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Abstract

Mathematical programs with equilibrium constraints (MPECs) are optimization prob-
lems with some constraints defined in terms of complementarity systems. Important
applications of these problems arise in engineering design problems of mechanical
structures, economic models, and option pricing. We have developed a new algo-
rithm for MPECs, which we apply to solve novel economic models of deregulated

electricity markets.

It can be shown that constraint qualifications typically assumed to prove conver-
gence of standard algorithms fail to hold for MPECs. As a result, applying standard
algorithms is problematic. To circumvent these problems, various reformulations of
MPECs have been proposed. One of these approaches involves the use of smoothing
functions with favorable properties to substitute for the complementarity constraints.
We investigate a new sequential quadratic programming algorithm for equilibrium-
constrained optimization (ECOPT) based on such a smooth reformulation. The al-
gorithm employs a specialized termination criterion as well as update rules for the
Lagrangian Hessian. Numerical tests on standard test problems show its performance
is superior to that of state of the art nonlinear optimization algorithms as well as some

other algorithms specifically designed to solve MPEC problems.

We also present a new mathematical model of electricity forward markets. The
lack of working forward markets in electricity has been identified as one of the main
obstacles to current deregulation efforts. Our new model incorporates a Cournot
equilibrium for the spot market and considers actions by producers in the forward
market. The mathematical model is an instance of an MPEC. Using ECOPT to

solve the producer’s problem, one can find Nash equilibria in the forward market.



The application of the model to a six-node network with two competing producers
reveals a fundamental relationship between transmission capacity and forward mar-
kets. We also demonstrate how to apply the model to gain a better understanding of

transmission investment decisions in deregulated electricity markets.
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Chapter 1

Introduction

1.1 Problem statement

The Mathematical Program with Equilibrium Constraints (MPEC) is given by

min  f(z,y)
Ty
subject to  g(x,y) >0 (1.1)

y >0, F(z,y) >0, y"F(z,y) =0,

where f: R — R, ¢g: R — R', and F': R"™ — IR™ are twice continuously
differentiable functions. More specifically, (1.1) is an MPEC with nonlinear comple-
mentarity constraints, since the lower-level constraints take the form of a parametric

nonlinear complementarity problem
y>0, F(z,y) >0, y"F(z,y) =0.

The formulation (1.1) extends easily to more general formulations of MPECs since

the upper-level constraints g(x,y) > 0 are joint constraints in all variables.
Originating from engineering problems, the first-level variables x are sometimes

called design variables while the second-level variables y are referred to as state vari-

ables. The history of the MPEC can be traced back to the economic notion of a

1



2 CHAPTER 1. INTRODUCTION

Stackelberg game [Sta52]. Many application in the fields of economics, engineer-
ing, and finance can be formulated as MPECs, see the monograph [LPR96] for an
overview. The term “equilibrium constraints” in MPEC refers to the complemen-
tarity constraints, or more general variational inequality constraints, which represent

certain equilibrium conditions in engineering and economic models.

Mathematically the MPEC is a very challenging problem. First of all, the so-
lution set to the lower-level complementarity constraints is nonconvex so that the
best one can hope for is to find local solutions of (1.1). Second, as we will see later,
certain constraint qualifications needed to prove convergence for standard nonlinear
optimization algorithms fail to hold at any feasible point. Specialized algorithms are
needed to address this particular problem. Indeed, at the present time, no fast and

reliable solvers for MPECs are available.

The MPEC can be seen as a generalization of a bilevel program where the second-
level optimization problem is written in terms of its optimality conditions. In recent
years, many interesting applications in engineering and economics have been for-
mulated as MPECs. For example, the first application of MPECs to deregulated
electricity markets was suggested in [HMPOO].

In this thesis, we address mathematical as well as modeling aspects of MPECs.
First, we investigate the theoretical and practical properties of a new algorithm for
the solutions of MPECs. The numerical tests show that the new approach advances
the current state of algorithms for MPECs and performs better than state-of-the-art
algorithms for standard nonlinear optimization. Second, we present a new model
for forward markets in deregulated electricity environments. The model addresses
the important strategic interactions between forward and spot markets in electricity,
which have not been studied in this detail until now. In particular the inclusion of an
accurate network representation of the electricity grid allows the study of complicated
strategic interactions between market players in the spot and forward market. As a
byproduct of our analysis, an intrinsic relationship between transmission capacity and

the development of forward markets is revealed.

This chapter begins by describing two applications; an optimal design problem
from engineering and the Stackelberg game in economics. We review the current

state of deregulated electricity markets and give a preview of later chapters.
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1.2 Applications

1.2.1 Engineering: Optimal design of mechanical structures

The following structural optimization problem, whose objective is to minimize the
weight of a truss subject to meeting certain load-bearing specifications, is described

as one of the source problems in the monograph [LPR96].

Suppose that we have a mechanical structure, say a truss, with m solid steel bars
or elements whose volumes are specified through the components of a vector ¢ € IR™,
e.g. each ¢; may be the area of the circular cross section of a bar of fixed length. The
stiffness equation relates the vector nodal forces F' to the vector of nodal displacement
u via

F := K(t)u,

where K (t) is the symmetric stiffness matrix that is positive definite for ¢ > 0, such

as

and each K; is a symmetric positive definite matrix.

A point that may come into frictionless contact with a rigid obstacle, e.g. the
ground, is considered. The kinematic conditions that nodes of the structure cannot

penetrate the obstacle are expressed by
Cu > g, (1.2)

where C' is a kinematic transformation matrix and ¢ is a vector of initial distances
between nodes and the rigid obstacle. In terms of the matrix C', we can decompose
the nodal forces F' as the sum of the load (external) forces f and forces due to the

unilateral constraints:
F=f+C",

where p is the vector of contact forces, work conjugate to the vector C'u of contact
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displacements. Given the previous stiffness equation, this last equation amounts to
K{tu—f—-C'p=0. (1.3)

Adhesionless contact requires that
p < 0; (1.4)

and ruling out forces without contact gives the complementarity condition:
p'(Cu—g)=0. (1.5)

For each fixed ¢, the conditions (1.2)—(1.5) define a mixed linear complementarity
problem in the variables v and p. A simple form of the minimum weight design
problem is

min  w(t)

t,u,p

subject to t <t <t

and  (1.2)-(L5),

where the goal is to minimize the cost w(t) associated with volume of steel used
over all elements, given lower and upper bounds ¢, and ¢; on the “volume” ¢; of each
element, and lower and upper bounds u; and u; on each displacement u;. Clearly, this
problem is an instance of the MPEC with mixed linear complementarity constraints;
t is the upper-level variable and (u,p) is the lower-level variable. By including the
equality constraints (1.3) into the first-level constraints, it can be cast as an MPEC

of the form (1.1).
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1.2.2 Economics: Generalized Stackelberg games

Nash games

The Stackelberg game is an extension of the renowned Nash game [Nas51]. In the

Nash game, there are M players each of whom has a strategy set Y; C IR™:. The

objective of player i is to minimize its economic cost 6;(y;, yii;'en) by selecting a strategy

given

y; € Y; given that the other players have chosen their strategies yiiiven, where y¥;

denotes the vector (y]give“

the remaining players and then reacts optimally, assuming the other players’ strategies

: j #1). In other words, each player observes the actions of

remain unchanged. A strategy combination y* € H;nzl Y; is called a Nash equilibrium

if no player has an incentive to deviate from his strategy y; in the sense that
y; € argmin{0;(y;, y%;) : yi € i}, Vi

It should be noted that players in a Nash game are in some sense homogeneous since
each of them has access to the same information regarding the other players’ strategies

and the strategy chosen is only dependent on this information.

As an example, consider the special case where the functions Hi(yi,yiiiven) are

convex and continuously differentiable and Y; = IR, i.e., each player i solves the

optimization problem

min 0, (y;, ?/iiiv )
Yi
subject to y; > 0, (1.6)

the Nash equilibrium can be cast as a nonlinear complementarity problem in the
following way: Let p := Y2 m;, y € R, and F(y) := (Fi(y))X, with

Fi(y) =V, 0i(y), i=1,...,M,

then the first-order optimality conditions of all players optimization problems (1.6)
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can be solved simultaneously by solving the nonlinear complementarity problem
y>0,F(y) > 0,y"F(y) =0.

If the strategy spaces Y; are given by general convex sets, the Nash equilibrium

problem takes the more general form of a variational inequality problem, see [LPR96].

Stackelberg games

In contrast to the Nash game, the Stackelberg game has a distinctive player (called the
leader) who can anticipate the (re)actions of the remaining players (called followers)
and use this knowledge in selecting his optimal strategy (see [Ras94]). Specifically,
the leader chooses a strategy from the strategy set X € IR", while each follower 7 has,
corresponding to each of the leader’s strategies © € X, a closed and convex strategy
set Y;(z) C IR™ and a cost function 0(z, -) : H]]Vil R, — IR, where M is the number
of followers in the Stackelberg game. Note that the follower’s strategy is dependent on
the particular strategy x of the leader and this follower’s cost function is dependent
on both the leader’s and the follower’s strategies. We assume that for any fixed but

given given

arbitrary z8V** € X and yo = (y; 1 j # i), the function
0, (257" s, Y=

is convex and continuous differentiable in the variable y; € Y;(2#8V?).
Collectively, the followers behave according to the Nash noncooperative principle
described before. That is to say, they will choose, for each x € X, the joint response

vector

M
g = (™Y e [ Vi)
i=1
such that foreach i =1,..., M

yPt € argmin{Hi(x,yi,y;I;t) ty; € Yi(x)}

For simplicity, we will again assume that Y;(z) = R, for all z € X, so that each
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follower ¢ solves the parametric optimization problem

: iven given
min 91 (:L.g » Yis y;éz )

Yi

subject to y; > 0.

The joint response vector y € IR? is then the solution to the parametric nonlinear

complementarity problem
y>0,F(z,y) > 0,y"F(z,y) =0,
where F(z,y) := (Fi(z,y))X, with
Fi(z,y) =V, 0i(x,y), i=1,...,M.

Let f:IR™” — IR be the leader’s cost function which depends on both his own and
the follower’s strategies. Assume that the feasible set X is described by inequalities

of the form g(x) > 0. The Stackelberg game problem is to determine the solution of
the following MPEC in the variables (z,y) € R"*":

min  f(z,y)
Ty
subject to g(x) >0 (1.7)
y>0,F(z,y) >0,y F(z,y) = 0.

Notice that (1.7) is an instance of (1.1) with first-level constraints only involving

first-level variables.

1.3 Deregulated electricity markets

1.3.1 History

The United States has recently begun the process of deregulating the electric power
industry. In 1998, California, Massachusetts and Rhode Island were the first states to
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be deregulated. Many other US states and international countries have followed since
then, or plan to do so in the near future. This, together with the deregulation of the
electricity industry in England and Wales and many other countries in the late 1980’s
and beginning 1990’s, has prompted a great deal of research into modeling power

markets and trying to predict how prices will react to the new market structure.

Previously, the market was controlled by the government. In such a regulated
market, there is no competition between companies. Each company has a given
set, of consumers, and the consumer has no choice about which company to use.
Prices were set to allow companies to recover their cost and earn a reasonable profit.
Thus, the companies’ profits were restricted. In a regulated market, a company’s
goal is to minimize cost, whereas in a deregulated market, their goal is to maximize
profit. These different goals will very likely lead to different outcomes. After complete
deregulation, the companies are allowed to sell to any consumer at any agreed upon
price. The hope is that the resulting competition between companies will prevent the
prices from inflating over the fair market value (marginal cost including a reasonable
profit).

Early research of the problem focused on simple duopoly models. One key reason
for this was that at the beginning of the 1990’s, two large power companies in England
and Wales, National Power and PowerGen, controlled 79% of the market. PowerGen
began to dominate the market, until regulators forced the company to agree to a price
cap and downsizing by 15% [Gre96]. During this time, there was a drop in prices for
consumers; however, during the same period as deregulation, the price of natural gas
also dropped, and it has not been determined which change had the stronger effect

on consumer prices

Recently, the focus of research activity has been the development in the US mar-
kets, where more players have to be considered and a number of different market
designs exist simultaneaously. Most notably, the current energy crisis in California
points out that more attention has to paid to details such as market rules and physical
properties of electricity networks. The forward market model developed in this thesis

is one contribution to this work.
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1.3.2 Physical properties of electricity networks

There are two reasons why electricity markets differ significantly from other commod-
ity markets. First, electricity is a non-storable good and all power flows over the same
set, of power lines. When an appliance or a light is switched on, electricity has to be
provided instantaneously to avoid a drop in voltage in the overall network. This leads
to a natural interconnection between everyone connected to the network. If there is
not enough generation capacity available to satisfy the demand, the network collapses
and power is lost for all consumers. To avoid this, the operator initiates blackouts to
certain consumers in order to keep the whole network running.

Second, electricity has very special physical properties [SCTBS88], which increases
the need for a supervising authority coordinating all parties connected to the network.
Unlike other commodities distributed over a network (gas, traffic, etc.), if a flow is
generated at one node and extracted at another, the flow will be dispersed over
all paths between the two nodes. This flow can be determined using Kirchhoff’s
voltage and current laws. To illustrate Kirchhoff’s laws, consider the three-node

network shown in Figure 1.1. Assume that a flow of 1 MW is injected at node 1 and

2

1/3 MW 1/3 MW

2/3 MW

Figure 1.1: Power flow in a three-node network

transmitted to node 3. Ignoring losses in the network, Kirchhoff’s law dictates that
only 2/3 of this will flow directly on the line connecting node 1 and 3, while the other
1/3 flows on the lines between node 1 and 2 and the line connecting node 2 and 3.

This special property of electricity flow is sometimes called “loop-flow phenomenon”.
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Another consequence of the physical laws is that flows in opposite directions offset
each other. So, if in the above example, an additional 1 MW would be transmitted
from node 2 to node 3, 2/3 of this would flow on the line from 2 to 3, while the other
1/3 takes the path from 2 to 1 to 3. This offsets the 1/3 MW transmission flowing
from 1 to 2 resulting from the first MW transmitted from node 1 to 3. The full impact
on the network resulting from 1 MW transmitted from 1 to 3 and 1 MW transmitted
from 2 to 3 is depicted in Figure 1.2.

1 MW
Figure 1.2: Offsetting power flows in the three-node network

Notice that no actual flow exists on the line from node 1 to node 2. Several
researchers have studied the economic impact of the loop-flow phenomenon on mostly
small (2 to 6 node) networks, see [BBS98, CP96, Sto99a]. Their findings show that

limited competition on electricity networks can lead to counter-intuitive outcomes.

1.3.3 Forward markets in electricity

One of the main problems that emerged during the recent California energy crises was
the strong reliance on spot markets. At the start of deregulation in California, the
largest utility companies agreed to a rate freeze of retail electricity prices. This way,
small customers were protected from the volatility of electricity prices in the initial
phases of deregulation. The utilities on the other side were forced to buy the elec-

tricity needed for their customers in the volatile spot market. This market rule was
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put in place to enable active trading in the spot market and to avoid possible market
manipulations. Long-term contracts between the utilities and generation companies
were forbidden in the initial design. As a result, no active forward market for these
contracts developed. The expectation was that energy prices would decline and util-
ities would be able to earn a profit and finance their sunk cost. It turned out that

this was a fatal mistake.

Instead of decreasing, electricity prices soared during the last year and utilities
were forced to buy energy at a much higher rate than the regulated retail prices they
were able to charge their customers. This has led to immense debt and the bankruptcy
filing of the largest utility in the state. The unavailability of long-term contracts has
been blamed as one of the reasons for this development [FER00]. As a temporary and
costly solution, recently the state of California has stepped in and negotiated some
long-term contracts while also buying electricity in the spot market for cash-strapped
utilities and their customers. The details of these long-term contracts are not publicly
known at this point, but the average price of electricity in these contracts is much

higher than the average price in previous years.

It is generally accepted that forward contracts have a benefit for the buyer. Lock-
ing in rates in a price-volatile market enables better planning and security for the
buyer. The seller on the other side usually also benefits from long-term contracts.
Under uncertainty of demand, accurate forecasting becomes crucial and forward con-
tracts reduce the risk of over or under capacities in certain periods. In deregulated
electricity markets, it is not so clear if this argument still holds for the seller. Gen-
erators having the choice between the forward and the spot market choose the profit
maximizing combination in a deregulated environment. Where to sell depends mainly
on the price paid in these two markets, especially if generation capacity is sparse as in
the California market. The forward market model developed in this thesis addresses

many of these interesting questions.
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1.4 Main contributions

1.4.1 Theoretical and practical investigation of ECOPT

Developing better algorithms for MPECs is the focus in the first part of this disser-
tation. Our new algorithm ECOPT, which stands for Equilibrium Constraint Opti-
mization, is a sequential quadratic programming (SQP) based algorithm that uses a
smoothing function to reformulate the second-level complementarity condition of the
MPEC. The key improvement over similar methods proposed by other researchers is
the explicit use of second derivatives of the smoothing function.

In Chapter 3 we analyze the theoretical properties of ECOPT. We describe how
to handle infeasible QP subproblems, describe the line-search procedure and prove
the convergence properties of ECOPT. The implementation of ECOPT and extensive
numerical comparison are presented in Chapter 4. We show how to use exact second
derivatives of the smoothing function to update the approximation of the Hessian
of the Lagrangian. In general, this update will not be positive definite using exact
second derivatives. We propose and motivate a special procedure to ensure positive
definiteness.

The numerical tests comparing ECOPT with state of the art nonlinear program-
ming methods and other algorithms specifically designed to solve MPEC problems
demonstrate the improvements made through the use of the smoothing function in

connection with exact second derivatives.

1.4.2 Forward market model for electricity markets

The second part of this dissertation presents a new mathematical model for electricity
forward markets. In Chapter 5 we motivate the development with the analysis of a
small example. Considering only two firms and one transmission line, we derive the
spot-market and forward-market equilibria analytically. The results show an intrinsic
relationship between transmission capacity and the development of forward markets.

Building on the small scale case, we develop a general model for electricity forward

markets in Chapter 6. The general model consists of the spot-market equilibrium and
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the firm’s forward market problem. The detailed mathematical model of the spot
market results in a parametric linear complementarity problem. The spot-market
model serves as constraints in the firm’s forward market problem. The objective
function of each firm in the forward market is a function of forward sales and spot-
market variables. The complete forward market model for a given firm is an instance
of an MPEC.

We also show how to apply MPEC algorithms to find forward market equilibria.
Using ECOPT to solve the firm’s forward market problem, we demonstrate how
to find equilibria in a six-node electricity network. The study of different levels of
transmission capacity extends the results found for the small scale case. We end with
a discussion of the application our results to the transmission expansion problem in

deregulated electricity markets.



14

CHAPTER 1.

INTRODUCTION



Chapter 2

Mathematical Properties of
MPECs

In this chapter we will summarize some of the important mathematical properties
of MPECs needed to develop algorithms that find local solutions of MPECs. The
problem of finding global solutions is much harder and beyond the scope of this
thesis. Even the problem of finding local solution to the MPEC is challenging as we
will see in Section 2.1. Specialized constraint qualifications and optimality conditions

are needed and will be discussed in Section 2.2

2.1 Why are MPECs difficult?

Recall that we want to solve MPECs of the following form:

min  f(z,y)
2,y
subject to  g(x,y) >0 (2.1)

y=0, F(z,y) 20, y"F(z,y) =0,

where f: R™™™ — IR, g : R"™™ — R' and F : R"™™ — IR™ are twice continuously
differentiable functions. More general formulations are possible, see [LPR96], but

most cases can be cast in the form (2.1) by including constraints into g(z,y) > 0.

15
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The lower-level problem in (2.1) is cast as a parametric nonlinear complementarity
problem in the first-level variables z, which is to find a solution of the following system

of equations and inequalities:
Yi Z 0, E(x,y) Z 0 and yzF;(xay) = Oa Viel:= {17 s am}‘

Let (Z,7) be a stationary point of problem (2.1). Associated with (Z, ) we define
the following index sets which play an important role for the disussion of the first-

order optimality conditions of MPECs in Section 2.2:

I :=1I(z,9) = {ll g(z,9) = 0},

a:=a(z,y) = {i|g > 0= F(7,9)},
8= pE,9) ={ilgi=0= F(z,9)},
v :=7,9) ={ily;=0 < Fi(z,9)}.

In particular, we say that (z,y) is nondegenerate if 5 = (), i.e., (z,7) satisfies the

strict complementarity condition 7; + F;(Z,7) > 0 foralli=1,...,m

Tll-conditioned feasible set

As a first approach to solve the smooth problem (2.1), one might be tempted to use
a standard nonlinear programming algorithm. The behavior of these algorithms near
the solution depends critically on the structure of the feasible set. Under certain
conditions, called constraint qualifications, convergence proofs for standard nonlin-
ear programming algorithms hold. Unfortunately, the feasible set of the MPEC, see
Figure 2.1, is ill-posed, since the following two constraint qualifications which are com-
monly assumed to prove convergence of standard nonlinear programming algorithms

do not hold at any feasible point of the complementarity constraints.
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Figure 2.1: Feasible set of the complementarity constraint

Definition 2.1.1. The Mangasarian-Fromovitz Constraint Qualification (MFCQ)

holds at a point Z for the constraints

where g : R" — IR!, h : R" — RP, if and only if the gradients Vh;(z),7 =1,...,p,

are linearly independent and there exists a z € IR" such that

Vo(z)z >0, keI(z)
Vh](ai")z:O, jzl,...,p

and Z(z) := {k : gx(T) = 0}.

Definition 2.1.2. The Linear Independence Constraint Qualification (LICQ) holds

at a point = for the constraints

where g : R" — R/, h : R"® — RP, if and only if the gradients Vh;(z),7 =1,...,p,
and Vgi(z),k € Z(x), are linearly independent.
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Lemma 2.1.3. An optimization problem in (z,y) € R™™ including the following

complementarity system

F(z,y) >0, (2.2)
y =0, (2.3)
y' F(z,y) =0, (2.4)

as part of the constraints does not satisfy the MFC(Q) at any feasible point.

Proof. Assume, MFCQ is satisfied at a feasible point (z,y); that is, there exists a
(¢,7) € R™™ such that

F(z,y)" ¢+ y"(Vy F(z,y)"C + V. F(z,y)"1) =0, (2.5)
V,F(x,y)"' ¢+ V,F(z,y)'t >0, (2.6)
¢ >0, (2.7)
and
F(z,y) + VyF(z,y)"y 0
( VL F @)y ) 7 (o) ‘ >

(There is only one equality constraint, so the independence of the gradients of the

equality constraints reduces to the nonvanishing of the gradient.)

From (2.2) and (2.7) we get
F(z,y)"¢ 20
and (2.3) and (2.6) give
Y (VyF(2,9)" ¢+ V. F(2,y)"'1) > 0.
Together with (2.5) these two inequalities imply

F(z,y)"¢ =0, (2.9)
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and
Yy (VyF(z,y)"¢ + V. F(z,y)'T) = 0. (2.10)

Considering (2.2), (2.7) and (2.9) we get
F(z,y) =0,
and from (2.3), (2.6) and (2.10) it follows that
y = 0.

The last two equalities lead to a contradiction of (2.8). Therefore, MFCQ is not
satisfied at any feasible point of an optimization problem including a parametric
complementarity system as part of the constraints. O

As a consequence, the commonly assumed LICQ also fails.

