
ITERATIVE METHODS FOR SINGULAR

LINEAR EQUATIONS AND LEAST-SQUARES PROBLEMS

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sou-Cheng (Terrya) Choi

December 2006

Copyright c© 2007 by Sou-Cheng (Terrya) Choi

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Michael A. Saunders)
Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Gene H. Golub)
Co-Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Rasmus M. Larsen)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Doron Levy)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

CG, MINRES, and SYMMLQ are Krylov subspace methods for solving large symmetric systems
of linear equations. CG (the conjugate-gradient method) is reliable on positive-definite systems,
while MINRES and SYMMLQ are designed for indefinite systems. When these methods are
applied to an inconsistent system (that is, a singular symmetric least-squares problem), CG
could break down and SYMMLQ’s solution could explode, while MINRES would give a least-
squares solution but not necessarily the minimum-length solution (often called the pseudoinverse
solution). This understanding motivates us to design a MINRES-like algorithm to compute
minimum-length solutions to singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is
upper-tridiagonal). Our algorithm uses a QLP decomposition (where rotations on the right
reduce R to lower-tridiagonal form), and so we call it MINRES-QLP. On singular or nonsingular
systems, MINRES-QLP can give more accurate solutions than MINRES or SYMMLQ. We derive
preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and
residual norms, the matrix norm and condition number.

For a singular matrix of arbitrary shape, we observe that null vectors can be obtained by
solving least-squares problems involving the transpose of the matrix. For sparse rectangular
matrices, this suggests an application of the iterative solver LSQR. In the square case, MINRES,
MINRES-QLP, or LSQR are applicable. Results are given for solving homogeneous systems,
computing the stationary probability vector for Markov Chain models, and finding null vectors
for sparse systems arising in helioseismology.

v

vi

Acknowledgments

First and foremost, I owe an enormous debt of gratitude to my advisor Professor Michael Saunders
for his tireless support throughout my graduate education in Stanford. Michael is the best
mentor a research student could possibly hope for. He is of course an amazing academic going
by his first-rate scholarly abilities, unparalleled mastery of his specialty, and profound insights
on matters algorithmic and numerical (not surprising considering that he is one of most highly
cited computer scientists in the world today). But above and beyond all these, Michael is a most
wonderful gentleman with great human qualities—he is modest, compassionate, understanding,
accommodating, and possesses a witty sense of humor. I am very fortunate, very proud, and very
honored to be Michael’s student. This thesis certainly would not have been completed without
Michael’s most meticulous and thorough revision.

Professor Gene Golub is a demigod in our field and a driving force behind the computational
mathematics community at Stanford. Incidentally, Gene is also Michael’s advisor many years
ago. I am also very grateful to Gene for his generosity and encouragement. He is the only
professor I know who gives students 24-hour access to his large collection of books in his office.
His stature and renown for hospitality attract visiting researchers from all over the world and
create a most lively and dynamic environment at Stanford. This contributed greatly to my
academic development. Like me, Gene came from a working class family—a rarity in a place
like Stanford where many students are of the well-heeled gentry. He has often reminded me that
a humble background is no obstacle to success. I am also very fortunate, very proud, and very
honored to have Gene as my co-advisor.

Special thanks are due to Professor Chris Paige of McGill University for generously sharing
his ideas and insights. He spent many precious hours with me over emails and long discussions
during his two visits to Stanford in the past year. Chris is a giant in the field and it is a great
honor to fill a gap in one of the famous works of Chris and Michael started long ago, and to have
their help in doing so.

I thank my reading committee members: Dr. Rasmus Larsen and Professor Doron Levy. Their
helpful suggestions have improved this thesis enormously. My thanks also to Professor Jerome
Friedman for chairing my oral defense despite already having retired a few months earlier.

I am very grateful to my professors from the National University of Singapore (NUS), who
have instilled and inspired in me interests in computational mathematics since I was an under-
graduate: Dr. Lawrence K. H. Ma, Professors Choy-Heng Lai, Jiang-Sheng Wang, Zuowei Shen,
Gongyun Zhou, Kim-Chuan Toh, Belal Baaquie, Kan Chen, and last but not least Prabir Burman
(UC Davis).

The work in this thesis was generously supported by research grants of Professors Michael
Saunders, Gene Golub, and David Donoho. Thanks are also due to the C. Gary & Virginia
Skartvedt Endowed Engineering Fund for a Stanford School-of-Engineering Fellowship, and to
the Silicon Valley Engineering Council for an SVEC Scholarship.

Matlab has been an indispensable tool—without which, none of the numerical experiments

vii

could have been performed with such ease and efficiency. I am proud to say that I learned
Matlab first-hand from the person who created it—Professor Cleve Moler. I thank Cleve for
selecting me as his teaching assistant for the course on which his very enjoyable book [71] is based
(and for kindly recommending me as teaching assistant to his daughter Professor Kathryn Moler,
who taught the course in the subsequent year). The book is filled with illuminating examples
and this thesis has borrowed a most fascinating one (cf. Chapter 1).

I thank Michael Friedlander for the elegant thesis template that he generously shares with
the Stanford public.

I have been fortunate to intern at both Google and IBM Almaden Labs, during which periods
I benefited from working with Doctors John Tomlin, Andrew Tomkins, and Tom Truong.

Specifically I want to thank Dr. Xiaoye Sherry Li and Professor Amy Langville for inviting me
to speak about applications motivated by this thesis in Lawrence Berkeley Lab and the SIAM
Annual Meeting 2004 respectively. Thanks also to Professor Beresford Parlett and Professor
Inderjit Dhillon for the opportunities to speak in their seminars in UC Berkeley and UT Austin
respectively.

I also want to take the opportunity to thank each administrator and staff member of Stanford
and NUS who have gone beyond their call of duty: Professors Walter Murray and Peter Glynn,
Indira Choudhury, Lilian Lao, Evelyn Boughton, Lorrie Papadakis, Tim Keely, Seth Tornborg,
Suzanne Bigas, Connie Chan, Christine Fiksdal, Dana Halpin, Jam Kiattinant, Nikkie Salgado,
Claire Stager, Deborah Michael, Lori Cottle, Pat Shallenberger, Helen Tombropoulos, Sharon
Bergman, Lee Kuen Chee, and Kowk Te Ang.

I am indebted to the following friends and colleagues for their friendship and encouragement
that made my Stanford years so much more enjoyable: Michael’s family Prue, Tania, and Emily;
David, Ha, and baby Mike Saunders; Holly Jin, Neil, Danlin, and Hansen Lillemark; Lilian Lao,
Michael and Victor Dang; Justin Wing Lok Wan and Winnie Wan Chu; Dulce Ponceleón, Walter,
Emma and Sofia Murray; Von Bing Yap and Anne Suet Lin Chong; Pei Yee Woo and Kenneth
Wee; Larry and Mary Wong. I thank for their friendship and wisdom: Monica Johnston, Wanchi
So, Regina Ip-Lau, Stephen Ng, Wah Tung Lau, Chris Ng, Jonathan Choi, Xiaoqing Zhu, Sorav
Bansal, Jeonghee Yi, Mike Ching, Cindy Law, Doris Wong, Jasmine Wong, Sandi Suardi, Sharon
Wong, Popoh Low, Grace Ng, Roland Law, Ricky Ip, Fanny Lau, Stephen Yeung, Kenneth (D&G)
Wong Chok Hang Yeung, Carrie Teng, Grace Hui, Anthony So, Samuel Ieong, Kenneth Tam, Yee
Wai Chong, Anthony Fai Tong Chung, Winnie Wing Yin Choi, Victor Lee, William Yu Cheong
Chan, Dik Kin Wong, Collin Kwok-Leung Mui, Rosanna Man, Michael Friedlander, Kaustuv,
Zheng Su, Yen Lin Chia, Hanh Huynh, Wanjun Mi, Linzhong Deng, Ofer Levi, James Lambers,
Paul Tupper, Melissa Aczon, Paul Lim, Steve Bryson, Oren Livne, Valentin Spitkovsky, Cindy
Mason, Morten Mørup, Anil Gaba, Donald van Deventer, Kenji Imai, Chong-Peng Toh, Frederick
Willeboordse, Yuan Ping Feng, Alex Ling, Roland Su, Helen Lau, and Suzanne Woo.

I have been infinitely lucky to have met Lek-Heng Lim when we were both undergraduates
in NUS. As I made further acquaintance with Lek-Heng, I found him to be the most thoughtful,
encouraging, and inspiring friend and colleague I could wish to have. Without his encouragement,
I would not have started this long journey, let alone finished.

Last but not least, I thank my parents and grandma for years of toiling and putting up with
my “life-long” studies. I am equally indebted to my siblings Dawn and Stephen and brother-in-
law Jack Cheng for their love and constant support.

viii

Contents

List of Tables and Figures xiii

1 Introduction 1
1.1 The Motivating Problem . 1

1.1.1 Null Vectors . 1
1.1.2 A Revelation . 2
1.1.3 Symmetric Systems . 2

1.2 Preliminaries . 8
1.2.1 Problem Description and Formal Solutions 8
1.2.2 Existing Numerical Algorithms . 9
1.2.3 Background for MINRES . 9
1.2.4 Notation . 10
1.2.5 Computations . 10
1.2.6 Roadmap . 11

2 Existing Iterative Methods for Hermitian Problems 13
2.1 The Lanczos Process . 13
2.2 Lanczos-Based Methods for Linear Systems . 16

2.2.1 CG . 18
2.2.2 SYMMLQ . 21
2.2.3 MINRES . 25

2.3 Existing Iterative Methods for Hermitian Least-Squares 29
2.3.1 MINRES . 30
2.3.2 GMRES . 32
2.3.3 LSQR . 33
2.3.4 QMR and SQMR . 35

2.4 Stopping Conditions and Norm Estimates . 35
2.4.1 Residual and Residual Norm . 36
2.4.2 Norm of Ark . 36
2.4.3 Solution Norms . 37
2.4.4 Matrix Norms . 37
2.4.5 Matrix Condition Numbers . 40

3 MINRES-QLP 43
3.1 Introduction . 43

3.1.1 Effects of Rounding Errors in MINRES 43
3.1.2 Existing Approaches to Solving Hermitian Least-Squares 45
3.1.3 Orthogonal Matrix Decompositions for Singular Matrices 46

ix

3.2 MINRES-QLP . 47
3.2.1 The MINRES-QLP Subproblem . 47
3.2.2 Solving the Subproblem . 47
3.2.3 Further Details . 49
3.2.4 Transfer from MINRES to MINRES-QLP 52

3.3 Stopping Conditions and Norm Estimates . 52
3.3.1 Residual and Residual Norm . 53
3.3.2 Norm of Ark . 54
3.3.3 Matrix Norms . 55
3.3.4 Matrix Condition Numbers . 56
3.3.5 Solution Norms . 57
3.3.6 Projection of Right-hand Side onto Krylov Subspaces 57

