαi−1

i−1 ∂ix, which we need to construct for
i = 0, . . . , k + 1. Because D ◦ C carries the inclusion, we can construct a homo-
topy, but only after increasing the grade by an extra factor of α in each dimension
i, IαFαi

i ◦ Pi ' Iα
i+1

i . In order to compute induced maps on homology for Hi, we
only need to extend the chain homotopy up to dimension i (see Lemma 2.4.1). On
homology, we have ĨαF̃αk

k P̃k ∼= Ĩα
k+1

k .
Finally, because A is acyclic and carries P∗ ◦ F∗ as well as the inclusion, we have

P̃k ◦ IαF̃αk ' I, we have constructed a (αk+1, id)-interleaving.
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Note that for Vietoris-Rips cover complexes as well as other geometric complexes,
that there will be some parameter t ∈ T at which X T (V ) will be acyclic for all V ,
when X T (V ) forms the maximal simplex on its vertex set. At this point, the cover
complex and nerve are homotopic by the standard nerve theorem (Theorem 1.2.3).

Corollary 4.4.3. Let U be a cover of X, where X T (U) satisfies the conditions of
Theorem 4.4.2. Then if N (U) is acyclic, Hk(X T (U)) is (αk+1)-acyclic.

Proof. This follows because if N (U) is acyclic, then the interleaving implies that
X T (U) is αk+1-acyclic.

4.4.2 Local Interleavings

We now consider the more general situation, in which cover complexes are not neces-
sarily close to acylic when restricted to inverse images of open sets in the cover.

Definition 4.4.4. Let X S(U), YT (U) be cover complexes over a cover U . A system
of carriers C(U) : X S(U) → YT (U) consists of carriers C(U) : X S(U) → YT (U)

for each U ∈ U . We say the system of carriers is compatible if ∩Uk 6= ∅ implies
C(Ui) |∩Uk= C(Uj) |∩Uk for all Ui, Uj ∈ {Uk}.

In general, U ∈ U need not cover the same points in X and Y (denoting the vertex
sets of X , Y respectively). We can alternatively think of it as an identification of sets
in covers of each vertex set, or a set in a cover of the disjoint union X t Y .

When the system of carriers is compatible, we can extend the defined carriers to
intersections via C(∩Uk) = C(Ui) |∩Uk for Ui ∈ {Uk}. We’ll say a compatible system
of carriers is α-acyclic if C(∩Uk) is α-acyclic for all {Uk} ⊂ U where ∩Uk 6= ∅.

Note that we can define a carrier CU : X T (U)→ YS(U) from a compatible system
of carriers via CU(x) = C(∩{U 3 x})(x). When a compatible system of carriers C(U)

is α-acyclic, CU is also α-acyclic through application of the definition. The advantage
of using a compatible system of carriers C(U) instead of the global carrier CU is that
we only need to check conditions locally in the cover.

Proposition 4.4.5. Let U be a finite cover. Suppose C(U) : X S(U) → YT (U) is an
α-acyclic compatible system of carriers, and D(U) : YT (U) → X S(U) is a β-acyclic
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compatible system of carriers. Furthermore suppose that for each V = ∩Uk 6= ∅, that
C(V ) ◦D(V ) is (α ◦ β)-acyclic and carries the identity, and D(V ) ◦ C(V ) is (β ◦ α)-
acyclic and carries the identity. Then there exists an (α, β)-interleaving of X S and
YT which is locally carried by each carrier in the system.

Proof. This follows by constructing the global carriers CU : X S(U) → YT (U) and
DU : YT (U) → X S(U), and noting that because the composite CU ◦ DU is (α ◦ β)-
acyclic locally and carries the identity locally, it satisfies these properties globally.
Similarly, DU ◦ CU is (β ◦ α)-acyclic and carries the identity. We can then apply
Proposition 4.3.11 to obtain the result.

Proposition 4.4.5 can be used to extend the results in Section 4.3.4 to cover com-
plexes. We will focus on how cover complexes behave with respect to perturbations
of the data

Corollary 4.4.6. Let X,Y be samples from a metric space (X, dX), and let U be a
cover of X t Y such that dH(V |X, V |Y) ≤ ε for all V ∈ Ū . Then R(X,U ; r) and
R(Y,U ; r) are 2ε-interleaved.

Proof. Let Vx =
⋂
{U ∈ U | U 3 x}. By assumption dH(Vx|X, Vx|Y) ≤ ε), so

there must exist some y ∈ Vx so that dX(x, y) ≤ ε. Let Ω ⊆ X × Y be the left-
total relation Ω(x) = {y ∈ Vx ∩ Y | dX(x, y) ≤ ε}. Then the induced carrier CΩ :

R(X,U ; r) → R(Y,U ; r) is 2ε-simplicial. Similarly, using the right-total relation
Ψ ⊆ X×Y , with Ψ(y) = {x ∈ Vy∩X | dX(x, y) ≤ ε}, we obtain a 2ε-simplical carrier
DΨ : R(Y,U ; r)→ R(X,U ; r).

Now, note that the composite carrier DΨ ◦CΩ need not carry the identity, because
y ∈ Vx does not imply x ∈ Vy. However, y ∈ Vx implies does imply that Vy ⊆ Vx which
combined with the Hausdorff distance bound implies there must exist some x′ ∈ Vy∩X
such that dX(x′, y) ≤ ε, which implies dX(x′, x) ≤ 2ε by triangle inequality. We can
define a left-total relation Ω′ ⊆ X ×X, with Ω′ = {(x, x′) | d(x, x′) ≤ 2ε, x′ ∈ Vx},
which is nonempty, and 4ε-simplical by triangle inequality. Furthermore, the carrier
AΩ′ contains the composite DΨ ◦CΩ and carries the identity. Similarly, we can define
a relation Ψ′ ⊂ Y × Y with Ψ′ = {(y, y′) | dX(y, y′) ≤ 2ε} which produces a 4ε-
simplicial carrier BΨ′ which contains the composite CΩ ◦DΨ and carries the identity.
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We can now apply Proposition 4.3.11 to obtain the result.

4.4.3 Interleaving with Full Complex

We will now turn to relating the persistent homology of R(X,U ; r) to the persis-
tent homology of R(X; r). At large r parameters, Vietoris-Rips complexes become
acyclic, so we see from Theorem 4.4.2 that PH∗(R(X,U ; r)) will eventually con-
verge to H∗(N (U)). This means that unless N (U) is acyclic, PH∗(R(X,U ; r) and
PH∗(R(X; r)) can not possibly interleave for sufficiently large r parameters. How-
ever, in situations in which the pullbacks of open sets in the cover have non-trivial
structure, we would like to understand how this structure relates to the full filtration
R(X; r), particularly for small values of r.

Definition 4.4.7. Let (X, d) be a dissimilarity space. We define

d(x0, . . . , xk) = max
0≤i<j≤k

d(xi, xj) (4.29)

Because the Rips filtration is a flag filtration, the simplex (x0, . . . , xk) appears at
parameter d(x0, . . . , xk).

