
ARC SEARCH METHODS FOR LINEARLY CONSTRAINED OPTIMIZATION

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nicholas Wayne Henderson

June 2012

Abstract

We present a general arc search algorithm for linearly constrained optimization. The method con-

structs and searches along smooth arcs that satisfy a small and practical set of properties. An

active-set strategy is used to manage linear inequality constraints. When second derivatives are

used, the method is shown to converge to a second-order critical point and have a quadratic rate

of convergence under standard conditions. The theory is applied to the methods of line search,

curvilinear search, and modified gradient flow that have previously been proposed for unconstrained

problems. A key issue when generalizing unconstrained methods to linearly constrained problems

using an active-set strategy is the complexity of how the arc intersects hyperplanes. We introduce a

new arc that is derived from the regularized Newton equation. Computing the intersection between

this arc and a linear constraint reduces to finding the roots of a quadratic polynomial. The new arc

scales to large problems, does not require modification to the Hessian, and is rarely dependent on

the scaling of directions of negative curvature. Numerical experiments show the effectiveness of this

arc search method on problems from the CUTEr test set and on a specific class of problems for which

identifying negative curvature is critical. A second set of experiments demonstrates that when using

SR1 quasi-Newton updates, this arc search method is competitive with a line search method using

BFGS updates.

iv

Acknowledgments

I’ve had the great privilege of knowing and working with many wonderful people during my time at

Stanford University.

My principal advisor, Walter Murray, has been a great mentor and friend. He helped me land my

first internship the summer before I started at Stanford. He put me forward for various fellowships,

which supported this research. His class on numerical optimization initiated my interest in the field.

I will always value his guidance and advice.

Michael Saunders has also been a great supporter and friend. Any reader of this dissertation

who is unable to find a dangling participle should thank him. Michael is kind of heart and ex-

tremely generous with his time. His excellent class on large-scale linear algebra and optimization

was instrumental in the development of my solver.

My other committee members were Yinyu Ye, Margot Gerritsen, and Robert Tibshirani. They

are exemplary teachers, researchers, and people.

ICME has been a wonderful home during my time at Stanford. I would like to thank the past

and present directors Peter Glynn, Walter Murray, and Margot Gerritsen for their dedication to the

program. Indira Choudhury deserves special credit for her tireless support of students.

Finally, I would like to express my gratitude to my family and friends. I enjoy life because they

are a part of it.

This research was supported by the William R. Hewlett Stanford Graduate Fellowship Fund and

grants from the Office of Naval Research.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Preliminaries . 1

1.2 Unconstrained optimization . 2

1.3 Linearly constrained optimization . 2

1.4 Second derivative methods . 3

1.4.1 Newton . 3

1.4.2 Line search and extensions . 4

1.4.3 Gradient flow . 5

1.4.4 Trust-region . 6

1.5 Thesis outline . 7

2 Convergence 9

2.1 Preliminaries . 9

2.2 Statement of assumptions . 9

2.3 Definition of the algorithm . 10

2.3.1 Properties of Γk . 10

2.3.2 Properties of πk . 11

2.3.3 Properties of Γk related to constraints . 11

2.3.4 Properties of αk . 12

2.3.5 Properties of Ak . 14

2.4 Convergence results . 14

3 Arcs 23

3.1 Preliminaries . 23

3.2 Line search . 24

3.3 Curvilinear search . 25

3.3.1 Moré & Sorensen . 25

vi

3.3.2 Goldfarb . 26

3.4 NEM arcs . 26

3.4.1 Derivation . 27

3.4.2 Properties . 28

3.4.3 Convergence . 29

3.4.4 Linear constraints . 31

3.4.5 Constraint intersection . 31

3.4.6 Advantages . 33

3.5 Modified gradient flow . 34

3.5.1 Derivation . 34

3.5.2 Constraint intersection . 35

3.5.3 Comparison to NEM arcs . 36

4 ARCOPT 37

4.1 Preliminaries . 37

4.2 Initialization . 39

4.2.1 Input . 39

4.2.2 Initial processing . 40

4.3 Phase 1 . 40

4.4 Phase 2 . 41

4.5 Basis maintenance . 43

4.6 Factorization . 47

4.7 Products with Z and ZT . 50

4.8 Expand . 51

4.9 Arc-constraint intersection . 54

5 Experiments 56

5.1 Preliminaries . 56

5.1.1 SNOPT . 56

5.1.2 IPOPT . 56

5.1.3 Other solvers . 57

5.1.4 Performance profiles . 57

5.2 Hamiltonian cycle problem (HCP) . 59

5.2.1 10, 12, and 14 node cubic graphs . 59

5.2.2 24, 30, and 38 node cubic graphs . 60

5.3 The CUTEr test set . 63

5.4 Quasi-Newton methods . 66

6 Conclusions 69

6.1 Contributions . 69

6.2 Further work . 69

vii

A Results tables 71

A.1 CUTEr results . 71

A.2 Quasi-Newton results . 78

Bibliography 86

viii

List of Tables

4.1 Symbols for basis index sets . 38

4.2 ARCOPT parameters and default values. 39

5.1 Summary of solvers on NEOS . 58

5.2 Results on 10, 12, and 14 node cubic graphs . 61

5.3 Results on 24, 30, and 38 node cubic graphs . 62

5.4 Solver settings for CUTEr experiments. 63

A.1 Results on CUTEr unconstrained problems . 71

A.2 Results on CUTEr bound constrained problems . 74

A.3 Results on CUTEr linearly constrained problems . 77

A.4 Quasi-Newton results on CUTEr unconstrained problems 78

A.5 Quasi-Newton results on CUTEr bound constrained problems 82

ix

List of Figures

5.1 Performance profile on 10, 12, and 14 node cubic graphs 61

5.2 Average performance on cubic graphs . 62

5.3 Performance profile on unconstrained problems. 64

5.4 Performance profile on bound constrained problems. 64

5.5 Performance profile on linearly constrained problems. 65

5.6 Performance profile for quasi-Newton experiments on unconstrained problems. . . . 68

5.7 Performance profile for quasi-Newton experiments on bound constrained problems. . 68

x

Chapter 1

Introduction

1.1 Preliminaries

This thesis is concerned with algorithms to find local solutions to the linearly constrained optimiza-

tion problem

minimize
x∈Rn

F (x)

subject to Ax ≥ b.
(LC)

More specifically, we seek points that satisfy the first- and second-order necessary conditions for a

minimizer. Here, F ∈ C2 : Rn 7→ R, A ∈ Rm×n, and b ∈ Rm. In general, it is assumed the gradient

∇F (x) and the Hessian ∇2F (x) are available. It will be seen that ∇2F (x) is only needed in the

form of an operator for matrix-vector products.

Algorithms for this problem usually generate a sequence of iterates {xk}
∞
k=0, which converge to a

solution x∗. At each iterate, the gradient is denoted gk = ∇F (xk) and the Hessian is Hk = ∇2F (xk).

Arc search methods produce new iterates with the update

xk+1 = xk + Γk(αk),

where Γk ∈ C
2 : R 7→ R

n and αk ≥ 0. Γk(α) is a smooth arc in n-dimensional Euclidean space

and α is the step size. For α = 0 arcs have no displacement (Γk(0) = 0) and are initially tangent

to a descent direction (Γ′
k(0)

T gk < 0). The second condition may be relaxed to Γ′
k(0)

T gk ≤ 0 if a

direction of negative curvature is used.

In the thesis we prove global convergence for a generic arc search algorithm to solve LC. An

active-set strategy is used to manage the linear inequality constraints. When second derivatives

are used we show convergence to second-order critical points and a quadratic rate of convergence

under standard conditions. We also develop a specific arc that scales to large problems, does not

require Hessian modification, and avoids arbitrary scaling choices. This chapter discusses arc search

methods in the context of the well known line search and trust-region methods.

1

CHAPTER 1. INTRODUCTION 2

1.2 Unconstrained optimization

Algorithms for LC typically are extensions of methods to solve the unconstrained optimization

problem,

minimize
x∈Rn

F (x). (UC)

The best possible solution to UC is called a global minimizer, a point in Rn that attains the least

value of F .

Definition 1.1. If F (x∗) ≤ F (x) for all x, then x∗ is called a global minimizer.

Unfortunately, global minimizers can be very difficult to find. Thus, we restrict our interest to

methods that find local minimizers. Note that many methods to find global minimizers are based

on methods to find local minimizers.

Definition 1.2. If F (x∗) ≤ F (x) for all x in some neighborhood of x∗, then x∗ is called a local

minimizer.

Definition 1.3. If F (x∗) < F (x) for all x in some neighborhood of x∗ with x∗ 6= x, then x∗ is called

a strict local minimizer.

Definitions 1.2 and 1.3 are not possible to check computationally. When F is smooth, derivatives

can be used to derive optimality conditions.

Theorem 1.1. If x∗ is a local minimizer then

∇F (x∗) = 0 and ∇2F (x∗) � 0. (1.1)

Theorem 1.2. x∗ is a strict local minimizer if

∇F (x∗) = 0 and ∇2F (x∗) ≻ 0. (1.2)

Equations (1.1) are known as the second-order necessary optimality conditions. If F is bounded

below on a compact set, then a point satisfying (1.1) exists and is called a second-order critical point.

Equations (1.2) are known as the second-order sufficient optimality conditions. Points satisfying

(1.2) need not exist. For example, x∗ = 0 is a strict (global) minimizer for F (x) = x4, yet F ′′(0) = 0.

Thus algorithms can usually only guarantee the ability to find points satisfying (1.1) and in practice

often find points satisfying (1.2).

1.3 Linearly constrained optimization

Consider now problems that are constrained by a set of linear inequalities, Ax ≥ b. Here, A is a

m× n matrix and b is a vector of length m. An individual constraint is written aTi x ≥ bi, where a
T
i

is the ith row of A and bi is the ith element of b. For a point x, a constraint is said to be active if

aTi x = bi, inactive if aTi x > bi, and violated if aTi x < bi.

CHAPTER 1. INTRODUCTION 3

Solutions and optimality conditions for LC are defined in an analogous fashion to those for UC.

Definition 1.4. If Ax∗ ≥ b and there is a neighborhood N such that F (x∗) ≤ F (x) for all x ∈ N

and Ax ≥ b then x∗ is called a local minimizer.

Definition 1.5. If Ax∗ ≥ b and there is a neighborhood N such that F (x∗) < F (x) for all x ∈ N

and Ax ≥ b with x∗ 6= x then x∗ is called a strict local minimizer.

Theorem 1.3. Given a point x∗ ∈ Rn, let A be the matrix of constraints active at x∗ and let Z

denote a basis for null(A). Then x∗ is a local solution to LC only if

Ax∗ ≥ b with Ax∗ = b

∇F (x∗) = ATλ∗ ⇔ ZT∇F (x∗) = 0

λ∗ ≥ 0

(first-order) (1.3)

ZT∇2F (x∗)Z � 0. (second-order) (1.4)

Theorem 1.4. Given a point x∗ ∈ Rn, let A be the matrix of constraints active at x∗ and let Z

denote a basis for null(A). Then x∗ is a strict local solution to LC if

Ax∗ ≥ b with Ax∗ = b

∇F (x∗) = ATλ∗ ⇔ ZT∇F (x∗) = 0

λ∗ > 0

(first-order) (1.5)

ZT∇2F (x∗)Z ≻ 0. (second-order) (1.6)

In Theorems 1.3 and 1.4 ZT∇F (x∗) is the reduced gradient, ZT∇2F (x∗)Z is the reduced Hessian,

and λ∗ is the vector of Lagrange multipliers. Combined, equations (1.3) and (1.4) are known as the

second-order necessary optimality conditions for LC. A second-order critical point satisfying (1.3)

and (1.4) exists if F is bounded below on a compact set that has a nontrivial intersection with the

feasible region defined by Ax ≥ b. Equations (1.5) and (1.6) are known as the second-order sufficient

optimality conditions. Points satisfying (1.5) and (1.6) need not exist, just like the case for UC.

1.4 Second derivative methods

1.4.1 Newton

Newton’s method is the gold standard in optimization. In the context of unconstrained optimization

the algorithm is simply

xk+1 = xk −H
−1
k gk. (1.7)

In the case where Hk ≻ 0, xk+1 minimizes mk(x) = 1
2x

THkx + gTk x, a local quadratic model of

F around xk. Newton’s method has the desirable property that if it converges to a point x∗ with

CHAPTER 1. INTRODUCTION 4

∇2F (x∗) ≻ 0, then it does so at a quadratic rate [4,53]. The problem with Newton’s method is that

it may cycle, diverge, or converge to a maximizer. Also, if Hk is singular, xk+1 is not defined.

Many successful algorithms use Newton’s iteration when it works and do something different

when it does not. One key feature of these algorithms is that they enforce a descent property. That

is each new iterate must produce a lower objective function value, i.e. F (xk+1) < F (xk) for k > 0.

The two common algorithm classes are line search methods and trust-region methods.

1.4.2 Line search and extensions

Line search methods first compute a descent direction pk and then invoke a univariate search pro-

cedure to compute a step size αk, which ensures F (xk + αkpk) < F (xk). The overall update is

xk+1 = xk + αkpk.

Newton’s method is attained when pk solves Hkpk = −gk and αk = 1. The key issue with line

search based Newton methods is dealing withHk when it is nearly singular or indefinite. It is possible

to compute an approximation H̄k, which is sufficiently positive definite. The search direction is then

selected by solving H̄ksk = −gk. The process to determine H̄k may also give a direction of negative

curvature dk such that dTkHkdk < 0.

Methods to adapt line search to obtain convergence to second-order critical points started with

McCormick’s modification of the Armijo step size rule [47]. McCormick’s backtracking rule is

xk+1 = xk + sk2
−i + dk2

−i/2,

where sk is a descent direction (gTk sk < 0) and dk is a direction of negative curvature. The back-

tracking index i starts at 0 and increments by 1 until an acceptable point is found. Moré and

Sorensen [48] developed this into a search based update with

xk+1 = xk + α2
ksk + αkdk, (1.8)

which allows for a more sophisticated univariate search procedure to select an acceptable αk. Gold-

farb proved convergence with the update

xk+1 = xk + αksk + α2
kdk. (1.9)

The basic idea here is that when αk is small, the update is dominated by sk, a direction that

provides a greater decrease in F when close to xk. When αk is large, dk dominates, which may

provide greater decrease in F far from xk. A downside of (1.9) is that it requires specialized search

conditions. Updates (1.8) and (1.9) are members of a class of curvilinear search methods, which use

low-order polynomial combinations of vectors.

Forsgren and Murray proved second-order convergence with the line search update

xk+1 = xk + αk(sk + dk), (1.10)

CHAPTER 1. INTRODUCTION 5

first in the context of problems with linear equality constraints [27] and then with linear inequality

constraints [28]. Gould proved convergence using an “adaptive” line search approach [39], which uses

a condition to choose between sk and dk. Line search is performed along the selected vector for an

acceptable step size. Ferris, Lucidi, and Roma [24] used (1.8) to develop a method for unconstrained

problems in the nonmonotone framework of Grippo, Lampariello, and Lucidi [41].

All of the methods discussed need to choose a descent direction sk and a direction of negative

curvature dk. When Hk is indefinite, the best choice for sk is not clear. Some methods choose to

solve

(Hk + γkI)sk = −gk

where γk is selected such that Hk + γkI is sufficiently positive definite. Modified Cholesky methods

[33] solve

(Hk + Ek)sk = −gk,

where Ek is diagonal and constructed to make Hk + Ek sufficiently positive definite in a single

factorization. Fang and O’Leary have cataloged many different modified Cholesky algorithms in [23].

Auslender [2] presents some more ways to compute sk for use in curvilinear search.

Directions of negative curvature provide another difficulty. First, we’ve already seen four different

ways to use dk in a search-based algorithm. Many authors use (1.8). However, the best choice is

not clear. Second, a direction of negative curvature dk does not have a natural scale with respect to

a descent direction sk. It is possible to come up with many ways to scale dk, but we don’t have a

theoretical measure of quality. Gould’s adaptive line search method [39] is able to avoid the relative

scaling issue by only using one vector at a time.

1.4.3 Gradient flow

Another interesting approach to optimization is based on systems of ordinary differential equations

and has been explored by many authors [1, 3, 5–7, 11, 31]. See Behrman’s PhD thesis [3, p. 6] for a

summary of the history. The most practical methods, as explored by Botsaris, Behrman, and Del

Gatto [3, 6, 31], are based on the system of differential equations

d

dt
x(t) = −∇F (x(t))

x(0) = x0.

(1.11)

If ∇F (x(t)) linearized about xk and x(t) shifted such that x(t) = xk + wk(t), then (1.11) becomes

d

dt
wk(t) = −Hkwk(t)− gk

wk(0) = 0.

(1.12)

CHAPTER 1. INTRODUCTION 6

The linear ODE (1.12) can be solved analytically with the spectral decomposition of Hk. The

resulting algorithm for unconstrained problems is

xk+1 = xk + wk(tk),

where tk is selected with a univariate search procedure to satisfy a descent property. This method

is able to handle second derivatives naturally. When Hk ≻ 0, wk(t) terminates at the Newton step

pk = −H−1
k gk. When Hk is indefinite the arc produced by the ODE is unbounded and will diverge

away from a saddle point (in most cases). A key benefit of this method is that it does not require

Hessian modification in the indefinite case.

Botsaris and Jacobson introduced the basic idea, but used a modification so that wk is bounded

if Hk is nonsingular [6]. Their proof of first-order convergence requires tk to be a minimizer of

F (xk + wk(t)). Behrman provided a convergence result with the unmodified solution to (1.12) and

practical search conditions to select tk [3]. Behrman also showed that the method could scale to

large problems by projecting the linear ODE onto the space spanned by a small number of Lanczos

vectors of Hk. Del Gatto further improved the practicality by proving convergence in the case where

the ODE is projected onto a two-dimensional subspace [31]. We discuss the details and address

second-order convergence of this method in Chapter 3.

Botsaris also considered an active-set method for problems with linear inequality constraints [9]

and a generalized reduced-gradient method for nonlinear equality constraints [8]. However, the

methods presented are not applicable to large-scale problems and second-order convergence is not

considered.

1.4.4 Trust-region

Trust-region algorithms differ from search-based methods by first choosing a maximum allowable

step size, then computing the direction. The trust-region radius is denoted ∆k and may be modified

at different parts of the algorithm. A step sk is then determined to satisfy ‖sk‖ ≤ ∆k, where ‖ · ‖

is usually the 2-norm or ∞-norm. If xk + sk is deemed acceptable by a descent property, then the

update xk+1 = xk + sk is performed. If xk + sk is not acceptable, i.e. F (xk + sk) ≥ F (xk), then ∆k

is decreased and sk is recomputed. Trust-region algorithms must also specify a rule for increasing

∆k under certain conditions on F (xk + sk).

One common way to compute sk is to minimize a quadratic model of F about xk subject to the

2-norm trust-region constraint. The optimization problem is

minimize
s

mk(s) =
1
2s

THks+ gTk s

subject to sT s ≤ ∆k.
(1.13)

A key benefit of the trust-region approach is that the subproblem (1.13) is well defined when Hk

is singular or indefinite. It is possible to compute global minimizers of (1.13) at the expense of

multiple linear system solves. Such expense is impractical for large problems, so many methods

CHAPTER 1. INTRODUCTION 7

choose to approximately solve (1.13). Steihaug presented a practical algorithm based on applying

the conjugate gradient method to Hks = −gk [56]. Byrd, Schnabel, and Shultz showed that the

trust-region subproblem can be solved on a two-dimensional subspace and still maintain the overall

convergence properties [14].

In trust-region terminology a Cauchy point is a minimizer of the model function along −gk,

subject to the trust-region constraint. Global convergence to stationary points is attained if the

reduction in the model function by sk is at least as good as the reduction provided by a Cauchy

point. Second-order convergence for trust-region algorithms was proved by Sorensen using the global

minimizer of the quadratic model [55]. Shultz provides a proof that relaxes the condition to the

computation of what Conn et al. call an eigenpoint [16,54]. An eigenpoint is defined as the minimizer

of the model function along a vector that has a sufficient component in space spanned by eigenvectors

corresponding to negative eigenvalues of Hk. As long as sk reduces the model function as much as

an eigenpoint, then second-order convergence can be obtained. Later, Zhang and Xu demonstrated

second-order convergence with an indefinite dogleg path [61].

Trust-region methods can be extended to constrained problems in many ways. Gay presented an

approach for linearly constrained optimization [32]. Branch, Coleman, and Li developed a second-

order subspace method for problems with simple bounds on the variables [10]. For problems with

nonlinear constraints we refer to work by Conn, Gould, Orban, and Toint [15] and also Tseng [57].

The book Trust-Region Methods by Conn, Gould, and Toint [16] provides exhaustive coverage of the

field.