3.4 Preconditioned MINRES and MINRES-QLP . 58
3.4.1 Derivation . 59
3.4.2 Preconditioning Singular Ax = b . 62
3.4.3 Preconditioning Singular Ax ≈ b . 62

3.5 General Preconditioners . 64
3.5.1 Diagonal Preconditioning . 64
3.5.2 Binormalization (BIN) . 65
3.5.3 Incomplete Cholesky Factorization . 65

4 Numerical Experiments on Symmetric Systems 67
4.1 A Singular Indefinite System . 69
4.2 Two Laplacian Systems . 70

4.2.1 An Almost Compatible System . 70
4.2.2 A Least-Squares Problem . 72

4.3 Hermitian Problems . 74
4.3.1 Without Preconditioning . 74
4.3.2 With Diagonal Preconditioning . 75
4.3.3 With Binormalization . 77

4.4 Effects of Rounding Errors in MINRES-QLP . 78

5 Computation of Null Vectors, Eigenvectors, and Singular Vectors 81
5.1 Applications . 81

5.1.1 Eigenvalue Problem . 81
5.1.2 Singular Value Problem . 81
5.1.3 Generalized, Quadratic, and Polynomial Eigenvalue Problems 82
5.1.4 Multiparameter Eigenvalue Problem . 82

5.2 Computing a Single Null Vector . 82
5.3 Computing Multiple Null Vectors . 83

5.3.1 MCGLS: Least-Squares with Multiple Right-Hand Sides 83
5.3.2 MLSQR: Least-Squares with Multiple Right-Hand Sides 84
5.3.3 MLSQRnull: Multiple Null Vectors . 84

x

5.4 Numerical Experiments on Unsymmetric Systems 85
5.4.1 The PageRank Problem . 85
5.4.2 PageRank Applied to Citation Data . 87
5.4.3 A Multiple Null-Vector Problem from Helioseismology 89

6 Conclusions and Future Work 91
6.1 Summary . 91
6.2 Contributions . 92
6.3 Ongoing Work . 92

Bibliography 95

xi

xii

Tables and Figures

Tables

1.1 Existing iterative algorithms since CG was created in 1952. 9

2.1 Algorithm LanczosStep. 14
2.2 Algorithm Tridiag. 14
2.3 Subproblem definitions of CG, SYMMLQ, and MINRES. 17
2.4 Bases and subproblem solutions in CG, SYMMLQ, and MINRES. 17
2.5 Residual and error properties of CG, SYMMLQ, and MINRES. 17
2.6 Algorithm LanczosCG. 19
2.7 Algorithm CG. 19
2.8 Algorithm CGI. 21
2.9 Algorithm SymOrtho. 22
2.10 Algorithm SYMMLQ with possible transfer to the CG point at the end. 23
2.11 Algorithm MINRES. 26
2.12 Algorithm CR. 27
2.13 Subproblem definitions of MINRES, GMRES, QMR, and LSQR. 29
2.14 Bases and subproblem solutions in MINRES, GMRES, QMR, LSQR. 30
2.15 Algorithm Arnoldi. 32
2.16 Algorithm GMRES. 33
2.17 Algorithm Bidiag1 (the Golub-Kahan process). 34
2.18 Algorithm LSQR. 35

3.1 Algorithm MINRES-QLP. 50
3.2 Subproblem definitions of CG, SYMMLQ, MINRES, and MINRES-QLP. 51
3.3 Bases and subproblem solutions in CG, SYMMLQ, MINRES, MINRES-QLP. . . 51
3.4 Algorithm PMINRES. Preconditioned MINRES. 60
3.5 Algorithm PMINRES-QLP. Preconditioned MINRES-QLP. 61

4.1 Different Matlab implementations of various Krylov subspace methods. 68

5.1 Null vectors from various Krylov subspace methods. 83
5.2 Algorithm MCGLS. 83
5.3 Algorithm MLSQRnull for computing multiple orthogonal null vectors. 84

6.1 Problem types and algorithms. 91

xiii

Figures

1.1 Two approaches to compute the null vector of an unsymmetric matrix using LSQR. 3
1.2 Two approaches to compute the null vector of a symmetric matrix using MINRES. 5
1.3 MINRES-QLP’s performance (cf. MINRES) on a symmetric least-squares problem. 6
1.4 MINRES-QLP’s performance (cf. MINRES) on an almost compatible system. . . 6
1.5 MINRES-QLP’s performance (cf. MINRES) on an ill-conditioned system. 7
1.6 MINRES-QLP’s performance (cf. MINRES) on an ill-conditioned system (big ‖x‖). 7

2.1 The loss of orthogonality in Lanczos implies convergence of solution in Ax = b. . 18
2.2 Estimating ‖A‖2 and ‖A‖F using different methods in MINRES. 40

3.1 Rounding errors in MINRES on ill-conditioned systems. 44
3.2 MINRES-QLP with and without interleaving left and right reflectors. 48
3.3 The ratio of Lk’s extreme diagonal entries from MINRES-QLP approximates κ(A). 49
3.4 MINRES and MINRES-QLP on a well-conditioned linear system. 51
3.5 Estimating ‖A‖2 using different methods in MINRES-QLP. 56
3.6 Norms of solution estimates from MINRES and MINRES-QLP min ‖Ax− b‖. . . 58

4.1 Example: Indefinite and singular Ax = b. 71
4.2 Rounding errors in MINRES-QLP (cf. MINRES) on ill-conditioned systems. . . . 79
4.3 Rounding errors in MINRES-QLP (cf. MINRES) on least-squares problems. . . . 80

5.1 Convergence of the power method and LSQR on harvard500. 86
5.2 PageRank of harvard500. 86
5.3 Convergence of the power method and LSQR on CiteSeer data. 88
5.4 PageRank of CiteSeer data. 88
5.5 A multiple null-vector problem that arises from helioseismology. 89

xiv

Chapter 1

Introduction

1.1 The Motivating Problem

In 1998 when the Google PageRank algorithm was first described [16], the World Wide Web
contained about 150 million web pages and the classical power method appeared to be effective
for computing the relevant matrix eigenvector. By 2003, the number of web pages had grown to 2
billion, and the power method was still being used (monthly) to compute an up-to-date ranking
vector. Given some initial eigenvector estimate v0, the power method involves the iteration

xk = Avk−1, vk = xk/‖xk‖, k = 1, . . . , kP , (1.1)

where A is a square matrix with rows and columns corresponding to web pages, and Aij 6= 0
if there is a link from page j to page i. Each column of A sums to 1 and thus A is called a
column-stochastic matrix. Moreover, if its underlying graph is strongly connected, then by the
Perron-Frobenius theorem, A would have a simple dominant eigenvalue of 1 and thus the power
method is applicable. In practice, the convergence of (1.1) appeared to be remarkably good. The
required number of iterations kP was at most a few hundred.

Much analysis has since been done (e.g., [31, 64]), but at this stage, there was still room for
optimistic researchers [18, 42, 46] to believe that Krylov subspace methods might prove useful
in place of the power method. Since the related eigenvalue is known to be 1, the method of
inverse iteration [50, p. 362], [87] could be used. This involves a sequence of linear systems in
the following iteration:

(A− I)xk = vk−1, vk = xk/‖xk‖, k = 1, . . . , kI , (1.2)

where the number of iterations kI would be only 1 or 2. The matrix A−I is intentionally singular,
and the computed solutions xk are expected to grow extremely large (‖xk‖ ≈ 1/ε, where ε is
the machine precision), so that the normalized vectors vk would satisfy (A− I)vk ≈ 0 and hence
Avk ≈ vk as required.

Of course, Krylov subspace methods involve many matrix-vector products Av (as in the power
method) and additional storage in the form of some very large work vectors.

1.1.1 Null Vectors

The Google matrix A is square but unsymmetric. With the PageRank computation in mind, we
were motivated to investigate the use of LSQR [82, 83] on singular least-squares systems

min
x
‖Ax− b‖2, A ∈ Rm×n, rank(A) < n (1.3)

1

2 Chapter 1 Introduction

in order to compute null vectors v satisfying Av ≈ 0. (We have now replaced A − I by A,
and A may be rectangular.) For almost any nonzero vector b, the computed solution x should
be extremely large in norm, and the normalized vector v = x/‖x‖ will be a null vector of A.

Our first test matrix A was derived from AH , the 500 × 500 unsymmetric Harvard matrix
called harvard500 assembled by Cleve Moler [71] to simulate the PageRank problem. With
normal stopping tolerances in place, we found that LSQR converged to a least-squares solution
that did not have large norm (and was not a null vector of A). Only after disabling all stopping
conditions were we able to force LSQR to continue iterating until the solution norm finally
increased toward 1/ε, giving a null vector v = x/‖x‖ as required.

1.1.2 A Revelation

The question arose: Which solution x was LSQR converging to with the normal stopping rules
when A was singular? Probably it was the minimum-length solution in which ‖x‖2 is minimized
among the (infinitely many) solutions that minimize ‖Ax − b‖2. In any case, the associated
residual vector r = b − Ax was satisfying ATr = 0 because LSQR’s stopping rules require
‖ATr‖/(‖A‖‖r‖) to be small when ‖r‖ 6= 0. Suddenly we realized that we were computing a null
vector for the transpose matrix AT. This implied that to obtain a null vector for the singular
matrix A in (1.3), we could solve the least-squares problem

min
y
‖ATy − c‖2, A ∈ Rm×n, rank(A) < n (1.4)

with some rather arbitrary vector c. The optimal residual s = c − ATy would satisfy As = 0,
and the required null vector would be v = s/‖s‖. Furthermore, LSQR should converge sooner
on (1.4) than if we force it to compute a very large x for (1.3).

Figure 1.1 shows LSQR converging twice as quickly on (1.4) compared to (1.3).

1.1.3 Symmetric Systems

At some point another question arose: What would happen in the symmetric case? Both the
systems (1.3) and (1.4) take the form

min
x
‖Ax− b‖2, A ∈ Rn×n and symmetric, rank(A) < n. (1.5)

For general symmetric A (not necessarily positive definite), the natural Krylov subspace methods
are SYMMLQ and MINRES [81]. When A is singular, MINRES is the logical choice because it
allows the residual r = b−Ax to be nonzero. In all cases, the optimal residual satisfies Ar = 0.
If b happens to lie in the range of A, the optimal residual is r = 0, but otherwise—for example, if
b is a random vector—we can expect r 6= 0, so that v = r/‖r‖ will be a null vector, and again it
will be obtained sooner than if we force iterations to continue until ‖x‖ is extremely large. In a
least-squares problem, ‖r‖ > 0 and thus MINRES would need new stopping conditions to detect
if ‖Ax‖/‖x‖ or ‖Ar‖/‖r‖ were small enough. We derive recurrence relations for ‖Ax‖ and ‖Ar‖
that give us accurate estimates without extra matrix-vector multiplications.