Proposition 4.4.8. Let U be a cover of X with dissimilarity dX . Suppose that for
some R ≥ 0, if dX(x0, . . . , xk) ≤ R, then there exists some U ∈ U so that x0, . . . , xk ∈
U . Then R(X,U ; r) = R(X; r) for all r ≤ R.

Proof. This follows because if (x0, . . . , xk) ∈ R(X; r), then d(x0, . . . , xk) ≤ r ≤ R, so
(x0, . . . , xk) ∈ R(X, U ; r) ⊆ R(X,U ; r) for some U ∈ U . Thus R(X; r) ⊆ R(X,U ; r),
and we already know R(X,U ; r) ⊆ R(X; r), giving equality.

This mean that covers U that encode some notion of locality will produce cover
complexes which are identical to the full Rips complex at the beginning of the filtra-
tion. When the condition of Proposition 4.4.8 ceases to hold, we can still hope to
construct an interleaving even when we can not have equality of the complexes.
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Because there are inclusions R(X,U ; r) ↪→ R(X; r), it suffices to study under
what conditions we can extend a map fα in the diagram

R(X,U ; r) R(X,U ;α(r))

R(X; r) R(X;α(r))

fα (4.30)

We will focus on a carrier generated from witness sets

X(x0, . . . , xk) = {y ∈ X | d(y, xi) ≤ d(x0, . . . , xk) ∀i = 0, . . . , k} (4.31)

and their union, denoted

X̄(x0, . . . , xk) =
⋃

S∈P({x0,...,xk})

X(S) (4.32)

where P denotes the power set. We define the carrier C : R(X; r)→ R(X,U ; r) via

C : (x0, . . . , xk) 7→ 〈X̄(x0, . . . , xk)〉 (4.33)

We’ll let α denote the non-decreasing map for which C is α-acyclic.
Let ι : R(X,U ; r) → R(X; r) denote the canonical inclusion, seen in Equa-

tion (4.30). Clearly, C ◦ ι carries the inclusion R(X,U ; r)→ R(X,U ;α(r)).
However, the carrier ι◦C does not carry the inclusion for any simplices in R(X; r)

that are not in the cover complex R(X,U ; r). We need to find another carrier which
does carry the inclusion which also contains this carrier. Consider

D : (x0, . . . , xk) 7→ 〈X̄(x0, . . . , xk)〉 (4.34)

The difference between C and D, despite the similarity of their definitions is that they
map to different complexes. C maps to subcomplexes of R(X,U ; r), and D maps to
subcomplexes of R(X; r). Note that D does carry ι ◦ C.
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If D is also α-acyclic, we could apply Proposition 4.3.11 to construct the inter-
leaving. The remainder of this section will describe conditions that will allow us to
bound the non-decreasing map α.

Proposition 4.4.9. If (X, d) is a metric space, then D is acyclic for α : r 7→ 2r.

Proof. Consider D(x0, . . . , xk), and let r = dX(x0, . . . , xk). Without loss of generality,
consider distances to x0. Let y ∈ D(x0, . . . , xk). By definition of D, either d(y, x0) ≤
r, or d(y, xi) ≤ r for some xi ∈ {x1, . . . , xk}. Because dX(x0, xi) ≤ r, by triangle
inequality, d(y, x0) ≤ 2r. Because the Vietoris-Rips complex is a flag complex, this
implies D(x0, . . . , xk) forms a cone with x0, and so is acyclic.

The more difficult carrier to analyze is C. We’ll consider the restriction of the
cover to the carrier. Let

Ū(x0, . . . , xk) = {V ∩ X̄(x0, . . . , xk) | V ∈ Ū , X̄(x0, . . . , xk) ∩ V 6= ∅} (4.35)

which covers C(x0, . . . , xk). If N (Ū(x0, . . . , xk)) is acyclic for each (x0, . . . , xk) ∈
R(X; r), and R(X̄(x0, . . . , xk), V ; r) is α-acyclic, then we can apply corollary 4.4.3 to
see that C is α-acyclic.

Proposition 4.4.10. Let r = dX(x0, . . . , xk). For each V ∈ Ū(x0, . . . , xk), R(V ; 3r)

is acyclic.

Proof. Let y, y′ ∈ V . Then there is some x, x′ ∈ {x0, . . . , xk} for which d(y, x), d(y′, x′) ≤
r. Because d(x, x′) ≤ r, by triangle inequality d(y, y′) ≤ 3r. Thus, R(V ; 3r) forms a
simplex, so is acyclic.

In general, the bound in Proposition 4.4.10 will be fairly pessimistic. For instance,

Proposition 4.4.11. Let r = dX(x0, . . . , xk), and suppose that X(x0, . . . , xk) ∩ V is
non-empty for each V ∈ Ū(x0, . . . , xk). Then R(V ; 2r) is acyclic.

Proof. Fix V ∈ Ū . By assumption, there is some y ∈ V so that d(y, xi) ≤ r for all
i = 0, . . . , k. For some other y′ ∈ V , we have d(y, xi) ≤ r for some i = 0, . . . , k. By
triangle inequality, d(y, y′) ≤ 2r. Since this holds for all y′ ∈ V , R(V ; 2r) forms a
cone with y, and is thus acyclic.
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Figure 4.1: Data lies on a 20 × 10 grid on a flat torus. Left: Persistence diagram
for Rips filtration. Right: Persistence diagram for Rips cover filtration. Cover is
obtained by a pullback of a cover on the first circular coordinate.

The preceding discussion can be summarized in the following theorem:

Theorem 4.4.12. Suppose that for some R, if d(x0, . . . , xk) ≤ R then N (Ū(x0, . . . , xk))

is acyclic. Then R(X,U ; r) and R(X; r) are (id, 3r)-interleaved.

Note that the sets in the covers U do not need to be acyclic at the levels prescribed,
but rather their restriction to points within a certain distance of each simplex. This
means there can be a fair amount of structure in the open sets of the cover.

In Figure 4.1, we see persistence diagrams for both a Rips filtration and a Rips
cover filtration on a flat torus, where the cover is pulled back from a cover of the
first circular coordinate. In contrast to the Rips filtration, the cover filtration has a
persistent H1 class, due to the Nerve of the cover. For parameters before the death of
this H1 class in the Rips complex, the two are tightly interleaved. The cover complex
was able to significantly reduce the number of simplices formed: only 23,500 simplices
were formed in the cover filtration, compared to 1.3 million in the full Rips filtration.

4.4.4 Finding Covers

There are any number of ways to come up with covers of a data set. We are primarily
interested in using covers in which sets encode some notion of neighborhood with
respect to a similarity (see Proposition 4.4.8). In continuous spaces, these covers
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might take the form of metric balls or Voronoi cells. We will use an approach to
obtaining covers based on a landmark set, which works in arbitrary dissimilarity
spaces, Algorithm 10.

