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Abstract

Designing space missions to remain in the vicinity of an equilibrium point in a three-

body system is both useful and more difficult than for a two-body system. Earth orbits

are the most common two-body trajectory (the spacecraft being the second body). In

a three-body system we are considering a spacecraft near two large masses rotating

around their center of mass.

Because of the rotation of the system, there is not just one point of equilibrium, but

rather five points where the gravitational and centripetal accelerations exactly cancel;

three where the satellite is collinear with the other masses and two points where the

satellite forms in-plane equilateral triangles with the other masses. These points are

called libration points (L1-L5), or Lagrange points since it was Lagrange who obtained

the first solutions of the three-body problem. This work chooses the Earth-Sun L2 point

at which to apply the developed mission design approach because of current proposals

for telescope missions at that point, but is equally applicable to any libration point in

any three-body system.

The chosen point is behind the Earth from the Sun and is useful for a telescope mis-

sion because it is outside Earth’s atmosphere and magnetosphere (beyond the moon’s

orbit), but close enough for fast communications and possibly human maintenance mis-

sions. Also the telescope can point away from the light and heat interference of the

Sun, Earth, and Moon simultaneously. The collinear points (L1-L3,) although useful

locations, are unstable equilibriums[1], which makes trajectories near them quite sensi-

tive to differences in velocity or force perturbations by the full space environment (e.g.

solar radiation pressure).

Trajectory and control history design about the unstable Sun-Earth L2 point will

become increasingly complex as additional mechanical and scheduling constraints ac-

company scientific observation missions. Satisfying such constraints in designing a

station-keeping plan may be viewed as an optimization problem, with the objective

of maximizing the mission goals. It then adds little further complexity to minimize fuel

usage as part of the objective, which is always a goal in space mission planning. Solving

this design problem is an illustration of the power and ease of this alternative multiple-

body mission design approach, which is based on optimization of the whole trajectory

and control design. In this thesis, the formulation of such an optimization problem is

explained in several steps using increasingly complex dynamical and mission constraint

v



models, and some resulting solutions for these steps are presented and discussed. The

continuous time problem is first discretized using a pseudospectral method, and the re-

sulting finite dimensional problem is solved using a sequential quadratic programming

algorithm. This approach is implemented by the software package DIDO, which calls

the sparse nonlinear optimization software SNOPT. The design approach is discussed as

a general mission optimization process, which can easily be used further into the design

process and for more types of missions than the examples here, by applying it to a more

realistically modeled and more highly constrained libration-point mission design.
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Chapter 1

Introduction

The problem of mission design for a spacecraft at the Sun-Earth L2 point has been

studied and accomplished in past missions. Farquhar first explored trajectory design

strategies in the regions of libration points, taking into account periodic disturbances,

eccentricity correction, gravitational perturbations and solar radiation pressure.[2] In

these recent libration point missions, the spacecraft describes a Lissajous path about

the libration point, which is usually corrected by engine burns at the crossing of the

Earth-Sun line to ensure that the spacecraft will not escape the vicinity in the next few

orbits. (A Lissajous path, named after the nineteenth century mathematician, is defined

as the path of a point each of whose coordinates is under not necessarily related harmonic

motion, so it stays within a certain area over time but does not repeat its path.) Several

methods to compute trajectory control strategies have been developed, for example the

Target Point Method[3], and the Floquet Mode method[4], which incorporates the idea

of invariant manifold tubes from dynamical systems theory. This type of mission design,

taking advantage of these tubes associated with libration point orbits, was used on the

recent Genesis mission[5]. These methods target a trajectory control strategy based on

a good estimate from the theory of an orbit that remains about the libration point only

in a simple model, and they may optimize maneuvers individually from this strategy.

They do not optimize the design because they do not search the whole acceptable

design space. These missions do not require that the spacecraft remain in some specific

orbit that exists only with a simple theoretical model, but the recent design methods

do not consider acceptable paths other than the reference orbit. This outside space

of alternate paths then are very likely to contain a path with a lower associated fuel

expenditure, when considering a more accurate modeling of the forces and errors. Thus,

the approach presented here will necessarily result in mission designs with lower fuel

costs than mission designs based on reference orbits (as well as being a simpler and

more direct design approach).

Future missions will carry more complicated and sensitive spacecraft structure and

on-board instruments, and consequently will require more constraints on the station-

keeping plan. As an example, consider the problem of an astronomical mission during
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2 Chapter 1 Introduction

which the cryogenic optics must be pointed away from the Sun, such as the James Webb

Telescope or the Terrestrial Planet Finder. Such constraints limit the thrust direction.

To keep light away from the instrument side of the spacecraft, there must be a large sun

shield, and the spacecraft must be oriented such that the shield is completely protecting

the instruments. Any blast of light (visible and IR) from the Sun, Earth, or Moon will

destroy the cryogenic instrument, and even infrared radiated from the spacecraft will

overwhelm the very faint astronomical signals. This sun shield will produce extra forces

and torques due to the solar radiation pressure on the surface area of the shield[6].

The Earth-Sun L2 point provides a location where the sources of heat are all coming

from the same general direction, and is far enough from the Earth to avoid major at-

mospheric and electrical field interference, but close enough to avoid the large antenna

power requirements of interplanetary missions.

Proposals of more highly constrained missions necessitates the ability to create mis-

sion design plans that not only keep the spacecraft in the libration points vicinity, but

also optimize for minimum fuel usage and other mission goals (e.g. least interference

with scientific goals). The design approach presented in this thesis introduces an alter-

native direction in the development of more sophisticated processes for space mission

design. The direction is that of concurrent engineering to incorporate optimization

from the beginning of the design process, resulting in lower fuel requirements because of

elimination of unnecessary assumptions about the orbit or control design (fuel-burning

maneuvers to maintain planned orbit). In fact, other design approaches which make

these assumptions, and design the trajectory and control design in series are unable to

find fuel-optimal designs. Further, a concurrent design approach that does take the en-

tire mission design process as one optimal control problem as is done here, but without

taking advantage of sophisticated numerical methods, also leads to unsolvable problems.

The design of a control plan and corresponding trajectory (which together we call

the ‘mission design’) is posed here as a single optimization problem that finds the

optimum maneuver schedule to minimize fuel, achieve or maximize mission goals, and

meet the mechanical and scheduling constraints. This optimization problem would be

recognized from the controls point of view as an optimal control problem, which simply

means we are searching for a control vector that when applied to a dynamical system

results in optimum behavior as modeled by an objective function[7]. Optimizing the

design of a space mission almost always implies minimizing fuel use. This minimizes the

percentage of the spacecraft’s mass taken by fuel, and maximizes the mass available for

operations equipment. In the work presented here, it has been assumed that minimizing

fuel use is the primary goal. We do not necessarily propose to control a particular orbit

shape in minimum fuel; rather, we propose that the more fundamental problem is to
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explore the mission-length trajectory design space (e.g. by varying initial estimates

as the optimization algorithm’s starting point) to find minimum-fuel solutions. Thus

it is part of the method to find many locally optimal solutions, rather than looking

for the one local optimal solution closest to an estimate of a particular orbit shape.

These solutions can then be evaluated for use in specific missions by adding appropriate

position, attitude, and timing constraints and using the solutions as starting points for

another iteration of the optimization algorithm. This approach, of telling an object

what to do, rather than how to do it, has been successfully applied for the design and

control of a variety of Earth-orbiting formations[8, 9] and libration-point formations

[10]. This thesis looks briefly at formations, but the approach is mostly applied to a

single spacecraft system design space with no restrictions on the orbit shape. The first

step uses a simple force model. The optimal trajectories found in this space have zero

cost (no fuel use needed), and are therefore global optimizers. Then some perturbations

and mission constraints are added to the problem formulation. The next step in the

development of this method is to iterate these trajectories in a design space with a

complex (full) force model, to get an accurate minimum fuel solution for the set of

chosen constraints.

This systems engineering approach of concurrently choosing the orbit and satisfying

the mission constraints; concurrent design and optimization; results in ease of applica-

tion. It is easy, and trivial to the solving of the problem, to change mission constraints,

spacecraft or force models, or even location of the mission, because these are all simple

inputs into a single encompassing optimization problem. This is a flexible approach

in that the search space for minimum-fuel trajectories is not confined to be close to

a reference orbit. Rather, the algorithm can search any combination of positions, ve-

locities, and thrust at each time step, with the equations of motion in the region as a

feasibility requirement rather than a requirement at each step in the algorithm, and the

characteristics of the orbit restricted only by this feasibility through the laws of physics

and a requirement that the spacecraft not have drifted too far by the end of the mission

lifetime. The example mission used here illustrates how the concurrent approach opens

the design space to allow total mission optimization, and the ease of altering the details

of the problem formulation in order to guide the mission design process. This ease in

formulation translates to use of this approach for any type of space mission design.

The mission design problem approached in this way is a single optimal control prob-

lem; a dynamic system that is affected by some chosen ‘controls’ is solved for it’s behav-

ior over a time period to find the set of controls that minimize a particular measure of

the ‘cost’ of the behavior [11, 7]. The controls in this case are the accelerations added

to spacecraft from burning the engines, where the magnitude and direction over time
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are the ‘control variables’ that are free to be chosen. The first formulation of any opti-

mal control problem involves equations describing the dynamics of the system, the cost

to be minimized, and any constraints which must be met to consider a solution valid.

If the variables in these equations are continuous functions (e.g. an object’s position

over time), the number of variables being considered in the optimal control problem is

infinite, since each continuous variable is actually a variable at all points in time, an

infinite set. Optimal control problems can rarely be solved analytically, which implies

that we need to use numerical methods. The first step is to discretize the problem,

which is to define the system at discrete points rather than with continuous functions.

This results in a finite number of variables because the system variables are only defined

at the discrete points. The number of variables for the optimal control problem is then

the number of variables in the system times the number of discretization points. The

consequence of discretizing the optimal control problem explored here is a nonlinearly

constrained optimization problem. The unstable dynamics of the L2 vicinity require

a more accurate representation of the trajectory to solve the problem than two-body

mission design problems. Because the paths are not simple to describe mathematically

and similar paths can diverge enormously over the long timescale of these mission, the

grid representing the position, velocity (state variables), and added acceleration (control

variables) at a finite number of time values in the discretized problem must be very fine

or very well-designed to enable a numerical solution.

Methods of optimizing mission design using existing commercial software packages

work well enough for libration point mission design optimization if the design is sequen-

tial; first finding a reference trajectory that will work and then optimizing the maneuver

(controls) history to maintain this given constraints and perturbations. Using the con-

current trajectory control design and open design space described above, the standard

methods would result in a discrete problem too large computationally to be of use during

a mission, and may not even be solvable.

There is interest in spacecraft formation missions at libration points, which would

multiply the computational workload with standard methods, but is greatly reduced in

computation time and formulation complexity using the method introduced here (see

Chapter 4). In this work, once the concurrent design problem framework is set up,

the optimal control problem is solved by a Legendre pseudospectral method[12, 13, 14].

The entire Legendre pseudospectral procedure is automated in a Matlab code called

DIDO[15] that is fully integrated with SNOPT[16], a sparse nonlinear programming

solver through the Tomlab[17] interface.
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1.1 Preliminary Investigation

This trajectory and control design problem is a hard problem because of the unstable

dynamics of the region. It is a place of balance of large forces, which means that paths

are very sensitive to perturbations. Small addition accelerations do not cause a constant

or even slowly growing offset from the original path, they cause a very different new

path. This is due to the unstable nature of the equilibrium of forces at the libration

point. When the system is modeled with point masses and circular orbits, there exist

paths that look like orbits because they are periodic in all axes; some forming a repeating

round path around the line connecting the bodies and the libration point. These orbits

exist because of the equilibrium nature of the vicinity. With any added complexity to the

force model, these paths diverge from periodic and become an orbit about one of the two

bodies within an orbit or two. In practice it takes a relatively small added acceleration

(thrust from the a spacecraft’s engine) to return to a similar path, if it is added at

just the right place and direction. To find a path, looking beyond just correcting to

these theoretical ‘orbits’, in which the required additional forces are a minimum (a fuel-

optimal path) is even harder because changing the path a small amount to conduct the

search may change the fuel required by a large amount, again due to the sensitivity of

the problem.

Solar radiation pressure imposes a significant force on a spacecraft with a large

surface area, such as a solar shield, and thus will impact the control plan as the force

varies with the spacecrafts attitude. The attitude for a scientific observation mission is

determined at most times by the object of observation. During maneuvers, the attitude

is determined by the direction of thrust required. As described earlier, the direction is

limited for these types of missions to keep the instruments from pointing too close to

the Sun. The constraint on the attitude then is both very important and an increase in

complexity of the problem. As this consideration along with mission requirements on

the allowable timing of maneuvers will tend to increase the fuel needed, optimization of

fuel use becomes even more important.

The Astrogator and Visualization Option tools, in the Satellite Tool Kit[18], were

used for a preliminary investigation of the effect of solar radiation pressure on a space-

craft with large surface area in a traditional halo orbit within a complex model of all

forces. Given a non-divergent orbit about L2, with the addition of a changing force along

the Sun-Earth-L2 line, showed that the orbit diverges from the vicinity as a result. This

confirmed the large influence of the solar radiation pressure on the spacecrafts sensitive

trajectory about L2. Experimentation with a much simpler model in Matlab illustrated

the useful but non-intuitive influence of the exact magnitude and timing of one impulse



6 Chapter 1 Introduction

on the total ∆v needed to keep the trajectory from diverging in the next orbit[19].

This preliminary work confirmed that the mechanics of the spacecraft and the con-

straints of the mission easily cause stationkeeping complications. It also showed that

decreasing the fuel usage was possible with the burn schedule as control variables, while

still satisfying constraints. This justified the further work of posing the mission planning

as an optimization problem.

The next preliminary work was to find a method of discretizing the continuous op-

timization problem to form the matrices describing the cost and constraint functions at

discrete points that are input into the optimization routine. The discretization method

must capture the complex dynamics of the problem well enough with as few total vari-

ables as possible. With a simple, equal-length timestep discretization, the optimization

problem could not be solved. The discrete problem was too inaccurate for all the con-

straints describing the motion to hold, and the optimization routine could not find a

feasible point.

Another commonly used discretization method, direct collocation, implemented with

the use of commercial software, worked with this optimization problem in situations too

limited for this design approach. Optimal trajectories and control plans were found

when the number of timesteps was below fifty, which limited the mission length to

about one year, and when the input (guess) trajectory was very close to an optimal

trajectory. This requires too much preparation work before the design optimization

begins, while also limiting the design space to designs already known, as the optimal

trajectories necessarily stay close to the input near-optimal trajectories.

The pseudospectral discretization method was chosen because it required a relatively

smaller discretized problem in order to capture enough of the complex dynamics. It was

found to provide a discrete formulation for which the optimization routine could find

solutions, given correct scaling of the problem, for any type of input trajectory and

control plan, not just those close to a known optimal trajectory. This method then is

used for all the results presented in Chapter 4 and 5. All the discretization methods

explored, and the optimization method, are described in Chapter 3.
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1.2 Thesis Outline

The problem formulation is described at the end of Chapter 2, first in general and

then its specific form when applied to a libration point space mission. This follows the

Chapter 2 discussion of libration point missions including the framework for mission

design and past approaches to designing these missions.

The methods used to solve the mission design optimization problem once it is for-

mulated are presented in Chapter 3. The choice of a direct method to solve the optimal

control problem is discussed. As direct methods first discretize the problem and then

apply an optimization algorithm, the choice of these methods are discussed, and those

implemented are further described.

The results of applying this approach to an example libration point mission are

presented in Chapter 4. A brief comparison to the reference orbit approach follows five

examples of specific problem formulations and solutions. The examples are repeated

two more times after proving the expected results in the case of a simple gravitational

model with no mission constraints, to show the effect of adding perturbations to the

model and mission constraints to the problem formulation.

The ability to apply this to a second libration mission example is explored in Chapter

5. Here the problem of libration point spacecraft formation is solved using this mission

design optimization approach for a few different sets of mission requirements.