We created our second test matrix from harvard500 by defining Ã = AH + ATH and con-
structing a diagonal matrix D with diagonal elements d(i) = 1/

√
‖Ã(i, :)‖1, which is well-defined

1.1 The Motivating Problem 3

200 400 600
0.15

1

‖rk‖2

k

200 400 600
10

−18

10
−9

10
0

‖AT rk‖2

k

200 400 600
10

−1

10
1

10
3

10
5

‖xk‖2

k

200 400 600

10
−6

10
−3

10
0

‖Axk‖2
‖xk‖2

k

200 400 600
0.15

1

‖sk‖2

k

200 400 600
10

−18

10
−9

10
0

‖Ask‖2

k

200 400 600
10

−1

10
1

10
3

10
5

‖yk‖2

k

200 400 600

10
−6

10
−3

10
0

‖As k‖2
‖s k‖2

k

Figure 1.1 Solving min ‖Ax− b‖ (1.3) and min ‖ATy− c‖ (1.4) with A = AH − I, b random, ‖b‖2 = 1,
and c = b, where AH is the 500×500 Harvard matrix of Moler [71]. The matrix is unsymmetric with rank
499. Both solves compute the null vector of A. Left: With the normal stopping rules disabled, LSQR on
min ‖Ax−b‖ (1.3) takes 711 iterations to give an exploding solution xk such that ‖Axk‖/‖xk‖ ≈ 1×10−6,
where k is the LSQR iteration number. Right: In contrast, LSQR on min ‖ATy − c‖ (1.4) takes only
311 iterations to give sk = c − ATyk such that ‖Ask‖/‖sk‖ ≈ 7 × 10−7. To reproduce this figure, run
testNull3([3,4]).

4 Chapter 1 Introduction

because there is no zero row in AH , and then we apply diagonal scaling: Â = DÃD. Note that Â is
not a doubly stochastic matrix (which would have a trivial dominant eigenvector e = [1, . . . , 1]T),
but it happens to have a simple dominant eigenvalue 1. We applied MINRES twice on (1.5) with
the shifted matrix A := Â− I and a randomly generated b: the first time with normal stopping
conditions and a second time with all stopping conditions disabled except ‖Ax‖/‖x‖ < tol. The
results are shown in Figure 1.2.

Given that singular least-squares problems have an infinite number of solutions, the same
question arises: Which solution does MINRES produce on singular problems? As for LSQR, we
surmised that it would be the minimum-length solution, and indeed this is true for MINRES
when b lies in the range of A. However, when the optimal r = b − Ax in (1.5) is nonzero, we
found experimentally (and later theoretically) that MINRES does not return the minimum-length
solution.

Thus began the research that comprises most of this thesis. A new implementation called
MINRES-QLP has been developed that has the desired property on singular systems (that of
minimizing ‖x‖). The implementation is substantially more complex, but as a bonus we expect
MINRES-QLP to be more accurate than the original MINRES on nonsingular symmetric systems
Ax = b.

For a preview of the performance of MINRES-QLP compared to MINRES with normal stop-
ping conditions on symmetric problems, see Figures 1.3–1.6. On ill-conditioned nonsingular com-
patible systems, the solution quality of MINRES-QLP could be similar to that of MINRES, but
the residuals are much more accurate (see Figures 1.5 and 1.6). There are applications, such as
null-vector computations, that require accurate residuals. On singular systems, MINRES-QLP’s
solutions and residuals could be much more accurate than MINRES’s (see Figures 1.3 and 1.4).

Ipsen and Meyer [60] state that in general, Krylov subspace methods such as GMRES on
singular compatible systems yield only the Drazin inverse solution (see section 2.3.2 for more
details). GMRES is actually mathematically equivalent to MINRES if A is symmetric. In
contrast, our work shows that both MINRES and MINRES-QLP could give us the minimum-
length solution.

Ipsen and Meyer [60] also show that in general, Krylov subspace methods return no solution
for inconsistent problems. However, we show that MINRES computes a least-squares solution
(with minimum ‖r‖2) and our new Krylov subspace method MINRES-QLP gives the minimum-
length solution to singular symmetric linear systems or least-squares problems.

In Chapter 2 we establish that for singular and incompatible Hermitian problems, existing
iterative methods such as the conjugate-gradient method CG [57], SYMMLQ [81], MINRES [81],
and SQMR [38] cannot minimize the solution norm and residual norm simultaneously.

1.1 The Motivating Problem 5

20 40 60 80
0.75

0.8

0.85

‖rk‖2

k

20 40 60 80
10

−9

10
−6

10
−3

10
0

‖Ark‖2

k

20 40 60 80

10
1

10
3

10
5

‖xk‖2

k

20 40 60 80

10
−5

10
−3

10
−1

‖Axk‖2
‖xk‖2

k

20 40 60 80
0.75

0.8

0.85

‖rk‖2

k

20 40 60 80
10

−9

10
−6

10
−3

10
0

‖Ark‖2

k

20 40 60 80

10
1

10
3

10
5

‖xk‖2

k

20 40 60 80

10
−5

10
−3

10
−1

‖Ark‖2
‖rk‖2

k

Figure 1.2 Solving min ‖Ax− b‖ (1.5) with A := Â− I, where Â is a symmetrized and scaled form of
the 500 × 500 Harvard matrix AH (see text in section 1.1.3), b random, and ‖b‖2 = 1. The matrix has
rank 499. Left: With all stopping rules disabled except ‖Axk‖/‖xk‖ < tol = 10−5, MINRES takes 77
iterations to give an exploding solution xk such that ‖xk‖ ≈ 8× 104 and ‖Axk‖/‖xk‖ ≈ 7× 10−6.
Right: In contrast, MINRES with normal stopping conditions takes only about 42 iterations to give rk

such that ‖rk‖ ≈ 0.78 and ‖Ark‖/‖rk‖ ≈ 1 × 10−5. Since the system is incompatible, MINRES needs
new stopping conditions to detect if ‖Axk‖/‖xk‖ or ‖Ark‖ is small enough. To reproduce this figure, run
testNull3([5,6]).

6 Chapter 1 Introduction

20 40 60 80
0.75

0.8

0.85

‖rk‖2

k
20 40 60 80

10
−9

10
−6

10
−3

10
0

‖Ark‖2

k
20 40 60 80

10
1

10
3

10
5

‖xk‖2

k

MINRES

MINRES−QLP

Figure 1.3 Solving min ‖Ax − b‖ (1.5) with A := Â − I, the symmetrized/scaled/shifted 500 × 500
Harvard matrix, ‖A‖2 ≈ 2, b random, and ‖b‖2 = 1. The matrix has rank 499 and the system Ax = b
is incompatible. MINRES takes 77 iterations to give an exploding solution xk such that ‖xk‖ ≈ 2× 105,
while MINRES-QLP takes 78 iterations to give ‖xk‖ ≈ 2.6, with ‖rk‖ ≈ 0.78 and ‖Ark‖ ≈ 10−5 in both
cases. We also computed the truncated eigenvalue-decomposition solution (TEVD solution) and found
that it matches our MINRES-QLP solution here. To reproduce this figure, run PreviewMINRESQLP1(1).

50 100 150
10

−14

10
−7

10
0

‖rk‖2

k
50 100 150

10
−20

10
−10

10
0

‖Ark‖2

k
50 100 150

10
0

10
1

‖xk‖2

k

MINRES

MINRES−QLP

Figure 1.4 Solving min ‖Ax − b‖ (1.5) with symmetric A as in Figure 1.2 and Figure 1.3. We define
b = Az1 + z2, where z1 and z2 are randomly generated with ‖z‖1 ≈ 13 and ‖z‖2 ≈ 10−12, and then
we normalize b by its 2-norm. Thus b has very small component in the null space of A—if any at
all. The matrix has rank 499 but the system Ax = b is nearly compatible. The plots of MINRES and
MINRES-QLP overlap completely except for the last two iterations. MINRES takes 143 iterations to give
a nonminimum-length solution xk such that ‖xk‖ ≈ 4.0, while MINRES-QLP takes 145 iterations to give
‖xk‖ ≈ 0.75, with ‖rk‖ ≈ 10−13 and ‖Ark‖ ≈ 10−14 in both cases. We also computed the TEVD solution
and found that it matches our MINRES-QLP solution here. If we had not known that this were generated
as an almost compatible system, we would have guessed that it is compatible. MINRES-QLP appears to
have a better regularization property than MINRES. This example also prompts us to ask the question:
how to put a dividing line—in terms of ‖rk‖—between a linear system and a least-squares problem? To
reproduce this figure, run PreviewMINRESQLP1(4).

1.1 The Motivating Problem 7

10 20 30
27

28

29

‖xk‖2

k
10 20 30

10
−12

10
−8

10
−4

10
0

k

‖rk‖2

10 20 30
10

−14

10
−7

10
0

‖Ark‖2

k

MINRES

MINRES−QLP

Figure 1.5 Solving Ax = b with symmetric positive definite A = Qdiag([10−8, 2 × 10−8, 2 : 1
789

: 3])Q
of dimension n = 792 and norm ‖A‖2 = 3, where Q = I − (2/n)eeT is a Householder matrix generated
by e = [1, . . . , 1]T. We define b = Ae (‖b‖ ≈ 70.7). Thus, the true solution is x = e and ‖x‖ = O(‖b‖).
This example is constructed similar to Figure 4 in Sleijpen et al. [96]. The left and middle plots differ
after 30 and 33 iterations, with the final MINRES solution xM

k giving ‖rM
k ‖ ≈ 10−10 and ‖ArM

k ‖ ≈ 10−10,
while the final MINRES-QLP solution xQ

k gives ‖rQ
k ‖ ≈ 10−12 and ‖ArQ

k ‖ ≈ 10−12. The right plot
shows that ‖xk‖ is very similar for both methods; in fact for the final points, ‖xM

k ‖ ≈ ‖xQ
k ‖ ≈ 2.8 and

‖xM
k − x‖ ≈ ‖xQ

k − x‖ ≈ 2× 10−7. To reproduce this figure, run PreviewMINRESQLP2(2).

5 10 15 20 25
10

−8

10
−4

10
1

k

‖rk‖2

5 10 15 20 25
10

−8

10
−4

10
1

‖Ark‖2

k
5 10 15 20 25

10
1

10
5

10
9

‖xk‖2

k

MINRES

MINRES−QLP

Figure 1.6 Solving Ax = b with the same symmetric positive definite A as in Figure 1.5 but with
b = e. Since cond2(A) ≈ 108 and ‖b‖2 =

√
n, we expect the solution norm to be big (‖x‖ � ‖b‖).

