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Abstract

In this dissertation, techniques for solving a class of stochastic programs that

are characterized by constraints on the expected value of some uncertain quantity

are explored. These expected value constraints cause the structure of the problem to

deviate from the dual angular structure required for using Benders decomposition, so

other approaches must be considered.

One approach is to reformulate the problem to return it to a dual angular struc-

ture. Second-stage variables that are represented in the expected value constraints

are converted to first-stage variables, and the expected value constraint is moved into

the master problem. The result is a dual angular problem with many extra first-stage

variables. Now classical Benders decomposition can be applied.

In many cases, this is still not sufficient to make the problem practical to solve.

Modifications are made to the Benders decomposition algorithm that allow the origi-

nal first-stage variables to be solved independently of the variables from the expected

value constraints, and to simultaneously solve for the variables in the expected value

constraints and the other second-stage variables. Subject to some conditions, the

computational effort needed to apply the modified algorithm is comparable to the

effort needed to solve similar problems without expected value constraints. Imple-

mentation of the algorithm is described in the context of DECIS, an existing software

implementation of Benders decomposition.

Computation results from sample and real world applications are presented. The

thesis concludes with a discussion of other applications for these techniques, and with

suggestions for additional research.
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Chapter 1

Introduction

1.1 Overview of Stochastic Programming

The object of this thesis is to introduce a new technique for using stochastic program-

ming to perform risk management.

A traditional stochastic programming formulation is a mathematical program in

which one or more of the parameters of the problem is not known with certainty at

the time the problem is solved. It is assumed that these uncertain parameters are at

least known in distribution.

Some examples of multi-stage problems include:

Example 1.1 A fund manager must decide how to invest some money into some
stocks in order to maximize his return on investment over the next 6 months. He
must make his decisions without knowing exactly how each of the available stocks
will perform in the future. ⁄

Example 1.2 (From [6]) The manager of a reservoir must decide every month how
much water to release downstream into a river. If he releases too much water and
there is too little rainfall in that month, then the reservoir will not be able to meet
the water needs of the surrounding community. If he releases too little water and
there is too much rainfall that month, the community will be subject to flooding. He
must make his decisions with only a set of uncertain weather forecasts to guide him.
⁄

1
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Example 1.3 A poker player in a game of 7-card stud must decide whether to raise
(and if so, how much), call, or fold given that his own hand contains a pair of Kings,
and he has incomplete information about the hands of his opponents. ⁄

Example 1.4 A store manager must decide how much of each product sold in her
store to order each week. If she orders too little of some product, she will have
dissatisfied customers who will take their business to another store. If she orders too
much, her store will incur higher holding costs. The demand for each product in the
next week is uncertain. ⁄

All of these are practical examples of the types of decisions that must be made under

uncertainty.

1.1.1 Multi-stage stochastic programs

An important class of stochastic programming problems is the set of multi-stage

problems. These are problems where some decision variables must be determined

before some uncertain parameters are resolved (known with certainty), and some

may be set after the uncertain parameters are known with more certainty. A period

of time in which a set of parameters is resolved and a set of decision variables is

specified are defined as a stage. The last three examples above are all examples of

multi-stage problems.

The rest of this thesis concerns itself primarily with linear stochastic programs.

Linear programs—in which the objective function and constraints on decision vari-

ables satisfy certain proportionality, additivity, and continuity assumptions (see Dantzig

and Thapa [7], Section 1.2 for the axioms of linear programming)—are powerful

enough to describe a great many useful models. These models also contain several

desirable features that make them relatively easy to solve:

1. Convexity—Linear models are convex, assuring that any local optima that
are discovered are also global optima.

2. Concavity—Linear models are also concave, meaning that the optimum so-
lution must lie at an extreme point of the feasible region. For any finite linear
program, there is a finite number of extreme points in the feasible set, and
therefore a finite search space to find an optimum solution.
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3. Exactness—Because the search space for the solution to a linear program is
finite and discrete, an exact solution can almost always be found—a modeler
need not be satisfied with a solution technique that will converge toward the
solution at some rate, and terminate before an exact solution is found.

A two-stage linear model has the form:

Minimize cx + fy = z

subject to Ax = b

−Bx + Dy = d

x, y ≥ 0.

(1.1)

Here x and y are the n1-dimensional vector of first-stage decision variables and the

n2-dimensional vector of second-stage decision variables, respectively. c and f are

vectors of the first and second-stage cost coefficients. A is an m1-by-n1- dimensional

constraint matrix for the first stage, also called the technology matrix. b is an m1-

dimensional vector of right-hand side data for the first-stage constraints. For the

second stage, D is the m2-by-n2-dimensional constraint matrix, and d is the vector

of right-hand side data. Finally, B is a linking matrix of dimension m2-by-n1, and it

describes the relationship between the first and second stages of the problem.

To use this model to solve a stochastic program, the second stage is notated to

reflect the uncertainty of the second-stage outcomes (which are revealed only after

the first-stage decision variables have been set). Here is a formulation of a two-stage

stochastic program in which there are 3 equally-likely possible outcomes, and the

objective function seeks to minimize the sum of the first-stage costs and the expected

value of the second-stage costs:

Minimize cx + 1

3
f 1y1 + 1

3
f 2y2 + 1

3
f 3y3 = z

subject to Ax = b

−B1x + D1y1 = d1

−B2x + D2y2 = d2

−B3x + D3y3 = d3

x, y1, y2, y3 ≥ 0,

(1.2)
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where yi, f i, Bi, Di, and di refer to the variables and parameters associated with

scenario i, i ∈ {1, 2, 3}.

For a general two-stage stochastic program, the formulation is:

Minimize ĉx + Eω(fωyω) = z

subject to Âx = b̂

−Bωx + Dωyω = dω, ∀ω ∈ Ω

x, yω ≥ 0 ∀ω ∈ Ω,

(1.3)

where Ω represents the set of possible outcomes, and yω, fω, Bω, Dω, and dω refer to

parameters associated with scenario ω ∈ Ω. Here the accented symbols Â, b̂, and ĉ

are used to indicate that these parameters are fixed and known with certainty at the

time the problem is solved.

The formulation can be further generalized to a multi-stage stochastic program:

min ĉx + Eω2
(fω2

2 yω2

2 ) + Eω3
(fω3

3 yω3

3 ) + · · · + Eωn
(fωn

n yωn

n ) = z

s/t Âx = b̂

−Bω2

2 x + Dω2

2 yω2

2 = dω2

2

−Bω3

3 x − Dω2ω3

23 yω2

2 + Dω3

3 yω3

3 = dω3

3

...

−Bωn

n x − Dω2ωn

2n yω2

2 − Dω3ωn

3n yω3

3 + · · · + Dωn

n yωn

n = dωn

n

x, yω2

2 , yω3

3 , · · · , yωn

n , ≥ 0

∀ω2 ∈ Ω2, ∀ω3 ∈ Ω3, · · · , ∀ωn ∈ Ωn.

(1.4)

Here, subscripts indicate the stage associated with a variable or a parameter, and

superscripts refer to a particular scenario in that stage.

1.1.2 Solution of linear programs

Dantzig [7] developed the simplex method in 1947 as a way to solve linear program-

ming problems efficiently. It is still the most widely used technique for solving linear

programs.
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With the first commercial-grade computer implementation by William Orchard-

Hays in 1954, the simplex method became a powerful tool for solving linear programs

of practical sizes. A number of software packages are available for solving linear

programming problems (MINOS [12] and CPLEX [5], for example), and for modeling

them with a computer (GAMS [3], AMPL [9]). As computers become more and more

powerful, the size and importance of problems that can be solved with the simplex

method are also becoming greater.

1.2 Overview of Decomposition Methods

And yet in the realm of stochastic programming, even linear problems can easily

become too massive to solve directly. Consider the grocery store manager in Example

1.4. Suppose her store sells 100 different products, and she is planning the orders for

the next week. One would expect the two-stage model for this problem to have 100

material balance constraints (one for each product) plus perhaps a store capacity

constraint and a budget constraint. There could be on the order of 200 decision

variables, corresponding to the order level of each of the products, the inventories

of each product at the end of the week, plus some slack variables. So this problem

has on the order of 100 variables and 200 constraints—a tiny problem for today’s

computer hardware and software.

If the manager must consider, say, 10 different demand scenarios for the next week,

then the model becomes much larger. It must include a different balance equation

for each product under each demand scenario—now the model has ∼1000 constraints.

Because the final inventories will be different under each scenario, the model needs

1000 more decision variables corresponding to the final inventories of the 100 products

under the 10 different scenarios. The 10-scenario stochastic version of this problem

now contains 1000 constraints and over 1000 decision variables—about 10 times as

large as before and more difficult to solve, but still quite manageable with today’s

computers.

Now suppose the manager is making plans for a 10-week period instead of a 1-week
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period, with product orders placed every week, and with 10 independent demand sce-

narios for each week. Then there are ultimately 1010 different possible scenarios that

can unfold over the 10-week period, and the equivalent linear programming formu-

lation contains ∼ 1012 constraints and 1012 decision variables (vs. the deterministic

formulation of this program, which would have only 100 constraints and 100 deci-

sion variables). Problems of this size are well beyond the scope of modern computing

power. And if anybody thinks that the current trend of increasingly powerful comput-

ers will soon make stochastic programs like this solveable, consider that there exists a

real-world truckload freight transportation problem [10] with 103359 scenarios! When

discussing how to solve problems of this size, someone invariably speculates about

whether the problem could be solved if every atom in the universe were a supercom-

puter and had been working on the problem since the Big Bang.

Decomposition refers to the strategy of breaking up a large, difficult-to-solve prob-

lem into two or more smaller, easier-to-solve problems, such that the solutions to the

decomposed problems can be used to obtain the solution to the larger problem. Most

stochastic programs lend themselves well to some decomposition method.

1.2.1 Benders Decomposition

Benders decomposition was derived in 1962 by J.F. Benders [1] as a technique for

solving mixed integer programs. Van Slyke and Wets [14] realized in 1969 that Ben-

ders decomposition could be applied to large stochastic programs with a dual angular

structure (as depicted in Figure 1.1), and they introduced what is called the L-shaped

method to obtain exact solutions for these types of problems. In a dual angular

structured problem, each second-stage decision variables is applicable to exactly one

scenario.
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A stochastic model with the dual angular “staircase” structure

Minimize cx +
∑

ω fωyω = z

subject to Ax = b

−Bωx + Dωyω = dω ∀ω ∈ Ω

x, yω ≥ 0 ∀ω ∈ Ω,

(1.5)

is decomposed into a master problem and |Ω| independent subproblems. The

form of the master problem is:

Minimize cx + θ = z

subject to Ax = b

−Gx + θe ≥ g

−G′x ≥ g′

x ≥ 0,

(1.6)

where θ represents an estimate of the second-stage costs. The constraints

−Gx+ θe ≥ g and −G′x ≥ g′ are cuts that describe the optimal objective value of

the subproblems. The construction of G,G′, g, and g′ is described below.

The independent subproblems, one for each ω ∈ Ω, look like:

Minimize fωyω = Q(x, ω)

subject to Dωyω = dω +Bωx : πω

yω ≥ 0.

(1.7)

Here, x is not a set of decision variables, but a fixed vector of parameters specified by

the solution to the master problem. Q(x, ω) is referred to as the recourse function,

and represents the second-stage costs given some first-stage decision x and a second-

stage scenario ω ∈ Ω. πω represents the marginal costs associated with the constraints

of the subproblem. πω may also be obtained by solving the dual of the subproblem
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(1.7):

Maximize πω(dω +Bωx) = Q(x, ω)

subject to πωDω ≥ fω.
(1.8)

The procedure for using Benders decomposition is to solve the master problem

and the subproblems iteratively. A solution x to the master problem is passed to all

of the subproblems, and second-stage costs Q(x, ω) are computed for all ω ∈ Ω. If all

of the subproblems have feasible solutions, then an optimality cut of the form

Eω[πω(dω +Bωx)] ≤ θ (1.9)

is added to the master problem. This cut contributes to the outer linearization of

the recourse function, help approximate second-stage costs in the master problem as

a function of x, and produce a different value for x the next time the master problem

is solved. If one of the subproblems is infeasible, then a feasibility cut with the form

πω(dω +Bωx) ≤ 0 (1.10)

is added to the problem. This constraint prevents the master problem from producing

further solutions that may lead to infeasible subproblems.

At each iteration of the problem, the objective value of the solution to the master

problem cx̂ + θ̂ provides a lower bound on the final optimal solution, since it is a

relaxation of the full problem. Assuming there are feasible solutions to all of the

subproblems, the objective function value of those solutions cx̂ + Eω[fωŷω] is an

upper bound, since it represents a feasible solution to the full problem. The algorithm

proceeds until it converges to an optimal solution.