1.5 Thesis outline

Chapter 2 presents a second-order convergence proof for a general arc search method using an active-

set strategy for linearly constrained optimization. The proof generalizes the work by Forsgren and

Murray on a line search method in [28]. For convergence, arcs must satisfy a set of properties

similar to the properties of sufficient descent and negative curvature for certain vectors in line search

methods. A key difference is that an arc may intersect a linear constraint an arbitrary number of

times. This means that an arc can move from and be restricted by the same linear constraint in a

single iteration, which is not possible along a line. We show that on any subsequence of iterations

where this occurs, the multiplier associated with the constraint must converge to a positive value.

This observation and a modification to the rules for constraint deletion allow the proof of [28] to be

generalized for arcs.

Chapter 3 shows the application of the convergence theory to several different arcs. Forsgren and

Murray line search (1.10) as well as Moré and Sorensen curvilinear search (1.8) directly satisfy the

sufficient arc conditions with appropriate choices for sk and dk. Goldfarb’s method (1.9) requires

a simple modification to guarantee second-order convergence. We introduce an arc based on the

regularized Newton equation and designate it with NEM. The theory is also applied to the modified

gradient flow algorithm of Behrman and Del Gatto. All methods may be used on linearly constrained

problems. We discuss the derivation and application of NEM arcs in some detail.

CHAPTER 1. INTRODUCTION 8

Chapter 4 details ARCOPT, a Matlab implementation using NEM arcs for linearly constrained

optimization. Chapter 5 covers several numerical experiments with ARCOPT:

• a comparison of ARCOPT and IPOPT on a continuous formulation of the Hamiltonian cycle

problem,

• a comparison of ARCOPT, IPOPT, and SNOPT on problems in the CUTEr test set,

• a comparison of quasi-Newton updates with an arc search method on problems in the CUTEr

test set.

Chapter 2

Convergence

2.1 Preliminaries

This chapter presents a general arc search algorithm and associated convergence theory for the

problem

minimize
x∈Rn

F (x)

subject to Ax ≥ b.

Here A is a real m×n matrix and F ∈ C2 : Rn 7→ R. We are interested in algorithms that converge

to points satisfying the second-order necessary optimality conditions.

The notation and arguments in this chapter are inspired by and adapted from the work by

Forsgren and Murray [27,28].

2.2 Statement of assumptions

Assumption 2.1. The objective function F is twice continuously differentiable.

Assumption 2.2. The initial feasible point x0 is known and the level set {x : F (x) ≤ F (x0), Ax ≥ b}

is compact.

Assumption 2.3. The matrix of active constraints has full row rank at any point satisfying the

second-order necessary optimality conditions. Let x̂ be a feasible point. Say AA is the matrix of

active constraints with nullspace matrix ZA. If

ZT
A∇F (x̂) = 0 and λmin(Z

T
A∇

2F (x̂)ZA) ≥ 0

then AA has full row rank.

9

CHAPTER 2. CONVERGENCE 10

2.3 Definition of the algorithm

The general arc search algorithm generates a sequence of iterates {xk}
∞
k=0 with

xk+1 = xk + Γk(αk),

where Γk ∈ C
2 : R → R

n is the search arc and αk is the step size. Iteration k starts at point xk

and ends at xk+1. We denote aTi as the ith row of A and bi as the ith element of b. A constraint

aTi xk ≥ bi is said to be inactive if aTi xk > bi, active if aTi xk = bi, and violated if aTi xk < bi. At the

start of iteration k the algorithm has access to the following objects:

xk current variable or iterate

Fk, gk, Hk values for the objective function, gradient, and Hessian

Ak matrix of active constraints

Zk nullspace matrix associated with Ak, i.e. AkZk = 0

Wk ⊆ {1, . . . ,m} index set of active constraints, i ∈ Wk if and only if aTi xk = bi

πk vector of multiplier estimates associated with the active set

Γk hypothetical arc constructed to remain on constraints active at xk,

AkΓk(α) = 0 for all α ≥ 0

The algorithm will inspect πk and other data to determine if a constraint can be deleted. After this

process, the following objects are defined:

Āk matrix of constraints that will remain active during iteration k

Z̄k nullspace matrix associated with Āk, i.e. ĀkZ̄k = 0

Wk index set of constraints that will remain active during iteration k

Γk search arc for iteration k, AkΓk(α) ≥ 0 and ĀkΓk(α) = 0 for α ≥ 0

If no constraints are deleted then Āk = Ak, Z̄k = Zk, Wk =Wk, and Γk = Γk.

An arc search will then be made on the arc xk + Γk(α) to select the step size αk. The next

iterate is then xk+1 = xk + Γk(αk). If the step is limited by a constraint, then Ak+1, Zk+1, Wk+1,

and πk+1 are updated to account for the change.

Set notation will be used to compare index sets at the start of different iterations. The intersection

Wk1
∩Wk2

= {i : i ∈ Wk1
, i ∈ Wk2

} contains indices that are in bothWk1
andWk2

. The set difference

notation Wk1
\Wk2

= {i : i ∈ Wk1
, i /∈ Wk2

} indicates indices that are in Wk1
but not in Wk2

.

2.3.1 Properties of Γk

The search arc Γk : R 7→ R
n is twice continuously differentiable with Γk(0) = 0. The arc must

provide initial descent, gTk Γ
′
k(0) ≤ 0, and remain on constraints in Wk, i.e. ĀkΓk(α) = 0 for α ≥ 0.

If step size α is bounded, the arc must be bounded. Formally,

α ≤ τ1 =⇒ ∃ finite τ2 such that ‖Γ′
k(α)‖ ≤ τ2 ∀ α ∈ [0, τ1]. (2.1)

CHAPTER 2. CONVERGENCE 11

If α is unbounded it is acceptable for the arc and its derivative to diverge. On any subsequence of

iterates I, the arc must satisfies the following properties:

First-order convergence

lim
k∈I

gTk Γ
′
k(0) = 0 =⇒ lim

k∈I
ZT
k gk = 0 (2.2)

Second-order convergence

lim inf
k∈I

Γ′
k(0)

THkΓ
′
k(0) + gTk Γ

′′
k(0) ≥ 0 =⇒ lim inf

k∈I
λmin(Z

T
k HkZk) ≥ 0 (2.3)

Arc convergence

lim
k∈I

gTk Γ
′
k(0) = 0 and lim inf

k∈I
Γ′
k(0)

THkΓ
′
k(0) + gTk Γ

′′
k(0) ≥ 0

=⇒ lim
k∈I

Γ′
k(0) = 0

(2.4)

In (2.3), λmin(Z
T
k HkZk) denotes the minimal eigenvalue of ZT

k HkZk.

2.3.2 Properties of πk

At each iteration a vector of Lagrange multiplier estimates πk is computed and must satisfy

lim
k∈I
‖ZT

k gk‖ = 0 =⇒ lim
k∈I
‖gk −A

T
k πk‖ = 0. (2.5)

The minimum multiplier is denoted πmin,k = mini(πk)i.

2.3.3 Properties of Γk related to constraints

The hypothetical arc Γk is constructed to remain on the set of constraints active at the beginning

of iteration k:

AkΓk(α) = 0 and AkΓ
′
k(α) = 0 for all α ≥ 0.

The true search arc Γk satisfies the following rules and properties:

Deletion Constrained are only considered for deletion if πmin,k < 0. If no constraint is to be deleted

or a constraint was added in the last iteration, then set Γk(α) = Γk(α). If the most recent

change to the working set was a constraint addition, then only one constraint may be deleted.

If the most recent change to the working set was a constraint deletion, then more than one

constraint may be deleted. If constraints are to be deleted,

AkΓ
′
k(0) > 0 and AkΓ

′
k(0) 6= 0.

CHAPTER 2. CONVERGENCE 12

Descent If constraints are to be deleted the arc must provide initial descent such that

gTk Γ
′
k(0) ≤ g

T
k Γ

′
k(0) ≤ 0.

Convergence It is also required that

lim
k∈I

gTk (Γ
′
k(0)− Γ

′
k(0)) = 0 =⇒

lim infk∈I πmin,k ≥ 0

limk∈I ‖Γk(α)− Γk(α)‖ = 0,
(2.6)

aTi Γ
′
k(0) > 0 =⇒ (πk)i ≤ νπmin,k for k ∈ I and i ∈ Wk\Wk, (2.7)

where I is any subsequence such thatWk ⊆Wk for all k ∈ I and ν is a tolerance in the interval

(0, 1].

2.3.4 Properties of αk

At each iteration the univariate search function is defined as

φk(α) = F (xk + Γk(α)).

The first and second derivatives are

φ′k(α) = ∇F (xk + Γk(α))
TΓ′

k(α)

φ′′k(α) = Γ′
k(α)

T∇2F (xk + Γk(α))Γ
′
k(α) +∇F (xk + Γk(α))

TΓ′′
k(α).

When evaluated at α = 0 these reduce to

φ′k(0) = gTk Γ
′
k(0)

φ′′k(0) = Γ′
k(0)

THkΓ
′
k(0) + gTk Γ

′′
k(0).

The step size αk is computed to satisfy certain conditions that enforce convergence of the algo-

rithm:

Boundedness An upper bound on the step size is computed with

ᾱk = max {α : A(xk + Γk(α)) ≥ b and α ≤ αmax}

where αmax is a fixed upper limit. If ᾱk = 0, then αk = 0.

Descent condition The selected step size must provide a sufficient reduction in the objective

function according to

φk(αk) ≤ φk(0) + µ
(

φ′k(0)αk + 1
2 min{φ′′k(0), 0}α

2
k

)

(2.8)

CHAPTER 2. CONVERGENCE 13

with 0 < µ ≤ 1
2 .

Curvature condition The selected step size must provide a sufficient reduction in curvature unless

it encounters a constraint. Thus, αk must satisfy at least one of

|φ′k(αk)| ≤ η|φ
′
k(0) + min{φ′′k(0), 0}αk| (2.9)

or φ′k(αk) < η(φ′k(0) + min{φ′′k(0), 0}αk) and αk = ᾱk (2.10)

with µ ≤ η < 1. In the case where αk is limited by ᾱk, (2.10) indicates that the derivative of the

search function must be negative. If, in the other case, φ′k(αk) > η|φ′k(0) + min{φ′′k(0), 0}αk|

then a robust search routine should reduce α to find a step size satisfying (2.9).

The set of points that satisfy both (2.8) and (2.9) is denoted Φk. The step size is called restricted

if αk = ᾱk and αk < αmax, which indicates that a constraint has been encountered. Otherwise, the

step is called unrestricted and satisfies (2.9) or (2.10) with ᾱk = αmax. Note that if αk /∈ Φk, it must

satisfy (2.8) and (2.10).

Moré and Sorensen [48, Lemma 5.2] provide a proof for the existence of a step size satisfying

(2.8) and (2.9). For completeness, it is reproduced here.

Lemma 2.1. Let φ : R→ R be twice continuously differentiable in an open interval Ω that contains

the origin, and suppose that {α ∈ Ω : φ(α) ≤ φ(0)} is compact. Let µ ∈ (0, 1) and η ∈ [µ, 1). If

φ′(0) < 0, or if φ′(0) ≤ 0 and φ′′(0) < 0, then there is an α > 0 in Ω such that

φ(α) ≤ φ(0) + µ
(

φ′(0)α+ 1
2 min{φ′′(0), 0}α2

)

(2.11)

and

|φ′(α)| ≤ η|φ′(0) + min{φ′′(0), 0}α|. (2.12)

Proof. Let

β = sup {α ∈ I : φ(α) ≤ φ(0)} .

Then β > 0 since either φ′(0) < 0, or φ′(0) ≤ 0 and φ′′(0) < 0. Moreover, the compactness

assumption and the continuity of φ imply that β is finite and that φ(0) = φ(β). Thus

φ(β) ≥ φ(0) + µ
(

φ′(0)β + 1
2 min{φ′′(0), 0}β2

)

.

Define ψ : I → R by

ψ(α) = φ(α)− φ(0)− η
(

φ′(0)α+ 1
2 min{φ′′(0), 0}α2

)

.

Since µ ≤ η we have ψ(β) ≥ 0. Note also that ψ(0) = 0 and either ψ′(0) < 0 , or ψ′(0) ≤ 0 and

ψ′′(0) < 0. This, together with the continuity of ψ, implies the existence of β1 ∈ (0, β] such that

ψ(β1) = 0, and ψ(α) < 0 for all α ∈ (0, β1). Now Rolle’s theorem shows that there is an α ∈ (0, β1)

with ψ′(α) = 0, and thus (2.12) follows. Moreover, ψ(α) < 0 and µ ≤ η imply (2.11).

CHAPTER 2. CONVERGENCE 14

2.3.5 Properties of Ak

The matrix of active constraints Ak is required to have full row rank for all k. Recall that Wk is

the index set of constraints that will remain active during iteration k. Let Pa
k be the index set of

constraints that become active at the end of iteration k,

Pa
k = {i /∈ Wk : aTi xk+1 = bi}.

The working set at the start of iteration k + 1 is Wk+1 =Wk ∪W
a
k , where W

a
k ⊆ P

a
k and Ak+1 are

required to satisfy

Pa
k 6= ∅ =⇒ Wa

k 6= ∅ and (2.13)

Ak+1 has full row rank. (2.14)

Thus if constraints are encountered then at least one must be added to the working set. Note that

a step is restricted if and only if Wk+1\Wk 6= ∅.

The nullspace matrix Zk is required to have a bounded condition number for all k.

2.4 Convergence results

The convergence results for this arc search method generalize the work by Forsgren and Murray

on a line search method [28]. Lemmas 2.2, 2.3, and 2.4 establish convergence on subsequences of

iterations with unrestricted steps and are based on Lemmas 4.1, 4.2, and 4.3 in [28]. The original

result for unconstrained optimization with a curvilinear search comes from Moré and Sorensen [48].

Lemma 2.2. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. Then

(i) limk→∞ αkφ
′
k(0) = 0,

(ii) limk→∞ α2
k min{φ′′k(0), 0} = 0,

(iii) limk→∞ ‖xk+1 − xk‖ = 0.

Proof. Rearrangement of (2.8) gives

φk(0)− φk(αk) ≥ −µ
(

φ′k(0)αk + 1
2 min{φ′′k(0), 0}α

2
k

)

.

Since µ > 0, φ′k(0) ≤ 0, and the objective function is bounded from below on the feasible region, (i)

and (ii) follow.

To show (iii), we write xk+1 − xk = Γk(αk) and show that limk→∞ ‖Γk(αk)‖ = 0. Γk(α) is

continuous with Γk(0) = 0. Also αk and ‖Γ′
k(0)‖ are bounded. Therefore, if limk→∞ ‖Γk(αk)‖ 6= 0,

there must exist a subsequence I with ǫ1 > 0 and ǫ2 > 0 such that αk ≥ ǫ1 and ‖Γ′
k(0)‖ ≥ ǫ2 for

all k ∈ I. From the existence of ǫ1, (i) implies limk∈I φ
′
k(0) = 0 and (ii) implies limk∈I φ

′′
k(0) ≥ 0.

CHAPTER 2. CONVERGENCE 15

Since φ′k(0) = gTk Γ
′
k(0) and φ

′′
k(0) = Γ′

k(0)
THkΓ

′
k(0)+g

T
k Γ

′′
k(0), the termination property of Γk (2.4)

implies that limk∈I ‖Γ
′
k(0)‖ = 0. This contradicts the existence of ǫ2, thus establishing (iii).

Lemma 2.3. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. If, at iteration k, an unrestricted step is taken, then either αk = αmax or there exists

a θk ∈ (0, αk) such that

αk (φ
′′
k(θk) + ηmax{−φ′′k(0), 0}) ≥ −(1− η)φ

′
k(0). (2.15)

Proof. Since φ′k(0) ≤ 0, it follows from (2.9) if αk is unrestricted and αk < αmax, it satisfies

− φ′k(αk) ≤ −ηφ
′
k(0) + ηmax{−φ′′k(0), 0}αk. (2.16)

Further, since φ′k is a continuously differentiable univariate function, the mean-value theorem ensures

the existence of a θk ∈ (0, αk) such that

φ′k(αk) = φ′k(0) + αkφ
′′
k(θk). (2.17)

A combination of (2.16) and (2.17) gives (2.15).

Lemma 2.4. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. Let I denote a subsequence of iterations where unrestricted steps are taken; then

(i) limk∈I φ
′
k(0) = 0,

(ii) limk∈I φ
′′
k(0) ≥ 0,

(iii) limk∈I Z
T
k gk = 0 and lim infk∈I λmin(Z

T
k HkZk) ≥ 0.

Proof. To show (i), assume by contradiction there is a subsequence I ′ ⊆ I such that φ′k(0) ≤ ǫ1 < 0

for k ∈ I ′. Lemma 4.2 in conjunction with assumptions A1 and A2 then implies that lim supk∈I′ αk 6=

0, contradicting Lemma 4.1. Hence, the assumed existence of I ′ is false, and we conclude that (i)

holds.

Similarly, to show (ii), assume by contradiction that there is a subsequence I ′′ ⊆ I such that

φ′′k(0) ≤ ǫ2 < 0 for k ∈ I ′′. Since αk > 0 and φ′k(0) ≤ 0, Lemma 2.3 implies that for k ∈ I ′′ there

exists θk ∈ (0, αk) such that

φ′′k(θk)− ηφ
′′
k(0) ≥ 0. (2.18)

Lemma 2.2 gives limk∈I′′ αk = 0, and thus (2.18) cannot hold for k sufficiently large. Consequently,

the assumed existence of I ′′ is false, and (ii) holds.

Finally, we show that (i) and (ii) imply (iii). (i) and the sufficient descent property of the arc (2.2)

imply limk∈I Z
T
k gk = 0. (i) and the sufficient negative curvature property of the arc (2.3) imply

lim infk∈I λmin(Z
T
k HkZk) ≥ 0.

CHAPTER 2. CONVERGENCE 16

We now consider linear constraints. The following lemma states that multipliers πk and πk+1

must converge on a subsequence of iterations with unrestricted steps and the same set of active

constraints.

Lemma 2.5. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. Let I denote a subsequence of iterations. If αk ∈ Φk (αk is unrestricted) and

Wk =Wk+1 =WI (working set does not change) for k ∈ I, then limk∈I ‖πk+1 − πk‖ = 0.

Proof. Denote AI as the matrix of active constraints for k ∈ I. Assume for contradiction there

is a subsequence I ′ ⊆ I such that ‖πk+1 − πk‖ ≥ ǫ for k ∈ I ′. Part (iii) of Lemma 2.4 and part

(iii) of Lemma 2.2 imply that limk∈I′ ZT
k gk = 0 and limk∈I′ ZT

k+1gk+1 = 0. (2.5) implies that

limk∈I′ ‖gk − A
T
I πk‖ = 0 and limk∈I′ ‖gk+1 − A

T
I πk+1‖ = 0. Combining the previous two limits we

see

lim
k∈I′

‖(gk+1 − gk)−A
T
I (πk+1 − πk)‖ = 0. (2.19)

However, ‖πk+1 − πk‖ ≥ ǫ for k ∈ I ′ and (2.19) imply the existence of a K such that πk+1 −

πk ∈ null(AI) and null(AI) 6= ∅ for all k ≥ K and k ∈ I ′. This contradicts assumption A3 that

matrix AI has full rank. Thus, the assumed existence of subsequence I ′ is false, and we must have

limk∈I ‖πk+1 − πk‖ = 0.

The following lemma states that constraints will eventually be encountered on a subsequence of

iterations where constraints are deleted, the minimal multiplier is negative and bounded away from

zero, and for which constraints are not deleted in the previous iteration. This result is derived from

Lemma 4.4 in [28]. In this case, arcs may move from and encounter the same constraint in a single

iteration. Therefore the consequence of the lemma presented here allows Wk+1 =Wk for k ∈ I and

k ≥ K, which is not possible in the line search case.

Lemma 2.6. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. If there is a subsequence I and an ǫ > 0 such that Γk−1 = Γk−1, Γk 6= Γk, and

πmin,k < −ǫ for k ∈ I, then there is an integer K such that Wk+1\Wk 6= ∅ for k ∈ I and k ≥ K.

Proof. In parts for clarity:

1. Suppose there is a subsequence I and an ǫ > 0 such that Γk−1 = Γk−1, Γk 6= Γk, and

πmin,k < −ǫ for k ∈ I. No constraints are deleted in iteration k − 1 while at least one

constraint is deleted in iteration k.

2. Assume there is a subsequence I ′ ⊆ I such that an unrestricted step is taken for k ∈ I ′.

3. Lemma 2.4 implies that limk∈I′ φ′k(0) = 0.

4. On the other hand, (2.6) ensures the existence of a subsequence I ′′ ⊆ I ′ and a positive constant

ǫ2 such that gTk (Γ
′
k(0)− Γ

′
k(0)) ≤ −ǫ2 for all k ∈ I ′′.

5. However, gTk Γ
′
k(0) ≤ 0 implies that φ′k(0) ≤ −ǫ2 for all k ∈ I ′′, which is a contradiction.

CHAPTER 2. CONVERGENCE 17

6. Hence, the assumed existence of subsequence I ′ is false, and there must exist a K such that

for all k ∈ I and k ≥ K a restricted step is taken. (Wk+1\Wk 6= ∅ for all k ∈ I and k ≥ K.)