Corollary 2.1.4. An optimization problem in (x,y) € R"™™ including the comple-
mentarity system (2.2), (2.3), (2.4) as part of the constraints does not satisfy the
LICQ at any feasible point.

The convergence analysis of many algorithms for standard NLP relies, aside some
other assumptions, critically on the MFCQ at the limit point. Without MFCQ,
convergence proofs do not hold any more and numerical problems are to be expected.
In particular, the limit point is not guaranteed to be a stationary point or local
minimum any more. From our experience, see Chapter 4, and some other reports
[JR99, LF00], it is not clear how much this matters in practice. Other factors, such
as bad scaling or inappropriate reformulations, could be equally important reasons

for failures in earlier tests.
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2.2 Constraint qualifications and optimality con-

ditions

In general, the first-order conditions for the MPEC (2.1) are very complicated due to
the combinatorial nature of the constraint system. The first approach to derive first-
order optimality conditions will be the partitioning of the feasible set based on the
complementarity conditions. Under some constraint qualification, the combinatorial

problem reduces to checking stationarity of one particular nonlinear program.

2.2.1 B-stationarity

The thorough treatment of stationarity concepts for MPECs in [LPR96] is based on
B-stationarity and piecewise partitioning of the tangent cone of the constraints. Let S
be an arbitrary subset of IR™. We call u € S a B-stationary point of the minimization

problem

muin f(u)

subject to wuw € S,

if it satisfies
Vf(a)'d >0, Vde Ts(a), (2.11)

where Tg(u) denotes the tangent cone of S at @ that consists of all vectors d for which
there exists a sequence {u”} € S converging to 4 and a sequence of 7, of positive
numbers converging to zero such that d = lim,_, . (u” — 4)/7,. It is easy to see that

every local minimum of (2.1) is a B-stationary point.

In general, condition (2.11) is difficult to deal with due to the possibly complicated
structure of the tangent cone 7g(u). This difficulty can be overcome through the use
of the linearized cone Tj;, (%) and a primal-dual characterization of B-stationarity. We
will specify this approach for the MPEC (2.1).
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2.2.2 Piecewise stationarity

Recall the problem statement

min  f(z,y)
T,y

subject to ¢g(x,y) > 0,
y >0, Fz,y) >0, y"F(z,y) =0,

and the index sets a, 3, and 7 associated to a stationary point (z,7).

We define the following MPEC-Lagrangian for (z,y, &, m) € R™mxxm,

£MPEC = f(x,y) - ng(l',y) - 7T-T}W(xay)'

The vectors & and 7 can be thought of as the MPEC multipliers of the constraints
g(z,y) > 0 and F(z,y) > 0. Notice that there are no multipliers for the constraints
y > 0 and the complementarity constraints y” F(x,y) = 0 in the function LMPP¢. The
fact that no multiplier is needed for the latter complementarity constraint is a special
feature of the MPEC that distinguishes it from standard nonlinear programming
problems. Instead, the complementarity condition y” F(z,y) = 0 will be decomposed
into a disjunction of finitely many systems of equalities and inequalities depending

on the subset of degenerate indices f3.

For each subset f3; of the degenerate index set 3, consider the following nonlinear

program in the variables (x,y):

min  f(z,y)
z,y

subject to  g(x,y) >0

y; = 0, i € B,
Fi(z,y) >0, i€ by, (2.12)
Yi 2 07 S 6\617

Fi(z,y) =0, i€ B\A.
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For each index set 3; the KKT conditions of (2.12) are

Vy (&, 9) = 9,(2,9)7¢ — F(z,9)"n — 7 =0,

0<g(z,5) L&>0, (2.13)
yi=0, 0 F(z,y) Ln >0, i€p,

Fi(z,9) =0, 0<y Lm>0, icp\b.

A feasible point (z,7) is called piecewise stationary if for each 5y C f3, there exist
multipliers £, 7, 7 such that the KKT conditions (2.13) are satisfied.

In order to derive the primal-dual characterization of stationarity, the structure of
the linearized cone T, (%, y) has been studied in [LPR96]. The following constraint
qualification for MPECS is similar to the Abadie constraint qualification [Aba67] in
NLP:

Definition 2.2.1. We say the full constraint qualification (full C'Q) holds for the
MPEC at (z,7) if

Shown in [LPRY6], the following theorem uses the structure of the linearized cone

and a theorem of the alternative.

Theorem 2.2.2. Let f : R"™™™ — R, g : R — R and F : R*™™ — R™ be
continuously differentiable functions. If the full CQ holds for the MPEC (2.1) at the
feasible vector (Z,7), then (T,y) is a B-stationary point of (2.1) if and only if it is

piecewise stationary.

The complexity of the necessary conditions of the MPEC (2.1) is set by the amount
of the degeneracy in the lower-level NCP(F'). Indeed, the number of sets 5y in The-
orem 2.2.2 is 271 It would be desirable to overcome the combinatorial nature of the

first-order conditions. This is possible by invoking some stronger conditions.
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Relaxed NLP

One rather strong condition is nondegeneracy of the lower-level NCP(F). Since 3 = ()
in this case, it follows directly from Theorem 2.2.2 that we would only have to deal
with one KKT system for optimality. Since degeneracy can be expected in many

practical cases, this is not very promising.
Another approach builds on the LICQ and the relaxed NLP.

Definition 2.2.3. We say the Linear Independence Constraint Qualification (LICQ)
holds for the MPEC at (z, ) if the vectors

{(0,) e R"xR™:icaup} U {VE(z7y):icBuU7}
U {Val(z,y): 1€}

are linearly independent.

The relazed NLP corresponding to the MPEC (2.1) is defined by

min  f(x,y)
€,y

subject to  g(z,y) >0
Fi(z,y)=0, i€a
y; > 0, i€f (2.14)
Fi(r,y) >0, i€p

y; = 0, 1€ 7.

The KKT conditions for the relaxed NLP are

5]

Vaf(,9) — g,(2,9)" & = Fy(2,9)"'n =0,

Vyf(Z,9) = 9,(Z,9)"¢ - F,(2,5)'n—7 =0,

0<g(@9) LE>0, (2.15)
Fi(z,y) =0, i€a

0<y; Lm;>0 i€p,

0< Fi(z,9) Ln; >0, i€fp,

y=0, ien.
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Under some constraint qualification, any B-stationary point of the relaxed problem
satisfies the KKT conditions (2.15) along with some Lagrange multipliers £, n and
7. Furthermore, if the LICQ holds at (z,7), then any KKT point of (2.14) is also a
B-stationary point for (2.1); see [LPR96].

Proposition 2.2.4. If a feasible point (Z,y) of problem (2.1) satisfies the KKT con-
ditions (2.15) for the relaxed problem (2.14) and if the LICQ holds at (z,y), then
(Z,9) is a B-stationary point of the MPEC (2.1)

Applications of this result have been used by some authors in their work. For
example, the KKT conditions of the relaxed NLP can be used as a stopping crite-
rion within an algorithm [JR99, LPR98| and as a means to prove convergence of a
smoothing method [FP99] to the solution of the MPEC (2.1).

2.2.3 Weaker stationarity concepts

In general, algorithms for MPECs can not be expected to converge to B-stationary
points in all cases. Convergence can sometimes only be proven to points satisfying
weaker stationarity concepts. Following [SS00], a feasible point (Z, %) of the MPEC
(2.1) is called weakly stationary if there exists MPEC multipliers & > 0, 7, and 7
satisfying

V. f o (7,7 ) NOW
(V xy) Zg( y) Zf( (w>)+k§ﬂ<e>_0'

Notice that there are no sign constraints on the multipliers corresponding to the com-

H |

plementarity terms. Imposing additional sign constraints yields stronger stationarity

concepts. The strongest of these concepts is
Strong Stationarity: 7,7, > 0 for all m € f3.
Notice that strong stationarity is equivalent to the KKT conditions (2.15) of the

relaxed NLP. Therefore, as argued earlier, strong stationarity implies B-stationarity

and is equivalent to it in the presence of LICQ.



2.2. CONSTRAINT QUALIFICATIONS AND OPTIMALITY CONDITIONS 25

2.2.4 Nonsmooth optimization

Some algorithms for MPECs are based on reformulations involving nonsmooth func-
tions. Since the convergence analysis of our algorithm is based on such a nonsmooth
reformulation, we will give a brief description of stationarity for nonsmooth program-

ming. The nonsmooth program is given by:

min f(u)
subject to  g(u) >
h(u) =

(2.16)

Y

where f : IR® - IR, ¢ : R® — IR}, h : R" — IR™ are locally Lipschitz. As an
extension to nonsmooth programs, one can define generalized KKT conditions for
(2.16).

Definition 2.2.5. The point 4 € IR" is said to be a generalized stationary point of
(2.16) if there exists a KKT multiplier vector (Ay, A;) € IR such that the following
generalized Karush-Kuhn-Tucker (GKKT) conditions hold:

0€df(u) —ag(u)" Ay + Oh(w)" A,
0<g(a) LA >0,
h(uz) =0,
where 0 denotes the Clarke generalized gradient for a scalar function and the Clarke

generalized Jacobian for a vector-valued function [Cla90].

If f, g, and h happen to be smooth at @, then the GKKT conditions reduce to

the usual KKT conditions for smooth nonlinear programming problems.
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Chapter 3

MPEC Algorithms

In this chapter we consider algorithms to find local solutions of MPECs. In Section
3.1, we present several existing algorithms for MPECs. Other algorithms for solving
MPECs and the related topic of bilevel optimization can be found in the monographs
[LPR96, OKZ98] and the review article [VC94].

The description of our algorithm ECOPT for equilibrium-constrained optimization
together with convergence results is given in Section 3.3. The implementation details
of ECOPT and extensive numerical results comparing ECOPT with some algorithms
from Section 3.1 as well as standard nonlinear optimization packages are presented

in Chapter 4.

3.1 Existing algorithms for MPECs

3.1.1 Piecewise sequential quadratic programming (PSQP)

The basic idea behind PSQP is to solve for the piecewise stationarity conditions
given by (2.12), which was first suggested in a different context in [KS86]. We will
describe the local algorithm presented in [LPR98] to solve NCP-constrained MPECs

27
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with affine first-level constraints:

min  f(z,y)
T,y
subject to Gr+ Hy+a <0
y >0, F(z,y) >0, y"F(x,y) =0,

where f : R"™™ — R, F : R"™™™ — IR™ are twice continuously differentiable,
G € R™", H € R™™, and a € R!. Other version of PSQP are discussed in [LPR96,
Ral96]. Implementation issues, in particular a globalization via a line search, different
stopping criteria, and numerical results for PSQP are contained in [JR99].

The main computational work in PSQP is to solve the follwing QP in the variable
dz = (dz,dy)

1
: k\T T (72 k kx72 10 ( k
min V") dz+§(dz) (V2f(2%) + % m VoF;(2"))dz

subject to  G(z" 4 dx) + H(y" +dy) +a <0
yk +dy; >0, fori eI, (3.1)
Fi(z®,y") + VE;(2*,y")d = 0, for i € T,
yk 4+ dy; =0, fori € T,
Fi(z*, y*) + VE (2%, y¥)d > 0, for i € T,.

The Piecewise Sequential Programming Algorithm (PSQP)

Step 0. (Initialization) Choose a vector 2° = (2°,¢°) € Z, and (£°,7°) € RI*™,

where £° and 7° are Lagrange multipliers corresponding to the constraints
Gr+Hy+a<0

and
F(z,y) > 0.

Z denotes the first-level feasible set {(x,y) |Gz + Hy + a < 0}. Set k := 0.
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Step 1. (Main Computation) Let Z; UZ, be an arbitrary partition of {1,...,m}
satisfying Z, D {i|yF > Fy(a*,y*)}, and Z, D {i|yF < F;(z*,y*)}. Solve
the QP (3.1).

Let (dz*, &8 7#t1) be a KKT tuple of (3.1), where &1 and 7**! are the
multipliers corresponding to the respective constraints z* 4+ d*¥ € Z and the
constraints on F(2*) + VF(zF)d*.

Step 2. (Termination check and update) Set z¥*! := 2% + d*. Terminate if a
prescribed termination criterion is satisfied. Otherwise set k := k£ + 1 and

return to Step 1.

Notice that in the above algorithm the multipliers £ are not used. These multipliers
would be used if the first-level feasible set would be given by general nonlinear twice
continuously differentiable functions. One possible termination criterion in Step 2 of
PSQP is based on piecewise stationarity. In this version, the algorithm stops if the
KKT conditions (2.13) are satisfied for all subsets 3; of the degenerate set §. This
and other termination criteria are discussed in [JR99].

The local convergence properties of PSQP are summarized in the following result
from [LPRIS|.

Theorem 3.1.1. Suppose f and F are twice continuously differentiable and z = (z, )
18 stationary point with second-order sufficient conditions holding for all the nonlinear
programs

min  f(z,y)
T,y

subject to Gxr+ Hy+a <0
F’z(xay) = Oa Yi = 07 for i € Il
Fz(%y) 207 ylzoa fOI'iGIQ,

where I, U I, partition the set {1,...,m} such that Ty 2 {i|y; > Fi(z,9)}, and
T, O {i|y: < Fi(z,9)}. Suppose (&,7) is the unique KKT multiplier at z for all
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these nonlinear programs. Then z is a strict local minimizer for the MPEC. More-
over, for any (2°,£°,7°) near (2,€,7), PSQP is well defined and produces a sequence
{(2F, &8 7*) Y that converges Q-superlinearly to (2,£,7). If, in addition, V2f and V*F

are Lipschitz near z, then the rate of convergence is Q-quadratic.

3.1.2 Penalty Interior-Point Algorithm (PIPA)

The algorithm PIPA is the most extensively treated algorithm in the monograph
[LPR96]. Numerical tests and discussions of implementation issues also appear in the
publications [JR99, DF99]. The version of PIPA we will describe solves MPECs with
mixed complementarity constraints of the following form:

min  f(z,y, w, 2)

x’y?"‘uﬂz

subject to Gz <a (3.2)
F(z,y,w,2)=0

y>0, w>0, y"w=0,

where z € R, y,w € R™, z € R, a € IR?, G € R”*", and f : R""?"* R, F :
IR*2m+0 s IR™* are once respectively twice continuously differentiable functions.
Notice that the first-level constraints Gx < a are only on x. Versions of PIPA for joint
first-level constraints have been considered, but their global convergence properties
are open [JR99, DF99] or they are cast for the special case of second-level LCP
constraints [FP98]. Second-level NCP constraints are given in (3.2) by a suitable
definition of F(x,y,w).

The idea of PIPA is to replace the complementarity condition
y>0, w>0, yw=0

by
y>0, w=>0, yow= pe,

where y o w := (y;w;) denotes the Hadamard product of y and w, and to trace the
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interior path
{(x(p),y(p), w(p), w(p)) € R | 1> 0}

of the parameterized problem

min f(x7 y7w’z)
m’y7wﬂz
subject to Gz <a (3.3)
F(z,y,w,2) =0

y>0, w=>0, yow= pe,

when the positive parameter pu is decreased to zero.

Similar to other interior point methods, problem (3.3) is not solved to full accuracy
for each p; instead only one SQP step is calculated, and then the parameter p is

updated. The solution of the following quadratic program is used as a search direction

dx
dy

min \V4 xk, k,wk,zk - N
(dfydy7dw,dz)€][{n+2m+l f( Yy ) dw

dz

(dx)" Brdx

NN

subject to G(z" +dz) <a
|dz| < \/c(|F(xk, yk, wh, 25) || + (wk)Ty*) e (3.4)
dx
kok ok ke | Y kE k k _k
VFE(x" y" w" 2") = —F (2", y", w", 2")
dw
dz

w® o dy + y¥ o dw = —w" o yF + oy ke,

where o, € (0,1) is a given scalar which balances between a pure Newton search

direction (o, = 0) and a purely centralized direction (o = 1), ¢ > 0 is a scalar

controlling the step size and py := % The matrix By € IR " is symmetric

positive definite. Under certain conditions, the solution of (3.4) is unique.
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Definition 3.1.2. A partitioned matrix @ = [ A B C | is said to have the mized

Py property if C has full column rank and the implication

Ar+Bs+Ct=0
(r,5) #0

} = 1;5; > 0 for some i with |r;| + [s;] > 0

holds.

Proposition 3.1.3 ([LPR96] Lemma 6.1.7). Let (2", y*, w*, 2¥) € X x R?™ x R/
and By, € IR™*™ be a symmetric positive definite matriz. Suppose that the partitioned

matriz
| VyF(z,y,w,2) VF,(v,y,w,z) VF,(z,y,w,z) |

has the mized Py property. Then the QP (3.4) has a unique solution.
The Penalty Interior-Point Algorithm (PIPA)

Step 0. (Initialization) Choose a vector (z°,¢° w? 2") € X x R?" x IR, where
X C IR™ denotes the feasible set of Gx < a. Let ¢ > 0, 7, p1,7,7',€ € (0,1)
and a_; > 1. Let p € (0,1) and o4 € [0, 1) satisfy the conditions

k

k\T, k
v 7)nw < 11<r%1<13n yfwf and oy < min{s, p}.

Let By € IR"™ be a given symmetric positive semidefinite matrix. Set
k= 0.

Step 1. (Direction generation and penalty update) Solve the QP (3.4) to deter-
mine the unique solution (dz*, dy*, dw”, dz*). Update the penalty parameter

oy = af_, where / is the smallest nonnegative integer such that

dxk dzk

k d k

Vit bt ) | bl Vet o wt 2y | Y
wk dw*

dz* dz*

< _¢(xk7 yka wka Zk):

where ¢(x,y, w, z) == F(z,y,w,2)"F(z,y,w, 2) + w"y.
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Step 2.

Step 3.

(Step size determination) Define the linear function
~ ) ~ dyk wak
gr(1) == (1 = p)ogpw + 7 <1I<I§I<I7ln dyfdwf — pL :

Let 7 be the (unique) root of the function gi(7) for 7 € (0, 1] if this root

exists, otherwise let 7, := 1. If 7, = 1, redefine 7, to be 1 — e.

Let 75, := 7p%, where £ is the smallest nonnegative integer such that
o(z" + mpda®, y* + mpdy®, w* 4 Tdw®, 2F  red2®) < o2, b, wh, 2F)

and

Pak((gjk, yka wka Zk) + Tk(dxka dyka dwka d'zk)) - POék (xk? yk7 wk’ Zk)

<A'1.VP,, (2", y*, w”, 2F)

Note that this implies by the penalty update rule in Step 1 that we have

computed a descent direction for the penalty function

Pa (‘Z.7 y? w7 Z) = f([L‘, y? w? 'Z) + agb(l‘) y? w? 'Z)'

(Termination check) Test the new iterate

.'L'k+1 k d.’L‘k

T
k+1 k k
Y S T dy
= k
wk-i—l wk dwk
Zlc+1 Zlc de

for termination. If a prescribed stopping rule is not fulfilled, choose a sym-
metric positive definite matrix By, and a scalar o1 € (0, 0%]. Increase k

to k + 1 and return to Step 1.
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We will now summarize the main convergence properties of PIPA shown in [LPR96].

Proposition 3.1.4. If the partitioned matrizc
| V,F(z,y,w,2) VE,(z,y,w,2) VF,(z,y,w,z) ]

has the mized Py property for all vectors (x,y,w,z) € X X ]Ri”}r x R! and the level
set
{('Ia Yy, w, Z) € X % Riri X Rl | ¢(I, Yy, w, z, ) S d)(fL’O, ZJO, wO) ZO)}

15 bounded, then the penalty interior point algorithm generates a well-defined, bounded

sequence. In addition, the sequence {dx*} is also bounded.

Before we state the convergence properties of PIPA, we will introduce the following

two conditions:

(SC) (Strict Complementarity) y* +w* > 0. This is equivalent to the set of degener-
ate indices [ being empty.

(NS) (Non-singularity) The submatrix

V,F(z*, y*, w*, z*) VF,(z* y* w*, z*) VF,(z* y*, w* z*)

w0 -~ 0 yr 0 .- 0

0 el 0 5 :

' Wy ' Yo 0
0 R ||

0 -~ 0 w 0 -~ 0 vy

corresponding to the second-level constraints in the QP subproblem (3.4) is

nonsingular.

We state two different convergence theorems. The first considers the case where the
penalty parameter tends to infinity and the second where it remains constant after a

finite number of iterations.
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Theorem 3.1.5. Suppose there exists a scalar co > 0 such that
0 < 2" By < cl|z]|?, Vo € R", Yk € IN.

If limy, o0 i, = 00 then

lim dz* =0,
k(eK)—o00

where K := {k| oy 1 < ax}. Furthermore, if (z*,y*, w*, z*) is any limit point of the
subsequence { (2%, y*, w*, 2*) | k € K} satisfying the assumptions (SC) and (NS), then

(x*, y*, w*, 2*) is a stationary point.
Theorem 3.1.6. Suppose there exists a scalar co > 0 such that
0 < 2"Bpr < 7|’ Vo € R",Vk € IN,

and both sequences {coy} and {0;'} are bounded, then every accumulation point
(x*,y*, w*, z*) of the generated sequence that satisfies the assumptions (SC) and (NS)

1S stationary.

3.1.3 Implicit function based approaches

A different concept of solving MPECs is to use an implicit function approach [OKZ98].
If the state variables y are uniquely determined by the design variables z, i.e., for any

fixed z there exists an implicit function y(x), the problem can be reformulated as

min - f(z, y(x))

subject to  x € X4, (3.5)

where X4 denotes the feasible of the first-level constraints. Notice that the problem
only depends on the design variables.

A problem with this approach is that even if the implicit function y(z) exists,
one cannot expect it to be everywhere differentiable, although, under reasonable as-

sumptions, it will be Lipschitz continuous. Using the formulation (3.5), some authors
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suggest the use of a bundle technique [0Z95, OKZ98], while others [PHR91] compute
a descent direction of f(x,y(z)) and determine the next iterate using an Armijo line

search.

The major work in the bundle method presented in [OZ95] is the computation of
the sub-gradient of the implicit function. The approach presented in [PHR91] is more
conceptual, the algorithm presented by the authors involves the solution of mathemat-
ical programs with mixed complementarity constraints and the line search requires

the repeated evaluation of y(z), involving the solution of a variational inequality.

We will not go into greater detail of the implicit function approach and refer the
interested reader to the above mentioned publications. Numerical tests of the bundle
algorithm can be found in [0Z95, OKZ98, DF99].

3.2 Sequential Quadratic Programming (SQP)

Before presenting our SQP algorithm for MPECs in Section 3.3, we give a short

overview of SQP methods.

3.2.1 Background

The original SQP method due to Wilson [Wil63] generates a sequence of search di-
rections d¥, each of which is the solution to a QP subproblem that is a local approx-

imation of the convex nonlinear optimization problem

min  f(x)
xT
subject to  g(x) > 0, (3.6)
where f and ¢ are assumed to be twice continuously differentiable functions, with f

being a convex and g a concave function. In the original version, the SQP algorithm

starts from a point 2, and at iteration k, takes a full step z**! = 2% + d*.
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The QP subproblem corresponding to (3.6) has the form

1
min Vf(z*)"d+ §dTde

subject to Vg (2*)d + g(2*) > 0, (3.7)
where H¥ = V2 L(2%, ) is the Hessian of the Lagrangian
L(z,A) = f(x) — ATe(x),

at the current point 2, with A being the latest estimate for the Lagrange multipliers,
and Vg(z) is the Jacobian of the constraints. Notice that all subproblems (3.7) are
feasible if ¢ is assumed to be concave. It is often also assumed that H* is positive
definite, in which case the QP (3.7) has a unique solution.