1.2.2 Dantzig-Wolfe Decomposition

Another useful type of decomposition is Dantzig-Wolfe decomposition, developed by

Dantzig and Wolfe [8] in 1957. Dantzig-Wolfe decomposition is related to Benders

decomposition in that it is equivalent to performing Benders decomposition on the
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AA

-B1

-B2

-B3

-B4

-B5

D1

D2

D3

D4

D5

Figure 1.1: Dual angular structure of a two-stage stochastic program.

x

Eω[πω(Bωx+dω)] < θ
or

πω(Bωx+dω) < 0

MP:
min cx + θ = z

Ax = b
-Gx + θe > g
-G’x > g’
   x > 0

SP: for all ω in Ω

min f ωy ω = Q(x,ω)
D ωy ω = dω+Bωx:  πω

yω > 0

Figure 1.2: Description of Benders decomposition algorithm, showing flow of infor-
mation between master problem and subproblems.
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Investment “good” “bad” “ugly” expected
option payoff payoff payoff payoff

high risk 150% -10% -95% 15%
low risk 15% 5% -5% 5%
no risk 3% 3% 3% 3%

Table 1.1: Payoffs for the fund manager risk management examples (1.5-1.13).

dual of some linear program. As Benders decomposition is an iterative procedure

in which a new row is added to the master problem after every iteration, Dantzig-

Wolfe decomposition is an iterative procedure in which a new column is added to the

master problem after every iteration. Dantzig-Wolfe decomposition can be applied

to problems with block angular structure, as shown in Figure 1.3. See Dantzig and

Thapa [7] for a deeper treatment of Dantzig-Wolfe decomposition.

1.3 Overview of Risk Management Techniques

A stochastic programming formulation such as model (1.3) or (1.4) allows for un-

certain factors to be incorporated into the decision. However there are situations

where one would want to use a more explicit consideration of risk in the formulation.

Consider Example 1.1, the problem of the fund manager.

Example 1.5 The fund manager has three choices about how to invest $1000. He
may invest it in a volatile, high-return stock, in a lower-return, lower-risk stock, or
in a no-risk money market account. He considers three scenarios, denoted as “good”,
“bad”, and “ugly”, which he assumes are all equally likely to occur. The 6-month
payoffs of the three options under those three scenarios are given in Table 1.1.

The model for the fund manager’s problem can thus be formulated as:

Max f(ygood, ybad, yugly) = z

s.t. xhigh + xlow + xno = 1000 (budget constraint)
1.50xhigh + 0.15xlow + 0.03xno = ygood (“good” payoff)

−0.10xhigh + 0.05xlow + 0.03xno = ybad (“bad” payoff)
−0.95xhigh − 0.05xlow + 0.03xno = yugly (“ugly” payoff)

xhigh, xlow, xno ≥ 0,

(1.11)
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AA B1 B2 B3 B4 B5

D1

D2

D3

D4

D5

min

s.t.

=

=

zω

dωωyωD

ωy)ωB+πωf(
min

s.t.

1

=

=

=

z

bπ:

:ωγ kω αΣ∀ω:   

kωαkω TΣ Σ

kωαω̂cΣ Σ
π,γω

,kωα
*ωyω=BkωT

Figure 1.3: Top: Desirable structure for Dantzig-Wolfe decomposition. Bottom: De-
scription of Dantzig-Wolfe decomposition, showing flow of information between mas-
ter program and subprograms.
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where the objective function is unspecified for now. ⁄

If the objective of the fund manager is simply to maximize expected return, the

objective function for the model should be

Maximize z =
1

3
ygood +

1

3
ybad +

1

3
yugly. (1.12)

Given this objective function, the optimal solution is to invest all $1000 of his funds

into the high-risk stock—the investment with the greatest expected return. But note

that for this solution, the manager has a 2

3
probability of losing money, and a 1

3

probability of losing 95% of his funds. Depending on the manager’s tolerance for risk,

those could be the characteristics of a very bad solution.

This example should be kept in mind as the following approaches to risk manage-

ment are considered.

1.3.1 Adjusting the Objective Function

Risk may be accounted for explicitly in the objective function in several ways.

An expression that models the risk can be explicitly added to the objective func-

tion to penalize solutions that have too much risk, that is, outcomes with large devi-

ations from the “average” outcome for a given solution.

Example 1.6 Quantify the risk for a particular solution and a particular scenario
ω as the deviation from the average outcome of the outcome of that solution in that
scenario. That is, let

rω =
∣

∣

∣

∣

1

3
(ygood + ybad + yugly) − yω

∣

∣

∣

∣

(1.13)

for Ω = {good, bad, ugly}. The objective function is adjusted to include this measure
of risk:

Maximize z = αEωy
ω − (1 − α)Eωr

ω, (1.14)
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where α is a number between 0 and 1 that reflects the relative importance of the
objective1 of maximizing return with respect to the objective of reducing risk, as it
has been defined.
For α = 0, that is, for the case where we are minimizing risk, the optimal solution is
to invest all funds into the no-risk money market account for a guaranteed return of
3%.
For α = 1

2
, where the objectives of maximizing return and minimizing risk are bal-

anced, the optimal solution turns out to be to invest all funds into the low-risk stock.
⁄

An extension to this approach is to just model the “downside risk”—outcomes

that fall below the expected outcome.

Example 1.7 Define the downside risk for a scenario as

r′
ω

= max[0, yω −
1

3
ygood + ybad + yugly]. (1.15)

Now define the objective function as

Maximize αEωy
ω − (1 − α)Eωr

′ω = z, ∀ω ∈ {good, bad, ugly}, (1.16)

where again α is a number between 0 and 1 reflecting the relative importance of the
goals of maximizing return and minimizing downside risk.

Solving2 for α = 0 and α = 1

2
, again the resulting solutions are to invest all funds

in the no-risk money market account, and to invest all funds into the low-risk stock,
respectively. ⁄

Alternatively, the recourse function need not compute the expected value of the

second-stage costs. The recourse function could be biased to reward solutions with

low downsides. It may be helpful to have some prior knowledge about the problem

to determine how the biasing should be accomplished.

Example 1.8 It is seen by inspection that the “ugly” scenario has the most downside
risk associated with it. The “bad” scenario can potentially have some downside risk,

1Use of the absolute value sign in (1.13) may appear to make this a nonlinear formulation of the
problem, but in this case, the model can be transformed into an equivalent linear formulation [7].
However, there would not be a valid transformation if the objective is to maximize risk.

2Again, the absolute value signs can be transformed away into an easy-to-solve linear model.
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too. Instead of using (1.12) as the objective function, something like

Maximize z =
3

12
ygood +

4

12
ybad +

5

12
yugly (1.17)

can be used. The solution to the model with this objective function is to invest all
funds into the low-risk stock.

Alternatively, an objective function with even more bias can be used, such as

Maximize z =
1

6
ygood +

2

6
ybad +

3

6
yugly. (1.18)

The solution to the model with this objective function is to invest all funds into the
no-risk money market account. ⁄

The objective function can be replaced by a utility function, which can better

model the user’s risk preferences. With a little ingenuity, a piecewise linear function

can approximate many different types of utility functions, and the model is still be a

linear program.

Example 1.9 Suppose that the funds being managed in the earlier examples were
from the accounts of several widows and orphans. The fund manager has promised
them a decent rate of return on their investment, but he is loath to expose them to
a lot of risk. So he uses a utility function of

u(y) = 1 − exp(−
y

500
) (1.19)

with the linear approximation

uω ≤ 1.0585
yω

500
+ 0.3389

uω ≤ 0.6420
yω

500
+ 0.0274

uω ≤ 0.3894
yω

500
+ 0.0202

uω ≤ 0.2362
yω

500
+ 0.1356

uω ≤ 0.1433
yω

500
+ 0.2857

yω free,
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where yω is the return on the investment of $1000 under scenario ω. Figure 1.4
demonstrates that this piecewise linear approximation of the utility function is fairly
accurate and should be good enough for the fund manager’s purposes. The fund
manager now wishes to maximize expected utility of his return, rather than just
maximizing the expected return.

z

u(z)

-500 0 500 1000

-4

-3

-2

-1

0

Figure 1.4: Utility function and its piecewise-linear approximation for Example 1.9.

In this example, the solution achieved by maximizing Eωu
ω is to invest $887 into

the low-risk stock, and the remaining $113 into the no-risk money market account.
⁄

1.3.2 Adjusting the Constraints

Risk can also be accounted for in the constraints of a stochastic program. Once

an appropriate risk measure is determined and modeled, a constraint, which puts a

bound on the risk measure can be added to the model.

Example 1.10 Recall that in the original model without risk management, the op-
timal solution was to invest all funds into the high-risk stock. The expected risk of
this solution, using the definition in (1.13), was $900. In order to perform risk man-
agement, the fund manager may wish to put an explicit upper bound on this measure
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of risk, say $400. The constraint

rω ≤ 400 ∀ω ∈ {good, bad, ugly} (1.20)

can be added to the original model3 (1.11). The resulting optimal solution is to invest
$1662

3
into the high-risk stock, and $833 1

3
into the low-risk stock. ⁄

Alternatively, downside risk, as opposed to total risk, can be constrained.

Example 1.11 Using the definition of downside risk in equation (1.15), the expected
downside risk for the original optimal solution (1.11) is $450. A constraint like

r′
ω
≤ 200 ∀ω ∈ {good, bad, ugly} (1.21)

could be added to the original model. The resulting optimal solution is to invest
$19010

21
into the high-risk stock, with the remaining $809 11

21
being invested in the

low-risk stock. ⁄

Another approach is to add constraints based on the modeler’s knowledge or

insight about the problem of interest. With these contrived constraints, the modeler

may be able to remove some of the more risky solutions from the feasible set.

Example 1.12 The fund manager knows from solving his problem without risk man-
agement that the high-risk stock is the riskiest investment available to him. So in
order to reduce the risk of his investments, he restricts his investment in that stock
to no more than 30% of his funds, or $300.
He adds the constraint

xhigh ≤ 300 (1.22)

or

xhigh ≤ 0.30(xhigh + xlow + xno) (1.23)

to his original model (1.11). The resulting solution is to invest 30% of his funds
($300) into the high-risk stock, and the remainder of his funds ($700) into the next
best investment, the low-risk stock. ⁄

3Again, the problem can still be solved as a linear program if the constraint is an upper bound

on risk, but would be problematic if it were a lower bound on risk.
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Combinations of the above approaches can also be applied. For example, a man-

ager may wish to adjust his model by playing with the cost coefficients in the objective

function while also putting constraints on downside risk.

It should be noted in passing that in the preceding examples, when risk manage-

ment approaches are focused on the objective function, the resulting solutions still

tend to be extreme—the optimal solution was to invest all funds into one type of

investment. When risk management is handled through constraints on the problem,

the result is more diversified solutions—the optimal solution has the fund manager

dividing his funds between two different investment options. This observation can be

explained by the effect of the risk management techniques on the problem’s feasible

region. Without any risk management incorporated into the problem, the extreme

points of the feasible region tend to be “extreme” solutions—in the case of the port-

folio optimization problem, the extreme points of the feasible set correspond to allo-

cating all resources into one type of investment. When a constraint is added to the

problem, the feasible region becomes smaller, and the set of the extreme points of

the feasible region changes. Now there is an opportunity for a diversified solution to

be an optimal solution to the problem. If no constraints are added to the problem,

but the linear objective function is modified, then the feasible region is not affected,

and the optimal solution to the problem must still be one of the original “extreme”

solutions.

It should also be stressed at this point that none of the above approaches to risk

management is the best in all situations. The best approach to use depends on many

factors, including the additional complexity that each approach adds to the existing

model and the specific risk management needs of the user.

1.3.3 Chance-Constrained Programming

Charnes and Cooper [4] developed an approach they called chance-constrained pro-

gramming, where one or more of the constraints are satisfied with some specified

probability. Probabilistic methods are covered in Prékopa [13].

In general these problems require either some sort of nonlinear optimization, or
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some specialized analysis of the problem that is highly dependent on the particular

probability distribution used. Both of these add an additional layer of complexity to

the problem. Such complexity is beyond the scope of this thesis, so this approach will

not be analyzed further.

1.4 Expected Value Constraints

In all of the above approaches to risk management, one is able to take a multi-stage

stochastic program with a staircase structure (see Figure 1.1) and transform it into

a problem that retains that staircase structure. This assures that any decomposition

methods that could be used to solve the original problem can also be used to solve

the risk-managed problem.

In Example 1.10, a constraint of the form

rω ≤ R̂ (1.24)

was added to the model (1.11). This constraint places a bound on the risk for each

scenario—that is, in every scenario, the risk is guaranteed ot to exceed some level—

and does not change the dual angular structure of the underlying model (see Figure

1.5).

 budget

"good" payoff
"good" risk defn
"good" risk bound

"bad" payoff
"bad" risk defn
"bad" risk bound

"ugly" payoff
"ugly" risk defn
"ugly" risk bound

Figure 1.5: Structure of the fund manager problem (Example 1.10).
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Let us consider another approach to managing risk. A single upper bound is

put on the expected risk, rather than a separate bound on the risk of each scenario.

That is, the risk associated with some scenarios may exceed the bound so long as the

average risk does not exceed the bound. The form of this constraint is

Eωr
ω =

1

3
rgood +

1

3
rbad +

1

3
rugly ≤ R̂. (1.25)

Example 1.13 The optimal solution of the original model (1.11) with the expected
value constraint (1.25) with a value of R̂ = $200 yields an optimal solution of investing
$1111

9
in the high-risk stock and $888 8

9
in the low-risk stock, with risk values of $116 2

3

in the “good” scenario, $150 in the “bad” scenario, and $333 1

3
in the “ugly” scenario,

for a total expected risk of $200. ⁄

A constraint of type (1.25) is called an expected value constraint, because it de-

scribes a bound on the expected value of some quantity.4 The main features of the

expected value constraint are that it encapsulates second-stage decision variables from

more than one scenario into a single constraint, and that it wrecks the dual angular

structure of the problem.