Conclusions and possibilities expanding this approach to mission design in the future

are found in Chapter 6.
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Chapter 2

Libration Point

Missions

This chapter first introduces the dynamical space in which libration point space

missions are designed. Then past work on libration mission design is described, together

with a summary of the methods used to compute the trajectories. This includes how

optimization has been used during the design process for libration point missions. Prior

to the work here, optimization had not been used for overall design. A review of

traditional methods of incorporating optimization into space mission design in general

is presented.

Space missions are designed in a multi-body space for several reasons. Traditionally,

interplanetary trajectories were designed as patched conic paths. This means the trajec-

tory is divided into several arcs during which only two bodies at a time are considered.

This method is a very good approximation for most type of interplanetary missions, and

can be used until the very final stages of planning. However, more time or fuel efficient

trajectory options can be produced by considering all the bodies simultaneously, and

these savings can make a difference for a spacecraft using low-thrust engines or visiting

several moons of a planet. The rotation of bodies in the solar system produces dynam-

ics that are observed in the multi-body space and can be taken advantage of to find

very efficient paths for transferring between bodies or for stationing at a place near but

not orbiting a body. These efficient paths can be seen as moving through or remaining

near libration points. Libration points are where the gravitational forces of two massive

bodies are exactly balanced with the centripetal force needed to rotate with them about

the collective center of mass of the system, such that a third body of negligible mass

could remain at that point in the rotating system. (Note: these equilibrium points are

only static given the assumption of circular orbits of the masses.) Libration point mis-

sions are those that take advantage of the local dynamics to spend some or all of their

mission in the vicinity of such a point. The advantage to this location for a spacecraft

is to be close to a planet without having to orbit it. This can be used for a research,

construction, or communication station for example at an Earth-Moon libration point

9
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because it is an easy transfer to orbit either body. A data-relay satellite at Earth-Moon

L2 was proposed in 1966 and considered for Apollo 17. It can also be useful for scientific

observation missions. Libration points are far enough away from the bodies to which

they belong to have full perspective of their surface, and be outside atmospheric and

magnetic influence on the instruments. This lack of interference also results in clearer

astronomical observations. The most popular type of libration point mission currently

being planned is astronomical observation at the Sun-Earth libration point that remains

on the dark side of the Earth. This location makes it easy to block the radiation from

the Earth, Moon, and Sun at once, while staying in relatively easy communication range

and is close enough to allow maintenance.

Preliminary design work for a libration point mission is done in the context of the

circular restricted three-body problem, as that is the framework in which the libration

points are stationary. This problem is described below, and illustrated for the Sun-

Earth-spacecraft case.

2.1 The Three Body Problem

The circular restricted three-body problem (CR3BP) is defined as a system of two

bodies in circular orbits about their barycenter, and a third body of negligible mass.

The equations of motion are solved for the third body. The stationary solutions of this

problem are the five libration points. The equations are most simply and therefore most

often expressed in the rotating barycentric frame (as they will be here). In this frame,

the barycenter of the two masses is the origin. The x axis is the line through the center

of the two large bodies. The frame rotates about the z axis with the angular velocity

ω of the two large bodies about each other. This angular velocity is then 2π radians

divided by the period of the two mass system. The two bodies here are the Sun and

the Earth, so the period is one year.

The equations of motion for this problem are derived in many places, for example

Battin’s astrodynamics textbook [1], but is derived here for completeness and to estab-

lish terminology. With the goal of expressing the acceleration of the third body, we

start by taking the second derivative with respect to time (in the inertial frame) of the

position vector of the third body, ~r.

~̈r/I = ~̈r + ~̇ω × r + ~ω × (~ω × ~r) + 2~ω × ~̇r + ~̈rB.

The vector ~rB is the position vector with respect to the body frame, whose origin

is at the center of the third body in the three-body system. Since the point whose

motion we wish to know is the center of the third body, the position vector has zero
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Figure 2.1 Coordinate system for the restricted three-body problem

length since it points from the origin of the body frame to the point in question (i.e.

the same point). In evaluating this equation, we note then that ~̈rB = 0. We also have

~̇ω = 0 because of the circular orbit assumption. It is important to be clear that the

derivatives of ~r are with respect to the rotating barycentric frame since ~r is defined

in that frame. Eventually, we want an expression for the acceleration of the position

vector with respect to the rotating barycentric frame, so that we can describe the third

body’s motion in this frame. Since the angular velocity is about the z axis, the cross

products with ω have simple expressions as seen in the following simplification of the

above equation.

~̈r/I = ~̈r − ω2(xî + yĵ) + 2ω(ẏî − ẋĵ). (2.1)

We know the acceleration of the position vector in the inertial frame, ~̈r/I , because

it is the acceleration on any point in the system due to the gravity of the two large

bodies. The force potential at a certain point due to the gravity of body 1 is µ1/r1p in

the direction of body 1, where µ1 = Gm1, and r1p is the distance between body 1 and

the point p; G is the universal gravitation constant, and m1 is the mass of body 1. We

can express ~̈r/I as the gradient of the total gravitational force potential. First define ~r13

as the vector from body 1 to body 3 (the third body whose motion we are deriving),

with the plain r13 as the distance between the bodies. The same holds for body 2. Now

we can write

~̈r/I = ∇(−
µ1

r13
~r13 −

µ2

r23
~r23). (2.2)

Combining (2.1) and (2.2) gives
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~̈r − ω2(xî + yĵ) + 2ω(ẏî − ẋĵ) = ∇(−
µ1

r13
~r13 −

µ2

r23
~r23).

Separating this equation into the components x,y,z, in the rotating frame gives

ẍ − ω2x − 2ωẏ =
∂

∂x
(−

µ1

r13
~r13 −

µ2

r23
~r23)

ÿ − ω2y + 2ωẋ =
∂

∂y
(−

µ1

r13
~r13 −

µ2

r23
~r23)

z̈ =
∂

∂z
(−

µ1

r13
~r13 −

µ2

r23
~r23).

Since r13 =
√

(x − r1)2 + y2 + z2 and r23 =
√

(x + r2)2 + y2 + z2, where rj is the

distance from the origin (barycenter) to body j, evaluating the differentiation on the

right hand sides gives the equations of motion,

ẍ − ω2x − 2ωẏ = −
µ1(x − r1)

r3
13

−
µ2(x + r2)

r3
23

(2.3)

ÿ − ω2y + 2ωẋ = −
µ1y

r3
13

−
µ2y

r3
23

(2.4)

z̈ = −
µ1z

r3
13

−
µ2z

r3
23

. (2.5)

The non-dimensional units chosen here are TU for time units, DU for distance units,

and MU for mass units, ω = 1 radian/TU, m1 +m2 = 1 MU , and r12 = 1 DU. Defining

unsubscripted µ as the mass ratio, equal to m2

m1+m2
in any units (2 is always the smaller

mass), then in nondimensional units body 1 is also µ DU from the origin and body 2 is

1 − µ DU from the origin.

In nondimensional units, r13 and r23 are

r13 =
√

(x − µ)2 + y2 + z2 and r23 =
√

(x + 1 − µ)2 + y2 + z2.

Evaluating the partial differentials in (2.3-2.5) using the above definitions gives the

nondimensional equations of motion,
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ẍ − 2ẏ − x = −
(1 − µ)(x − µ)

r3
13

−
µ(x + 1 − µ)

r3
23

ÿ + 2ẋ − y = −
(1 − µ)y

r3
13

−
µy

r3
23

z̈ = −
(1 − µ)z

r3
13

−
µz

r3
23

.

When using the equations of motion to design a spacecraft trajectory, we must

include the force of the engine burning fuel. We may also include other forces that per-

turb the simplified three-body system, such as solar radiation pressure and the moon’s

gravity (without rewriting the equations in terms of a 4-body problem). All of these

outside forces are incorporated in the variable F to finally express the acceleration of

the spacecraft (third body) in each direction as follows:

ẍ = 2ẏ + x −
(1 − µ)(x − µ)

r3
13

−
µ(x + 1 − µ)

r3
23

+ Fx/m (2.6)

ÿ = −2ẋ + y −
(1 − µ)y

r3
13

−
µy

r3
23

+ Fy/m (2.7)

z̈ = −
(1 − µ)z

r3
13

−
µz

r3
23

+ Fz/m, (2.8)

where Fi is the component of the sum of the outside forces along the ith axis, and m is

the current mass of the spacecraft.

2.2 Past Mission Trajectory Design and Control

The equations of motion described above are solved for a control plan (component

of F applied with the engine as a function on time), and the resulting trajectory (x, y, z

position as functions of time), within defined mission constraints. This is the solution

to the mission design problem. The work presented here is an approach to solving the

mission design problem that takes into account the difficulty of solving the problem in

the unstable dynamics of a multi-body system, and the desired complexity of mission

constraints for future space missions. Therefore, this approach is elaborated and applied

in the context of a constrained libration point space mission, using a particular mission

currently in the planning stages as a reference for spacecraft model and constraints. Fol-

lowing is an overview of past libration point mission planning work, with more attention

paid to the mission used as a reference. These spacecraft were all put in Lissajous paths
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Figure 2.2 Past and Planned Libration Point Missions

(coordinates under harmonic motion) with matching periods in the x and y coordinates

(sometimes called ‘quasi-periodic’ as they fill a torus). Some had preliminary designs

as ‘halo’ orbits, which are Lissajous paths for which the x and y period align with the z

period to form a perfectly periodic orbit. Halo orbits are solutions to the CR3BP (and

do not exist without velocity corrections in more complex models), which can only be

found with large enough amplitudes in the x and y coordinates and correct choice of z

amplitude such that the resulting period matches the x and y periods. The amplitudes

and periods resulting in a halo orbit in the CR3BP cannot be found analytically, but

must be computed numerically.[20]

Several space missions have been accomplished at the Sun-Earth L1 point to study

the Sun (Earth study at this point has been designed but not yet completed). There

is currently one mission at the Sun-Earth L2 point, and most current proposals also

choose this point. The International Sun-Earth Explorer (ISEE-3) and Solar Heliosphere

Observatory (SOHO) were launched into large halo orbits about L1 in 1978 and 1996

respectively. ISEE-3 went into orbit around L2 in 1983 to study cosmic rays. The

actual cost of maintaining the orbit were reduced from 7.5 meters/second per year for
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ISEE-3 to 2.3 meters/second per year for SOHO [21]. This is because ISEE-3 was

controlled to exactly maintain the halo orbit using thrust along all axes, while SOHO

used thrust only in the x direction as it crossed the x-z plane about every 90 days,

resulting in a Lissajous trajectory that approximated the nominal halo orbit. It was

found that not having a precise halo orbit did not affect common types of mission

design requirements motivated by the scientific mission goals. The solar wind observer

WIND was stationed both at L1 in a Lissajous orbit starting in 1995. The Advanced

Composition Explorer (ACE) was put into a small Lissajous orbit about L1 in 1997,

and the Microwave Anisotropy Probe (MAP) was placed into a small Lissajous about

L2 in 2001. Map performs station-keeping maneuvers about every 3 months. Genesis,

a solar sample return mission, went into a large Lissajous orbit about L1 in 2001. The

James Webb Space Telescope (JWST) will be put into a large Lissajous orbit about

L2. All of these trajectories were designed with a process of a preliminary reference

orbit based on the circular restricted three-body problem, and then used various means

to use this as a guess for a more complex numerical calculation of the trajectory and

the required control scheme to add velocity with engine maneuvers to maintain the

reference trajectory calculated with the simple model. Other steps at this point were

designing the transfer trajectory from Earth to the long-term halo or Lissajous orbit,

and calculating the extra velocity needed for ‘station-keeping’, i.e. correcting for errors

in position measurement or true maneuver application to keep the spacecraft along the

reference orbit. Here we look only at the design of the trajectory and control scheme

step.

For Genesis, the mission planning was in three stages. First a Lissajous trajectory

with a center at the libration point was found that remains bounded over the mission

lifetime in a model that includes ephemeris data for the Sun, Earth and Moon. This

is computed using the Richardson and Cary [24] expansion as an initial guess, and

then applying a differential correction algorithm that causes the velocity at the next

x-z plane crossing to have zero magnitude in along the x axis [25]. The initial guess

chosen to be computed is an application of dynamical systems theory. A path along

an invariant manifold is chosen since this is known to remain in the libration point

vicinity permanently in the CR3BP, and will remain bounded for a few years in a model

including ephemeris information. Next, multi-conic techniques improved the estimated

trajectory by propagating about a single body, and switching that body between the

Earth and the Sun, with the inclusion of the effects of other gravitational forces and solar

radiation pressure. This step allows mission constraints to be included while preserving

the characteristics of the initial estimate. Differential correction is used on the position

and velocity to force continuity. Finally numerical integration created a full trajectory,
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Figure 2.3 Lissajous reference orbit for Genesis mission[22]
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Figure 2.4 Halo orbit from early JWST planning.[23] Note size in comparison to Moon’s orbit
around Earth.

turning patched velocity discontinuities in the full force model into finite maneuvers [22].

The maneuvers were calculated using a targeting process to ensure that the nominal

orbit would be matched until the next maneuver, within an estimate of measurement

and maneuver execution errors, and position error due to the effects of solar radiation

pressure. This calculated and targeted Lissajous orbit is most likely very close to the

minimum fuel trajectory during mission operations because it requires no maneuvers

during its lifetime in the theoretical realm without errors, and the effects due to the

solar radiation pressure are small. The error-correcting maneuvers will stay as small as

possible because they are not restricted in time or direction, so they are executed at the

most efficient point in the most efficient direction for this type of orbit.

For a spacecraft with a large surface area, the solar radiation pressure will affect the

path significantly. Combine this with mission goals that restrict the maneuvers to as

infrequently as possible, and in a constrained direction, and it is quite likely that the

methods used for mission design on Genesis are not close to the minimum fuel trajectory.

The JWST mission is a good example of a large-surface area spacecraft for a mission

with more constrained maneuvers (as are most of the libration point telescope missions

being planned). It is was originally planned for a 2010 launch (as see in Fig. 2.2), but is

currently in development for a mission starting no earlier than 2013. While these more
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complex requirements have been taken into account, the mission design is still based

on a nominal halo orbit. There is no optimization done on the total mission design, or

even on the control design (maneuvers plan). Mission design work at NASA Goddard

has gone as follows (based on the version completed in 2004). Preliminary analysis on

the station-keeping plan to maintain a periodic or quasi-periodic orbit while including a

number of perturbation produced a maneuver framework. A nominal perturbation-free

mission was created in Satellite Tool Kit Astrogator[18]. Then perturbations including

orbit determination knowledge error, thruster performance error, predicted attitude due

to solar radiation pressure error, error due to unknown added velocity from momentum

unloads, and error in venting were added to the modeling. The reference orbit was

chosen out of invariant manifolds that met selected size requirements to have minimum

insertion cost into that orbit. Then Astrogator was used to target the trajectory (direct

shooting method) within a complex model until it fit requirements. This perturbation

analysis led to the conclusion that maneuvers should be performed as often as possible

to prevent large magnitudes of thrust being needed to correct error. The ability to do

accurate orbit determination is limited by a requirement of 21 days after a manuever to

plan the next maneuver, so the recommended maneuver timing for JWST is every 22

days. The maneuvers were generally more expensive along the y axis than the x axis.

(It is typical to plan only x-axis maneuvers rather than finding the optimum direction.)

For this current planning, the optimum direction is calculated and planned for each

maneuver separately. If it violated the constraint limiting the thrust direction to keep

the telescope from pointing sunward, the nearest acceptable direction is used for that

maneuver.[26]

2.3 Optimization in Mission Design

In the design of the libration point missions above, optimization was employed to find

the best launch window to minimize the transfer trajectory from Earth, often including

lunar swingbys, into the selected reference orbit at the libration point. Targeting, but

not optimization, was used in increasingly sophisticated ways over time in order to

design the control strategy to maintain the selected reference orbit about the libration

point. Astrogator’s numerical targeting is the current choice for preliminary control

design. The Genesis mission and libration mission design work afterward at JPL uses

their software LTool, which includes algorithms to compute Lissajous trajectories in a

model that included ephemerides for selected bodies and uses a differential corrector to

target estimated trajectories to a continuous orbit in the full model [27].