The left and middle plots differ after 22 and 26 iterations, with the final MINRES solution xM
k giving

‖rM
k ‖ ≈ 10−2 and ‖ArM

k ‖ ≈ 10−2 only, while the final MINRES-QLP solution xQ
k gives ‖rQ

k ‖ ≈ 10−7

and ‖ArQ
k ‖ ≈ 10−6. The right plot shows that ‖xk‖ is very similar for both methods; in fact for the final

points, ‖xM
k ‖ ≈ ‖xQ

k ‖ ≈ 108 but ‖xM
k −xQ

k ‖ ≈ 1.4. To reproduce this figure, run PreviewMINRESQLP2(1).

8 Chapter 1 Introduction

1.2 Preliminaries

1.2.1 Problem Description and Formal Solutions

We consider solving for the n-vector x in the system of linear equations

Ax = b (1.6)

when the n×n real symmetric matrix A is large and sparse, or represents an operator for forming
products Av. When the real vector b is in the range of A, we say that the system is consistent
or compatible; otherwise it is inconsistent or incompatible.

When A is nonsingular, the system is always consistent and the solution of (1.6) is unique.
When A is singular and (1.6) has at least one solution, we say that the singular system is

consistent or compatible, in which case it has infinitely many solutions. To obtain a unique
solution, we select the minimum-length solution among all solutions x in Rn such that Ax = b.
On the other hand, if the singular system has no solution, we say that it is inconsistent or
incompatible, in which case we solve the singular symmetric least-squares problem instead and
select the minimum-length solution:

x = arg min ‖Ax− b‖2. (1.7)

More precisely, the minimum-length least-squares problem is defined as

min ‖x‖2 s.t. x ∈ arg min ‖Ax− b‖2, (1.8)

or with the more commonly seen but actually a slight abuse of notation

min ‖x‖2 s.t. x = arg min ‖Ax− b‖2. (1.9)

The minimum-length solution of either (1.6) or (1.7) is unique and is also called the pseu-
doinverse solution. Formally,

x† = (ATA)†ATb = (A2)†Ab,

where A† denotes the pseudoinverse of A. We postpone the definition and more discussion of
pseudoinverse to section 2.3.1.

We may also consider (1.6) or (1.7) with A’s diagonal shifted by a scalar σ. Shifted problems
appear, for example, in inverse iteration (as mentioned in section 1.1) or Rayleigh quotient
iteration. The shift is mentioned here because it is best handled within the Lanczos process (see
section 2.1) rather than by defining Â = A− σI.

Two related but more difficult problems are known as Basis Pursuit and Basis Pursuit De-
Noising [22, 23] (see also the Lasso problem [103]):

min
x
‖x‖1 s.t. Ax = b,

min
x,r

λ‖x‖1 + 1
2‖r‖

2
2 s.t. Ax+ r = b,

where A is usually rectangular (with more columns than rows) in signal-processing applications.

1.2 Preliminaries 9

Table 1.1
Existing iterative algorithms since CG was created in 1952. All methods require products Avk for a
sequence of vectors {vk}. The last column indicates whether a method also requires ATuk for a sequence
of vectors {uk}.

Linear Equations Authors Properties of A AT ?

CG Hestenes and Stiefel (1952) [57] Symmetric positive definite

CRAIG Faddeev and Faddeeva (1963)[33] Square or rectangular yes
MINRES Paige and Saunders (1975) [81] Symmetric indefinite

SYMMLQ Paige and Saunders (1975) [81] Symmetric indefinite

Bi-CG Fletcher (1976)[35] Square unsymmetric yes
LSQR Paige and Saunders (1982) [82, 83] Square or rectangular yes
GMRES Saad and Schultz (1986) [89] Square unsymmetric

CGS Sonneveld (1989) [98] Square unsymmetric

QMR Freund and Nachtigal (1991) [37] Square unsymmetric yes
Bi-CGSTAB Van der Vorst (1992) [109] Square unsymmetric yes
TFQMR Freund (1993) [36] Square unsymmetric

SQMR Freund and Nachtigal (1994) [38] Symmetric

Least Squares Authors Properties of A AT ?

CGLS Hestenes and Stiefel (1952) [57] Square or rectangular yes
RRLS Chen (1975) [24] Square or rectangular yes
RRLSQR Paige and Saunders (1982) [82] Square or rectangular yes
LSQR Paige and Saunders (1982) [82] Square or rectangular yes

1.2.2 Existing Numerical Algorithms

In this thesis, we are interested in sparse matrices that are so large that direct factorization
methods such as Gaussian elimination or Cholesky decomposition are not immediately applicable.
Instead, iterative methods and in particular Krylov subspace methods are usually the methods of
choice. For example, CG is designed for a symmetric positive definite matrix A (whose eigenvalues
are all positive), while SYMMLQ and MINRES are for an indefinite and symmetric matrix A

(whose eigenvalues could be positive, negative, or zero).
The main existing iterative methods for symmetric and unsymmetric A are listed in Table 1.1.

1.2.3 Background for MINRES

MINRES, first proposed in [81, section 6], is an algorithm for solving indefinite symmetric linear
systems. A number of acceleration methods for MINRES using (block) preconditioners have been
proposed in [73, 51, 105]. Researchers in various science and engineering disciplines have found
MINRES useful in a range of applications, including:

• interior eigenvalue problems [72, 114]

• augmented systems [34]

• nonlinear eigenvalue problems [20]

10 Chapter 1 Introduction

• characterization of null spaces [21]

• symmetric generalized eigenvalue problems [74]

• singular value computations [112]

• semidefinite programming [111]

• generalized least-squares problems [115].

1.2.4 Notation

We keep the lower-case letters i, j, k as subscripts to denote integer indices, c and s to denote
cosine and sine of some angle θ, n for order of matrices and length of vectors, and other lower-case
letters such as b, u, v, w and x (possibly with integer subscripts) to denote column vectors of
length n. In particular, ek denotes the kth unit vector. We use upper-case italic letters (possibly
with integer subscripts) to denote matrices. The exception is superscript T , which denotes the
transpose of a vector or matrix. We reserve Ik to denote identity matrix of order k, and Qk and
Pk for orthogonal matrices. Lower-case Greek letters denote scalars. The symbol ‖·‖ denotes
the 2-norm of a vector or the Frobenius norm of a matrix. We use κ(A) to denote the condition
number of matrix A; R(A) and N (A) to denote the range and null space of A; Kk(A, b) to denote
the kth Krylov subspace of A and b; and A† is the pseudoinverse of A. We use A � 0 to denote
that A is positive definite, A � 0 to mean that A is not positive definite (so A could be negative
definite, non-negative definite, indefinite, and so on). When we have a compatible linear system,
we often write Ax = b. If the linear system is incompatible, we write Ax ≈ b as shorthand for the
corresponding linear least-squares problem min ‖Ax− b‖2. We use symbols ‖ to denote parallel
vectors, and ⊥ to denote orthogonality.

Most of the results in our discussion are directly extendable to problems with complex matrices
and vectors. When special care is needed in handling complex problems, we will be very specific.
We use superscript H to denote the conjugate transpose of a complex matrix or vector.

1.2.5 Computations

We use Matlab 7.0 and double precision for computations unless otherwise specified. We
use ε (varepsilon) to denote machine precision (= 2−52 ≈ 2.2 × 10−16). In an algorithm, we
use // to indicate comments. For measuring mathematical quantities or complexity of algorithms,
sometimes we use big-oh O(·) to denote an asymptotic upper bound [94, Definition 7.2]:

f(n) = O(g(n)) if ∃ c > 0 and a positive integer n0 ∈ N such that ∀n ∈ N, n ≥ n0,
f(n) ≤ cg(n).

Thus a nonzero constant α = O(1) = O(n) and αn = O(n). We note that f(n) = O(g(n)) is a
slight abuse of notation—to be precise, it is f(n) ∈ O(g(n)).

Following the philosophy of reproducible computational research as advocated in [27, 25], for
each figure and example we mention either the source or the specific Matlab command.

1.2 Preliminaries 11

1.2.6 Roadmap

We review the iterative algorithms CG, SYMMLQ, and MINRES for Hermitian linear systems
and least-squares problems in Chapter 2, and show that MINRES gives a nonminimum-length
solution for inconsistent systems. We also review other Krylov subspace methods such as LSQR
and GMRES for non-Hermitian problems, and we derive new recursive formulas for efficient
estimation of ‖Ark‖, ‖Axk‖, and the condition number of A for MINRES.

In Chapter 3, we present a new algorithm MINRES-QLP for symmetric and possibly singular
systems. Chapter 4 gives numerical examples that contrast the solutions of MINRES with the
minimum-length solutions of MINRES-QLP on symmetric and Hermitian systems.

In Chapter 5, we return to the null-vector problem for sparse matrices or linear operators,
and apply the previously mentioned iterative solvers.

Chapter 6 summarizes our contributions and ongoing work.

12

Chapter 2

Existing Iterative Methods for

Hermitian Problems

In this chapter, we review the Lanczos process and the three best known algorithms for Hermi-
tian linear systems: CG, SYMMLQ, and MINRES. In particular, we emphasize the recurrence
relations of various mathematical objects. We assume throughout that A ∈ Rn×n, b ∈ Rn, A 6= 0,
and b 6= 0. However, the algorithms are readily extended to Hermitian A and complex b.

2.1 The Lanczos Process

The Lanczos process transforms a symmetric matrix A to a symmetric tridiagonal matrix with
an additional row at the bottom:

Tk =

α1 β2

β2 α2 β3

β3 α3
. . .

. βk

βk αk

βk+1

.

If we define Tk to be the first k rows of Tk, then Tk is square and symmetric, and

Tk =

[
Tk

βk+1e
T
k

]
, Tk =

[
Tk−1 βkek−1

βke
T
k−1 αk

]
.

The Lanczos process iteratively computes vectors vk as follows:

v0 = 0, β1v1 = b, where β1 serves to normalize v1, (2.1)

pk = Avk, αk = vTkpk,

βk+1vk+1 = pk − αkvk − βkvk−1, where βk+1 serves to normalize vk+1. (2.2)

In matrix form,
AVk = Vk+1Tk, where Vk =

[
v1 · · · vk

]
. (2.3)

In exact arithmetic, the columns of Vk are orthonormal and the process stops when βk+1 = 0
(k ≤ n), and then we obtain

AVk = VkTk. (2.4)

13

14 Chapter 2 Existing Iterative Methods for Hermitian Problems

Table 2.1
Algorithm LanczosStep.

LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1

pk = Avk − σvk, αk = vTkpk, pk ← pk − αkvk
vk+1 = pk − βkvk−1, βk+1 = ‖vk+1‖2
if βk+1 6= 0, vk+1 ← vk+1/βk+1 end

Table 2.2
Algorithm Tridiag.