The linear constraints of (3.7) are a first-order approximation to the nonlinear
constraints at the current iterate z¥. The quadratic objective of the QP models
the curvature of the Lagrangian (and not only of the objective function f). In the
neighborhood of a solution and under certain assumptions, the quadratic model is a
very good approximation to the original problem (3.6). In other words, d* = 0 is the
solution to (3.7) at a KKT point z* and \* of (3.6).

3.2.2 Practical SQP methods

In the original form, Wilson’s SQP method requires exact second derivatives and is
not guaranteed to converge, for the same reasons Newton’s method for unconstrained
optimization may fail to converge. A practical SQP method has to address these two
problems first.

Even if exact second derivatives of f and ¢ are available, they might be difficult
to evaluate, and the Hessian update H* is not guaranteed to be positive definite.
Considering both of these issues, Murray [Mur69] suggested to replace the Hessian
of the Lagrangian by a quasi-Newton approximation B*. Under certain assumptions,
the sequence {B*} will generate a good approximation to the true Lagrangian and

fast local convergence can be achieved without using exact second derivatives.
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To ensure global convergence as well as fast local convergence, the local SQP
method is often combined with a line search of the form z¢*' = 2% + t,d*. The
step length ¢ is determined so that an appropriate merit function is reduced. Merit
functions incorporate information about the objective function and possible constraint
violations to decide whether progress towards a solution is made.

For an overview of SQP methods see the reports [GMWS81] and [Pow83]. Recent
developments in large-scale SQP methods are contained in [GMS97] and [Mur97].

3.3 A smooth SQP method (ECOPT)

3.3.1 Overview

The idea of approximating the MPEC by smooth nonlinear programs was first sug-
gested by Facchinei, Jiang and Qi in [FJQ99]. Smoothing techniques are commonly
applied to complementarity problems, so an extension to MPECs seems promising.

Using a so-called smoothing function, a complementarity system with y, s € IR™
y>0,s>0,y"s=0 (3.8)
is approximated by a smooth system of equations

(I)H(y’ S) =0,

where @, is continuously differentiable and approximates (3.8) for small u > 0. We
will discuss the approximation used in this work in Section 3.3.2.

After the introduction of slack variables s, the MPEC can be written as

min  f(z,y)
x’y7s
subject to  g(x,y) >0

y>0, s>0, y's=0.
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Using the smoothing function ®,, with x> 0, we can approximate the MPEC by

min  f(z,y)
,Y,Ss
subject to  g(x,y) >0 (3.9)
F(.’L‘, y) —s5=0
®,(y,s) =0.

The smoothing approach in [FJQ99] is only conceptual since it assumes the solution
of nonlinear programs similar to (3.9) in every step. Consequently, several authors
suggested related methods which only calculate one step towards a solution of (3.9)
and then update the parameters.

In this section we describe one such method. First, we introduce the particular
smoothing function we use in our algorithm in Section 3.3.2. Next, we discuss the
QP subproblem used to determine a search direction and its properties in Section
3.3.3. We globalize the local SQP method by the Penalty function from Section
3.3.4. Finally, we analyze the overall algorithm and its convergence properties in
Sections 3.3.5 and 3.3.6, respectively. A discussion of other smoothing methods to

solve MPECs and their relationship to our algorithm in Section 3.4 ends this chapter.

3.3.2 Smooth approximation

The Fischer-Burmeister function

Our algorithm is based on the Fischer-Burmeister function [Fis92]
¢(a,b) :=a+b—Va?+ b2

The function ¢ is widely used in algorithms for complementarity problems. Its main

characteristic is given in the following result.

Proposition 3.3.1. The Fischer-Burmeister function has the following property:

0(a,b) =0 <= a>0,b>0,ab=0. (3.10)
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Proof: First, let (a,b) € IR? with @ > 0, b > 0, and ab = 0. If a = 0, then
o(a,b) = 0(0,b) =b— Vb2 =b—|b| =b—b=0. If a > 0, then b =0 and it follows
again that ¢(a,b) = 0.

Next, let a and b such that ¢(a,b) = 0. Then

0<Va?+b=a+b. (3.11)

Squaring both sides of (3.11), it is easy to see that ab = 0. Therefore, it also follows
from (3.11) that ¢ > 0 and b > 0. O
As we can see from Proposition 3.3.1, one can replace a complementarity system a > 0,
b > 0, ab =0 by the nonlinear equation p(a,b) = 0. Unfortunately, the function ¢ is
nonsmooth at the origin so that derivatives at so called degenerate points a = b =0

do not exist. Nevertheless, the so called generalized Jacobian [Cla90]

00(0,0) := {r e R?*|r = klim V(aF, b%) with (af,b*) — (0,0) and V(a¥, b*) exist}
—00

exists, and is contained in the ball

9ce(0,0) :={(p,q) : (1 —p)*+ (1 —¢q)* < 1}, (3.12)

where Jc denotes the C-subdifferential. Some algorithms for nonlinear and mixed
complementarity problems make use of this generalized derivative, see [LFK96, LFKO0O0,
FKM99] and references therein. In the context of optimization problems, it is more
difficult to handle nonsmooth constraints. A more promising approach is to use a

smooth approximation of . We will describe this approximation next.

The smooth Fischer-Burmeister function

A smooth approximation of the Fischer-Burmeister function ¢ [Kan96] is given by

ou(a,b) =a+b—/a?+b>+2pu, p>0.

The smooth function ¢, has the following property:
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Proposition 3.3.2.
ou(a,b) =0 <= a>0,b>0,ab=p. (3.13)

The feasible set of ¢, = 0 is depicted in Figure 3.1. The smooth function ¢,

fp

(p,u(aa b) = O,M >0

B

Figure 3.1: Feasible set of ¢,(a,b) =0, >0

approximates the Fischer-Burmeister function for small 1 in the following sense:

Proposition 3.3.3. The function ¢, satisfies the inequality

[pu(a,b) — w(a,b)] < V2

for all (a,b) € R? and all p > 0.

For ;1 > 0, the first derivatives of the smoothing function ¢,(a,b) are given by

a

0
-_— (I,b = 1- )
5 #r(0-") Va2 + 02+ 2p

b

0
—_— Cl,b = 1- )
b2 ?) Va2 + 02+ 24
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and the second derivatives are

2 2
2

a_%(a, b o= - b+ 2 ,
da? (a? + b + 24)3/?
0? a’ +2u
SEeuled) = - R (3.14)

0? ab

b) = :

Sadp 7@ 0) (@ + b2 + 21)3/2

The smoothing function ¢, also approximates the generalized derivative (3.12) of ¢,
see [KP99].

Proposition 3.3.4. Let {(a*,bF)} C R? and {u} C IR be two sequences with
{(a®,b*)} — (a,b) = (0,0) and {u} L 0. Then

klim dist[V e, (a*, %), dcp(a, b)] = 0,

— 00

where dist[y, 8] := min{|ly — ¢'|| |y € S} for y € R™ and S C R". If (a,b) # (0,0)
then

klim Ve, (a",bF) = Vp(a,b).

Using the smoothing function ¢, the MPEC can be approximated by a smooth

optimization problems.

The smooth reformulation

Using the smoothing function ¢,, u > 0, we can approximate the MPEC

min  f(z,y)
x’y7s
subject to  g(x,y) >0 (3.15)

y>0, s>0, y's=0.
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by
min  f(z,y)
,Y,Ss
subject to  g(x,y) >0 (3.16)
F(.’L‘, y) —s5=0
(I)u(ya s) =0,
where @, denotes the mapping
Pu (ylv 31)
(I)N(ya S) = :
Spu(yma Sm)

For . = 0, problem (3.16) is equivalent to (3.15) in the sense that feasible points, local
and global solutions coincide. This is a direct consequence of Proposition 3.3.1. For
p > 0, the solutions of (3.16) are good approximations of (3.15) due to Proposition
3.3.3.

Also, constraint qualifications holding for the MPEC (3.15) carry over to an ap-
proaching sequence of feasible points of the smooth reformulation for small pertur-
bations g > 0. Here we discuss the LICQ. Some other constraint qualifications are
discussed in [JRO0].

Proposition 3.3.5. For each p > 0, let (z",y*, s*) be a feasible point of (3.16).
Suppose that (z*, y*, s*) — (Z,4,5). Then (Z,y,5) is a feasible point of (3.15).
Moreover, if the MPEC-LICQ holds at (Z,79,5) for (3.15), then for all ;1 > 0 small
enough the NLP-LICQ holds for the feasible point (x*, y*, s*) of (3.16).

Proof: The first part follows from (3.10), (3.13) and the continuity of ¢. The proof
of the second part uses the continuity of ¢ and the fact that the distance between

V&, ; and the generalized gradient of ®; goes to zero as y — 0. For the details, see
[FP99]. O
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Let (z#,y*, s*) be a local minimizer of the smoothed problem. Then, since the
smoothed problem is an ordinary nonlinear programming problem, under some con-
straint qualification, there exist Lagrange multipliers 7# € IR™, é* € R!, and n* € R™
such that the vector (z,y,s,m, & n) = (x# y*, st ok & nt) satisfies the following

KK'T conditions for the smooth problem:

Vol (@,y) = gp(z,9)"§ — Fy(v,y)'n =0,
Vyf(x,y) = g,(2v,y)"§ — Fy(v,y)'n— A"m =0,

n—B'r =0,

0<g(z,y) LE>0, (3.17)
F(z,y) —s =0,

P,(y,s) =0,

where [A, B] = @/ (y,s). Moreover, (z,y,s,m,&n) = (2#, y#, s", 7, ", n") satisfies

the inequalities
dTVQ»C“(%yaSﬂT,fan)dz 07 fOI' a‘ﬂde Tu(x7y78)7

where

LMz, y,s,m,&n) =

f(@,y) — Zﬂi D,.i(y,s) — ij gj(@,y) — Zﬁk (Fe(z,y) — sk), (3.18)

=1

and

TH(z,y,s) :=
{d € R"™*™|V®,(y,s)"d=0,Vgz,(2,y,5)d=0,(VF(z,y) — I)"d = 0},

with Z,, .= {l| g:/(«*,y") = 0}.
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A different smooth reformulation

In the initial stages of this research, we also considered the following reformulation
using ®,, in an inequality:
min  f(z,y)
x’y7s
subject to  g(x,y) >0
F(z,y)—s=0
(I)/L(ya S) S 07
y=>0,s=>0.

Notice that we also have to add nonnegativity constraints on y and s in this case.
The obvious advantage of this reformulation is that y and s stay feasible, which is
important since the equilibrium function F' is sometimes only defined on the positive
orthant. Another advantage is the knowledge of the sign of the multipliers corre-
sponding to the inequality ®,(y,s) < 0. Unfortunately, since ®, is concave and not
convex for all 4 > 0, this does not help in our situation. The Hessian update using
exact second derivatives of ®, and the multipliers corresponding to the inequality
®,(y,s) < 0 will produce an indefinite update. The final reason why we did not pur-
sue this formulation any further is that tests with an initial implementation of this
approach produced infeasible QP subproblems during the SQP iterations. Although
there are ways to deal with indefinite Hessian updates and infeasible QP subproblems,
avoiding them in the first place seems to be more promising. As we will see next, the
feasibility of the QP subproblems for the equality formulation (3.16) is given under

mild conditions.

3.3.3 QP subproblems and solvability

As a general approach to find a solution to the MPEC (3.15), one can solve a sequence
of the smooth nonlinear programs (3.16) for a decreasing sequence of p’s. An efficient

way to do this is to given by SQP methods.
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QP subproblem

For any given (z,y,s), p > 0, we will try to find a suitable search direction d =

(dz, dy, ds) by solving the following QP subproblem:
min Vf(x,y)"(dx, dy) + ldTVVal
d=(dz,dy,ds)eRn+2m 2
subject to  ¢'(x,y)(dx, dy) + g(z,y) >0 (3.19)
F'(z,y)(dz,dy) — ds + (F(x,y) —s) =0
Ady+ Bds + ®,(y,s) =0,

where the matrix W € R("F2m)x("+2m) g symmetric positive definite and [A, B] =
(Y, ).
If the QP (3.19) has a solution d, then its KKT conditions have the following

form:
Vef(z,y) gz, y)" i (x,y)" 0
Vyf(z,y) | +Wd =] g,(z,9)" | Ag = [ Fy(z,y)" | Ar — | A" [ Ae =0,
0 0 I BT

0 < ¢'(z,y)(dz,dy) + g(z,y) L Ay >0,
Fl(z,y)(dz,dy) — ds + (F(z,y) — s) =0, (3.20)
Ady + Bds + ®,(y,s) = 0,

where A = (A, Ar, Ag) € IR(F2™) is the vector of Lagrange multipliers for (3.19).

Elastic QP subproblem

The general SQP approach fails if the QP subproblem (3.19) is infeasible or un-
bounded. The solution set will be bounded, i.e., unique, if W is positive definite, but

the possibility of infeasibility must be taken into account.

If a QP subproblem is infeasible, we introduce a vector of elastic variables ¢t € IR
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into the original problem in the following way:

min  f(z,y) + pe’t

T,Y,8,t
subject to  g(x,y)+t >0, t>0 (3.21)
F(.’L‘, y) —s5=0
®,(y,s) =0.

By introducing elastic variables into the QP subproblem, we allow some of the con-
straints to be violated and penalize this violation for being nonzero. Notice that we
introduce elastic variables only to the inequality constraints. This has been suggested
in [JROO], but our approach is different in that we only introduce elastic variables if

necessary.

To find a search direction for the elastic problem (3.21), we solve the following
elastic QP:

d:(dm,dy,drsr,lditr)leIR"'F?mH Vi(x,y)" (dz,dy) + %dTWd + pedt
subject to  ¢'(z,y)(dx,dy) + dt + g(x,y) +t >0, dt > —t (3.22)
F'(z,y)(dz,dy) — ds + (F(z,y) — s) =0
Ady + Bds + ®,(y,s) = 0,

where the matrix W € R(+2m+Ox(n+2m+D) iy symmetric positive definite, [A, B] =

@', (y,5), and p > 0 is the penalty parameter for the elastic variables t.

The SQP method proposed in [JR0O0] always solves an elastic QP similar to (3.22),
and consequently needs to adjust a penalty parameter in every iteration. In our
approach, we switch to elastic mode only if necessary, which is similar to [GMS97,
Bom99]. The elastic QP subproblem is feasible under mild conditions as we will see

next.
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Solvability

The following properties [MR73] plays an important role for the solvability of our QP

subproblems.

Definition 3.3.6. F is said to be a FPy-function with respect to y if for each x € R",
F(z,-) is a Py-function; i.e., for any y, § € IR™ with y # ¢, there exists an index i
such that y; # 7;, and

(yi — 7i)(Fi(w,y) — Fi(x,7)) > 0.

We will also use the following matrix properties [FP66].
Definition 3.3.7. M is said to be a P-matrix if all its principal minors are positive.

Definition 3.3.8. M is said to be a Py-matrix if all its principal minors are nonneg-

ative.

The condition of F' being a Py-function is considered mild in the field of comple-
mentarity problems. It is for example given when the second-level problem in the
MPEC is given by the optimality conditions of a convex optimization problems or a
monotone complementarity problem. If F'is a Fy-function with respect to y, then
Fy(z,y) is a Py-matrix [MRT73].

To show feasibility of the QP’s (3.19) and (3.22), we first look at an important

submatrix.

Proposition 3.3.9. Suppose F' is a Py-function with respect to y, then the matriz

UZ(@@&)—v
A B

is nonsingular for any (v,y,s) with ;1 >0, where [A, B] = ®/ (y, s).

Proof: Since [A, B] = ®|,(y,s), both A and B are diagonal matrices with nonzero
diagonal elements. It turns out that nonsingularity of the matrix U is equivalent to
nonsingularity of the matrix A + BF}(z,y), or B7'A + F,(7,y). Note that BA
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is a diagonal positive definite matrix, and F,(z,y) is a Py-matrix. Therefore, the
matrix B™'A + F)(x,y) € P, see Theorem 3.4.2 in [CPS92]. Since P-matrices are
nonsingular, the result follows. O

As a consequence of Proposition 3.3.9, solvability of the QP subproblems (3.19)
and (3.22) is given by the following result.

Proposition 3.3.10. Suppose Fé(x, y) is a Py-matriz and p > 0. Let U be as defined
wn Proposition 3.3.9. Then

(i) the elastic QP (3.22) is always feasible;

(ii) the QP (3.19) has a nonempty feasible set if and only if the following system is

consistent with respect to dx:

9 (z,y) — g, (2, ) (U")yy Fy(, y)]dz
- g;(x, y)[(Uil)yy(F(xa y) —s)+ (Uﬁl)ysq)u(y: s)|+g(z,y) > 0;

(i) if furthermore g(z,y) does not depend on y, then (3.19) has a nonempty feasible
set if
g'(z)dz + g(z) > 0

18 consistent.

Proof: The proof follows directly from Proposition 3.3.9 by using the fact that the

matrix U is invertible and eliminating the y and s variables. O

3.3.4 Penalty function

To globalize the local SQP method, the following ¢; penalty function is used:

@(pg7pNCP7H)($,y, S)

4 m

= [z, y) +p* Y max{—gi(z,y),0} + p" " Y (|F(w,y) — wjl + |uly;, 5,)),

i—1 j=1
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NCP

where pJ and p are positive penalty parameters. Two penalty parameters are

necessary due to the special use of elastic variables for only some of the constraints,
see [JRO0]. The relationship between the penalty function and the solutions of the
QP’s (3.19) and (3.22) is given in the following results.

Proposition 3.3.11. Let u > 0.
(i) ©po pver yy is directionally differentiable at (z,y, s).

(i) If d is a solution of the QP (3.19), and if min{p? = p, pN“F} > maxi<i<iiom |AF]
where A is the KK'T multiplier of the QP (3.19), then

Olps pver (T, y,57d) < Vf(z,y)"(de, dy) — (A)" g (x,y)(d, dy)
+ (Ap)"(F' (2, y)(dv, dy) — ds)
+ (A':D)T@;,L(y? S) (dyv dS),

and

Oy pvor (@, y, 5d) < —d"Wd.

(i) If d is a solution of the elastic QP (3.22), p? = p, and p"“F > maxi<j<iyom [AF|
with \ its KKT multiplier, then

Olys pver (2, y,57d) < Vf(w,y)"(dx,dy) — (N)" ¢ (v, y)(dz, dy)
+ (Ap)"(F'(z,y)(dz, dy) — ds)
+ (/\4’)7‘(1);;(3/’ S) (dya dS),

and

GI(PgaPNCP,u) (.’L‘, Yy, s; d) < —d"Wd.

Proof: Part (i) follows from the continuous differentiability of f, g F', and ®,. The
proofs for parts (ii) and (iii) use the KKT condition of the QP’s (3.19) and (3.22),
respectively. The details can be found in [JROO].
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Proposition 3.3.12. Let p > 0 and suppose W is symmetric positive definite.

(i) If d is a solution of the QP (3.19) with d # 0, and if min{p? = p, pN¢F} >
max<i<iiom |AF| where X is the KKT multiplier of the QP (3.19), then d is a

descent direction of the penalty function ©, ,Ner ).

(iii) If d is a solution of the elastic QP (3.22), p? = p, and pV°F > max;<i<iyom |AF|
with X its KKT multiplier, then d is a descent direction of the penalty function

®(p9 HNCE ) -

Proof: The result is a direct consequence of parts (ii) and (iii) in Proposition 3.3.11.
Proposition 3.3.12 shows that the solutions of either QP subproblem generates a
descent direction of the merit function O, ,vor ,y for sufficiently large penalty pa-
rameters when W is symmetric positive definite and g > 0. This will be important
for the line search of the algorithm ECOPT.

3.3.5 Statement of the algorithm

We will now describe the overall algorithm ECOPT.

Smooth SQP method (ECOPT)

Step 0. (Initialization) Let p_; > 0, 6; > 0, é > 0, 8, € (0,1), B € (0,1),
o€ (0,1),7 € (0,1). Choose u® = (2°,4° w®) € IR""?™, and choose py > 0,
€0 > 0, and a symmetric positive definite matrix W, € IR(+2m)x(n+2m) — Get
k:=0.

Step la. (Search direction (inelastic))
If all QP subproblems for k' < k have been feasible then find a solution
to the QP (3.19) with (z,y, w) = (¥, y*, w*), p = pp, W = Wj.

If a solution exists, let d* € IR™*?™ be the solution of this QP and
A = (Ag, Ap, Ag) be its corresponding KKT multiplier. Set & := 0,
A¢ := 0 and go to Step 2.

else go to Step 1b.

else go to Step 1b.
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Step 1b.

Step 2.

Step 3.

Step 4.

Step 5.
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(Search direction (elastic)) Find a solution to the QP (3.22) with
(2,5, w) = (¥, ¥, w¥), j1 = g, W € RP27H defined as

Wi 0
W = ,
0 I

where I; denotes the identity matrix of dimension [. Let (d*, &*) € R +H2m+
be the solution of this QP and Ay = (Ag, Ap, As, A¢) be its corresponding
KKT multiplier. Go to Step 2.

(Termination check) If a stopping rule is satisfied, STOP. Otherwise, go
to Step 3.

(Penalty update) Let

B Pk—1 if pr—1 > maxi<i<iromi1 | A,
Pk =
(51 + maXlSiSl+2m+1 |/\f| otherwise.
Define p{ = pr_1 and p{°" = p; and
~ . ko_
Pk if >2&G =0,
Pr = o

Pk + 0o otherwise.

(Line Search) Find the smallest my in {0,1,2,...} such that

@(piypif'cpwk)(uk +rmd") — G(Piapﬁcpyuk)(“k) < —or™(d") W,

Set 5 := 7™ and uFT! := uF + t,d".

(Update) Let
ﬁu,uk if ||dk|| < ¢,

Lbk otherwise,

Hk+1 =
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Pecr, if ||d*|| < e,
€k+1 —
€L otherwise.

Choose a symmetric positive definite matrix W, € IRM+2m)x(n+2m) = Gey

k < k + 1, and return to Step la .

From the results in Sections 3.3.3 and 3.3.4, we know that the above algorithm is
well-defined if F'is at least a Py-function in y. In particular, the QP subproblems are

feasible and their solutions d* are descent directions for the merit function.

3.3.6 Convergence analysis

We will now summarize the convergence properties of ECOPT. Our algorithm is very
similar to the explicit smooth SQP analyzed in [JR00], so most of the proofs are
similar to those of that reference. To prove global convergence, the following two

assumptions are made:

Assumption 1. There exist two positive numbers o < [ such that each of the
symmetric matrices Wy, used in ECOPT satisfies the following condition for all vectors

v of appropriate dimension:
aljol* < v"Wiw < Bllu]l.
Assumption 2. For all large k, pr, = p..

While the first assumption is commonly assumed for SQP methods, the second
is more restrictive. Besides other things, it implies that all QP subproblems are
feasible in the limit so that no update of the penalty parameter takes place in Step
5. Assumption 2 holds under the following additional Assumptions:

Let H be the function representing the equality constraints of (3.16) or (3.21),
ie., Hu) = (F(z,y) — s, ®u(y, s)) with u = (z,y, s).