The following lemma shows that if there exists a subsequence of iterations where the same

constraint is both deleted and added, then the multiplier corresponding to the constraint converges

to a positive value.

Lemma 2.7. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. If there exists a subsequence I such that for k ∈ I

• Γk−1 = Γk−1 (no constraint is deleted in iteration k − 1)

• πmin,k ≤ −ǫ1 and the constraint corresponding to (πk)i is deleted (Γk 6= Γk)

• in iteration k the arc moves off, but is restricted by, the constraint corresponding to (πk)i, with

αk /∈ Φk

• in iteration k+ 1, no constraint is deleted (Γk+1 = Γk+1) and the step is unrestricted (αk+1 ∈

Φk+1)

then lim infk∈I(πk+1)i > 0.

Proof. In parts for clarity:

1. Assume for contradiction the existence of a subsequence I ′ ⊆ I such that (πk+1)i ≤ 0.

2. At the beginning of iteration k, constraint i was deleted. In order for the same constraint to

restrict the step size we must have aTi Γ
′
k(αk) ≤ 0.

3. (2.6) implies the existence of a subsequence I ′′ ⊆ I ′ and a positive constant ǫ2 such that

gTk Γ
′
k(0) ≤ −ǫ2 for k ∈ I ′′.

4. Constraint i limits the step size and enforces αk /∈ Φk. With (2.10) we have φ′k(αk) < ηφ′k(0)

or gTk+1Γ
′
k(αk) < ηgTk Γ

′
k(0) ≤ −ηǫ2 for k ∈ I ′′.

5. The gradient at the start of iteration k + 1 can be represented as gk+1 = AT
k+1πk+1 + rk+1

where rk+1 is the residual.

6. We have

gTk+1Γ
′
k(αk) = πT

k+1Ak+1Γ
′
k(αk) + rTk+1Γ

′
k(αk) (2.20)

= (πk+1)ia
T
i Γ

′
k(αk) + rTk+1Γ

′
k(αk) < −ηǫ2 (2.21)

for k ∈ I ′′.

7. Combining (πk+1)i ≤ 0 and aTi Γ
′
k(αk) ≤ 0 we see that rTk+1Γ

′
k(αk) < −ηǫ2 for k ∈ I ′′.

CHAPTER 2. CONVERGENCE 18

8. Apply the Cauchy-Schwartz inequality and we see

‖rk+1‖‖Γ
′
k(αk)‖ > ηǫ2 (2.22)

or

‖Γ′
k(αk)‖ >

ηǫ2
‖rk+1‖

(2.23)

for k ∈ I ′′.

9. By assumption, iteration k + 1 is an unrestricted step. Thus limk∈I ‖Z
T
k+1gk+1‖ = 0, which

implies limk∈I ‖gk+1 −A
T
k+1πk+1‖ = 0. We have

lim
k∈I′′

‖rk+1‖ = 0 =⇒ lim
k∈I′′

‖Γ′
k(αk)‖ =∞ =⇒ lim

k∈I′′

αk =∞,

where the first step comes from (2.23) and the second step comes from (2.1). Divergence of

αk contradicts assumption A1. Thus the assumed subsequence I ′ does not exist and we must

have

lim inf
k∈I

(πk+1)i > 0.

The following lemma establishes convergence of the minimal multiplier to a nonnegative value on

a subsequence of iterations where constraints are deleted, but not deleted in the previous iteration.

It is derived from Lemma 4.5 from [28].

Lemma 2.8. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. If there is a subsequence I such that Γk−1 = Γk−1 and Γk 6= Γk for k ∈ I, then

lim infk∈I πmin,k ≥ 0.

Proof. In parts for clarity:

1. Assume that there exists a subsequence I and an ǫ > 0 such that Γk−1 = Γk−1, Γk 6= Γk, and

πmin,k < −ǫ for k ∈ I.

2. For each k ∈ I, let lk denote the following iteration with least index such thatWlk =W lk−1 =

Wlk−1; i.e., an unrestricted step is taken at iteration lk − 1 and Γlk−1 = Γlk−1 (no constraint

is removed in iteration lk − 1).

3. Lemma 2.6 implies that there is an integer K such thatWk+1\Wk 6= ∅ for all k ∈ I and k ≥ K.

4. The properties of Γk from section 2.3.3 imply that Γk+1 = Γk+1 for k ∈ I, k ≥ K.

5. Consequently, for k ≥ K, lk−1 is the iteration with least index following k where no constraint

is added in the arc search.

CHAPTER 2. CONVERGENCE 19

6. Since there can be at most min{m,n} consecutive iterations where a constraint is added, it

follows from (iii) of Lemma 2.2 that limk∈I ‖xk − xlk‖ = 0.

7. Consequently, there must exist a point x̄ that is a common limit point for {xk}k∈I and {xlk}k∈I .

8. Thus, there exists a subsequence I ′ ⊆ I such that limk∈I′ xk = x̄ and limk∈I′ xlk = x̄.

9. Thus, there must exist a subsequence I ′′ ⊆ I ′ such that Wk is identical for every k ∈ I ′′ and

Wlk is identical for every lk ∈ J , where J denotes the subsequence {lk}k∈I′′ . Define WI ≡ Wk

for any k ∈ I ′′ and WJ ≡ Wlk for any lk ∈ J .

10. Since all constraints corresponding to WI are active at x̄ and an infinite number of unre-

stricted steps are taken where the working set is constant, it follows from assumptions A1 and

A2 in conjunction with (iii) of Lemma 2.2 and (iii) of Lemma 2.4 that limk∈I′′ ZT
I gk = 0 and

lim infk∈I′′ λmin(Z
T
I HkZI) ≥ 0, where ZI denotes a matrix whose columns form an orthonor-

mal basis for the null space of AI , the constraint matrix associated with WI .

11. Consequently, (2.5) and the full row rank of AT
I imply that limk∈I′′ πk = πI , where πI satisfies

∇f(x̄) = AT
I π

I =
∑

i∈WI

aiπ
I
i . (2.24)

12. By a similar reasoning and notation for ZJ and AJ we have limk∈I′′ ZT
J glk = 0,

lim infk∈I′′ λmin(Z
T
J HlkZJ) ≥ 0, and limk∈I′′ πlk = πJ , where πJ satisfies

∇f(x̄) = AT
J π

J =
∑

i∈WJ

aiπ
J
i . (2.25)

13. Combining (2.24) and (2.25) we obtain

∑

i∈WI\WJ

aiπ
I
i +

∑

i∈WI∩WJ

ai(π
I
i − π

J
i) +

∑

i∈WJ\WI

aiπ
J
i = 0. (2.26)

14. By assumption A3, the vectors ai, i ∈ W
I ∪ WJ are linearly independent. Hence, it follows

from (2.26) that

πI
i = 0 for i ∈ WI\WJ (2.27)

πI
i = πJ

i for i ∈ WI ∩WJ (2.28)

πJ
i = 0 for i ∈ WJ\WI . (2.29)

15. Since no constraints have been deleted between iterations k and lk for k ∈ I ′′, any constraint

whose index is in the setWI\WJ must have been deleted in an iteration k ∈ I ′′. Since I ′′ ⊆ I,

it follows that πmin,k ≤ −ǫ for k ∈ I
′′ . From the rule for moving off a constraint, (2.7), we can

CHAPTER 2. CONVERGENCE 20

deduce that (πk)i ≤ −νǫ for k ∈ I
′′ and i ∈ WI\WJ , where ν ∈ (0, 1). Since limk∈I′′ πk = πI ,

we conclude that πI
i ≤ −νǫ for i ∈ W

I\WJ . Hence, (2.27) implies that WI\WJ = ∅.

16. If constraint i is deleted in iteration k ∈ I ′′, then it must be added before iteration lk − 1

becauseWI\WJ = ∅. Again, we can deduce that (πk)i ≤ −νǫ and π
I
i ≤ −νǫ for i ∈ W

I ∩WJ .

If constraint i is also added in iteration k ∈ I ′′ (i ∈ Wk+1) then Lemma 2.7 implies that

lim infk∈I′′(πk+1)i > 0. Lemma 2.5 and (2.28) imply that k + 1 < lk − 1. Consequently, it

must hold that |WJ | ≥ |WI |+ 1 and, by (2.29), πJ has at least one zero element.

17. We can conclude from (2.28) that πmin,lk < −0.5ǫ for k ∈ I
′′ and k sufficiently large. The rules

for computing Γk, (2.6), ensure that there is a subsequence I ′′′ ⊆ I ′′ such that Γ′
lk
(0) 6= 0 for

all k ∈ I ′′′. From the definition of lk, it holds that Γlk−1 = Γlk−1 for all k ∈ I ′′′. Therefore, if

J ′ = {lk : k ∈ I ′′′}, we may replace I by J ′ and repeat the argument. Since |WJ | ≥ |WI |+ 1

and |Wk| ≤ min{m,n} for any k, after having repeated the argument at most min{m,n}

times we have a contradiction to assumption A3, implying that the assumed existence of a

subsequence I such that Γk−1 = Γk−1 and Γk 6= Γk and πmin,k < −ǫ for k ∈ I is false.

The following theorem gives the main convergence result. It is derived from Theorem 4.6 in [28].

Theorem 2.1. Given assumptions 2.1–2.3, assume that a sequence {xk}
∞
k=0 is generated as outlined

in section 2.3. Then, any limit point x∗ satisfies the second-order necessary optimality conditions;

i.e., if the constraint matrix associated with the active constraints at x∗ is denoted by AA, there is

a vector πA such that

∇f(x∗) = AT
AπA, πA ≥ 0,

and it holds that

λmin(Z
T
A∇

2f(x∗)ZA) ≥ 0,

where ZA denotes a matrix whose columns form a basis for the null space of AA.

If in addition λmin(Z
T
A∇

2f(x∗)ZA) > 0 and πA > 0, then limk→∞ xk = x∗. Further, for k

sufficiently large, it follows that if Γk(αk) = −ZA(Z
T
AHkZA)

−1ZT
Agk then Γk and αk satisfy (2.8)

and (2.9). Moreover, for this choice of Γk and αk, the rate of convergence is at least q-quadratic,

provided the second-derivative matrix is Lipschitz continuous in a neighborhood of x∗.

Proof. In parts for clarity:

1. Let x∗ denote a limit point of a generated sequence of iterates.

2. By assumption A2, there is a subsequence I such that limk∈I xk = x∗.

3. Claim: this implies existence of subsequence I ′ such that limk∈I′ xk = x∗, Γk−1 = Γk−1 and

Ak−1 = Ak = A∗ for each k ∈ I , where A∗ denotes a matrix that is identical for each k ∈ I ′

and defines the active set at x∗. (There exists a subsequence where no constraint is added or

deleted and the working set is the same.)

CHAPTER 2. CONVERGENCE 21

4. For k ∈ I, an iterate lk is defined as follows:

(a) If Γk 6= Γk, let lk be the iteration with largest index that does not exceed k for which

Γlk−1 = Γlk−1. Since no constraints are deleted immediately upon adding constraints, we

obtain Γlk−1 = Γlk−1, Γlk 6= Γlk , Wlk−1 = Wlk , and k −m ≤ lk ≤ k. Here, constraints

are deleted in iterations lk to k. No constraints are added in iterations lk − 1 to k − 1.

(b) If Γk = Γk, let lk denote the iteration with least index following k such that Γlk−1 = Γlk−1

andWlk−1 =Wlk . Since no constraints are deleted immediately upon adding constraints,

it follows that lk − 1 is the iteration with least index when no constraint is added. For

this case, we obtain Γlk−1 = Γlk−1, Wlk−1 =Wlk , and k + 1 ≤ lk ≤ k +m.

(c) It follows from (iii) of Lemma 2.2 that limk∈I ‖xk − xlk‖ = 0, and hence limk∈I xlk = x∗.

With {lk}k∈I defined this way, since there is only a finite number of different active-set

matrices, the required subsequence I ′ can be obtained as a subsequence of {lk}k∈I .

5. Since, for each k ∈ I ′, an unrestricted step is taken at iteration k− 1, assumptions A1 and A2

in conjunction with property (iii) of Lemma 2.4 give

ẐT∇f(x∗) = 0 and λmin(Ẑ
T∇2f(x∗)Ẑ) ≥ 0, (2.30)

where Ẑ denotes an matrix whose columns form a basis for the null space of Â. Since

limk∈I′ ẐT gk = 0 and Â has full row rank, it follows from (2.5) and (2.30) that

∇f(x∗) = ÂT π̂ for π̂ = lim
k∈I′

πk. (2.31)

6. It remains to show that mini π̂i ≥ 0. Assume that there is a subsequence I ′′ ⊆ I ′ and an ǫ > 0

such that πmin,k < −ǫ for k ∈ I
′′. Lemma 2.8 shows that there exists a K such that Γk = Γk

for k ∈ I ′′ and k ≥ K. But this contradicts (2.6), and since π̂ = limk∈I′ πk, we conclude that

min
i
π̂i ≥ 0. (2.32)

7. A combination of (2.30), (2.31), (2.32) now ensures that x∗ satisfies the second-order neces-

sary optimality conditions. If there are constraints in AA that are not in Â, the associated

multipliers are zero, i.e. πA equals π̂ possibly extended by zeros. Also, in this situation, the

range space of ZA is contained in the range space of Ẑ. Hence, λmin(Ẑ
T∇2f(x∗)Ẑ) ≥ 0 implies

λmin(Z
T
A∇

2f(x∗)ZA) ≥ 0.

8. To show the second part of the theorem, note that if πA > 0, then we must have π̂ = πA, and

it follows from (2.31) that there cannot exist a subsequence Ĩ ′ ⊆ I ′ such that πmin,k < 0 for

k ∈ Ĩ ′. This implies that there is an iteration K̃ such that Ak = Â and Γk = Γk. Then the

CHAPTER 2. CONVERGENCE 22

problem may be written as an equality-constrained problem in the null space of Â, namely

minimize
x∈Rn

F (x)

subject to Âx = b̂,
(2.33)

where b̂ denotes the corresponding subvector of b.

9. If ẐT∇2F (x∗)Ẑ is positive definite, then (iii) of Lemma 2.2 and (2.8) ensure that the limit

point is unique, i.e., limk→∞ xk = x∗. From the continuity of F , it follows that ẐTHkẐ

is positive definite for k sufficiently large. If Γk is constructed such that there exists some

αN with Γk(α
N) = −ZA(Z

T
AHkZA)

−1ZT
Agk, then it follows from Bertsekas [4, p. 78] that

αk = αN eventually satisfies (2.8) and (2.9). This choice of Γk(α
N) is the Newton step

for (2.33). Bertsekas [4, p. 90] also shows that under these conditions limk→∞ xk = x∗ and the

rate of convergence is q-quadratic provided ∇2F (x) is Lipschitz continuous in a neighborhood

of x∗.

Chapter 3

Arcs

3.1 Preliminaries

This chapter discusses the application of the convergence theory to different arcs. We start by defin-

ing several vectors used throughout the treatment. Line and curvilinear search methods compute

descent directions sk sufficient for first-order convergence. All methods use directions of negative cur-

vature dk for second-order convergence. Forsgren and Murray define a vector qk to handle constraint

deletion [28, Section 3.4], which may be used in both line and curvilinear search.

Definition 3.1. Vector sk is said to be a direction of sufficient descent if gTk sk ≤ 0 and

lim
k∈I

gTk sk = 0 =⇒ lim
k∈I

ZT
k gk = 0 and lim

k∈I
sk = 0 (3.1)

for any subsequence I.

Definition 3.2. Vector dk is said to be a direction of sufficient negative curvature if dTkHkdk ≤ 0,

gTk dk ≤ 0, and

lim
k∈I

dTkHkdk = 0 =⇒ lim inf
k∈I

λmin(Z
T
k HkZk) ≥ 0 and lim

k∈I
dk = 0 (3.2)

for any subsequence I.

Definition 3.3. Vector qk is said to be a direction of constraint deletion if gTk qk ≤ 0 and Akqk ≥ 0.

Also, qk must have a bounded norm and satisfy

lim
k∈I

gTk qk = 0 =⇒ lim inf
k∈I

πmin,k ≥ 0 and lim
k∈I

qk = 0, (3.3)

aTi qk > 0 =⇒ (πk)i ≤ νπmin,k for k ∈ I, i ∈ Wk\Wk, (3.4)

where I is any subsequence and ν is a fixed tolerance in the interval (0, 1].

23

CHAPTER 3. ARCS 24

Here, both sk and dk are constructed to remain on the constraints active at the beginning of

iteration k, i.e., Aksk = 0 and Akdk = 0. To satisfy the requirements of Section 2.3.3, qk = 0 if a

constraint was encountered in the previous iteration. If the most recent change to the working set

was a constraint addition, then only one constraint may be deleted.

For efficiency, modified gradient flow and NEM arcs are computed on low-dimensional subspaces.

The following lemmas are used to establish convergence properties when defining an arc on a sub-

space.

Lemma 3.1. Let Q ∈ Rn×m with n ≥ m and QTQ = I. If u ∈ range(Q) then QQTu = u.

Proof.

u ∈ range(Q) =⇒ ∃ y : Qy = u =⇒ QTQy = QTu

=⇒ y = QTu =⇒ Qy = QQTu =⇒ u = QQTu.

Lemma 3.2. Say A ∈ Rn×n is nonsingular and B ∈ Rn×m has full rank with n ≥ m. If Ax = y

and x ∈ range(B) then there exists a unique z ∈ Rm that solves

BTABz = BT y and (3.5)

Bz = x. (3.6)

Proof. Together, x ∈ range(B) and rank(B) = m imply that there exists a unique z ∈ Rm that

solves (3.6). By substitution we see that this z solves (3.5):

BTABz = BT y =⇒ BTAx = BT y =⇒ BT (Ax− y) = 0.

BTAB is nonsingular, which implies that z is also a unique solution to (3.5).

3.2 Line search

Forsgren and Murray proved convergence to second-order critical points with a line search. The arc

is simply

Γk(α) = α(sk + dk). (3.7)

The derivatives of the search function at α = 0 are

φ′k(0) = gTk (sk + dk) (3.8)

φ′′k(0) = (sk + dk)
THk(sk + dk). (3.9)

Parts (i) and (ii) of Lemma 2.4 from Chapter 2 state that limk∈I φ
′
k(0) = 0 and lim infk∈I φ

′′
k(0) ≥ 0,

where I is a subsequence of iterations with unrestricted steps. These combined with (3.8) and (3.9)

CHAPTER 3. ARCS 25

result in limk∈I g
T
k sk = 0 and lim infk∈I d

T
kHkdk ≥ 0, which establishes second-order convergence.

For problems with linear inequality constraints, Forsgren and Murray [28] construct qk, a di-

rection of constraint deletion satisfying Definition 3.3. If no constraints are deleted in iteration k

then qk = 0. If constraints are deleted, qk must be a descent direction that moves from at least one

constraint. To fit with the requirements of Section 2.3.3, the hypothetical arc is constructed as

Γk(α) = α(sk + dk), (3.10)

while the search arc is

Γk(α) = α(sk + dk + qk). (3.11)

We see that Γk(α)− Γk(α) = αqk and Γ′
k(α)− Γ

′
k(α) = qk. Properties (3.3) and (3.4) of qk satisfy

the general arc search requirements (2.6) and (2.7).

It is a simple matter to compute the point of intersection between a line and linear constraint.

Let pk = sk + dk + qk. The intersection between aTi x ≥ bi and xk + αpk occurs at

α =
bi − a

T
i xk

aTi pk
.

3.3 Curvilinear search

3.3.1 Moré & Sorensen

Moré and Sorensen [48] define the curvilinear arc

Γk(α) = α2sk + αdk. (3.12)

The derivatives of the search function at α = 0 are

φ′k(0) = gTk dk (3.13)

φ′′k(0) = dTkHkdk + 2gTk sk. (3.14)

Part (ii) of Lemma 2.4 combined with gTk sk ≤ 0 and (3.14) result in limk∈I g
T
k sk = 0 and

lim infk∈I d
T
kHkdk ≥ 0. The same arc can be applied to linearly constrained problems by using a

vector of constraint deletion qk. The hypothetical and true search arcs,

Γk(α) = α2sk + αdk (3.15)

Γk(α) = α2sk + α(dk + qk), (3.16)

satisfy the convergence requirements in the same manner as the line search method presented in

Section 3.2. Points of arc-constraint intersection are computed by finding non-negative real roots of

α2aTi sk + αaTi dk + aTi xk − bi = 0.