Looking at mission design outside of libration point missions, we see a similar use
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(or lack of use)of optimization. Optimal transfer trajectories (usually maximizing final

mass) are computed with simple models as a start to the whole mission design process

(such as a path from leaving Earth orbit to intersecting Mars orbit), but orbits that

remain in some vicinity or around a body are just chosen according to some stable

known orbit. More recent missions have used Dynamical Systems Theory to estimate

trajectories that are more complicated than an orbit about a single body[20]. The

maneuvers to control these orbits are designed by targeting techniques. For example, the

Jupiter Icy Moons Orbitor (JIMO) mission proposal was designed (in 2003) using JPL’s

Mystic software [28]. The Static/Dynamic Control algorithm was used to optimize the

trajectory in parts. The approach in this software could handle multi-body equations

of motion and the varying physical scales, but not the complexity of the trajectory as

a whole. This more recent approach, however, finds much lower-cost solutions than by

calculating the optimum arc in a patched two-body approach that were used in past

interplanetary missions.

2.4 Mission Design Optimal Control Problem

This section lays out the formulation of the total mission design continuous optimiza-

tion problem in general form and then in more detail. The choices of the cost function,

control variables, and constraint structure are explained for the different formulations

described. The basic formulation describes the equations used in all the example cases

whose results are shown in Chapter 4 and 5. The complex formulations describe the ad-

ditional equations and terms that are included in different combinations to each example

to create their unique detailed problem formulation.

The results chapter is divided into sections of examples all using the same mission

models. The force model is defined by the equations of motion (seen as just more

constraints by the optimization algorithm). The equations of motion in the Basic For-

mulation below describe the three-body forces under the circular restricted assumptions.

The mission model that includes only these forces in the equations of motion and has no

constraints on the attitude will be called the Simple Model. The mission model that

includes terms in the equations of motion to model the force perturbations of the solar

radiation pressure (SRP) and the lunar gravity, but also has no attitude constraints, will

be called the Perturbed Model. The final mission model adds the mission-level con-

straint that will be required for telescope missions of bounding the angle of the attitude

with respect to the sun. This is accomplished, as stated earlier, through constraints

applied to the control variables rather than by introducing a new attitude variable to

the state vector. This mission model will be called the Perturbed Mission Con-
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strained Model. The Complex Formulations part of this section will outline which

different additions are added to which examples in each of these mission model sections

in Chapter 4, and then present the additional terms or equations.

Table 2.1

Mission Models (Sections of Results, Ch.4)

Simple Model CR3BP

Perturbed Model CR3BP + SRP/lunar perturbations

Perturbed Mission Constrained Model CR3BP + perturbations + attitude constraint

2.4.1 Basic Formulation

The simply constrained set of problems presented here have the following general

form: find the state and control variables at each time step over a given time period,

such that a function of the control variables is minimized. The state variables are the

position and velocity along the axes, and the mass of the spacecraft, which can be seen

as a seven-dimensional state vector. To keep the formulations simpler, the attitude

is never used as an independent variable, but is constrained in terms of the control

variables in the final set of examples. The control variables are the thrust along the

axes, which can be seen as a three-dimensional control vector. Minimizing the function

of the control variables then corresponds to minimizing the use of fuel, which allows

the launched mass to be minimized as well as opening the possibility for minimizing

the time used for stationkeeping maneuvers that can inhibit payload use. The objective

function for all examples shown here is the L1 norm of the control vector integrated over

the set time period. This optimization is constrained by the equations of motion (see

above), which govern the relationship of the position and velocity. We also impose a

bound on the distance from the final position to the libration point, and the constraint

of the rocket equation, which governs the relationship between the mass and thrust:

∂m

∂t
=

−T

Isp ∗ g
,

where m = mass, t = time, T = total magnitude of thrust, Isp = specific impulse of

the engine, and g = gravitational constant.

The final position distance bound (which necessarily occurs at the final timestep)

ensures the whole trajectory is bounded to meet the stationkeeping goal of remaining

in the vicinity of L2. There are a few more bounds applied to these problems to achieve

realistic solutions. In every example formulation solved here, the following bounds are
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applied: the thrust magnitude has a maximum, the x position is restricted away from the

Earth at each timestep, and the mass has a non-zero minimum to restrict the solution

from a spacecraft consisting entirely of fuel.

The mathematical form of the basic continuous problem is the following optimal

control problem: Determine the state-control function pair, s(t),u(t) over [t0, tf ] that

minimize the cost functional,

J [s,u] =

∫ tf

t0

F (s(t),u(t))dt, (2.9)

subject to

equations of motion f(s(t),u(t)) − ṡ(t) = 0 (2.10)

boundary constraints b(s(t0), s(tf )) = 0 (2.11)

path constraints h(s(t),u(t)) ≤ 0. (2.12)

In the calculus of variations method of solving continuous optimal control problems,

the cost functional takes a second form in terms of the adjoint variables. The Hamil-

tonian function is defined for ease of framing and solving the problem as a two point

boundary problem[11]. It takes the following form:

H(t) = F (s(t),u(t)) + λT (t)f(s(t),u(t)), (2.13)

where λ(t) are the adjoint variables. Because the cost and dynamics equations do not

depend explicitly on time, the derivative of the Hamiltonian with respect to time is

Ḣ =
∂F

∂t
+ λT ∂f

∂t
+

∂H

∂t
u̇ =

∂H

∂t
u̇.

At an optimal solution, the cost functional is at a minimum, so u is stationary, and
∂H
∂t = 0. This means that at a solution Ḣ = 0. The Hamiltonian function is zero at the

optimal state-control function pair. This fact will be used later to check the optimality

of the results.

To frame the current optimal space mission design problem more specifically, the

general optimal control problem (Equations 2.9-2.12) can be expanded to the following

statement. Find the state vector s(t) with elements

s = (x(t), y(t), z(t), vx(t), vy(t), vz(t), m(t)),

and u(t), the control vector with elements
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u = (ux, uy, uz),

which minimize the cost

J =

∫ tf

t0

‖u(t)‖1 dt.

This is subject to the equations of motion (with µ as the ratio of the Earth-moon

systems mass (1) to the Suns mass (2)),

ẋ(t) − vx(t) = 0

ẏ(t) − vy(t) = 0

ż(t) − vz(t) = 0

v̇x(t) − 2vy(t) − x(t) +
(1 − µ)(x(t) − µ)

r13(t)3
+

µ(x(t) + 1 − µ)

r23(t)3
−

ux(t)

m(t)
= 0

v̇y(t) + 2vx(t) − y(t) +
(1 − µ)y(t)

r13(t)3
+

µy(t)

r23(t)3
−

uy(t)

m(t)
= 0

v̇z(t) +
(1 − µ)z(t)

r13(t)3
+

µz(t)

r23(t)3
−

uz(t)

m(t)
= 0

ṁ(t) +
‖u(t)‖1

Isp ∗ g
= 0,

for all t : [t0, tf ],(see section 2.1 for definition of rik). The minimization is further subject

to the boundary condition,

(x(tf ) − (1 − µ − r2−L2))
2 + y(tf )2 + z(tf )2 ≤ (αL)2,

where 0 ≤ α ≤ 1 and L is the distance between the Earth/Moon and L2; and the path

constraints,

x(t) ≥ 1 − µ + margin, (1 - µ is position of Earth)

−Tmax ≤ u(t) ≤ Tmax

0.01 ≤ m(t) ≤ 1,

where Tmax is the chosen maximum thrust acceleration.

The equations of motion are expressed in seven equations, with each one describing

the change in one of the state variables. The state vector includes the velocity of each

position variable in order for the equations of motions to be only first order differential

equations. Compare the acceleration equations, v̇i..., to the equations derived in Chapter
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2, (Equations 2.6-2.8) (note: v̇x = ẍ). The boundary condition constrains the final

distance from L2 to within some fraction of the distance to the Earth-Moon system.

The mass is normalized to be equal to one at the start of the trajectory, which is t = 0 for

these optimization problems. Practically, this point may be after a maneuver to insert

it into the libration area trajectory from a launch or transfer trajectory. The mass is

constrained to a minimum of 10% of the mass at start time, because this is reserved for

the mass of the spacecraft itself, as opposed to expendable fuel. This is a conservative

estimate for a spacecraft of the size modeled in examples here. The original design for

the James Webb Telescope has a fuel to total mass ratio of six percent. For comparison,

Genesis, in a three-year unconstrained orbit and ten times lighter, had a starting mass

fuel that was 22 percent of its total mass. This constraint is not an issue for the few year

simulation time of the problems solved here, but will become an important constraint

for simulation times nearing ten years, and when using full force modeling and more

complex constraints on the timing of the maneuvers.

The cost function used here is L1 norm of the control, rather than the L2 norm

squared, which is often used as the familiar quadratic cost function, because L1 mea-

sures fuel use whereas L2 does not [29]. (Note: the Lp norm of u can be defined based

on the l2 norm as ||u||Lp = (
∫

(
√

u2
x(t) + u2

y(t) + u2
z(t))

pdt)1/p, or based on the l1 norm

as ||u||Lp = (
∫

(|ux(t)| + |uy(t)| + |uz(t)|)
pdt)1/p.) Using the l2 based L1 norm involves

a square-root calculation, which causes difficulty because of the singularity when u = 0.

The l1 based L1 norm also looks difficult because its derivative is discontinuous at zero,

but this was resolved (as explained below). The choice for the cost function formula-

tion here then is the l1 based L1 norm, so that the optimization problem is seeking

to minimize the sum of the thrust magnitudes in each direction. The control variables

represent the way in which the spacecraft can control its trajectory by adding velocity in

a certain direction to its motion. Velocity is added by burning the engine. This causes

a thrust in the direction opposite to that in which the engine is pointed. The control

vector then represents the thrust, with the components of the vector splitting the thrust

magnitude along the axes of the rotating coordinate frame presented earlier. The actual

control vector used in formulations here has six components, a positive and negative

measure of the thrust along each of the axes (x, y, z). This was chosen to make the

problem a reasonable one to solve with the optimization algorithm. The components

are then all positive, with lower bound zero and upper bound Tmax. The most impor-

tant consequence of this form is the resolution of the l1 difficulty: it makes the control

variables’ derivatives continuous. The lack of continuity would have considerably com-

plicated solving the optimization problem. Because the magnitudes of these variables

are to be minimized, and in further steps in the mission design process they will be
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forced to be zero except during planned maneuver times, we know that these variables

over the mission lifetime will mostly be zero. Also, only the negative or positive part of

the control in one direction can be non-zero at each point in time, in order to express a

negative or positive component in that direction to the total thrust. This means that

the control variables will be on their lower bound (zero) at most times, reducing the

number of degrees of freedom in the problem, which makes the optimization problem

easier to solve (despite the doubling of the number of control variables).

2.4.2 Complex Formulations

The above formulation is included in every example whose solutions are shown in

Chapter 4 and 5. Increasing the complexity of the force models requires adding terms

to the equations of motion constraint equation. Increasing complexity with mission

constraints requires adding new constraint inequalities. This section presents the for-

mulations of these additions. First the additions to the path and boundary constraint

equations, and then the additions to the equations of motion for the first mission exam-

ple (single spacecraft) are discussed, followed by a presentation of the additions to the

basic formulation seen in the second mission example (two spacecraft in formation).

The basic formulation is the entirety of every example in the Simple Model section,

except the first. The first includes a bound on the initial state (a boundary constraint) in

order to produce a more common type of orbit. The Perturbed Model section examples

all have bounds on the initial state (except the first because it has a much shorter

simulation time). The full constraint formulation for the examples with these initial

state bounds are under Initial Position Bounded below. In addition, some examples

have path constraints bounding the position variables. The full constraint formulation

for these examples are under Initial Position and All Positions Bounded below.

The Perturbed Mission Constrained Model section further includes the restriction of

the spacecraft’s attitude, defined as a path constraint restricting the thrust direction;

a function of the control variables. This addition to either of the complex formulations

already named is seen under Attitude Bounded below. See the the introduction to

the Perturbed Mission Constrained Model results (4.2.1) for a derivation of the attitude

constraint equation. The three versions then of the constraint formulations beyond the

basic constraint formulation of the previous section are as follows:
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Initial Position Bounded

The boundary condition,

(x(tf ) − (1 − µ − r2−L2))
2 + y(tf )2 + z(tf )2 ≤ (αL)2

−L ≤ x(t0) ≤ L

−L ≤ y(t0) ≤ L

−L ≤ z(t0) ≤ L

and the path constraints,

x(t) ≥ 1 − µ + margin, (1 - µ is position of Earth)

−Tmax ≤ u(t) ≤ Tmax

0.01 ≤ m(t) ≤ 1.

Initial Position and All Positions Bounded

The boundary condition,

(x(tf ) − (1 − µ − r2−L2))
2 + y(tf )2 + z(tf )2 ≤ (αL)2

−L ≤ x(t0) ≤ L

−L ≤ y(t0) ≤ L

−L ≤ z(t0) ≤ L,

and the path constraints,

x(t) ≥ 1 − µ + margin, (1 - µ is position of Earth)

−Tmax ≤ u(t) ≤ Tmax

0.01 ≤ m(t) ≤ 1

−2L ≤ x(t) ≤ 2L

−2L ≤ y(t) ≤ 2L

−2L ≤ z(t) ≤ 2L.

These position bounds are (like the margin from the Earth) in terms of L, the distance

between the Earth and L2.



26 Chapter 2 Libration Point Missions

Attitude Bounded

The boundary and path constraints may look like either of the previous formulations,

but added to the path constraints is

−uxtan(a) ≤
√

(u2
y + u2

z).

Figure 2.5 The thrust direction u must stay out of the sun-view cone.

The Perturbed Model (and the Perturbed Mission Constrained Model) include approx-

imations to the force perturbations caused by the Moon’s position varying from the

rotating frame’s x axis, and from the solar radiation pressure against the solar shield of

the sample spacecraft. Including these perturbations alter only the three acceleration

equations in the equations of motion section of the formulation. Following is the version

of the equations of motion constraint for the perturbed model, Perturbed Equations

of Motion. See the introduction of the perturbed model (4.1.3) for a derivation of the

extra terms.
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Perturbed Equations of Motion

ẋ(t) − vx(t) = 0

ẏ(t) − vy(t) = 0

ż(t) − vz(t) = 0

v̇x(t) − 2vy(t) − x(t) +
(1 − µ)(x(t) − µ)

r13(t)3

+
µ(x(t) + 1 − µ)

r23(t)3
−

ux(t)

m(t)
−

gmoon cos(α(t))

m

−
.9 SRP (surface area) cos(angle between shield normal and − x vector)

(distance from 1 AU)2 (m(t))
= 0

v̇y(t) + 2vx(t) − y(t) +
(1 − µ)y(t)

r13(t)3
+

µy(t)

r23(t)3
−

uy(t)

m(t)
−

gmoon sin(α(t))

m(t)
= 0

v̇z(t) +
(1 − µ)z(t)

r13(t)3
+

µz(t)

r23(t)3
−

uz(t)

m(t)
= 0

ṁ(t) +
‖u(t)‖1

Isp ∗ g
= 0,

for all t : [t0, tf ].

The secondary mission example (Chapter 5) uses the original force model, but has

two spacecraft, and therefore some extra constraints. The cost function is still the

sum of all the control variables, but these now include those for both spacecraft, so it

represents the sum of fuel use for all spacecraft in the formation. There are twice as

many variables because the states and controls are repeated for the second spacecraft.

This means that the equations of motion are doubled; there is a repetition with the

first set applying to spacecraft one and the second set applying to spacecraft two. Note,

however, that for ease of comparison with previous work, the mass is not a state variable,

so the controls are the pure accelerations at each time rather than the thrust force. The

final distance constraint is only defined for one spacecraft since the formation distance

constraint would cause other spacecraft to also end their path in the L2 vicinity. The

added constraints are the distance between the two spacecraft and the requirement that

the two spacecraft have similar fuel use. The examples here all use initial position

bounds. Some of the examples further include a periodic constraint. The formulation

for the formation examples follows.