Algorithm 10 Obtain a cover of X using landmark set L.
1: Input: data set X ⊂ X, landmark set L ⊂ X, dissimilarity d defined on X , and

integer parameter k.
2: Result: Cover UL = {U`} of X in which each point appears in k open sets.
3: for ` ∈ L do

4: U` ← ∅
5: end for

6: for x ∈ X do

7: for k closest ` ∈ L to x do

8: U` ← U` ∪ {x}
9: end for

10: end for

Of course, the topological quality of a cover obtained from Algorithm 10 will
depend on the choice of landmark set L, and the choice of k. As with witness and
Dowker complexes, the choice of L may drastically affect the outcome. If we assume
that X is sampled near a low-dimensional space X , one desirable property would be
to have N (UL) ' X . Heuristically, we would expect that L should landmark different
regions of X, and that if X is d-dimensional, that we should choose k = d + 1 to
ensure that we have d-dimensional simplices in the nerve.

4.5 Future Directions

In this section, we developed a filtered version of the acyclic carrier theorem, which
allowed us to construct interleavings between different geometric constructions. We
have presented a few results, and we anticipate that the use of filtered carriers has
broad potential as a technique to construct interleavings in situations that we have not
yet considered. In this chapter, we have focused on algebraic interleavings, and many
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of these results could potentially be extended to homotopy interleavings [12] given
additional care when constructing carriers of cell complexes. Another interesting line
of future investigation would be to use the algorithmic construction of maps from
carriers (Algorithm 9) in data analysis. This could potentially be used, for instance,
in constructing low dimensional embeddings of data that minimize the interleaving
distance between a filtration on the higher-dimensional point cloud and the embedded
point cloud.

One of the potential appeals of cover complexes, beside their ability to reduce the
number of simplices, is their potential use for distributed computation. As discussed
previously, a limited version of this was explored in [104], and our interleaving results
expand the potential use of cover complexes to more general settings. We also believe
that the interleaving bounds we derive are likely pessimistic in many situations where
data has additional structure. Analyses of these situations may help tighten our
bounds considerably.



Chapter 5

Models for Image Patch Data

We’ll now return to the topic which was introduced in Section 1.2. Contributions
of this chapter include an explanation of why a Klein bottle appeared to be a good
model for image patches in [25] in terms of a fibration. We will then describe the
topology of models of other types of image patch data in terms of similar fibrations,
including d-dimensional voxel cubes. We will also propose a framework for data anal-
ysis, particularly in building complexes on point cloud data, that takes into account
the structure of a map, and apply this to patch-based examples we develop.

5.1 Preliminaries

5.1.1 Processing Image Patches

We will first review how a dataset of image patches was created from a dataset of
natural images [101], first in [66], and subsequently in the topological analyses [25,37].

The image data set we will discuss was produced by van Hateren and van der
Schaff [101], which consists of 4212 digital (1024×1536 pixel) black and white natural
images, meaning images of natural scenes, not digitally generated or altered aside
from camera lens calibration via an inverse filtering procedure. The pixel values are
approximately proportional to scene luminance, discretized into 8-bit bins. This data
set was used in [101] to study independent component analysis of 18× 18 patches, in

146
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Figure 5.1: Image 400 from the Van Hateren dataset [101]. An image patch is a k×k
pixel sub-image, such as the one indicated in red.

order to compare with the sensitivity of simple cells in the visual cortex. This data
set was then used by Lee, Pedersen, and Mumford [66], which studied 3 × 3 image
patches in order to compute empirical probability densities of regions of a 7-sphere
obtained by considering the subspace spanned by the eight non-constant eigenvectors
of the 3 × 3 discrete cosine transform equipped with the anglular distance. One of
the conclusions of [66] was that these patches appeared to concentrate around a low-
dimensional subspace of the 7-sphere, specifically an annulus thickening what would
later be called the primary circle. The method of producing image patches in [66]
was subsequently used in [25, 37], which produced a data set X(n, `, q) ⊂ Rn×|`| via
the following procedure

1. transform images by taking the logarithm of the pixel luminance value, in order
to normalize the effect of large numeric fluctuations in high intensity regions

2. sample n patches of size ` = (`1, `2, . . . ) uniformly at random from the trans-
formed images. Each patch is considered as a vector x ∈ R|`|, where |`| =

∏
i `i.

3. mean-center each patch: x 7→ x−
∑
xi

4. take the top q percent (typically q = 20%) of patches with highest L-norm
(Equation (5.1)).

5. normalize remaining patches by their L-norm x 7→ x/‖x‖L
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We define the L-(semi-)norm on an image patch x ∈ Rk as

‖x‖L =

√∑
i∼j

(xi − xj)2 =
√
xTLx (5.1)

where i ∼ j if index i and index j are adjacent (horizontally or vertically) on the
k1 × k2 pixel grid, and L is the (un-normalized) graph Laplacian of the graph G

defined by this adjacency relation. The matrix L is called D in [25, 37, 66], but we
will continute to use L to highlight the connection with the graph Laplacian We
illustrate the graph G defined by the adjacency relation for patches x ∈ R9, taken as
flattening a 3× 3 patch in column-major order in Equation (5.2).

x1 x4 x7

x2 x5 x8

x3 x6 x9

(5.2)

It is well known that graph Laplacians are positive semi-definite operators, with an
eigenspace with zero-dimensional eigenvalue spanned by constant functions (vectors)
on connected components on the graph [34]. This makes ‖ · ‖L a semi-norm, where
‖x‖L = 0 for constant x 6= 0. Because G is the cartesian product of two line-graphs
on k1 and k2 nodes respectively, eigenvectors v of L can be expressed in terms of the
Kronecker product of eigenvectors on the line graphs vGi,j = vk1i ⊗ v

k2
j . Transformation

of a vector x into this basis (assuming eigenvectors are chosen to have unit norm) on
k1 × k2 images is known as the discrete cosine transform [3].

Topologicial investigations into the space of image patches [25,37] both produced a
data set of 3×3 image patches as in [66], but added additional processing steps to focus
on regions of high density in X(n, `, q). The result was a data set X(n, `, q, k, p) ⊂
X(n, `, q) obtained through the following steps:

5. Compute distances to k-nearest neighbors in the remaining set of patches in
X(n, `, q).
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6. Take the bottom p percent of patches sorted by increasing distance to the `-th
nearest neighbor.

5.1.2 A Klein bottle near image patches

In [37] X(n, `, q) was produced by randomly subsampling a large data set with ` =

(3, 3), and q = 20 to produce a data set size of 5×104. Further filtering was applied by
varying k = 15, 100, 300 and p = 10, 20, 30, and witness complexes were constructed
which revealed the primary and secondary circles in Figures 1.3 and 1.4, stitched
together in a three-circle model.

In [25], a model Klein bottle was proposed which included the three-circle model as
a 1-dimensional skeleton. While the homology of the Klein bottle (see Section 1.2.3)
was not observed in the raw data, samples from this model were used to augment
the data, and the Klein bottle homology was preserved for a range of persistence
parameters, implying that the data retracted onto a space generated by the augmented
data points. The model Klein bottle was generated from a family of polynomials P
in two variables (x, y) parameterized by the torus S1 × S1

P : (a, b, c, d) 7→ c(ax+ by)2 + d(ax+ by) (5.3)

where (a, b) ∈ S1 ⊂ R2, (c, d) ∈ S1 ⊂ R2 lie on unit circles. These polynomials
were evaluated on a a 3 × 3 pixel index grid (x, y) ∈ {−1, 0, 1}2 (note the scale is
arbitrary due to the normalization procedure applied to patches). It was shown that
there was an identification of points P (a, b, c, d) = P (−a,−b, c,−d) corresponding to
an identification on the torus that obtains the Klein bottle.