In principle, the model in Example 1.13 with constraint (1.25) is not any harder to

solve than the model in Example 1.10 with constraint (1.24). In fact, the case could

be made that the formulation of Example 1.13 is easier to solve than the formulation

of Example 1.10, since the latter formulation adds 3 new constraints and 6 new

nonzero elements to the problem, whereas the expected value constraint formulation

adds only 1 constraint and 4 nonzero elements. But this alternative formulation does

change the structure of the problem into one that does not have the staircase form

represented in Figure 1.1. This problem, as shown in Figure 1.6, has one constraint

that is relevant for every scenario. If this problem were large enough that Benders

4The term “expected value” suggests that the coefficient for each second-stage variable in an
expected value constraint is related to the probability associated with that variables scenario, but
this need not be the case. For example, one may be applying importance sampling, and assign
higher weights to scenarios that are deemed to be “interesting”. More formally and without loss of
generality, the label expected value constraint is applied to any constraint with nonzero coefficients
on second-stage variables from two or more scenarios.
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decomposition might be needed to make the problem more manageable, then it could

not be applied.

 budget

"good" payoff
"good" risk defn

"bad" payoff
"bad" risk defn

"ugly" payoff
"ugly" risk defn

bound on E[risk]

Figure 1.6: Structure of fund manager problem with expected value constraints (Ex-
ample 1.13).

There is no single approach to risk management that is appropriate for all cases.

The advantages and disadvantages of each risk management technique should be

weighed before incorporating the approach into a problem. At this point it would

appear that the approach using expected value constraints that was just introduced

has a serious disadvantage in that it can not be used with Benders decomposition.

The rest of this thesis is organized as follows: Chapter 2 introduces an example and

motivation for using expected value constraints—the advantages of that approach, if

you will. A transformation is described to convert a two-stage problem with expected

value constraints back into a problem with the desirable staircase structure, allow-

ing Benders decomposition to be used to solve the problem. In Chapter 3, another

algorithm is introduced with features that allow problems with expected value con-

straints to be solved efficiently, provided that certain conditions are satisfied. In many

practical cases, it is demonstrated that problems with expected value constraints are

not much more difficult to solve than similar stochastic programs without expected

value constraints. Finally, Chapter 4 deals briefly with additional topics such as more

generalized expected value constrained problems.



Chapter 2

Expected Value Constraints in

Two-Stage Problems

This thesis is motivated by a supply-chain model and risk management technique in

use at Hewlett-Packard (HP) Labs in Palo Alto, California. A simplified version of

this model will be presented along with approaches used by HP for risk management.

The drawbacks of those approaches will be shown for this application, along with the

benefits of using expected value constraints. Discussion of how to solve stochastic

programs with expected value constraints commences with a description of the intu-

itive structure of such a problem and continues with a reformulation of the problem.

Numerical results of problems with the various risk management techniques will be

presented.

2.1 Example and Motivation

2.1.1 Description of Hewlett-Packard Supply Chain Problem

Hewlett-Packard (HP) is involved in the production and sale of a wide variety of

products with leading-edge technology and applications. HP was concerned about

how to use components that were at the end of their life cycle. Components are said

to be at the end of their life cycle when they are made obsolete by the introduction

21
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of better (newer, cheaper, etc.) components that perform the same function, or when

the supplier discontinues the supply of that component. Once components are iden-

tified as being near the end of their life cycle, there is a relatively small window of

opportunity to use those components by building them into a saleable product. If the

opportunity is missed, HP will never have a chance to use those components in any

future product, and will incur further holding or disposal costs.

Components are only “useful” to HP when they are built into finished products

and sold to customers. If a component at the end of its life cycle can not become

part of some product, or if that product is not ultimately sold to a customer, then

HP must dispose of that component, receiving only a fraction of the previous value

of the component, or perhaps even incurring some holding or disposal cost.

Many components are used in several different products. For example, a particular

plastic case might be used for several different models of computers, or the same size

bolt might be used in a disk drive, a cooling fan, and a laser printer. HP must decide

which products to build in order to maximize consumption of their excess inventory

of these special components.

2.1.2 Hewlett-Packard Supply Chain Problem Formulation

A component is any unit of hardware that can be quantified and stored in inventory.

A component may be a discrete entity (a screw), it may be a sub-assembly that

is composed of several smaller components (a cooling fan), or it may be an end

product that may be sold to a customer (a laser printer).

Some components are produced at HP; other components are assembled at HP

from other components; still other components are purchased from suppliers outside

of HP. Assembled components are made in accordance with a bill of materials

that describes how many of each component is used in order to assemble another

component. Components that are purchased from outside suppliers have a cost to

obtain those components. Components that are produced at HP have a make cost

incurred during production. Every component also has a sunk cost, representing

the total amount invested in order to obtain that component, and a scrap value,
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the value received when a component is scrapped, or disposed of without being

incorporated into a saleable product. End products also have a revenue associated

with their sale to a customer, and a stochastic demand that indicates how many

products can be sold after a production run. Demands for products are realized from

a (possibly infinite) set of outcomes Ω.

Some components have long lead times—the difference between the time that a

component is ordered and the time that it is incorporated into a product. Often the

process for procuring components with long lead times must begin long before product

demand is realized, and long before HP will know how many of those components it

will need to produce to satisfy demand. The problem is formulated as a two-stage

problem by identifying those components with long lead times and requiring them

to be procured before the demands are realized. That is, the purchase and assembly

quantities of components with long lead times are the first-stage decision variables,

and the purchase and assembly quantities of components with short lead times are

second-stage variables. The amount of each end product to sell and the amount of

each component to scrap are also second-stage decision variables.

Sets:

I set of all components

B ⊆ I set of all components that can be bought by HP

B1 ⊆ B components that may be bought in the first-stage

B2 ⊆ B components that may be bought in the second-stage

M ⊆ I set of all components that can be made by HP

M1 ⊆ M components that may be made in the first-stage

M2 ⊆ M components that may be made in the second-stage

S ⊆ I set of end products, components that can be sold

Parameters:

ĉj cost of procuring 1 unit of component j ∈ B
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âj make cost of assembling 1 unit of component j ∈ M

êj initial excess inventory of component j ∈ I

v̂j sunk cost of each unit of component j ∈ I

q̂j scrap value of a unit of component j ∈ I

r̂j revenue for selling a unit of component j ∈ S

α̂ij units of component i ∈ I needed to assemble one unit of j ∈ M

d̃j demand for product j ∈ S

pω probability that scenario ω ∈ Ω will be realized,
∑

ω∈Ω p
ω = 1

γB relative importance of procurement spending in the objective

γP relative importance of profit in the objective

γR relative importance of inventory reduction in the objective

A “hat” on a coefficient (e.g., ĉ) is used to denote that a coefficient is known with

certainty at the time the problem is solved. A “tilde” over a coefficient (e.g., d̃) is used

to indicate that a coefficient is known in distribution only at the time the problem is

solved.

Decision variables:

b1j units of component j ∈ B1 bought in stage 1

m1j units of component j ∈ M1 made in stage 1

b2j units of component j ∈ B2 bought in stage 2

m2j units of component j ∈ M2 made in stage 2

s2j units of component j ∈ S sold in stage 2

w2j units of component j ∈ I scrapped in stage 2

The important constraints of this model are market constraints and balance

constraints. Market constraints state that the number of end product components

that are sold cannot exceed the demand for that product. That is,

sω
2j ≤ d̃ω

j , ∀ω ∈ Ω, j ∈ S, (2.1)
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with the assumption that d̃j = 0 for j 6∈ S.

Balance constraints keep track of the first- and second-stage inventory, and assure

that there is a nonnegative number of each component at all times. A component

begins with êj units in inventory. m1j + m2j + b1j + b2j units of component j are

acquired in the first and second-stages.
∑

i∈I α̂ji(m1i + m2i) units of component j

are consumed in order to make other products. Finally, all components that are not

consumed in the assembly of other products must ultimately either be sold (s2j if

j ∈ S) or scrapped (w2j). The second-stage balance constraint thus looks like:

êj + b1j +m1j + bω
2j +mω

2j =
∑

i∈M

α̂ji(m1i +mω
2i) + sω

2j + wω
j , ω ∈ Ω, j ∈ I. (2.2)

The first-stage balance constraint just seeks to assure that a nonnegative amount of

each component is available at the end of the first-stage:

êj + b1j +m1j ≥
∑

i∈M

α̂jim1i. (2.3)

That is, the amount of component j consumed in making other components cannot

exceed the initial inventory plus the amount that is either purchased or assembled

during the first-stage.

Finally, there are three measureable aggregate quantities of interest in the model.

1. Total profit: HP is sometimes interested in the profit that can be made from

their production run, and is tracked separately in each stage of the problem.

Costs are incurred in two ways—from buying components from outside suppli-

ers, and from production costs associated with assembling components at HP.

The primary source of revenues is the sale of end products to customers, but

HP can also receive the scrap value associated with components that cannot be

sold.

P1 = −
∑

j∈B1

ĉjb1j −
∑

j∈M1

âjm1j (2.4)
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P2 = −
∑

j∈B2

ĉjb2j −
∑

j∈M2

âjm2j +
∑

j∈S

r̂js2j +
∑

j∈I

q̂jw2j. (2.5)

2. Total spending: HP is interested in the costs associated with their production

run. Costs are incurred in two ways—from buying components from outside

suppliers, and from production costs associated with assembling components at

HP. Spending is tracked separately in both stages of the problem.

B1 =
∑

j∈B1

ĉjb1j +
∑

j∈M1

âjm1j (2.6)

and

B2 =
∑

j∈B2

ĉjb2j +
∑

j∈M2

âjm2j (2.7)

describe the procurement spending for the two stages of the problem.

3. Inventory reduction: HP wants to track how much of its inventory it can re-

move from the shelves and incorporate into saleable products. Since every com-

ponent in inventory is either incorporated into a product and sold, or scrapped,

the total inventory reduction can be measured by the expression

R2 =
∑

j∈I

v̂j(êj − w2j). (2.8)

There is no meaningful expression for first-stage inventory reduction, since no

components can be disposed of until the second-stage.

Any of these quantities could either be the focus of optimization (and accounted

for in the objective function), constrained by the model (accounted for in an upper

bound or lower bound), or simply measured.
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The final form of the model is:

Minimize γB(B1 + EωB
ω
2
) − γP (P1 + EωP

ω
2
)

−γR(EωR
ω
2
) = z

subject to

1st-stage budget defn. B1 −
∑

j∈B1
ĉjb1j −

∑

j∈M1
âjm1j = 0

1st-stage profit defn. P1 +
∑

j∈B1
ĉjb1j +

∑

j∈M1
âjm1j = 0

1st-stage balance
∑

i∈I α̂jim1i −m1j − b1j ≤ êj

And for all ω ∈ Ω :

2nd-stage budget defn. Bω
2
−

∑

j∈B2
ĉjb

ω
2j −

∑

j∈M2
âjm

ω
2j = 0

2nd-stage profit defn. P ω
2

+
∑

j∈B2
ĉjb

ω
2j +

∑

j∈M2
âjm

ω
2j

−
∑

j∈S r̂js
ω
2j −

∑

j∈I q̂jw
ω
2j = 0

reduction definition Rω
2
−

∑

j∈I v̂jw
ω
2j =

∑

j∈I v̂j êj

2nd-stage balance wω
2j + sω

2j +
∑

i∈I α̂ijm
ω
2i −mω

2i − bω
2i = êj + b1j +m1j

−
∑

i∈I α̂ijm1i

demand constraint sω
2j ≤ d̃ω

b1j,m1j, b
ω
2j,m

ω
2j, s

ω
2j, w

ω
2j ≥ 0

∀ j ∈ I, ω ∈ Ω,

with potentially one or more of the following constraints for risk-management:

B1 +Bω
2

≤ B̂ ∀ω ∈ Ω (2.9)

P1 + P ω
2

≥ P̂ ∀ω ∈ Ω (2.10)

Rω
2

≥ R̂ ∀ω ∈ Ω (2.11)

B1 + EωB
ω
2

= B1 +
∑

ω∈Ω

pωBω
2

≤ B̂ (2.12)

P1 + EωP
ω
2

= P1 +
∑

ω∈Ω

pωP ω
2

≥ P̂ (2.13)

EωR
ω
2

=
∑

ω∈Ω

pωRω ≥ R̂, (2.14)

where B̂, P̂ , and R̂ are user-specified targets for procurement spending, profit, and

inventory reduction, respectively. Constraints (2.9)–(2.11) were in use at HP, while
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constraints (2.12)–(2.14) are expected value constraints that also may be applied to

perform risk management. In the remainder of this chapter, this model is used to

demonstrate the technique for reformulating stochastic programs with expected value

constraints.

2.1.3 Motivation for Expected Value Constraints

HP would typically use a constraint approach [one of constraints (2.9),(2.10), (2.11)]

for risk management. A problem would be solved several times for several different

values of the right-hand side of the risk-management constraint. For example, if the

goal of a problem were to minimize procurement spending, subject to some minimum

level of inventory reduction, then HP would solve the model (2.1.2) with constraint

(2.11) several times for several different values of R̂. The result would be a curve

of Pareto-optimal solutions showing the trade-off between procurement spending and

inventory reduction. Figure 2.1 depicts an example of such a curve. The management

at HP could then make a decision about how best to proceed with the production

run.

B(000’s)

R
(000’s)

0 30 60 90 120

10

20

30

40

50

Figure 2.1: Tradeoff between procurement spending and inventory reduction for sam-
ple HP supply chain problem
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This strategy was developed at a time when HP was using a deterministic model,

so only one demand scenario would be used for each problem. When the strategy was

extended to a stochastic model with multiple demand scenarios, some drawbacks to

the approach emerged.