Find the state vector s(t) with elements

s = [x1(t), y1(t), z1(t), vx1(t), vy1(t), vz1(t), x2(t), y2(t), z2(t), vx2(t), vy2(t), vz2(t)]
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with subscript 1 and 2 for spacecraft 1 and 2, and u(t), the control vector with elements

u = [ux1(t), uy1(t), uz1(t), ux2(t), uy2(t), uz2(t)],

which minimize the cost

J =
Ns
∑

i=1

Ji =

∫ tf

t0

Ns
∑

i=1

∥

∥ui(t)
∥

∥

1
dt,

where Ns = 2. This is subject to

ẋ1(t) − vx1(t) = 0

ẏ1(t) − vy1(t) = 0

ż1(t) − vz1(t) = 0

v̇x1(t) − 2vy1(t) − x1(t) +
(1 − µ)(x1(t) − µ)

r1s1(t)3
+

µ(x1(t) + 1 − µ)

r2s1(t)3

−ux1(t) = 0

v̇y1(t) + 2vx1(t) − y1(t) +
(1 − µ)y1(t)

r1s1(t)3
+

µy1(t)

r2s1(t)3
− uy1(t) = 0

v̇z1(t) +
(1 − µ)z1(t)

r1s1(t)3
+

µz1(t)

r2s1(t)3
− uz1(t) = 0

ẋ2(t) − vx2(t) = 0

ẏ2(t) − vy2(t) = 0

ż2(t) − vz2(t) = 0

v̇x2(t) − 2vy2(t) − x2(t) +
(1 − µ)(x2(t) − µ)

r1s2(t)3
+

µ(x2(t) + 1 − µ)

r2s2(t)3

−ux2(t) = 0

v̇y2(t) + 2vx2(t) − y2(t) +
(1 − µ)y2(t)

r1s2(t)3
+

µy2(t)

r2s2(t)3
− uy2(t) = 0

v̇z2(t) +
(1 − µ)z2(t)

r1s2(t)3
+

µz2(t)

r2s2(t)3
− uz2(t) = 0

for all t : [t0, tf ], where risk = distance from body i to spacecraft k; the boundary

conditions,

(x1(tf ) − (1 − µ − r2−L2))
2 + y1(tf )2 + z1(tf )2 ≤ (αL)2

J1 = J2,

where 0 ≤ α ≤ 1 and L is the distance between the Earth/Moon and L2; and the path
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constraints,

x1(t) ≥ 1 − µ + margin, (1 - µ is position of Earth)

−Tmax ≤ u(t) ≤ Tmax

c1,2
2 − δ1,2

l ≤
∥

∥r1(t) − r2(t)
∥

∥

2
≤ c1,2

2 + δ1,2
u ∀ t, i, j,

where ri is the position vector of spacecraft i, c is the constant inter-spacecraft distance

required, and the δs are the margins on that distance.
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Chapter 3

Solving the

Optimal Control

Problem

All but the simplest optimal control problem must be solved numerically. There are

two basic approaches often termed direct and indirect. An indirect method utilizes the

first-order conditions for optimality given by the Pontryagin’s maximum principle[7].

To solve for the solution of these conditions requires solving a two point boundary value

problem whose dimension is two times the number of state variables. It is simpler

and easier computationally to discretize the optimal control problem (a direct method).

However, the direct approach may not satisfy the optimality conditions in the limit.

While the discretization will not be driven to the limit, it is important to consider the

property of the limit because we would like to be able to state the error between the

solution found and the true solution. This error is related to the size of the discretiza-

tion. We can show that the solution obtained does satisfy this property for many of

the optimality conditions and in particular the feasibility conditions. This is clearly

important for the solution to be tenable. It then follows if we have not satisfied the

full optimality conditions (although we often do) it may mean there is a better feasible

control than the one we have found. How important it is to find a better control in

that case depends on the size of that error from the true optimal solution relative to

the errors that can be expected in the hardware implementation of the controls and

navigation measurements. The acceptable error also depends on the stage of the design

process for which the problem is being solved.

The resulting discrete problem is a nonlinear finite-dimensional optimization prob-

lem and may be solved numerically by standard algorithms for this problem. Inevitably

the discretization process leads to large nonlinear programs. The optimization algo-

rithm used here is a sequential quadratic programming (SQP) method, implemented in

the software SNOPT (produced by the Stanford Systems Optimization Lab, see section

3.2.2 for details), which is explicitly designed to solve large problems.

31
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There are a plethora of ways to discretize the optimal control problem[30]. The

method of discretization leads to both different theoretical and numerical properties

and to different sizes of discrete problem to obtain the same degree of approximation.

The difference in size may be substantial. The discretization methods compared in

the following section all use SNOPT to ensure it is only the discretization process that

differs.

3.1 Discretization of the Optimal Control Problem

***diagram In this section, a general overview of discretization methods is given,

followed by three in-depth discussions of particular methods. These were the methods

explored for discretizing the optimal control problem presented in this thesis: user calcu-

lated divisions and finite differencing (3.1.1), direct collocation (3.1.2), and pseudospec-

tral (3.1.3). The pseudospectral method was eventually chosen over a direct collocation

method because of the need to look at optimality when using a new approach to an

optimal control problem.

Shooting methods are a common way to discretize an optimal control problem.

Shooting methods approximate the state equations by integrating the vector field. The

time period may be divided into intervals. The state variables at the ‘knots’ between

each interval are the variables for the discretized problem. The differential equations

describing the dynamics of the system (called state equations because they define the

relationship of the state derivatives to the state variables) are solved over each inter-

val by numerical intergration; typically Euler or Runge Kutta. An explicit integration

identifies the discretization as multiple shooting because it integrates over multiple time

arcs, while an implicit integration is used in the collocation method. With the implicit

integration, the state and controls are optimization variables at each point of the in-

tegration as well as at the knots. So if using an n-degree Runge Kutta formula, the

collocation formulation has n times more variables than the multiple shooting formula-

tion of the same problem which only puts optimization variables at the knots between

shooting arcs. This does not make the collocation formulation a longer problem to solve

however, and may make it faster because the first derivatives are easier to compute. Col-

location is less accurate in terms of the state equations though because of the implicit

integration. Direct collocation does not converge to the solution of the optimal con-

trol problem because an Nth-order integration scheme for the differential equations may

not necessarily lead to an Nth-order approximation scheme for the dual variables[35].

The constraints Jacobian and objective function Hessian are sparse for both multiple

shooting and collocation. There is also a single shooting method in which the control
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vector represents coefficients in a polynomial that approximates the control function.

This function encompasses the state equations, eliminating the state variables. The

components of the control vector are the variables, and the objective and constraint

functions are formulated in terms of this vector. This creates a smaller but more dense

problem. In the single shooting formulation, the objective function is very sensitive to

the control variables, so it can require a larger number of timesteps, i.e. a finer grid, to

be stable. A more detailed description of all these methods can be found in Ref.[31].

Another type of discretization approximates not just the states, but also the con-

trols, and sometimes state derivatives as polynomials and interpolates to define the

discrete states and controls. These methods can be called differentiation-based rather

than integration-based[30]. The Hermite-Simpson method uses a Hermite interpolating

polynomial over each interval based on the states and state derivatives at the end points.

There is an equality constraint applied to the center of each interval that forces the val-

ues of the polynomial and its derivative to match the state equations, which express the

relationship of the continuous state function to the continuous state derivatives. Pseu-

dospectral methods use Lagrange interpolating polynomials to approximate the states.

The expansion points where the discrete variables are defined are chosen as specific set

of points. One example is the Legendre-Gauss-Lobatto (LGL) points used in the LGL

pseudospectral method. This is the method of choice for the optimal control problem

explored in this thesis, and is explained in more detail in Section 3.1.3.

3.1.1 Experiments with finite differencing and user differentiation

This formulation discretizes the equations of motion, including the impulsive ∆Vs,

into constraints; a set for each time step. This creates a large complicated problem, but

allows the algorithm to proceed even if the current trajectory is physically infeasible as

well as mission-wise infeasible (diverges from L2). Of course an optimal solution is by

definition also a feasible solution, so the final trajectory will still follow the equations

of motion (in their discretized form).

In this first formulation, the optimization problem formulation discretizes the ordi-

nary differential equations of motion using a simple finite difference scheme[33]:

u(t + h) − u(t)

h
= u̇(t) + O(h),

where h = length of time step. The traditional state vector is the position and veloc-

ity at the current time step: X = (x, y, z, ẋ, ẏ, ż). The state vector for the optimization

problem is the whole trajectory. Thus the state vector or trajectory for the current

iteration in the optimization program is Z = (X1,X2, .,XN ) , where N is the number of
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timesteps. For the problem formulations done in this preliminary research, both h and

N are determined by the Matlab differential equation solver when the program calls for

the initial trajectory.

The discretization into time steps then results in three linear equations(e.g. Ẋ1 =

X4) and three nonlinear equations (e.g. Ẋ4 = f(X1−6) for each time step. The nonlinear

equations, although complicated as they depend on distances from the masses, are

analytically differentiable. This means that the gradient of the nonlinear constraints can

be calculated before the equations are discretized into finite differences. The nonlinear

equations use finite differences to approximate the accelerations, or first derivatives of

X4−6. The linear equations use finite differences to approximate the velocities, or first

derivatives of X1−3.

It is quite valid to pose this as a finite optimization problem by having a certain

number of timesteps, which requires that the maneuvers that add δv are modeled as

impulses. This is because the dynamics and thus period of the orbit about a libration

point are on a very large scale; in fact a scale proportional to the half period of the

Sun-Earth frame rotation. Therefore, the period will be about six months, whereas the

actual burn duration should not be more than a day, and is probably much less.

With an appropriate discretization formulation, SNOPTs feature of elastic nonlinear

constraints is very helpful, and possibly essential, in finding a solution to this simplified

model, and to more highly constrained models.

3.1.2 Direct Collocation Method

The simple model optimization problem was also solved by the package, GESOP[34],

which uses a direct collocation discretization, and SNOPT to solve the discretized prob-

lem. However, the exploration of this method for solving the problem is presented in

this section.

The examples here use the collocation code TROPIC (TRajectory OPtimization us-

ing dIrect Collocation), which was developed by DLR, Junsch(1990), Schnepper(1992).

It is similar to that used in NASA’s OTIS optimization software (which also uses

SNOPT), but has automatic function and parameter scaling. TROPIC approximates

the controls and states over time by third-order Hermite polynomial functions.

Inputs to GESOP include a guess of states and controls at the starting time, and

of the final time, along with bounds. For this problem, the bounds on states are very

wide, the bounds on the controls are the same as the original problem (zero lower bound

and maximum thrust magnitude upper bound), the final time is set to a fixed value.

GESOP then generates an initial guess using the equations of motion and timesteps

as defined by the user. The integrator is a Runge-Kutta-Fehlberg integrator of fifth



3.1 Discretization of the Optimal Control Problem 35

order, using Dormand and Prince formulae. There is a minimum step value to avoid

the integrator getting stuck if the control estimate is not smooth. A discretization

grid, defined by the user set the collocation nodes. To compare the main discretization

method to traditional collocation, the nodes in GESOP are always chosen to be equally

spaced in the examples shown here.

TROPIC applies a scaling transformation as follows. Given original function F , the

scaled function F̄ = DF , where D is a positive constant. The scaling factors, D, are

computed to keep the scaled collocation constraints at each node matching the scales

states. For x(i) at an interval beginning and x(i + 1) at an interval end (between

collocation nodes), the scaled states are

y(i) = d(i) x(i) + c(i) and y(i + 1) = d(i + 1) x(i + 1) + c(i + 1).

The scaling factors in this interval are then

D = (d(i) + d(i + 1))/2.

If the state outside the interval is not optimized, only d(i) or d(i + 1) is used.

Although this scaling is applied, GESOP could not find a feasible solution for the

libration point mission design problem until the state scaling scheme used with the

pseudospectral method (see Section 3.2.3) was additionally applied. For all GESOP

runs, the final distance constraint was half the distance from L2 to Earth. It was

observed that GESOP needs a fairly good input to find an optimal solution with a cost

approximately zero (the cost of the known global optimal). Using the initial state of the

large halo input, which is a feasible position but zero velocity values, the initial guess

propagated by GESOP does not make an orbit shape, but breaks the final distance

constraint fairly early. GESOP was unable to find a feasible solution with this input for

any time period longer than when the distance constraint was broken.

Given the initial state of the sitting at L2 input, which is all zero for position and

velocity, the initial guess propagated again immediately leaves the L2 vicinity, but at

a slightly slower rate. For a time period of 5 TU (0.8 years), GESOP finds an optimal

solution that starts away from L2 and forms a curve about the point. However, this

solution also uses thrust more than half of the time period, so the cost is relatively

large (1.4 DU/TU or 42 km/s). GESOP did not find one of the global optimals for

this starting point. This guess of sitting at L2 yields widely varying results. When the

time was increase to 5.5 TU (0.9 years), GESOP does find a (nearly) zero cost solution

that has a halo orbit shape. With times of 6 and 7 TU, GESOP cannot get feasible,
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but when the optimal solution with 5.5 TU is loaded at the start of the optimization,

the same optimal orbit is found with an exactly zero cost. With a good starting point,

propagated from the initial state of the full halo input, GESOP can find a global optimal

usually very close to the input, as long as the time period is not too long (less than

about 7 TU). With time periods of 7 to 9 TU (1.1-1.4 years), global optimal solutions

are found, but often as a smaller or larger halo-type or bean-shaped orbit. At 9 TU,

with 35 nodes a local optimal is found with a similar orbit as the propagated input, but

using bang-bang controls, such that the cost is 4.6. However, when this was changed

to 10 nodes in the optimization, leaving 35 steps for simulations (propagation of initial

state), a global optimal was found.

With larger time periods, the solutions for various numbers of nodes mostly are in-

feasible, and rarely are non-zero cost optimals. With the timelength of 4π TU (2 years),

GESOP found an optimal for 15 nodes with 45 nodes for simulation. This solution had

a cost of 0.1 because it had a positive z thrust over the first two nodes. It is likely that

more nodes could help to enable GESOP to see the problem as feasible more often and

so more likely to find a global optimal solution, but after about 50 nodes, there is not

enough space to compute the problem, and up to 50 nodes, it was still unable to see the

problem as feasible.

Starting with a nonzero controls guess for just the positive x control, GESOP is able

to find an optimal solution quite close to the same input with a totally zero controls

guess. With other nonzero guess controls, though, it cannot find an optimal, and is

unable to compute a good enough search direction to get beyond the first iteration of

the algorithm.

For starting points that did not propagate to ‘good’ guesses, but started reasonably

near the L2 point, nearly zero cost optimal solutions were found for some cases with

final times of 4 TU or less. For longer times, the problem was infeasible.

Using a direct collocation method limited the scope of formulations that could be

solved for the optimal design and control of a libration point mission. This method was

sometimes fast for very good input trajectories and relatively short mission simulations,

but it either broke down computationally or had no feasible point when discretizing

simulations longer than about 8 TU or 1.3 years. Some input trajectories that were

infeasible due to their final distance worked to find an optimal solution if the time

period was short and the starting state variables close to that of a halo orbit, but
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in general the set of inputs that work with this discretization method is limited and

forces optimal trajectories to be halo-type orbits of the size suggested by the input.

These results reflect the need for more knots when using third-order polynomials (as

opposed to much larger orders using the pseduospectral method below) to represent the

equations of motion accurately enough to match the discretized constraints. However,

the number of knots needed is limited by memory availability, and was about 50 for

this amount of variables (as described above). When compared to the PS method,

direct collocation is harder to use and leaves less negotiation for minimum-fuel mission

designs when including further constraints and force perturbations. It doesn’t allow

for the wide variety of input trajectories that is seen using the PS method, although it

produces results a little faster with a good input (for this mission design problem).