5.1.3 Three-dimensional Images

In the following sections, we will consider spaces of higher dimensional image patches.
Our experiments will focus on three-dimensional images, given the practical difficulty
of obtaining images in higher dimensions. We will focus on dense three-dimensional
images, obtained through medical and seismic imaging which reveal the whole volume,
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as opposed to range images or three-dimensional meshes, which can used to construct
(two-dimensional) animations, but which typically do not represent anything inside
an object that would not be visible.

We will look at two sources of three dimensional images. First, images from
the BRATS MRI database [5–7, 76], which consists of MRI images of human brains.
Second, we will use the Penobscot seismic dataset [8], which consists of a single image
of a subsurface volume collected off the coast of Nova Scotia.

In contrast to two-dimensional images, which are easy to obtain through single
exposures of film or a digital sensor, three-dimensional images typically have to be
constructed through multiple observations either by multiple sensors at the same time,
or by a single sensor at multiple times. Instead of capturing exposure of pixels to
light, typically the sensor measures some sort of wave (acoustic or electromagnetic),
and an inverse problem is solved to reconstruct density or impedance in the interior
of the object being measured.

Depending on the constraints imposed on the position of the sensors, resolution or
accuracy of voxels in a three-dimensional image may not be uniform, and can cause
artifacts in images. For instance, in the BRATS data set, one of the dimensions is not
as well-aligned as the other two (see Figure 5.2), likely an artifact of the preference
to view MRI images as two dimensional slices in a certain direction so reconstruc-
tion efforts are focused on creating high-quality visualizations for these slices. In the
Penobscot data set, horizontal and vertical slices are qualitatively very different be-
cause of the vertical deposition of sedimentation (see Figure 5.3). Furthermore, the
deeper slices are potentially of lower quality due to the position of the sensors near
the surface.

This anisotropy in three-dimensional image data is fairly common, either as an ar-
tifact of image reconstruction as in the BRATS data set, or due to actual anisotropy in
the object being imaged as in the Penobscot data set. Just as two-dimensional image
patches sampled from the Van Hateren data set revealed certain structures at differ-
ent densities, it will be important to understand that samples of three-dimensional
patches will not be sampled uniformly from the space of all possible patches. The
distribution of patches on model spaces from a given data set or image can be thought
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Figure 5.2: Two slices of an MRI in the BRATS data set. Left: a slice in the second
two coordinates. Right: a slice in the first two coordinates.
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Figure 5.3: Two slices of the Penobscot data set. Left: the top third of an “inline”
slice (the image continues vertically). Right: a horizontal slice..
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Figure 5.4: Primary circle in 7 × 7 patches, k = 100, p = 0.2, with a secondary
circle beginning to fill in. Center: projection of data onto first two principal compo-
nent directions. Left: first eigenpatch (patch maximally aligned with first principal
component). Right: second eigenpatch.

of as a feature of that particular data set or image, and understanding such distri-
butions is an important first step in beginning to leverage patch-based techniques for
three dimensional data, as has been done for two-dimensional images in [16,71,86].

5.1.4 Primary Spheres and Secondary Circles

For certain cuts of patches for the Van Hateren data set, we see a “primary circle”.
This appears in the data in Figure 5.4 – further exploration of different codensity
cuts can be found in [37]. We’ll refer to the patch maximally aligned with a principal
component as an eigenpatch.

As discussed in Section 5.1.3, three dimensional data often has directional arti-
facts. A codensity cut of the Penobscot data set can be seen in Figure 5.5, where the
2-dimensional PCA embedding shows a clear circle, but the eigenpatches (patches
maximally aligned with the principal components) show that this circle corresponds
to a “secondary” circle. Note that the first prin

The first eigenpatch for the Penobscot data corresponds to a higher-dimensional
patch that we find on the primary circle for two-dimensional patches (i.e. a patch
with a linear gradient). For higher-dimensional images, the generalization of the
primary circle is the primary (d − 1)-sphere, consisting of patches with all possible
linear gradients.
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Figure 5.5: Secondary circle in 5 × 5 × 5 patches from Penobscot data, k = 100,
p = 0.4. Center: projection of data onto first two principal component directions.
Left: first eigenpatch. Right: second eigenpatch.
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Figure 5.6: Primary great circle in 5 × 5 × 5 patches from BRATS data, k = 100,
p = 0.2. Projection of data onto first two principal component directions. Left: first
eigenpatch. Right: second eigenpatch. Top: third eigenpatch.
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In contrast to the Penobscot Data, the top two eigenpatches of the BRATS data
lie on a primary great circle, corresponding to the equator of the primary 2-sphere, as
seen in Figure 5.6. As seen, the top three eigenpatches all lie on the primary 2-sphere,
although the sphere is not filled in.

As we see in Figures 5.4, 5.5 and 5.6, primary spheres and secondary circles appear
in image patch data in a variety of contexts. We will now develop a model space that
can be used to explain and understand these structures, and for which the behaviors
seen above can be interpreted as sub-spaces contained in the model.

5.2 The Harris Fibration

Both Lee, Pedersen and Mumford [66] and Carlsson and de Silva [37] found that a
version of the primary circle was an important structure in 3 × 3 image patch data.
In the 2011 dissertation of Jose Perea [88] and 2014 paper of Perea and Carlsson [86],
an explicit map based on the Harris edge detector [56] was used to find coordinate
locations of patches on the Klein bottle as part of a pipeline to classify textures.

In this section, we’ll define the Harris map on d-dimensional image patches (or
voxel cubes)

h : X→ RP d−1 (5.4)

and discuss how this map is a fibration on classes of models for images patches,
including the Klein bottle.

5.2.1 The Harris Map

In 1988, Harris and Stephens [56] proposed a combined corner and edge detector for
use in computer vision problems. The basic object of analysis was a matrix defined
for each patch x ∈ Rk1×k2

M(x) =

[
I1,1(x) I1,2(x)

I2,1(x) I2,2(x)

]
(5.5)
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where

I1,1(x) =
1

k1k2

∑
i,j

∆1(xi,j)
2

I2,2(x) =
1

k1k2

∑
i,j

∆2(xi,j)
2

I1,2(x) = I2,1(x) =
1

k1k2

∑
i,j

∆1(xi,j)∆2(xi,j)

and ∆i is a finite-difference operator in the i-th coordinate direction. Alternatively,
we can write

M(x) =
1

k1k2

∑
x

∆(x)∆(x)T (5.6)

where ∆ is a finite-difference gradient. Effectively, M(x) is the matrix of covariances
of finite differences over the patch. The eigenvalues and eigenvectors of M(x) were
used in [56] to decide if a patch contained an edge or corner – if one eigenvalue was
large and the other small, the patch was labeled an edge; if both were large, the patch
was labeled a corner; if both were small, the patch was neither an edge nor a corner.
We define the map h : x→ RP 1 as the map x→ MaxEigSpaceM(x) (the maximum
eigenspace of M(x)) in a manner that parallels [86]. We can think of h(x) as being
represented by a unit eigenvector, which must be identified with −h(x) because of sign
and scaling ambiguity of eigenvectors. We will assume that the maximum eigenspace
is 1-dimensional for every patch x (the set of matrices M(x) for which this is not
the case has measure zero, so we assume that this is valid with high probablity).
By the Courant-Fisher Minimax Theorem [53] (the variational characterization of
eigenvectors and eigenvalues), this eigenvector is interpretable the direction of largest
variation in the finite differences of x.