CHAPTER 3. ARCS 26

3.3.2 Goldfarb

Goldfarb [38] defines the search arc

Γk(α) = αsk + α2dk. (3.17)

The derivatives of the search function at α = 0 are

φ′k(0) = gTk sk (3.18)

φ′′k(0) = sTkHksk + 2gTk dk. (3.19)

The convergence theory of Chapter 2 cannot be directly applied because the sequences {φ′k(0)}k∈I

and {φ′′k(0)}k∈I do not ensure lim infk∈I d
T
kHkdk ≥ 0. Goldfarb proves convergence by defining

two algorithms with modified step size conditions. The first method uses a variant of the descent

condition,

φ(α) ≤ φ(0) + µ

(

αgTk sk +
1

2
α4dTkHkdk

)

, (3.20)

with Armijo-style backtracking. The second method uses the search function

ψk(α) =
φk(α)− φk(0)

gTk Γk(α) + min{ 12Γk(α)THkΓk(α), 0}
(3.21)

and requires αk be selected such that σ1 ≤ ψk(αk) ≤ σ2 with 0 < σ1 ≤ σ2 < 1.

It is possible to modify Goldfarb’s method to use the arc search conditions of Chapter 2. Note

that (3.19), lim infk∈I φ
′′
k(0) ≥ 0 (Lemma 2.4, part (ii)) and gTk dk ≤ 0 (Definition 3.2) imply that

limk∈I g
T
k dk = 0. Then for any subsequence I and fixed tolerance ǫ > 0,

|gTk dk| ≥ ǫ|d
T
kHkdk| (3.22)

implies limk∈I |d
T
kHkdk| = 0. Thus subsequence I would converge to a second-order critical point

based on the definition of dk. In the case where (3.22) does not hold, a Goldfarb arc (3.17) may

be replaced by a Forsgren and Murray line (3.7) or a Moré and Sorensen curvilinear arc (3.12) to

obtain second-order convergence on all possible subsequences.

Finally, computing the arc-constraint intersection for (3.17) requires finding non-negative real

roots of

α2aTi dk + αaTi sk + aTi xk − bi = 0.

3.4 NEM arcs

This section discusses an arc inspired by the Levenberg-Marquardt algorithm for nonlinear equations.

For clarity, the arc is constructed in the context of unconstrained optimization. Linear constraints

are handled in Section 3.4.4.

CHAPTER 3. ARCS 27

We define a NEM arc as

Γk(α) = Qkwk(α)

wk(α) = −Ukρ(Vk, α)U
T
k Q

T
k gk

ρ(v, α) =
α

1 + α(v − vmin,k)
,

(3.23)

where Qk ∈ R
n×ns with ns ≤ n, UkVkU

T
k is the spectral decomposition of QT

kHkQk, and vmin,k =

λmin(Q
T
kHkQk). The function ρ(v, α) is called the kernel and is applied to the diagonal elements

of Vk. Unless noted otherwise, Qk is assumed or constructed to be orthonormal (QT
kQk = I). An

NEM arc starts with Γk(0) = 0 as required by the convergence theory. When Hk ≻ 0, an NEM arc

contains the Newton step pk = −H−1
k gk if pk ∈ range(Qk). With αN = 1/vmin,k, ρ(v, αN) = 1/v.

Thus, Lemma 3.2 and pk ∈ range(Qk) imply

Γk(αN) = −QkUkV
−1
k UT

k Q
T
k gk = −Qk(Q

T
kHkQk)

−1QT
k gk = pk.

Following the work of Del Gatto [31] on the modified gradient flow algorithm (Section 3.5), the

NEM arc may be constructed on a 2-dimensional subspace. The subspace is chosen as

Sk =

[gk pk] if Hk � 0

[gk dk] if Hk � 0,
(3.24)

where pk solves minp ‖Hkp + gk‖2 and dk is a direction of negative curvature satisfying (3.2). The

subspace is orthogonalized with QkRk = qr(Sk).

3.4.1 Derivation

The regularized equation for the Newton step is

(Hk + πI)s = −gk. (3.25)

An arc can be constructed by considering the solution to (3.25) being parameterized by π:

(Hk + πI)wk(π) = −gk. (3.26)

Given the spectral decomposition Hk = UkVkU
T
k , (3.26) can be solved with

wk(π) = −Ukρ(Vk, π)U
T
k gk

ρ(v, π) =
1

v + π
.

(3.27)

CHAPTER 3. ARCS 28

Arc search requires that Γk(0) = 0. However, (3.27) has the property limπ→∞ wk(π) = 0. This issue

is resolved with a reparameterization given by

π(α) =
1

α
− vmin,k, (3.28)

where vmin,k is the minimal eigenvalue of Hk. Note that (3.28) is the solution to the equation

α = ρ(vmin,k, π(α)). Combining (3.28) and (3.27) results in

ρ(v, α) =
α

1 + α(v − vmin,k)
,

the kernel function used in (3.23).

A subspace NEM arc is simply obtained by constructing wk with QT
kHkQk and QT

k gk then

“projecting” back to the full space with Γk = Qkwk.

3.4.2 Properties

The derivatives and initial value of ρ(v, α) from (3.23) are

d

dα
ρ(v, α) =

1

(1 + α(v − vmin))2
d

dα
ρ(v, α)

∣

∣

∣

∣

α=0

= 1

d2

dα2
ρ(v, α) =

−2(v − vmin)

(1 + α(v − vmin))3
d2

dα2
ρ(v, α)

∣

∣

∣

∣

α=0

= −2(v − vmin).

The initial values for the derivatives of Γk(α) from (3.23) are

Γ′
k(0) = Qkw

′
k(0) = −QkQ

T
k gk

Γ′′
k(0) = Qkw

′′
k(0) = 2Qk(Q

T
kHkQk − vmin,kI)Q

T
k gk.

Lemma 3.3. If QT
kQk = I, gk 6= 0, and gk ∈ range(Qk) then an NEM arc defined by (3.23) has the

properties

1. Γk(0) = 0,

2. if Hk ≻ 0 and pk = −H−1
k gk ∈ range(Qk) then Γk(1/vmin,k) = pk,

3. d
dα‖Γk(α)‖

2
2 > 0 for all α > 0 (the norm of the arc is strictly increasing),

4. gTk Γk(α) < 0 for all α > 0 (the arc is always a descent direction),

5. gTk Γ
′
k(α) < 0 for all α ≥ 0 (the derivative of the arc is always a descent direction).

Proof. We denote vi,k as the ith diagonal of Vk and (UT
k Q

T
k gk)i as element i of UT

k Q
T
k gk.

1. ρ(v, 0) = 0 for all v implies Γk(0) = 0.

CHAPTER 3. ARCS 29

2. Lemma 3.2 and the definition of ρ from (3.23) imply

Γk(1/vmin,k) = −QkUkV
−1
k UT

k Q
T
k gk = −Qk(Q

T
kHkQk)

−1QT
k gk = pk.

3. Check d
dα‖Γk(α)‖

2
2 :

d

dα
‖Γk(α)‖

2
2 =

d

dα
wk(α)

TQT
kQkwk(α)

=
d

dα
wk(α)

Twk(α)

=
d

dα
gTk QkUkρ(Vk, α)

2UT
k Q

T
k gk

= 2

n
∑

i=1

ρ(vi,k, α)
d

dα
ρ(vi,k, α)(U

T
k Q

T
k gk)

2
i > 0,

because ρ(v, α) > 0 and d
dαρ(v, α) > 0 for all α > 0 and v > vmin,k.

4. Check gTk Γk(α) :

gTk Γk(α) = −g
T
k QkUkρ(Vk, α)U

T
k Q

T
k gk

= −
n
∑

i=1

ρ(vi,k, α)(U
T
k Q

T
k gk)

2
i < 0,

because ρ(v, α) > 0 for α > 0.

5. Check gTk Γ
′
k(α) :

gTk Γ
′
k(α) = −g

T
k QkUk

[

d

dα
ρ(Vk, α)

]

UT
k Q

T
k gk

= −
n
∑

i=1

d

dα
ρ(vi,k, α)(U

T
k Q

T
k gk)

2
i < 0,

because d
dαρ(v, α) > 0 for α ≥ 0.

3.4.3 Convergence

The initial values for the derivatives of the search function for an NEM arc are

φ′k(0) = gTk Γ
′
k(0) = −g

T
k QkQ

T
k gk

φ′′k(0) = Γ′
k(0)

THkΓ
′
k(0) + gTk Γ

′′
k(0)

= gTk QkQ
T
kHkQkQ

T
k gk + 2gTk Qk(Q

T
kHkQk − vmin,kI)Q

T
k gk.

CHAPTER 3. ARCS 30

If QT
kQk = I and gk ∈ range(Qk) then by Lemma 3.1 the derivatives simplify to

φ′k(0) = −g
T
k gk (3.29)

φ′′k(0) = 3gTkHkgk − 2vmin,kg
T
k gk. (3.30)

Convergence to first-order points is obtained because limk∈I φ
′
k(0) = 0 (Lemma 2.4, part (i)) and

(3.29) imply limk∈I gk = 0 where I is any subsequence of unrestricted steps.

The sequences {φ′k(0)}k∈I and {φ′′k(0)}k∈I from (3.29) and (3.30) do not directly imply

limk∈I d
T
kHkdk = 0. Therefore, we present two perturbation methods that may be applied to an

NEM arc in order to guarantee second-order convergence.

The first method requires that the subspace matrix Qk be constructed such that QT
kQk = I and

dk ∈ range(Qk). The subspace arc function wk(α) from (3.23) is then redefined with

wk(α) = −Ukρ(Vk, α)U
T
k Q

T
k (gk + dk), (3.31)

where dk satisfies (3.2). After simplification, the initial value for the derivatives of the search function

become

φ′k(0) = −g
T
k (gk + dk) (3.32)

φ′′k(0) = (gk + dk)
THk(gk + dk) + 2gTkHk(gk + dk)− 2vmin,kg

T
k (gk + dk). (3.33)

Convergence to a second-order critical point follows, because limk∈I gk = 0 and lim infk∈I φ
′′
k(0) ≥ 0

(Lemma 2.4, part (ii)) imply limk∈I d
T
kHkdk = 0, where I is any subsequence with unrestricted

steps.

The second method redefines Γk(α) from (3.23) with

Γk(α) = Qkwk(α) + αdk, (3.34)

where dk satisfies (3.2). The initial value for the derivatives of the search function become

φ′k(0) = −g
T
k (gk + dk) (3.35)

φ′′k(0) = (gk + dk)
THk(gk + dk) + 2gTkHkgk − 2vmin,kg

T
k gk. (3.36)

Convergence to a second-order critical point follows, because limk∈I gk = 0 and lim infk∈I φ
′′
k(0) ≥ 0

(Lemma 2.4, part (ii)) imply limk∈I d
T
kHkdk = 0, where I is any subsequence with unrestricted

steps.

If ǫ > 0 is a fixed tolerance and |gTk dk| ≥ ǫ|d
T
kHkdk|, then limk∈I gk = 0 implies limk∈I d

T
kHkdk =

0, where I is any subsequence of unrestricted steps. This indicates that second-order convergence

occurs “naturally” if the gradient contains a large enough component in the direction of negative

curvature. Therefore, a perturbation only needs to be applied if |gTk dk| < ǫ|dTkHkdk|. We note that

the relative scaling of gk and dk becomes an issue if either perturbation (3.31) or (3.34) is used.

CHAPTER 3. ARCS 31

However, in practice a perturbation is only applied on a small number of iterations.

3.4.4 Linear constraints

We present two methods using an NEM arc for linearly constrained optimization that differ in the

application order of key matrices. First, we review some notation and concepts. Chapter 2 denotes

Ak as the matrix of active constraints at the beginning of iteration k and Āk as the matrix of

constraints that remain active during iteration k. Likewise, Zk and Z̄k are the nullspace matrices

associated with Ak and Āk respectively. A hypothetical arc Γk is constructed to remain on the

constraints active at the start of iteration k, i.e., Γk(α) ∈ range(Zk) for all α ≥ 0. A true search arc

Γk is constructed to move from constraints deleted in iteration k and remain on Āk. If constraints

are not deleted in iteration k, then Āk = Ak, Z̄k = Zk, and Γk = Γk. Thus, Γk may be constructed

in the same manner as Γk without constraint deletion. Note that hypothetical search arcs are an

artifact of the convergence theory and do not need to be implemented in practice.

The QZ method (Procedure 3.1) constructs a NEM arc with a subspace matrix Qk ∈ R
n×ns

such that Z̄kZ̄
T
k gk ∈ range(Qk) and span(Qk) ⊆ span(Z̄k). The definition of wk differs from (3.23),

because gk is replaced with Z̄kZ̄
T
k gk. The ZQ method (Procedure 3.2) is equivalent to constructing

an unconstrained NEM arc on the reduced variables then “projecting” back to the full space with a

product by Z̄k. The methods are named after the order of products in the final definition of Γk.

For both methods, the initial derivative of the arc is

Γ′
k(0) =

Z̄kZ̄
T
k gk if |gTk dk| ≥ ǫ|d

T
kHkdk|

Z̄kZ̄
T
k gk + dk otherwise.

(3.37)

Note that dk remains on the constraints active at the start of iteration k (i.e. Akdk = 0). Therefore,

the arc is initially feasible if

aTi Z̄kZ̄
T
k gk > 0, (3.38)

where i is the index of any deleted constraint. The arc satisfies the conditions of Section 2.3.3 if

gTk Z̄kZ̄
T
k gk > gTk ZkZ

T
k gk, (3.39)

which establishes overall convergence of the algorithm. Note that second-order convergence follows

from the term dk in (3.37) and the results from Section 3.4.3.

3.4.5 Constraint intersection

Computing the intersection between an NEM arc and a linear constraint reduces to finding the

roots of an order ns polynomial, where ns is the dimension of the subspace. For simplicity, we drop

indices and use the π-parameterization of (3.27). We assume aTx > b and search for solutions to

CHAPTER 3. ARCS 32

Procedure 3.1 QZ method to construct a subspace NEM arc for linear constraints

compute dk to satisfy (3.2)
consider constraint deletion according to rules of Section 2.3.3 to form Z̄k

if dk 6= 0 then

Sk ← [Z̄kZ̄
T
k gk dk]

else

pk ← argminp ‖Z̄
T
k HkZ̄kp+ Z̄T

k gk‖2
Sk ← Z̄k[Z̄

T
k gk pk]

end if

QkRk ← qr(Sk)
UkVkU

T
k ← QT

kHkQk (spectral decomposition)
ρ(v, α)← α

1+α(v−vmin,k)
; vmin,k ← λmin(Q

T
kHkQk)

if dk = 0 or |gTk dk| ≥ ǫ|d
T
kHkdk| then

wk(α)← −Ukρ(Vk, α)U
T
k Q

T
k Z̄kZ̄

T
k gk

Γk(α)← Qkwk(α)
else

wk(α)← −Ukρ(Vk, α)U
T
k Q

T
k (Z̄kZ̄

T
k gk + dk)

Γk(α)← Qkwk(α)
end if

Procedure 3.2 ZQ method to construct a subspace NEM arc for linear constraints

compute dk to satisfy (3.2)
consider constraint deletion according to rules of Section 2.3.3 to form Z̄k

if dk 6= 0 then

Sk ← [Z̄T
k gk Z̄

T
k dk]

else

pk ← argminp ‖Z̄
T
k HkZ̄kp+ Z̄T

k gk‖2
Sk ← [Z̄T

k gk pk]
end if

QkRk ← qr(Sk)
UkVkU

T
k ← QT

k Z̄
T
k HkZ̄kQk (spectral decomposition)

wk(α)← −Ukρ(Vk, α)U
T
k Q

T
k Z̄

T
k gk

ρ(v, α)← α
1+α(v−vmin,k)

; vmin,k ← λmin(Q
T
k Z̄

T
k HkZ̄kQk)

if dk = 0 or |gTk dk| ≥ ǫ|d
T
kHkdk| then

Γk(α)← Z̄kQkwk(α)
else

Γk(α)← Z̄kQkwk(α) + αdk
end if

CHAPTER 3. ARCS 33

aT (x+ w(π)) = b:

aT (x+ w(π)) = b

aTw(π) = b− aTx

aTUρ(V, π)UT g = b− aTx.

Let γ = b− aTx and βi = (uTi a)(u
T
i g), where ui is column i of U . Now we have

ns
∑

i=1

βi
vi + π

= γ,

ns
∑

i=1

βi
∏

j 6=i

(vi + π) = γ

ns
∏

j=1

(vj + π).

The final equation is polynomial with order ns. In the method inspired by Del Gatto [31], ns = 2

and the quadratic formula may be used.

3.4.6 Advantages

The NEM method has several advantages when compared to line and curvilinear search methods.

We summarize them here:

• The NEM method does not require a special method to compute sk when Hk ⊁ 0. The Hessian

is handled “naturally” in all cases.

• On most iterations, the scaling of dk is irrelevant because NEM arcs are constructed on orthog-

onalized subspaces. Perturbations are required to guarantee second-order convergence and are

dependent on the scale. However, in practice perturbations are rarely required.

• The vector qk defined by Forsgren and Murray in [28, Section 5.4] is essentially steepest descent

for deleted constraints. NEM arcs defined by Procedures 3.1 and 3.2 first move from the

constraints along the steepest descent direction then turn toward the Newton step. Thus, only

first-order estimates for the Lagrange multipliers are required, while the algorithm is able to

take full advantage of second-order information in selecting the next iterate.

Relative to a line or curvilinear search method, these features come with an O(nns) added com-

putational cost, where ns is the dimension of the subspace. We’ve shown that a NEM arc may be

constructed on a 2-dimensional subspace, and thus the extra work may be considered O(n).

CHAPTER 3. ARCS 34

3.5 Modified gradient flow

In the context of unconstrained optimization, Del Gatto [31] defines amodified Gradient Flow (MGF)

arc as

Γk(α) = Qkwk(α) (3.40)

wk(α) = −Ukρ(Vk, α)U
T
k Q

T
k gk (3.41)

ρ(v, α) =

− 1
v (e

−vt(α) − 1) for v 6= 0

α for v = 0
(3.42)

t(α) =
−1

vmin,k
log(1− αvmin,k), (3.43)

where Qk ∈ R
n×ns with ns ≤ n, UkVkU

T
k is the spectral decomposition of QT

kHkQk, and vmin,k =

λmin(Q
T
kHkQk). The MGF and NEM (3.23) arcs share the same definitions of Γk and wk and

differ only in the definition of the kernel function ρ. The convergence theory of the two methods is

nearly identical, so we omit the details here. In summary, the MGF kernel (3.42) has the properties

ρ(v, 0) = 0, d
dαρ(v, α)

∣

∣

α=0
= 1, and ρ(v, 1/vmin,k) = 1/v for v ≥ vmin,k. Thus, the properties of

Section 3.4.2 and convergence results of Section 3.4.3 hold. MGF arcs may also be used for problems

with linear constraints in the same manner as Section 3.4.4. Here, we review the derivation of the

MGF method and discuss differences with the NEM method.

3.5.1 Derivation

The method of modified gradient flow [3,6,59] defines the search arc as the solution to a linear ODE.

For clarity, we discuss the method for unconstrained optimization. The modified gradient flow arc

is Γk(t) = wk(t), where

w′
k(t) = −Hkw(t)− gk

wk(0) = 0.
(3.44)

Given the spectral decomposition Hk = UkVkU
T
k , the solution to (3.44) is

wk(t) = −Ukρ(Vk, t)U
T
k gk

ρ(v, t) =

− 1
v (e

−vt − 1) for v 6= 0

t for v = 0.

(3.45)

CHAPTER 3. ARCS 35

Here, ρ is called a kernel function. The notation ρ(Vk, t) indicates that ρ(v, t) is applied to only the

diagonal elements of the eigenvalue matrix Vk. Note that

d

dt
ρ(v, t) = ρt(v, t) =

e−vt for v 6= 0

1 for v = 0.

Behrman and Del Gatto [3, 31] reparameterize (3.45) with

t(α) =

−1
vmin,k

log(1− αvmin,k) for vmin,k 6= 0

α for vmin,k = 0,
(3.46)

where vmin,k is the smallest eigenvalue of Hk. This comes from solving for t(α) in the equation

α = ρ(vmin,k, t(α)). When vmin,k > 0 the arc is bounded and the search is over α ∈ [0, 1/vmin,k].

When vmin,k ≤ 0 the arc is unbounded and the search is over α ∈ [0,∞). IfHk ≻ 0 and αN = 1/vmin,k

then wk(tk(αN)) = −H−1
k gk.

Behrman [3] presents a method that constructs an MGF arc on a subspace spanned by a small

number of vectors from the Lanczos process. Del Gatto [31] computes the MGF search arc on a

two-dimensional subspace. If Hk � 0 then the subspace is chosen as Sk = [gk pk], where pk solves

minp ‖Hkp+ gk‖2. If Hk is indefinite, then the subspace is chosen as Sk = [gk dk]. The “projection”

onto the subspace requires the tall-skinny QR factorization, QkRk = qr(Sk). The matrix Qk has

dimensions n× 2. A search arc is computed by solving the linear ODE

w′
k(t) = −Q

T
kHkQkwk(t)−Q

T
k gk

wk(0) = 0,
(3.47)

then “projecting” back into the full space with Γk(t) = Qkwk(t). The solution to (3.47) requires

a spectral decomposition of a 2 × 2 matrix. A complete MGF arc (3.40) is the solution to (3.47)

parameterized by (3.46).