Table 3.1

Limitations of direct collocation method

Speed Fast for good input, stalled for poor input, or long sim. times

Input Variety No feasible or optimal solution without near-optimal input

Output Variety Only found halo-shaped optimals, when solution possible

No. Timesteps Need larger number to capture dynamics, out of memory for≥50

Sim. Time Limited to a max. of 9 TU for very good input

3.1.3 Pseudospectral Method

The main advantage of pseudospectral discretization is that it chooses the optimal

node placement in time to discretely represent the variables over time used in the op-

timization problem. The nodes are placed at the roots of the Legendre polynomial

(called the Legendre-Gauss-Lobatto (LGL) quadrature nodes), taking advantage of the

theory of Gaussian quadrature, which states that the optimal abscissas of the Gaussian

quadrature formulas are exactly the roots of the orthogonal polynomial over the same

interval and weighting function. Legendre-Gauss quadrature is limited to the interval

[−1, 1] and the weighting function W (x) = 1. The roots of the Legendre polynomials

occur symmetrically about 0. That the Legendre polynomials are orthogonal is to say

that the following relationship holds:

∫ 1

−1
Pm(t)Pn(t)dx = δmn

2

2n + 1
,
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where Pm and Pn are the polynomials and δmn is the Kronecker delta, which is 0 when

m 6= n and 1 when m = n. So we can also say of Legendre polynomials that

∫ 1

−1
[Pn(t)]2dx =

2

2n + 1
.

This method succeeded where the previous methods failed in solving the problem

discussed here without a good estimate of an optimal solution as a guess. It was im-

plented with DIDO[15], a Matlab application package which discretizes an optimization

problem from its continuous form and then calls SNOPT by way of Tomlab wrappers

that provide an interface between Matlab and SNOPT. DIDO does a pseudospectral

discretization[35] of the optimal control problem into a large nonlinear programming

(NLP) problem which is a representation of the continuous (and thus infinite) optimal

control problem as a finite-dimensional optimization problem.

In DIDO, the state and control functions are approximated by Nth degree poly-

nomials; N+1 being the number of nodes. The discrete derivatives of the states and

controls are the derivatives of these functions at each node. They are calculated by the

differentiation matrix D, which itself is calculated using the Nth degree Legendre poly-

nomial and is a function only of the number of nodes (so it is a constant). The original

continuous problem ((2.9)-(2.12)) is translated to the discrete model, which poses the

problem of finding the (N + 1)(Ns + Nu) vector X = s,u that minimizes

J(X) =
tf − t0

2

N
∑

k=0

F (sk, uk)wk,

where wk are the LGL weights, a function of N and the Nth degree Legendre polynomial,

and subject to the constraints

equations of motion
tf−t0

2 f(sk, uk) −
∑N

l=0 Dklxl = 0

boundary constraints b(s0, sN ) = 0

path constraints h(sk, uk) ≤ 0

for k=0,...,N. See the continuous problem for function definitions used in this work.

The D matrix is a (N + 1)2 × (N + 1)2 matrix with a block diagonal form, made up of
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submatrix (N + 1) × (N + 1) blocks Dkl =

LN (tk)
LN (tl)

1
tk−tl

k 6= l

−N(N+1)
4 k = l = 0

N(N+1)
4 k = l = N

0 otherwise.

For example,

Table 3.2

Submatrix diagonal in D matrix for N = 4

-5.0 6.8 -2.7 1.4 -0.5
-1.2 0 1.7 -0.8 0.3
0.4 -1.3 0 1.3 -0.4
-0.3 0.8 -1.7 0 1.2
0.5 -1.4 2.7 -6.8 5.0 .

These submatrices are each rank deficient by one. The optimization algorithm can

deal with this however because in choosing N independent columns from the Lagrangian

function, it can take some from the Jacobian of the constraints as well as this differen-

tiation matrix.

The state and control vectors, which were functions of time in the continuous model,

consist of N discrete values in this model; evaluating the value of the function at the time

represented by each of the N nodes during each iteration of the optimization algorithm.

It is important to note that the discretized input trajectory is already different than

exactly what is calculated (as described in the Optimization Formulation section) as a

good input because of the choice of nodes. The optimization algorithm starts with the

input trajectory, composed of state and control variables at N nodes. These variables

are the values calculated by estimating state and control functions based on the states

and controls at given times, and then evaluating these functions at the LGL nodes.

The number of nodes chosen for DIDO to use to solve an optimal control problem is

based on the complexity of the problem and length of time simulated. For the libration

point mission design problem, a relatively large number of nodes are needed to capture

the dynamics of the unstable region (although the PS method generally requires many

fewer timesteps than other discretization methods). The large number of variables at

each time as well as the complexity itself motivate limiting the number of nodes in order

to limit the computation time to a reasonable length. The process is much faster if the
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input is the output from a previous run of DIDO, so a common practice in this work

was to run DIDO with a small number of nodes - about 5-10 nodes per rotation of the

Earth-Sun system or 2π TU. This first run was often (but not always) too rough of a

grid to capture the dynamics and resulted in SNOPT being unable to find a feasible

solution. This was then the input for a second run of the desired number of nodes - 20

to 80 nodes per system rotation, depending on the accuracy desired. The lower end is

enough to produce a clear optimal solution, and the upper end will produce the same

trajectory as a Runga-Kutta integration of the equations of motion with the optimal

control history for at least 2π TU.

3.2 Solution of the Discretized Problem.

The discretized nonlinear programming problem is solved with a sequential quadratic

programming (SQP) algortithm. The problem from the perspective of the optimization

algorithm is formulated here, and the advantages of the implementation of the SQP for

this particular problem are discussed.

3.2.1 Nonlinear Programming Problem

The optimization algorithm does not distinguish the nonlinear programming prob-

lem solved here as an optimal control problem. The variables consist of every state

and control at every node (in time). These all make up the variable vector, X. The

nonlinear programming problem is

find X that minimizes J(X)

subject to BL ≤ (X,C(X), AX) ≤ BU ,

where BL and BU are lower and upper bounds, J must be smooth and scalar, C(X) is

a vector of smooth nonlinear constraint functions, and A is a sparse matrix such that

AX are any linear constraints. The first and second derivatives of J and C are used in

the optimization algorithm.

3.2.2 Algorithm Details

An SQP algorithm was implemented using the software SNOPT[16], licensed by the

Systems Optimization Laboratory at Stanford University[32]. The algorithm routines

in SNOPT are designed to handle large-scale problems, and take advantage of the

sparsity in the matrices of the discretized problem that result from a small number
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of degrees of freedom. These qualities make SNOPT an efficient solver for trajectory

design in a complex dynamical space. The degrees of freedom are limited by restriction

that the trajectory satisfy some equations of motion, while the complexity requires

representation at more points in time to adequately capture the dynamics. The amount

of time points used results in thousands of variables and thousands of constraints in

the discretized problem for which SNOPT is well-suited. The approach of exploring

the design space by allowing any kind of input trajectory and control rather than a

near-optimal reference orbit is also made possible by a characteristic of SNOPT. If

the current QP subproblem is infeasible, it enters an ‘elastic’ mode which minimizes

constraint violations while allowing the main optimization algorithm to continue into a

feasible area. The optimization algorithm is complete when it finds a minimum in the

cost function within a set optimization tolerance, that meets the constraint function

within a set feasibility tolerance.

3.2.3 Implementation Analysis

Calling SNOPT from DIDO, the derivatives of functions are not defined, so the first

derivatives are estimated with finite differences[33] by SNOPT. The approximation of

the second derivatives in the form needed at each iteration is part of the algorithm, in

its Hessian approximation.

SNOPT succeeds well in solving the discretized problem even with hundreds of nodes

(this is also due to the form resulting from the PS discretization) despite the lack of

accurate derivatives. It also takes a very reasonable amount of time (on the order of

a few minutes for the largest formulations), but only if the variables are appropriately

scaled. This means that the variables are multiplied by a factor (possibly a different

number for each state and control) before being input into the optimization algorithm.

The factor is usually one that puts their maximum value between 0.1 and 1, but in

some cases, the factor needed to be one or two magnitudes larger. Without scaling the

problems either took days to solve or could not find a feasible point.
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Chapter 4

Results for an

Example Mission

In this and the next chapter we report the results from testing the algorithms de-

scribed on the problem of libration point mission design; the optimal control problem.

The testing has several purposes. We first demonstrate that the Pseudospectral Method

performs considerably better than the alternative methods of discretization. Only sim-

ple models were needed to reach these conclusions since the alternatives to the PS

method performed poorly even on the simplest problem. Another purpose is to show

that the mission design problem is in fact solvable without breaking it into several steps

and making assumptions about the orbit, and it is in fact solvable for an optimal point

without starting from a ”good guess”.

Although the approach we adopt can be applied to any libration point with similar

results, we choose to design and control formations about the Sun-Earth L2 point be-

cause of the complicated constraints on some of the missions currently proposed at this

location; thus, we have,

µ = 2.448 × 10−6

rL = (1 − µ + 0.01, 0, 0) DU

in the barycentric frame, where DU is the distance unit equal to the astronomical

unit, AU . The origin in these examples is shifted to L2 to improve variable scaling, so

rL = (0, 0, 0).

This chapter is divided into results of posing the simple problem: keep a spacecraft

in the libration point area for a given time period, and the results of posing the more

complex problem of adding the types of mission constraints that will be imposed on

large telescope spacecraft. This approach allows those more complicated constraints

to be considered during the initial design stage, which will allow a better final design.

The next chapter contains the result of applying this approach to create a formation of

several spacecraft in the Sun-Earth L2 vicinity.

43



44 Chapter 4 Results for an Example Mission

4.1 Mission-Unconstrained Results

The following section describes the details of the inputs and constraints along with

the results for cases in which mission constraints are not applied. The only constraints,

aside from the equations of motion, are those which define the basic problem of a

spacecraft with a set starting mass that is free to thrust in any direction at any (discrete)

time with any magnitude within a set maximum in order to be within a certain radius

of the Sun-Earth L2 point at a set ending time. The position of the spacecraft at times

other than the final time is also bound in a few examples.

Mission constraints would be, for example, a requirement about when or in which

direction the engine could produce thrust, a minimum or maximum distance from the

Sun-Earth line, or a periodicity requirement. The result of applying a mission constraint

within this framework will be seen in the next section.

4.1.1 Simple Model Definition

The simple model uses the equations of motion for the circular restricted three-body

problem, without any perturbations, which was described in Section 2.1. As expected

for this model, optimal trajectories are found for zero cost which remain in ‘orbit’ about

L2.

4.1.2 Simple Model Solutions

For each of the following examples, the number of nodes to be used and the value

of the final distance constraint, df are chosen. The other constraints remain the same,

and their form can be seen in the previous section. In addition, an estimate of the

solution is defined as a starting point for the optimization algorithm. The discretization

and optimization software are run with this information, and output the states and

controls at each node that are determined to be an optimal solution (resulting in a local

minimum in the cost function). The estimate of the solution is also in the form of state

variables and control variables, but are given at any list of timesteps, along with the

value of these timesteps. We call this information the ‘input trajectory’.

The input trajectories for these examples are chosen to find different but similar optimal

solutions, and to illustrate the ability of this method to find optimal solutions with

different quality starting points. The input trajectories are halo-shaped orbits, with

variations in velocity information, distance constraint values, and orbit size. There is

also an input of just a few timesteps, all at the L2 point, as a low-quality estimate

example.
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Example 1

As expected for the circular restricted three-body problem, an optimal trajectory is

found for zero cost which remains in ‘orbit’ about L2. In all examples here, we consider

a fixed-horizon problem, and set tf = 4π timeunits(TU) (730 days). The time unit is

equal to the period of the rotation system, which is the inverse of the frequency, 2π radi-

ans per year. The thrust acceleration magnitude constraint is, umax = 0.001 DU/TU2,

where TU , the time unit is 1/(2π) of the period of the of the primary system; i.e. a

year for the Sun-Earth system. The maximum final distance df is .002 DU, 1/5 the

distance between the Earth and L2 (call this distance L). The input states and controls

(the starting point for the optimization algorithm) are the position coordinates of a halo

orbit. The velocities and controls are zero, and the mass stays at the initial normalized

mass of 1. This means the initial estimate of the solution is infeasible since the equations

of motion do not hold. The input trajectory is produced with the equations,

x = −Ax ∗ cos(2 ∗ t)

y = Ay ∗ sin(2 ∗ t)

z = Az ∗ sin(2 ∗ t + pi/4)

for t = 0; .01; .02...4π,

where

Ax = 206, 000 km,Ay = 665, 000 km,Az = 110, 000 km.

The initial state of the input for this example is (in DU and DU/TU):

x(t0) = −1.377 × 10−3, vx(t0) = 0

y(t0) = 0, vy(t0) = 0

z(t0) = 0.520 × 10−3, vz(t0) = 0.

To reduce the computation time, the initial state of the solution was bound to a

box of 0.01 DU on either side of the about input initial state. In another technique to

reduce computation time, the problem was first solved for 40 nodes, and the solution

used as input to solve the problem with 200 nodes, which produced a clear solution.

This solution was then used as an input to compute a 400 node solution in order to

achieve the accuracy needed to make the comparison shown in Fig. 4.4.
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As noted earlier, we used DIDO[15] with SNOPT[16] to solve the optimization prob-

lem. A solution to the problem for a choice of 400 nodes (roughly, a 399th-order Legendre

polynomial) is shown in Fig. 4.1. This solution is clearly globally optimal because it has

zero cost, i.e. J = 0 ⇔ u = 0. The optimal controls are almost all zero at each node as

shown in Fig. 4.2.

Figure 4.1 Simple Model Example 1: An Optimal Trajectory for Large Halo Input

Note that there is just one non-zero control variable, at the first node, and it is

about 1 × 10−8 DU/TU2, compared to the maximum allowed magnitude of 1 × 10−3.

This may be considered noise since it is smaller than the tolerances and the trajectory

would be the same within these tolerances if this variable were exactly zero. So the cost
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Figure 4.2 Simple Model Example 1: Thrust over time

can be considered zero.

The claim of optimality is based on several tests[15]. One of these tests is the

approximate constancy of the Hamiltonian with an average value equal to zero.[13] The

Hamiltonian was defined in Chapter 2 (Equation 2.13). For illustration of this test, the

non-zero values of the Hamiltonian for this example are shown to be trivially small in

Fig. 4.3. In order to practically demonstrate the convergence of the solution, we use the

optimal initial conditions (in DU and DU/TU),

x(t0) = 0.24 × 10−4, vx(t0) = 5.27 × 10−4

y(t0) = −6.75 × 10−4, vy(t0) = −79.03 × 10−4

z(t0) = −2.67 × 10−4, vz(t0) = −9.57 × 10−4

to propagate the solutions using ode45 in Matlab. Fig. 4.4 shows a comparison of the

optimized velocity states to the propagated velocity states of one of the spacecraft up

to the point of divergence. It is apparent that the propagated states track fairly well

to the optimized ones up to π TU, indicating that it takes 400 nodes over this time

period for a solution accurate enough for preliminary design considerations for one year

in the current formulation. This is because the timestep at which the solution diverges
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Figure 4.3 Simple Model Example 1: Evolution of the Hamiltonian; note the scale on the
ordinate

from the propagated trajectory increases proportionally to the number of nodes. For

the rest of the examples the number of nodes will be only large enough to produce a

clear optimal solution, since solutions that more closely align with a differential equation

solver solution can be easily found with an increase in the number of nodes.

Example 2

The input states and controls (the starting point for the optimization algorithm)

are again the position coordinates of a halo orbit with the velocities and controls zero,

but this orbit is only 10% of the size of the previous example’s input. The input mass

is again 1 at all nodes. There is no bound on the initial state, and the maximum final

distance df is L, the distance between the Earth and L2. The input trajectory is pro-

duced with the equations,
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Figure 4.4 Simple Model Example 1: Comparison of the velocity states to those propagated
by ODE45 in Matlab (dotted)

x = −Ax ∗ cos(2 ∗ t)

y = Ay ∗ sin(2 ∗ t)

z = Az ∗ sin(2 ∗ t + pi/4),

where

Ax = 20, 600 km,Ay = 66, 500 km,Az = 11, 000 km.

The solution shown here was computed first for 25 nodes for which no feasible solution

could be found, and then iterated for 125 nodes.

The optimal controls are all exactly zero at each node.