Assumption 3. {u*} = {z*, ¢* s*} is bounded.



54 CHAPTER 3. MPEC ALGORITHMS

Assumption 4. The generalized Jacobian 0H (u*) has full row rank at any accumu-

lation point u* of {u*}.

Assumption 5. For any accumulation point u* of {u*} and any V € 0H (u*), there
exists d = (dx, dy, ds) such that ¢'(z*, y*)(dz, dy)+ g(z*,y*) > 0 and Vd+ H(u*) = 0.

Theorem 3.3.13. Assume that Assumption 1 holds and F is a Py-function with
respect to y. Let pg > 0 and {uf},{ur}, and {e.} be the sequences generated by
ECOPT.

(i) If Assumption 2 holds and {u*} has a limit point, then

lim p =0, lim ¢, = 0.
k—o0 k—o00
(ii) Let K = {k: ||d*|| < ex}. If we assume that Assumption 2 holds and {u*}rcx
has an accumulation point u* = (x*,y*, s*), then u* is a generalized stationary
point of (3.15) with p = 0. Furthermore, if (z*,y*) is lower-level nondegenerate,

then (z*,y*) is a piecewise stationary point of the MPEC.
(11i) If Assumptions 1, 3, 4, and 5 hold, then so does Assumption 2.

Proof: We will discuss the main points of the proof here, the details can be found in
[JROO].

(i) It is clear that {p} is bounded, so the sequence has an accumulation point.
Suppose fi, is such an accumulation point. If g, > 0, then [|d¥|| < € occurs only
finitely many times. This means that after finitely many iterations, j; and €, remain
unchanged. This implies that for some kg and all & > ko, px = p, > 0 and € = €, >
0. In this case, ECOPT reduces to a regular SQP method for the smooth problem
(3.16), where some care has to be taken if elastic mode is entered due to infeasible
QP subproblems. In any case, it follows that some subsequence of {d*} approaches
0 as k — oo, which implies that ||d*|| < ez, will eventually happen, see [JR0O0]. This
is a contradiction. Therefore, limy_,, px = 0. By the update rule in Step 5, it is also

true that lim,_,o, €, = 0.
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(ii) By Assumption 2 and the update rule of the penalty parameter, the KKT
multiplier sequence {\*},cx is bounded and the QP subproblem (3.19) is solvable
(or, in elastic mode, dt =t = 0), since pp = p, for all sufficiently large k. Note that
for each k € K, ||d*|| < €. Hence limy_o0 kex d® = 0. By passing to the limit for
k € K, it follows from the KKT conditions of the QP subproblem (3.20) (or (3.22)
with dt =t = 0) and Assumption 3 that u* is a generalized stationary point of (3.15)
with 4 = 0. The limit point (z*,y*) is a piecewise stationary point of the MPEC if

(x*,y*) is lower-level nondegenerate, see Proposition 3.7 in [JR00].

(iii) The result has been proven in [JRO0]. O

The assertion that the limit point u* is a generalized stationary point of (3.15)
with 4 = 0 is not the strongest result one could hope for. For example, it does
not imply B-stationarity unless (z*,y*) is lower-level nondegenerate or some further

conditions are satisfied.

To prove convergence to B-stationary points, one has to show that the multipliers
Ao, for i € 3, corresponding to lower-level degenerate points are nonnegative. In
[FP99], Fukushima and Pang consider a smoothing algorithm very similar to ours
and prove that under some further conditions, the limit point u* will indeed be a
B-stationary point. In essence, the main assumption in their proof is that the LICQ
is satisfied and there exists a subsequence that satisfies second-order necessary con-
ditions for the smooth approximation. These assumption are likely to be satisfied in
practice so that convergence to B-stationary is given. Another technical assumption
used by the authors is called “asymptotically weakly nondegenerate”. Although it
is not clear when this condition is satisfied, we observed in our numerical tests that
Mg, for i € B3, is indeed nonnegative at the solution so that the algorithm converges

to a B-stationary point.

Closely related to the work [FP99] of Fukushima and Pang is a recent paper by
Scholtes [Sch01] who considers a regularization scheme for MPECs. His convergence
results are similar to [FP99] but instead of asymptotic weak nondegeneracy he uses

a condition called “upper level strict complementarity” to prove convergence to a
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B-stationary point under LIC(QQ and the existence of a subsequence satisfying second-
order necessary conditions. In conclusion, we conjecture that a stronger convergence
result than Theorem 3.3.13 is possible. This is also indicated by the numerical results

and the fact that A\g had the correct sign in our tests.

3.4 Relationship to other smoothing methods

As we mentioned earlier, the first smoothing method for MPECs is due to Facchinei,
Jiang, and Qi. In contrast to ECOPT, the smoothing method presented in [FJQ99]
uses a slightly different formulation of the MPEC; instead of nonlinear complemen-
tarity constraints, the authors consider variational inequalities in KKT form. Their
method uses a smoothing function for the min-function and a black-box NLP solver
to solve the resulting smooth problems. Convergence is proved under slightly stronger
conditions than given for ECOPT in Theorem 3.3.13. Numerical results for the non-
linear test problems tested in Section 4.13 are also presented.

A smoothing method for MPECs with linear complementarity constraints has
been suggested by Fukushima, Luo, and Pang in [FLP98]. Similar to our approach,
the authors also use the Fischer-Burmeister function ¢ and its smoothing function
¢u- Indeed, specializing ECOPT to MPECs with linear complementarity constraints
would result essentially in the smoothing algorithm from [FLP98]. One notable dif-
ference is that our implementation of ECOPT uses exact second derivatives of the
objective and smoothing function, while the algorithm tested in [FLP98] does not use
this information. From our experience, this is in important feature that improves the
performance significantly.

Finally, Jiang and Ralph [JR00] propose two smooth SQP methods for MPECs: an
implicit smooth SQP and an explicit smooth SQP method. While the implicit method
treats the smoothing parameter ;4 as a variable and updates it in every iteration, the
explicit SQP method updates p separately. Our algorithm ECOPT shares many
common ideas with the explicit smooth algorithm analyzed by Jiang and Ralph. The
main difference is the way we handle infeasible QP subproblems and the fact that the

authors did not implement and test either of the two proposed algorithms. Important
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details for an implementation that are left open in [JR0O0] are the stopping criterion
and especially an update strategy for the matrix Wj. Solutions of these issues and

extensive numerical tests will be presented in the next chapter.
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Chapter 4

Implementation and Numerical

Comparison

4.1 Implementation details for ECOPT

Before presenting the numerical results, we give some of the details of the MATLAB

implementation of ECOPT.

Termination criterion

The following termination criterion is motivated by the convergence analysis in Sec-
tion 3.3.6. Recall that a feasible point (z,7) of the MPEC is called weakly stationary
if there exist MPEC multipliers A\; > 0, fij, Uy satisfying

]2l

kepUy
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We say that (z,7, A, i, 7) is an e-weakly stationary point of the MPEC if
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For e = 0, any e-weakly stationary point is weakly stationary and vice versa.

In our implementation, we check this termination criterion by solving a linear
programming problem if the feasibility gap, in particular complementarity between y
and F', is below 1.e-6.

Forcing a stronger stationarity concept for termination would require sign con-
straints on the multipliers p and v; see [Sch01] for details. These could be easily
incorporated into the LP, but in light of the convergence analysis, it is not guaran-

teed that our algorithm converges to such points.

QP subproblem solution

We implemented our algorithm ECOPT in MATLAB using the relatively new TOM-
LAB environment [Hol99a, Hol99b]. TOMLAB replaces routines from the Optimiza-
tion Toolbox with its own routines and interfaces to FORTRAN packages such as the
nonlinear optimization solvers SNOPT [GMS97], NPSOL [GMSW86] and MINOS
[MS95] and the QP-solvers QPOPT and SQOPT.

In our implementation, we can choose to solve the QP subproblems by either
the Optimization Toolbox QP-solver quadprog, QPOPT, SQOPT, or MINOS. In the
tests reported later, we use QPOPT throughout, but MINOS or SQOPT would give
very similar results. Our experience suggests that quadprog is less reliable and slower
than either of the other three solvers we used. Notice that the use of a sparse QP-
solver, such as SQOPT or MINOS, would allow the solution of large scale, sparse
MPECs. We did not pursue this in the current work, but minor modifications would

allow the solution of much larger, sparse problems with ECOPT.

Line search

The implemented line search is the same Armijo line search as described in the algo-

rithm. We stop the algorithm if the step size becomes too small, i.e., t < tyin.
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Hessian approximation

One of the most critical details of any SQP method is the update of the matrix W).
Ideally, W}, should be a good approximation to the Hessian matrix of the Lagrangian
at the current point. Although theoretically, we only need W} to be symmetric
positive definite, in practice the particular choice of Wy, is critical. Using the identity

matrix, for example, turns out to be a poor choice.

In the following, we focus on the use of exact second derivatives of the smoothing
function ® in the update of Wj. In particular, we will first assume that ¢, F' are
affine and that exact second derivatives of the objective function f are available.
These assumptions are valid for most of the problems in this work and in particular
for the electricity model in Chapter 6. We will also discuss the extension to the

general nonlinear case.

The Hessian matrix of the Lagrangian (3.18) is given by
v2£“(1', y? S? 7T7 67 77) -

Zﬂ—zvq)uz Y, s ZSJVQg]a:y anka(x y)

If g and F' are affine, this reduces to
ViLH(z,y, s, 7) = V2 f(2,y) Zm V20, (v, s).

The second derivatives of @, are given by (3.14). It is easy to see that @, is a concave
function in y and s for all 4 > 0, so that Wy is positive semidefinite if f is convex and
the multipliers m; are nonnegative for all 7. Unfortunately, the sign of the multipliers

is not clear since we use ®, in an equality.

In our implementation, we approximate V2£* by a positive semidefinite matrix W,
in the following way: First, as multiplier estimates, we use the QP multipliers of the
most recently solved QP subproblem. These are automatically given and don’t need

to be computed separately like least-squares multiplie, which involves the solution of
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an extra system of linear equations, for example. Next, we experimented with several
different ways of ensuring positive semidefiniteness of Wy. Given that f is convex
in all cases considered, we propose an easy update strategy that worked well for the
problems tested:

We first use the positive QP multipliers )\gi > 0 together with exact second

derivatives of ®, to form the update

Wi = V(5,05 = Y Aai VO,u(y", 5).

Ap ;>0

For the QP multipliers /\é,i < 0, we penalize y and s symmetrically by a diagonal

matrix D € R™?™ with elements

D,;;, =0, fori=1,...,n,

|55
ly7s|’

Dntjn+j = Dnimtjntmj = forj=1,...,m.

The motivation for this is given by the fact that a negative multiplier A} ; indi-

cates that the optimal point of the current subproblem would violate the constraint

©u(yF, s¥) <0, see Figure 4.1. A positive penalization of y; and s; therefore pushes

k
Sy

A

)\qm' <0

)\‘I):i >0

k
=,

Figure 4.1: Lagrange multipliers of ¢, (yF, s¥) =0

k+1

yi Tt and sF

i

inside the constraint more likely. In our implementation we set v =
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10~*. The matrix W}, used is then

Wi, = Wy + D.

We can extend the above approach to the general nonlinear case by including
second-order derivative information of ¢ and F' in the same disaggregated way as we
did for ®,. If exact second derivatives are not available, updates for g and F' can
be used separately. Keeping the update positive (semi-) definite is more difficult in
this case, since the curvatures of g and F' are possibly unknown. For general ways to
deal with this, see [GMWS81]. One could also work with indefinite updates and apply
ideas introduced in [MP99] and [Gol99].

Parameter settings

We use the following parameter settings for all runs of ECOPT:

po1=10% p1 =10% pp=10% pp=10"" B, =107  fimin = 107",
=10, B.=03, 0=057=05 = tmn=10"  kpa = 300.

The main termination criterion is set to 107°,

4.2 Implementation details for NLP codes

To facilitate a direct comparison of the efficiency of ECOPT with that of state of
the art nonlinear optimization solvers, we used the TOMLAB interface to the SQP
algorithms NPSOL and SNOPT, as well as the sequential linearization algorithm

MINOS. The MATLAB interface we wrote passes the following formulation to each of
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the solvers:

min  f(z,y)

I7y7s

subject to  g(x,y) >0
F({L‘,y)—S:O
y>0, s>0, y's=0.

Notice the inclusion of the slack variables s which make the complementarity con-
straints “less nonlinear” and should improve the numerical performance. Of the three
solvers, only MINOS has been previously applied to MPEC problems similar to the
ones considered here [JR99]. The new interface to the solvers through TOMLAB
seems to be more stable than the MEX interface to MINOS that has been used in
[JR99.

After some tests, the only changes we made to the standard parameters set by
TOMLARB were to increase the accuracy of the subproblem solutions for both NPSOL
and SNOPT to 1.e-7 from 1.e-6, the default set by TOMLAB. This change enabled a
faster convergence in some of the test problems reported later. The major convergence

tolerance is set to the default 1.e-6.

4.3 Quadratic problems (QPECS)

The first type of problem we test the algorithms on are quadratic problems with equi-
librium constraints (QPECs for short). A QPEC is a quadratic MPEC, that is an
optimization problem with quadratic objective function, linear first-level constraints
and second-level constraints that are given by parametric affine variational inequal-
ities or linear complementarity problems. To do this, we use the MATLAB program
QPECgen by Jiang and Ralph [JR99]. QPECgen is a random problem generator
which allows the control over important properties of the problem, like dimension,
convexity and, in particular, degeneracy in the first- and second level of the con-

straints. It has been used in [JR99] to compare the piecewise sequential quadratic



4.3. QUADRATIC PROBLEMS (QPECS) 65

programming algorithm (PSQP) and the penalty interior point algorithm (PIPA)
with standard NLP codes MINOS and the constrained programming solver from the
MATLAB Optimization Toolbox.

In the following, we describe and test two types of problems generated by QPEC-
gen: quadratic problems with affine variational inequality (AVI) constraints and

quadratic problems with LCP constraints.

4.3.1 QPECs with AVI constraints

Using the first-order necessary conditions of the second-level AVI, the quadratic prob-
lem with AVI constraints in x € IR” , y € IR™ and A € IR? can be formulated as
[JR99:

1 T
min  —[z,y|P +cr+d'y
1’7?/:)\ 2 y
subject to Gx+ Hy+a <0 (4.1)

Nz +My+q+E"A=0
0<ANLDzx+FEy+b<0,

where P € R»tmx(rtm) ¢ ¢ R* d € R™, G € R*", H € R*™, a € R,
NeR™" MelR™™ qgeR™, EF e RP™ D e RP", and b € RP.
Notice, that the first-level equality constraints are joint constraints in all variables

x, y, and .

Characteristics of AVI-constrained problems

The following summarizes the problem characteristics of the first set of test problems.
We use the same parameters and random seed as the problems tested in [JR99], so
a direct comparison of results will be possible. The starting points are generated
randomly in the same way as has been done in [JR99].

The test set consists of a total of 16 small to medium size problems in four groups.
The dimensions of these problem ranges from n 4+ m = 28 to 70 variables (z,y) and

[ 4+ m + 2p = 40 to 106 constraints excluding the complementarity constraints.
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gpec_type cond P(scale P) convex f symm M monoM
100 100(100) 1 1 1
cond_M(scale_M) second_deg first_ deg mix_deg tol_deg
200(200) 0 2 0 l.e-6
implicit rand_seed
0 0

Table 4.1: Parameters for AVI-QPECs

Group 1, Problems 1-4. The parameters of the first group are summarized in
Table 4.1. For a detailed explanation of the terminology we refer the reader to
[JR99]. The problems in the first group have the nice property that the objective
function is strictly convex, the Hessian of the objective function is well-conditioned,
the second-level problem is symmetric, strongly monotone and well-conditioned with
respect to the second-level variables y, and the second-level degeneracy does not exist

at the generated solution.

Group 2, Problems 5—8. The second group has the same parameters as Group 1

except for second_deg = 4 and mix_deg = 2.

Group 3, Problems 9-12. The same parameters as in Group 2 are used except
that mono M = 0 and symm M = 0, i.e., the lower-level matrix M is not necessarily
monotone or symmetric. The solution set to the parametric second-level problem is
less well behaved and algorithms can be expected to have more problems detecting

the generated solutions.

Group 4, Problems 13-16. The same parameters as in Group 2 are used ex-
cept that second_deg = 8. In theory, higher degeneracy affects the performance of
some algorithms, so this parameter setting is to test how much this matters in prac-

tice.
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(m’n7 l7p)

deg

Min

F-ev.

fgen

Norm

Problem number
Dimension of the problem

No. of degenerate lower-level indices at the generated solution

(l'gen ) ygen)

No. of major iterations (QPs solved for ECOPT, NPSOL, SNOPT/
linearly-constrained NLPs solved by MINOS)

No. of minor iterations (QP iterations by ECOPT and SNOPT/
pivots performed by MINOS) Minor iterations are not passed on by
the TOMLAB interface for NPSOL at this time.

No. of function evaluations for 8, F', and g

The objective function value at the found solution

The objective function at the generated solution (% gen, Ygen)

The infinity norm of the difference vector between the found solution
and the generated solution (zgen, Ygen)

Table 4.2: Notation for numerical results
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P (m,n,l, p) deg Maj Min F-ev. f fgen Norm
1 (20, 8,4, 8) 0 8 15 9 —65.0099 —65.0099 6.4e—07
2 (30, 12,8, 12) 0 5 21 6 —118.886 —118.88¢ 4.7e—07
3 (40, 16,12, 16) 0 7 27 8 —74.1346 —74.1346 1.1e—07
4 (50, 20, 16, 20) 0 7 34 8 —133.573 —133.567 2.7e—02
5 (20, 8,4, 8) 4 16 35 28 —71.4787 —71.4787 1.0e—05
6 (30,12,8,12) 4 11 32 17  —1158 —1158 8.9e—09
7 (40, 16,12, 16) 4 13 40 17 —50.5499 —50.5499 1.1e—06
8 (50, 20, 16, 20) 4 18 54 54 —73.2094 —-73.1951 3.2¢—02
9 (20, 8,4, 8) 4 8 15 11 —80.161 —83.9831 1.7e—01
10 (30,12,8,12) 4 12 32 24  —179.695 —179.695 8.9e—05
11 (40, 16,12, 16) 4 15 44 18 —71.7339 —71.7339 2.8¢—06
12 (50, 20, 16, 20) 4 7 34 8 —-96.5076 —110.073 3.7e—01
13 (20, 8,4, 8) 8 22 49 42 —87.0353 —87.0353 2.3e—05
14 (30, 12,8, 12) 8 16 43 20 —128.801 —128.801 1.5e—06
15 (40, 16,12, 16) 8 24 70 48 —86.3115 —86.3114 2.3e—06
16 (50, 20, 16, 20) 8 16 70 29 —47.3336 —47.3336 4.8¢—06

Table 4.3: Numerical results for ECOPT on AVI-QPECs
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P (m,n,l, p) deg Maj Min F-ev. f fgen Norm
1 (20,8,4,8) 0 47 - 56 —65.0099 —65.0099 1.5e—09
2 (30,12,8,12) 0 21 - 35 —118.887 —118.886 4.3e—03
3 (40,16,12,16) 0 30 - 38  —74.1346 —74.1346 1.4e—07
4 (50,20,16,20) 0 49 - 57  —133.564 —133.567 3.0e—02
5 (20,8,4,8) 4 24 - 33 —71.4787 —T71.4787 6.7e—07
6 (30,12,8,12) 4 25 - 36 —115.8 —115.8  6.2e—08
7 (40,16,12,16) 4 22 - 28  —50.5499 —50.5499 7.7e—08
8 (50,20,16,20) 4 52 - 61  —73.2094 —-73.1951 3.2e—02
9 (20,8,4,8) 4 18 - 25  —82.7748 —83.9831 1.2e—01
10 (30,12,8,12) 4 38 - 49  —179.695 —179.695 1.0e—06
11 (40,16,12,16) 4 32 - 48  —71.7339 —71.7339 1.6e—07
12 (50,20,16,20) 4 34 - 52 —110.073 —110.073 8.5e—07
13 (20,8,4,8) 8 17 - 25  —87.0353 —87.0353 1.7e—08
14 (30,12,8,12) 8 18 - 26 —128.801 —128.801 3.8e—07
15 (40,16,12,16) 8 23 - 28 —86.2204 —86.3114 8.2e—02
16 (50,20,16,20) 8 78 - 96  —47.3336 —47.3336 3.3e—10
Table 4.4: Numerical results for NPSOL on AVI-QPECs
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P (m,n,l, p) deg Maj Min F-ev. f fgen Norm
1 (20, 8,4, 8) 0 98 341 107 —65.0099 —65.0099 3.8¢—09
2 (30, 12,8, 12) 0 32 267 38 —118.887 —118.88¢ 4.3¢—03
3 (40, 16,12, 16) 0 39 283 44  —74.1346 —74.1346 2.4e—07
4 (50, 20, 16, 20) 0 96 717 110 —133.45 —133.567 1.0e—01
5 (2 8,4 8) 4 42 223 48  —71.4787 —T1.4787 T7.4e—08
6 (30 12,8, 12) 4 46 350 53 —115.8 —115.8 1.6e—08
7 (40 16,12, 16) 4 48 434 57  —50.5499 —50.5499 1.6e—06
8 (50 20, 16, 20) 4 231 1123 259 —73.1951 —73.1951 1.5e—-07
9 (2 8,4 8) 4 49 237 55 —83.9831 —83.9831 1.2¢—13
10 (30 12,8, 12) 4 46 323 51  —177.071 —-179.695 1.9e—01
11 (40 16,12, 16) 4 22 345 27 —=29.0859 —71.7339 9.2¢—01
12 (50 20, 16, 20) 4 30 415 35 120.23 —110.073 1.4e+00
13 (2 8,4 8) 8 42 254 48  —87.0348 —87.0353 6.4e—04
14 (30 12,8, 12) 8 20 285 26 —128.801 —128.801 2.8e—08
15 (40 16,12, 16) 8 37 354 42 —86.3114 —86.3114 1.5e—07
16 (50 20, 16, 20) 8 53 614 58  —47.3336 —47.3336 1.6e—07

Table 4.5: Numerical results for SNOPT on AVI-QPECs
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P (m,n,l, p) deg Maj Min F-ev. f fgen Norm
1 (20,8,4,8) 0 6 125 170 —65.0099 —65.0099 3.4e—12
2 (30, 12,8, 12) 0 21 166 249 —117.348 —118.886 1.5e—01
3 (40, 16,12, 16) 0 16 310 491 —74.0042 —-74.1346 5.0e—02
4 (50,20,16,20) 0 11 363 498 —133.573 —133.567 2.7e—02
5 (20,8,4,8) 4 17 375 746  —T71.4787 —71.4787 9.7e—12
6 (30,12,8,12) 4 19 239 343 —110.86 —115.8 2.5e—01
7 (40,16,12,16) 4 5 192 231 —50.5499 —50.5499 8.8e—11
8 (50,20,16,20) 4 9 288 357 —73.1951 —73.1951 7.8e—09
9 (20, 8,4, 8) 4 5 104 141 —82.8222 —83.9831 1.2¢—01
10 (30,12,8,12) 4 15 205 243 2176 —179.695 5.5e+00
11 (40,16,12,16) 4 17 201 202 —9.17031 —71.7339 1.2e+00
12 (50,20, 16,20) 4 4 189 162 —110.073 —-110.073 1.4e—12
13 (20,8,4,8) 8 4 88 106 —87.0353 —87.0353 4.9e—08
14 (30, 12,8, 12) 8 29 367 562 —124.033 —128.801 2.2¢—01
15 (40, 16,12, 16) 8 6 150 146 —86.3114 —86.3114 1.9¢—09
16 (50,20,16,20) 8 6 269 314 —47.3336 —47.3336 1.1le—10
Table 4.6: Numerical results for MINOS on AVI-QPECs
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Discussion of AVI-QPEC results

Numerical results for ECOPT, NPSOL, SNOPT and MINOS for the first four groups
of problems are shown in Tables 4.3—4.6. The notation is explained in Table 4.2.