Tridiag(A, b, σ,maxit)→ Tk, Vk //partial tridiagonalization of A− σI
β1 = ‖b‖2, v0 = 0, β1 = ‖b‖, k = 1
if β1 6= 0, v1 = b/β1 end

while βk 6= 0 and k ≤ maxit
LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1

k ← k + 1
end

The above discussion can be extended for A−σI, where σ is a scalar shift. We call each iter-
ation in the Lanczos process a Lanczos step: LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1.
See Table 2.1 and Table 2.2.

We need to keep at most the matrix A or a function that returns Ax if A is a linear operator, 3
vectors, and 3 scalars in memory. In fact, a careful implementation would only require 2 vectors
in working memory at a time, if vk+1 replaces vk−1. Each iteration performs a matrix-vector
multiplication, 2 inner products, 3 scalar-vector multiplications, and 2 vector subtractions, which
sums up to 2ν + 9n floating-point operations per iteration, where ν is number of nonzeros in A.

The Lanczos process stops in at most min{rank(A) + 1, n} iterations. It stops sooner when
A has clusters of eigenvalues or b has nonzero components along only a few eigenvectors of A.

Definition 2.1 (kth Krylov subspace with respect to A and b). Given a square n × n
matrix A ∈ Rn×n and an n-vector b ∈ R(A), we define the kth Krylov subspace of (A, b) as

Kk(A, b) := span{b, Ab, . . . , Ak−1b} = span{v1, . . . , vk}, (2.5)

where k is a positive integer.

Proposition 2.2. Given symmetric A ∈ Rn×n and b ∈ Rn and supposing that βi > 0 for
i = 1, . . . , k but βk+1 = 0 in the Lanczos process, we have the following results.

1. If b ∈ N (A), then α1 = 0, β2v2 = 0 and rank(A) ≥ 1.

2. If b ∈ R(A), then v1 ‖ b and v2, . . . , vk ⊥ b are k orthogonal vectors that lie in R(A) and
n ≥ rank(A) ≥ k.

3. If b /∈ R(A) and b /∈ N (A) (that is, N (A) is nontrivial; b has a nonzero component in R(A)
and a nonzero component in N (A)), then v1, . . . , vk have nonzero components in R(A) and
thus n > rank(A) ≥ k − 1.

2.1 The Lanczos Process 15

Proof. 3. Let b = bR + bN , where bR is the component of b in R(A) and bN is the component of
b in N (A). The first Lanczos step gives β1v1 = β1(v1,R + v1,N) = bR + bN = b. So

α1 = vT1Av1 = (v1,R + v1,N)TA(v1,R + v1,N) = vT1,RAv1,R, (2.6)

β2v2 = Av1 − α1v1 = A(v1,R + v1,N)− α1(v1,R + v1,N)

= Av1,R − α1v1,R︸ ︷︷ ︸
β2v2,R

+ − α1v1,N︸ ︷︷ ︸
β2v2,N

. (2.7)

It follows that v2,N ‖ v1,N ‖ bN . Moreover, β2v2 = 0 ⇐⇒ β2 = 0 and v2,R = v2,N = 0. The
Lanczos process stops if any βi = 0. In general, for i = 2, . . . , k,

αi = vTiAvi = vTi,RAvi,R,

βi+1vi+1 = Avi − αivi − βivi−1

= A(vi,R + vi,N)− αi(vi,R + vi,N)− βi(vi−1,R + vi−1,N)

= Avi,R − αivi,R − βivi−1,R︸ ︷︷ ︸
βi+1vi+1,R

+ − αivi,N − βivi−1,N︸ ︷︷ ︸
βi+1vi+1,N

,

so that vi+1,N ‖ v1,N ‖ bN . Thus[
v1 · · · vk

]
=
[
v1,R · · · vk,R

]
+ v1,N c

T ,

where cT =
[
1 c2 · · · ck

]
for some scalars ci. Thus,

rank
([
v1,R · · · vk,R

])
= rank

([
v1 · · · vk

]
− v1,N cT

)
= k − 1 or k

since a rank-1 change to a full rank matrix of rank k can only change the matrix rank by at
most 1, and an n× k with k ≤ n matrix could have at most rank k. Thus

rank(A) ≥ rank
([
v1,R · · · vk,R

])
= k − 1 or k.

�

Corollary 2.3. Given symmetric A ∈ Rn×n, we define r = rank(A).

1. If b ∈ R(A), then βk+1 = 0 for some k ≤ r ≤ n.

2. If r < n and b /∈ R(A), then βk+1 = 0 for some k ≤ r + 1 ≤ n.

Theorem 2.4. Given a symmetric matrix A ∈ Rn×n with s distinct nonzero eigenvalues and
b ∈ Rn that has nonzero components along t (t ≤ s) eigenvectors of A that correspond to t distinct
nonzero eigenvalues of A, then βk+1 = 0 for some k ≤ min{t + 1, s} if b /∈ R(A), or k ≤ t if
b ∈ R(A).

Example 1.

1. Let A = diag ([1 2 3 4 5]), n = 5, r = s = 5.

(a) If b = [1 2 3 4 5]T, then t = 5, β6 = 0.

16 Chapter 2 Existing Iterative Methods for Hermitian Problems

(b) If b = [1 2 0 0 0]T, then t = 2, β3 = 0.

2. Let A = diag ([1 2 3 0 0]), n = 5, r = s = 3.

(a) If b = [1 2 0 0 0]T, then b ∈ R(A), t = 2, β3 = 0.

(b) If b = [1 0 0 0 0]T, then b ∈ R(A), t = 1, β2 = 0.

(c) If b = [1 2 3 4 0]T, then b /∈ R(A), t = 3, β4 = 0.

(d) If b = [1 0 0 4 0]T, then b /∈ R(A), t = 1, β3 = 0.

3. Let A = diag ([2 2 3 0 0]) , r = 3, s = 2.

(a) If b = [1 2 0 0 0]T, then b ∈ R(A), t = 1, β3 = 0.

(b) If b = [1 2 3 4 0]T, then b /∈ R(A), t = 2, β4 = 0.

(c) If b = [1 0 0 4 0]T, then b /∈ R(A), t = 1, β3 = 0.

2.2 Lanczos-Based Methods for Linear Systems

In each Lanczos step, we solve a subproblem to find xk ∈ Kk(A, b) such that xk = Vky for some
y ∈ Rk. It follows that rk = b−Axk = Vk+1(β1e1−Tky), and all Lanczos-based methods attempt
to make β1e1−Tky small in one way or another. CG focuses on the first k equations, attempting
to solve for Tky = β1e1 by applying the Cholesky decomposition to Tk. SYMMLQ concentrates
on the first k−1 equations and wants to solve the underdetermined system Tk−1

Ty = β1e1. That
said, since Tk is available in the kth iteration, SYMMLQ goes ahead and solves TkTy = β1e1

instead by applying the LQ decomposition to TkT. MINRES works to minimize the 2-norm of
β1e1 − Tky by applying the QR decomposition to Tk. The following stencil depicts the rationale
and focuses of the three methods, where s’s represent the last row of the tridiagonal matrix in
SYMMLQ’s (k− 1)th iteration, c’s in CG’s kth iteration, m’s in MINRES’s kth iteration, and ∗
for common entries of all three methods:

∗ ∗
∗ ∗ ∗
s s s

c c

m

y ≈

β1

0

0

0

0

.

The three methods are best juxtaposed in the framework described by Paige [79], as summa-
rized in Saunders [90]:

An iterative process generates certain quantities from the data. At each iteration a
subproblem is defined, suggesting how those quantities may be combined to give a new
estimate of the required solution. Different subproblems define different methods for
solving the original problem. Different ways of solving a subproblem lead to different
implementations of the associated method.

Tables 2.3–2.4 (from [90]) give the subproblem associated with each method, and the mechanism
for defining solution estimates for the original problem in terms of various transformed bases.
CG and LanczosCG are two implementations of the same method.

2.2 Lanczos-Based Methods for Linear Systems 17

Table 2.3
Subproblem definitions of CG, SYMMLQ, and MINRES.

Method Subproblem Factorization Estimate of xk

LanczosCG Tkyk = β1e1 Cholesky: xk = Vkyk

or CG [57] Tk = LkDkL
T
k ∈ Kk(A, b)

SYMMLQ [81, 90] yk+1 = arg miny∈Rk+1 LQ: xk = Vk+1yk+1

{‖y‖ | TT
k y = β1e1} Tk

TQk =
[
Lk 0

]
∈ Kk+1(A, b)

MINRES [81] yk = arg miny∈Rk

∥∥Tky − β1e1
∥∥ QR: xk = Vkyk

QkTk =

[
Rk

0

]
∈ Kk(A, b)

Table 2.4
Bases and subproblem solutions in CG, SYMMLQ, and MINRES.

Method New basis zk Estimate of xk

LanczosCG Wk := VkL
−T
k LkDkzk = β1e1 xk = Wkzk

CG Wk := VkL
−T
k Φk LkDkΦkzk = β1e1 xk = Wkzk

Φk := diag(‖r1‖, . . . , ‖rk‖)

SYMMLQ Wk := Vk+1Qk

[
Ik

0

]
Lkzk = β1e1 xk = Wkzk

MINRES Dk := VkR
−1
k Rkzk = β1

[
Ik 0

]
Qke1 xk = Dkzk

Another way to classify Krylov subspace methods is based on the error and residual properties
as described in Demmel [29, section 6.6.2]:

1. Minimum-residual method:
find xk ∈ Kk(A, b) such that ‖rk‖ is minimized.

2. Orthogonal-residual/Galerkin method:
find xk ∈ Kk(A, b) such that rk ⊥ Kk(A, b); that is, V Tk rk = 0.

3. Minimum-error method:
find xk = argminx̄k∈Kk(A,b) ‖x− x̄k‖, where x denotes the true solution.

Table 2.5 gives an expanded description.