Example 3

The input states and controls are the same as the previous example’s input. There is

still no bound on the initial state, but the maximum final distance df has been reduced

to .005 DU, or L/2. The input trajectory is produced with the equations,
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x = −Ax ∗ cos(2 ∗ t)

y = Ay ∗ sin(2 ∗ t)

z = Az ∗ sin(2 ∗ t + pi/4),

where

Ax = 20, 600 km,Ay = 66, 500 km,Az = 11, 000 km

The solution shown here was computed first for 25 nodes for which an optimal but too

coarse solution was found, and then iterated for 125 nodes.
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Figure 4.5 Simple Model Example 2: An Optimal Trajectory for Small Halo Input, df = D
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Figure 4.6 Simple Model Example 2: A 2-D Zoomed View of the Optimal Trajectory
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Figure 4.7 Simple Model Example 2: Thrust over time
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Figure 4.8 Simple Model Example 3: An Optimal Trajectory for Small Halo Input, df =
D/2
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Figure 4.9 Simple Model Example 3: A 2-D Zoomed View of the Optimal Trajectory

The optimal controls are almost all zero at each node as shown in Fig. 4.10. Note

that two non-zero control variables, at the first and second node, in the z direction at

about 1 × 10−5 DU/TU2, and then in the x direction at about 5 × 10−5 DU/TU2,

compared to the maximum allowed magnitude of 1 × 10−3. This is larger noise than

the first example, but is still small enough that it is most likely due to amplification

because of placement of nodes, and would disappear with a larger number of nodes.

Example 4

The input states in this example are both positions and velocities of a sample halo

orbit. The orbit is calculated using the same equations of motion that are a constraint in

the optimization problem. The input trajectory calculator varies the starting velocities,

targeting zero velocity in the y direction at the crossing of the x axis. This results in
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Figure 4.10 Simple Model Example 3: Thrust over time

an approximation of a natural halo orbit, so the input control variables are all zero.

Like the previous examples, the mass component of the input state vector is always at

the ‘full’ value, one instead of zero. There is no bound on the initial state, and the

maximum final distance df is .005 DU, or L/2. This constraint is active as the optimal

trajectory diverges from the almost repeating ‘orbit’ to end at this distance (toward

Earth) on the final node. The resulting input trajectory starts at the same position as

the previous examples, but with a velocity of about 0.0046DU/TU in the y direction.

Figures 4.11 and 4.12 show the optimal solution found with this more complete halo

orbit as a starting point. It was computed first for 25 nodes for which an optimal but

too coarse solution was found. This was the input for a 35 node solution which was

optimal and zero cost but still somewhat course, which was then iterated into a 125

node solution for accuracy and consistency. The optimal controls are all exactly zero at

each node, so the thrust over time plot is not shown.

Example 5

The input states and controls are zero, which means the input trajectory is station-

ary at L2. The mass component of the input state vector is one at all nodes. There

is still no bound on the initial state, and the maximum final distance df is L. But this

constraint is not active because the optimal trajectory starts closer to the Earth and
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orbit L2, ending close to the point; about 1% of the maximum final distance allowed by

the distance constraint. The input trajectory is the following,

x(0) = 0, except m(0) = 1

x(2π) = 0, except m(2π) = 1

x(4π) = 0, except m(4π) = 1.

As seen above, there are only 3 nodes for the input. The solution shown below (Fig.

4.13) was computed first for 35 nodes for which an optimal but too coarse solution was

found, and then iterated for 125 nodes. The optimal controls are all exactly zero at

each node (Fig. 4.14).

Table 4.1

Summary of Results: Simple Model

Ex. Input Trajectory df x(0) Bounds Nodes Optimal Control

1 large halo, x, y, z only L/5 ±L box 400 10−8 at node 1
2 small halo, x, y, z only L none 125 all 0
3 small halo, x, y, z only L/2 none 125 10−5 at node 1 & 2
4 halo with full state L/2 none 125 all 0
5 3 nodes: stationary at L2 L none 125 all 0

We have seen that increasing the number of nodes increases the accuracy of the

solution. A larger number of nodes also means a longer processing time, so it is advisable

to choose a number just large enough to capture the accuracy for the mission time-length

being used, about 30 to 80 per year. (This informed the choice of 125 nodes in the above

examples.) In order to quantify this performance of the discretization and optimization

algorithms relative to number of nodes, an optimal solution with 25 nodes was chosen

as an input to produce a few optimal solutions of more gradually increasing number

of nodes. The CPU time was measured along with the accuracy, as measured by the

magnitude of violation of the constraints (Fig. 4.15).

Because this experiment is based on a 25 node solution, the error in the optimal

output for 25 nodes is significantly lower that it would be for a non-optimal input, or an

optimal input of fewer nodes. The exponential decrease in error with increasing nodes

can be seen in the remaining data points.
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Figure 4.11 Simple Model Example 4: An Optimal Trajectory for Full Halo Orbit Input,
df = D/2
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Figure 4.12 Simple Model Example 4: A Zoomed View of the Optimal Trajectory, df =
D/2
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Figure 4.13 Simple Model Example 5: An Optimal Trajectory for Stationary L2 Input,
df = D
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Figure 4.14 Simple Model Example 5: Thrust over time
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Figure 4.15 Speed and Accuracy vs Number of Nodes
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4.1.3 Perturbed Model Definition

In the following examples the equations of motion include the solar radiation pres-

sure and lunar gravity as perturbations on the force model. The solar radiation pressure

is modeled as a force in the positive x direction which varies only with distance. The

perturbation of the moon’s gravity is modeled as a cyclical force within the x-y plane.

It has a mostly negative x direction with a y component that varies over time between

positive and negative. Below are the equations for the acceleration due to each which

are added onto the acceleration equations in the differential equations of motion (e.g

ax = acceleration added to x acceleration equation).

Solar Radiation Pressure

SRP= 4.6 × 10−6N/m2at 1 AU

surface area = 260 m2

ax =
.9 SRP (surface area) cos(angle between shield normal and − x vector)

(distance from 1 AU)2 (mass)

Lunar Gravity

P = period of the moon in rotating frame = 29.4 days

M = maximum angle between x axis and L2-moon line

= arctan(Moon-Earth line / L2-Earth line)

α = M , time=0 at moon x-axis crossing

gmoon = gravitational acceleration of moon at L2 = 6 × 10−6km/s2

ax =
gmoon cos(α)

mass

ay =
gmoon sin(α)

mass

4.1.4 Perturbed Model Solutions

All of the following results had a maximum thrust magnitude constraint of 1 and

final distance constraint of L/2. These first set of three examples use as input the states

describing a large halo orbit without velocity information. They vary in the amount of

constraints on the position state variables.
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Figure 4.16 Perturbed Model Example 1: Optimal trajectory with no bounds on states

Example 1

With no bounds on the states, the optimal trajectory found starts far from the libra-

tion point and makes an arc to bring it within the final distance constraint. The longer

the simulation time, the farther away it starts, so the example shown here (Fig. ??) is

for the short time period of π/2 TU or 3 months. This result is different than with the

unperturbed model, where the optimization routine found an optimal closer in size to

the input, staying relatively close to the libration point without any path constraints on

the position to force that characteristic. This trajectory requires a large thrust profile

(Fig. 4.18). This design may be desirable if the trajectory is coming from outside the

Earth/Moon system. If this is not the case, we may use position constraints to eliminate

trajectories such as this.
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Figure 4.17 Perturbed Model Example 1: Optimal trajectory with no bounds on states
(zoomed)

Example 2

Here, a boundary constraint bounds the positions at the starting time to ±L in each

direction. This results in a starting and final position near the libration point, but the

trajectory is still very large, making a circle that goes beyond the orbital path of Mars

(Fig. 4.19). The control vector part of the solution again requires significant thrust at a

few points, especially along the y axis (Fig 4.20). This also could be a useful trajectory

shape, and could be further constrained to design a Mars cycler, for example. Also, if

closer distance was not as important for a particular astronomical observation mission

as it may be for solar power or data transfer, and this were a lower minimum in the cost

function than other closer trajectories. (We will see though that in exploring the design

space further we find an example of a lower minimum in a smaller orbit.) However,

if it is more important to maintain a smaller communication delay or maximum solar

power, we can use a path constrain to limit the position of the spacecraft at all times.
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Figure 4.18 Perturbed Model Example 1: Thrust over time with no bounds on states

Example 3

In this last example in the set, in addition to the initial state bound, the positions at

all times are bound to ±2L. This forces the optimization routine to find a minimum in

the cost function that results in a trajectory of similar size to the input large halo orbit

(Fig. 4.21). Increasing the constraints on the position has increased the amount of fuel

needed. This example has a control vector that reaches maximum magnitude of thrust

along all three axes at different nodes (Fig. 4.22). Also, it must use a curve rather than

small periods of thrust between longer periods of zero thrust (engines off). This would

not be acceptable for a telescope mission since the engines must be off for observations.

Either further constraints on the controls would be needed, or selection of a different

base minimum fuel trajectory found in the design space by varying the input.
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Figure 4.19 Perturbed Model Example 2: Optimal trajectory with initial states bound
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Figure 4.20 Perturbed Model Example 2: Thrust over time with initial states bound
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Figure 4.21 Perturbed Model Example 3: Optimal trajectory with states bound
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Figure 4.22 Perturbed Model Example 3: Thrust over time with states bound
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The last two examples try some inputs very different from the large halo to find the

illustrate the variety found by simple input changes. The states have the same boundary

and path constraints as the previous example, so the solutions will be limited in size to

±2L about the libration point (Fig. ??). The control vectors of the solution show that

much smaller thrusts are required for these trajectories (Fig. ??). This next example

uses the three points over time at L2 with no velocity as the input, i.e. all zero values

in the state and control vector at three timesteps.

Example 4
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Figure 4.23 Perturbed Model Example 4: Optimal trajectory with states bound
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Figure 4.24 Perturbed Model Example 4: Thrust over time with states bound
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The last example has an input much like the previous except it is sitting at the point

halfway between Earth and L2.

Example 5
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Figure 4.25 Perturbed Model Example 5: Optimal trajectory with states bound

The value of the cost function for the solutions found with the stationary point

inputs are much lower minimums than those found with the large halo input, as is

reflected by the smaller magnitudes of thrust in the control vectors. This shows the

value of exploring the design space by using many types of input trajectories, not just

those close to known optimal trajectories for the simplest model.
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Figure 4.26 Perturbed Model Example 5: Thrust over time with states bound

Table 4.2

Summary of Results: Perturbed Model. tf in TU, Cost in DU/TU and m/s

Ex. Input Trajectory tf State Bounds Nodes Cost Cost

1 large halo, x, y, z only π/2 none 15 0.0035 104
2 large halo, x, y, z only 2π initial ±L 25 0.006 179
3 large halo, x, y, z only 2π all ±2L 45 0.36 10730
4 3 nodes: stationary, L2 2π all ±2L 45 8.8 × 10−6 0.26
5 3 nodes: stationary, x = L/2 2π all ±2L 45 6.6 × 10−6 0.20
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4.2 Mission Constrained Results

These results are all based on the pertubed model, but also include an added con-

straints on the attitude.

4.2.1 Attitude Constraint Definition

If we assume that the thruster is exactly opposite the center pointing direction of

the sensors and/or telescope, the thrust direction is where the sensors are pointed. (If

the thrust is zero, we assume it will be pointed in some safe direction as non-thrusting

times will be observation times, and observations are all done away from the sun.) So

it is the angle between the thrust direction and the direction toward the sun that has a

minimum allowed value. The thrust direction is the direction of the vector composed of

the total control magnitude along each axis. The direction toward the sun is negative x.

Define ux, uy, uz as the total control magnitudes along each axis, and a is the minimum

sun-sensor angle The constraint looks like a cone about the x axis with half angle a. It

is the negative half of the cone we are concerned with since that is the direction of the

sun. From this cone we see the relationship

Figure 4.27 The thrust direction (defined by the control vector) must stay out of the sun-view
cone.

tan(a) = r/h

If we look at the case where the thrust vector is at the boundary of the cone, we have

h = ux, r =
√

u2
y + u2

z
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So this boundary can be defined with the equation

tan(a) =

√

u2
y + u2

z

ux

We rewrite this equation as

uxtan(a) =
√

u2
y + u2

z

to avoid dividing by zero.

Since we want to define an inequality constraint that holds when the thrust direction

vector is outside the cone, we want the inequality to be broken when uy and uz are zero

and ux is negative. The inequality must also be true for any positive ux. Since tan(a)

will always be greater than zero (a is the desired minimum sun-spacecraft angle between

zero and 90 degrees), the inequality constraint describing the attitude restriction is

−uxtan(a) ≤
√

(u2
y + u2

z).

4.2.2 Perturbed Mission Constrained Model Solutions

This first set of examples correspond to the first set in the Perturbed Model section,

but these trajectories include the above constraint, with the maximum angle from the

-x axis set to 40 degrees. The attitude over time for the previous and current section

are then compared for each example. Since the attitude is not an actual variable but

only defined as a constraint of the control vector, it is only valid when the control vector

(thrust acceleration) is non-zero. The attitude plots shown here are calculated based on

the control vector at each node, as the angle from the -x axis. When the control vector

is zero (within tolerance), the attitude is defined as 90 degrees.
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Example 1

−2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Input and Optimal Trajectory

X

Y

Input
Optimal
L2
Earth

Figure 4.28 Constrained Example 1: Optimal trajectory with attitude constraint and states
not bound
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Figure 4.29 Constrained Example 1: Thrust over time with attitude constraint and states
not bound
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Figure 4.30 Constrained Example 1: Attitude over time w/out constraint and states not
bound



4.2 Mission Constrained Results 77

0 20 40 60 80 100

40

60

80

100

120

140

160

180
Attitude

Days

A
ng

le
 fr

om
 −

x 
ax

is
 (

de
g)

Figure 4.31 Constrained Example 1: Attitude over time with constraint and states not
bound
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Example 2
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Figure 4.32 Constrained Example 2: Optimal trajectory with constraint and initial states
bound
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Figure 4.33 Constrained Example 2: Thrust over time with attitude constraint and initial
states bound
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Figure 4.34 Constrained Example 2: Attitude over time w/out constraint but initial states
bound
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Figure 4.35 Constrained Example 2: Attitude over time with constraint and initial states
bound
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Figure 4.36 Constrained Example 2: Optimal trajectory with constraint and initial states
bound, twice as many nodes

By doubling the number of nodes, the control can take advantage of more points

to apply a small continuous thrust rather than a few larger maneuvers toward the end

of the time period. This reduces the cost by 30%, but this control design would work

better for a low-thrust transfer or station mission than for an observational mission

which needs long periods with the engine off.
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Figure 4.37 Constrained Example 2: Optimal trajectory with constraint and initial states
bound, twice as many nodes (zoomed)
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Figure 4.38 Constrained Example 2: Thrust over time with constraint and initial states
bound, twice as many nodes
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Figure 4.39 Constrained Example 2: Attitude over time with constraint and initial states
bound, twice as many nodes
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Example 3
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Figure 4.40 Constrained Example 3: Optimal trajectory with constraint and states bound
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Figure 4.41 Constrained Example 3: Thrust over time with constraint and states bound
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Figure 4.42 Constrained Example 3: Attitude over time w/out constraint but states bound
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Figure 4.43 Constrained Example 3: Attitude over time with constraint and states bound
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This example corresponds to Example 4 in the previous section, with the attitude

constraint applied to the input of a stationary location at L2.

Example 4
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Figure 4.44 Constrained Example 4: Optimal trajectory with constraint and states bound
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Figure 4.45 Constrained Example 4: Thrust over time with constraint and states bound
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Figure 4.46 Constrained Example 4: Attitude over time w/out constraint but states bound
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Figure 4.47 Constrained Example 4: Attitude over time with constraint and states bound
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This example corresponds to Example 5 in the previous section, with the attitude

constraint applied to the input of a stationary location halfway between the Earth and

L2.

Example 5

Figure 4.48 Constrained Example 5: Optimal trajectory with constraint and states bound
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Figure 4.49 Constrained Example 5: Thrust over time with constraint and states bound
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Figure 4.50 Constrained Example 5: Attitude over time w/out constraint but states bound
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Figure 4.51 Constrained Example 5: Attitude over time with constraint and states bound
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Table 4.3

Summary of Results: Constrained/Unconstrained Comparison. Cost in DU/TU

Ex. Input Min. angle Min. angle Cost Cost
(Unconstr.) (Constr.) (Unconstr.) (Constr.)