While the matrixM(x) in Equation (5.5) was originally defined for two-dimensional
images, there is no reason why its definition can not be extended to patches (cubes)
in d-dimensional images, where we form a d×d covariance matrix of finite differences
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h

Figure 5.7: Harris map h from a patch to RP 1

Figure 5.8: Left: patch with odd function (k(π/2, π/2)). Right: patch with even
function (k(π/2, 0)).

in every dimenion. In this case, we will obtain a map

h : X→ RP d−1 (5.7)

following the same arguments.

5.2.2 A Fibration Structure

As seen in Section 5.1.4, primary spheres and secondary circles are important features
of image patch data. We’ll now describe a model for patches that captures these
structures, and show that when restricted to patches of this form, the Harris map
is a fibration. For simplicity, we’ll consider image patches on a continuous domain,
which will allow us to ignore issues of discretization when choosing values for pixels
or voxels.

Let D ⊂ Rd denote either the unit d-dimensional disk or unit d-dimensional
cube centered at the origin (generally, any d-dimensional symmetric bounded domain
centered at the origin). Let fe, fo : R → R be functions, where fe(x) = fe(−x) is
an even function, and fo(−x) = −fo(x) is an odd function. Let vφ ∈ Sd−1 denote
a unit vector parameterized by angle φ. We define a family of functions k(φ, θ;x) :
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Sd−1 × S1 ×D → R via

Kd(fe, fo) = {k(φ, θ;x) = cos(θ)fe(v
T
φ x) + sin(θ)fo(v

T
φ x) | vφ ∈ Sd−1, θ ∈ [0, 2π)}

(5.8)
See Figure 5.8 for an example of how even and odd functions define two-dimensional
patches. If we fix φ, and vary θ, we obtain a secondary circle, as in Figure 1.4. If we
fix θ = π/2 or 3π/2 (so only the odd component is present), we obtain the primary
circle for two-dimensional patches (Figure 1.3), and a primary sphere Sd−1 generally.

Fixing φ and θ, each k(φ, θ;x) is a continuous function in x if fe, fo are both
continuous. Let L2(D) denote the space of square-integrable functions on D. If we
let φ, θ vary, k(φ, θ;x) is a continuous map from Sd−1 × S1 to L2(D) if fe, fo are
both square-integrable. If k(φ, θ;x) were one-to-one, this would imply that Kd(fe, fo)
has the same topology as the parameter space, Sd−1 × S1. However, the map is not
one-to-one, because there is an identification of parameters

k(−φ,−θ;x) = cos(−θ)fe(−vTφ x) + sin(−θ)fo(−vTφ x) (5.9)

= cos(θ)fe(v
T
φ x) + sin(θ)fo(v

T
φ x) (5.10)

= k(φ, θ;x) (5.11)

where we use −φ to denote the antipodal coordinate of Sd−1, so v−φ = −vφ (for S1,
−φ = φ+ π), and −θ in the usual sense of reflection of S1 across the horizontal axis.

We can use this structure to deduce that Kd is a fiber bundle over RP d−1, by
identifying k(φ, θ;x) with a preferred representative of φ in RP d. The identification
in Equation (5.9) defines a free Z2 action on the space Sd−1 × S1, and the space Kd

is fiber bundle identified with the orbits of this action. Note that this fiber bundle
is non-trivial, because the identification requires us to apply the Z2-action θ 7→ −θ
when crossing the boundary of the hemisphere on RP d.

Using this fiber bundle interpretation, we see that K2 is a Klein bottle, and Kd is
generally a d-dimensional manifold that generalizes the twisted structure of the Klein
bottle using higher-dimensional base spaces.
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If we take the continuous limit of the finite difference gradients ∆ used to define
the Harris matrix Equation (5.6), we obtain

M(k(φ, θ;x)) =
1

|D|
dx

∫
D

∇x(k)∇T
x (k) (5.12)

If fe, fo are differentiable, we obtain the formula

∇xk(φ, θ;x) = cos(θ)fe(v
T
φ x) + sin(θ)fo(v

T
φ x)

= (cos(θ)f ′e(v
T
φ x) + sin(θ)f ′o(v

T
φ x))vφ

= k′(φ, θ;x)vφ

in which case, the matrix M(x) is rank-1 with non-zero eigenvector vφ. Thus, we see
that the Harris map is a fibration for the model space Kd, mapping each patch to its
coordinate in RP d−1. Note that for discrete patches that there is some distortion in
the map due to discretization.

5.2.3 Real Projective Spaces

Because the Harris map has the real projective space RP d−1 as its target, we will
review some facts about these spaces which will be useful for us in calculations.
Material in this section can be found in standard texts, such as [35,57,102].

First, we recall that RP n is defined as a quotient space of Rn+1 − {0} ' Sn,
defined by identifying points via the relation x ∼ αx for all x ∈ Rn+1 − {0}, and all
α ∈ R − {0}. We’ll find it convenient to work with the antipodal identification on
Sn, where we only need to use the relation x ∼ −x, which makes it clear that Sn

is a double cover of RP n. There is a relationship between an explicit cell structure
on RP n and a hemispherical cell structure on Sn, which for example can be seen in
Figure 5.9, where RP n is obtained by taking ei ∼ Tei. This cell structure on RP n

has a cell in each dimension RP n = e0 ∪ e1 ∪ · · · ∪ en, where ∂ei wraps around ei−1
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twice. Applying the integral chain complex functor, we obtain

∂ei = ei−1 + (−1)iei−1 =

0 i odd

2ei−1 i even
(5.13)

This produces the chain complex

0 〈e0〉 〈e1〉 〈e2〉 · · ·0 ×2 0 (5.14)

Computing homology, we obtain

Hk(RP n;Z) =



Z k = 0

Z2 k odd, 0 < k < n

Z k odd, k = n

0 otherwise

(5.15)

Finally, we need know the fundamental group of RP n, in order to understand how
fibrations over RP n can twist. Because RP n, n ≥ 1 is path connected, we ignore
the choice of base point. For RP 1 ' S1, π1(S1) = Z. For RP n, n ≥ 2, we have
π1(RP n) ' Z2 [57].

5.2.4 Local Coefficient Calculations

We’ll now perform some calculations that will be necessary to compute homology of
the fibration Kd using the Lerray-Serre spectral sequence. Recall from Section 5.2.2,
that φ can be thought of as an element of RP d−1 where antipodal points of Sd−1 are
identified. There is an antipodal action of π1(RP d−1) on the secondary circles, which
turns into an action on the homology of fibers, specifically ρ : H1(S1) → H1(S1),
where ρ : a 7→ −a. This “twisting” of the fiber has interesting effects on homology
of the total space of the fibration, which we will capture using local coefficients.
Homology with local coefficients was introduced by Steenrod [96], and we will follow
[35] for exposition.
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e0 Te0

Te1

e1

Figure 5.9: Local coefficient system on RP 1 = S1. T denotes the non-trivial Z-
automorphism T : a 7→ −a.