3.5.2 Constraint intersection

Computing the first intersection between an MGF arc and a linear constraint requires finding the

smallest real and positive solution to

r(t) =

n1
∑

i=1

βie
νit + t

n2
∑

i=1

γi + ξ = 0, (3.48)

where n1 is the number of nonzero eigenvalues and n2 is the number of zero eigenvalues of the

subspace Hessian (QT
kHkQk). The total size of the subspace is n1 + n2. When n1 + n2 = 2, it is

possible to solve (3.48) with a carefully constructed numerical procedure. Despite some effort we

have not found a satisfactory method for the case when n1+n2 > 2. A direct search or interpolation

scheme would be impractical for large problems.

CHAPTER 3. ARCS 36

3.5.3 Comparison to NEM arcs

The only difference between the MGF and NEM methods is the definition of the kernel functions in

(3.23) and (3.42). We summarize a few advantages that NEM has over MGF:

• The resulting constraint intersection equation for an NEM arc is a polynomial. For an MGF

arc the resulting equation is a sum of exponentials (3.48), which does not appear to have

an analytic solution or practical computational routine for subspaces with more than two

dimensions.

• The MGF kernel function (3.42) has different expressions for v 6= 0 and v = 0. Thus the

implementation requires a tolerance check on v and procedures to handle both cases. The

NEM kernel function is the same for all v.

• The NEM kernel function is qualitatively “nicer”, because it does not use an exponential or

logarithm.

Chapter 4

ARCOPT

4.1 Preliminaries

ARCOPT is a reduced-gradient method using NEM arcs designed to solve linearly constrained opti-

mization problems of the form

minimize
x∈Rn

F (x)

subject to l ≤

(

x

Ax

)

≤ u,

where F (x) is smooth and A is an m× n sparse matrix. ARCOPT is influenced by and indebted to

MINOS [51]. As in MINOS, the problem is reformulated so that x and A include a full set of slack

variables and columns:
minimize

x∈Rn
F (x)

subject to Ax = 0

l ≤ x ≤ u.

The primary goal in developing ARCOPT was to adhere to the theoretically defined algorithm

from Chapter 2. A few critical deviations were made to account for limited resources and finite

precision arithmetic. The implementation is not able to take an infinite number of iterations, thus

terminates when approximate optimality conditions are met. Chapter 2 defines an algorithm where

all the iterates remain feasible. ARCOPT uses the EXPAND procedure [36], which increases the

feasibility tolerance by a small amount each iteration. Variables are allowed to move outside the

original bounds (l and u), but must remain feasible with respect to the expanded bounds. This

technique is a practical way to reduce the chance of cycling, handle degeneracy, keep key matrices well

conditioned, and remove undesirable roots when computing arc-constraint intersections. Even with

EXPAND it is still possible for certain matrices to become poorly conditioned. ARCOPT implements

a repair procedure from [34, Section 5] to attempt a recovery from these situations.

A fundamental aspect of ARCOPT is a partitioning of the variables and corresponding columns

37

CHAPTER 4. ARCOPT 38

Table 4.1: Symbols for basis index sets. B, S, Nl, Nu, Nf , and Nb

are disjoint, their union includes all variables {1, . . . ,m}.

symbol description
B basic variables
S superbasic variables
Nl nonbasic at lower bound
Nu nonbasic at upper bound
Nf nonbasic and fixed, i ∈ Nf ⇔ li = ui
Nb nonbasic and between bounds, li < xi < xu
N union of all nonbasic variables,

N = Nl ∪Nu ∪Nf ∪Nb

of A into several disjoint subsets. Nonbasic variables are held fixed, usually at an upper or lower

bound. Superbasic variables are free to move. Basic variables are determined by the linear equations.

Symbols for the basis index sets are given in Table 4.1. The linear constraints may be partitioned

Ax =
[

B S N
]

xB

xS

xN

, (4.1)

where B is m×m, S is m×|S|, and N is m×n−m−|S|. B is called the basis matrix. The partition

is constructed and maintained so that B has full rank. Given xS and xN , the basic variables are

determined by solving

BxB = −SxS −NxN . (4.2)

Solves with B and BT use LU factors from LUSOL [35]. Each iteration may cause a column of B to

be replaced with one from S. This is a rank-1 modification and is handled efficiently and stably with

LUSOL’s Bartels-Golub update of the LU factors. After a certain number of updates, a complete

factorization is carried out. Section 4.7 describes products with Z and ZT , where Z is a matrix

whose columns are in null(A).

ARCOPT is composed of several major components. We describe them here in the order invoked

by the algorithm:

1. The initialization phase (Section 4.2) processes input and performs all actions required before

the main loop.

2. Each iteration of the main loop starts with a call to expand main (Procedure 4.15) to increase

the dynamic feasibility tolerance. After a certain number of iterations the dynamic feasibility

tolerance must be reset to its initial value and nonbasic variables must be moved back to their

bounds.

3. Each iteration makes a call to phase 1 (Section 4.3) if basic variables are found to be infeasible or

CHAPTER 4. ARCOPT 39

phase 2 (Section 4.4) otherwise. Phase 1 will take a step to minimize the sum of infeasibilities.

Phase 2 constructs an NEM arc and takes a step towards optimality. Phase 1 will terminate

if the constraints are determined to be infeasible. Phase 2 will terminate if the approximate

optimality conditions are met.

4. After each iteration the basis maintenance routine (Section 4.5) is called to handle a change to

the basis if a bound was encountered. This may require an update to the basis matrix, which

is handled by the factorization routines (Section 4.6).

4.2 Initialization

The initialization phase is responsible for processing solver options, dealing with input data, selecting

an initial basis, and performing the initial factorization. The solver options and associated symbols

used in this chapter are listed in Table 4.2.

symbol default description
δD 1e-6 dual feasibility tolerance
δP 1e-6 primal feasibility tolerance
δC 1e-4 curvature optimality tolerance
δM 0.2 arc perturbation tolerance
δF 1e-4 arc search descent parameter
δG .9 arc search curvature parameter
δV 1e-7 initial step size tolerance
δR 2e-4 regularization parameter

expfrq 10000 expand reset frequency
δA .5 initial EXPAND tolerance
δB .99 final EXPAND tolerance
δS 1e-11 tolerance for near zero numbers

Table 4.2: ARCOPT parameters and default values.

4.2.1 Input

ARCOPT requires:

• Routines to evaluate the objective function F (x) and gradient g(x).

• A routine to evaluate the Hessian H(x), or an operator H(x, v), to evaluate matrix-vector

products with the Hessian at x.

• x0, an initial guess, vector of length n0.

• A0, constraint matrix, size m× n0.

• l, u, lower and upper bounds on variables and constraints with length n = n0 +m.

CHAPTER 4. ARCOPT 40

4.2.2 Initial processing

The input data is processed in the following manner:

1. Compute initial slack variables: s0 ← A0x0

2. Form augmented constraint matrix: A← [A0 − I]

3. Initialize variable vector x by projecting into bounds:

x←

(

x0

s0

)

x← max(x, l)

x← min(x, u)

4. Call basis initialize to set the initial basis.

5. Call fac main to perform the initial factorization.

4.3 Phase 1

Each iteration of Phase 1 carries out the following steps:

1. Check the feasibility of the basic variables. If they are found to be feasible, phase 1 is complete

and phase 2 will start in the next iteration. If the basic variables are not feasible, phase 1

continues.

2. Construct a linear objective vector c with length n to minimize the sum of infeasibilities:

ci =

0 if li ≤ xi ≤ ui

1 if xi > ui

−1 if xi < li

3. Compute the vector of multipliers y by solving BT y = cB.

4. Compute the residual gradient: z ← c−AT y

5. Check the optimality conditions. Phase 1 is optimal if

min(x− l, z) ≤ δD and min(u− x,−z) ≤ δD.

If this occurs, the constraints are not feasible. Here δD is the dual feasibility tolerance.

CHAPTER 4. ARCOPT 41

6. Select the nonbasic variable to move. Choose the element of z with largest magnitude and

appropriate sign. The index of this variable is denoted k. Set σ ← −1 if zk < 0 or σ ← 1 if

zk > 0.

7. Compute the phase 1 search direction ∆x:

∆xN ← 0; ∆xk ← σ; ∆xB solves B∆xB = −σak,

where ak is column k of A.

8. Compute the maximum possible step size ᾱ along ∆x with the call

(ᾱ, j, β, γ)← expand(x,∆x, l, u, αmax, δE , δT , δS),

where αmax is a user defined step size limit and δE is the dynamic feasibility tolerance. The

EXPAND parameters δT and δS are described in Section 4.8. If γ = 0 and β 6= 0, ᾱ is limited

by a bound on variable j. The lower bound is indicated by β = −1, while the upper bound is

indicated by β = 1. If γ = 1 the iteration is deemed degenerate, variable j is made nonbasic,

a small step is taken with x← x+ ᾱ∆x, and the algorithm moves to the next iteration.

9. Compute the step size α ≤ ᾱ which removes as many infeasibilities as possible, but does not

go any further.

10. Take the step: x← x+ α∆x

4.4 Phase 2

Each phase 2 iteration carries out the following steps:

1. Compute the direction of negative curvature. ARCOPT uses Matlab’s eigs function to compute

the eigenvector d corresponding to vmin, the minimum eigenvalue ZTHZ. eigs uses ARPACK

[45] and only requires matrix-vector products with ZTHZ. If all eigenvalues are non-negative,

then d← 0.

2. Compute the vector of multipliers y by solving BT y = gB.

3. Compute the residual gradient: z ← g −AT y

4. Check the termination conditions. Phase 2 is optimal if

min(x− l, z) ≤ δD and min(u− x,−z) ≤ δD and vmin ≥ −δC .

5. Consider constraint deletion. This is accomplished by choosing one or more nonbasic variables

to make superbasic. Do nothing if a bound limited the step size in the previous iteration. If

CHAPTER 4. ARCOPT 42

the most recent change to the basis was constraint deletion, then more than one constraint

may be deleted.

6. Compute the reduced gradient: gz ← ZT g

7. Set sign for the direction of negative curvature: d← −d if gTz d > 0

8. Compute the steepest descent direction in the full space: ∆x← −Zgz. If

|gTz d| < δM |d
TZTHZd|,

the steepest descent direction is perturbed with the direction of negative curvature: ∆x ←

−Z(gz + d).

9. Compute the maximum possible step size ᾱ along ∆x with the call

(ᾱ, j, β, γ)← expand(x,∆x, l, u, αmax, δE , δT , δS),

where αmax is a user defined step size limit and δE is the dynamic feasibility tolerance. The

EXPAND parameters δT and δS are described in Section 4.8. If γ = 0 and β 6= 0, ᾱ is limited

by a bound on variable j. The lower bound is indicated by β = −1, while the upper bound

is indicated by β = 1. If γ = 1, then the iteration is deemed degenerate, variable j is made

nonbasic, a small step is taken with x ← x + ᾱ∆x, and the algorithm moves to the next

iteration.

10. If vmin ≥ −δC , compute the regularized Newton direction p with

(ZTHZ + δRI)p = −gz,

where δR is the regularization parameter. This is accomplished with Matlab’s pcg or minres.

11. Construct the arc Γ(α). If no direction of negative curvature exists (vmin ≥ −δC), the subspace

is chosen to be [gz p]. If a direction of negative curvature exists (vmin < δC), then the arc

subspace is chosen to be [gz d]. If |gTz d| ≤ δM |d
TZTHZd| the arc must be perturbed so that

Γ′(0) = −Z(gz + d).

12. Compute the maximum step size along the arc:

ᾱ← max α such that l − δE ≤ x+ Γ(α) ≤ u+ δE .

This is done with the call

(ᾱ, j, β)← arctest(x,Γ, l, u, αmax, δE),

CHAPTER 4. ARCOPT 43

where αmax is a user defined step size limit and δE is the dynamic feasibility tolerance. If

β 6= 0 then j is the index of the limiting bound. The lower bound is indicated by β = −1,

while the upper bound is indicated by β = 1.

13. Compute the initial step size. If the reduced Hessian is positive definite (vmin ≥ δV), the initial

step size is α0 = 1/vmin. If the reduced Hessian is positive semi-definite (|vmin| < δV), the

initial step size is α0 = 1. If the reduced Hessian is indefinite (vmin ≤ δV), the initial step size

is α0 = −1/vmin. These choices were used in both [3] and [31].

14. Search along arc for an acceptable step size. The search function is φ(α) = F (x+Γ(α)). First,

compute values for φ′(0) and φ′′(0). Second, find α that satisfies

φ(α) ≤ φ(0) + δF
(

φ′(0)α+ 1
2 min{φ′′(0), 0}α2

)

|φ′(α)| ≤ δG|φ
′(0) + min{φ′′(0), 0}α|.

15. Take the step: x← x+ Γ(α)

4.5 Basis maintenance

Basis maintenance is performed at the end of each phase 1 or phase 2 iteration. If the step was

limited by a bound, the corresponding variable must be moved to the appropriate nonbasic set. If

the limiting variable was basic, its position in the basis must be replaced with a superbasic variable.

Changes to the basis may call for an update or refactorization of B. If the new basis matrix is found

to be ill-conditioned or rank deficient, then factorization repair is invoked. These steps are detailed

in the following routines:

• basis initialize (Procedure 4.1): perform initial partitioning of variables.

• basis main (Procedure 4.2): main call for basis maintenance. Responsible for moving a limiting

variable to the appropriate nonbasic set and updating the factorization if needed.

• basis activate (Procedure 4.3): move limiting variable to appropriate nonbasic set.

• basis select (Procedure 4.4): select an appropriate superbasic variable to move to basic set.

• vmap (Procedure 4.6): map from basis matrix column index to variable index.

• bmap (Procedure 4.5): map from basis variable index to basis matrix column index.

CHAPTER 4. ARCOPT 44

Procedure 4.1 basis initialize: perform the initial partition of variables into basis sets.

for i = 1 to n do

if li = ui then

add i to Nf , xi is nonbasic and fixed

else if xi = li then

add i to Nl, xi is nonbasic at lower bound

else if xi = ui then

add i to Nu, xi is nonbasic at upper bound

else

add i to S, xi is superbasic

end if

end for

if crash = firstm then

B ← {1, . . . ,m}, make first m variables basic

remove {1, . . . ,m} from other basis sets

else

B ← {n−m+ 1, . . . , n}, make last m (slack) variables basic

remove {n−m+ 1, . . . , n} from other basis sets

end if

CHAPTER 4. ARCOPT 45

Procedure 4.2 basis main(j, β): main entry point to basis routines. Responsible for moving a
limiting variable to the appropriate nonbasic set and updating the factorization if needed.

Require: j ∈ {0} ∪ B ∪ S is index of limiting basic or superbasic variable

// j = 0 indicates no variable is limited by a bound

Require: β ∈ {−1, 0, 1} indicates upper or lower limit

// β = −1 indicates lower bound limit

// β = 0 indicates no variable is limited by a bound

// β = 1 indicates upper bound limit

Ensure: basis index sets and factorization are updated

if β 6= 0 and j ∈ S then

// superbasic variable j has hit bound

call basis activate(j, β) to make j nonbasic

else if β 6= 0 and j ∈ B then

// basic variable j has hit bound, need to find superbasic variable to replace

i← basis select(j)

move variable i to B

call basis activate(j, β) to make j nonbasic

call fac update(i, j) to replace column vmap(j) of B with column i of A

// fac update may call fac main to refactorize or repair B

end if

Procedure 4.3 basis activate(j, β): move limiting variable j to appropriate nonbasic set.

Require: j ∈ B ∪ S is index of limiting variable

Require: β ∈ {−1, 1} indicates lower or upper limit, respectively

Ensure: j is made nonbasic

if β = −1 then

move j to Nl

else if β = 1 then

move j to Nu

end if

CHAPTER 4. ARCOPT 46

Procedure 4.4 i ← basis select(j): select a superbasic variable to become basic. The method is
from [51, p. 53].

Require: j ∈ {1,m}, index of basic variable to become nonbasic

Require: |S| ≥ 1, there must be at least one superbasic variable

Ensure: i is index of superbasic variable to become basic

k ← vmap(j) // index of column in B corresponding to j

// find largest available pivot, vmax

u solves BTu = ek

v ← |STu|

vmax ← max(v)

// compute minimum distance to bound for each superbasic

dk ← min{|xk − lk|, |xk − uk|} for k ∈ S

i← argmaxk{dk with vk ≥ 0.1vmax and k ∈ S}

// i is index of variable furthest from bound with vi ≥ 0.1vmax

Procedure 4.5 j ← bmap(i): map from basis matrix column index to variable index

Require: i ∈ {1, . . . ,m} is the column index of B

return j ∈ B, the index of basic variable corresponding to column i of B

Procedure 4.6 i← vmap(j): map from basis variable index to basis matrix column index

Require: j ∈ B is an index of a basic variable

return the index of basis matrix column corresponding to variable j

CHAPTER 4. ARCOPT 47

4.6 Factorization

ARCOPT uses LUSOL [35] to compute and update sparse LU factors of the basis matrix B. If B

is found to be ill-conditioned or rank deficient, ARCOPT uses a repair procedure presented by Gill,

Murray, Saunders, and Wright in their paper on SNOPT [34, Section 5]. The factorization and repair

routines are summarized here:

• fac main (Procedure 4.7) main controller for the basis factorization. It first attempts to com-

pute LU factors for B. If the basis is found to be ill-conditioned or rank deficient, then basis

repair is invoked.

• fac update (Procedure 4.8): update LU factors to reflect a column replacement in B.

• fac BS (Procedure 4.10): attempt to find a better conditioned basis by swapping basic and

superbasic variables.

• fac BR (Procedure 4.9): construct a well conditioned basis by replacing dependent columns of

B with appropriate columns corresponding to slack variables.

• fac repair (Procedure 4.11): help routine called by fac BS to select appropriate slack variables

for inclusion in the basis.

Procedure 4.7 fac main: factorize B with LUSOL using threshold partial pivoting (TPP). If B is
singular, call fac BS to attempt to fix the basis by swapping in superbasic variables. If basis is still
rank deficient, call fac BR to replace dependent columns with appropriate ones corresponding to
slack variables.

Require: function nsing(U) counts number of apparent singularities in U

r ← false // flag to indicate a basis repair call

(L,U, p, q)← LUSOL(B,TPP)

if nsing(U) > 0 and |S| > 0 then

// basis is singular, attempt to replace dependent columns with superbasics

call fac BS

r ← true

end if

if nsing(U) > 0 then

// basis is singular, replace dependent columns with slacks

call fac BR

r ← true

end if

if r is true then

// refactorize because a basis repair routine was called

(L,U, p, q)← LUSOL(B,TPP)

end if

store L, U , p, and q for subsequent solves and updating

CHAPTER 4. ARCOPT 48

Procedure 4.8 fac update(i, j): update factorization to replace column in B corresponding to
variable j with column in A corresponding to variable i. Call fac main if the update routine reports
a singular result. Note that LUSOL maintains updates to L factors in product form; we ignore that
detail here.

j ← vmap(j) // get column index of B corresponding to variable j

(L,U, p, q, r)← LUSOL REPCOL(L,U, p, q, j, ai) // ai is column i of A

if r is true then

// singularity detected, initiate repair procedure

call fac main

end if

Procedure 4.9 fac BS: factorize [B S]T with LUSOL’s threshold rook pivoting (TRP) in order to
find a full rank or better conditioned set of basis columns without changing the state of non-basic
variables. The LU factors are not stored and a subsequent factorization is required for solves.

(L,U, p, q)← LUSOL([B S]T ,TRP)

// move first m pivot rows to B

for i = 1 to m do

move pi to B

end for

// move remaining |S| pivot rows to S

for i = m+ 1 to m+ |S| do

move pi to S

end for

Procedure 4.10 fac BR: factorize B with LUSOL’s threshold rook pivoting (TRP) to find dependent
columns. Dependent columns are replaced with identity columns corresponding to slack variables in
the fac repair method. There is no guarantee that one factorization and subsequent call to fac repair

will produce a nonsingular basis. Thus, the method will repeat until a full rank basis is produced.
This is always possible, because the entire basis matrix could replaced with −I. For efficiency the
method throws the LU factors away. A subsequent factorization is needed for solves.

repeat

(L,U, p, q)← LUSOL(B,TRP)

if nsing(U) > 0 then

call fac repair to replace dependent columns of B with slacks

end if

until nsing(U) = 0

CHAPTER 4. ARCOPT 49

Procedure 4.11 fac repair: repair B by making variables corresponding to dependent columns
nonbasic and appropriate slack variables basic.