In the following, we make some observations about the numerical results.

e All algorithms tested here perform well on the small- to medium scale AVI-
QPEC problems. In particular, all four algorithms terminate with local solu-

tions.

e Nondegenerate problems, Group 1, were generally easier for ECOPT in terms
of iterations and function evaluations. There is no evidence on the effect de-
generacy has on the efficiency of the NLP codes NPSOL, SNOPT and MINOS.
The number of iterations and the quality of the solutions varies equally between

nondegenerate and degenerate problems.

e For nonmonotone problems, Group 3, all algorithms had to work harder to
identify the generated solution, as expected. All algorithms found local solu-
tions, but NPSOL and ECOPT seemed to get closer to the best solutions than
SNOPT and MINOS.

e Although the two SQP methods NPSOL and SNOPT are very similar in na-
ture, it seems that SNOPT has more difficulty in handling complementarity
constraints than NPSOL. In particular, the number of minor iterations increases
for SNOPT with problem size. This is not well understood at this point. One
explanation for this behavior could be the difference in how infeasible subprob-
lems are handled by the two methods. Also, noting that QP subproblems are
degenerate due to the complementarity constraint, different ways of handling
degeneracy by the QP solvers could be a second reason. Further investigation

is needed to provide a complete answer.

To facilitate a better overall comparison of the four algorithms, and also to compare
our results to some algorithms tested in [JRI9], we present Table 4.7. In this table,

four measurements are exhibited. They are “# reach (Zgen, Ygen)” Or the number of



4.3. QUADRATIC PROBLEMS (QPECS) 73

Algorithm  # reach (Zgen, Ygen) # reach best solution # success # QPs

ECOPT 12 14 16 205
NPSOL 12 13 16 928
SNOPT 12 10 16 931
MINOS 8 9 16 205
PIPA 11 10 15 305
PSQP/B 11 11 15 145

Table 4.7: Comparison of algorithms for AVI-QPECs

times the (infinity-norm) distance between the final point and (zgen, Ygen) is less than
102, “# reach best solution” which is the number of times each method converges
to the best found solution, “# success”, the number of problems where the method
indicated successful termination, and “ # QPs”, the total number of quadratic pro-
grams solved over all successfully terminated runs. In the table, we include the results
for the penalty interior point method PIPA and the piecewise sequential quadratic
method PSQP (version B) from [JR99] for comparison.

Table 4.7 shows that on small to medium scale AVI-constrained problems, ECOPT
and NPSOL perform better than the other four algorithms. Both converge to the best
found solution more often than other methods, while ECOPT is, in addition, more
efficient in terms of the overall number of subproblems that needed to be solved.
Although MINOS seems efficient on this set of problems, it does not converge to, or
get near the best solution for almost half of the problems. The other three methods,
SNOPT, PIPA and PSQP/B are similar in performance, but do not find the best

solution as often, on some problems they actually fail.
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4.3.2 QPECs with LCP constraints

The quadratic problem with LCP constraints in x € IR” and y € IR™ is given by:

1 T
min =[x, y|P +cx+d"y
T,y 2 y
subject to Gz + Hy+a <0 (4.2)

0<ylL Ne+My+q>0,

where P € Rtmxvtm) o ¢ R* d ¢ R™, G € R>*", H € R>*™, a € R,
NeR™" M eIR™™, and q € R™.

A special case of this problem is given if H = 0, so that the first-level constraints
only depend on the first-level variables. These problems are termed implicit programs
and some algorithms rely and exploit this special feature. The problems we test the

algorithms on now are of this type.

In our numerical tests for the NLP codes, we observed some problems finding
initial feasible points for the larger dimensional problems considered now. It is not
difficult to find such a point for implicit programs. We first find a feasible point z°

0 we next find a

satisfying the inequality constraints Gx + a < 0. For the given x
feasible 1° by solving the lower-level LCP 0 < y L Na°® + My 4+ ¢ > 0. We use this
procedure to provide the NLP codes with a feasible starting point. For ECOPT we

use the random starting points.

Characteristics of LCP constrained problems

We will now present numerical results for implicit programs with LCP constraints.
The problems tested here include the ones considered in [JR99], but we added some
more problems including larger dimension and a larger number of first-level con-

straints. In detail, we test 24 problems in the following four groups.

Group 5, Problems 17—22. The parameters for the first group of LCP constrained
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problems are the same as Group 1 in the AVI constrained test set (see Table 4.1) ex-
cept for implicit = 1 and gpec_type = 300. We use the same randomly generated

starting points as before.

Group 6, Problems 23-28. The second group has the same parameters as Group

1, but has four times as many first-level variables x and first-level constraints.

Group 7, Problems 29-34. The same parameters as in Group 1 are used ex-

cept that second deg = 4 and mix_deg = 2.

Group 8, Problems 35—40. The last group has the same parameters as Group

3 but again more first-level variables x and more first-level constraints.

Discussion of LCP-QPEC results

Numerical results for the four methods for the second set of problems are shown in
Tables 4.8-4.11. We use the same notation as before, see Table 4.2.

Overall performance of the four methods is very similar on these larger dimensional
LCP-constrained problems compared to the small- and medium AVT constrained prob-
lems. ECOPT and NPSOL converge to the generated solution (zgen, Ygen) for all 24
test problems. This is an indication that the problems have few local minimizers.
SNOPT uses increasingly more minor iterations for higher dimensional problems.
This actually leads to a few failures, denoted by F1 in Table 4.10, for problems with
250 and more second-level variables y. MINOS fails on half of the problems in this
second set due to reaching its minor iteration limit also. We indicate this by F2 in
Table 4.11

Similar to before, we present a summary of results in Table 4.12. Using the same
notation, we compare the overall performance of the four methods. We leave out
PIPA and PSQP/B in this comparison, since they have not been tested on all the
problems considered here in [JR99]. Recall that “# QP’s” only counts the major

iterations for successfully completed problems, so that the low number of QP’s solved
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P (m,n,l) deg Maj Min F-ev. f fgen Norm

17 (50,8,4) 0 10 31 11 —142.829 —142.829 1.1e—10
18 (100,8,4) 0 11 26 12 —664.389 —664.389 1.4e—09
19 (150,8,4) 0 9 27 10 —535.743 —535.743 6.0e—08
20 (200,8,4) 0 12 29 13 —109.595 —109.595 2.5e—08
21 (250,8,4) 0 14 42 16 —148.279 —148.279 2.4e—10
22 (300,8,4) 0 12 36 13 —846.126 —846.126 4.1e—08
23 (50, 32,16) 0 9 60 10 —=572.108 —572.108 2.3e—11
24 (100,32,16) 0O 11 50 12 —=25.9279 —25.9279 2.7e—08
25 (150,32,16) 0O 12 58 13 —183.805 —183.805 8.8e—10
26 (200,32,16) 0O 14 61 15 —340.145 —340.145 6.7e—09
27 (250,32,16) 0O 12 65 13 —367.696 —367.696 2.2e—08
28 (300,32,16) 0 10 47 11 —109.995 —109.995 7.2e—08
29 (50,8,4) 4 13 29 17 —41.8764 —41.8764 1.7e—06
30 (100,8,4) 4 10 29 16 —599.936 —599.936 9.1e—06
31 (150,8,4) 4 11 35 13 —536.444 —536.444 4.9e—07
32 (200,8,4) 4 14 25 20 —23.7817 —23.7817 6.3e—07
33 (250,8,4) 4 12 33 13 —=331.619 —331.619 9.4e—07
34 (300,8,4) 4 11 26 12 —739.468 —739.468 2.6e—07
35 (50,32,16) 4 18 62 21 —564.136 —564.136 3.7e—09
36 (100,32,16) 4 11 48 12 —155.606 —155.606 1.2e—07
37 (150,32,16) 4 16 68 21 —69.3098 —69.3098 1.4e—07
38 (200,32,16) 4 14 62 19  —304.964 —304.964 1.5e—07
39 (250,32,16) 4 18 80 27 —169.129 —-169.129 6.1e—06
40 (300,32,16) 4 12 56 13 29.2539 29.2538  1.0e—03

Table 4.8: Numerical results for ECOPT on LCP-QPECs
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P (m,n,l) deg Maj Min F-ev. f fgen Norm

17 (50,8,4) 0 19 - 26  —142.829 —142.829 4.7e—08
18 (100,8,4) 0 19 - 28  —664.389 —664.389 3.6e—08
19 (150,8,4) 0 19 - 23 —535.743 —535.743 2.0e—08
20 (200,8,4) 0 15 - 18  —109.595 —109.595 3.0e—07
21 (250,8,4) 0 16 - 20 —148.279 —148.279 5.9e—07
22 (300,8,4) 0 14 - 18  —846.126 —846.126 9.8e—08
23 (50, 32,16) 0 42 - 76  —572.108 —572.108 1.6e—07
24 (100,32,16) 0O 34 - 58  —25.9279 —25.9279 2.1e—07
25 (150,32,16) 0O 28 - 38  —183.805 —183.805 2.8e—07
26 (200,32,16) 0O 21 - 25 —=340.165 —340.145 3.1e—02
27 (250,32,16) 0O 17 - 20 —367.696 —367.696 2.1e—07
28 (300,32,16) 0 20 - 23 —109.995 —109.995 1.1e—06
29 (50,8,4) 4 19 - 27 —41.8764 —41.8764 1.5e—08
30 (100,8,4) 4 19 - 25 —=599.936 —599.936 1.5e—06
31 (150,8,4) 4 29 - 34 —536.444 —536.444 2.4e—07
32 (200,8,4) 4 15 - 18 —=23.7817 —23.7817 1.3e—07
33 (250,8,4) 4 16 - 19  —=331.619 —-331.619 1.4e—08
34 (300,8,4) 4 15 - 19  —739.468 —739.468 4.3e—08
35 (50,32,16) 4 44 - 80  —564.136 —564.136 1.4e—07
36 (100,32,16) 4 36 - 52  —155.606 —155.606 1.6e—07
37 (150,32,16) 4 31 - 44 —69.3098 —69.3098 5.6e—07
38 (200,32,16) 4 22 - 27 =304.964 —304.964 8.9e—07
39 (250,32,16) 4 18 - 22 —169.129 —-169.129 3.3e—07
40 (300,32,16) 4 26 - 31 29.2538 29.2538  1.4e—07

Table 4.9: Numerical results for NPSOL on LCP-QPECs

77
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P (m,n,l) deg Maj Min F-ev. f fgen Norm
17 (50, 8, 4) 0 18 439 24 —142.829 —142.829 2.3e—07
18 (100,8,4) 0 24 883 29  —664.389 —664.389 4.2e—08
19 (150,8,4) 0 30 1257 36 —535.743 —535.743 5.4e—07
20 (200,8,4) 0 14 6797 18 —109.595 —109.595 6.2e—07
21 (250,8,4) 0 20 7637 24 —148.279 —148.279 4.3e—07
22 (300, 8, 4) 0 F1 Fl Fl1 F1 F1 F1
23 (50,32, 16) 0 22 663 28 —572.108 —572.108 1.0e—07
24 (100, 32,16) 0 32 836 38  —25.9279 —25.9279 1.3e—06
25 (150, 32,16) 0 44 1285 54 —183.805 —183.805 1.5e—06
26 (200, 32,16) 0 139 2993 159 —340.145 —340.145 3.1e—05
27 (250,32,16) 0 F1 F1 Fl F1 F1 F1
28 (300,32, 16) 0 F1 F1 F1 F1 F1 F1
29 (50,8,4) 4 24 481 30 —41.8764 —41.8764 5.0e—07
30 (100,8,4) 4 21 1020 26 —599.936 —599.936 3.3e—07
31 (150, 8, 4) 4 20 1471 25 —536.444 —536.444 4.8e—07
32 (200,8,4) 4 15 7378 19 —23.7817 —23.7817 1.5e—07
33 (250,8,4) 4 18 9525 23 —331.619 —331.619 3.2e—07
34 (300,8,4) 4 F1 F1 Fl F1 F1 F1
35 (50,32,16) 4 26 615 32 —564.136 —564.136 1.5e—07
36 (100,32,16) 4 13 909 19 —155.603 —155.606 7.3e—03
37 (150,32,16) 4 31 1527 36  —69.3098 —69.3098 7.0e—07
38 (200,32,16) 4 26 4136 31 —304.964 —304.964 3.0e—06
39 (250,32,16) 4 F1 F1 F1 F1 F1 F1
40 (300,32,16) 4 F1 F1  Fl F1 F1 F1

Table 4.10: Numerical results for SNOPT on LCP-QPECs
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P (m,n,l) deg Maj Min F-ev. f fgen Norm
17 (50,8,4) 0 10 309 433 —142.829 —142.829 9.le—12
18 (100,8,4) 0 12369 465 —664.389 —664.389 1.4e—10
19 (150,8,4) 0 15 776 865 —535.743 —535.743 2.5e—08
20 (200,8,4) 0 F2 F2 F2 F2 F2 F2
21 (250,8,4) 0 F2 F2 F2 F2 F2 F2
22 (300,8,4) 0 F2 F2  F2 F2 F2 F2
23 (50, 32,16) 0 19 376 587 —569.849 —572.108 2.le—01
24 (100,32,16) 0O 17 686 957 —25.9279 —25.9279 3.0e—08
25 (150,32,16) 0O 19 915 1018 —183.805 —183.805 4.7e—08
26 (200,32,16) 0 F2 F2  F2 F2 F2 F2
27 (250,32,16) 0 F2 F2  F2 F2 F2 F2
28 (300,32,16) 0 F2  F2 F2 F2 F2 F2
29 (50,8,4) 4 12 519 680 —41.8764 —41.8764 1.9e—11
30 (100,8,4) 4 11 511 047  —599.936 —599.936 8.1e—10
31 (150,8,4) 4 16 818 891 —536.444 —536.444 2.9e—11
32 (200,8,4) 4 F2 F2  F2 F2 F2 F2
33 (250,8,4) 4 F2 F2  F2 F2 F2 F2
34 (300,8,4) 4 F2 F2  F2 F2 F2 F2
35 (50,32,16) 4 8 269 369 —564.136 —564.136 1.4e—09
36 (100,32,16) 4 26 803 1171 —154.524 —155.606 1.7e—01
37 (150,32,16) 4 22 917 1204 —69.3098 —69.3098 2.8e—07
38 (200,32,16) 4 F2  F2 F2 F2 F2 F2
39 (250,32,16) 4 F2  F2 F2 F2 F2 F2
40 (300,32,16) 4 F2  F2  F2 F2 F2 F2

Table 4.11: Numerical results for MINOS on LCP-QPECs
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Algorithm  # reach (Zgen, Ygen) # reach best solution # success # QPs

ECOPT 24 24 24 296
NPSOL 24 24 24 554
SNOPT 18 18 18 541
MINOS 12 12 12 187

Table 4.12: Comparison of algorithms for LCP-QPECs

for MINOS, for example, only corresponds to half of the problems.

Table 4.12 shows the superiority of ECOPT and NPSOL over SNOPT and MINOS
for this second set of problems. ECOPT is again more efficient in terms of major
iterations compared to NPSOL. It should be pointed out that the two other methods
PIPA and PSQP/B show good results also for the subset of problems tested in [JR99].
Both methods converge to the generated points for the problems tested but tend to

need more major iterations (QP’s solved).

4.4 Some nonlinear test problems

In addition to quadratic problems with linear complementarity constraints, we also
tested some nonlinear MPECs. These problems have either a nonlinear objective
function, nonlinear constraint functions, or both.

The problems are part of MPECLIB [DF99], a library of MPEC problems coded
in GAMS with an interface to MATLAB. We used the MATLAB interface to access
the test problem data. For the details of the problems we refer to [DF99] and the
references therein. We use the same parameters and update rules for ECOPT. This
means in particular that we do not use second-order information of the constraint
functions g and the equilibrium function F' in the update of the Lagrangian Hessian.
Some of the problems in MPECLIB have equilibrium conditions which take the form
of mixed complementarity problems rather than NCPs. To handle this type of con-
straint, we generalize the definition of ® to take this into account. Details of this are
given in [Bil95] and [Pie98].
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In Table 4.13, we summarize the results for MPECLIB. In particular we show the
number of major iterations (Maj), function evaluations (F-ev.) and the final value of

the objective function (f) for each problem.

Problem ‘ Maj F-ev. f
bard1 6 7 17.00
desilva 10 13 —1.00

figl a | 12 29  3.2077
figl b | 15 43 3.2077
a 6 9 3.4494
b | 6 8  3.4494
a | 14 23  4.6043
fig3 b | 10 14  4.6043
a
b

14 21 6.5927

fjq4 12 18 6.5927
gauvin ) 6 20.00
hql 5t 6  —3266.67
mss 3 13 22 —5.3491
qvi 2 3 0

Table 4.13: Numerical results for ECOPT on MPECLIB

ECOPT solves all problems successfully and reaches the best known local mini-
mum for all cases. The number of iterations and function evaluations also compares
favorably with the results reported for other algorithms in [FJQ99, DF99, St599b]
and the talk [LF00] given at the STAM Conference in Atlanta in September 2000.

Before summarizing our numerical experiments, we consider a small academic
example which has been proposed by Scholtes in [Sch01] as a problem on which
smoothing methods, like ECOPT, would not be able to converge to the optimal

solution.
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4.5 Scholtes’s counter example
The following problem has been suggested by Scholtes in [Sch01]:
. 1 2 2 2
min 5[(u—1) + (v —2)" + (w+1)7]
subject to u,v,w > 0,
uw = 0,

vw = 0.

Theoretically, the smoothing approach cannot identify the minimizer (1,2,0) of this
problem since it generates a sequence of points with u, v, w > 0 and uw = u, vw =
for p > 0. It is argued in [Sch01] that a smoothing method can only converge to a
point on either the nonnegative w-axis or the diagonal in the nonnegative orthant of
the (u,v) plane. The difficulty of this problem lies in the fact that the MPEC-LICQ
is violated at every feasible point in the (u,v) plane.

Although, theoretically ECOPT generates search directions towards points with
u,v,w > 0 and uw = p, vw = p for g > 0, our implementation of ECOPT does not
enforce the nonnegativity constraints on the complementary variables (in this case
all variables u, v, and w) and does not solve the subproblems for each value of p > 0
exactly.

The problem can be cast as an LCP constraint QPEC in the form (4.2), with

r:=w,y:= (u,v), and

Running the problem with exactly the same implementation as before, we can solve
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Iteration k u® vk wh f* LU,
0 0.00000 0.00000  0.0e400  3.00000 1.0e—06
1 0.00141 0.00141 —5.4e—20 2.99576 1.0e—10
2 0.00341 0.00341 —1.8e—20 2.98977 1.0e—14
3 0.00683 0.00683 —6.0e—36 2.97956 1.0e—16
4 0.99980 2.00000 —2.1e—10 0.50000 1.0e—16
) 1.00000 2.00000 1.1le—=16  0.50000 1.0e—16

Table 4.14: Iterations for a proposed counter example

the problem and find the optimal solution (u,v,w) = (1,2,0). We tried many start-
ing points and always converged to the optimal solution. In Table 4.14, we show a
typical sequence of points and perturbations py generated by ECOPT for this prob-
lem. Starting from the origin, it can be seen that at first the sequence converges to
a point on the diagonal of the positive orthant of the (u,v) plane, but eventually
converges to the optimal solution. Notice that the w variable becomes slightly nega-
tive, in particular in the fourth iteration. This seems to enable the step towards the

solutions.

4.6 Summary of numerical results

We have presented extensive numerical comparison of different algorithms to solve
mathematical programs with equilibrium constraints. Although the three standard
nonlinear programming methods, in particular NPSOL, performed quite respectably,
the smoothing approach incorporated into ECOPT seems more efficient. Further-
more, from our experience with the electricity model presented in the next chapter,
we feel that ECOPT avoids local minima more effectively than NPSOL or the other
methods. Future research could investigate this point more systematically.

One of the main features of ECOPT is the use of exact second derivative infor-
mation of the smoothing function. At this point, no second-order information of the
other constraint functions is used. A disaggregated Hessian approximation as dis-
cussed in [Gol99] can be applied in a similar way to accomplish this. Also, since the

smoothing function has the “wrong curvature” as discussed earlier, we use an ad hoc
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method to ensure positive (semi-) definiteness of the matrix given to the QP sub-
problems. Although this works quite well for the problems tested here, we feel that
a more sophisticated way of doing this could improve the results further. Another
option would be to use the unmodified indefinite Hessian approximation and work
with the nonconvex QP subproblem, see [MP99, Gol99].



Chapter 5
Forward Markets in Electricity

The lack of working forward markets for electricity represents one of the main ob-
stacles to current deregulation efforts in the electricity industry. Inelasticity and
uncertainty of electricity demand in real time gives producers market power in high
demand time periods that leads to price spikes, which force the introduction of price
caps in most deregulated electricity markets.

Under rate-of-return regulation, price hedges for consumers were an inherent fea-
ture of electricity rates. In a deregulated environment, this will not be the case any
more; the expectation of regulators is that independently operated forward markets
will arise to provide this hedge for consumers in this situation. Although economic
theory suggests the development of forward markets in deregulated markets to hedge
risk, this has not been the case in a number of markets, such as California. Recently,
the Federal Energy Regulation Commission (FERC) [FER00] has identified the lack
of an active forward market as one of the reasons for high electricity prices in partic-
ular in the California market, where all trading was forced into the spot market. In
its order [FER00], the FERC commission considers forcing producers of electricity to
sell in the forward market.

In this chapter we argue that with deterministic demand, there are situations in
which it is individually rational for firms to enter the forward market. We consider
the simple case of two firms separated from the demand by a possibly congested

transmission line. We find equilibria for unlimited and limited transmission capacity
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C1
Firm 1 N
Firm 2 p
(451 Demand Node
C1 (91) =bg
z
‘ ‘ p(z)=a—=z
1 ‘ ‘ ©
€2 Capacity = K
g2
ca(g2) = bgo

Figure 5.1: Two-node network with two firms and one demand node

separately in Sections 5.1 and 5.2. Producers will enter the forward market if the
capacity of the line is above a certain threshold. Below that threshold, no firm has
an incentive to enter the forward market and no forward sales will take place.

In Chapter 6 we expand the small example by presenting a general mathematical

model for forward markets in electricity.

5.1 Forward markets with no transmission con-

straint

The following simple two-period model without transmission constraints was analyzed
by Allaz [All92] and Allaz and Vila [AV93] to show a rationale for a forward market
under certainty and perfect foresight. We will summarize the main results of [AV93]
in condensed form in this section. The situation with no transmission constraints will
serve as our base case for the more complicated models analyzed later.