The strategy is particularly ill-suited for problems that have some “extreme” de-

mand scenarios. Consider an HP supply chain problem with several demand scenarios,

including one or more “very low” scenarios, with low levels of demand for all prod-

ucts. In the very low scenarios, very few end products can be sold, and therefore very

little of the inventory can be reduced. The subproblem for this scenario is infeasible

for any first-stage decision unless the lower bound on inventory reduction is set to

be very low—low enough to be useless for the other scenarios. The examples below

illustrate this issue.

Example 2.1 Consider a simple HP supply chain problem [model (2.1.2) plus con-
straint (2.11)] with 8 components and with the specifications as given in Tables 2.1,
2.2, and 2.3. Component 2 comes from an outside supplier that has discontinued that
component, so the only source of component 2 is the current excess inventory of that
component—it cannot be bought or assembled from other components. Component
lead times are such that components that must be bought (components 1 and 3) must
be procured in the first stage, before demand uncertainty is resolved, while compo-
nents that are made (components 4 through 8) may be assembled quickly enough
so that production decisions about those components can be deferred until demand
uncertainty is resolved. The problem is solved with the goal of minimizing the pro-
curement spending needed to achieve a given level of inventory reduction under all
demand scenarios. That is, the supply-chain model (2.1.2) with the risk manage-
ment constraint (2.11) is solved. Figure 2.2 depicts the tradeoff curve of spending
vs. inventory reduction for all valid values of R̂ in constraint (2.11). ⁄

Example 2.2 Consider Example (2.1) above but with a more “extreme” set of de-
mands, as given in Table 2.5. The low demand levels in some of the scenarios make
the constraint (2.11) more difficult to satisfy. As a result, the tradeoff curve for this
problem (Figure 2.3) has a much smaller range than the curve in the previous Exam-
ple (Figure 2.2). One would not expect this curve to be of much use to the decision
makers at HP. ⁄

The worst scenarios—those with a relatively small feasible set—have the greatest

impact on the problem’s solution. In the example HP supply chain problems above,
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I = {1, 2, 3, 4, 5, 6, 7, 8}
B1 = B = {1, 3}
M2 = M = {4, 5, 6, 7, 8}

S = {7, 8}

Table 2.1: Set specification for Examples 2.1 and 2.2.

Component Excess Buy cost Make cost Scrap value Sunk cost Revenue

1 0 $1 — $0 $10 —
2 150 — — $0 $10 —
3 10 $1 — $0 $10 —
4 20 — $1 $0 $30 —
5 30 — $1 $0 $10 —
6 40 — $1 $0 $20 —
7 0 — $1 $0 $40 $49
8 0 — $1 $0 $40 $51

Table 2.2: Cost and other specifications for components in Examples 2.1 and 2.2.

Component 1 Units of component 1 Component 2
per unit of component 2

1 1 4
2 2 4
2 1 5
2 1 6
3 1 6
4 1 7
5 1 7
5 2 8
6 1 8

Table 2.3: Bill of materials for assembled components in Examples 2.1 and 2.2.
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Scenario Probability Demand for comp. 7 Demand for comp. 8

1 0.1 30 30
2 0.1 35 35
3 0.1 40 40
4 0.1 45 45
5 0.1 50 50
6 0.1 50 30
7 0.1 45 35
8 0.1 40 40
9 0.1 35 45
10 0.1 30 50

Table 2.4: Demand scenarios for Example 2.1, with moderate variance in demands.

Scenario Probability Demand for comp. 7 Demand for comp. 8

1 0.05 5 10
2 0.1 25 30
3 0.2 40 40
4 0.1 55 50
5 0.05 75 70
6 0.05 75 10
7 0.1 55 30
8 0.2 40 40
9 0.1 25 50
10 0.05 5 70

Table 2.5: Demand scenarios for Example 2.2, with high variance in demands.
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Figure 2.2: Tradeoff of procurement spending (B) vs. inventory reduction (R) for
Example 2.1.

solutions are constructed in such a way that “the inventory reduction in every scenario

is at least R̂,” even if those scenarios occur with a negligible probability.

A more flexible approach is to use expected value constraints. Then solutions are

constructed in such a way that “the inventory reduction for some bad scenarios is

less than R̂, for good scenarios it is more than R̂, but on average it is about R̂.” The

solution is less susceptible to large influences from negligible scenarios.

Example 2.3 Using the same demand scenarios as Example (2.2), but including an
expected value constraint on the inventory reduction [see (2.14)] rather than a bound
on inventory reduction in all scenarios (2.11). The result is a much more meaningful
tradeoff-curve, depicted in Figure 2.4. ⁄

2.2 Reformulation of Expected Value Constrained

Problems

Example 2.3 from the previous section is an expected value constrained problem. That

problem is “small” in the sense that when the full stochastic program is specified as
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Figure 2.3: Tradeoff of B vs. R for Example 2.2. For R >∼1200, the problem is
infeasible, so there are much fewer meaningful results for this example.

a single linear program, the size of the program does not overwhelm the available

software packages for solving linear programs. The tableau for the fully-specified

problem of Example 2.3 contains 122 equations and 193 decision variables, and it

currently takes about 1.5 cpu seconds from a high-end Unix workstation to generate

all of the data for Figure 2.4.

But many practical problems of interest are much larger than Example 2.3, and for

all intents and purposes are not solvable without some sort of decomposition scheme.

It was seen in Chapter 1 that a two-stage stochastic program with one or more

expected value constraints does not have a dual-angular structure. Without the dual-

angular structure, the subproblem cannot be decomposed into smaller independent

subproblems, and Benders decomposition is still impractical for all but the smallest

problems.

For most practical problems with expected value constraints, it is possible to

reformulate the problem so that the desirable staircase structure reappears, and Ben-

ders decomposition can be practically applied. Let’s consider a two-stage stochastic
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Figure 2.4: Tradeoff of B vs. R for model with high variance in demands, and a
constraint on the expected value of R.

program with one or more expected value constraints:

Minimize cx +
∑

ω f
ωyω = z

subject to Ax = b

−Bωx + Dωyω = dω ∀ω ∈ Ω

−Fx +
∑

ω H
ωyω = h

x, yω ≥ 0,

(2.15)

where x is the n1-dimensional vector of first-stage decision variables, yω is an n2-

dimensional vector of second-stage decision variables, A is m1-by-n1, B
ω is m2-by-n1,

Dω is m2-by-n2, F is m3-by-n1, H
ω is m3-by-n2, b is m1-dimensional, dω is m2-

dimensional, h is m3-dimensional, and c and fω are the same dimensions as x and

yω, respectively.

Figure 2.5 depicts a stochastic program with expected value constraints. The first

stage consists of m1 constraints and n1 variables, each of the |Ω| subproblems of the

second stage (ignoring the expected value constraints) consists of m2 constraints and

n2 variables, and the expected value constraints constitute another m3 constraints
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Figure 2.5: Block structure of stochastic program with expected value constraints

and n2 × |Ω| variables.

A large stochastic program with expected value constraints has a structure, which

is unsuitable for either Benders decomposition or Dantzig-Wolfe decomposition, al-

though it may be possible to use some nested decomposition scheme, as suggested by

Figure 2.6. Instead, a reformulation of this problem is considered. The reformulation

results in an equivalent problem that does have the desired staircase structure.

2.2.1 Identifying Problematic Second-Stage Variables

Expected value constraints are problematic in that they confound Benders decomposi-

tion schemes designed to make the problem more manageable. Second-stage variables

that are represented in the expected value constraints are denoted as problematic vari-

ables.

In many practical cases, the expected value constraints are sparse1. This means

that the number of problematic second-stage variables is typically rather small com-

pared to the total number of second-stage variables. This is the case for the HP

1In other cases, they may be made sparse by the introduction of new variables. See section 4.2.
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Figure 2.6: Suggestion of how Benders decomposition might be nested inside a
Dantzig-Wolfe decomposition scheme to solve a problem with expected value con-
straints
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supply-chain model with expected value constraints: the problematic variables are

the procurement budget, profit, or inventory reduction in each scenario [from equa-

tions (2.12)–(2.14)]. There are only a few of these decision variables compared to the

number of decision variables for second-stage production quantities, product sales,

and component scrapping.

The first step in the reformulation is to identify these second-stage decision vari-

ables that are represented in the expected value constraints, and to distinguish them

from the second-stage variables that are not represented in those constraints. Using

yω
1

to denote second-stage variables that are represented in expected value constraints,

and yω
2

for variables that are not represented in those constraints, a general two-stage

stochastic program with expected value constraints can be expressed as:

Minimize cx +
∑

ω f
ω
1
yω

1
+

∑

ω f
ω
2
yω

2
= z

subject to Ax = b

ev constr.: −Fx +
∑

ω H
ωyω

1
= h

−Bωx − Dω
1
yω

1
+ Dω

2
yω

2
= dω ∀ω ∈ Ω

x, yω
1
, yω

2
≥ 0.

(2.16)

2.2.2 Moving Problematic Variables to the First Stage

The next step is to look at the problem from a different point of view. It is natural to

look at the problematic variables in the above formulation as second-stage variables,

since they depend on some uncertainty that will not be realized until the second stage

of the problem, and the number of these variables is proportional to the number of

scenarios in the model.

But suppose the problem is partitioned so that the expected value constraints are

a part of the master problem. In this case, problem (2.16) does have a dual angular
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structure and may be decomposed such that the master problem is

Minimize cx +
∑

ω f
ω
1
yω

1
+ θ = ζ

subject to Ax = b

−Fx +
∑

ω H
ωyω

1
= h

cuts: −G0x −
∑

ω G
ω
1
yω

1
+ θ ≥ g

−G′

0
x −

∑

ω G
′

1

ω
yω

1
≥ g′

x, yω
1

≥ 0 ∀ω ∈ Ω,

(2.17)

with independent subproblems for all ω ∈ Ω:

Minimize fω
2
yω

2
= θ(x, yω

1
, ω)

subject to Dω
2
yω

2
= dω +Bωx+Dω

1
yω

1

yω
2

≥ 0.

(2.18)

Then the problem is in a form suitable for use with independent subproblems in

Benders decomposition. Figure 2.7 depicts how to change one’s perspective on a two-

stage program with expected value constraints to obtain a two-stage program that is

suitable for Benders decomposition.

2.2.3 Comparison of Reformulated Problem

Expected value constraints contain second-stage variables and may have coefficients

that are not known with certainty at the time the problem is solved. For this reason,

the intuitive way of formulating and decomposing the problem places the expected

value constraints in the subproblem (as shown in Figure 2.5). In this case, the problem

does not have a dual-angular structure, and the subproblem cannot be further de-

composed into independent subproblems. For large problems, Benders decomposition

does still not make the problem practical to solve.

In the reformulated problem, the expected value constraints are moved into the

master problem (2.17). The master problem of the reformulated problem thus has

one more constraint (not including the cuts) and several more variables—the number

of extra variables is proportional to the number of scenarios being considered—than
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(c) (d)

(b)(a)

Figure 2.7: (a) Two-stage problem with expected value constraint. Dark box shows
“natural” choice for first stage. (b) Distinguishing problematic variables. (c) New
perspective of problem structure. (d) New choice of how to divide the problem into
stages.
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the master problem of the original problem. But the reformulated problem does have

dual angular structure. So Benders decomposition can be applied to expected value

constrained problems, and based on past experience, it should make the problem

tractable.

2.3 Numerical Results

A variety of supply-chain problems from HP were solved under many different demand

distributions, with both the conventional risk management constraints (2.9)–(2.11)

and expected value constraints (2.12)–(2.14). Benders decomposition was applied

to the problems—using the reformulated model (2.17) and (2.18) for the expected

value constrained case—and the problems were solved using Gerd Infanger’s DE-

CIS (Benders DEComposition and Importance Sampling) [11] software package, an

implementation of Benders decomposition.

Results are presented in Table 2.6, including the characteristic size of the model,

the number of demand scenarios used, the number of times the master problem and

independent subproblems were solved to achieve a solution, and the CPU time needed

to solve the problem on a high-end Silicon Graphics workstation.

2.4 Discussion of Results

From the previous section, it can be seen that reformulation often does allow an

expected value constrained problem to be solved with Benders decomposition. But

in some cases, particularly in cases where many demand scenarios (|Ω|) are used, a

large amount of iterations and computational effort is required to solve the problems

with expected value constraints compared to the effort needed to solve problems with

the conventional risk management constraints.