A local coefficient system is thought of as a fiber bundle over a base space B. Let
A be a a discrete abelian group (we will consider A = H1(S1) = Z), and let G be a
subgroup of Aut(A) (we will consider G = Z2 = Aut(Z). Any fiber bundle E over B
with fiber A and structure group G is called a system of local coefficents on B.

We’ll now compute homology of RP n with local coefficients given by the spherical
double cover. In Figure 5.9 we have the local coefficient system for RP 1, which lies on
the double cover of the circle. For RP n, the double cover is the sphere Sn, and RP 1

constitutes a special situation where RP 1 ' S1. We will first create a chain complex
of Sn with coefficients in Z[Z2], considered as the module Z[T ]/(T 2 − 1) using the
hemispherical cell complex ∪ni=0ei ∪ Tei. The cell complex is freely generated in each
dimension by ei, and the boundaries can be computed, similar to Equation (5.13) as

∂ei = ei−1 + (−1)iTei−1 =

(1− T )ei−1 i odd

(1 + T )ei−1 i even
(5.16)

This produces the chain complex

0 〈e0〉 〈e1〉 〈e2〉 · · ·1−T 1+T 1−T (5.17)

We can then compute homology of RP n with twisted Z coefficients by replacing T with
an element of Aut(Z). In the case where we take the trivial automorphism T = id = 1

(that is, non-twisted coefficients), we obtain the chain complex Equation (5.14). In
the case where we take the non-trivial automorphism T = − id = −1 (coefficients
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with a twist), we obtain the chain complex

0 Z Z Z · · ·×2 0 ×2 (5.18)

In this case, we can compute homology by induction to obtain

Hk(RP n;Z−) =


Z2 k even, k < n

Z k even, k = n

0 otherwise

(5.19)

5.2.5 Homology of the Harris Fibration

We’re now ready to compute homology of the total space of the Harris Fibration, Kd,
defined in Section 5.2.2 using the Leray-Serre spectral sequence. We already com-
pleted this computation for the case of 2-dimensional image patches in Section 1.2.3,
in which case K2 was the Klein bottle. Recall that the Leray-Serre spectral sequence
starts on the E2 page, with

E2
p,q = Hp(B;Hq(F ))

In this case, B = RP d−1, and because F = S1, there are non trivial entries for
q = 0, 1. In the case of q = 0, we have H0(F ) = Z (there is no action on H∗(F )

by π1(RP d−1)), and in the case of q = 1, we have the twisted coefficient system
H1(F ) = Z− because π1(RP d−1) acts on S1 via the antipodal map. Thus, E2

p,0 =

Hp(RP d−1;Z) (Equation (5.15)), and E2
p,1 = Hp(RP d−1;Z− (Equation (5.19)). For

K3 on 3-dimensional patches, we have a fibration over RP 2, where the E2 page of the
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Leray-Serre Spectral sequence is

0 0 0

Z2 0 Z

Z Z2 0

(5.20)

And for the 4-dimensional patch space K4, the E2 page of the Leray-Serre spectral
sequence is

0 0 0 0

Z2 0 Z2 0

Z Z2 0 Z

(5.21)

We can already see some patterns that hold as the dimension d of the patch increases.

Proposition 5.2.1. The Leray-Serre spectral sequence of the Harris fibration col-
lapses at the E2 page for any dimension d of patches.

Proof. since the differential ∂2 is of bi-degree (−2, 1), the only possible non-trivial
maps are ∂2

p,0 : E2
p,0 → E2

p−2,1, p ≥ 2. If p is even, then E2
p,0 = Hp(RP d−1;Z) = 0,

and if p is odd, then E2
p−2,1 = Hp(RP d−1,Z−) = 0, so ∂2 = 0. Thus ∂2 = 0, since

every map has either 0 as a source or target. For the Er page, r > 2, this same
condition is trivially verifiable from the (−r, r − 1) bi-degree of the differential, and
the observation that non-zeros only occur on the first two rows.

Proposition 5.2.2. Let Kd denote the total space of the Harris fibration on d-
dimensional patches. Then Hk(Kd) = 0 for even k, k ≥ 2, and also for k > d.

Proof. Suppose k ≥ 2 is even or k > d. Because the spectral sequence collapses on
the E2 page, we have E∞0,k = Hk(RP d−1;Z) = 0, since k ≥ 2 is even, or k > d, by



CHAPTER 5. MODELS FOR IMAGE PATCH DATA 163

Equation (5.15), and E∞1,k−1 = Hk−1(RP d−1;Z−) = 0, since k−1 ≥ 1 is odd, or k > d,
by Equation (5.19). Thus, the filtration on Hk(Kd) given by the spectral sequence is
trivial, and so Hk(Kd) = 0.

Proposition 5.2.3. Hd(Kd) = Z if d is odd.

Proof. See Equation (5.20) for an example. Because the spectral sequence collapses on
the E2 page, we have E∞0,d = Hd(RP d−1;Z) = 0 since d−1 is even by Equation (5.15),
and E∞1,d−2 = Hd−1(RP d−1;Z−) = Z since d−1 is even by Equation (5.19). This gives
a filtration on Hd(Kd) for which the only possible solution is Hd(Kd) = Z.

Proposition 5.2.4. Hd−1(Kd) = Z⊕ Z2 if d is even.

Proof. See Equation (5.21) for an example. Because the spectral sequence collapses
on the E2 page, we have E∞0,d−1 = Z, and E∞1,d−2 = Z2, which gives a filtration on
Hd−1(Kd). The only possible Z module with this filtration problem is Hd−1d(K) =

Z⊕ Z2.

The most challenging statement involves Hk(Kd) for k < d − 1 odd, since the
extension problem on the filtration is non-trivial.

Proposition 5.2.5. Hk(Kd) = Z2 ⊕ Z2 if 0 < k < d− 1 is odd.

Proof. For examples, see the first super-diagonal in Equations (5.20) and (5.21). Be-
cause the spectral sequence collapses on the E2 page, we have E∞0,k = Hk(RP d−1;Z) =

Z2, since k < d− 1 is odd by Equation (5.15), and E∞1,k−1 = Hk−1(RP d−1;Z−) = Z2,
since k − 1 is even by Equation (5.19).

This gives a filtration on Hk(Kd) as F1Hk(Kd) = Z2, and F2Hk(Kd)/F1Hk(Kd) =

Z2. There are two possible solutions to this extension problem - either Hk(Kd) =

Z2 ⊕ Z2, or Hk(Kd) = Z4. In order to determine which case actually occurs, we need
to go beyond the statement of the Leray-Serre spectral sequence, and look under the
hood of how the spectral sequence is constructed.