In the simplest situation, see Figure 5.1, there are two firms at node 1 connected
by a transmission line of capacity K to a demand at node 2. First, we will assume

that K = oo, so that the model is basically a one-node market and transmission prices
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can be neglected. It is assumed that in the first period (forward market), the two
firms sell or buy forward contracts that call for delivery of electricity in the second
period (spot market). We also assume that these forward contracts are binding and
observable precommitments. In the second period, the firms play a Cournot game in
quantity but payoff functions are modified by the position they took on the forward
market.

Under perfect foresight, equilibrium requires the forward market to be efficient:
The forward price as a function of the forward positions must be equal to the price that
will result from the Cournot competition on the spot market given these positions.
Therefore, no arbitrage is possible.

We will use the following notation:

g1, g2 : generation of firm 1 and 2
fi, fo: firm’s forward sales
p,p: forward price p and spot-market price p
uy,us :  payoff functions of firm 1 and 2 in the second period

71, mo ¢ overall profit functions of firm 1 and 2 for the two-stage game

c1,Co :  cost functions of firm 1 and 2

5.1.1 Spot-market equilibrium

Given the forward positions f; and f;, the firms maximize the following payoff func-

tions uq (f1, f2) and us(f1, f2) in the second period:

[ur(f1, f2)l(91, 92) = (g1 + 92) (g1 — f1) — c1(g1),
[ua(f1, f2)](91, 92) = (g1 + 92) (92 — f2) — ca(g2).

Indeed, given that the first firm has already sold out f;, it can only sell the quantity
(g1 — f1)- If gy is less than f; then the firm must buy electricity from its competitor
to meet its commitment of sales or, equivalently, it can buy back its forward position
at the spot-market price.

To derive some analytical insight, we will assume that firms are symmetric, i.e.,
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have the same cost structure, and both cost and demand functions to be linear and

production capacity to be also unrestricted:

01(91) = by, 02(92) = b g,
p(z) =a— z,
0<b<a.

The units of @ and b are §/ MW h, and z in p(z) is premultiplied by a conversion factor
of $/ MW h?.

Given f; and f5, the two competitors play the following game:

Igrllgéi [ui(f1, f2)](g1,92) = (a — g1 — 92) (g1 — f1) — by,

Igrfi’; [ua(f1, f2)](91,92) = (a — g1 — g2) (g2 — f2) — b ga.

The first-order conditions for the players give:

:a—b+f1—g2
0 5

_a=b+fr—aq
go = 5 .

The key point is that the solution (reaction function) of player i is increasing in f;;
Indeed when a competitor has a short position (i.e., f; > 0), then he is less “price
sensitive” and therefore cares less about the price elasticity effect of an increase in
generation. Note that the marginal revenue from selling a further MW on the spot
market is p' (g1 + g2) (i — fi) +P(g1 + g2) and not p'(g1 + g2)@; +P(g1 + g2), as is typical
in Cournot models, because the decrease in price necessary to sell this additional MW

does not affect the revenue from forward sales.

The following proposition from [AV93] presents the Nash equilibrium quantities

and price.
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Proposition 5.1.1. The Nash equilibrium in the spot market is unique with equilib-

rium quantities and price given by:

a—b+2f1—f2 a—b+2f2—f1 . a+2b—f1—f2
J= 3 2= 3 P 3 '

5.1.2 Emergence of forward markets

In the first period, when the orders f; and f; are submitted to the forward market,
traders in this market know the spot price in the subsequent market will be p(g1, ¢2)
as given in Proposition 5.1.1. Now suppose that in the forward market, prices are
set by a Bertrand auction where several buyers (at least two) bid for the aggregated
supply fi+ f2. The equilibrium outcome of this auction will generate a forward price
p(f1, f2) equal to the perfectly anticipated spot price p(g1, g2).

Suppose first that only one firm (firm 1) is allowed to trade forward (f; = 0).
When making his trading decision, this producer knows that he will not make any

arbitrage profit and that his payoff will be

Plgi(f1,0) + g2(f1,0)] g1 (f1,0) — c(g1(f1,0)). (5.1)

Thus, firm 1 faces the following problem: Choose f; such that the Nash equilibrium

outcome in the second period is optimal for him.

Proposition 5.1.2. The equilibrium outcome in the forward market is the Stackelberg
outcome of the Cournot duopoly game without a forward market when firm 1 is the

leader:
a—b a—>b a—b a+ 3b

flz 4 g1 = 5 g2 = 4 q= 4

Proof: Substituting the results of Proposition 5.1.1 into (5.1) and maximizing with

respect to fi gives the result. O

Thus, if one player has the opportunity to trade forward, he can improve his
profit. There is a strategic incentive for trading forward. Total output goes up from
(2(a—1)/3) to (3(a—b)/4). Therefore, taking the actions of the first trader as given,
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firm 2 will want to trade forward too in an attempt to reap similar profits. Hence we
can see that both firms will sell forward part of their production. This will lead to
the emergence of a forward market.

[t can be argued (see [AV93]) that the opposite position in the forward market will
be taken by speculators who do not make a profit, but will be able to get transaction

costs for their provision of liquidity.

5.1.3 Forward-market equilibrium

We will now summarize the equilibrium in the forward market when both firms are
allowed to participate.

Given the positions f; and fs, the total profits of firm 7 are given by

mi(f1, f2) = p(f1, f2) fi + [wi(f1, f2)](91(f1, f2), 92(f1, f2)),

which can be rewritten as:

mi(f1, f2) = [P(f1, f2) 9i(fr, f2) — elgi(f1, f2))] + [p(f1, fo) — B(fr, f2)] fio

Under perfect foresight there will be no arbitrage, so that p(f1, f2) = p(g1, g2). Hence:

mi(f1, f2) = D(91, 92) 9i(f1, f2) — c(gi(fr, f2)), fori=1,2. (5.2)

Proposition 5.1.3. The only forward market equilibrium outcome is given by:

2(a — D) a—b a—"b
5 fi=f= 5 p=>b+ E

g1 = g2 =

Hence, allowing forward trading decreases the firms’ profits and increases social wel-

fare.

Proof: After substituting the results of Proposition 5.1.1 into (5.2), it can be shown

that both firms maximize (5.2) for the given values. O

It turns out that trading on the forward market represents a prisoner’s dilemma

for the two firms. When one of them succeeds in being the only producer to trade
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forward, he greatly benefits from doing so. However, when both firms trade forward,
they both end up being worse off.

To extend the results of Allaz and Villa, we will consider the case of limited
transmission capacity (K < oo) in the next section. We will show that similar results

hold, although the emergence of a forward market will not be given in any case.

5.2 Forward markets with transmission constraint

What happens in the presence of transmission constraints in the current model? To
analyze this situation, we will assume that the transmission line of limited capacity
K is owned by an independent grid operator who charges a wheeling fee w for trans-
mitting power from node 1 to node 2. The transmission price is based on congestion.

Similar to the last section, we will first characterize the spot-market equilibrium
given forward positions f; and fy. Then we will examine the conditions under which
firms participate in the forward market and summarize the equilibrium for the two-

stage game.

5.2.1 Spot-market equilibrium

In the presence of a transmission constraints, the game consists of three players, the
two firms plus the grid owner, and a market clearing condition.

More specificically, firm 1 solves

mg?X(a —g1—92) (g1 — f1) — (b+w) g1, (5.3)

and similarly for firm 2
mg?jx(a — 91— g2) (92— fo) — (b+w) ga. (5.4)

In this model, it is assumed that producers are transmission price-takers.
The grid owner is assumed to ration limited transmission interface capacity to

maximize the value of the transmission services ¢ (transmission from node 1 to node
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2 in this case), as expressed by producers’ willingness to pay. This behavior can be
shown to be equivalent to having the grid choose values of ¢ to maximize its revenue
wt as if w were fixed, while respecting the interface constraint. It is also equivalent
to a competitive market for transmission rights in which generators do not exercise

market power [Sto99a].

The transmission owner therefore solves

max wt
t (5.5)
subject to t < K.

The connection between the firms’ and the transmission owner’s problem is given by
the market clearing condition:
g1 +g2=1. (5.6)

The transmission price w will be such that the market clearing condition is satisfied
in equilibrium. This equilibrium is characterized by the optimality conditions of the

players and the market clearing condition.

The first-order conditions of (5.3), (5.4) and (5.5) plus the market clearing condi-
tion (5.6) give rise to a mixed linear complementarity problem. These problems are
in general harder to analyze than the simple model with no transmission constraints,

but it is still possible to derive analytical expressions in this simple case.

We will split the analysis in two cases. First, if the transmission constraint is not
binding, then w = 0 and we have the outcome of the last section. We see from there

that in the second period, firms choose quantities

a—b+2fi—f a—b+2f—h
, and gy = .

g1 = 3 3

Therefore, the transmission line will be uncongested if

2(&—b)+f1—|—f2 <
3 =

g1+ g2 = K.

In particular, if no forward sales are given (f; = fo = 0), the line will be congested
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if 2(a —b) > K. So if W < K, then without a forward market, the uncon-

strained Cournot equilibrium will be reached.

(a=b)+fi+/>
3

In the second case, if 2 > K, the line will be congested. From the

first-order conditions of the grid and the market clearing condition, it follows that
The first-order conditions of the two firms are

(=g —¢g)—g+fi-b—w=0, (5.8)
(a—g1—g2) —ga+ fo—b—w=0. (5.9)

Solving (5.7), (5.8) and (5.9) simultaneously yields:

_K+h-f K+ fo—-fH
a1 = ) g2 = ) p—CL—K,
2 2
o 2a=b) it fa-3K

2

Note that w =0 if K = w and w > 0 for smaller transmission capacity K.

We summarize the results in the following

Proposition 5.2.1. The Nash Equilibrium in the spot market with a transmission

line of capacity K is unique with equilibrium quantities and prices given by:

(a) If K > %, then

a—b+2fi—fo g_a—b+2f2—f1 ﬁ_a+2b—f1—f2
) 2 — — )

3 3 , 3 w = 0.

a1 =
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(b) If K < 2e=OItl: ypep

K+ - f K+ fHh-hHn
g1 = ) g2 = ) p_a_Ka
2 2
and w:2(a_b)+f1+f2_3K.

2

5.2.2 Emergence of forward markets

Similar to the case without transmission constraints, we will now analyze if and under
what conditions a forward market will emerge. To do so, we will again first look at
the case where only one firm is allowed to participate in the forward market. We will
see that the outcome depends critically on the capacity K of the transmission line

connecting the generators with the demand.

Suppose again that only firm 1 is allowed to make forward sales (f, = 0). Under
perfect foresight, no arbitrage is possible, and firm 1’s payoff function in the forward

market will be:

m1(f1,0) = p(g1(f1,0) + g2(f1,0)) 91(f1,0) — c(g1(f1,0)) — w g1 (f1,0).

The no arbitrage condition implies p = p so that firm 1 receives p(g1(f1,0)+ g2(f1,0))
for both forward and spot-market sales, and in addition the transmission price w =

w(g1(f1,0), g2(f1,0)) will be known in the forward market also.

To find the optimal decision of firm 1 in the forward market, we will again consider

two cases. First, we consider the case where the transmission line is uncongested.

This will happen exactly if g,(f1,0) + g2(f1,0) < K, where ¢;(f1,0) and go( f2,0)

are given by Proposition 5.2.1 as

a—b+2f a—b— fi .
N=—"—35 > =73 and p =

a+2b—f1

Therefore, the line is congested if K > w, or fi < 3K —2(a —b). So if
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fi <3K —2(a —b), then w = 0 and the payoff function of firm 1 is given by:

m1(f1,0) = p(g1(f1,0) + g2(f1,0)) g1(f1,0) — c(g1(f1,0)).

Substituting and simplifying gives the following payoff function for firm 1 if it is the

only firm trading in the forward market:
1 .
7Tl(f1, 0) = §[(Cl - b)2 + (CZ - b)f1 — 2f12], if f1 S 3K — 2(a — b)

Next, we consider the case where the line is congested in the spot market, i.e., f; >

3K — 2(a —b). In this case, the payoff function is

m1(f1,0) = p(g1(f1,0) + g2(f1,0)) g1(f1,0) — e(g1(f1,0)) — wagi(f1,0),

where ¢,, g2, ¢ and w are given by Proposition 5.2.1 as

:K+f1 :K—f1
g1 92 ) g2 9 )

2(a—b)+f1—3K

A:—K =
p=a y W 5

Substituting and simplifying gives the following payoff function:
1
Wl(fl,O):Z[Kz—fIQ] 1ff1>3K—2(a—b)

Putting both cases together, the payoff function of firm 1 as the only firm in the

forward market is given by:

[(a—b)*+ (a—b)fi = 2f7] if fi <3K —2(a—0),

0) =
7Tl(fl’ ) [KQ . fz] otherwise
: .

= O

As an example, we will show the graph of a payoff function for ¢ = 100, b = 10 and
K = 55,65 and 75 in Figure 5.2.
Given transmission capacity K, firm 1 chooses forward sales f; to maximize his

payoff function 7.

Proposition 5.2.2. The equilibrium outcome with transmission capacity K and firm
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71(f1,0) for K < 2(a —b) 71(f1,0) for 2(a—b) < K < 3(a - 1) 71(f1,0) for K > 3(a —b)

71(f1,0)
71 (f1,0)
71(f1,0)
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Figure 5.2: Payoff functions for low, medium, and high transmission capacity

1 as the only firm in the forward market is given by:

0 ZfKS%(a_b)a
Si=493K—=2(a—b) if2(a—0b) <K <2(a—0b),
1(a—b) if K> 3(a—b).

Proof: If k < 2(a — b), then 3K — 2(a — b) < 0 and the maximum over f; is found
in the second part of the payoff function (see the first graph in Figure 5.2). In this
case, f; = 0 will yield the maximum payoff for the two-stage game.

If 2(a —b) < K < 3(a — D), then 3K — 2(a — b) > 0 and the maximum over f; is
found in the intersection of the two parts of the payoff function (see the second graph
in Figure 5.2). In this case, f; = 3K —2(a — b) will yield the maximum payoff for the
two-stage game.

In the third case, K > 2(a—b), the transmission limit does not come into play and
the unconstrained result from Section 5.1 holds (see graph 3 of Figure 5.2). Therefore,
fi = 1(a—b) in this case. O

The result of Proposition 5.2.2 has an important consequence for the emergence
of forward markets under the assumed conditions. If the transmission line is already
congested in a real-time market with no committed forward sales (K < 2(a — b)),
then no firm has an incentive to sell in the forward market to increase profits. In

Section 6.4, we will see an example of a six-node network where a forward market
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develops, even though one transmission line is congested in the real-time market
with no committed forward sales. Nevertheless, the small example indicates that
expanding transmission capacity could support the development of a forward market
in deregulated electricity markets.

If, on the other side, the transmission line is uncongested in a real-time market
with no committed forward sales (K > 2(a — b)), then the firms have an incentive
of selling in the forward market. Similar to before, we will now analyze what kind
of equilibria are possible if all firms are allowed to participate in the forward market

under the presence of transmission constraints.

5.2.3 Forward-market equilibrium

Throughout the analysis, we will assume that the transmission capacity is large
enough to allow the development of a forward market, i.e., K > %(a— b). In this case,
both players have an incentive to sell in the forward market.

If the transmission capacity is large enough to allow for the unconstrained forward
equilibrium from Proposition 5.1.3, i.e., K > %(a — b), this will obviously be the
equilibrium.

Assume therefore that 2(a—b) < K < £(a—b). To find the equilibria in this case,
we derive the payoff function of firm 1, given forward sales f of firm 2. As in the
previous case, the transmission line is uncongested if g, (f1, f2) +g2(f1, f2) < K; thisis
equivalent to K > w, or fj <3K—-2(a—b)— fo. Soif f{ <3K—2(a—b)— f,

then w = 0 and the payoff function of firm 1 is given by:

mi(f1, f2) = D(g1(f1, f2) + 92(f1, f2)) 91 (f1, f2) — cla1(f1, f2)),

where g1, g2 and ¢ are given by Proposition 5.2.1 as

a—b+2f1—f2

a—b+2f,— fi . a+2b—fi—fo
3 , and p= .

g1 = 3 3

g2 =

Substituting and simplifying gives the following payoff function for firm 1, given

forward sales fs:

mi(f1, f2) = %[(a—b)z+2f22—2af2+(a—b—f2)f1—2f12]a if fi <3K—-2(a—b)— fo.
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Next, we consider the case where the line is congested in the real-time market,

i.e., fi > 3K — 2(a — b) + fo. In this case, the payoff function is

7T1(f1,f2) :ﬁ(gl(f1,f2) +92(f1,f2))91(f1,f2) - 0(91(f1,f2)) - w!]l(flaf?):

where ¢,, g2, p and w are given by Proposition 5.2.1 as

2(&—b)+f1—|—f2—3K
5 .

:K+f1—f2

:K+f2—f1 .
2 b

g1 92 5 p=a—K, w=

Substituting and simplifying gives the following payoff function:

1 .
mi(f1, f2) = Z[Kz — Kfy— fifs =[], if fi > 3K —2(a—b) — fo.
Putting both cases together, the payoff function of firm 1, given f5, is:

slla =0 +2f7 —2af,
mi(f1, f2) = +la—b—fo)fi —2f7 if fi <3K —2(a—b) — fo,
HK? = Kfs— fifs — f7] otherwise.

Similarly, we can derive

slla—0) +2f —2af,
To(f1, f2) = +(a—b— fi)fs —2f2 if f <3K —2(a—b) — fi,
K2 —Kfi — fifs — /3] otherwise.

Given transmission capacity K and forward sales f;, j # 4, firm ¢ chooses forward
sales f; to maximize m;. As in Proposition 5.2.2, optimal forward sales for firm 7 are

given by

(a—b).

e~ w

fi = max(0,3K —2(a — b) — f;), if%(a— b) < K <

This means, if 2(a —b) < K < 2(a —b), there will be multiple equilibria for which
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fi+fo = 3K —2(a—b). If one firm is able to obtain a large share in the forward market,
the best the other firm can do is to take the rest. Factors outside the simplified model

considered here will determine the distribution of sales and profits between the firms.

We will summarize the equilibrium outcome in the constrained case in the follow-

ing Proposition.

Proposition 5.2.3. The forward market equilibrium outcome with limited transmais-

ston capacity K s given by:

(a) If K < %(a —b), then the firms will not commit to any forward sales so that

f1:f2:07
1
g1 = g2 §K7
p:a_Ka
_ 2(a—0b) - 3K
= 5 .

(b) If 2(a — b) < K < 3(a —b), then multiple equilibria exist such that

f1, /220,
fi+ fo=3K —2(a—1b),
g=a-b+fi - K,
g=a—-b+f— K,
a— K,
0.

p
w
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(¢) If K > 2(a —b), then

2(a — b
g1 = g2 = (5 ),
a—>b
f1:f2: 5 )
a—>b
5
+ 5
w =0

Proof: The proof is very similar to that of Proposition 5.2.2.



Chapter 6

A General Forward Market Model

We have seen so far that even in the simplest case of one transmission line and no
capacity constraints, it takes some effort to find equilibria for the two-stage game of
forward and spot-market electricity sales. More general situations can only be an-
alyzed by more general models. In this chapter we will present such a model that
is scalable in the number of firms, nodes and transmission lines and includes trans-
mission and generation capacity limits as well as an accurate network representation
using Kirchhoff’s laws. Although our model is quite general, further extensions are
possible and will be mentioned later.

We will first present a Cournot model of the spot market, which generalizes the
simple example we dealt with so far. After that we will consider the payoff function in
the forward market and present a mathematical formulation of the forward problem
in terms of a mathematical program with equilibrium constraints. Notice that a

summary of the notation and commonly used definitions is given in the appendix.

6.1 Spot-market equilibrium

In this section, we will summarize the assumptions about market participants in
our model. We will derive the firms’ and grid owner’s optimization problem, which
together with the market clearing conditions will be the equilibrium constraints rep-

resenting the spot-market in the forward-market model. The following Nash-Cournot

101
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model is based on the model presented by Hobbs in [Hob00] (see also [Met00]), but
has some notable differences.

First, in our context, the model represents only the spot market and not the
equilibrium outcome of the whole market. We assume that firms have committed to
binding forward sales contracts before they enter the spot market. In this context,
the spot-market equilibrium will serve as the constraints in an optimization problem.
As an extension, one could also consider uncertainty in the demand, represented by
scenarios in the spot market. To make the model more realistic, we have added
increasing marginal cost functions (in contrast to constant marginal cost) for the
firms, although the same effect could have been achieved by increasing the number
of generation units and varying marginal cost.

Firm ¢ owns power generating facilities located at nodes 7 € N of the network.
The indices i and j designate nodes, c; + by gir is the marginal cost (in $/MW) of
generating g;; (in MW). The capacity of a generator is C AP;,.

Collectively, consumers at a node ¢ consume quantity ¢;, which is price responsive.
In this model, we will assume linear demand functions p;(¢;) = P? — (P?/Q?)q;, with
P? (in $/MWh) and @Y (in MW) being the positive price and quantity intercept,
respectively. Nonlinear demand functions would give rise to a nonlinear complemen-
tarity problem as the subproblem, which generally results in models that are more
complicated to solve.

In real time, sj; is the quantity shipped by firm ¢ to consumers at node j. Fur-
thermore, there is a forward market in which producer ¢ contracts to deliver fj, to
consumers at node j in real time. Therefore, in real time, the producer receives
revenues for the amount (sj; — fj;). Assuming market clearing and no arbitrage,
> ¢ Sje = q;. If there is arbitrage, then ), s, 4+ a; = ¢;, where a; is the net amount
of power sold by arbitragers to node j. The generators determine the level of sales to
each node, and then request transmission service from the grid. We impose an energy
balance on each firm (32, gic = >_; 8jr)-

The owner of the grid charges a wheeling fee w; (in $/MWh) for transmitting
power from node 7 to an arbitrary hub node. (For simplicity, it is assumed that there

is neither generation nor consumption at the hub). Because of the linearity of the DC
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network, all generation and sales can be modeled as being routed through the hub
node. A firm pays w; to get power to the hub from a generator at i and then pays
—w; to convey power for sale from the hub to customers at j. Thus, the total cost of
transmitting power from a generator at ¢ to the point of sale at j is w; —w;. The total
transmission service that the grid provides for power transferred from node 7 to the
hub is t; MW (which may be negative). Consistent with the linear DC approximation,
flows through transmission line k& are modeled using power transmission distribution
factors (we will denote the matrix of PTDF’s by D); i.e., the net MW flow through
kis >, Dix t;. The lower and upper bounds on real power flows through an interface
k are —T,” and T,". We assume there are no losses and that congestion is the basis
for pricing.

The owner of the grid is assumed to ration limited interface capacity to maximize
the value of the transmission services t;, as expressed by generators’ willingness to
pay. This behavior can be shown to be equivalent to having the grid to choose values
of t; to maximize its revenue ) . w; t; as if the w; were fixed, while respecting interface
constraints, see [Hob00, Sto99a].