The number of columns in the master problem is often one of the most significant

factors in determining how much effort it takes to solve a stochastic problem. As

shown in Section 2.2, the expected value constrained problem does have one extra

variable in the master problem for each scenario that is considered. But in some cases,
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Conventional model EV constrained model

Problem†
number of
scenarios

solution
time

MP/SP
solution

time
MP/SP

tom1K 5 0.08 2/10 0.08 2/10

tom1K 25 0.36 13/109 0.53 8/200

tom1K 100 0.88 13/409 7.40 32/3200

tom10K 5 0.31 22/58 0.42 28/75

tom10K 25 0.68 28/220 3.89 93/1802

tom10K 100 2.26 31/1120 598.47 2094/2.1E5

tom29K 5 0.37 25/73 0.70 51/185

tom29K 25 0.97 33/393 18.49 343/7639

tom29K 100 2.88 33/1518 1431.93 5615/5.5E5

bap10K 5 122.72 425/2121 146.02 448/2230

bap10K 25 168.16 423/1.1E4 923.42 999/2.5E4

bap10K 100 310.03 420/4.2E4 6698* 2335/2.2E5

bap1M 5 283.41 647/3231 497.76 940/4690

bap1M 25 347.09 647/1.6E4 1980.37 1902/4.6E4

bap1M 100 565.15 647/6.5E4 †† ††/††
bap5M 5 346.57 673/3361 524.89 900/4490

bap5M 25 473.53 852/2.1E4 3243* 2532/6.0E4

bap5M 100 893.57 925/9.2E4 †† ††/††
dlaw5K 5 5377* 4081/2.0E4 11542* 6102/3.0E4

dlaw5K 25 7684* 4292/1.1E5 †† ††/††
dlaw200K 5 22297* 1.4E4/6.8E4 †† ††/††
dlaw200K 25 30075* 1.5E4/3.7E5 †† ††/††

Table 2.6: Results for HP Supply Chain Models with conventional risk management
constraints and with expected value constraints. Except where noted, solution time
refers to CPU seconds of a single processor needed to solve the problem.
† Characteristic size of these problems:

Problem MP size SP size Deterministic size with |Ω| = 100
tom 39 × 39 163 × 149 16339 × 14939
bap 265 × 265 548 × 817 54965 × 81965
dlaw 378 × 383 2844 × 4980 284748 × 498382

†† A solution was not obtained for this problem in fewer than 25 hours or 30000 iterations.
∗ Solution time is reported in real seconds, not CPU seconds — this is a minor overestimation of
the CPU time needed to solve the problem.
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the effort needed to solve a reformulated expected value constrained problem was 10

times or more that the effort needed to solve the conventionally formulated problem.

The few extra variables in the master problem is not a sufficient explanation for the

extra effort required.

Rather, there is something fundamentally pathological about the structure of the

reformulated expected value constrained problem with Benders decomposition. For

the problematic variables that are moved from the second stage of the problem to the

first stage, each variable has an effect on the subproblem objective value for only one

scenario, and support for those variables as provided by the feasibility and optimality

cuts is very slow to develop. Consequently, it takes many iterations of Benders de-

composition before the values of those problematic variables start to converge toward

their optimal values.

The multi-cut technique of Birge and Louvaeux [2] adds a cut to the master prob-

lem every time an independent subproblem is solved. This technique may help build

support for the problematic variables more quickly, since it would add several cuts

to the problem in each iteration. But this technique suffers from its own scalability

issues – it generates cuts in proportion to the number of random outcomes under

consideration, and in general it cannot be used with sampling random outcomes from

a continuous or otherwise large sample space. The drawbacks are serious enough to

reject this technique out of hand as a worthwhile approach to dealing with expected

value constraints. Instead, other approaches that work in the context of conventional

Benders decomposition should be explored. This is the focus of the next chapter.



Chapter 3

A Modified Benders

Decomposition Algorithm

In the previous chapter, it was demonstrated that in many practical cases a two-

stage problem with one or more expected value constraints could be reformulated

into a program with dual-angular structure, so the L-shaped method of Van Slyke

and Wets [14] can be applied to solve a large stochastic program. The number of

iterations of Benders decomposition needed to solve such a reformulated problem was

very large compared to what one would expect from a typical stochastic program

of the same size. In this chapter, other approaches for solving expected-value con-

strained problems are discussed, with emphasis on techniques that reduce the overall

computational effort needed to achieve a solution. A modified Benders decomposition

algorithm is presented, which efficiently solves expected-value constrained problems

that satisfy certain conditions, along with some numerical results that demonstrate

the tractability of many expected-value constrained problems.

3.1 Nested Solution Approaches

The structure of expected value constrained problems suggests that they could be

solved with a nested decomposition approach. There are at least two ways to set up

and solve the problem with a nested decomposition approach.

43
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3.1.1 Nested Dantzig-Wolfe Decomposition

Figure 2.6 in the previous chapter suggests how one might use Dantzig-Wolfe decom-

position inside Benders decomposition. First, one could partition the problem (2.15)

into a master problem and a single, large subproblem. The solution to the master

problem would determine a first-stage solution x that would be passed to the sub-

problem. The subproblem has a block angular structure, and it may be solved with

Dantzig-Wolfe decomposition to determine the second-stage solutions yω that satisfy

the independent scenario subproblems and the expected value constraint.

3.1.2 Nested Benders Decomposition

When the expected value constraints are sparse, another type of nested decomposition

is suggested. The expected value constrained problem (2.15) can again be partitioned

into a master problem and a single, large subproblem. The solution to the master

problem would determine a first-stage solution x to be passed to the subproblem.

By distinguishing the second-stage variables yω
1

that are represented in the expected

value constraints from the second-stage variables yω
2

that are not, the large subprob-

lem can be decomposed further. The large subproblem contains a master problem

consisting of the expected value constraint. Solution of the master problem would

lead to a second-stage solution for yω
1
. The remainder of the large subproblem could

be decomposed into independent scenario subproblems, and solutions for yω
2

can be

obtained by applying the L-shaped method of Van Slyke and Wets. When an ex-

pected value constrained problem is partitioned this way, it may be thought of as a

three-stage problem: values for x are determined in the first stage, values for yω
1

are

determined in the second stage, and values for yω
2

are determined in the third stage.

Figure 2.7 from the previous chapter is a graphical depiction of this type of nested

decomposition.

Either of the above two nested decomposition schemes is necessarily more complex

than a single decomposition scheme. If, for example, the master problem above took

an average of 100 iterations to converge on an optimal first-stage solution, and the

large subproblem, whether using Benders or Dantzig-Wolfe decomposition, also took
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about 100 iterations to determine an optimal second-stage solution, the corresponding

nested decomposition scheme would require each independent subproblem to be solved

10,000 times to achieve a solution. With the additional complexity and effort required

to solve such a problem, a nested decomposition solution can hardly be expected to be

much more useful than applying a single layer of decomposition over the reformulated

problem from the previous chapter.

3.2 Problem Partitioning Schemes

Nested decomposition schemes are not considered further in this chapter, so attention

must shift to other ideas for handling problem (2.16). But between the problem

reformulation from Chapter 2 and the nested Benders decomposition scheme from

the previous section, the issue of how best to partition the problem arises. A couple

of mutually exclusive partitioning suggestions will now be explored more deeply.

3.2.1 Scheme 1

Figure 2.7 suggests one way to partition the problem into a master problem and a

subproblem. Under this partitioning scheme, the master problem looks like

Minimize c1x1 + c2x2 + θ3 = z

subject to A11x1 = b1

−A12x1 + A22x2 = b2

−G1x1 − G2x2 + θ3 ≥ g

x1, x2 ≥ 0,

(3.1)

where x1 denotes the original first-stage decision variables, x2 are the problematic

second-stage variables (second-stage variables represented in the expected value con-

straints), and the number of elements in x2 is related to the number of random out-

comes under consideration |Ω|. Letting xω
3

denote the non-problematic (remaining)
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second-stage variables, the independent subproblems look like

Minimize cω
3
xω

3
= zω

3

subject to Aω
33

= bω
3

+ Aω
13
x1 + Aω

23
x2 : πω

xω
3

≥ 0.

(3.2)

Due to the nature of expected value constraints, the Aω
23

matrices are constructed in

such a way that every nonzero column of Aω
23

is associated with the same scenario,

so that if a particular column of Aω
23

has nonzero elements, then that column of Aω′

23

must be zero for all ω′ 6= ω.

The cuts in the master problem (3.1) are constructed from the dual solution to

the subproblem as

G1 =
∑

ω pωπ
ωAω

13

G2 =
∑

ω pωπ
ωAω

23

g =
∑

ω pωπ
ωbω

3
.

(3.3)

3.2.2 Scheme 2

A second partitioning scheme that is a little more intuitive places the expected value

constraint back into the subproblem. In this case the master problem is

Minimize c1x1 + θ2 = z

subject to A11x1 = b1

−G′x1 + θ2 ≥ g′

x1 ≥ 0,

(3.4)

the subproblem is

Minimize c2x2 +
∑

ω pωc
ω
3
xω

3
= z2

subject to A22x2 = b2 + A12x1 : ρ

−Aω
23
x2 + Aω

33
xω

3
= bω

3
+ Aω

13
x1 : πω ∀ω ∈ Ω

x2, xω
3

≥ 0,

(3.5)
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and the cuts are formulated from the dual solution to the subproblem as

G′ = ρA12 +
∑

ω pωπ
ωAω

13

g′ = ρb2 +
∑

ω pωπ
ωbω

3
.

(3.6)

3.2.3 Comparison of the partitioning schemes

There are some substantial differences between these two partitioning schemes, and it

is worthwhile to examine these differences more closely. Both of these schemes have

some desirable features and some undesirable features.

• Master problem In scheme 1, the expected value constraint is included in the

master problem, and so some of the decision variables in the master problem are

related to the stochastic outcome. Scheme 2 has a more intuitive master problem

because only the original first-stage decision variables x1 are determined. The

master problem for scheme 1 (3.1) contains more decision variables than the

master problem for scheme 2 (3.4), and one would expect the master problem

for scheme 1 to be a little more difficult to solve than the master problem from

scheme 2.

• Cuts The master problem from scheme 1 seeks to estimate the cost contri-

butions of all the non-problematic second-stage variables. The cuts contain

coefficients for both x1 and x2, but the expressions used to determine these co-

efficients (3.3) are in a familiar form. The previous chapter demonstrates that

these cuts provide very poor support for x2, so one would expect a Benders

decomposition procedure that uses partitioning scheme 1 to take a very large

number of iterations to solve. In scheme 2, only x1 is determined in the master

problem, so only x1 is represented in the cuts. But the expression for the cut

(3.6) contains unfamiliar ρ terms, which are associated with the dual prices of

the expected value constraint.

• Subproblem In scheme 1, only the non-problematic variables xω
3

are deter-

mined in the subproblem. The subproblem can be further decomposed into in-

dependent “scenario” subproblems, with one subproblem associated with each
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possible outcome under consideration. This is a very desirable feature for solv-

ing large problems. In contrast, scheme 2 has the expected value constraint in

the subproblem, which wrecks the dual angular structure of the problem and

prevents the subproblem from being further decomposed into independent sub-

problems. The subproblem with the expected value constraint is denoted as

the “large” subproblem to indicate that it requires all scenarios to be solved for

simultaneously and cannot be broken up into several smaller problems.

Each scheme has its advantages and disadvantages. In a problem without expected

value constraints, the master problem resembles (3.4), the cuts are likely to provide

good support, and the problem is likely to be solved in a reasonable number of

iterations. The subproblem can be decomposed into independent subproblems like

(3.2), allowing the subproblems to be solved very efficiently. For problems with

expected value constraints, these same features are desirable. The cuts for the master

problem should provide good support for the recourse function. The subproblem

should be able to be decomposed into independent “scenario” subproblems, or should

otherwise be able to be solved efficiently.

3.3 Solving the “large” subproblem

The linear program specified by (3.5) arises as a single system of equations in the

context of decomposing the full problem (cf. 2.16). Because of the expected value

constraint, this system cannot be decomposed further into independent subproblems,

and so (3.5) is referred to as the “large” subproblem.

3.3.1 Characterization of the “large” subproblem

If an efficient method for solving the “large” subproblem (3.5) were available, then

the second partitioning scheme from the previous section could be applied to solve the

expected value constrained problem in a reasonable number of iterations. Depending

on the characteristics of the large subproblem, there may be such a method. In this
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section a modified Benders decomposition algorithm is presented that allows the large

subproblem to be solved efficiently when the following conditions hold:

1. There is a one-to-one mapping between the elements of x2 and the

elements of Ω. That is, Aω
23

has at most one nonzero column for each ω ∈ Ω.

Let aω denote the unique nonzero column vector in Aω
23

that is associated with

scenario ω. Then the subproblem constraints Aω
33
xω

3
= bω

3
+ Aω

23
x2 + Aω

13
x1 can

be expressed as

Aω
33
xω

3
= bω

3
+ aωx2ω + Aω

13
x1. (3.7)

2. There is exactly one expected value constraint. That is, the expression

A22x2 = b2 + A12x1 consists of exactly one equation. b2 is a scalar, and A12 and

A22 are row-vectors.

3. The expected value constraint is an equality.

From items 1 and 2 above, there is a coefficient αω
1 in the row-vector A22 that is

uniquely associated with scenario ω ∈ Ω. The single expected value constraint can

then be written as

∑

ω∈Ω

αωx2ω = b2 + a12x1. (3.8)

Without loss of generality, it is assumed that αω ≥ 0 for all ω. If αω is negative,

then the problem may be reformulated with −x2ω instead of x2ω, with the constraint

x2ω ≥ 0 being relaxed without consequence.

To summarize, the specification of the expected value constrained problem to be

solved is

1If (3.8) is a true expected value constraint, then αω = pω, the probability associated with scenario
ω for all ω ∈ Ω. But this need not be the case—for example, the modeler may wish to bias the model
for a few “extreme” outcomes, in order to obtain a solution that performs well under some worst-
case scenarios. In this case, the coefficients associated with those scenarios may be weighted more
heavily.
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Minimize c1x1 + c2x2 +
∑

ω pωc
ω
3
xω

3
= z

subject to A11x1 = b1

−a12x1 +
∑

ω αωx2ω = b2

−Aω
13
x1 − Aω

23
x2 + Aω

33
xω

3
= bω

3
∀ω ∈ Ω

αωx2ω ≥ 0 ∀ω ∈ Ω

x1, xω
3

≥ 0,

(3.9)

where Aω
23

has at most one nonzero column for each scenario ω ∈ Ω.