Table 2.5
Residual and error properties of CG, SYMMLQ, and MINRES.

kth residual kth error

CG for A � 0 min ‖rk‖A−1 , rk ⊥ Kk(A, b), Ark ⊥ Kk−1(A, b) min ‖x− xk‖A
SYMMLQ rk ⊥ Kk(A, b), Ark ⊥ Kk−1(A, b) min ‖x− xk‖2
MINRES min ‖rk‖2, βk+1 = 0⇒ rk ⊥ Kk(A, b), Ark ⊥ Kk(A, b) —

18 Chapter 2 Existing Iterative Methods for Hermitian Problems

20 40 60 80

10
−15

10
−10

10
−5

|| V
k
T V

k
 − I ||∞

Iteration k Iteration k

local
global

CSPY(| V
k
T V

k
 − I |)

0

2e−010

0

1e−007

3e−006

0.0001

0.002

20 40 60 80

10
−10

10
−5

MINRES−SOL63 ||r
k
||

Iteration k

Figure 2.1 A is symmetric tridiagonal of order 100 and full rank, and b is a scalar multiple of e1. The
Lanczos vectors are the sparsest possible: vk = ek. Left: In double precision, loss of local orthogonality
among vk−2,vk−1,vk for each iteration k = 1, . . . , 94, and loss of global orthogonality among v1, . . . , vk.
Middle: Color-spying elementwise-absolute values of V T

k Vk − I. The color patterns are symmetric. The
upper left corner is usually closest to zero (of order ε) and white in color. The area closer to the diagonal
indicates the extent of loss of local orthogonality. In contrast, the areas in the upper right and lower left
corners correspond to the loss of global orthogonality, which is larger in magnitude and darker in color.
Right: Loss of global orthogonality in the Lanczos basis, however, implies convergence of solution in the
Lanczos-based solver MINRES. This figure can be reproduced by LossOrthogonality(1).

In finite-precision arithmetic, the columns of Vk are observed to lose orthogonality when
the xk’s from one of the Lanczos-based methods are converging to the solution [78, 84]. See
Figure 2.1.

2.2.1 CG

In this section, we present two equivalent CG algorithms. One is derived from the Lanczos process
for academic interest (Table 2.6), and the other is the standard CG algorithm (Table 2.7), which
is more memory efficient and commonly found in the literature (e.g., [50]).

The kth iteration of CG works on the Cholesky factors of Tk from the Lanczos process:

Tk = LkDkL
T
k , Lk =

1

ι2 1
.

ιk 1

, Dk = diag(δ1, . . . , δk).

In the rest of this section, we highlight a few important properties of CG. We first assume
A � 0 and then relax it to A � 0 later.

Proposition 2.5 (‖Ark‖ for CG).

1. ‖Ar0‖ = ‖r0‖
√

1+µ2
ν2
1

.

2. ‖Ark‖ = ‖rk‖
√

µk+1

ν2
k

(
1 + µk+1 + 2νk

νk+1

)
+ 1+µk+2

ν2
k+1

for k = 1, . . . when qTkAqk 6= 0.

3. ‖Ark‖ = ‖rk‖
√

µk+1

ν2
k

(1 + µk+1) when qTkAqk = 0.

2.2 Lanczos-Based Methods for Linear Systems 19

Table 2.6
Algorithm LanczosCG. We assume A is symmetric only.

LanczosCG(A, b, σ,maxit)→ x, φ

β1 = ‖b‖2, v0 = 0, β1v1 = b, x0 = 0, φ0 = β1, k = 1
while no stopping condition is true,

LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1

//Cholesky factorization

if k = 1
ι1 = 1, δ1 = α1

else

ιk = βk

δk−1
, δk = αk − δk−1ι

2
k

end

//update solution and residual norm

if δk ≤ 0, STOP end //A indefinite, perhaps unstable to continue

if k = 1
ζ1 = β1

δ1
, w1 = v1, x1 = ζ1w1

else

ζk = − δk−1ιkζk−1
δk

, wk = vk − ιkwk−1, xk = xk−1 + ζkwk

end

φk = |ζk|βk+1, k ← k + 1
end

x = xk, φ = φk

Table 2.7
Algorithm CG. We assume A = AT � 0. A careful implementation would need to keep the matrix A
(or a function that returns Ax if A is a linear operator) and 2 to 4 vectors in working memory. The
algorithm also estimates φ = ‖rk‖, χ = ‖xk‖, A ≈ ‖A‖2, and κ ≈ κ(A).

CG(A, b, tol,maxit)→ x, φ, χ,A, κ //if x = 0, no converged solution.

x0 = 0, r0 = b, β1 = ‖b‖, χ0 = 0, φ2
0 = ‖r0‖2, q1 = r0

k = 1, κ = 1, A = 0, νmin = 0

while
(

φk

Aχk+β1
> tol

)
or (k < maxit)

sk = Aqk, ξk = qTksk

if ξk ≤ 0
xk := 0, φk = β1, χk = 0, STOP //qk is a null vector

end

νk = φ2
k−1/ξk, xk = xk−1 + νkqk, rk = rk−1 − νksk, χk = ‖xk‖

φ2
k = ‖rk‖2, µk+1 = φ2

k/φ
2
k−1, qk+1 = rk + µk+1qk //gradient

νmin = min{νmin, νk}, A = max{A, νk}, κ = A
νmin

, k = k + 1
end

x = xk, φ = φk, χ = χk

20 Chapter 2 Existing Iterative Methods for Hermitian Problems

The following lemma implies that CG is only applicable to symmetric linear systems.

Lemma 2.6. ‖rk‖ = 0 if and only if ‖Ark‖ = 0.

Proposition 2.7 (Null vector of A � 0 from CG’s breakdown). In exact arithmetic, if
A � 0 and ξk = qTkAqk = 0, then νk becomes undefined and CG breaks down, and the gradient qk
is a null vector of A.

Proposition 2.8 (Null vector of A � 0 from CG’s exploding solution). In finite-precision
arithmetic, if A � 0 and ξk = qTkAqk = O(ε) in CG, then νk and xk explode, and xk (normalized)
is an approximate null vector of A.

When we know in advance that A is symmetric negative semidefinite, we can apply CG to
(−A)x = −b to get a solution since A � 0 if and only if −A � 0.

Most textbook discussions restrict application of CG to a symmetric positive definite matrix
A because ‖·‖A and ‖·‖A−1 are in general not defined for singular A. However, CG can often be
applied to a symmetric positive semidefinite matrix A (all eigenvalues of A nonnegative) without
failure if b ∈ R(A). Moreover, CG sometimes also works with a symmetric indefinite (singular)
matrix if we change the stopping condition from (ξk ≤ 0) to (ξk = 0). For example,

A =

1

2

−1

0

, b =

1

2

1

0

.
We label this variation of CG as CGI (see Table 2.8). CGI will not work when qk is a null

vector of A or a solution of xTAx = 0. With CGI, Proposition 2.7 and Proposition 2.8 become
the following.

Proposition 2.9 (Solution of xTAx = 0 from CGI’s breakdown). In exact arithmetic,
if ξk = qTkAqk = 0, then νk becomes undefined and CGI breaks down, and the gradient qk is a
solution of the quadratic equation xTAx = 0.

Proposition 2.10 (Solution of xTAx = 0 from CGI’s exploding solution). In finite-
precision arithmetic, if ξk = qTkAqk = O(ε) in CGI, then νk and xk explode, and xk (normalized)
is an approximate solution of the quadratic equation xTAx = 0.

Example 2. A case when CG and CGI fail.

A =

−20

−19
. . .

20

, b = Ae =

−20

−19
...

20

,

Ab 6= 0, but qT1Aq1 = bTAb = 0, rendering failure of CGI. However, SYMMLQ and MINRES
work to give the solution [110 0 110].

2.2 Lanczos-Based Methods for Linear Systems 21

Table 2.8
Algorithm CGI. We assume A = AT only.

CGI(A, b, tol,maxit)→ x, φ, χ,A, κ //if x = 0, no converged solution.

x0 = 0, r0 = b, β1 = ‖b‖, χ0 = 0, φ2
0 = ‖r0‖2, q1 = r0,

k = 1, κ = 1, A = 0

while
(

φk

Aχk+β1
> tol

)
or (k < maxit)

sk = Aqk, ξk = qTksk

if ξk = 0 xk := 0, φk = β1, χk = 0, STOP end

νk = φ2
k−1/ξk, xk = xk−1 + νkqk, rk = rk−1 − νksk, χk = ‖xk‖

φ2
k = ‖rk‖2, µk+1 = φ2

k/φ
2
k−1, qk+1 = rk + µk+1qk //gradient

νmin = min{νmin, |vk|}, A = max{A, |vk|}, κ = A
νmin

, k = k + 1
end

x = xk, φ = φk, χ = χk

2.2.2 SYMMLQ

When A is not symmetric positive definite, CG is no longer applicable. SYMMLQ was first
published in [81, section 5] for solving Ax = b with A being symmetric indefinite. Later, the
associated subproblem was found to be the following [90]:

yk+1 = arg min
{
‖y‖ | TkTy = β1e1, y ∈ Rk+1

}
, (2.8)

where TkT is available at the kth Lanczos Step. The subproblem is best solved using the LQ
decomposition

TTkPk =

[
Lk−1

ε
(1)
k δ

(2)
k γ

(1)
k βk+1

]
Pk,k+1 =

γ
(1)
1

δ
(2)
2 γ

(2)
2

ε
(1)
3

.

.

ε
(1)
k δ

(2)
k γ

(2)
k 0

:=
[
Lk 0

]
,

(2.9)
where Pk = P1,2P2,3 · · ·Pk,k+1 is a product of suitable orthogonal matrices. The implementation
uses Householder reflectors of dimension 2 [107, Exercise 10.4]—very similar to Givens rotations.
For each k, Pk,k+1 is orthogonal and symmetric, and is constructed to annihilate βk+1, the
bottom-right element of TTk . A compact way to describe the action of Pk,k+1 is

[
γ

(1)
k βk+1

][ck sk

sk −ck

]
=
[
γ

(2)
k 0

]
, ρk =

√
γ

(1)
k + β2

k+1, ck :=
γ

(1)
k

ρk
, sk :=

βk+1

ρk
.

However, that definition of ck and sk should not be directly implemented. A more stable imple-
mentation of the orthogonal transformation is given in Table 2.9. The complexity is at most 6
flops and a square root.

22 Chapter 2 Existing Iterative Methods for Hermitian Problems

Table 2.9
Algorithm SymOrtho.

SymOrtho(a, b)→ c, s, r

if b = 0
s = 0, r = |a|, if a = 0, c = 1 else c = sign(a) end

elseif a = 0
c = 0, s = sign(b), r = |b|

elseif |b| > |a|
τ = a/b, s = sign(b)/

√
1 + τ2, c = sτ , r = b/s

elseif |a| > |b|
τ = b/a, c = sign(a)/

√
1 + τ2, s = cτ , r = a/c

end

Each Pi,i+1 is defined in terms of previous ci and si:

Pi,i+1 :=

Ii−1

ci si

si −ci
Ik−i

. (2.10)

If we define yk+1 = Pkz̄k+1, then our subproblem (2.8) is solved by

Lkz = β1e1, z̄k+1 =

[
zk

0

]
, (2.11)

and SYMMLQ computes xk in Kk+1(A, b) as an approximate solution to our problem Ax = b:

xk = Vk+1yk+1 = Vk+1Pk

[
zk

0

]
= Wkzk = xk−1 + ζkwk, (2.12)

where Vk+1Pk =
[
Wk w̄k+1

]
, ζk is the last component of zk, and

ζk =
−ε(1)k ζk−2 − δ(2)k ζk−1

γ
(2)
k

, wk = ckwk + skvk+1, wk+1 = skwk − ckvk+1. (2.13)

We list the algorithm SYMMLQ in Table 2.10 and give a list of properties including recurrence
relations for rk, Ark, and their 2-norms. Note that rk is not usually explicitly computed and its
norm can be obtained only in iteration k + 1. We do not compute Ark or its norm because (as
we will see) SYMMLQ is designed for compatible linear systems but not least-squares problems.
Most of the following SYMMLQ properties are presented and succinctly proved in the later part
of [81, section 5].