Arbitrage

A final assumption concerns arbitragers. In the present context, arbitrage is the
practice of buying power at one node and selling it for profit at another node. This
can occur when the cost of shipping is smaller than the price difference between two
nodes. If the price at B is more than the price at A plus the cost of shipping it from
A to B, then it is profitable to sell from A to B. If it is strictly less, then it would be
profitable to sell power generated at B to A. By allowing arbitrage to take place, the
price difference between two nodes will be exactly the cost of shipment between the
two nodes at equilibrium. If this is not the case, then a profitable opportunity for the
arbitrager would have been ignored.

We will model arbitragers in the presented framework by recognizing that arbi-
tragers will erase price differences between nodes so that in equilibrium p;(¢;) + w; =

p;(¢;) +w; = pg, the hub price. We will denote the amount of arbitrage sold at node
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J by aj, so a; < 0 means that power is bought and transferred out of node j. This
assumptions leads also to simplifications in the firms’ problem since we can assume
that all sales in the spot market are at the hub. Transmission only has to be paid to

get energy to the hub.

In the following, we will summarize the firms’ and grid’s optimization problem as
well as the market clearing conditions. The KKT conditions of these problem will

result in the equilibrium problem for the spot market.

Firm’s problem

The following quadratic optimization model states that in real time, given contracted
forward sales f;;, firm ¢ chooses generation ¢;; and sales s;; in order to maximize

profit:

5¢:90,0¢,P¢

1
max Y py (s — fu) = Y [Cz’z + 5 bie gie + Wi gue
ieN

iEN
subject to  g;0 < C APy, Vie N
Py - (R‘O/Q?)(Z Sjt + @ie) = pr — Wi, Vie N
teF
Z(SM — gie) =0
iEN
iEN
Sity gie 2> 0, Vi € N.

Grid owner’s problem

The grid owner chooses ¢; to maximize its profit from bilateral transactions, adopting

the naive Nash-Bertrand assumption that it cannot affect the fees it gets for providing
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transmission services:

max g w; t;
Yy

ieN
subject to ZDik t; <T, VkeA

1EN

=Y Dut; <T,, VkeA

1EN

Market clearing

105

The total transmission service demanded by each generator ¢ and arbitragers from

node ¢ to the hub must equal the transmission service the grid provides to that node:

> (gie — su) —aw=t;, Vie N,{€F.

el

Elimination of sales variables

To simplify the model, the firms’ problem can also be stated in the generation variables

gi¢ alone, resulting in an optimization problem with only half the number of variables.

Recall the original optimization problem

1
max Y pe(sie— fu) = ) [Cz’z + 5 bie gie + Wi gu

ieN ieN
subject to  giy < C APy,
P — (PP /QN(D_ sj+ aie) = pe — wi,

teF
Z(Siz — gie) =0
1EN
> =0
1EN
Sits Gie 2 07

Vie N
Vie N

Vi e N.

(6.5)

(6.6)

It can be shown that if 2* = (s}, g;,a},p;) is an optimal solution to the firms opti-

mization problem, then the point @’ = (g}, g;,a; + s, — g;,p;) is a possibly alternate

optimal solution to the problem.
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Proposition 6.1.1. If x* = (s}, g;,a;,p;) is an optimal solution to the firms opti-
mization problem, then the point x' = (g}, 9;,a; + s, — g;,p;) is an alternate optimal

solution to the problem.

Proof: First, we show the points yield the same objective value, then we will show

that z’ is feasible. Consider the objective function at z':

Z P} — Q—’O G5 + Z sit + @ + 85 — gip | +wi| (950 — fie)
ieN g ter\f

1 * *
—Z Ci£+§bi€gil+wi it

1EN

_Z PO——i S;}—F Z Sit+azg + w; (g;kf_fw)

IEN ter\ f
1 * *
- Z ciet; bie 9ip + wi| 93
ieN

(by constraint (6.4))

k * [ 1 k *
:sz(gie—fw)—z Ci€+§bizgw+wi 9ie

1EN tEN - -
* * [ 1 * *
=Dy Z(giz — fit) — Z Cit + B} bir g3y + wi| Gy
1EN ieEN - -

(by constraint (6.3))

= Z — fie) Z Cit + % bie gip + wi_ Gie

ieEN iEN -

po
= Z P — l i+ Z sit +ajp | —wi| (si — fie)

IEN teF\ f
1 * *
- Z Cie + 3 bie gip + Wi | Gip-
iEN

Thus, the objective values at x* and 2" are equal. Also, within the derivation above,
one can see that the price functions yield the same values at x* and z'. Thus the

point 2’ will also satisfy constraint (6.4). Now, we show that z’ satisfies constraint
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(6.5):
Z(a;} + 85— Giy) = Z (g + Z(sfe — 9i)
iEN iEN iEN
(By equation (6.3):) = Z a.
iEN
It is trivial to show that 2’ also satisfies the other constraints. O

This means that for any optimal solution, there is an alternate solution for which
s = g. This allows one to reduce the problem by eliminating the s variables in
each firm’s optimization problem. As a result, the exogenous sales variables for the
other firms can now also be written in terms of g, leading to a reduced optimization

problem.

For each ¢/ € F,

1
max > pe(gie — fi) =Y [Cz’z + 5 bie gie + Wi gu (6.7)
ieN ieN
subject to  g;p < C APy, Vie N (6.8)
PY—(PY/QY)(D  gjg + aie) = pe — wi, Vie N (6.9)
g
D aw=0 (6.10)
ieN
gie > 0, Vie N, (6.11)

Simplified firm’s problem

Before considering the KKT conditions of the above optimization problems, we will
eliminate further variables in the firm’s problem. In particular, it is possible to

eliminate the arbitrage variables a; and the hub prices p;, see [Met00]. To do so,
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consider equations (6.9) and (6.10) in matrix notation:

P’ —Qlac+ g) +w—pre, =0,

T _
e, ar =0,

0
where Q is the n x n diagonal matrix with entries Q;; = %, g is the n vector of sums

of generation at node 4, i.e., §; = >, gir, and e, is the vector of n ones. Solving for

-1
47 o Q €n
e e, 0
Since @ is a positive definite diagonal matrix, it is easy to see that
-1
Q e, (L d
e’ 0 dr —d|’

where L is an n X n matrix, d is an n X 1 vector, and d is a constant. In particular,

ci, d and L are defined as follows:

ap and py, we obtain

—Qg+w+ P°
0

L 0
Li:=d=5 > =5, forieN,

. P
b JEN\{i} Y

Lij = —d"—Pj fori,j € N,i # j.

Note that this implies
LQ + de; = I,.

Since () is positive definite and —d < 0, it is also clear that L is positive definite.
This will be important later on when we analyze the whole model, see Proposition
6.1.3.
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Now, we can write a, and p, explicitly as follows:

—d"e?(§) + d"w + d"P°

a| | —LQy+ Lw+ LP°
Do —d"Qg + d"w + d" P°

__F@g—hﬂ@+Lw+LP°

Rewriting in subscript form, we have:

a=— giet+dG+Y Ljwj+> L;P! WYieN, and  (6.12)

leF JEN JEN
pe=—dG +Y dpw;+ Y d;PY, (6.13)
JEN JEN

where G is equal to total generation in the market, i.e., G := > ..\ > ,cp gie- These
two equations show that both a;; and p, are independent of /. Next, we substitute for

pe and a; in the reduced optimization problem and arrive at the following system:

max | —dG + Z djw; + Z d; P} Z(W — fie) — Z [Ciz + % bie gie + wi| Gie

JEN jEN iEN iEN
subject to ¢y < CAPy, Vie N (6.14)
gie >0, VieN.

Without the sales variables, the market clearing conditions reduce to —a;; = t; so

that without the arbitrage variables they take the following form:

ti= g —diG =Y Lyw;— > LyP! Vie N, (6.15)

(EF jEN jEN

where G denotes total generation in the market.

Spot-market LCP

The first-order optimality conditions for the reduced firms’ problem (6.14) are then:
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Forallie N, ¢ e F:

0<gu L—dY gs+dYy fie—dG+Y duw;+Y d;P]

JEN JEN JEN JEN
— w; — Cig — bipgis — vie <0,
0 <7l giw— CAP, <0.

We can write down the KK'T conditions for the linear optimization problem of the grid
owner. After we introduce multipliers A and A/ for the lower and upper bounds on
transmission through interface k, respectively, the KKT conditions for the grid owner

are:

Forallv e N, k € A:

keA
0< A LY Dyt <Ty, (6.17)
1EN
0< A, L= Dyt; <Ty, (6.18)
1EN
0=> t. (6.19)
1EN

We can drop A in the above system by defining w; = w; — A, o) = ay + A, and
P = pe+ A.

Before putting the whole model together, we can also eliminate the w and ¢ vari-
ables using (6.16) and (6.15):

k€A
leF JEN JEN

Since t; = —a; and by (6.10), > ..y aw = 0, for all £, we can drop (6.19). The

resulting equilibrium model for the spot market, given forward sales f;, is a linear
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complementarity problem in the variables (gs, ve, A, Ay ):

Forall: € N,/ € F, and k € A:

0< Giv J.—ciZgg%—dejf —CiG—FZZd]D]k()\Z —/\I;) +Zdjpjo

jEN jEN keA jEN jEN
- E Dip(AS — Ay ) — cie — biegie — vie <0,
keA

0 <7l guw— CAPy <0,

OS /\k+ J_ZZDjkgjf—ZdejkG—ZZDjijjlpﬁ

JEN bcF JEN JEN J'EN
_ ZL - T <0,
heA
0< /\,; 1 - ZZDjkgjf +ZdejkG+Z Z Djijj'P]Q’
JEN tcF JEN JEN j'eN
B0 - ) - TE <0
heA

where LP is the [ x [ matrix DTLD, and L}, is the (k,h)" entry of LP. Note that

LP is positive semidefinite since L is positive definite.

Spot-market LCP in matrix notation

To ease the analysis in the following, we will also consider the above formulation in

vector /matrix form. To do so, we will first introduce some more notation. Let

o 2d+b if f=h,
B(if, jh) :=

d otherwise.
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We will denote the vector of all g;, 1 € N, £ € F' by g and similar for v and f. We

will also make use of the following block structured matrix D:

D
D

]
1

D

Furthermore, let Ep denote the nm x [ matrix

-en d” D-
e,d™D

e,d™D

and Ep the nm x 1 vector ) i
e,d” P°
e,d” P°

epd” P°
Also, if we let E,, be the matrix of all ones of size n x n, then we define the following

block matrix

0
- 0 E, 0
FE = '

0O O E,

Notice that we switch the inequality signs from before at this point to express the
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problem in standard form for LCP’s:

0<g L—dEf+Bg+~+(D—Ep) A" —=\")—Ep+c>0,

0<~y L

—g+CAP >0,

0<A L —(D—-Ep)Tg+L°PA\" =X )+T"+D'LP’ >0,
0<A\ L(D—Ep)Tg—LP°\r = \")+T~ —DTLP°>0.

In complete matrix notation we have a multi-parametric LCP of the form

0<y Ll +My+q+ Nx >0,

with z = f, y = (g,7, A", A7),

—d
0
o |
0
B Lumxnm (D = Ep)
—Inmxnm 0 0
—(D—-FEp)™ 0 LP
(D — Ep)” 0 —~LP
—Ep+c
CAP
T+ + D"LP°
T- — D"LP°

Mathematical properties of the spot-market LCP

113

6.22
6.23
6.24

~—~~ o~ o~
—_ ~— — ~—

6.25

We will now summarize some of the mathematical properties of the spot market LCP.

Proposition 6.1.2. The matriz B is positive semidefinite.

Proof: Let B, =

T

— M T
EmnsxcmnCrnxmn, B2 = diag(eqer, e

(&

I eqel), and By = diag(b).

ntn»
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Since B = aZBl + Bs; 4+ B and d> 0, the assertation follows. O
As a consequence of Proposition 6.1.2, the coefficient matrix M is also positive

semidefinite.
Proposition 6.1.3. The matriz M s positive semidefinite.

Proof: The coefficient matrix M is the sum of the positive semidefinite matrix

B 0 00
AL 0 000
o0 o0 0’
0 000
and the skew-symmetric matrix
0 [nmxnm (D - ED) _(D - ED)
M2 - _Inmxnm 0 0 0

 |=(D—=Ep)” 0 LP —LP
(D — Ep)” 0 —LP LP

It is well known and easy to see that the sum of a positive semidefinite matrix and a
skew-symmetric matrix is positive semidefinite. O
The spot market LCP is therefore a monotone problem. This is a favorable prop-

erty for the convergence of the algorithms described in Section 6.3.

6.2 Firm’s forward-market problem

In this section, we will analyze the optimization problem of firm ¢ in the forward
market. We will assume that each firm predicts the outcome of the spot market
equilibrium and considers this in its decision in the forward market. Therefore, the
decision variables in the forward market are the forward sales f;; of firm ¢ taking
forward sales f;s of the other firms s € L\{¢} as given. The other variables are

resulting from the equilibrium depending on the forward sales.
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Forward-market payoff function

We assume that each firm wants to maximize its profit resulting from forward (f;)
and spot-market (g;; — fis) sales. In addition to the spot-market hub price p, and
transmission prices w, let p,’; and w/ denote the hub and transmission prices in the
forward market. A possible way to express the objective function 7, in the forward

market is then

T = ;pi fie + ieZNﬁh (gie — fie) — ; [Cie + % bie gie + w;i| G-
Furthermore, if we assume that the forward price is a perfect forecast of the (deter-
ministic) spot price, since otherwise arbitrage would take place, then the prices in
the forward and spot market are the same. In this case, we can eliminate the forward
sales f and can express the profit in terms of real-time generation variables only. The

profit of firm £ is therefore:

T = ;ﬁh gie — g [Cié + % bie Gie + Wi | Gie- (6.26)
Notice that forward sales f do not appear in the objective function any more. This has
a consequence for the spot-market equilibrium, since there, only aggregated forward
sales are important. It seems therefore, we should only consider total forward sales by
each firm; the locational aspect of forward sales is not important. To avoid introducing
extra notation, we will use f; as the total amount of forward sales of firm ¢ from this
point on. Since f,, s # £, is given in firm ¢’s problem, we will denote these parameters

as fs. Recall from (6.13) that pj, was given by:
pr = —dG+_djw;+ Y d;P?,
jJEN jEN
and w; from (6.20) as

keA
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Substituting this into (6.26) gives

mo=Y_ [=dG+Y"d; Y Dp(N =N+ > diPY| g
ieN JEN  keA jeN
1 _
- Z Cie + 5 bie gie + > DM = X )] Yi- (6.27)
1EN keA

Note that in the current form, the objective function (6.27) is neither convex nor
concave due to the bilinear terms A, g;; and A, g;y. Fortunately, it is possible to
use the constraints of the spot-market equilibrium LCP to reformulate the objective

function as a concave function in the decision variables.

Proposition 6.2.1. The objective function 7 for firm ¢ in the forward market can

be expressed as a concave function of the spot market variables y = (g,v, AT, A7).

Proof: We will again use the vector/matrix notation introduced before. The ob-

jective takes the following form:
T = — dglen,G + g (exd"D)(A\T — A7) + gFend” P°
1
— 90— 59¢ Bi'ge — g/ D(X" = A7)
R 1
=— (A" = AX)’[D — e,d"D]g; — dg; e,G + gj e,d" P° — ¢} go — gngBg”gg,

where B}" := diag(b;). The m in B}" is used to denote marginal cost. Using (6.24)
and (6.25) for firm ¢, we can derive the following identity:

~(AT = A7)[D = eud™Dlgp= > (AT = A7)7[D — e,d" Dlg,
seF\{¢(}

— (AT =AT)TLP (AT =)
— (T A~ — (T A" — (AT = A)"D"LP°.
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Next, we use (6.22) for firms s # ¢ to get

Z (/\+ - /\_)T[D - endTD]gs = Z [ - ngsTEngs + ngsTenfs
seF\{¢} ser\{¢}

—dg"e,G + g end" PP
- CsTgs —ngéngs —’}/ng )
where f; is used as a reminder that f; is fixed in producer ¢’s problem. Further using
(6.22) and putting everything together yields:
Ty = — (/\+ - )‘_)T[D - endTD]W - ngeTenG + geTendTPO - Cfgl - %QETBZLQZ
= Z |: - ngEngs + dgzenfs - CigfenG =+ gzendTPO
seF\{£}
- ngs - ng;ngs - ’VSTOAPs}
. 1
— dgienG + giend"P° = ¢ 90 = 59¢ B g0
— (AT = A)TLP (AT = A = (TN — (TH"AT — (AT = A)"DTLP PP
1 T T 7.7, f T
=59 Bypecg—c¢ g+ Ep — Z [—dgsenfs+’YSCAPs
seF\{£}
— (AT = A)TLP (AT = A = (TN — (TH"AT — (A~ = AN)'D"LP°,

where we use By/prc to denote the matrix

o 2d+b, ifs=¢,
Bupec(il, js) = N
4d + 2b, otherwise.

We can write the objective as

(@, y) = —%[%ZJ]H

x] —c'r —d"y, (6.28)
Y

where © = f;, y = (9,7, \", A7), H is the Hessian of the firm ¢’s payoff function,
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c¢:=0, and
d9
d
d= PO
dr”
where
—e,d"P° + ¢, if s =1,
df = .
—e,d"P° + ¢, — de, f; otherwise,
0 if s =1/,
dl =
CAP, otherwise,
and
| |TT+DLP°
| |T- - D"LP

The Hessian of the reformulated payoff function 7, takes the following form:

0 0 0
0 Bypec 0

H:= 1|0 0 0 0 0
0 0 0o LP —LP
_0 0 0o —LP LP |

The key observation is that Byspgc is the sum of three positive semidefinite matrices,

~

B, :=2dFE,,,,
0 0 0

B, :=2d |0 E, 0], for s # ¢,
0 0 FE

S
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and Bj is a diagonal matrix with

bz's if s = K,
2;, if s £ L.

Bs(is,is) :=

This makes Byprc positive semidefinite (remember that d> 0). We already argued
earlier that L? is positive semidefinite. Again, the sum of a positive semidefinite and
a skew-symmetric matrix is positive semidefinite, so that we have shown that the

objective function can be reformulated as a concave function in the model variables.
O

Complete forward-market problem for firm /

The overall problem for a single firm ¢, given forward sales f, for s # £, is the following
MPEC:

1
min  —[z,y|H ’ +cr+dy
2 y
subject to 0 <y L Nz + My+q >0, (6.29)

where x = fo, y = (9,7, A", A7), H, ¢, and d have been defined above. The matrices
N, M and the vector g have following form:

_dE,
N = 0 ,
0
0
[ B Lumsnm D—Ep —D+ Ep
PP i e 0 0 0
—(D-Ep)™ 0 L —LP |’
| (D— Ep)” 0 —LP LP
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and

where
—e,d"P° + ¢, if s =1,
—e,d"P" + ¢, — de, f; otherwise,

0 if s =1/,
CAP, otherwise,

+
o |
-

and

T+ D"LP°
T-— DTLP°

6.3 Algorithms for forward-market equilibria

In the same way as we did in Sections 5.1 and 5.2, we will again consider first the
case where only one firm is allowed to sell in the forward market. In the framework of
the last section, this amounts to setting f, = 0 for all s # ¢ and solving the resulting

MPEC (6.29) for firm ¢.
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The single-firm algorithm

To solve the single-firm problem, we will use ECOPT. Recall that ECOPT solves

problems of the general form:

min  f(z,y)
T,y

subject to ¢g(x,y) > 0,
y >0, F(z,y) >0, y"F(z,y) = 0.

In the context of our model, x = f,, y are the real-time equilibrium variables, ¢ is
empty and F(z,y) = Nz + My + q. Through the reformulations in the last section,
the objective function is concave and equilibrium constraint matrix M is positive
semidefinite. Even with these nice properties, the problem is possibly nonconcave
and hard to solve.

To take this into account, we use a heuristic and start with different starting
points to avoid possible local maxima. A general procedure for solving the single-firm

problem for firm 7 is the following:

Initialization

(1) Generate four different random values of forward sales f, for firm ¢, and set, f, = 0
for all s # ¢. Solve the spot-market equilibrium using an LCP solver for each

value of forward sales.

(2) For each equilibrium y found in Step (1), determine the value of the objective
function my(fr,y) in (6.28). Let (fs, y) be the solution giving the largest value of

.
General Step

(2) Use (fs,y) as a starting point to solve the single-firm problem for firm ¢ € L with

fs = 0 using ECOPT.
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The multi-firm algorithm

If more than one firm is participating in the forward market, the problem will be a
Nash game with multiple players. Each player has perfect foresight about the spot-
market equilibrium and takes other firms decision in the forward market as given
(Cournot assumption). In this game, each firm is solving an MPEC instead of a
regular optimization problem:.

An equilibrium for the multi-firm problem is a set of forward sales such that no
firm can increase profits by changing its forward sales unilaterally. Another way of
stating this is:

(f1, fo,- -+, fm) is a multi-firm equilibrium if
fe € SOL(f,), forl=1,...,m,

where SOL(f,) is the amount of forward sales that are optimal for firm /.

In general, one can not expect to find pure strategy equilibria in the forward mar-
ket. We have encountered examples where in a six-node network with two producers,
there exists the possibility of cycling between different strategy pairs. In particular,
if the second firm does not sell in the forward market, the first may do so profitably.
This will, in turn, force the second firm to sell forward which in the end leads the
first firm to go back to zero forward sales. But for this case, the second firm in turn
prefers to also not sell forward which brings the cycle back to the start. This behavior
indicates the existence of mixed strategy equilibria and ways to detect these by our
algorithm. Although these mixed equilibria are possible, in many cases pure strategy
equilibria exist and are identified by our algorithm.

In the following, we summarize the multi-firm algorithm. We use a diagonaliza-
tion algorithm similar to [HMP00] and [CHH97]:

Initialization

(1) Solve the single-firm problem for each firm ¢ € L with f, = 0 for all s # £ using
ECOPT. To save computation, we set ECOPT to a loose optimality tolerance,
e.g., tol = l.e — 1. Update the set of forward sales f = (f1,..., fm) with the

found solutions.
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General Step

(2) Use (fs,y), where y is the equilibrium vector from the last solved problem, as a
starting point to solve the single-firm problem for firm ¢ € L with f, = f, for all
s # £ using ECOPT to find a new f,. Update firm ¢’s forward sales as f,. Repeat

for/=1,...,m.

(2) Repeat step (2), increasing the optimality tolerance appropriately, until the max-

imum number of iterations is reached or a satisfactory solution is found.

In our practical tests, we run the algorithm until a satisfactory tolerance level is
reached for ECOPT, and forward sales and profits do not differ in 5 significant digits

in consecutive iterations in the General Step.

6.4 Six-node example

We will now present an example for the general model from Section 6 and apply the
algorithms just presented to find equilibria in the two-stage game.

Consider the network presented in Figure 6.1. There are two firms owning gener-
ation facilities at nodes 1,2 and 4, and three demand points at nodes 3,5 and 6. We
assume constant marginal cost to make the interpretation of results easier. Increasing
marginal cost as described in the general model would be easily handled. The demand
and cost data is summarized next to the nodes. Notice that the transmission line from
node 1 to 6 has limited capacity and is possibly congested, limiting transmission from
the northern zone of the network to the south. All other lines are assumed to have
enough capacity so that they will not be congested.