3.3.2 Algorithm to solve the large subproblem

If conditions 1–3 above hold for the expected value constrained problem, then the

following algorithm leads to an optimal solution (x2, x
ω
3
) to the large subproblem

(3.5).

Algorithm 3.1 Solution procedure for the large subproblem (3.5).

Step 0. Determine an initial allocation x2 such that the expected value constraint
∑

ω∈Ω αωx2ω = b2 + a12x1, x2 ≥ 0 is satisfied. Define Ω′ := ∅.

Step 1. Define the resource price function for scenario ω as

ψω(x2ω) ,
c2ω

αω
+ πω(x2ω)aω

pω

αω
. (3.10)

The first term of this function describes the direct effect of cost coefficient c2ω on

the objective function value for (3.5) for a change in x2ω. The derivation of the second

term is discussed later, but for now it can be thought of as the effect of a change in
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x2ω on the objective function value of the scenario subproblem

Minimize cω
3
xω

3
= zω

3
(x2ω)

subject to Aω
33
xω

3
= bω

3
+ Aω

13
x1 + aωx2ω : πω.

(3.11)

Fix x2 with the values determined in Step 0 and solve the independent scenario

subproblems (3.11) for all ω ∈ Ω to determine πω(x2ω) and ψω(x2ω). Record the

values of ψω.

If the scenario subproblem associated with ω is infeasible, then it should be de-

termined why the subproblem is infeasible. If an increase in x2ω would allow the

problem to become feasible, then assign ψω := −∞. If a decrease in x2ω would allow

the problem to become feasible, then assign ψω := +∞. If no value of x2ω makes the

scenario subproblem feasible, then note the large subproblem (3.5) as infeasible and

stop.

Step 2. Determine j ∈ Ωr Ω′ : ψj ≥ ψi ∀ i ∈ Ωr Ω′

k ∈ Ω : ψk ≤ ψi ∀ i ∈ Ω,

where the meaning of Ω′ is discussed below. If Ωr Ω′ = ∅ or if ψj = ψk, then record

the current solution (x2, x
ω
3
) as the optimal solution and stop.

Step 3. Reallocate resources from scenario j to scenario k as follows:

Determine Mx2j ≥ 0 and Mx2k := Mx2j

αj

αk

such that for some small value of δ > 0,

either

ψk(x2k) < ψk(x2k + Mx2k) ≤ ψj(x2j − Mx2j)

ψk(x2k + Mx2k +
δ

αk

) > ψj(x2j − Mx2j −
δ

αj

)
(3.12)
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or

ψk(x2k) = ψk(x2k + Mx2k) < ψj(x2j − Mx2j)

ψk(x2k + Mx2k +
δ

αk

) ≥ ψj(x2j − Mx2j −
δ

αj

)
(3.13)

is satisfied. If Mx2j and Mx2k can be increased without bound and without either

condition (3.12) or (3.13) being satisfied, then report the large subproblem as being

unbounded with extreme vector −Mx2jej + Mx2k

αk

αj

ek.

Step 4. Reallocate x2j and x2k as follows:

If condition (3.12) was satisfied at the end of the previous step, then remove k

from Ω′, if k ∈ Ω′. If condition (3.13) was satisfied at the end of the previous step,

then add j to Ω′.

Let x2j := x2j − Mx2j; x2k := x2k + Mx2k. Return to Step 2. ⁄

A few of these steps require some additional explanation. x2 can be thought of as a

vector of resource allocations that are distributed among the scenarios. The resource

price functions ψω can be thought of as the relative value of allocating additional

resources to scenario ω. In Step 2, the scenarios with the highest and lowest values

of these resource price functions are selected, and in Step 3 resources are removed

from the scenario with the low function value and added to the scenario with the

high function value, in such a way that the expected value constraint (3.8) is always

satisfied. The amount of resources to be transferred is governed by the point at which

the resource price functions of the two scenarios become equal. This point can be

determined with a simple bisection line search, but every iteration of the line search

requires two extra scenario subproblems (3.11) to be solved.

In the next subsection, it is shown that the resource price functions ψω are increas-

ing step functions. In Step 3, as Mx2j and Mx2k increase, ψk necessarily increases,

and ψj necessarily decreases. If Mx2j and Mx2k can be increased without bound and

without the condition ψk ≥ ψj ever being satisfied, then resources can be transferred

without bound from scenario k to scenario j, with an improvement in the objec-

tive function related to ψk − ψj for every unit of resources transferred. The large
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subproblem can then be identified as having an unbounded solution.

3.3.3 Properties of the algorithm

It was previously stated that Algorithm 3.1 leads to an optimal solution of the large

subproblem (3.5). This assertion will now be proved.

The scenario subproblem (3.11) is a parametric linear program in x2ω. Dantzig and

Thapa [7] cite some useful properties of the objective function value for parametric

linear programs of this type. The optimal objective function value zω
3
(x2ω) of this

problem is necessarily

1. continuous over all valid values of x2ω;

2. piecewise-linear; and

3. convex in x2ω, that is zω
3
(λx2ω + [1 − λ]x′

2ω) ≥ λzω
3
(x2ω) + [1 − λ]zω

3
(x′

2ω) for all

0 ≤ λ ≤ 1, x2ω, and x′
2ω.

An additional useful property is that the piecewise-linear function has a finite number

of “pieces”. This can be seen because each “piece” of the function corresponds to a

different optimal basis of Aω
33

. There is only a finite number of bases in Aω
33

.

The first derivative of zω
3

with respect to x2ω is necessarily an increasing step

function, with a discontinuity wherever zω
3
(x2ω) moves from one “piece” of the function

to another. This step function also has a finite number of pieces. The optimal solution

(xω
3
, πω) of (3.11) can also be thought of as a parametric function in x2ω, and by the

duality of linear programs, the following relation must hold:

zω
3
(x2) = zω

3
(x2ω) = zω

3
((xω

3
, πω)(x2ω)) = πω(x2ω)(bω

3
+ Aω

13
x1 + aωx2ω). (3.14)

That is, for a given x2ω and optimal solution (xω
3
, πω) to (3.11), the slope of zω

3
(x2ω)

with respect to x2ω is πω(x2ω)aω. The objective function value of the large subproblem

(3.5) may be rewritten as

z2 = c2x2 +
∑

ω

pωz
ω
3
(x2), (3.15)
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and in light of the previous discussion, it is apparent that for any i ∈ Ω,

∂z2

∂x2i

= c2i +
∑

ω pω

∂zω
3

∂x2i

= c2i + pi

∂zi
3

∂x2i

= c2i + piπ
iai.

(3.16)

When an infinitesimal amount of resources (−Mx2j,Mx2k) are transferred between

two scenarios, the corresponding change in the objective function value (3.15) is thus

Mx2j

∂z2

∂x2k

− Mx2k

∂z2

∂x2j

. (3.17)

If the expected value constraint (3.8) is to be satisfied, then Mx2j = Mx2k

αk

αj

, and

Mx2k

∂z2

∂x2k

− Mx2j

∂z2

∂x2j

= Mx2k(
∂z2

∂x2k

−
αk

αj

∂z2

∂x2j

= Mx2k(c2k + pkπ
kak −

αk

αj

(c2j + pjπ
jaj)

= Mx2kαk[
1

αk

(c2k + pkπ
kak) −

1

αj

(c2j + pjπ
jaj)]

= Mx2kαk(ψk − ψj)

(3.18)

where ψj and ψk have the form described by (3.10). Hence (3.10) captures the notion

of the relative value of changing the allocation of resources to some scenario. These

properties are useful in proving the termination and optimality of Algorithm 3.1.

It is now appropriate to state some properties of Algorithm 3.1.

Lemma 3.1 Let ψmin := minω∈Ω ψω(x2ω) denote the smallest price resource function

value at any point in the algorithm. As the algorithm proceeds, ψmin never decreases.

Proof. By construction the condition ψk(x2k + Mx2k) ≤ ψj(x2j − Mx2j) always holds

at the end of Step 2, whether condition (3.12), condition (3.13), or neither is satisfied.

ψk(x2k) is an increasing function of x2k, so ψk(x2k + C) ≥ ψk(x2k) for all C ≥ 0. By

construction, Mx2k ≥ 0, so ψk(x2k) ≤ ψk(x2k + Mx2k). Hence at the end of Step 4,
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after resources have been transferred from scenario j to scenario k, the condition

ψmin ≤ ψk ≤ ψj holds. Since no other resource price function values are affected by

this step, no value of ψi, i ∈ Ω has changed such that ψi < ψmin could be true.

Lemma 3.2 Let ψmin := minω∈Ω ψω(x2ω) denote the smallest resource price function

value at any point in the algorithm. Within 2|Ω| − 1 iterations, the algorithm either

terminates, or ψmin increases.

Proof. There are |Ω| scenarios. Let Ω1 denote the set of scenarios for which

ψi = ψmin, i ∈ Ω, and let Ω2 denote Ω − (Ω1 ∪ Ω′). If follows that |Ω1| + |Ω2| ≤ |Ω|

and that ψi > ψmin for i ∈ Ω2.

In each iteration of the algorithm, a scenario j ∈ Ω2 is selected to transfer resources

to a scenario k ∈ Ω1. If the algorithm does not terminate in Step 2 or in Step 3, then

one of the following occurs in Step 4:

If (3.12) was satisfied, it means that ψk(x2k + Mx2k) > ψmin, and scenario k is

removed from Ω1. But scenario k is also added to set Ω2. If k was the last element

of Ω1, then ψmin < ψi for all i ∈ Ω, and ψmin must be redefined to an increased value.

If (3.13) was satisfied, it means that some resources were removed from scenario

j such that for the new values of ψj and ψk, ψj > ψk; but if any more resources

are removed from scenario j, then it would be true that ψj ≤ ψk. In this case, j is

removed from Ω2. If j was the last element of Ω2, then in the next iteration Ω2 is an

empty set, and the algorithm terminates.

So in each iteration of the algorithm, either an element is removed from Ω1 and

added to Ω2, an element is removed from Ω2, ψmin increases, or the algorithm ter-

minates. The first of these events can only happen |Ω1| times before ψmin must be

increased. The second of these can happen at most |Ω1| + |Ω2| times (once for each

element of Ω2, and once for each element of Ω1 that may be moved into Ω2) before

the algorithm must terminate. If all of the scenarios are members of Ω1, then ψj = ψk

in Step 2 and the algorithm must terminate, so as a worst case if the algorithm is to

proceed, then the largest possible size of the set Ω1 is |Ω| − 1. Therefore the most

iterations that can proceed before the algorithm either terminates or produces an

increase in ψmin is 2|Ω| − 1.
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The meaning of the set Ω′ in the algorithm is now clear. The set Ω′ is the set of

scenarios whose resource price function values are greater than or equal to ψmin, but

to whom resources cannot be removed without causing their resource price function

values to fall below ψmin. From a graphical perspective, Ω′ represents the set of

scenarios {ω ∈ Ω : zω
3
(x2ω) is known to be at2 a vertex}, and any decrease in the

allocation of resources to scenario ω would result in a decrease in the resource price

function below ψmin. Figure 3.1 provides an illustration of what it means for a scenario

to be in Ω′. It can now be proved that the algorithm terminates in a finite number

of iterations.

Theorem 3.1 If Algorithm 3.1 is applied to a problem with a finite number of sce-

narios (|Ω| <∞), then the algorithm terminates in a finite number of iterations.

Proof. The resource price function for each scenario is an increasing step function

with a finite number of pieces. From Lemma 3.2, for a given ψmin := minω ψω(x2ω)

at a particular point in the algorithm, if the algorithm has not terminated after 2|Ω|

iterations, then ψmin has increased. Since |Ω| is finite and since each resource price

function is composed of a finite number of pieces, ψmin can only increase a finite

number of times before the algorithm must terminate.

Theorem 3.2 Let (xδ
2
, xωδ

3
) denote the terminal solution of Algorithm 3.1 when a

given value of δ is used in Step 3 of the algorithm. Then

lim
δ→0

(xδ
2
, xωδ

3
)

is the optimal solution to the large subproblem (3.5).

Proof. Let (x′
2
, x′

3

ω) := limδ→0(x
δ
2
, xωδ

3
) denote the solution obtained at termination

of Algorithm 3.1. If (x′
2
, x′

3

ω) is not optimal, then there must exist a Mx2 6= 0 such

2Or, for a practical implementation, x2ω is within
δ

αω

of a vertex
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(b)

(a)

x2ω

ψω(x2ω)

x’’x’

x2ω

z3
ω(x2ω)

x’’x’

Figure 3.1: (a) Sample optimal objective function value as a function of x2ω. (b)
Resource price function associated with (a). The point at x′ represents a point that is
not at a vertex of zω

3
(x2ω). x′ can be decreased without decreasing the resource price

function value. The point at x′′ is at a vertex of zω
3
(x2ω). If x′′ is decreased, then the

resource price function must decrease. If x2ω = x′, then ω 6∈ Ω′. If x2ω = x′′, then
depending on the current value of ψmin, ω might be ∈ Ω′.
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that

αMx2 = 0

c2Mx2 +
∑

ω pω[zω
3
(x′

2
+ Mx2) − zω

3
(x′

2
)] < 0.