Require: p and q are row and column pivot vectors from LUSOL

Require: depcol(j) returns true if column j of B is dependent

for i = 1 to m do

j ← qi // get appropriate column index

if depcol(j) then

k ← bmap(j)

// column in B corresponding to variable k is dependent

// make variable k nonbasic

if xk ≤ lk then

move k to Nl

else if xk ≥ uk then

move k to Nu

else if lk = uk then

move k to Nf

else

move k to Nb

end if

// move slack variable into basis to repair B

move variable with index n−m+ pk to B

end if

end for

CHAPTER 4. ARCOPT 50

4.7 Products with Z and Z
T

ARCOPT requires the ability to compute products with a nullspace matrix Z. If the variables are

partitioned such that A = [B S N] (4.1) a nullspace matrix can be constructed as the m×|S| matrix

Z =

−B−1S

I

0

. (4.3)

The nullspace matrix is not constructed but used as an operator to compute products with Z

(Procedure 4.12) and ZT (Procedure 4.13).

Procedure 4.12 v ← Zu

Require: u ∈ R|S|, B is full rank

Ensure: v ∈ null(A)

vS ← u

vN ← 0

vB solves BvB = −Su

Procedure 4.13 v ← ZTu

Require: u ∈ Rn, B is full rank

Ensure: v ∈ range(ZT)

u1 solves BTu1 = uB

v ← −STu1 + uS

CHAPTER 4. ARCOPT 51

4.8 Expand

Gill, Murray, Saunders, and Wright presented the EXPAND procedure [36] to prevent cycling in

active set methods for linearly constrained optimization. ARCOPT’s initialization procedure calls

expand init (Procedure 4.14) to set the dynamic feasibility tolerance δE and the growth parameter

δT . Before each phase 1 or phase 2 iteration, expand update (Procedure 4.15) is called to increase

the dynamic feasibility tolerance (δE ← δE + δT). If δE has grown too large, then expand reset

(Procedure 4.16) is called to set δE to its initial value and move nonbasic variables back to their

bounds. Phase 1 is invoked if basic variables become infeasible.

The main EXPAND routines are used to determine the largest step size and select a “good”

limiting constraint. At the lowest level, step (Procedure 4.19) computes the step size to a bound

along a line for a single variable. Note that step uses parameter δS as a tolerance on near zero

values. Next, ratio test (Procedure 4.18) computes the maximum step size such that all variables

remain feasible. Finally, expand (Procedure 4.17) computes the maximum step size along a line to

a constraint with a large “pivot” value such that all variables remain feasible with respect to the

expanded bounds. Small “pivot” values typically lead to ill-conditioned basis matrices [36, p. 441].

An iteration is deemed degenerate if the step size to the nearest bound is too small. This occurs

when multiple constraints are encountered in the same iteration. In this situation, the expand routine

enforces a small positive step size such that all variables remain feasible with respect to the expanded

bounds. A degeneracy flag is set that signals ARCOPT to take the step, perform basis updates, then

go to the next iteration. In phase 2, ARCOPT checks for degeneracy by calling expand on x+αΓ′(0),

which does not involve any work to compute arc-constraint intersections. In fact, the arc is only

constructed if the iteration is deemed non-degenerate.

Procedure 4.14 expand init: initialize dynamic feasibility tolerance and growth parameter.

δE ← δA · δP

δT ←
(δB−δA)δP

expfrq

Procedure 4.15 expand update: increase dynamic feasibility tolerance, reset if needed.

δE ← δE + δT

if δE ≥ δP then

call expand reset to reset dynamic tolerance

end if

CHAPTER 4. ARCOPT 52

Procedure 4.16 expand reset: reset dynamic tolerance, bring infeasible variables back to bounds.

move infeasible nonbasic variables back to bounds

call fac main to refactorize matrix

call exp init to reset dynamic feasibility tolerance

recompute basic variables

if basic variables are found to be infeasible, return to phase 1

Procedure 4.17 (α, j, β, γ) ← expand(x,∆x, l, u, αmax, δE , δT , δS): find the largest step size to
a bound associated with a large pivot such that all variables remain feasible with respect to the
expanded bounds. If the computed step size is too small, then set the degeneracy flag and return a
small positive step size.

Require: x,∆x, u, l ∈ Rn, αmax, δE , δT , δS ∈ R+

Require: l − δE < x < u+ δE

Ensure: α ∈ (0, αmax], j ∈ {0, . . . , n}, β ∈ {−1, 0, 1}, γ ∈ {0, 1}

α← αmax; j ← 0; β ← 0; γ ← 0; p← 0

(α1, j1, β1)← ratio test(x,∆x, l − δE , u+ δE , αmax, δS)

for i = 1 to n do

(α2, β2)← step(xi,∆xi, li, ui, αmax, δS)

if α2 ≤ α1 and |∆xi| > p then

α← α2; j ← i; β ← β2; p← |∆xi|

end if

end for

αmin ← δT /p

if α ≤ αmin then

α← αmin; γ ← 1

end if

Procedure 4.18 (α, j, β) ← ratio test(x,∆x, l, u, αmax, δS): find the largest step size to a bound
such that all variables remain feasible.

Require: x,∆x, u, l ∈ Rn, αmax, δS ∈ R+

Require: l < x < u

Ensure: α ∈ (0, αmax], j ∈ {0, . . . , n}, β ∈ {−1, 0, 1}

α← αmax; j ← 0; β ← 0

for i = 1 to n do

(α1, β1)← step(xi,∆xi, li, ui, αmax, δS)

if α1 < α then

α← α1; j ← i; β ← β1

end if

end for

CHAPTER 4. ARCOPT 53

Procedure 4.19 (α, β) ← step(x,∆x, l, u, αmax, δS): find the largest step size to a bound for a
single variable.

Require: x,∆x, u, l ∈ R, αmax, δS ∈ R+

Ensure: α ∈ (0, αmax], β ∈ {−1, 0, 1}

α← αmax; β ← 0

if ∆x < −δS and l > −∞ then

α← (l − x)/∆x; β ← −1

end if

if ∆x > δS and u <∞ then

α← (u− x)/∆x; β ← 1

end if

if α > αmax then

α← αmax; β ← 0

end if

CHAPTER 4. ARCOPT 54

4.9 Arc-constraint intersection

In phase 2, ARCOPT computes the maximum step size along an arc with arctest (Procedure 4.20),

which computes

ᾱ = max {α such that l − δE ≤ x+ Γ(α) ≤ u+ δE}

and also returns the index of the limiting variable. The routine arcbound (Procedure 4.22) finds

the smallest non-negative real root of the nonlinear equation arising from the intersection of an arc

and a bound for a single variable. The routine arcstep (Procedure 4.21) applies arcbound to both

upper and lower bounds for a single variable. Note that arcstep and arcbound assume that the input

variable is strictly feasible with respect to the input bounds. The expanding feasibility tolerance

ensures this property for all variables.

Procedure 4.20 (α, j, β) ← arctest(x,Γ, l, u, αmax, δ): find the largest step size along an arc such
that all variables remain feasible with respect to expanded bounds.

Require: x, l, u ∈ Rn, αmax, δ ∈ R+, Γ ∈ C[0, αmax] : R 7→ R
n

Require: l − δ < x+ Γ(0) < u+ δ

Ensure: α ∈ (0, αmax], j ∈ [0, n], β ∈ {−1, 0,+1}

α← αmax; j ← 0; b← 0

for i = 1 to n do

(αi, βi)← arcstep(xi,Γi, li − δ, ui + δ, αmax)

if αi ≤ α and βi 6= 0 then

α← αi; j ← i; β ← βi

end if

end for

Procedure 4.21 (α, β)← arcstep(x,Γ, l, u, αmax): find the largest step size along an arc for a single
variable.

Require: x, l, u ∈ R, αmax ∈ R+, Γ ∈ C[0, αmax] : R 7→ R

Require: l < x+ Γ(0) < u

Ensure: α ∈ (0, αmax], β ∈ {−1, 0, 1}

(αl, βl)← arcbound(x,Γ, l, αmax)

(αu, βu)← arcbound(−x,−Γ,−u, αmax)

if αl < αu then

α← αl; β ← −βl

else

α← αu; β ← βu

end if

CHAPTER 4. ARCOPT 55

Procedure 4.22 (α, β) ← arcbound(x,Γ, l, αmax): compute the first point of intersection between
an arc and a bound for a single variable.

Require: x, l ∈ R, αmax ∈ R+, Γ ∈ C[0, αmax] : R 7→ R

Require: l < x+ Γ(0)

Ensure: α ∈ (0, αmax], β ∈ {0, 1}

α← αmax; β ← 0

if l > −∞ then

r ← roots(Γ + (x− l), [0, αmax])

rmin ← min(r)

if rmin exists then

α← rmin; β ← 1

end if

end if

Chapter 5

Experiments

5.1 Preliminaries

This chapter documents the following numerical experiments:

• A comparison between ARCOPT and IPOPT on a continuous formulation of the Hamiltonian

cycle problem.

• A comparison between ARCOPT, IPOPT, and SNOPT on problems from the CUTEr test set.

• A comparison of the BFGS and SR1 quasi-Newton updates in an arc search code.

We begin by discussing existing solvers and a method of comparing performance.

5.1.1 SNOPT

SNOPT is an active-set SQP method for large-scale sparse nonlinear optimization by Gill, Murray,

and Saunders [34]. The SNOPT algorithm does not use second derivatives and thus cannot guarantee

convergence to second-order critical points. However, since it is a descent method, SNOPT finds a

minimizer most of the time. SNOPT maintains a limited-memory quasi-Newton approximation of

the Hessian. The software is known to be robust and efficient, which makes it an attractive candidate

for comparison.

5.1.2 IPOPT

IPOPT is an interior point code by Wächter and Biegler [60] using a filter-based line search for

nonlinearly constrained optimization. IPOPT is distributed as open source software and is able to

use second derivatives. When the Hessian is indefinite, IPOPT computes a search direction from

(H + λI)s = −g.

56

CHAPTER 5. EXPERIMENTS 57

The method to select λ is fully described in [60, Section 3.1]. In summary, if H is found to be

indefinite, IPOPT sets λ← λ0, where λ0 is determined from a user parameter or a previous iteration.

If H+λI is found to be indefinite then λ is increased by a factor δ such that λ← δλ and the process

is repeated. The default setting is δ = 8. Between iterations, the initial trial value λ0 is decreased.

IPOPT does not explicitly compute or use directions of negative curvature. Convergence to

second-order critical points is not guaranteed, but often observed in practice.

5.1.3 Other solvers

Table 5.1 lists related solvers that are available for use on NEOS [18]. For each solver we list the

problem type, basic method, ability to accept AMPL [29] models, and use of second derivatives. All

solvers require smooth objective functions.

None of the methods listed guarantees convergence to second-order critical points. We did a

simple test on the solvers in Table 5.1 that accept AMPL models. The problems were

minimize F1(x, y) = x2 − 3y2 + y4 and (5.1)

minimize F2(x, y) = x2 − y2 subject to − 2 ≤ x, y ≤ 2, (5.2)

which have saddle points at (0, 0). Problem (5.1) has (global) minimizers at (x, y) = (0,±
√

3/2).

Problem (5.2) has (global) minimizers at (x, y) = (0,±2). When started at (x0, y0) = (1, 0) all

solvers terminate at the saddle point, with the exception of LOQO which found a minimizer for (5.1)

and the saddle point for (5.2). It should be noted that the initial point is very special, because it lies

in the positive definite subspace of the Hessian. If an algorithm does nothing to move off this space

it will likely converge to the saddle point. For these problems, all solvers converge to a minimizer

if (x0, y0) is selected to contain a large enough component in the span of (0, 1). This exercise

demonstrates that convergence to second-order critical points is a feature missing from all solvers

available to the community despite many of those solvers taking advantage of second derivatives.

5.1.4 Performance profiles

Dolan and Moré developed performance profiles to compare optimization software on a set of test

problems [19, 20]. We briefly describe the method here and use it throughout this chapter. Denote

the set of solvers S and the set of test problems P. The metric tp,s indicates the performance of

solver s ∈ S on problem p ∈ P. The metric could be solution time, number of function evaluations,

or solution quality. The best performance on any problem is given by tp,min = min{tp,s : s ∈ S}.

The ratio rp,s = tp,s/tp,min indicates the relative performance of solver s on p. We see rp,s = 1 if s

achieved the best observed performance on p and rp,s > 1 otherwise. If solver s failed on p, then

rp,s can be set to a sufficiently large number. Finally, performance profiles are plots of the function

fs(σ) =
|{p : rp,s ≤ σ}|

|P|
,

CHAPTER 5. EXPERIMENTS 58

Table 5.1: List of solvers available on NEOS [18].

solver type method AMPL? ∇2F?
L-BFGS-B BC LS * [13]
TRON BC TR * [46]
CONOPT NC LS * [21]
filter NC TR * * [26]
KNITRO NC LS/TR * * [12]
LANCELOT NC TR * * [17]
LOQO NC LS * * [58]
LRAMBO NC LS *
MINOS NC LS * [51]
PATHNLP NC ? *
SNOPT NC LS * [34]
NMTR UC TR * [49]

UC unconstrained
BC bound constrained
NC nonlinearly constrained
LS line search
TR trust region

which is the fraction of problems that s was able to solve with performance ratio at most σ. The

profile functions fs(σ) are drawn for all s ∈ S on the same plot. Solvers with greater area under the

profile curve exhibit better relative performance on the test set.

A possible criticism of this performance profile is that it may give misleading results if applied

to a set of problems that vary widely in difficulty. Differences in the performance metric on easy

problems (small tp,min) will have a much larger impact on relative performance when compared to

performance differences on hard problems (large tp,min). Thus, the overall profile for a solver that

does well on hard problems may look poor if it performs marginally worse on easy problems. In our

situation this is not an issue. In the next section we compare solvers on different instances of the

same problem. In the following sections we use the CUTEr test set. In both cases, the problems do

not have a large variation in difficulty.

CHAPTER 5. EXPERIMENTS 59

5.2 Hamiltonian cycle problem (HCP)

A Hamiltonian cycle (HC) is a path through an undirected graph that follows edges to visit each node

exactly once and returns to the start. Finding such cycles in a graph is known as the Hamiltonian

cycle problem and is one of Karp’s 21 problems shown to be NP-complete [44]. It is simple to check

whether a given cycle is Hamiltonian. However, there is no known algorithm guaranteed to find an

HC, or report that one does not exist, in time proportional to a polynomial function of the number

of nodes and edges.

Ejov, Filar, Murray, and Nguyen derived an interesting continuous formulation of HCP [22].

Consider a graph with n nodes and m edges. The variables in the problem are weights of an

adjacency matrix, denoted P (x). Each undirected edge is made of two directed edges connecting

the same nodes in opposite directions. There is one variable per directed edge. Therefore, x has 2m

elements. The optimization problem is

minimize
x

G(x) = det
(

I − P (x) + 1
N ee

T
)

subject to P (x)e = e

x ≥ 0,

(5.3)

where e is a vector of ones. If the graph has a Hamiltonian cycle, then it can be shown that x∗ is a

global minimizer for (5.3) if G(x∗) = −N . The elements of x∗ are 0 or 1, where the 1’s correspond to

edges that are included in the cycle. Global minimizers also result in a doubly stochastic adjacency

matrix P (x∗), which satisfies the additional constraint P (x∗)T e = e. Filar, Haythorpe, and Murray

derived an efficient method to evaluate the first and second derivatives of G(x) [25].

It turns out that using second derivatives and directions of negative curvature is particularly

important in finding HCs using (5.3). Preliminary experiments with SNOPT all failed to find an

HC, with many of the runs terminating at saddle points. Haythorpe developed a specialized interior

point method for (5.3), which uses second derivatives and directions of negative curvature [43].

In this experiment, we compared ARCOPT with IPOPT on (5.3). Both solvers use second deriva-

tives, but only ARCOPT makes explicit use of directions of negative curvature. During initial testing,

we found that adding the constraint P (x)T e = e to (5.3) improved the likelihood of finding an HC

with both solvers. We included the additional constraint for the results reported here.

5.2.1 10, 12, and 14 node cubic graphs

Cubic graphs are of interest because they represent difficult instances of HCP [42]. Variables corre-

sponding to a node with only two edges may be fixed, because the cycle is forced to use each edge.

Nodes in a cubic graph all have three edges and there is no possibility for reduction. Adding more

edges only increases the likelihood of a Hamiltonian cycle. Cubic graphs are the most sparse and

thus are the least likely to contain HCs in general.

Figure 5.1 shows a performance profile comparing ARCOPT and IPOPT on all 10, 12, and 14

node cubic graphs with HCs provided by Haythorpe [42]. Graphs without HCs were excluded. The

CHAPTER 5. EXPERIMENTS 60

test set includes a total of 571 graphs. In all cases both solvers were started at the analytic center

of the feasible region. From this point, ARCOPT was able to find an HC in 79% (452) of the graphs

while IPOPT solved 52% (298). This is indicated in Figure 5.1 by the maximum height of the plots

corresponding to each solver. In general, ARCOPT required significantly fewer function evaluations

as summarized in Table 5.2.

5.2.2 24, 30, and 38 node cubic graphs

ARCOPT and IPOPT were also tested on individual cubic graphs with 24, 30, and 38 nodes as well

as a 30 node graph of degree 4. The graphs contained HCs and were provided by Haythorpe [42].

HCP becomes more difficult as the number of nodes is increased. Starting from the analytic center

of the feasible region, ARCOPT found an HC in the 30 node graph of degree 4 and the 38 node cubic

graph. IPOPT was unable to find an HC in all of these graphs when started from the same points.

To assess the relative likelihood of finding HCs, we performed an experiment using random

starting points. For each graph, 20 random feasible starting points were generated in the following

manner. First, a vector v was produced by sampling each element from a uniform distribution over

[0, 1]. The starting points were then selected by solving

minimize
x

‖v − x‖22

subject to Ax = e

x ≥ 0,

where the linear constraints correspond to those for (5.3). Both solvers were started from the same

points.

The results are summarized in Table 5.3 and Figure 5.2. Compared to IPOPT, ARCOPT was

able to find HCs in larger graphs more reliably and efficiently.

CHAPTER 5. EXPERIMENTS 61

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative performance

fr
a
c
ti
o
n
 s

o
lv

e
d

arcopt

ipopt

Figure 5.1: Performance profile on HCP comparing ARCOPT and
IPOPT on all 10, 12, and 14 node cubic graphs with Hamiltonian
cycles.

nodes # HC ARCOPT IPOPT

10 19 17 HCs found 15 (88.2%) 7 (41.2%)
total function evaluations 275 1430

average function evaluations 16.2 84.1
12 85 80 HCs found 67 (83.8%) 39 (48.8%)

total function evaluations 1532 8120
average function evaluations 19.1 101.5

14 509 474 HCs found 370 (78.1%) 252 (53.2%)
total function evaluations 10804 53598

average function evaluations 22.8 113.1

all 613 571 HCs found 452 (79.2%) 298 (52.2%)
total function evaluations 12611 63148

average function evaluations 22.1 110.6

Table 5.2: Summary of results comparing ARCOPT and IPOPT

on all 10, 12, and 14 node cubic graphs with Hamiltonian cycles.
The number of function evaluations reported includes the runs for
which the solver failed to find a HC. The averages are reported
over all runs. The # column reports the total number of cubic
graphs. The HC column reports the total number of cubic graphs
with HCs.

CHAPTER 5. EXPERIMENTS 62

10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

number of nodes

a
v
e
ra

g
e
 f
u
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

arcopt

ipopt

Figure 5.2: Average number of function evaluations to find HCs in
cubic graphs of different sizes.

nodes degree ARCOPT IPOPT

24 3 number solved 10 (50%) 3 (15%)
total function evaluations 457 363

average function evaluations 45.7 121
30 3 number solved 10 (50%) 3 (15%)

total function evaluations 533 1040
average function evaluations 53.3 346.7

38 3 number solved 10 (50%) 4 (20%)
total function evaluations 633 2575

average function evaluations 63.3 643.8
30 4 number solved 17 (85%) 8 (40%)

total function evaluations 1573 1421
average function evaluations 92.5 177.6

Table 5.3: Performance of ARCOPT and IPOPT on specific 24, 30,
and 38 node cubic graphs and a 30 node graph of degree 4. For
each graph the solvers were started from 20 randomly generated,
feasible starting points. Function evaluations were reported for
runs in which an HC was found.

CHAPTER 5. EXPERIMENTS 63

5.3 The CUTEr test set

CUTEr stands for “Constrained and Unconstrained Test Environment revisited”. It is a large set of

optimization problems and associated tools created and maintained by Gould, Orban, and Toint [40].

This experiment compares ARCOPT, SNOPT, and IPOPT on:

• 127 unconstrained problems.

• 98 problems with bounds on the variables.

• 37 problems with a nonlinear objective and linear constraints.

There are many publicly available problems with linear constraints. However, the majority have

linear or convex quadratic objective functions. This thesis is focused on problems with general

nonlinear objective functions; thus we only test using the relatively small number of LC problems

in CUTEr with nonlinear nonquadratic objective functions.

The experiments used function evaluations as the performance metric. Each solver was given a

quota of 1000 iterations. The selected optimality and feasibility tolerances are shown in Table 5.4.

Runs for which solution function values were not within 10−4 of the best solution were counted as

failures. The number of function evaluations taken by each solver on each problem are shown in

Tables A.1, A.2, and A.3 for unconstrained, bound constrained, and linearly constrained problems

respectively.