1 large halo 1◦ 44◦ 0.0035 0.0037
2 large halo 0 40 0.006 0.0056
3 large halo 90 40 0.36 0.48
4 L2 point 0 40 8.8 × 10−6 2.3 × 10−6

5 x = L/2 0 40 6.6 × 10−6 6.1 × 10−6

4.3 Comparison with Reference Orbit Approach

In order to make some comparison of these results with what is achieved by the

general approach of first choosing a reference orbit and then designing the controls to

match this path, the reference orbit approach is here approximated within the concurrent

approach. An optimal solution from the simple model results is used as an input.

The equation of motion constraints are defined as the perturbed model, and the angle

constraint on the control variables is also used. Further path constraints limit the

state variables to match that of the input (reference orbit) within a small margin.

Constraining the trajectory to match exactly (within feasibility tolerance) would not let

the optimization algorithm find a feasible solution, unless a very large number of nodes

were used (probably 300 or more). With the margin, an solution within optimality

tolerance still could not be found (with 100 nodes), but a ‘near-optimal’ solution was

obtained. This solution matches the input states within the margin except for the x

position which varies wildly, as seen in the trajectory in Figure 4.52 and in the x error

in Figure 4.55.

The allowed margin is 1, and the error can be seen to jump back to this value for

a few nodes at three regular intervals. This mission design problem cannot be solved

with the reference orbit approach starting with a model more complex than the circular

restricted three-body problem with no perturbations. To restrict the trajectory to match

a reference orbit, the approach must be a multi-step process, rather than one concurrent

optimization problem, (or take a very long computation time), so it is hard to optimize

the whole mission design. For most types of missions, however, an exact path is not

a mission requirement, so using a reference orbit approach is unnecessarily making the

process longer and more difficult, and not finding the lowest fuel-use overall mission

design.
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Chapter 5

Multiple

Spacecraft: A

Second Example

Mission

This chapter shows how easily the design approach can be applied to a different type

of mission. Here we look at formation flight in a multi-body system from the perspective

of multi-agent control systems. The constraint that demonstrates the ability of the

approach is now not the attitude but the distance between spacecraft. The strength of

this approach in its ability to solve the design problem concurrently including multiple

mission constraints still applies and is discussed.

A distributed space system (DSS) is a multi-agent control system and has long

been recognized[36, 37, 38, 39] as a key technology area to enhance the scope of both

military[36, 38] and civilian[37, 39] space applications. A particular type of DSS that

is challenging to design[36, 37, 39, 38] is a collection of spacecraft in formation. Un-

like other multi-agent systems, the design of a DSS has a specific unique requirement:

the propellant consumption must be minimal[38, 39]. This requirement stems from the

simple notion that if propellant consumption was not a prime driver, then any arbi-

trary configuration is possible, such as a circular ‘halo orbit’ whose center is not the

gravitating body in an inverse-square gravity field. Thus, to explore various formation

configurations, it is crucial to concurrently design the formation and the minimum-fuel

control[8, 9]. In other words, we do not necessarily propose to control a particular for-

mation configuration in minimum fuel (i.e. the problem of optimal formation keeping);

rather, we follow Ross et al[8] and King[9], and propose that the more fundamental

problem is to explore formation configurations (e.g. by varying initial estimates) that

are minimum fuel solutions. Thus it is part of the method to find several locally optimal

solutions, rather than looking for the one local optimal solution closest to an estimate of

97
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a particular formation configuration. Once this problem is solved, the next step would

be to evaluate the formation configurations for science or military applications, modify

the requirements if necessary, re-solve the problem and re-evaluate the result in con-

junction with the propellant expenditures to determine its viability[8]. This approach,

of telling agents what to do, rather than how to do it, has been successfully applied

for the design and control of a variety of Earth-orbiting formations[8, 9] and station-

keeping of libration-point missions[19]. In this paper, we extend the results of Infeld

and Murray[19] by adopting the approach of Ross and King[8, 9].

Research on formation at libration points is motivated primarily by the opportu-

nity to create the effect of larger telescopes with a precise formation of smaller tele-

scopes. Currently in design are infrared interferometry missions NASA’s Terrestrial

Planet Finder[40] and ESA’s Darwin[41], as well a NASA x-ray telescope formation

mission, Constellation-X Observatory[42]. These are all located at the Sun-Earth L2

point. There are also ideas for formations spaced about a libration point orbit; more of

a constellation around the point. An example of this idea is the two satellite constella-

tion Solar Wind Satellite proposed at Sun-Earth L1 by the Department of Defense[43].

Similar to the extensive work on spacecraft formation in the two-body problem, much

of the research on the three-plus-body problem is centered around linearization about

a reference libration orbit[44, 45, 46, 47]. Thus, the problem is split into two problems:

the design of a ‘good’ reference orbit and formation control around the reference orbit.

There are number of procedures for finding a reference orbit[48, 49], many of them are

based on a Lindstedt-Poincaré technique proposed by Richardson[50]. In this approach,

the perturbation method of Lindstedt is applied to the circular restricted three-body

problem with Legendre polynomials as expansion coefficients. The accuracy of this

method is then judged by comparing the results to a direct numerical integration of the

dynamical equations. This naturally leads to a procedure for improving the initial con-

ditions by shooting methods[49, 51]. Junge et al[51] describe the issues and difficulties

of this approach for real-life missions. Having determined the reference orbit in such

a manner, formation keeping methodologies can be developed by applying linear con-

trol theory to the linearized equations of motion for a neighboring orbit[46, 47]. Many

variants of this approach are actively being pursued by various researchers. While such

a two-step approach may be viable for certain missions, a simple, unified, single-step

approach to the design and control of spacecraft formations was proposed by Ross and

King[8, 9]. In this approach, the orbits and the formation control strategies are de-

signed concurrently using the framework of multi-agent optimal control theory. It will

be apparent shortly that this framework, described Sec. II, is not the same as applying

optimization techniques to compute the standard problem of impulsive trajectory cor-
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rection maneuvers[52]. In any case, once the problem framework is set up, the optimal

control problem it is solved by a Legendre pseudospectral method[12, 13, 14]. This

method, summarized in Sec. III, essentially allows the state, control and costate vari-

ables to be represented as a series expansion of Legendre polynomials. Thus, although

Legendre polynomials are also used, as in Richardson’s method, the pseudospectral ap-

proach is fundamentally different and resembles a Galerkin method[53]. However, unlike

a Galerkin method, all the computations in the pseudospectral method are performed

in the time domain by an equivalent representation of the unknown variables in terms

of Lagrange interpolating polynomials. The net result is that the semi-analytical frame-

work of series expansion and the computational aspects of finding the coefficients are

unified. The computational problem is reduced to a large nonlinear programming prob-

lem. Solving such large-scale problems are significantly easier today than ever before:

thanks to major advances in practical algorithms pioneered by Betts[54] and Gill et

al[16]; these algorithms promise global convergence under mild assumptions[55]. The

results of this approach are reported in Sec. V. We briefly note that global convergence

does not imply global optimality[55, 56]; we also present globally fuel-optimal solutions

in the sense that the propellant expenditures are zero.

5.1 General Framework

Suppose that we have a collection of Ns spacecraft that constitute a DSS. Let xi(t)

denote the state of the ith spacecraft at time t. This can be the usual 6-vector position-

velocity state or any other set (e.g. orbital elements). We assume that the dynamics of

the DSS is given in some coordinate system by a set of differential equations,

ẋi = f i(xi,ui, t;pi) i = 1 . . . Ns, (5.1)

where f i is a given function, ui is the control variable of the ith spacecraft, and pi is a

vector of (constant) design parameters. In general, the dynamics need not be given in

state-space form, as in Eq. (5.1), but for the purpose of brevity we limit our discussion

to such a vector-field approach. By defining the state and control variables as,

x = (x1, . . . ,xNs) and u = (u1, . . . ,uNs),

the dynamics of the DSS may be represented quite succinctly as,

ẋ = f(x,u, t;p). (5.2)
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Typically, the functions f i are all the same so that f is simply Ns copies of f1. Let

d(xi,xj) be a generic distance metric (not necessarily Euclidean) between any two

spacecraft. If d(xi(t),xj(t)) is a given constant in time, ci,j , then we say we have a

frozen formation,

ci,j ≤ d(xi(t),xj(t)) ≤ ci,j ∀ t, i, j. (5.3)

By ∀ t, we mean for all t associated with the finite lifetime of the DSS whereas by

∀ i, j we mean for all spacecraft in the system. Further, from the definition of a metric,

d(xi,xj) = 0 ∀ i = j; hence, we must have ci,j = 0 ∀ i = j as a necessary condition for

feasibility. Note that Eq.(5.3) is really an equality; the reason for masquerading it as

an inequality is to define a relaxed formation as

ci,j − δi,j
l ≤ d(xi(t),xj(t)) ≤ ci,j + δi,j

u ∀ t, i, j, (5.4)

where δi,j
l ≥ 0 and δi,j

u ≥ 0 are lower and upper tolerances associated with the relax-

ation. When i = j, the tolerances must be zero in conformance with the definition of a

metric. Equation (5.4) generalizes Eq.(5.3) since if δi,j
l = δi,j

u = 0 ∀ i, j, we recover the

representation of the frozen formation defined by Eq.(5.3).

We can define and design various configurations based on various metrics. For

example, in libration point missions, in order to generate halo orbits, there may be a

forbidden zone such as a disk of radius R centered around the libration point, y; in this

case, we define an allowable region for x as,

d(xi(t),y) ≥ R ∀ i, t.

See King[9] for an implementation of such constraints for a variety of Earth-orbiting

missions. The requirement that no two spacecraft collide may be articulated as,

d(xi(t),xj(t)) ≥ bi,j > 0 ∀ t and i 6= j.

It is apparent that all these constraints (and many more that are specific to a partic-

ular mission) can be described in terms of a generic set of a possibly large number of

inequality constraints that can be represented as,

hl ≤ h(x,u, t;p) ≤ hu. (5.5)

In this description of a formation, there is no leader or follower; rather a system of

multiple spacecraft. Thus, if any one spacecraft has an additional configuration con-
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straint, it would automatically transfer in some fashion to the remainder of DSS by way

of the couplings between the various equations. For example, if there was a mission

requirement to designate a particular spacecraft as a leader and designate the others as

followers, this can be easily accomplished by picking out the particular index, i, rep-

resenting the leader. Then, when the leader moves along some trajectory, t 7→ xi, the

distance metrics along with any additional path constraints, Eq.(5.5), dictate how the

remainder of the spacecraft must follow certain trajectories to meet the path constraints;

i.e., a formation. Thus, although our framework is based on a collection of DSS, it does

not exclude a leader-follower system.

As noted earlier, fuel consumption dominates any DSS design. Translating the fuel

consumption cost we had with one spacecraft into the formation context gives

Ji =

∫ tf

t0

∥

∥ui(t)
∥

∥

1
dt, (5.6)

where tf − t0 is the time interval of interest and ‖·‖1 is the usual l1-norm. Treating

the problem to be invariant under time translations allows us to set t0 = 0. A critical

modeling issue in the design and control of spacecraft formations is the treatment of

the horizon, tf , vis-à-vis the mission life time. Ideally, we would like to choose tf to be

equal to the mission life. Deferring a discussion of alternative choices for the horizon,

we choose the cost functional for designing the DSS to be the total fuel consumption,

J =

Ns
∑

i=1

Ji =

∫ tf

t0

Ns
∑

i=1

∥

∥ui(t)
∥

∥

1
dt. (5.7)

In certain applications, it may be necessary to require that each spacecraft in the DSS

consume the same amount of propellant. This requirement can be stipulated as the

so-called isoperimetric constraints,

Ji = Jk ∀ i, k. (5.8)

If the equal-fuel requirement is ‘soft’ as in, Ji ≈ Jk, it can be simply stipulated as an

inequality with appropriate upper and lower bounds. Likewise, the allocation of fuel

budgets can be similarly defined.

It will be apparent shortly that the problem formulation as posed so far is quite

sufficient to handle Libration point formations in the Sun-Earth system if the spacecraft

lifetime measured in terms of the duration of the formation is about a year or so as in

the Genesis Mission.[57] This is because the number of halo orbits over this duration is

about two. For a similar lifespan, the number of orbits in the two-body Earth system
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range from several hundred to thousands. To properly account for this periodicity,

we adapt Bohr’s notion of almost periodic functions[58, 59]. Under this framework[8,

60], periodicity may be exploited for an alternative problem formulation based on a

modification to optimal periodic control theory. In this problem formulation, we write[8,

60]

J =
1

tf − t0

∫ tf

t0

Ns
∑

i=1

∥

∥ui(t)
∥

∥

1
dt, (5.9)

which is a measure of fuel consumed by the DSS averaged over the time period, (tf −

t0). It is quite tempting to choose a priori this time period equal to the period of

some appropriately chosen reference orbit; however, a far better option[8] is to let this

period be free so that the problem formulation allows the determination of an optimal

time period as well. In this case tf is bound away from t0 to prevent invalid function

evaluations. As noted in Sec. I, this option tells the agents what to do rather than how

to do it. In order to facilitate the existence of a solution for this scenario, it is now

necessary to impose two additional constraints on the problem formulation:

1. The dynamical equations, Eq.(5.1), must be written in an appropriate coordinate

system that facilitates a periodic or almost periodic solution, and

2. Boundary conditions representing the almost periodic structure of the desired

solution must be included.

Thus, assuming that the the first condition is satisfied, the boundary conditions for

strict periodicity of a periodic formation can be stipulated as,

xi(t0) = xi(tf ) ∀ i. (5.10)

Two points are worth noting at this juncture: first, these conditions are not the same

as specifying standard boundary conditions because the values of xi(t0) and xi(tf ) are

unknown. Second, as briefly noted earlier, it is sufficient to stipulate all the constraints

of Eq.(5.10) as a single constraint,

xi(t0) = xi(tf ) for i = 1 (5.11)

or any other index. This is because, the path constraints will automatically enforce the

remainder of the constraints. In this context, we may designate i = 1 as the leader,

but it essentially reduces to semantics rather than a leader-follower architecture. By

relaxing the constraint represented by Eq(5.10) to,

εi
l ≤ xi(t0) − xi(tf ) ≤ εi

u ∀ i, (5.12)



5.2 Libration Point Formations 103

where εi
l and εi

u are formation design parameters, we easily stipulate a practical means

to design and control almost periodic formations[9]. It is clear from these definitions that

a frozen formation in the Euclidean metric is a periodic formation but not vice versa.

The concept of almost periodicity is not only quite practical, it has significant theoretical

advantages. See Fischer[58] for a quick review of almost periodic functions, and Junge

et al[51] for practical demonstrations of possible contradictions in applying ordinary

Floquet analysis. Deferring the details of applying this framework for Libration point

missions to Sec. IV, we note that the problem of designing and controlling spacecraft

formations can be summarized as a nonsmooth, nonlinear, multi-agent optimal control

problem.

5.2 Libration Point Formations

Remember ri = (xi, yi, zi) denote the Cartesian components of a generic spacecraft

in the barycentric frame (see Fig. 2.1) of the circular restricted three-body problem.

The spacecraft dynamical equations are well-known and given by,

ṙi = vi (5.13)

v̇i = Cvi +
∂U i

∂ri
+ ui, (5.14)

where

C =

(

0 −2 0

2 0 0

)

U i ≡ U(xi, yi, zi)

U(x, y, z) =
x2 + y2

2
+

1 − µ

rA(x, y, z)
+

µ

rB(x, y, z)

r2
A(x, y, z) = (x + µ)2 + y2 + z2

r2
B(x, y, z) = (x + µ − 1)2 + y2 + z2.