(3.19)

zω
3
(x′

2
+ Mx2) is piecewise-linear and convex in Mx2. c2Mx2 is also linear (and thus

convex) in Mx2, so c2Mx2 +
∑

w pω[zω
3
(x′

2
+ Mx2) − zω

3
(x′

2
)] is also convex in Mx2. By

this convexity property, if c2Mx2 +
∑

w pω[zω
3
(x′

2
+ Mx2) − zω

3
(x′

2
)] > 0, then it must

also be true that c2λMx2 +
∑

w pω[zω
3
(x′

2
+ λMx2) − zω

3
(x′

2
)] > 0 for any λ such that

0 < λ ≤ 1, including infinitesimally small values of λ. In that case the expression

∑

w

pω[zω
3
(x′

2
+ λMx2) − zω

3
(x′

2
)] (3.20)

may be replaced with the appropriate dual values. If Mx2ω > 0, then

zω
3
(x2ω + Mx2ω) − zω

3
(x2ω) = Mx2ωπ

ωaω = Mx2ωψω(x2ω). (3.21)

If Mx2ω < 0, then

zω
3
(x2ω + Mx2ω) − zω

3
(x2ω) = Mx2ωπ

ωaω = Mx2ωψω(x2ω − Mx2ω). (3.22)

(Recall that ψω indicates the value of increasing the allocation to scenario ω. To

evaluate what happens when resources are deallocated, the resource price function

ψω must be evaluated at its proposed final allocation instead of its initial allocation.)

And of course if Mx2ω = 0 then

zω
3
(x2ω + Mx2ω) − zω

3
(x2ω) = 0. (3.23)

For the given solution Mx2ω to (3.19), let S1 := {ω ∈ Ω : Mx2ω > 0} and let

S2 := {ω ∈ Ω : Mx2ω < 0}.
∑

ω αωMx2ω = 0 and Mx2 6= 0, so both S1 and S2 must
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be non-empty with

∑

ω∈S1

|α2ωMx2ω| =
∑

ω∈S2

|α2ωMx2ω|. (3.24)

Now it will be shown that if any Mx2 exists that satisfies (3.19) and (3.24), then

a solution must exist where S1 and S2 each contain exactly one element. Such a

solution Mx′
2

can be constructed as follows:

For any solution Mx2 to (3.19) and (3.24), define ϕ > 0 as

ϕ , c2Mx2 +
∑

ω

pω(zω
3
(x2 + Mx2) − zω

3
(x2)). (3.25)

Choose any i ∈ S1 and j ∈ S2. Let Mx′
2i := max[Mx2i,−Mx2j

αj

αi

] and let

Mx′
2j := min[Mx2j,−Mx2i

αi

αj

]. Also let Mx′
2k := 0 for all k ∈ Ωr {i, j}. By construc-

tion, Mx′
2

satisfies αMx′
2

= 0.

Let ϕ′ := c2Mx′2 +
∑

ω pω(zω
3
(x′

2
+ Mx′

2
) − zω

3
(x′

2
)). If ϕ′ > 0, then Mx′

2
satisfies

(3.19) and (3.24), and also satisfies the desired condition of having exactly one element

in each of S1 and S2.

If ϕ′ ≤ 0, then let Mx2 := Mx2 − Mx′
2

and ϕ := ϕ− ϕ′. Now Mx2 still satisfies

(3.19) and (3.24). The new solution Mx2 has at least one fewer nonzero element

than the old solution, but it still must have at least one element in S1 and S2. This

procedure may be repeated until either a ϕ′ > 0 is found, or until there are exactly

two nonzero elements of Mx2 remaining. In the latter case, ϕ must still be greater

than 0, so this Mx2 is a valid two-element solution to (3.19) and (3.24), with Mx2i > 0

for exactly one element of i ∈ Ω and Mx2j < 0 for exactly one element of j ∈ Ω. Since

this solution satisfies (3.19),

Mx2i = −Mx2j

αj

αi

. (3.26)
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Using an infinitesimal positive multiple of Mx2, it follows that

c2Mx2 +
∑

ω pω(zω
3
(x2 + Mx2) − zω

3
(x2))

= c2iMx2i + c2jMx2j + piz
i
3
(x2i + Mx2i) − piz

i
3
(x2i)

+pjz
j
3(x2j + Mx2j) − pjz

j
3(x2j)

= (c2i + piπ
i(x2i)ai)Mx2i + (c2j + pjπ

j(x2j − |Mx2j|)aj)Mx2j

= αi

[

c2i + piπ
i(x2i)ai

αi

Mx2i +
c2j + pjπ

j(x2j − |Mx2j|)aj

αi

Mx2j

]

= αi

[

c2i + πi(x2i)ai

αi

Mx2i −
c2j + πj(x2j − |Mx2j|)aj

αj

Mx2i

]

= αiMx2i [ψi(x2i) − ψj(x2j − |Mx2j|)] .

(3.27)

αiMx2i is positive. At the termination of the algorithm, by construction ψi(x2i) ≥ ψmin

and ψj(x2j − |Mx2j|) ≤ ψmin, so the quantity in (3.19) is necessarily nonnegative. Thus

a contradiction exists, and at the termination of the algorithm, there can be no

solution Mx2 to (3.19) where Mx2i > 0 for exactly one i ∈ Ω and Mx2j < 0 for exactly

one j ∈ Ω. Then there can be no solution Mx2 6= 0 to (3.19). And therefore the

solution at the end of the algorithm is the optimal solution.

Corollary 3.1 Let ψmax and ψmin denote the maximum and minimum resource price

function values at the termination of Algorithm 3.1. Then for any choice of δ > 0 in

Step 3, the terminal objective function value z2(x
δ
2
, xωδ

3
) is optimal for (3.5) to within

|Ω|δ(ψmax − ψmin).

Proof. Corollary (3.1) can be seen to be true by the following argument. At the

termination of the algorithm,

ψmin ≤ ψω(x2ω) ≤ ψmax (3.28)

ψω(x2ω − δω) ≤ ψmin, (3.29)

where δω := δ
αω

, and for all ω ∈ Ω. Let us find two scenarios i and j such that

ψi = ψmax and ψj = ψmin. The allocation for scenario i, x2i, is “near” (within δi :=
δ

αi

)

but not necessarily “at” a vertex of zi
3
(x2i). The optimal objective function value may

be improved by moving the allocation of scenario i to a vertex.
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Suppose the allocation for scenario i lies exactly δ′i ≤ δi from a vertex such that

ψi(x2i − δ̂) ≥ ψmin for δ̂ < δ′i. Then the amount to deallocate from scenario i is exactly

δ′i units of resources. To maintain the feasibility of the expected value constraint, this

deallocation must be accompanied by a reallocation of δ′j := δ′i
αi

αj

resources to scenario

j.

The resulting change in the objective function after this transfer of resources is

Mz2(x2) := αiδ
′

iψi(x2i) − αjδ
′

jψ̃j. Here, ψ̃j represents a linear combination of all the

resource price function values for scenario j that occur between x2j and x2j + δ′j.

ψj(x2j) = ψmin, and ψj(x2j + δ′j) ≥ ψmin, so by a convexity argument ψ̃j ≥ ψmin.

ψi(x2i) = ψmax and δ′ := αiδ
′

i = αjδ
′

j ≤ δ, so therefore

Mz2(x2) ≤ δ(ψmax − ψmin). (3.30)

After the transfer of resources, the allocation for scenario i is now at a vertex, and no

further improvement is possible for that scenario. These additional sub-delta transfers

can occur no more than |Ω| times before all scenario allocations are at vertices and

absolutely no further improvement is possible.

3.4 A Modified Benders Decomposition

Algorithm

Given an efficient technique for solving the large subproblem (3.5) that simultane-

ously solves for (x2, x
ω
3
), the technique can be included into a Benders decomposition

algorithm that can solve the whole expected value constrained problem (3.9). The

following modified Benders decomposition algorithm performs that task.

Algorithm 3.2 Modified Benders decomposition for solving the full problem (3.9)

Step 1. Obtain a feasible solution (x1) to the relaxed master problem
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A11x1 = b1

x1 ≥ 0.
(3.31)

Step 2. Using the solution x1 obtained in the previous step, solve the large subprob-

lem

Minimize c2x2 +
∑

ω pωc
ω
3
xω

3
= z2 − c1x1

subject to A22x2 = b2 + A12x1 : ρ

−Aω
23
x2 + Aω

33
xω

3
= bω

3
+ Aω

13
x1 : πω ∀ω ∈ Ω

x2, xω
3

≥ 0

(3.32)

using Algorithm 3.1. By choosing an appropriate value for δ in Step 3 of Algorithm

3.1, the user can use the results of corollary (3.1) to solve the large subproblem to

arbitrary accuracy. If an unbounded solution was returned, then mark the problem

as unbounded and stop. If a feasible solution was returned, record the dual solution

(ρ, πω) and the optimal objective value z2 to this problem.

Step 3. If the preceding large subproblem was infeasible, find one scenario ω ∈ Ω for

which the scenario subproblem (3.2) cannot be made feasible. Record the extreme

dual vector (πω) and add the feasibility cut

πωAω
13
x1 + πω(bω

3
+ Aω

23
x2) ≤ 0 (3.33)

to the master problem. If the subproblem was feasible, record the optimal dual values

(ρ, πω) and add the optimality cut

−

[

∑

ω

(pωπ
ω)Aω

13
+ ρA12

]

x1 + θ ≥
∑

ω

(pωπ
ω)bω

3
+ ρb2 (3.34)

to the master problem.
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Step 4. Solve the master problem

Minimize c1x1 + θ = z1

subject to A11x1 = b1

−Gx1 + θ ≥ g optimality cuts

−G′x1 ≥ g′ feasibilty cuts

x1 ≥ 0

(3.35)

to obtain a new intermediate optimal solution (x1, θ) and intermediate objective func-

tion value z1. If the master problem is infeasible, then record the problem as infeasible

and stop. If the master problem was feasible with z1 = z2, then record (x1, x2, x
ω
3
)

as the optimal solution to the problem and stop. If the master problem was feasible

with z1 > z2, then return to Step 2 with the new intermediate first-stage solution x1.

⁄

Some additional comments about this algorithm are in order. In Step 3, a fea-

sibility cut may be needed to restrict the feasible region of x1 so that a feasible

second-stage solution might be found. When the feasibility cut

πωAω
13
x1 + πω(bω

3
+ Aω

23
x2) ≤ 0 (3.36)

is made, a current value for x2 that produced the infeasible scenario subproblem

should be substituted in place of the x2 in the above expression. An explicit x2 term

should not appear in the feasibility cut in the master problem.

If an optimality cut is needed, then the dual value ρ of the expected value con-

straint in the large subproblem needs to be obtained. This value is never determined

explicitly in the context of solving the large subproblem with the simplex method.

But its value can readily be obtained by realizing that ρ represents the increase in

the objective function that would be obtained by increasing the right-hand side of

the expected value constraint b2 + A12x1. Keep in mind the metaphor of using the

expected value constraint to decide how to allocate some resource among the differ-

ent scenarios. The right-hand side of the expected value constraint represents the

total amount of resources available for allocation to the scenarios. Then ρ is simply a
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measure of the change in the objective function value per change in the total amount

of resources to allocate. If additional resources did become available (i.e., if b2 were

to increase), then the sensible thing to do would be to allocate the new resources to

the scenario(s) such that it would have the greatest beneficial effect on the objective

function value. These scenarios can be identified by their resource price function

(3.10) values, and hence the value for ρ must be

ρ = min
ω∈Ω

ψω. (3.37)

3.4.1 Implementation in DECIS

The DECIS software package [11] used to produce the results in the previous chapter

is designed for two-stage linear stochastic optimization problems that may be cleanly

decomposed into a master problem such as (3.1) or (3.4) and independent subproblems

such as (3.2). DECIS required some modifications in order to handle problems that

are decomposed into a master problem (3.4) and a large subproblem such as (3.5).

This section describes the nature of these modifications.

Partitioning the problem

For expected value constrained problems that satisfy the required conditions for Al-

gorithm 3.1, the input files to DECIS are configured such that the master problem

resembles (3.1) and the independent subproblems resemble (3.2). That is, the same

input files are used to solve the problem with the modified Benders decomposition

algorithm (3.2) as are used to solve the reformulated expected value constrained

problem. While solving the relaxed master problem in the first iteration and the

master problem with cuts in subsequent iterations, DECIS determines a solution for

both x1, the original first-stage decision variables, and x2, the problematic variables

represented in the expected value constraint.
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Implementing Algorithm 3.1

Program control then moves to the modified portion of DECIS that solves the large

subproblem. The values of x1 from the solution of the master problem are passed

to this section of the program. The values for x2 from the solution of the master

problem are discarded in favor of the initial allocation

x2ω =
b2 + A12x1

∑

ω αw

∀ω ∈ Ω. (3.38)

This allocation is a feasible for the expected value constraint, and it usually provides

a better starting point for the algorithm than the solution for x2 generated by DECIS.

To continue with the implementation of Algorithm 3.1, the program obtains dual

solutions to all the subproblems and computes ψω for all scenarios. The program

proceeds to determine candidates repeatedly for transferring resources and calculates

how resources are to be transferred until the termination conditions of the algorithm

are reached. With the given value of x1 and the optimal value of x2 for that choice of

x1, all of the subproblems are solved again in order to obtain the optimal dual values

πω. The resource price functions are evaluated one more time to help determine

ρ = minω∈Ω ψω.