The results are summarized by performance profiles in Figures 5.3, 5.4, and 5.5. Note that

SNOPT does not use second derivatives and its under-performance was expected. IPOPT performed

the best on unconstrained problems followed by ARCOPT then SNOPT. ARCOPT achieved best

observed performance on 49% of the bound constrained problems followed by 37% for IPOPT and

14% for SNOPT. IPOPT was able to solve 81% of the bound constrained problems followed by 77%

for SNOPT and 76% for ARCOPT. For linearly constrained problems, ARCOPT and IPOPT produced

nearly equivalent profiles and performed better than SNOPT. Both IPOPT and SNOPT failed on 5

linearly constrained problems, while ARCOPT failed on 4.

solver parameter value
ARCOPT itermax 1000

ptol (primal tolerance) 1e-6

dtol (dual tolerance) 1e-6

SNOPT major iterations limit 1000

major optimality tolerance 1e-6

major feasibility tolerance 1e-6

IPOPT max iter 1000

tol 1e-6

constr viol tol 1e-6

compl inf tol 1e-6

Table 5.4: Solver settings for CUTEr experiments.

CHAPTER 5. EXPERIMENTS 64

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative performace

fr
a
c
ti
o
n
 s

o
lv

e
d

arcopt

snopt

ipopt

Figure 5.3: Performance profile on unconstrained problems.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative performace

fr
a
c
ti
o
n
 s

o
lv

e
d

arcopt

snopt

ipopt

Figure 5.4: Performance profile on bound constrained problems.

CHAPTER 5. EXPERIMENTS 65

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative performace

fr
a
c
ti
o
n
 s

o
lv

e
d

arcopt

snopt

ipopt

Figure 5.5: Performance profile on linearly constrained problems.

CHAPTER 5. EXPERIMENTS 66

5.4 Quasi-Newton methods

Quasi-Newton methods emulate Newton’s method by maintaining an approximation to the second

derivative:

Bk ≈ Hk.

The approximation is updated each iteration with a formula. Let sk = xk+1−xk and yk = gk+1−gk.

Two well known updates are

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
and (SR1)

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
. (BFGS)

The updates are constructed to satisfy the secant equation,

Bk+1sk = yk, (5.4)

which requires the updated approximation to match the most recent gradient evaluations.

The symmetric rank-1 update (SR1) is constructed by selecting a vector v and scalar σ such

that Bk+1 = Bk + σvvT and (5.4) are satisfied. The problem in the context of line search is that

Bk+1 may not be positive definite even if Bk is. This presents the same problems as using an

indefinite or singular Hessian when computing a descent direction. The SR1 update breaks down if

the denominator is too small. Nocedal and Wright suggest that the update only be applied if

|sTk (yk −Bksk)| ≥ r‖sk‖‖yk −Bksk‖, (5.5)

where r ∈ (0, 1) with a suggested value of r = 10−8 [53, p. 145].

The BFGS update is constructed such that Bk+1 maintains positive definiteness. Vectors sk and

yk must satisfy

sTk yk > 0 (5.6)

in order to keep Bk+1 ≻ 0. In the context of line search (5.6) is met if αk is selected to satisfy the

curvature condition (2.9) when φ′′k(0) ≥ 0. One issue with BFGS is that (5.6) may not be satisfied

when a constraint is encountered. Second, the curvature condition (2.9) for general arcs may not

directly imply (5.6), leading to degraded performance if the update is used. There are methods to

handle the case where (5.6) is not met, e.g. the damped BFGS update [53, p. 537].

Maintaining positive definiteness for BFGS updates is not particularly difficult for linearly con-

strained problems. However, there are no assurances with updates for problems with nonlinear

constraints. Although we do not address such problems here, it is of interest to investigate methods

that generalize easily to nonlinearly constrained problems.

This experiment compares the methods: line search with BFGS updates (BFGS-LINE), arc search

CHAPTER 5. EXPERIMENTS 67

with BFGS updates (BFGS-ARC), and arc search with SR1 updates (SR1-ARC). NEM arcs as de-

scribed in section 3.4 were used for arc search. All methods used the same code, which was adapted

from ARCOPT. The optimality and feasibility tolerances were set to 10−6. The iteration limit was

set to 1000. SR1 updates were skipped if (5.5) was not satisfied. BFGS updates were skipped if arc

or line search returned a step size that did not satisfy the curvature condition (2.9).

The results are summarized with performance profiles in Figures 5.6 and 5.7 for unconstrained

and bound constrained problems respectively. Listings of function evaluation counts are shown in

Tables A.4 and A.5. On unconstrained problems, SR1-ARC out-performed the other methods. On

bound constrained problems, SR1-ARC and BFGS-LINE had similar performance initially, but BFGS-

LINE was able to solve a greater total number of problems. BFGS-ARC had the worst performance

on both test sets.

CHAPTER 5. EXPERIMENTS 68

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative performance

fr
a

c
ti
o

n
 s

o
lv

e
d

bfgs−line .

bfgs−arc

sr1−arc

Figure 5.6: Performance profile for quasi-Newton experiments on
unconstrained problems.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative performance

fr
a

c
ti
o

n
 s

o
lv

e
d

bfgs−line .

bfgs−arc

sr1−arc

Figure 5.7: Performance profile for quasi-Newton experiments on
bound constrained problems.

Chapter 6

Conclusions

6.1 Contributions

The first contribution of this thesis is the definition of a general arc search method for linearly

constrained optimization. We show conditions under which convergence to second-order critical

points is guaranteed. We also demonstrate the application of the convergence theory to a new arc

we designate with NEM and several known methods: line search, curvilinear search, and modified

gradient flow.

The second contribution is ARCOPT, an implementation of a reduced-gradient method using a

NEM arc search for linearly constrained optimization. ARCOPT takes advantage of sparsity in the

linear constraints and uses iterative methods for operations involving the reduced Hessian. These

features allow ARCOPT to scale to problems with many variables. We document several practical

considerations that arise in the construction of an arc search code. For example, the EXPAND

procedure is a convenient way to remove undesirable roots in arc-constraint intersection equations

when a constraint is deleted.

Numerical experiments with ARCOPT demonstrate good performance relative to SNOPT and

IPOPT. ARCOPT outperforms IPOPT in both solution quality and efficiency on a continuous formu-

lation of the Hamiltonian cycle problem. ARCOPT is competitive on a wide variety of problems in

the CUTEr test set. We also show that the arc search framework allows for increased flexibility in

solver development by comparing the BFGS and SR1 quasi-Newton updates in the same code.

6.2 Further work

The extension to nonlinear constraints could be done in a number of ways. The most direct approach

would be to use an arc search method, such as ARCOPT, to solve the linearly constrained subproblem

in a MINOS-type algorithm [30, 52]. A more challenging direction is to apply the ideas to an SQP

method such as the one described by Murray and Prieto [50]. Note that Murray and Prieto’s method

uses a curvilinear search by necessity and treats linear and nonlinear constraints in the same manner.

69

CHAPTER 6. CONCLUSIONS 70

Applying the ideas in this thesis would allow for the exploration of other arcs and separate treatment

for linear constraints.

This thesis presents results of numerical experiments using dense quasi-Newton updates in an arc

search method. The next step is to compare limited memory versions of the BFGS and SR1 updates,

which can be applied to problems with a large number of variables. In nonlinearly constrained

optimization, the Hessian of the Lagrangian need not be positive definite at a minimizer. Thus,

maintaining a positive definite quasi-Newton approximation is a serious challenge. To avoid skipping

updates, existing solvers employ various modifications, e.g. [34, Section 2.10] and [53, p. 536]. The

SR1 update may be applied more often and without modification, because it has a less restrictive

update requirement. The SR1 matrix may be indefinite and thus a better approximation to the

Hessian of the Lagrangian.

Appendix A

Results tables

A.1 CUTEr results

Table A.1: Number of function evaluations taken to solve CUTEr

unconstrained problems. The number of variables is indicated
by column n. Solver failures are indicated by *. Failures due to
suboptimal objective function value are indicated by @.

Problem n ARCOPT SNOPT IPOPT

AKIVA 2 7 26 7
ALLINITU 4 11 18 14
ARGLINA 200 2 6 2
ARGLINB 200 * * 3
ARGLINC 200 * * 3
ARWHEAD 1000 7 24 6
BARD 3 11 24 8
BDQRTIC 1000 11 91 10
BEALE 2 10 17 19
BIGGS6 6 * @ 120
BOX 1000 8 84 13
BOX3 3 9 24 14
BRKMCC 2 4 11 4
BROWNAL 10 10 18 8
BROWNDEN 4 9 41 8
BRYBND 1000 20 45 16
CHAINWOO 1000 * * 249
CHNROSNB 50 83 233 92
CLIFF 2 390 30 @
COSINE 1000 10 @ 13
CRAGGLVY 500 15 122 14
CUBE 2 48 43 57

71

APPENDIX A. RESULTS TABLES 72

Table A.1: (continued) Number of function evaluations taken to
solve CUTEr unconstrained problems. The number of variables
is indicated by column n. Solver failures are indicated by *. Fail-
ures due to suboptimal objective function value are indicated by
@.

Problem n ARCOPT SNOPT IPOPT

CURLY10 1000 22 * 22
CURLY20 1000 30 * 27
CURLY30 1000 @ * 30
DENSCHNA 2 7 12 7
DENSCHNB 2 7 11 24
DENSCHNC 2 11 21 11
DENSCHND 3 33 98 @
DENSCHNE 3 26 43 25
DENSCHNF 2 7 12 7
DIXMAANA 1500 10 27 8
DIXMAANB 1500 9 31 12
DIXMAANC 1500 16 32 9
DIXMAAND 1500 10 40 10
DIXMAANE 1500 13 166 11
DIXMAANF 1500 25 129 27
DIXMAANG 1500 29 139 18
DIXMAANH 1500 29 144 17
DIXMAANI 1500 199 891 24
DIXMAANJ 1500 164 377 20
DIXMAANK 15 15 124 13
DIXMAANL 1500 193 471 25
DIXON3DQ 1000 87 * 2
DJTL 2 * * *
DQDRTIC 500 3 28 2
EDENSCH 36 13 119 13
EG2 1000 39 @ 5
EIGENALS 110 141 222 31
EIGENBLS 110 87 * 196
EIGENCLS 462 229 * 288
ENGVAL1 1000 * 36 9
ENGVAL2 3 23 36 33
ERRINROS 50 814 296 @
EXPFIT 2 10 22 9
EXTROSNB 1000 * * 2334
FLETCBV2 1000 25 3 2
FLETCBV3 1000 * * *
FLETCHBV 1000 * * *
FLETCHCR 1000 * * *
FMINSRF2 961 171 * 275
FMINSURF 961 127 582 311
FREUROTH 1000 @ 92 @
GENROSE 500 491 * 1256

APPENDIX A. RESULTS TABLES 73

Table A.1: (continued) Number of function evaluations taken to
solve CUTEr unconstrained problems. The number of variables
is indicated by column n. Solver failures are indicated by *. Fail-
ures due to suboptimal objective function value are indicated by
@.

Problem n ARCOPT SNOPT IPOPT

GROWTHLS 3 843 182 178
HAIRY 2 63 55 109
HATFLDD 3 22 27 26
HATFLDE 3 23 43 21
HATFLDFL 3 165 470 *
HEART6LS 6 * * 1433
HEART8LS 8 367 * 188
HELIX 3 11 32 25
HIELOW 3 9 33 9
HILBERTA 10 6 39 3
HILBERTB 50 3 11 2
HIMMELBG 2 5 13 14
HIMMELBH 2 6 10 24
HUMPS 2 302 179 488
JENSMP 2 11 42 10
KOWOSB 4 21 36 23
LIARWHD 1000 13 42 12
LOGHAIRY 2 598 372 *
MANCINO 30 6 13 5
MARATOSB 2 * * 1804
MEXHAT 2 66 53 40
MEYER3 3 * * 459
MODBEALE 200 8 @ 9
MOREBV 1000 2 307 2
MSQRTALS 529 206 * 73
MSQRTBLS 529 164 * 47
NCB20B 1000 22 * 20
NONCVXU2 100 37 * @
NONCVXUN 100 @ 758 @
NONDIA 1000 23 111 5
NONDQUAR 1000 184 683 17
NONMSQRT 529 * * 1002
OSBORNEA 5 * 115 37
OSBORNEB 11 17 95 24
OSCIPATH 500 5 28 5
PFIT1LS 3 * 460 704
PFIT2LS 3 315 148 202
PFIT3LS 3 959 301 344
PFIT4LS 3 * 484 549
POWELLSG 1000 18 * 17
POWER 1000 30 137 @
ROSENBR 2 25 49 45

APPENDIX A. RESULTS TABLES 74

Table A.1: (continued) Number of function evaluations taken to
solve CUTEr unconstrained problems. The number of variables
is indicated by column n. Solver failures are indicated by *. Fail-
ures due to suboptimal objective function value are indicated by
@.

Problem n ARCOPT SNOPT IPOPT

S308 2 10 14 15
SCHMVETT 1000 4 66 4
SENSORS 100 @ 75 @
SINEVAL 2 63 90 110
SINQUAD 1000 * 120 21
SISSER 2 15 25 15
SNAIL 2 92 133 148
SPARSINE 1000 975 * 14
SPARSQUR 1000 20 45 17
SPMSRTLS 1000 19 180 20
SROSENBR 1000 10 50 13
TESTQUAD 1000 4 * 2
TOINTGOR 50 8 160 8
TOINTGSS 1000 3 @ 2
TOINTPSP 50 19 61 83
TOINTQOR 50 3 47 2
TQUARTIC 1000 2 97 2
TRIDIA 1000 3 403 2
VARDIM 200 457 * 28
WOODS 1000 553 305 84
ZANGWIL2 2 2 7 2
iter fails (*) 18 29 6
fval fails (@) 4 5 8
total fails 22 34 14

Table A.2: Number of function evaluations taken to solve CUTEr

bound constrained problems. The number of variables is indi-
cated by column n. Solver failures are indicated by *. Failures due
to suboptimal objective function value are indicated by @.

Problem n ARCOPT SNOPT IPOPT

3PK 30 580 447 12
ALLINIT 4 13 20 19
BDEXP 5000 @ 75 @
BIGGSB1 100 200 * 14
BQP1VAR 1 2 4 6
BQPGABIM 50 12 23 18

APPENDIX A. RESULTS TABLES 75

Table A.2: (continued) Number of function evaluations taken to
solve CUTEr bound constrained problems. The number of vari-
ables is indicated by column n. Solver failures are indicated by *.
Failures due to suboptimal objective function value are indicated
by @.

Problem n ARCOPT SNOPT IPOPT

BQPGASIM 50 12 25 18
CAMEL6 2 7 12 11
CHENHARK 100 38 * 13
CVXBQP1 100 100 @ @
DECONVB 61 30 @ @
EG1 3 @ @ 8
EXPLIN 120 171 @ @
EXPLIN2 120 155 @ @
EXPQUAD 120 49 73 20
GRIDGENA 12482 5 * 8
HADAMALS 100 111 @ @
HART6 6 9 18 14
HATFLDC 25 5 26 6
HIMMELP1 2 12 19 12
HS1 2 32 50 53
HS110 200 @ * *
HS2 2 7 16 17
HS25 3 @ @ 43
HS3 2 4 9 5
HS38 4 57 119 77
HS3MOD 2 8 11 6
HS4 2 3 4 6
HS45 5 5 7 8
HS5 2 7 10 9
JNLBRNG1 529 100 100 13
JNLBRNG2 529 45 112 11
JNLBRNGA 529 496 82 11
JNLBRNGB 529 416 327 13
LINVERSE 1999 41 475 868
LOGROS 2 119 97 137
MCCORMCK 10000 7 116 8
MDHOLE 2 47 89 117
MINSURFO 5306 11 * 417
NCVXBQP1 100 104 @ @
NCVXBQP2 100 107 @ @
NCVXBQP3 100 @ 20 @
NOBNDTOR 100 21 30 8
NONSCOMP 10000 10 131 @
OBSTCLAE 100 29 24 13
OBSTCLAL 100 38 21 14
OBSTCLBL 100 77 16 12
OBSTCLBM 100 50 14 10

APPENDIX A. RESULTS TABLES 76

Table A.2: (continued) Number of function evaluations taken to
solve CUTEr bound constrained problems. The number of vari-
ables is indicated by column n. Solver failures are indicated by *.
Failures due to suboptimal objective function value are indicated
by @.

Problem n ARCOPT SNOPT IPOPT

OBSTCLBU 100 45 15 12
OSLBQP 8 2 6 12
PALMER1 4 31 32 1036
PALMER1A 6 * 99 92
PALMER1B 4 * 58 26
PALMER1E 8 @ 245 @
PALMER2 4 14 43 2296
PALMER2A 6 * 117 205
PALMER2B 4 16 44 34
PALMER2E 8 * 247 22
PALMER3 4 30 @ 412
PALMER3A 6 * 139 196
PALMER3B 4 20 47 15
PALMER3E 8 * 204 56
PALMER4 4 23 @ 832
PALMER4A 6 * 101 119
PALMER4B 4 21 39 31
PALMER4E 8 * 176 46
PALMER5A 8 * 39 *
PALMER5B 9 * * 5
PALMER5D 8 4 32 4
PALMER5E 8 * * *
PALMER6A 6 * 195 283
PALMER6E 8 * 139 60
PALMER7A 6 * * *
PALMER7E 8 * * *
PALMER8A 6 176 130 102
PALMER8E 8 * 89 30
PENTDI 5000 3 7 @
PROBPENL 500 31 6 6
PSPDOC 4 7 15 15
QR3DLS 155 231 * 114
QUDLIN 120 121 @ @
S368 100 @ 28 @
SCOND1LS 502 * * 2623
SIM2BQP 2 2 4 8
SIMBQP 2 4 8 8
SINEALI 1000 18 108 43
TORSION1 100 34 13 10
TORSION2 100 6 15 10
TORSION3 100 13 10 9
TORSION4 100 9 13 10

APPENDIX A. RESULTS TABLES 77

Table A.2: (continued) Number of function evaluations taken to
solve CUTEr bound constrained problems. The number of vari-
ables is indicated by column n. Solver failures are indicated by *.
Failures due to suboptimal objective function value are indicated
by @.

Problem n ARCOPT SNOPT IPOPT

TORSION5 100 1 3 8
TORSION6 100 11 5 9
TORSIONA 100 42 14 10
TORSIONB 100 5 17 10
TORSIONC 100 17 11 8
TORSIOND 100 8 14 9
TORSIONE 100 1 3 8
TORSIONF 100 11 5 9
iter fails (*) 17 11 5
fval fails (@) 7 12 14
total fails 24 23 19

Table A.3: Number of function evaluations taken to solve CUTEr

linearly constrained problems. The number of variables is in-
dicated by column n. The number of linear constraints is indicated
by column m. Solver failures are indicated by *. Failures due to
suboptimal objective function value are indicated by @.

Problem n m ARCOPT SNOPT IPOPT

DTOC1L 58 36 12 15 9
DTOC1L 598 396 12 24 9
EXPFITA 5 22 19 27 29
EXPFITB 5 102 32 32 33
EXPFITC 5 502 123 37 @
HAGER2 21 10 2 8 2
HAGER2 101 50 2 8 2
HAGER2 201 100 2 9 2
HAGER2 1001 500 2 11 2
HAGER4 21 10 8 15 11
HAGER4 101 50 28 12 10
HAGER4 201 100 53 11 10
HAGER4 1001 500 252 12 9
HIMMELBI 100 12 * 59 29
HIMMELBJ 45 14 * 195 *
HONG 4 1 14 13 9
HS105 8 1 @ @ 25
HS112 10 3 39 33 18

APPENDIX A. RESULTS TABLES 78

Table A.3: (continued) Number of function evaluations taken to
solve CUTEr linearly constrained problems. The number of
variables is indicated by column n. The number of linear con-
straints is indicated by column m. Solver failures are indicated by
*. Failures due to suboptimal objective function value are indicated
by @.