The acceleration control ui is norm-bounded,

∥

∥ui
∥

∥

∞
≤ ui

max

and represents the thruster size of a particular configuration.[29] A multitude of forma-

tion options can be defined in various ways. For example, it may be necessary to keep
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the relative Euclidean distance (l2-norm) bounded according to,

ci,j
2 − δi,j

l ≤
∥

∥ri(t) − rj(t)
∥

∥

2
≤ ci,j

2 + δi,j
u ∀ t, i, j (5.15)

Another option may require to bound the l∞-norm,

ci,j
∞

− δi,j
l ≤

∥

∥ri(t) − rj(t)
∥

∥

∞
≤ ci,j

∞
+ δi,j

u ∀ t, i, j (5.16)

as an alternative or additional requirement.

In some complex mission geometries, metrics not based on norms may also be used.

All the conditions posed above apply to relative formation configurations. In order to

design the ensemble about a generic Lagrange point, L ∈ {L1, . . . , L5}, an allowable

zone can be defined as,

ci,L
l ≤

∥

∥ri(t) − rL

∥

∥

2
≤ ci,L

u ∀ t, i,

where rL is the position vector of L. Similar to the relative configuration metrics, other

metrics or norms may also be chosen for the allowable zone.

All of the prior conditions apply to a design of the formation system. Thus there is

no leader or follower system; rather a system of distributed spacecraft. As noted before,

it is possible to transmit conditions to the entire system by stipulating conditions on any

one spacecraft. For example, to create a formation along a halo orbit, it is necessary to

specify the ‘halo conditions’ for just one spacecraft. This is also an orbit design problem

and can be designed concurrently with the formation by imposing additional conditions.

For example, if the formation system is required to be periodic, then it is necessary to

impose the periodic conditions for just one spacecraft, say

rj(t0) = rj(tf ) (5.17)

vj(t0) = vj(tf ) for j = 1. (5.18)

To generate almost periodic trajectories, these conditions

can be relaxed to give

εj
r,l ≤ rj(t0) − rj(tf ) ≤ εj

r,u (5.19)

εj
v,l ≤ vj(t0) − vj(tf ) ≤ εj

v,u for j = 1. (5.20)

Although the examples in the following section includes discussion of the actual con-

straints and values used in the formulation of each, the entire formulations can be seen

in the Optimization Formulation chapter (Ch.3). Here it can be seen in the context
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of formulations for the major example mission, a single large telescope with large solar

shield.

5.3 Numerical Examples

We demonstrate our ideas for a two spacecraft system (Ns = 2); the extension of

this approach to three or more spacecraft is straightforward. Although our method

can be applied to any libration point with similar results, we choose to design and

control formations about the Sun-Earth L2 point because of the multitude of telescope

formation missions proposed at this location; thus, we have,

µ = 2.448 × 10−6

rL = (1 − µ + 0.01, 0, 0) DU

in the barycentric frame, where DU is the distance unit equal to the astronomical

unit, AU . The origin in these examples is shifted to L2 to improve variable scaling,

so rL = (0, 0, 0). Also, we chose the Euclidean distance, the maximum acceleration

and the allowable zone parameters as the design parameters. The separation parameter

between the two spacecraft is chosen to reflect the spread of an interferometry mission.

The TPF requirement is a 1km range[40]. The next generation of ‘hypertelescopes’

being explored by optical engineers[61] will use even larger baselines for resolution of

smaller objects. At 150 km, characteristics of Earth-sized planets several parsecs away

can be directly observed. At one million km, the hypertelescope will angularly resolve

neutron stars, which are hundreds of parsecs away. We choose 15 km as the separation

for our first two examples. In problem formulations with constraint dimensions this

small in comparison to the state variable size (4 orders of magnitude difference), issues

of scaling must be resolved in order to obtain optimal solutions. In the last example,

the separation is much larger, approaching one million km, which reflects the design of

a constellation of observers, similar to the SWS proposal[43], or the outer edges of the

DSS neutron star observer of the distant future.

Example 1

In the first example, we consider a fixed-horizon problem, and set tf = 3.5 timeunits(TU)

(about 205 days). The time unit is equal to the period of the rotation system, which is

the inverse of the frequency, 2π radians per year. In seeking a relaxed formation with a
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separation of 1 × 10−7 DU (about 15 km), we set the design parameters as,

ci,j
2 = 1 × 10−7 DU for i 6= j (5.21)

δi,j
2 = 5 × 10−6 DU for i 6= j (5.22)

ui
max = 0.001 DU/TU2 ∀ i (5.23)

Ji = Jk ∀ i, k, (5.24)

where TU , the time unit is 1/(2π) of the period of the of the primary system; i.e. a

year for the Sun-Earth system. The input states and controls (the starting point for

the optimization algorithm) were found by propagating an initial state and applying

enough thrust along the x axis at the step closest to crossing the x − z plane to make

the x velocity zero at the next step. This was done for 3 maneuver and propagate

cycles, producing a trajectory tracing a little further than one ‘orbit’, and a final time

of 3.5 TU (thus the tf defined above). This set of states and controls are the input for

both spacecraft. This means the initial estimate of the solution is infeasible since the

separation is below the minimum bound. The initial state that produced the input for

this example is (in DU and DU/TU):

x(t0) = 0.0 × 10−3, vx(t0) = 1.0 × 10−3

y(t0) = 2.5 × 10−3, vy(t0) = −4.5 × 10−3

z(t0) = 1.0 × 10−3, vz(t0) = −1.0 × 10−3

To reduce the computation time, the initial state of the solution was bound to a

box of 0.001 DU on either side of the about input initial state. Periodic constraints are

not imposed but the isoperimetric constraint of equal-fuel consumption is required (Cf.

Eq. (5.24)).

As noted earlier, we used DIDO[15] with SNOPT[16] to solve the multi-agent optimal

control design problem. A solution to the problem for a choice of 100 nodes (roughly, a

99th-order Legendre polynomial) is shown in Fig. 5.1. This solution is globally optimal

because it has zero cost, i.e. J = 0 ⇔ u = 0. The trajectories show that each of the two

spacecraft appear to follow the same shaped halo-like orbit about L2, but parallel along

the path, maintaining the tolerances on the specified separation distance as shown in

Fig. 5.2. The relative orbit, i.e. the orbit of one of the spacecraft relative to the other,

is shown in Fig. 5.3. The optimal controls are all zero at each node as shown in Fig. 5.4.

The plots for the other thrusters are similar.

The claim of optimality is based on several tests[15]. One of these tests is the
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Figure 5.1 Trajectories for a two-agent DSS

approximate constancy of the Hamiltonian with an average value equal to zero.[13] The

non-zero values of the Hamiltonian for this example are trivially small as shown in

Fig. 5.5. In order to practically demonstrate the convergence of the solution, we use the

optimal initial conditions (in DU and DU/TU),

x1(t0) = −0.43 × 10−3, v1
x(t0) = 2.00 × 10−3

y1(t0) = 1.52 × 10−3, v1
y(t0) = −4.30 × 10−3

z1(t0) = 1.93 × 10−3, v1
z(t0) = −0.15 × 10−3

(x2(t0) is the required 1× 10−7DU away in position, and has similarly small differences

in velocity) to propagate the solutions using ode45 in Matlab. Fig. 5.6 shows a com-

parison of the optimized states to the propagated states of one of the spacecraft. It is

apparent that the propagated states track fairly well to the optimized ones indicating

that the 100 node solution is a good solution over this time period for preliminary de-

sign considerations. The timestep at which the solution diverges from the propagated
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trajectory increases proportionally to the number of nodes.

Example 2

Having obtained a zero-cost solution in Example 1, we now consider the same prob-

lem with the addition of periodicity constraints. As explained in Sec. II, perodicity in

the states is imposed under a free horizon, tf ; thus, we now have,

ci,j
2 = 1 × 10−7 DU for i 6= j (5.25)

δi,j
2 = 5 × 10−6 DU for i 6= j (5.26)

ui
max = 0.001 DU/TU2 ∀ i (5.27)

Ji = Jk ∀ i, k (5.28)

xi(t0) = xi(tf ) for i = 1. (5.29)

The input states and controls for this example were the optimal states and controls

of the first example. The initial state of the solution was again bound to a box of
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0.001 DU on either side, but only the positions were bound so that the initial velocities

were totally free variables. This input trajectory is shown along with the optimal

trajectories in Fig. 5.8, which is a zoomed in and stetched view of Fig. 5.7 Nevertheless,

the trajectory plots illustrate that the solution to this problem is substantially different

from that of Example 1. To properly illustrate the shape of this orbit, the trajectory in

y-z plane is plotted in Fig. 5.9 with y-axis stretched appropriately. The optimal period,

tf , for this design configuration was 3.18 TU, or 185 days. This solution is also globally

optimal because J ≈ 0. That u is almost zero (well within numerical tolerances) is

shown in Fig. 5.10 for one of the thrusters. The plots for the other thrusters are similar.

The trajectories show that each of the two spacecraft appear to follow the same

orbit about L2, but parallel along the path, maintaining the tolerances on the specified

separation distance as shown in Fig. 5.11. The relative orbit is shown in Fig. 5.12. A

clearer picture of the satisfaction of the periodicity constraints is illustrated in Fig.s 5.13

and 5.14. The circles in Fig. 5.13 are the initial and final (x, y, z). In Fig. 5.14 they mark

the initial and final (vx, vy, vz). The velocity plot shows only the data for spacecraft one

for clarity. Of course, xi(t0) does not exactly equal xi(tf ), but the differences are all

around 1× 10−7 DU, with the largest difference occurring in the z velocities of 2× 10−6

DU. These are physically small enough compared to the orbital dimension of about
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Figure 5.4 Thrust along the x axis for the two-agent DSS

0.002 DU to confirm that the set feasibility tolerances for the optimization algorithm

make sense.

The Hamiltonian plot in Fig. 5.15 shows that this is an optimal solution because of

its average value of zero.

We demonstrate the convergence of this large-baseline solution by propagating a

trajectory from the optimal initial conditions (in DU and DU/TU),

x1(t0) = −0.78 × 10−3, v1
x(t0) = 0.23 × 10−3

y1(t0) = 0.03 × 10−3, v1
y(t0) = 0.05 × 10−3

z1(t0) = 1.86 × 10−3, v1
z(t0) = −2.53 × 10−3

(x2(t0) is the required 1× 10−7DU away in position, and has similarly small differences

in velocity), using ode45 in Matlab. Fig. 5.16 shows a comparison of the optimized states

to the propagated states of one of the spacecraft. It is apparent that the propagated

states track fairly well to the optimized ones indicated that the 100 node solution is a
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good solution for preliminary design considerations.

Example 3

In this example, we are looking for a large baseline formation, with spacecraft spread

out over the libration point orbital space. This kind of formation would be used for the

constellation type of mission, like the Solar Wind Satellite mentioned in Section I. Thus

we want a separation of about one third to one half of the ‘diameter’ of the orbit, which

from previous experiments with orbits found using the same input is about .005 DU;

around 750,000 km. The nominal values of the design parameters for the third example

are,

ci,j
2 = 0.002 DU for i 6= j (5.30)

δi,j
2 = 0.0015 DU for i 6= j (5.31)

ui
max = 0.001 DU/TU2 ∀ i. (5.32)

The input states and controls are those of the first example, a propagation and maneuver

schedule starting from the same initial state. The horizon, tf was fixed then at 3.5 TU
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Figure 5.6 Comparison of the position states of spacecraft one (solid) to those propagated by
ODE45 in Matlab (dotted)

. No periodicity constraints were imposed, and the initial states were all free with no

bounds, however there were bounds on the positions of ±5× 10−3, which was an active

constraint at a few time steps for the x coordinate.

A solution to the problem for the choice of parameters listed above is shown in

Fig. 5.17. This solution again is globally optimal because it has zero cost, i.e. J = 0 ⇔

u = 0. The trajectories show that each of the two spacecraft appear to follow distinct

halo-like orbits about L2 maintaining the tolerances on the specified separation distance

as shown in Fig. 5.19. The relative orbit, i.e. the orbit of one of the spacecraft relative

to the other, is more illustrative of the configuration and is shown in Fig. 5.20.

The Hamiltonian plot in Fig. 5.21 shows that this is an optimal solution because of

its average value of zero. We demonstrate the convergence of this large-baseline solution
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by propagating a trajectory from the optimal initial conditions (in DU and DU/TU),

x1(t0) = −5.00 × 10−3, x2(t0) = −3.94 × 10−3

y1(t0) = 1.94 × 10−3, y2(t0) = 0.71 × 10−3

z1(t0) = 2.72 × 10−3, z2(t0) = 2.09 × 10−3

v1
x(t0) = 12.74 × 10−3, v2

x(t0) = 10.55 × 10−3

v1
y(t0) = 3.50 × 10−3, v2

y(t0) = −2.30 × 10−3

v1
z(t0) = 7.88 × 10−3, v2

z(t0) = 10.54 × 10−3

(note x2(t0) is the required distance away from x1(t0) of 0.002) using ode45 in Matlab.

Fig. 5.22 shows a comparison of the optimized states to the propagated states of one

of the spacecraft. It is apparent that the propagated states track fairly well to the

optimized ones indicated that the 100 node solution is a good solution for preliminary

design considerations.
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5.4 Framework for Spacecraft Formations

Because there is no linearization in this framework, we can use the same technique

and inputs for both small and large baseline formations, and find globally optimal (zero-

cost) solutions for both with entirely different trajectories. We can limit our results

as needed to find specific types of formations by including different constraints (e.g.

periodic conditions). This framework has this flexibility in applications with a simple

consistent problem formation process because the design and control are approached

concurrently.
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Chapter 6

Conclusions and

Future Work

This thesis showed that a systems engineering approach for space mission design of

concurrently choosing the orbit and controls, and satisfying the mission constraints, is

possible with a reasonable computation time and a relatively simple process. Changing

the mission constraints, spacecraft or force models, or type of mission is also easy, and

trivial to the solving of the problem. This is a flexible approach in that the search

space for minimum-fuel trajectories is not confined to be close to a reference orbit.

This design approach brings the more sophisticated process of concurrent engineering

to entire mission design. By incorporating optimization from the beginning of the design

process we will find total designs with lower fuel requirements because of the elimination

of unnecessary assumptions about the orbit or control design. Design approaches which

make these assumptions do not find fuel-optimal designs (only fuel-optimal maneuvers

given a set orbit).

The approach was illustrated on a libration point mission because the unstable

dynamics make this a more challenging optimal control problem than Earth orbit or

interplanetary trajectory missions. Future missions at libration points will carry more

complicated and sensitive spacecraft structure and on-board instruments, and conse-

quently will require more constraints on the stationkeeping plan, as well as being more

affected by solar radiation pressure (Chapter 2). This situation illustrated the strength

of the single optimization problem approach as the complicated dynamics and sample

constraints were easily added and only improved the performance of the optimization

algorithm, due to the choice of discretization and optimization methods (Chapter 3).

Methods of optimizing mission design using existing commercial software packages

work well enough for libration point mission design optimization if the design is sequen-

tial; first finding a reference trajectory that will work and then optimizing the maneuver

(controls) history to maintain this given constraints and perturbations. Using the con-

current trajectory control design and open design space, the standard methods would

result in a discrete problem too large computationally to be of use during a mission,
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and may not be solvable. For example, the collocation discretization requires a very fine

grid to find an minimum-fuel mission design for a significant mission length (Section

3.1.2).

The approach presented here can be applied in the future to all types of space

missions, rather than just the libration point example, to introduce the expanded op-

timization capability to general use in mission design. The current process could be

more efficiently applied to long mission lengths by subdividing the mission timeline and

having a higher level optimization problem to ensure smooth transitions between sub-

divisions; a bi-level optimization framework. For other types of missions, or even for a

similar example, the cost functional may be differently formulated. An exponential form

may allow an even larger set of constraints and inputs to result in a good solution. To

apply this approach to later steps in the design process, one can replace the equations

of motion that describe a simple model with a more sophisticated model, even including

ephemeris data, and including error probabilities. This does not change the basic prob-

lem formulation or the ease of solving the design problem with the algorithms. Finally,

the algorithms used at this time may be improved for mission design application to

increase their efficiency. Possibilities include reformulating the differentiation matrix to

make it full rank, and allowing user- defined first and second derivatives of the functions

as part of the input of the continuous problem.
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