Proposition 2.11 (rk of SYMMLQ).

1. r0 = β1v1 = b and ‖r0‖ = β1.

2.2 Lanczos-Based Methods for Linear Systems 23

Table 2.10
Algorithm SYMMLQ with possible transfer to the CG point at the end. This algorithm also estimates
solution and residual norms χ = ‖xk‖, φ = ‖rk‖. At the end of the algorithm, if the recurrently computed
residual norm of CG point φC

k is smaller than that from SYMMLQ, the algorithm will compute the CG
iterate xC

k from the SYMMLQ iterate xk.

SYMMLQ(A, b, σ,maxit)→ x, φ, χ

β1 = ‖b‖2, v0 = 0, β1v1 = b, w1 = v1, x0 = 0
φ0 = β1, χ0 = 0, ζ−1 = ζ0 = 0, k = 1
while no stopping condition is true

LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1

//last right orthogonalization on middle two entries in last row of TTk
δ
(2)
k = ck−1δ

(1)
k + sk−1αk, γ

(1)
k = sk−1δ

(1)
k − ck−1αk

//last right orthogonalization to produce first two entries of Tk+1ek+2

ε
(1)
k+1 = sk−1βk+1, δ

(1)
k+1 = −ck−1βk+1

//current right orthogonalization to zero out βk+1

SymOrtho(γ(1)
k , βk+1)→ ck, sk, γ

(2)
k

//update solution, solution norm, residual norm, CG residual norm

if γ
(2)
k = 0
STOP //βk+1 = 0 and x = xk−1; or b /∈ R(A) and no solution

else

if k = 1, ζ1 = β1

γ
(1)
1

else ζk = −ε(1)k ζk−2−δ(2)k ζk−1

γ
(2)
k

end

χk =
√
χ2
k−1 + ζ2

k , φk−1 =
∥∥∥[−γ(2)

k ζk ε
(1)
k+1ζk−1

]∥∥∥, φCk = skck−1
ck

φCk−1

if φk−1 is small
xk = xk−1, φk = φk−1. STOP //xk−1 is solution

else

wk = ckwk + skvk+1, wk+1 = skwk − ckvk+1, xk = xk−1 + ζkwk

end

end

k ← k + 1
end

if φCk < φk and ck 6= 0, //transfer to CG point

xk ← xk +
(
ζksk

ck

)
wk+1, χk ←

√
χ2
k +

(
ζksk

ck

)2

, φk = φCk

end

x = xk, χ = χk, φ = φk

24 Chapter 2 Existing Iterative Methods for Hermitian Problems

2. For k ≥ 1, define ωk+1 = γ
(2)
k+1ζk+1 and %k+2 = ε

(1)
k+2ζk. Then

rk = ωk+1vk+1 − %k+2vk+2, (2.14)

φk := ‖rk‖ =
∥∥∥[ωk+1 %k+2

]∥∥∥ =
[
%k+1 + δ

(2)
k+1ζk %k+2

]
, where ϕk = ε

(1)
k+1ζk−1. (2.15)

Thus, V Tk rk = 0.

Proposition 2.12 (Ark of SYMMLQ).

1. Ar0 = β1(α1v1 + β2v2) and ‖Ar0‖ = β1

√
α2

1 + β2
2 .

2. Define ωk+1 = γ
(2)
k+1ζk+1 and %k+2 = ε

(1)
k+2ζk. Then

Ark = βk+1ωk+1vk − (αk+1ωk+1 − βk+2%k+2)vk+1 (2.16)

− (βk+2ωk+1 − αk+2%k+2)vk+2 − βk+3%k+2vk+3,

‖Ark‖ =

∥∥∥∥∥∥∥∥∥∥

βk+1ωk+1

αk+1ωk+1 − βk+2%k+2

βk+2ωk+1 − αk+2%k+2

−βk+3%k+2

∥∥∥∥∥∥∥∥∥∥

for k = 1, (2.17)

The following results say that it is impossible to have ‖Ark‖ = 0 while ‖rk‖ 6= 0, which is a
property of a symmetric least-squares solution. Thus SYMMLQ is not applicable to incompatible
symmetric linear system of equations.

Lemma 2.13. φk = 0⇔ ψk = 0.

Lemma 2.14 (Solution norm of SYMMLQ and its monotonicity). Let χ0 = 0. Then
χk = ‖xk‖2 = ‖zk‖ =

√
χ2
k−1 + ζ2

k is monotonically increasing as k increases.

Proposition 2.15 (SYMMLQ’s breakdown on incompatible systems). Suppose we want
to solve Ax = b where A = AT and b are given. In exact arithmetic, if γ(2)

k = 0, then SYMMLQ
breaks down. If δ(2)k = ε

(1)
k = 0, then xk−1 is our solution; otherwise, b /∈ R(A) and there is no

solution from SYMMLQ.

In finite precision, we may be able to obtain an exploding solution of SYMMLQ by disabling
the normal stopping rules. However, that is usually not a null vector of A. To obtain a null
vector of A, we recommend transferring to a CG point at the end or using w̄k when βk+1 = 0.

Proposition 2.16 (Transfer to CG point). Suppose that A is symmetric positive semidefinite.
Let xCk denote the kth iterate from CG, eCk := x− xCk , and φCk be the norm of the corresponding
residual rCk = b−AxCk . Then we have the following results:

1. xCk = xk +
(
ζksk

ck

)
wk+1.

2.
∥∥xCk ∥∥2

=

√
‖xk‖22 +

(
ζksk

ck

)2

≥ ‖xk‖2.

3. φCk = β1βk+1s1s2s3···sk−1∣∣∣γ(1)
k

∣∣∣ = |ck−1|sk

|ck| φCk−1.

2.2 Lanczos-Based Methods for Linear Systems 25

Lemma 2.17. If βk+1 = 0 and γ(2)
k = 0, then w̄k is a unit null vector of A.

Proof.

βk+1 = 0⇒ Lk = TkQk−1 =

γ
(1)
1

δ
(1)
2 γ

(2)
2

ε
(1)
3

.

. γ
(2)
k−1

ε
(1)
k δ

(2)
k 0

,

and thus Aw̄k = AVkQk−1ek = VkTkQk−1ek = VkLkek = 0, ‖w̄k‖2 = ‖VkQk−1ek‖ = 1. �

2.2.3 MINRES

MINRES is also built upon the Lanczos process. Within each Lanczos step, we solve the least-
squares subproblem

yk = arg min
y∈Rk

‖β1e1 − Tky‖2, (2.18)

by computing the QR factorization

QkTk =

[
Rk

0

]
=

γ
(1)
1 δ

(1)
2 ε

(1)
3

γ
(2)
2 δ

(2)
3 ε

(1)
4

. . .
. . .

. . .

. . .
. . . ε

(1)
k

. . . δ
(2)
k

γ
(2)
k

0

, Qk(β1e1) =

[
tk

φk

]
, (2.19)

where Qk = Qk,k+1 · · ·Q2,3Q1,2 is a product of (k+ 1)× (k+ 1) Householder reflectors designed
to annihilate the βi’s in the subdiagonal of Tk. Of course, this is the transpose of the LQ
factorization used in SYMMLQ, with Qk = PTk and Qk,k+1 = Pk,k+1 in (2.9)–(2.10). Thus our
subproblem becomes

yk = arg min
y∈Rk

∥∥∥∥∥
[
tk

φk

]
−

[
Rk

0

]
y

∥∥∥∥∥
2

, (2.20)

where tk =
[
τ1 τ2 · · · τk

]T
and

[
tk

φk

]
= β1Qk,k+1 · · ·Q2,3

c1

s1

0k−1

 = β1Qk,k+1 · · ·Q3,4

c1

s1c2

s1s2

0k−2

 = β1

c1

s1c2
...

s1 · · · sk−1ck

s1 · · · sk−1sk

. (2.21)

26 Chapter 2 Existing Iterative Methods for Hermitian Problems

Table 2.11
Algorithm MINRES. The algorithm also estimates φ = ‖rk‖, ψ = ‖Ark‖, χ = ‖xk‖, A = ‖A‖,
κ = cond(A).

MINRES(A, b, σ,maxit)→ x, φ, ψ, χ,A, κ
β1 = ‖b‖2, v0 = 0, β1v1 = b, φ0 = τ0 = β1, χ0 = 0, κ = 1
δ
(1)
1 = γmin = 0, c0 = −1, s0 = 0, d0 = d−1 = x0 = 0, k = 1

while no stopping condition is true,
LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1

//last left orthogonalization on middle two entries in last column of Tk

δ
(2)
k = ck−1δ

(1)
k + sk−1αk, γ

(1)
k = sk−1δ

(1)
k − ck−1αk

//last left orthogonalization to produce first two entries of Tk+1ek+1

ε
(1)
k+1 = sk−1βk+1, δ

(1)
k+1 = −ck−1βk+1

//current left orthogonalization to zero out βk+1

SymOrtho(γ(1)
k , βk+1)→ ck, sk, γ

(2)
k

//right-hand side, residual norms, and matrix norm

τk = ckφk−1, φk = skφk−1, ψk−1 = φk−1

√
(γ(1)
k)2 + (δ(1)k+1)2

if k = 1 Ak =
√
α2

1 + β2
2 else Ak = max{Ak−1,

√
β2
k + α2

k + β2
k+1} end

//update solution and matrix condition number

if γ
(2)
k 6= 0,

dk =
(
vk − δ(2)k dk−1 − ε(1)k dk−2

)
/γ

(2)
k , xk = xk−1 + τkdk, χk = ‖xk‖

γmin = min{γmin, γ
(2)
k }, κ = Ak/γmin

end

k ← k + 1
end

x = xk, φ = φk, ψ = φk

√
(γ(1)
k+1)2 + (δ(1)k+2)2, χ = χk, A = Ak

A compact way to describe the action of Qk,k+1 is

[
ck sk

sk −ck

] γ
(1)
k δ

(1)
k+1 0

βk+1 αk+1 βk+2

∣∣∣∣∣∣ φk−1

0

 =

 γ
(2)
k δ

(2)
k+1 ε

(1)
k+2

0 γ
(1)
k+1 δ

(1)
k+2

∣∣∣∣∣∣ τkφk
 . (2.22)

MINRES computes xk in Kk(A, b) as an approximate solution to our problem Ax = b:

xk = Vkyk = VkR
−1
k tk =: Dk

[
tk−1

τk

]
=
[
Dk−1 dk

][tk−1

τk

]
= xk−1 + τkdk, (2.23)

where it can be shown that

dk =
(
vk − δ(2)k dk−1 − ε(1)k dk−2

)
/γ

(2)
k . (2.24)

A careful implementation of MINRES needs memory for at most the matrix A and 5 working
n-vectors for vk, vk+1, dk−1, dk, and xk in each iteration (not counting the vector b). There are
2ν + 9n flops per iteration, where ν is number of nonzeros in A.