We analyze the market for three different values of transmission capacity. First,
we consider a medium capacity of 200 MW on the line from node 1 to 6. This will
serve as our base case. A medium capacity will be enough to make it profitable for
firms to sell forward. The transmission line will be congested in equilibrium and we
will see the prisoner’s dilemma derived for the two-node example we considered in
Section 5. After that, we will contrast the situation with a low capacity of 100 MW

and the case where the transmission capacity is unconstrained between node 1 and 6.
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ps(gs) = 36.5—0.05¢g3
Firm 1
Firm 2 73

Demand Nodes

C11 C99

gi1 1/ 922
c(g11) = 20 g1 c(ga2) = 23 g2o
g1 < 300 goo < 700

] Capacity 1 — 6 limited

Ds Ds
de 6\ /5 ds

Ps(qs) = 65 — 0.05 g5 p5(g5) = 35— 0.1¢5

Ci4

0(914) =23 914
g1 < 700

Figure 6.1: Six-node network with two firms and three demand nodes
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Iterations for the Multi-Firm Algorithm

Forward Sales Forward Sales
Loop Firm 1 T Firm 2 Ty
1 349.167 4876.69 261.666 2738.78

283.750 3220.57 190.729 1455.10
301.484 3635.71 186.296 1388.24
302.593 3662.50 186.018 1384.11
302.662 3664.17 186.001 1383.86
302.666 3664.28 186.000 1383.84

O O =] W DD

Table 6.1: Results for the multi-firm algorithm on the six-node example

6.4.1 Medium transmission capacity

In the following, we will contrast four different cases. First, we find the Cournot
equilibrium in the spot market if no forward sales are contracted by either of the
firms. This involves solving a linear complementarity problem for which we use the
algorithm presented in [KP99], although any algorithm for solving LCP’s would be
able to find a solution to this problem efficiently. Next, we solve the single-firm
problems for each of the two firms using the single-firm algorithm. To find the multi-

firm equilibrium in the forward market, we use the multi-firm algorithm.

The results for medium transmission capacity are summarized in Tables 6.1-6.5.
Table 6.1 shows the iterations of the multi-firm algorithm. It is easy to see that
the algorithm converges to an equilibrium (which need not be unique). Note that
although we solve the single-firm problems in iteration 1, we use a loose accuracy, so
that the results do not coincide with the single-firm outcomes solved to full accuracy
(see Tables 6.4 and 6.5).

We summarize some observations for the four different cases. First, looking at
Table 6.2, we notice that, generally, prices are declining if players participate in the
forward market, while transmission prices (Table 6.3) stay constant in the case where
only one line is congested. The decrease in prices is, of course, caused by an increase in
generation (see Table 6.4) when players start selling in the forward market. In contrast

to the Cournot outcome without forward sales, each firm can increase production by
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Delivered
Prices
Cases $/MWh
b P2 P3 P4 Ps Ps
Cournot,
Competition | 29.3 | 30.0 | 29.6 | 32.3 | 32.0 | 32.6
Only Firm 1
Forward 27.0 | 27.7 | 27.3 | 30.0 | 29.7 | 30.3
Only Firm 2
Forward 27.6 | 28.2 | 27.9 | 30.6 | 30.2 | 30.9
Both Firms
Forward 26.1 | 26.7 | 26.4 | 29.1 | 28.7 | 29.4

Table 6.2: Prices for medium capacity

Transmission Price Power Interface
Cases to Hub ($/MWh) Transmitted | Dual A3,
Wi | Wy | Wy | Wy | Wi tig $/MWh
Cournot,
Competition | 3.3 | 2.7 | 3.0 | 0.3 | 0.7 200 5.3
Only Firm 1
Forward 3312713003107 200 5.3
Only Firm 2
Forward 3312713003107 200 5.3
Both Firms
Forward 3312713003107 200 5.3

Table 6.3: Transmission prices for medium capacity
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Forward Sales Quantities Generation by
Cases by each Firm Demanded Firm/Node
fi 2 43 | 95 | 96 | 911 | Y14 | G22
Cournot
Competition | 0 0 137 | 30 | 647 | 138 | 328 | 349
Only Firm 1
Forward 349 0 184 | 53 | 694 | 267 | 431 | 233
Only Firm 2
Forward 0 262 172 1 48 | 682 | 31 | 347 | 523
Both Firms
Forward 303 186 202 | 63 | 712 | 174 | 431 | 372

Table 6.4: Quantities for medium capacity

being the only player in the forward market.

Total production is highest when both firms participate in the forward market and
each generator produces more electricity than in a Cournot market with no forward
sales. Notice that the transmission line is congested in all cases in contrast to the
simple model in Section 5.2, where no firm sold forward if the transmission line was
congested in the Cournot equilibrium with no forward sales.

Higher output leads to higher consumer surplus, as can be seen in Table 6.5. But
similar to the observation we made for the simple two node example studied earlier,
the situation is again a prisoner’s dilemma where both firms benefit (~ +12.5%)
if they are the only players in the forward market, but their profits decrease by a
higher amount (~ —15% for firm 1 and —43% for firm 2) if they both compete in
the forward market. Transmission owner profits are constant in all four cases for the
medium capacity of 200 MW on the line from node 1 to 6. The overall social benefit,
the sum of firms’ profits, grid owner’s revenue and consumer surplus, increase if firms

sell in the forward market.

6.4.2 Low transmission capacity

In the second scenario we discuss, the transmission capacity on the line from node 1

to node 6 is only 100 MW. In the simple two-node network discussed in Section 5,
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Profits Grid Owner | Consumer | Net Social
Cases $/MWh Revenue Surplus Welfare
(=1[(=2 $/hr $/hr $/hr
Cournot
Competition | 4335 | 2434 1067 10984 18820
Only Firm 1
Forward 4877 | 1081 1067 13016 20040
Only Firm 2
Forward 2863 | 2739 1067 12481 19149
Both Firms
Forward 3664 | 1384 1067 13903 20018

Table 6.5: Profits and benefits for medium capacity

such a low capacity forced the firms to refuse to sell forward and only trade in the spot
market. Although we did not force forward sales to be nonnegative, under the simple
assumptions there, no negative forward sales were encountered even for very low
transmission capacities. This situation changes under the assumptions incorporated

into the general model.

Negative forward sales allowed

With low transmission capacity, if firms have the opportunity to buy (= negative
forward sales) electricity in the forward market, they can do so profitable under the
current assumptions. It is not clear which counter party will enter into the trade, but
a similar argument as before could bring hedgers into the market to take this counter
position in the forward market. We will see that this behavior is not beneficial for
the overall market.

For completeness, we present the same model output we showed for the medium
capacity case in Tables 6.6 through 6.9. As mentioned above, if firms are allowed to
buy electricity in the forward market, they will choose do so, see Table 6.8.

In contrast to higher transmission capacity, in this case actually both players
benefit from such a behavior. Profits, see Table 6.9, increase for both firms if only one

firm buys in the forward market. This gives a strong incentives to firms to collude.
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Delivered
Prices
Cases $/MWh
b P2 P3 P4 Ps Ps
Cournot,
Competition | 28.3 | 29.3 | 28.8 | 32.9 | 32.4 | 33.4
Only Firm 1
Forward 27.9 1 29.5 | 28.7 | 35.3 | 34.5 | 36.2
Only Firm 2
Forward 30.0 | 30.6 | 30.3 | 33.0 | 32.6 | 33.3
Both Firms
Forward 31.5 (324 |32.0|35.6| 35.11 36.0

Table 6.6: Prices for low capacity

Transmission Price Power Interface
Cases to Hub ($/MWh) Transmitted | Dual A3,
Wi | Wy | Wy | Wy | Wi tig $/MWh
Cournot,
Competition | 5.1 | 4.1 | 4.6 | 0.5 | 1.0 100 8.1
Only Firm 1
Forward 8366|7508 1.7 100 13.3
Only Firm 2
Forward 3312713003107 100 5.3
Both Firms
Forward 45136 |40] 04109 100 7.1

Table 6.7: Transmission prices for low capacity
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Forward Sales Quantities Generation by
Cases by each Firm Demanded Firm/Node
f1 2 a3 a5 s | 911 | G14 | 922
Cournot
Competition 0 0 153 26 [ 632 | 0 | 494 | 317
Only Firm 1
Forward —203 0 156 | 5 | 577 | 0 | 413 | 326
Only Firm 2
Forward 0 —99 | 124 | 24 | 634 | 0 | 498 | 283
Both Firms
Forward —207 | —222 | 90 | —1| 580 | O | 421 | 249
Table 6.8: Quantities for low capacity
Profits Grid Owner | Consumer | Net Social
Cases $/MWh Revenue Surplus Welfare
(=1[(=2 $/hr $/hr $/hr
Cournot
Competition | 4889 | 2012 810 10611 18321
Only Firm 1
Forward 5087 | 2120 1328 8935 17470
Only Firm 2
Forward 4970 | 2161 533 10459 18123
Both Firms
Forward 5278 | 2346 714 8616 16954

Table 6.9: Profits and benefits for low capacity
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If they both buy forward, they can increase their profits even more. Buying and
selling in the forward market have opposite effects on prices. We can see in Table 6.6
that prices increase; this causes consumer surplus and total social benefit to decrease
(Table 6.9). The effect on transmission prices, see Table 6.7, depends on the location
of the generators and the firms acting in the forward market. Transmission prices
tend to go down with lower overall generation. It is interesting to see that firm 1 is
not using its cheaper generation facility at node 1 (see Table 6.8). The reason for this
is the high transmission costs from node 1 compared to node 4 which offset the lower

cost in all four cases, see Tables 6.6 and 6.7.

No negative forward sales allowed

We have seen that allowing firms to buy in the forward market could have negative
effects on overall benefits. The fear of such an effect may have been one the reasons
why generators in the initial California market design where not allowed to participate
in the forward market at all; generators were forced to sell into the spot market. If
generation firms could successfully buy instead of sell in the forward market and
manipulate the overall market in the way we have just seen, this is one obvious,
but certainly not the best way, to deal with this problem. With higher transmission
capacity, forward trading is, as we have seen, beneficial to all market participants,
and should not be forbidden.

Assuming that an effective control of generators could be implemented, it seems
the best way is to force generators to only sell, but not buy in the forward market.
This allows for the positive effect of positive forward sales but prevents the negative
effect of negative forward sales.

To simulate such a rule, we ran the same model of low transmission capacity with
a nonnegative bound on the forward sales quantity. As expected, in this case firms
do not sell forward any electricity. Similar to the small example in Section 5, the
Cournot outcome (the first case in Tables 6.6 through 6.9) prevails in all situations.
As we have seen, firms have an incentive to manipulate the market, so firms would

have to be monitored in cases of very limited transmission capacity.
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Delivered
Prices
Cases $/MWh
P1 P2 P3 P4 Ps Ps
Cournot,
Competition | 31.2 | 31.2 | 31.2 | 31.2 | 31.2 | 31.2
Only Firm 1
Forward 29.1 [ 29.1 1 29.1 | 29.1|29.1 29.1
Only Firm 2
Forward 29.2 129.2 129.2129.2]29.2|29.2
Both Firms
Forward 27.9 (279|279 | 279|279 | 27.9

Table 6.10: Prices for unlimited capacity

6.4.3 Unlimited transmission capacity

The results for the six-node network with unlimited transmission capacity are sum-
marized in Tables 6.10 through 6.13. In essence, the results are the same as for the
small example in Section 5.

If firms have the chance to sell forward, they can do so profitably, see Table 6.13.
We again observe the prisoners dilemma; both firms are worse off if they both go
into the forward market. From our experience with different demand, generation and
transmission data on the six-node network, this will generally be true, although in
more complicated cases the strategic interaction between firms gets more difficult
to analyze. Consumers’ surplus and social benefit increase through positive forward
sales. Prices (Table 6.10) decrease, while the marginal transmission prices for unlim-

ited transmission capacity (Table 6.11) are obviously zero in all cases.

6.5 Transmission expansion analysis

The last section showed the application of the general model to the six-node network.
The inclusion of the physical laws governing electricity transmission on realistic net-

works allow the study of complicated relationships between the forward and spot
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Transmission Price Power Interface
Cases to Hub ($/MWh) Transmitted | Dual A3y
Wi | Wy | Wy | Wy | Wi tig $/MWh
Cournot,
Competition | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 335 0.0
Only Firm 1
Forward 0.0 0.0 0.00.010.0 271 0.0
Only Firm 2
Forward 0.0 0.0 0.00.010.0 405 0.0
Both Firms
Forward 0.0 0.0 0.00.010.0 340 0.0

Table 6.11: Transmission prices for unlimited capacity

Forward Sales Quantities Generation by
Cases by each Firm | Demanded Firm/Node
fi 2 43 | 95 | 96 | 911 | Y14 | G22
Cournot
Competition | 0 0 106 | 38 | 676 | 300 | 110 | 410
Only Firm 1
Forward 308 0 147 | 59 | 717 | 300 | 315 | 307
Only Firm 2
Forward 0 307 147 | 58 | 717 | 300 | 8 | 615
Both Firms
Forward 246 246 172 | 71 | 742 | 300 | 192 | 492

Table 6.12: Quantities for unlimited capacity
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Profits Grid Owner | Consumer | Net Social
Cases $/MWh Revenue Surplus Welfare
(=1[(=2 $/hr $/hr $/hr
Cournot
Competition | 4262 | 3362 0 11778 19402
Only Firm 1
Forward 4682 | 1891 0 13564 20137
Only Firm 2
Forward 2791 | 3782 0 13564 20137
Both Firms
Forward 3321 | 2421 0 14736 20477

Table 6.13: Profits and benefits for unlimited capacity

market in deregulated electricity markets. The strategic interaction between firms

can also be analyzed using the new model.

In this section, we will look at the results from a higher perspective and analyze
more general implications. In particular, our results show an intrinsic relationship be-
tween transmission capacity and the development of forward markets in electricity. In
the following, we will show how this can be used to accomplish a better understanding

of transmission investments in deregulated electricity markets.

To do this, we summarize the main results in a slightly different form than before.
Recall that we were looking at four different cases, depending on whether each firm
was allowed to participate in the forward or not. This can be summarized in the form

of a two-by-two table as follows:

In Figure 6.2, we summarize the strategic options given to each firm. Each firm can
either not participate in the forward market (No) or do so (Yes). The four strategic
outcomes, Cournot competition in the spot market, one firm only in the forward
market and both firms in the forward market, are summarized in the appropriate

boxes of the table.

Using this format, we can summarize the three transmission capacity scenarios of
the last section. In particular, we focus on the overall social benefit as a function of

the transmission capacity. In Figure 6.3, the social benefits for the three transmission
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Firm 2
No Yes

Cournot Only Firm 2

No Competition |  Forward

Firm 1

Only Firm 1 | Both Firms

Forward Forward

Yes

Figure 6.2: Matrix representation of different strategic outcomes

capacity scenarios and all strategy pairs are rounded to the next hundred. The values
in parenthesis in the table for low capacity of 100 MW correspond to negative forward
sales. For this discussion, we will focus on the Cournot market outcome in the low

capacity scenario and assume that negative forward sales are prohibited.

Transmission expansion from 100 MW to 200 MW

As an example of how our results can be used to analyze transmission investments in
deregulated electricity markets, we consider the case where a decision maker is faced
with the evaluation of an expansion from 100 MW to 200 MW on the line between
nodes 1 and 6.

Using a Cournot model of competition, one would compare the social benefit in the
two upper left corners of the two-by-two matrices. The result, see Figure 6.4, would
be an increase of 500 in social benefit due to the increase of 100 MW in transmission
capacity.

On the other hand, using our forward market model, one would compare the lower
right corners of the matrices. This box corresponds to the outcome if both firms are

allowed to sell/buy in the forward market. If firms are not allowed to buy in the
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100 MW 200 MW Unlimited
18,300 | (18,100) 18,800 | 20,000 19,400 | 20,100
(17,500) | (17,000) 19,100 | 20,000 20,100 | 20,500

Figure 6.3: Social benefit as a function of transmission capacity

100 MW 200 MW
+500
18,300 |(18,100) 18,800 | 20,000
(17,500) | (17,000) 19,100 | 20,000

Figure 6.4: Transmission expansion: Cournot model analysis

forward, they will choose not to sell and the Cournot outcome (upper left corner) will
prevail, as argued earlier. So, given our model and the assumption of no negative

forward sales, the increase in social benefit can be expected to be 1,700, see Figure
6.5.

This is more than three times as high as predicted by a pure Cournot model
analysis. If negative forward can’t be avoided effectively, this difference could increase

even more (to +3000), as a comparison of the lower right corners immediately reveals.
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100 MW 200 MW
18,300 | (18,100) 18,800 | 20,000
Te~<l_ #1700
(17,500) | (17,000) 19,1 20,000

Figure 6.5: Transmission expansion: Forward model analysis

6.6 Summary

We have shown that even with transmission constraints, generation companies in a
deregulated electricity environment have incentives to sell energy in the forward mar-
ket with the assumption of certainty and perfect foresight. The analytical treatment
of a small example with only one transmission line revealed the existence of threshold
of transmission capacity under which no firm has an incentive to sell in the forward
market. Over this threshold, forward sales take place but the transmission price stays
at zero under the simple assumptions made.

We have also presented a general model to analyze larger electricity networks and
demonstrated the use on a six-node example. Numerical results indicate that firms
would decide to sell in the forward market and total social benefit increases in the
process, even though the transmission price for the line is positive in some cases.

We showed that a closer look at the strategic interactions between firms is nec-
essary to understand complex electricity markets. In particular, we discovered an
intrinsic relationship between transmission capacity and forward markets in electric-
ity. We also demonstrated the use of our model to provide a better understanding of

the transmission investment problem in deregulated electricity markets.
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Chapter 7

Conclusions and Future Research

7.1 MPEC Algorithms

In the first part of this dissertation, we presented a new algorithm for mathematical
programs with equilibrium constraints. The discussion of the mathematical properties
of the MPEC in Chapter 2 showed the difficulty of the problem and the need for
specialized algorithms due to the failure of standard constraints qualifications at any
feasible point. In Chapter 3, we first reviewed existing methods for MPECs and
then described our new algorithm ECOPT. The idea and theory of ECOPT is closely
related to the explicit smoothing algorithm proposed by Jiang and Ralph in [JR99].
In contrast to their work, we also implemented and tested our method on a wide
range of test problems.

The implementation details of ECOPT, in particular an update strategy for the ap-
proximation of the Lagrangian Hessian using exact second derivatives of the smooth-
ing function and a specialized termination criterion are given in the first part of
Chapter 4. In the second part of that chapter, we compare the numerical per-
formance of ECOPT to state of the art nonlinear optimization algorithms as well
as some other algorithms specifically designed to solve MPEC problems. The test
showed that ECOPT and the SQP algorithm NPSOL perform best on the problems
tested while the sequential linearization algorithm MINOS cannot be recommended
for the solution of MPECs. The other methods tested (PIPA, PSQP and SNOPT)
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are slightly less efficient than ECOPT and NPSOL and fail in some instances. Over-
all, we feel that the use of smoothing function improves efficiency and reliability of
MPEC solvers and recommend ECOPT to solve small to medium scale MPEC prob-
lems. Although theoretically problematic, a general SQP algorithm like NPSOL can
be used as an alternative with good results. For large-scale MPEC problems, we
suggest using SNOPT, although we feel that the QP solver SQOPT used in SNOPT

does not handle degenerate subproblems efficiently and could be improved.

Future research on ECOPT will extend the Lagrangian Hessian update to nonlin-
ear constraint functions and the use of a sparse QP solver to enable the solution of
large-scale MPEC problems. We also feel that QP solvers handling degenerate QP
subproblems efficiently will improve the performance of standard nonlinear optimiza-
tion algorithms like NPSOL and SNOPT.

7.2 Forward market model in electricity

In the second part of this dissertation, we introduced new models for electricity for-
ward markets. The analytical discussion of a small-scale example in Chapter 5 re-
vealed the intrinsic relationship between transmission capacity and the development
of forward markets in electricity. A general model for forward markets in electricity

is developed in Chapter 6.

The general model is flexible in the number of firms, nodes and transmission
lines and includes transmission and generation capacity limits as well as an accurate
network representation using Kirchhoff’s laws. We also apply ECOPT to solve the
resulting MPEC problems for a six-node example. The study of different transmission
capacity scenarios extends the results found for the small-scale case and showed how
our model can be used to gain insights into complicated strategic interactions between
electricity producers and between forward and spot markets in electricity. A further

application to transmission investment evaluations is suggested and demonstrated.

Possible extensions of the model could include the consideration of extra con-

straints such as flowgate constraints on the transmission lines, constraints on forward
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sales, different transmission pricing schemes or nonlinear functions. Also the expan-
sion of generation capacity by the firms in the forward market could be modeled by
including extra variables.

One particularly interesting extension is the inclusion of uncertainty. The analy-
sis could give insight into whether producers benefit from uncertain demand in the
current framework, and are therefore better off not to participate in forward markets
for electricity despite the apparent advantages revealed by the results of our model.
In this more general setting, it might also be possible to obtain uniqueness results

about equilibria, which do not hold for our model.
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Appendix A

Summary of Notation for the
General Model

Parameters
n: number of nodes, indexed by 7, j (not including the hub)
m: number of firms, indexed by /, s
[: number of bidirectional arcs
Dj.: power distribution factor ¢ on arc k
T, transmission capacity on arc k
T, : transmission capacity in the reverse direction of arc k
Cit: marginal cost intercept at node i by firm /¢
bie: marginal cost slope at node i by firm /¢
C APy production capacity at node ¢ for firm ¢
P?: positive price intercept of demand curve at node ¢
9 positive quantity intercept of demand curve at node i
N: set of nodes
A: set of arcs in the full network
F: set, of firms
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Variables for Hub Network

s;p: amount of sales at node ¢ by firm /

gie:  generation at node ¢ by firm /¢

t;:  amount of transmission service (MW) from i to the hub
w;:  wheeling cost from 4 to the hub

pe: price at the hub, determined by firm /¢

a;: amount of arbitrage at ¢, determined by firm ¢

p;:  spot market price at node

Vectors & Matrices

en: vector of n ones

E,: n X n matrix of ones

Syt vector of length n of s;, for fixed /¢
g vector of length n of g;, for fixed /¢
3 sum of s; for t € F

g: sum of g, for t € F

PY: vector of P?

t: vector of ¢;

CAP;: vector of length n of C AP, for fixed ¢
CAP: vector of CAPy (length nm)

c: vector of ¢;p

T+: vector of flow capacity T}

T vector of flow capacity T}

D: matrix of size n x [ of PTDF values

Q: positive definite diagonal matrix of size n x n, Q;; = g—;



Commonly Used Definition

EDl
EPI

E:

defined as the quantity > ..y > ,cp Sir

defined as the quantity > ..y > ,cp gie

defined as: L 50
Iy 7;8

defined as: JQ—E, fort e N

P;
Q?f )
L fori e N
PO>

5Q0
defined as: dg—ig D jeN\(i)
fori,j € Nyi# 5

~Q0Q0
defined as: — PE)PJ.{”

defined as the n x n matrix of L;;
defined as the [ x [ matrix D" LD
defined as the (k, h)™ entry of L?, for k,h € A

block-structured matrix of size nm x [, column of m D’s:

D
D

o
1

the n x [ matrix defined as e, d" D

the vector defined as e, d” P°

block-structured matrix of size nm x nm, E,’s on the diagonal:

E, 0 --- 0

eyl
i
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