One way of constructing the Leray-Serre spectral sequence uses a filtration on
a cell structure for Kd (see [75] Chapter 6), where the i-skeleta are defined via
Kdi =

⋃i
j=0 Fj ×Bi−j, where attaching maps are determined via a combination of the
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attaching maps on F and B and the action of π1(B). We will use the cell structure on
B = RP d−1 given in Section 5.2.3, and the (same) cell structure on F = S1 with a sin-
gle cell in dimensions 0 and 1. Passing through the chain functor, we see that there is a
sub-chain complex generated by RP d−1×e0 ' RP d−1. In particular, because ∂F∗ = 0,
the kernel of this sub-chain complex is not in the image of any chains generated by
RP d−1 × e1, so [v] ∈ Hk(RP d−1) will generate homology via [v × e0] ∈ Hk(K) with
the same torsion. Specifically, this implies that the Z2 homology class in Hk(RP d−1)

becomes a Z2 homology class in Hk(Kd). In conjunction with information from the
Leray-Serre spectral sequence, we must have Hk(Kd) = Z2 ⊕ Z2.

All the preceding propositions can be combined into a single statment

Theorem 5.2.6. Let Kd denote the total space of the Harris fibration on d-dimensional
patches. Then

Hk(Kd) =



Z k = 0

Z2 ⊕ Z2 0 < k < d− 1, k odd

Z k = d, d odd

Z⊕ Z2 k = d− 1, d even

0 otherwise

(5.22)

For example, for 2-dimensional patches, we have a Klein bottle

H∗(K2;Z) = Z,Z⊕ Z2, 0 (5.23)

and for 3-dimensional patches, we have

H∗(K3;Z) = Z,Z2 ⊕ Z2, 0,Z (5.24)

and for 4-dimensional patches, we have

H∗(K4;Z) = Z,Z2 ⊕ Z2, 0,Z⊕ Z2 (5.25)
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5.2.6 Field Coefficient Calculations

Since we will work with field coefficients when computing persistent homology, we will
now apply the Universal Coefficient Theorem (Theorem 1.3.1) to state the homology
of the Harris fibration with different field coefficients.

First,we would like to have results for the real projective plane.

Hk(RP n;F2) =

F2 k ≤ n

0 k > n
(5.26)

and for F = Fp, p > 2, or F = Q, we have

Hk(RP n;F2) =

F k = 0, n odd

0 otherwise
(5.27)

Results for the total space Kd of the Harris fibration for d-dimensional patches
can be obtained either through the universal coefficient theorem (Theorem 1.3.1), or
by computing the Leray-Serre spectral sequence with field coefficients.

Hk(Kd;F2) =



F2 k = 0, d odd

F2 ⊕ F2 0 < k < d

F2 k = d

0 otherwise

(5.28)

and for F = Fp, p > 2, or F = Q, we have

Hk(Kd;F) =



F k = 0

F k = d− 1, d even

F k = d, d odd

0 otherwise

(5.29)
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For example, on 3-dimensional patches we have

H∗(K3;F2) = F2,F2 ⊕ F2,F2 ⊕ F2,F2 (5.30)

H∗(K3;F) = F, 0, 0,F (5.31)

and for 4-dimensional patches we have

H∗(K4;F2) = F2,F2 ⊕ F2,F2 ⊕ F2,F2 ⊕ F2,F2 (5.32)

H∗(K4;F) = F, 0, 0,F (5.33)

5.3 Density in the Image and Fibers of the Harris

Map

As discussed in Sections 1.2.1 and 5.1.3, the distribution of patches is not uniform in
either two- or three-dimensional data. In this section, we investigate the distribution
of patches in RP d−1, as well as the distribution of patches in pullbacks of open sets
in the image of the Harris Map.

5.3.1 Two-dimensional Images

In Figure 5.10, we visualize the density of image patches sampled from the Van
Hateren data set both in the image of the Harris map and in terms of the nearest
neighbor on a model Klein bottle described in Section 5.2.2, using fe = x2 and
fo = x, sampled on a uniform grid. Note that no codensity filter was applied, so some
patches may be removed in subsequent analyses. We see that patches do not occur
with equal frequency in terms of orientation, and see that concentration occurs with
higher frequency near φ ≈ π ∼ 0 (variation is in horizontal direction), with a smaller
bump near φ ≈ π/2 (variation in a vertical direction). In the Klein bottle densities,
the vertical lines are “secondary circles”, and the two horizontal bands, especially
visible for 3 × 3 patches, are the “primary circle” appearing as the double cover of
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Figure 5.10: Left: 3 × 3 patches. Right: 7 × 7 patches. Top: histograms of the
image of the Harris map applied to patches obtained from the Van Hateren data set.
Bottom: histograms of points assigned to nearest neighbors in a model Klein bottle
(yellow bins contain more patches, and blue contain fewer).

RP 1 (note the Klein bottle is obtained by an antipodal identification on the left and
right sides of the histogram).

In Figure 5.11, we inverse images of open sets of the Harris map applied to image
patches sampled from the Van Hateren data set. We see a concentration of patches in
two clusters along the first eigenpatch direction, corresponding to the primary circle
as a double cover of RP 1. As the codensity of patches decreases, we see secondary
circles appear, with the second eigenpatch direction appearing as a line. Note that
in Figure 5.11 that if no codensity threshold is applied to the PCA plots, the circles
would fill in.
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Figure 5.11: PCA embeddings of inverse images of open sets in RP 1 covering the
image of the Harris map applied to 7× 7 patches, with 1st and 2nd eigenpatches (left
and right). Only patches in the top 35% highest codensity (k = 50) are displayed as
points. Top: open set with the largest number of patches. Bottom: open set with
smallest number of patches.
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Figure 5.12: Image of the Harris map applied to patches sampled from the BRATS
data set. Affine spaces of RP 2 colored by the log10 number of patches in landmark
neighborhoods. From left to right: stereographic projections from e1, e2, and e3.

5.3.2 Three-dimensional Images

We can apply similar techniques to visualize the distribution of three-dimensional
patches in both the BRATS and Penobscot data sets. In Figures 5.12 and 5.14, we
visualize the density of the image of the Harris map by landmarking RP 2 and then
assigning patches to the closest landmark in the image of the Harris map. Cells in
the images are the Voronoi cells of the landmarks in several sterographic projections,
and are colored by the number of points assigned. In the BRATS data set, we see
concentrations of patches along the three great circles spanned by two of the three
canonical coordinates. In the Penobscot data set, we see a large concentration of
patches that primarily vary in the second coordinate.

In Figures 5.13 and 5.15, we project patches onto a model K3, and visualize the
distribition using a 3D heatmap. Again, we employ a stereographic projection for
two of the axes, and the third axis is given by the coordinate θ, cut at 0 ∼ 2π. In the
BRATS data, we see two sections corresponding to the primary 2-sphere, although
some fill-in can be seen in the secondary circles aligned with the the third coordinate.
In the Penobscot data, we see a strong secondary circle over the second coordinate.
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Figure 5.13: Histogram of the number of nearest neighbors in the BRATS data to
points in K3. The xy plane is a stereographic projection of RP 2 from the third
coordinate, and the z axis is the fiber coordinate θ.
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Figure 5.14: Image of the Harris map applied to patches sampled from the Penobscot
data set. Affine spaces of RP 2 colored by the log10 number of patches in landmark
neighborhoods. From left to right: stereographic projections from e1, e2, and e3.
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Figure 5.15: Histogram of the number of nearest neighbors in the Penobscot data
to points in K3. The xy plane is a stereographic projection of RP 2 from the second
coordinate, and the z axis is the fiber coordinate θ.