Problem n m ARCOPT SNOPT IPOPT

HS119 16 8 42 23 @
HS24 2 3 4 7 14
HS36 3 1 4 @ 13
HS37 3 2 6 @ 12
HS41 4 1 6 10 12
HS49 5 2 16 37 17
HS50 5 3 10 23 9
HS54 6 1 @ @ 16
HS55 6 6 1 3 @
HS62 3 1 8 17 9
HS86 5 10 14 13 11
HS9 2 1 6 10 6
HUBFIT 2 1 4 11 9
LOADBAL 31 31 64 57 16
ODFITS 10 6 15 34 11
PENTAGON 6 15 8 15 17
QC 9 4 11 @ @
STANCMIN 3 2 3 6 11
TFI3 3 101 13 6 16
iter fails (*) 2 0 1
fval fails (@) 2 5 4
total fails 4 5 5

A.2 Quasi-Newton results

Table A.4: Number of function evaluations taken to solve CUTEr

unconstrained problems with quasi-Newton solvers. The num-
ber of variables is indicated by column n. Solver failures are indi-
cated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

AKIVA 2 14 23 19
ALLINITU 4 16 15 15
ARGLINA 200 3 3 3
ARGLINB 200 * * *

APPENDIX A. RESULTS TABLES 79

Table A.4: (continued) Number of function evaluations taken
to solve CUTEr unconstrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

ARGLINC 200 * * *
ARWHEAD 100 * * 10
BARD 3 24 26 24
BDQRTIC 100 * * 66
BEALE 2 19 19 20
BIGGS6 6 44 40 40
BOX 100 18 33 14
BOX3 3 19 19 15
BRKMCC 2 7 7 7
BROWNAL 200 12 7 26
BROWNDEN 4 32 * *
BROYDN7D 100 94 99 118
BRYBND 100 81 88 55
CHAINWOO 100 569 569 232
CHNROSNB 10 100 75 97
CLIFF 2 71 74 61
COSINE 100 38 47 28
CRAGGLVY 100 * * 186
CUBE 2 40 47 68
CURLY10 100 254 846 248
CURLY20 100 227 617 207
CURLY30 100 211 497 179
DECONVU 61 60 58 441
DENSCHNA 2 12 12 11
DENSCHNB 2 9 9 9
DENSCHNC 2 23 23 21
DENSCHND 3 97 108 67
DENSCHNE 3 46 41 33
DENSCHNF 2 13 16 15
DIXMAANA 300 23 23 13
DIXMAANB 300 36 36 17
DIXMAANC 300 47 47 21
DIXMAAND 300 61 60 24
DIXMAANE 300 518 518 123
DIXMAANF 300 468 468 131
DIXMAANG 300 517 517 135
DIXMAANH 300 591 591 162
DIXMAANI 300 * * 510
DIXMAANJ 300 * * 827
DIXMAANK 15 114 114 57
DIXMAANL 300 * * 1376
DIXON3DQ 100 173 165 152
DJTL 2 * * *

APPENDIX A. RESULTS TABLES 80

Table A.4: (continued) Number of function evaluations taken
to solve CUTEr unconstrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

DQDRTIC 100 27 25 8
DQRTIC 100 302 268 208
EDENSCH 36 142 142 73
EG2 1000 5 5 5
EIGENALS 110 108 117 101
EIGENBLS 110 584 596 944
EIGENCLS 462 1413 1259 2801
ENGVAL1 100 68 68 38
ENGVAL2 3 36 36 40
ERRINROS 10 128 611 589
EXPFIT 2 19 17 19
EXTROSNB 100 * * *
FLETCBV2 100 203 2020 456
FLETCBV3 100 13 13 13
FLETCHBV 100 * * *
FLETCHCR 100 748 1468 928
FMINSRF2 121 146 235 143
FMINSURF 121 124 184 108
FREUROTH 100 27 27 24
GENROSE 100 428 637 446
GROWTHLS 3 2 2 2
HAIRY 2 32 27 26
HATFLDD 3 27 26 27
HATFLDE 3 36 35 42
HATFLDFL 3 911 225 149
HEART6LS 6 977 9694 *
HEART8LS 8 2055 1758 *
HELIX 3 29 29 31
HIELOW 3 * * 18
HILBERTA 10 39 39 9
HILBERTB 50 11 11 8
HIMMELBB 2 19 13 13
HIMMELBF 4 48 820 124
HIMMELBG 2 18 18 14
HIMMELBH 2 11 11 9
HUMPS 2 236 204 196
HYDC20LS 99 * * *
INDEF 100 21 9 9
JENSMP 2 * * 61
KOWOSB 4 24 27 27
LIARWHD 100 20 20 18
LOGHAIRY 2 10 22 96
MANCINO 30 30 30 14

APPENDIX A. RESULTS TABLES 81

Table A.4: (continued) Number of function evaluations taken
to solve CUTEr unconstrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

MARATOSB 2 1533 4455 5152
MEXHAT 2 51 52 49
MEYER3 3 * * *
MODBEALE 200 * 288 *
MOREBV 100 203 2146 347
MSQRTALS 100 187 175 170
MSQRTBLS 100 189 187 177
NCB20 110 118 148 121
NCB20B 100 327 565 282
NONCVXU2 100 870 866 388
NONCVXUN 100 673 716 376
NONDIA 100 18 18 12
NONDQUAR 100 1683 1594 1419
NONMSQRT 100 667 * *
OSBORNEA 5 83 4623 3748
OSBORNEB 11 76 78 81
OSCIPATH 100 45 55 36
PALMER1C 8 157 * 109
PALMER1D 7 118 * 33
PALMER2C 8 151 * 295
PALMER3C 8 141 * 49
PALMER4C 8 142 * 55
PALMER5C 6 30 29 9
PALMER6C 8 137 * 44
PALMER7C 8 143 * 47
PALMER8C 8 134 * 47
PENALTY1 100 82 89 96
PENALTY2 100 * * *
PENALTY3 200 * * *
PFIT1LS 3 738 65 2356
PFIT2LS 3 1494 3704 2244
PFIT3LS 3 1328 3918 7888
PFIT4LS 3 1608 5264 5792
POWELLSG 36 49 46 36
POWER 100 916 936 464
QUARTC 100 302 268 208
ROSENBR 2 41 42 59
S308 2 14 14 14
SCHMVETT 100 89 156 76
SENSORS 100 73 48 82
SINEVAL 2 95 111 158
SINQUAD 100 21 * 16
SISSER 2 25 25 22

APPENDIX A. RESULTS TABLES 82

Table A.4: (continued) Number of function evaluations taken
to solve CUTEr unconstrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

SNAIL 2 14 12 12
SPARSINE 100 303 303 134
SPARSQUR 100 108 109 71
SPMSRTLS 100 118 115 79
SROSENBR 100 15 19 18
TESTQUAD 1000 1357 2283 608
TOINTGOR 50 174 174 93
TOINTGSS 100 22 22 20
TOINTPSP 50 70 78 68
TOINTQOR 50 56 56 29
TQUARTIC 100 19 42 29
TRIDIA 100 103 99 105
VARDIM 100 33 33 33
WATSON 12 63 65 48
WATSON 31 75 220 1238
WOODS 100 42 39 32
ZANGWIL2 2 4 4 4
failures 18 28 14

Table A.5: Number of function evaluations taken to solve CUTEr

bound constrained problems with quasi-Newton solvers. The
number of variables is indicated by column n. Solver failures are
indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

3PK 30 422 * 153
ALLINIT 4 19 18 20
ANTWERP 27 * * *
BDEXP 100 18 18 18
BIGGSB1 100 277 351 138
BLEACHNG 17 12 11 *
BQP1VAR 1 2 2 2
BQPGABIM 50 71 210 89
BQPGASIM 50 78 209 83
CAMEL6 2 13 13 12
CHARDIS0 200 3 3 3
CHEBYQAD 100 * * *
CHENHARK 100 237 378 125

APPENDIX A. RESULTS TABLES 83

Table A.5: (continued) Number of function evaluations taken to
solve CUTEr bound constrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

CVXBQP1 100 108 107 101
DECONVB 61 197 * 243
EG1 3 12 11 11
EXPLIN 120 224 223 176
EXPLIN2 120 * * 159
EXPQUAD 120 115 80 61
GRIDGENA 170 * * *
HARKERP2 100 334 377 311
HART6 6 22 40 22
HATFLDA 4 38 * *
HATFLDB 4 36 * *
HATFLDC 25 58 109 66
HIMMELP1 2 7 7 7
HS1 2 24 22 23
HS110 200 3 3 3
HS2 2 16 17 10
HS25 3 1 1 1
HS3 2 9 9 9
HS38 4 37 39 32
HS3MOD 2 9 7 5
HS4 2 3 3 3
HS45 5 4 4 5
HS5 2 12 17 13
JNLBRNG1 100 65 62 61
JNLBRNG2 100 41 39 35
JNLBRNGA 100 51 91 50
JNLBRNGB 100 51 86 41
KOEBHELB 3 211 * 2301
LINVERSE 199 * * *
LOGROS 2 114 168 225
MAXLIKA 8 100 284 118
MCCORMCK 100 13 13 14
MDHOLE 2 93 94 127
NCVXBQP1 100 103 103 101
NCVXBQP2 100 111 111 106
NCVXBQP3 100 117 115 106
NOBNDTOR 100 66 102 38
NONSCOMP 100 243 70 48
OBSTCLAE 100 62 69 48
OBSTCLAL 100 47 70 27
OBSTCLBL 100 53 51 43
OBSTCLBM 100 58 63 67
OBSTCLBM 100 58 63 67

APPENDIX A. RESULTS TABLES 84

Table A.5: (continued) Number of function evaluations taken to
solve CUTEr bound constrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

OSLBQP 8 2 2 2
PALMER1 4 30 40 39
PALMER1A 6 150 2338 1287
PALMER1B 4 57 68 75
PALMER1E 8 238 * *
PALMER2 4 22 38 27
PALMER2A 6 98 2268 9689
PALMER2B 4 39 41 41
PALMER2E 8 237 * *
PALMER3 4 45 * 77
PALMER3A 6 126 3136 1276
PALMER3B 4 41 52 46
PALMER3E 8 196 * *
PALMER4 4 39 60 79
PALMER4A 6 90 943 471
PALMER4B 4 * 47 47
PALMER4E 8 165 * *
PALMER5A 8 * * *
PALMER5B 9 457 * *
PALMER5D 8 26 24 8
PALMER5E 8 2170 * 4067
PALMER6A 6 190 1916 4636
PALMER6E 8 173 * 9223
PALMER7A 6 * * *
PALMER7E 8 2247 * *
PALMER8A 6 166 446 221
PALMER8E 8 112 795 998
PENTDI 100 4 4 4
POWELLBC 200 * * *
PROBPENL 100 3 3 3
PSPDOC 4 14 16 14
QR3DLS 40 163 222 245
QRTQUAD 120 * * 117
QUDLIN 120 188 188 147
S368 100 * 45 48
SCOND1LS 102 * * *
SIM2BQP 2 2 2 2
SIMBQP 2 4 4 4
SINEALI 100 61 62 *
SPECAN 9 50 61 33
TORSION1 100 39 84 14
TORSION2 100 54 48 56
TORSION3 100 6 8 6

APPENDIX A. RESULTS TABLES 85

Table A.5: (continued) Number of function evaluations taken to
solve CUTEr bound constrained problems with quasi-Newton
solvers. The number of variables is indicated by column n. Solver
failures are indicated by *.

Problem n BFGS-LINE BFGS-ARC SR1-ARC

TORSION4 100 23 33 32
TORSION5 100 1 1 1
TORSION6 100 9 5 5
TORSIONA 100 35 74 55
TORSIONB 100 46 122 61
TORSIONC 100 6 8 6
TORSIOND 100 26 37 48
TORSIONE 100 1 1 1
TORSIONF 100 12 5 5
WEEDS 3 51 189 251
YFIT 3 87 1567 1293
failures 12 24 18

Bibliography

[1] Filippo Aluffi-Pentini, Valerio Parisi, and Francesco Zirilli. A differential-equations algorithm
for nonlinear equations. ACM Trans. Math. Softw., 10(3):299–316, August 1984.

[2] Alfred Auslender. Computing points that satisfy second order necessary optimality conditions
for unconstrained minimization. SIAM Journal on Optimization, 20(4):1868–1884, 2010.

[3] William Behrman. An efficient gradient flow method for unconstrained optimization. PhD
thesis, Stanford University, June 1998.

[4] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[5] Paul T. Boggs. An algorithm, based on singular perturbation theory, for ill-conditioned mini-
mization problems. SIAM Journal on Numerical Analysis, 14(5):830–843, 1977.

[6] C. A. Botsaris and D. H. Jacobson. A Newton-type curvilinear search method for optimization.
Journal of Mathematical Analysis and Applications, 54(1):217–229, April 1976.

[7] Charalampos A. Botsaris. Differential gradient methods. Journal of Mathematical Analysis and
Applications, 63(1):177 – 198, 1978.

[8] Charalampos A. Botsaris. An efficient curvilinear method for the minimization of a nonlin-
ear function subject to linear inequality constraints. Journal of Mathematical Analysis and
Applications, 71(2):482 – 515, 1979.

[9] Charalampos A. Botsaris. A Newton-type curvilinear search method for constrained optimiza-
tion. Journal of Mathematical Analysis and Applications, 69(2):372 – 397, 1979.

[10] Mary A. Branch, Thomas F. Coleman, and Yuying Li. A subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems. SIAM Journal on
Scientific Computing, 21(1):1–23, 1999.

[11] A. A. Brown and M. C. Bartholomew-Biggs. Some effective methods for unconstrained optimiza-
tion based on the solution of systems of ordinary differential equations. Journal of Optimization
Theory and Applications, 62:211–224, 1989.

[12] Richard Byrd, Jorge Nocedal, and Richard Waltz. KNITRO: An integrated package for non-
linear optimization. In G. Pillo, M. Roma, and Panos Pardalos, editors, Large-Scale Nonlinear
Optimization, volume 83 of Nonconvex Optimization and Its Applications, pages 35–59. Springer
US, 2006.

[13] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208,
1995.

86

BIBLIOGRAPHY 87

[14] Richard H. Byrd, Robert B. Schnabel, and Gerald A. Shultz. Approximate solution of the trust
region problem by minimization over two-dimensional subspaces. Mathematical Programming,
40:247–263, 1988.

[15] Andrew R. Conn, Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. A primal-
dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming,
87:215–249, 2000.

[16] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region Methods. Society
for Industrial and Applied Mathematics, Philadephia, PA, 2000.

[17] Andrew R. Conn, Nick Gould, and Philippe L. Toint. Numerical experiments with the
LANCELOT package (Release A) for large-scale nonlinear optimization. Mathematical Pro-
gramming, 73:73–110, 1996.

[18] Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Moré. The NEOS server. Computational
Science Engineering, IEEE, 5(3):68–75, jul-sep 1998.

[19] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 2002.

[20] Elizabeth D. Dolan, Jorge J. Moré, and Todd S. Munson. Optimality measures for performance
profiles. SIAM Journal on Optimization, 16(3):891–909, 2006.

[21] Arne S. Drud. CONOPT: A large-scale GRG code. ORSA Journal on Computing, 6(2):207–216,
1994.

[22] Vladimir Ejov, Jerzy A. Filar, Walter Murray, and Giang T. Nguyen. Determinants and longest
cycles of graphs. SIAM Journal on Discrete Mathematics, 22(3):1215–1225, 2008.

[23] Haw-ren Fang and Dianne OLeary. Modified Cholesky algorithms: a catalog with new ap-
proaches. Mathematical Programming, 115:319–349, 2008.

[24] M. C. Ferris, S. Lucid, and M. Roma. Nonmonotone curvilinear line search methods for uncon-
strained optimization. Computational Optimization and Applications, 6:117–136, 1996.

[25] Jerzy A. Filar, Michael Haythorpe, and Walter Murray. On the determinant and its deriva-
tives of the rank-one corrected generator of a Markov chain on a graph. Journal of Global
Optimization, pages 1–16, 2012.

[26] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Mathe-
matical Programming, 91:239–269, 2002.

[27] Anders Forsgren and Walter Murray. Newton methods for large-scale linear equality-constrained
minimization. SIAM Journal on Matrix Analysis and Applications, 14(2):560–587, 1993.

[28] Anders Forsgren and Walter Murray. Newton methods for large-scale linear inequality-
constrained minimization. SIAM Journal on Optimization, 7(1):162–176, 1997.

[29] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, 2nd edition, 2002.

[30] Michael P. Friedlander. A Globally Convergent Linearly Constrained Lagrangian Method for
Nonlinear Optimization. PhD thesis, Stanford University, August 2002.

BIBLIOGRAPHY 88

[31] Antonino Del Gatto. A Subspace Method Based on a Differential Equation Approach to Solve
Unconstrained Optimization Problems. PhD thesis, Stanford University, June 2000.

[32] David Gay. A trust-region approach to linearly constrained optimization. In David Griffiths, ed-
itor, Numerical Analysis, volume 1066 of Lecture Notes in Mathematics, pages 72–105. Springer
Berlin / Heidelberg, 1984.

[33] Philip E. Gill and Walter Murray. Newton-type methods for unconstrained and linearly con-
strained optimization. Mathematical Programming, 7:311–350, 1974.

[34] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005.

[35] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. Maintaining LU
factors of a general sparse matrix. Linear Algebra and its Applications, 8889(0):239 – 270, 1987.

[36] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. A practical anti-
cycling procedure for linearly constrained optimization. Mathematical Programming, 45:437–
474, 1989.

[37] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. Academic
Press, 1982.

[38] Donald Goldfarb. Curvilinear path steplength algorithms for minimization which use directions
of negative curvature. Mathematical Programming, 18:31–40, 1980.

[39] Nicholas I. M. Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Exploiting neg-
ative curvature directions in linesearch methods for unconstrained optimization. Optimization
Methods & Software, 14(1-2):75–98, 2000.

[40] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr and SifDec: A con-
strained and unconstrained testing environment, revisited. ACM Trans. Math. Softw., 29:373–
394, December 2003.

[41] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for Newton’s
method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986.

[42] Michael Haythorpe. Cubic graph data, 2010. Personal communication.

[43] Michael Haythorpe. Markov Chain Based Algorithms for the Hamiltonian Cycle Problem. PhD
thesis, University of South Australia, July 2010.

[44] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-
putations, pages 85–103, 1972.

[45] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[46] Chih-Jen Lin and Jorge J. Moré. Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[47] Garth P. McCormick. A modification of Armijo’s step-size rule for negative curvature. Mathe-
matical Programming, 13:111–115, 1977.

BIBLIOGRAPHY 89

[48] Jorge J. Moré and Danny C. Sorensen. On the use of directions of negative curvature in a
modified newton method. Mathematical Programming, 16:1–20, 1979.

[49] Jorge J. Moré and Danny C. Sorensen. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computing, 4(3):553–572, 1983.

[50] Walter Murray and Francisco J. Prieto. A second derivative method for nonlinearly constained
opimization. Technical report, Stanford University, Systems Optimization Laboratory, 1995.

[51] B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization. Mathematical
Programming, 14:41–72, 1978.

[52] Bruce A. Murtagh and Michael A. Saunders. A projected Lagrangian algorithm and its im-
plementation for sparse nonlinear constraints. In Algorithms for Constrained Minimization of
Smooth Nonlinear Functions, volume 16 of Mathematical Programming Studies, pages 84–117.
Springer Berlin Heidelberg, 1982.

[53] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[54] Gerald A. Shultz, Robert B. Schnabel, and Richard H. Byrd. A family of trust-region-based
algorithms for unconstrained minimization with strong global convergence properties. SIAM
Journal on Numerical Analysis, 22(1):47–67, 1985.

[55] Danny C. Sorensen. Newton’s method with a model trust region modification. SIAM Journal
on Numerical Analysis, 19(2):409–426, 1982.

[56] Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization.
SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[57] Paul Tseng. Convergent infeasible interior-point trust-region methods for constrained mini-
mization. Siam Journal on Optimization, 13(2):432–469, Oct 2002.

[58] Robert J. Vanderbei and David F. Shanno. An interior-point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13:231–252, 1999.

[59] Jean-Philippe Vial and Israel Zang. Unconstrained optimization by approximation of the gra-
dient path. Mathematics of Operations Research, 2(3):253–265, 1977.

[60] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57,
2006.

[61] Jianzhong Zhang and Chengxian Xu. A class of indefinite dogleg path methods for unconstrained
minimization. SIAM Journal on Optimization, 9(3):646–667, 1999.

	Abstract
	Acknowledgments
	Introduction
	Preliminaries
	Unconstrained optimization
	Linearly constrained optimization
	Second derivative methods
	Newton
	Line search and extensions
	Gradient flow
	Trust-region

	Thesis outline

	Convergence
	Preliminaries
	Statement of assumptions
	Definition of the algorithm
	Properties of k
	Properties of k
	Properties of k related to constraints
	Properties of k
	Properties of Ak

	Convergence results

	Arcs
	Preliminaries
	Line search
	Curvilinear search
	Moré & Sorensen
	Goldfarb

	NEM arcs
	Derivation
	Properties
	Convergence
	Linear constraints
	Constraint intersection
	Advantages

	Modified gradient flow
	Derivation
	Constraint intersection
	Comparison to NEM arcs

	ARCOPT
	Preliminaries
	Initialization
	Input
	Initial processing

	Phase 1
	Phase 2
	Basis maintenance
	Factorization
	Products with Z and ZT
	Expand
	Arc-constraint intersection

	Experiments
	Preliminaries
	SNOPT
	IPOPT
	Other solvers
	Performance profiles

	Hamiltonian cycle problem (HCP)
	10, 12, and 14 node cubic graphs
	24, 30, and 38 node cubic graphs

	The CUTEr test set
	Quasi-Newton methods

	Conclusions
	Contributions
	Further work

	Results tables
	CUTEr results
	Quasi-Newton results

	Bibliography