Adjusting the cuts

Some further adjustments are necessary to apply an optimality cut to the master

problem. As far as DECIS is concerned, intermediate values for x2 are decided in the

master problem, and those variables should be represented in the cuts. But for the

purposes of the modified Benders decomposition algorithm, the values for x2 in the

master problem are ignored except to guarantee that values for x1 are chosen that

allow the expected value constraint to be feasible.

Once an optimal solution (x2, x
ω
3
, ρ, πω) has been determined for the large subprob-

lem, the following adjustments must be made to create a cut suitable for application

to the master problem in DECIS:

1. As DECIS iterates through the scenarios for the final time, it keeps a running
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total of the quantities
∑

ω pωπ
ωbω

3
,

∑

ω pωπ
ωAω

13
, and

∑

ω pωπ
ωAω

23
. The last of

these three quantities can be ignored.

2. When ρ := minω ψω has been determined, the scalar quantity ρb2 and vector

quantity ρA12 must be calculated.

3. The cut that is finally added to the master problem has the form

−(ρA12 +
∑

ω

pωπ
ωAω

13
)x1 + θ ≥ ρb2 +

∑

ω

pωπ
ωbω

3
. (3.39)

Once the cut has been applied to the master problem, a new iteration begins and

the master problem is solved again.

3.5 Numerical Results

To demonstrate the practical application of the modified Benders decomposition al-

gorithm, a variety of supply-chain problems from HP with different risk management

techniques were solved under many different demand distributions. These problems

were solved and with Problems were solved with a modified version of DECIS [11] that

implements the modified Benders decomposition algorithm from the previous section.

Results of these experiments are presented below, including the characteristic size of

the model, the number of demand scenarios used, the number of Benders iterations

required to achieve a solution, the number of scenario subproblems that were solved

to achieve a solution, and the CPU time in seconds needed to solve the problem on

a high-end Silicon Graphics workstation.

In the modified Benders decomposition implementation, the value for delta (see

Step 3 of Algorithm 3.1) was selected to be 0.01 times the probability of the least likely

stochastic outcome. This value was thought to represent a good tradeoff between ac-

curacy (using higher values of delta makes the solutions to the large subproblems less

accurate) and computational effort (a lower value of delta requires extra subproblems

to be solved, increasing computational effort).



CHAPTER 3. A MODIFIED BENDERS DECOMPOSITION ALGORITHM 67

Conventional EV constrained model

model Reformulated soln. Modified Benders

Problem
no. of scen.

soln.
time

MP/SP
soln.
time

MP/SP
soln.
time

MP/SP

tom1K–5 0.08 2/10 0.08 2/10 0.21 2/71

tom1K–25 0.36 13/109 0.53 8/200 0.85 2/392

tom1K–100 0.88 13/409 7.40 32/3200 7.76 12/2917

tom10K–5 0.31 22/58 0.42 28/75 2.10 16/1052

tom10K–25 0.68 28/220 3.89 93/1802 8.09 13/4344

tom10K–100 2.26 31/1120 598.47 2094/2.1E5 33.99 14/1.7E4

tom29K–5 0.37 25/73 0.70 51/185 1.14 17/514

tom29K–25 0.97 33/393 18.49 343/7639 16.29 18/8997

tom29K–100 2.88 33/1518 1431.93 5615/5.5E5 58.88 21/3.1E4

bap10K–5 122.72 425/2121 146.02 448/2230 132.47 421/4206

bap10K–25 168.16 423/1.1E4 923.42 999/2.5E4 240.56 425/2.1E4

bap10K–100 310.03 420/4.2E4 6698* 2335/2.2E5 530.09 425/8.5E4

bap1M–5 283.41 647/3231 497.76 940/4690 335.61 649/6486

bap1M–25 347.09 647/1.6E4 1980.37 1902/4.6E4 507.45 648/3.2E4

bap1M–100 565.15 647/6.5E4 †† ††/†† 952.93 649/1.3E5

bap5M–5 346.57 673/3361 524.89 900/4490 992* 665/7460

bap5M–25 473.53 852/2.1E4 3243* 2532/6.0E4 799.95 867/4.4E4

bap5M–100 893.57 925/9.2E4 †† ††/†† 1512.79 960/2.0E5

dlaw5K–5 5377* 4081/2.0E4 11542* 6102/3.0E4 6069* 4125/4.1E4

dlaw5K–25 7684* 4292/1.1E5 †† ††/†† 9793* 4199/2.1E5

dlaw200K–5 22297* 1.4E4/6.8E4 †† ††/†† 52143* 1.7E4/6.2E5

dlaw200K–25 30075* 1.5E4/3.7E5 †† ††/†† 78341* 1.5E4/1.5E6

Table 3.1: Results for HP Supply Chain Models with conventional risk management
constraints, expected value constraints solved by reformulation and conventional Ben-
ders decomposition, and expected value constraints solved with the modified Benders
decomposition algorithm. Except where noted, solution time refers to CPU seconds
of a single processor needed to solve the problem.
† Characteristic size of these problems:

Problem MP size SP size Deterministic size with |Ω| = 100
tom 39 × 39 163 × 149 16339 × 14939
bap 265 × 265 548 × 817 54965 × 81965
dlaw 378 × 383 2844 × 4980 284748 × 498382

†† A solution was not obtained for this problem in fewer than 25 hours or 25000 iterations.
∗ Solution time is reported in real seconds, not CPU seconds — this is a minor overestimation of
the CPU time needed to solve the problem.
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3.6 Discussion of Numerical Results

The previous section provides a demonstration that the modified Benders decom-

position algorithm presented in this chapter can be used to solve expected value

constrained problems. Where a direct comparison can be made between using the

modified Benders decomposition of this chapter and the reformulated problem of the

previous chapter to solve an expected value constrained problem, the number of it-

erations and amount of computational effort needed to solve a problem are typically

much smaller for the modified Benders decomposition.

Using the modified Benders decomposition on the expected value constrained

problem takes about the same number of iterations as regular Benders decomposi-

tion on the conventionally constrained problem. But the modified algorithm typically

needs to solve many more subproblems. In the conventional problem, the ratio of the

number of subproblems solved to the number of master problems solved is related

to the number of scenarios. In the modified Benders decomposition, that ratio is

typically much higher because the scenario subproblems are all solved many times in

the context of solving the large subproblem (3.5).

The computational effort needed to solve the expected value constrained problem

with the modified Benders decomposition is larger than the effort needed to solve a

similar conventionally constrained problem, but the effort is comparable. In most

cases, if the conventional problem can be solved in a reasonable amount of time, then

the expected value constrained problem can be, too. With the modified Benders

decomposition algorithm, many useful expected value constrained problems are now

practical to solve.



Chapter 4

Extensions and Future Research

The algorithm that was presented in Chapter 3 was applicable to only a subset of

stochastic programs with expected value constraints, namely, those with a single

equality expected value constraint, and with a single representative from each scenario

in the expected value constraint. This class of expected value constrained problems

contains many useful examples that can be solved by the method of the previous

chapter. But other interesting expected value constrained problems do not satisfy

these conditions, and other techniques must be considered.

This short chapter discusses how some of the conditions from the previous chapter

may be relaxed. Finally, the new knowledge about expected value constraints is

summarized.

4.1 Inequalities in Expected Value Constraints

The case where the expected value constraint is an inequality is straightforward

enough to deal with. The inequality can be converted to an equality with the in-

troduction of an appropriate slack variable; that is,

∑

i∈Ω

α2ix2i ≤ x̂2 (4.1)

69
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becomes

x20 +
∑

i∈Ω

α2ix2i = x̂2. (4.2)

The problematic variable x20 ≥ 0 can be thought of as the resources that are

allocated to an artificial scenario that has no effect on the subproblem objective

function value. All that is left is to define an appropriate resource price function for

this artificial scenario. Since transferring resources to and from this artificial scenario

has no direct effect on the large subproblem objective function value, an appropriate

function is

ψ0(x20) =











∞ x20 < 0

0 x20 ≥ 0.
(4.3)

x20 < 0 is not a feasible value for this slack variable, so there is a substantial

penalty for choosing x20 ≥ 0 (that is, a strong incentive to add resources to artificial

scenario 0 when x20 < 0).

If (4.1) were a ≥ constraint rather than a ≤ constraint, the appropriate artificial

resource price function would be

ψ0(x20) =











−∞ x20 > 0

0 x20 ≤ 0.
(4.4)

In this case whenever x20 > 0, there is a substantial incentive for the algorithm to

remove resources from the artificial scenario 0.

4.2 Expected value constraints with more than

one representative from some scenarios

It may be that there is more than one nonzero coefficient from some scenarios in the

expected value constraint.
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Example 4.1 A contrived example of this situation is the HP supply chain problem
where a lower bound is placed on the sum of the expected profit and the expected
inventory reduction. That is, the constraint

∑

ω∈Ω

pω(P ω +Rω) ≥ Q̂ (4.5)

is added to the model (2.1.2). Or more generally,

∑

ω∈Ω

αω
PP

ω + αω
RR

ω ≥ Q̂. (4.6)

⁄

In this instance there are two resource price functions for scenario i—one indi-

cates the relative value of increasing P i, and the other indicates the relative value of

increasing Ri. Conceivably, one could simultaneously increase the profit target for

scenario i and reduce the inventory reduction target for scenario i, and hence improve

the subproblem objective function value just by transferring resources within scenario

i.

A workaround is to define a set of artificial problematic variables and to remove

the other variables from the expected value constraint. In the contrived example, one

may define

Qω := αω
PP

ω + αω
RR

ω. (4.7)

Then the expected value constraint (4.6) may be rewritten as

∑

ω∈Ω

Qω ≥ Q̂, (4.8)

and the additional constraint

αω
PP

ω + αω
RR

ω = Qω (4.9)

can be added to the independent subproblems. Now the expected value constraint

and the independent subproblems have the necessary form for the application of the
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modified Benders decomposition algorithm from the previous chapter.

4.3 More than one expected value constraint

Some of the concepts of the modified Benders decomposition algorithm from the

previous chapter can still be applied to problems where the conditions for using the

algorithm do not hold. For example, in the previous chapter two scenarios were

selected for a transfer of resources. An optimization problem was solved to determine

how many resources to transfer. After the transfer, the expected value constraint was

still satisfied, and the transfer resulted in an improved objective function value for

the large subproblem.

In the case where there is more than one expected value constraint, all of these

concepts are still applicable. The only problematic issue is with the first step, where

two scenarios are singled out for a transfer of resources. When there is only a single

expected value constraint in a problem, then there is a unique resource price function

for each scenario. The scenarios with the highest and the lowest values of this function

are selected for transferring resources. When there is more than one expected value

constraint, then each scenario has more than one resource price function. Alterna-

tively, one could say that the resource price function maps a set of decision variables

x2 to an m2-dimensional vector, where m2 is the number of expected value constraints

in the problem.

For ordered tuples of higher order than one, there is not necessarily a logical

ordering for the function values of each scenario, and there may not be an obvious

method for selecting those scenarios. Furthermore, there is not necessarily a way to

transfer resources between two scenarios while still satisfying more than one expected

value constraint. It may be necessary to select and transfer resources between as

many as m2 + 1 scenarios to simultaneously satisfy m2 expected value constraints.

In any case, if a suitable set of scenarios is determined, an optimization problem

can be constructed whose solution determines how to transfer resources between these

scenarios. The problem would consist of all of the scenario subproblems for the cho-

sen set of scenarios. There would also be an additional constraint for each expected
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value constraint—these constraints would assert that each expected value constraint

remains satisfied after a transfer of resources. As a brute force algorithm, one could

try every possible permutation consisting of m2 + 1 scenarios and attempt to move

resources among those scenarios. After a sequence in which every possible permu-

tation was tried without improving the large subproblem objective, it could be said

that the optimal objective solution to the large subproblem had been achieved. More

research is necessary to discover if there is a better way of determining the best order

in which to attempt to transfer resources, or if a general optimality condition exists

that would allow the algorithm to terminate without trying all possible permutations

of the scenarios.

As a last resort for the most general of expected value constrained problems,

the nested Benders decomposition or nested Dantzig-Wolfe decomposition algorithms

presented in the previous chapter may be applied.

4.4 Summary

Expected value constraints provide another way to apply risk management to stochas-

tic programs. They have advantages over other constraint-based methods in that the

feasible region of an expected value constrained problem is not as dependent on the

worst-case scenarios as other types of constraints. Their main disadvantage is that

an expected value constraint wrecks the dual-angular structure of a stochastic pro-

gram, so large problems cannot make full use of Benders decomposition in order to

be solved. A reformulation of expected value constrained problems exists that does

have a dual-angular structure, but Benders decomposition tends to perform poorly on

those problems, so many useful expected value constrained problems are not practical

to solve that way.

A modified Benders decomposition algorithm exists that has many advantages

over the reformulation of the problem. The algorithm may be applied under certain

conditions, including a limit of one expected value constraint in the problem. In this

algorithm, the expected value constraint is solved for simultaneously with the inde-

pendent scenario subproblems, and typically requires many fewer iterations than the
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conventional Benders decomposition with the reformulated problem. This algorithm

makes many larger expected value constrained problems practical to solve. The com-

putational effort needed to solve problems with this approach is often not much more

than the effort needed to solve the problems without the expected value constraint.

More research can be done on extending the algorithm to cover a larger class

of problems, especially problems with two or more expected value constraints. But

the work presented in this thesis demonstrates that problems with expected value

constraints are useful, and in many cases practical to solve.
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