In contrast to the two-dimensional Van Hateren data, both the BRATS and Penob-
scot data display a large degree of anisotropy. In the BRATS data, the third coor-
dinate has a larger step size than the first and second coordinate, explaining the
larger variation seen in patches that vary primarily in the third coordinate. In the
Penobscot data, patches primarily vary in the second coordinate, which is the vertical
direction (physically) in the data. This can be attributed to the fact that sediment
layers primarily vary in this direction. We also see increased variation along the third
coordinate, compared with the first coordinate. This is an artifact of how the three
dimensional volume is constructed as a stack of two-dimensional slices which are not
always perfectly aligned.

5.4 Topological Computations

In Section 5.3, we visualized the distribution of patches in the BRATS and Penobscot
data sets. Note that these visualizations effectively reduced patches from a 125-
dimensional space to the three-dimensional space K3. We will now compute persistent
homology of sub-spaces of the data, filtered by codensity, and relate what we see to
the visualizations.
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Figure 5.16: Dowker persistence diagrams with 200 landmarks computed on a dataset
sampled fromK2. Left: computed with F2 coefficients. Right: computed with rational
coefficients.

5.4.1 2-dimensional Image Patches

In Figure 5.16, we compute persistence diagrams for Dowker filtrations on patches
sampled from a model Klein bottle, K2. As we expect from our computations in
Section 5.2.6, we see a prominent H2 class when computing with F2 coefficients,
which disappears along with one of the two prominent H1 classes when we compute
with rational coefficients instead.

In Figure 5.17, we see a space obtained by applying the k = 100, p = 0.2 co-
density filter to 7 × 7 patches in the Van Hateren data. We see three prominent H1

classes, which can be attributed to a model consisting of the primary circle with two
chords at φ = 0 and φ = π/2, passing through θ = π, seen in the histogram on the
left side of the figure.

5.4.2 3-dimensional Image Patches

In Figure 5.18, we compute persistence diagrams for Dowker filtrations on patches
sampled from a model space K3. Again, our computations agree with our computa-
tions in Section 5.2.6, we see two prominent H2 classes and two prominent H1 classes
when computing with F2 coefficients, all of which disappear when computing with
rational coefficients.
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Figure 5.17: 7 × 7 patches from the Van Hateren data set, filtered with k = 30,
p = 0.2. Left: histogram of density of projection onto a model K2. Right: Persistence
diagram for Dowker complex, 200 landmarks, computed with F2 coefficients.
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Figure 5.18: Dowker persistence diagrams with 300 landmarks computed on a dataset
sampled fromK3. Left: computed with F2 coefficients. Right: computed with rational
coefficients.
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Figure 5.19: Dowker persistence diagram with 100 landmarks computed with F2

coefficients on 5× 5× 5 patches sampled from the Penobscot data. k = 40, p = 0.4.

In Figure 5.19, we compute a Dowker persistence diagram for patches sampled
from the Penobscot data. We see what we expect from Figure 5.15, which is a strong
secondary circle producing a prominent H1 class.

Finally, we filter patches in the BRATS data set to a high-density region. In
Figure 5.20, we see a prominent H2 class, corresponding to the primary two-sphere
appearing as the double cover of the horizontal plane in the histrogram on the left.
The prominent H1 class comes from the high-density fiber aligned with the third
coordinate in the middle of the histogram. Thus, the histogram and persistence
diagram can be explained by a primary 2-sphere with the north and south poles
connected by a secondary circle.

5.4.3 Commentary

One of the striking results of this section is the utility of the the visualizations in
Section 5.3 to explain what we see in persistence diagrams in high-density regions of
the patch data. The fact that we can see the same structure in persistence diagrams
as we visualize in the model implies that the projection onto the model space does
not produce overly large and unnatural topological distortions on these high-density
sub-spaces. Furthermore, the structure seen in the model spaces is capable of explain-
ing the prominent features of the persistence diagrams, meaning we aren’t missing
anything topologically important in the model.
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Figure 5.20: 5 × 5 × 5 patches from the BRATS dataset. Codensity filter with
k = 100, p = 0.2. Left: histogram of density of projection onto model K3, with xy
plane stereographic projection from the third coordinate.. Right: Persitent homology
of Dowker filtration with 100 landmarks, F2 coefficients.

All together, the projection of 125-dimensional patches onto the model subspace
K3 appears to capture much of the interesting topology in high-density regions of
the data. Note that there still might be important structure that contracts onto this
space which is not visible in the persistence diagrams.

5.5 Conclusion & Future Directions

In this chapter, we investigated the use of parameterized models to help in the in-
vestigation of complex, yet structured, spaces of data. We used a model space for
which the Harris map is a fibration in order to investigate the distribution of image
patches in 2-dimensional and 3-dimensional images. We also used Dowker complexes,
which we analyzed in Chapter 4 to perform computations to investigate topology of
the data.

The structure that we discovered in these data sets has a variety of potential
applications. For instance, the model space introduced in Section 5.2 could be used
to extend applications of the Klein bottle for 2-dimensional image patches, such as in
designing compression schemes for higher-dimensional images [71], or in augmenting
and understanding convolutional neural networks in higher-dimensional images [16].
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The density analysis we conducted on higher-dimensional images could also be useful
in 3-dimensional texture analysis, extending the work of [86, 88]. Additionally, our
investigation of anisotropy in the image of the Harris map may help guide denoising
and reconstruction efforts for 3-dimensional images, particularly when we expect an
isotropic ground truth.

Finally, the parameterized methods that we used to investigate spaces of image
patches could be used in entirely different contexts. Natural candidates include data
that is sampled from other fibrations, or spaces that come equipped with maps to a
base space. One topic to investigate would be dynamic point clouds, where there is a
natural map to the time parameter. More generally, topology that is governed by a
control system (perhaps with a complicated state space) would also be a candidate.



Chapter 6

Conclusion

In this dissertation, we first developed new matrix-factorization based algorithms
for computing persistent and zigzag homology, then developed the use of filtered
carriers to investigate the relationship between cover complexes and other geometric
complexes, and finally proposed a fibration model for image patches and used this to
investigate data sets of patches sampled from 3-dimensional images.

Overall, we believe that the incorporation of problem structure into topological
data analysis will present many opportunities to aid computation and data analysis.
The conclusions of Chapters 3, 4 and 5 outline various directions in which future
work may build on the ideas presented. The use of maps to a base space has been a
fruitful point of view in pure topology, for instance in the study of fiber bundles, and
has the potential to reveal richer information about a space than can be captured
using ordinary (persistent) homology. Development of parameterized methods for
topological data analysis has the potential to enrich the field as well. This may take
many forms, including some found in this work.
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