2.2 Lanczos-Based Methods for Linear Systems 27

Table 2.12
Algorithm CR [88, Algorithm 6.20].

CR(A, b,maxit)→ x, φ

x0 = 0, r0 = p0 = b, z0 = Ar0, w0 = Ap0, φ0 = ‖b‖, µ0 = rT0z0

k = 1
while no stopping condition is true

αk = µk−1/ ‖wk−1‖2, xk = xk−1 + αkpk−1, rk = rk−1 − αkwk−1, φk = ‖rk‖
zk = Ark, µk = rTkzk, βk = µk/µk−1, pk = rk + βkpk−1

wk = zk + βkwk−1, k ← k + 1
end

x = xk, φ = φk

Saad [88, Algorithm 6.20] derived a MINRES variant from GMRES (Arnoldi process [3] for
solving unsymmetric square linear system) and called it the conjugate residual (CR) algorithm.
CR to MINRES is like CG to LanczosCG; the residual vectors rk and their norms in CR and CG
are directly computed. CR needs 5 working vectors (xk, pk, rk, wk, zk) in memory per iteration,
not counting b. See Table 2.12 for the algorithm. Note: Saad [88, Algorithm 5.3] listed another
algorithm called Minimal Residual (MR) iteration, but this is unrelated to MINRES (we want
to caution the reader).

The following lemma gives a recurrence relation for rk. It says that the intermediate rk’s are
not orthogonal to Kk(A, b) except when βk+1 = 0. In that case, sk = 0 and rk = −φkvk+1 is
finally orthogonal to Kk(A, b). The residual norm can be recurred without computing rk.

Lemma 2.18 (rk for MINRES and monotonicity of ‖rk‖2). rk = s2krk−1 − φkckvk+1 and
‖rk‖2 = ‖rk−1‖2 sk. It follows that ‖rk‖2 ≤ ‖rk−1‖2.

Similarly, ‖Ark‖ can be efficiently computed by the following recurrence relation. While ‖rk‖2
is monotonically decreasing, ‖Ark‖ is often observed to be oscillating.

Lemma 2.19 (Ark for MINRES).

Ark = ‖rk‖
(
γ

(1)
k+1vk+1 + δ

(1)
k+2vk+2

)
,

‖Ark‖ = ‖rk‖
√[

γ
(1)
k+1

]2
+
[
δ
(1)
k+2

]2
.

Lemma 2.20 (Recurrence formula for ‖Axk‖ for MINRES).

‖Axk‖2 = ‖tk‖2 =

∥∥∥∥∥
[
tk−1

τk

]∥∥∥∥∥ .
Proposition 2.21. If b ∈ R(A), and in MINRES βi > 0 for i = 1, . . . , k, but βk+1 = 0, then
γ

(1)
k > 0 and thus Tk and Rk are nonsingular.

Proof. Suppose γ(1)
k = 0. Then sk = 0 and thus rk = 0 and φk = ‖rk‖ = skφk−1 = 0. Then

Rk = QkTk is singular—of order k and rank k−1—and MINRES will proceed to set xk := xk−1.

28 Chapter 2 Existing Iterative Methods for Hermitian Problems

It follows that rk := rk−1 and φk = φk−1 = 0. However, this contradicts the fact that MINRES
had not stopped at the (k − 1)th iteration. �

Corollary 2.22. If in MINRES βi > 0 for i = 1, . . . , k, and βk+1 = 0, and γ
(1)
k = 0, then Tk

and Rk are singular (both of order k and rank k − 1) and b /∈ R(A).

In the following, we review the definition of minimum-length solution or pseudoinverse solution
for a linear system. Then we prove that MINRES returns the unique minimum-length solution
for any symmetric compatible (possibly singular) system.

Definition 2.23 (Moore-Penrose conditions and pseudoinverse [50]). Given any m× n
matrix A, X is the pseudoinverse of A if it satisfies the four Moore-Penrose conditions:

1. AXA = A.

2. XAX = X.

3. (AX)H = AX.

4. (XA)H = XA.

Theorem 2.24 (Existence and uniqueness of the pseudoinverse). The pseudoinverse of
a matrix always exists and is unique.

If A is square and nonsingular, then A†, the pseudoinverse of A, is the matrix inverse A−1.
Even if A is square and nonsingular, we rarely compute A−1. Instead, we would compute

say the LU decomposition PA = LU or QR decomposition A = QR. If we want the solution
of Ax = b, we do not compute x = A−1b but instead, solve the triangular systems Ly = Pb

and Ux = y if we have computed LU decomposition of A, or Rx = QTb in the case of QR
decomposition. Likewise, we rarely compute the pseudoinverse of A. It is mainly an analytical
tool. If A is singular, A−1 does not exist, but Ax = b may have a solution. In that case, there are
infinitely many solutions. In some applications we want the unique minimum-length solution,
which could be written in terms of the pseudoinverse of A: x† = A†b. However, to compute x†, we
would not compute A†. Instead we could compute some rank-revealing factorization of A such as
the reduced singular value decomposition A = UΣV T, where U and V have orthogonal columns
and Σ is diagonal with positive entries. Then the minimum-length solution is x† = V Σ−1UTb.

Theorem 2.25. If b ∈ R(A), and in MINRES βi > 0 for i = 1, . . . , k, but βk+1 = 0, then xk is
the pseudoinverse solution of Ax = b.

Proof. We know that span(v1, . . . , vk) ⊆ R(A). However, we assume span(v1, . . . , vk) = R(A).
Without this assumption, the result is still true but the proof will be more complicated.

By Proposition 2.21, when βk+1 = 0, R−1
k exists. Moreover,

xk = Vkyk = VkR
−1
k tk = VkR

−1
k β1Qk−1e1 = VkR

−1
k Qk−1V

T
k b. (2.25)

Thus, we define

A\ := VkR
−1
k Qk−1V

T
k = VkT

−1
k V Tk since Qk−1Tk = Rk.

2.3 Existing Iterative Methods for Hermitian Least-Squares 29

Table 2.13
Subproblem definitions of MINRES, GMRES, QMR, and LSQR.

Method Subproblem Factorization Estimate of xk

(Underlying process) (Matrix structure)

MINRES [81] yk = arg miny∈Rk

∥∥Tky − β1e1
∥∥ QR: xk = Vkyk

(Lanczos [63]) (Tk symmetric tridiagonal) QkTk =

[
Rk

0

]
∈ Kk(A, b)

GMRES [89] yk = arg miny∈Rk

∥∥Hky − h1,0e1
∥∥ QR: xk = Vkyk

(Arnoldi [3]) (Hk upper Hessenberg) QkHk =

[
Rk

0

]
∈ Kk(A, b)

QMR [37] yk = arg miny∈Rk

∥∥Tky − β1e1
∥∥ QR: xk = Vkyk

(Lanczos bi-

orthogonalization [63])
(Tk unsymmetric tridiagonal) QkTk =

[
Rk

0

]
∈ Kk(A, b)

LSQR [82, 83] yk = arg miny∈Rk

∥∥Bky − β1e1
∥∥ QR: xk = Vkyk

(Golub-Kahan bi-

diagonalization [47])
(Bk lower bidiagonal) QkBk =

[
Rk

0

]
∈ Kk(ATA,ATb)

We want so show in the following that A\ is the pseudoinverse of A and thus xk is the minimum-
length solution of Ax = b. We start with the third and the fourth Moore-Penrose conditions:

AA\ = AVkT
−1
k V Tk = VkTkT

−1
k V Tk = VkV

T
k ,

A\A = VkT
−1
k V Tk A = VkT

−1
k TkV

T
k = VkV

T
k ,

Thus, AA\ and A\A are symmetric, meaning A\ satisfies the third and fourth Moore-Penrose
conditions. Lastly we show A\ satisfies the first and the second Moore-Penrose conditions. By
our assumption, the columns of Vk span R(A). Thus VkV Tk A = A. It follows that AA\A =
VkV

T
k A = A and A\AA\ = VkV

T
k A = A. �

2.3 Existing Iterative Methods for Hermitian Least-Squares

When we have a large and sparse Hermitian least-squares problem, MINRES is the natural solver.
In each iteration, it solves a least-squares subproblem:

min
∥∥Tkyk − β1e1

∥∥ , xk = Vkyk.

However, we want to point out that while the MINRES solution is a least-squares solution
(where ‖rk‖ is minimized), it may not be the minimum-length solution (where ‖yk‖ and ‖xk‖
are minimized).

In this section, we review MINRES on singular symmetric least-squares problems. We also
mention some Krylov subspace methods for sparse least-squares problems when A is not nec-
essarily symmetric. In particular, GMRES and QMR are applicable for A unsymmetric, and
LSQR is applicable to any rectangular matrix A. These solvers all have subproblems in the form
of least-squares problems. See Table 2.13 and Table 2.14.

30 Chapter 2 Existing Iterative Methods for Hermitian Problems

Table 2.14
Bases and subproblem solutions in MINRES, GMRES, QMR, and LSQR.

Method New basis zk Estimate of xk

MINRES Dk := VkR
−1
k Rkzk = β1

[
Ik 0

]
Qke1 xk = Dkzk

GMRES – – xk = Vkyk

QMR Wk := VkR
−1
k Rkzk = β1

[
Ik 0

]
Qke1 xk = Wkzk

LSQR Wk := VkR
−1
k Rkzk = β1

[
Ik 0

]
Qke1 xk = Wkzk

2.3.1 MINRES

In this section, we want to show that MINRES produces a generalized-inverse solution when we
have a least-squares problem min ‖Ax− b‖, where A is singular and b /∈ R(A).

The pseudoinverse is a kind of generalized inverse and there are other kinds (see [7]). Gener-
alized inverses of a rank-deficient matrix may not be unique.

Definition 2.26 (Generalized inverses). For i = 1, 2, 3, 4, X is the {i}-inverse of an m× n
matrix A if it satisfies the ith Moore-Penrose condition. Likewise, X is the {i, j}-inverse of A if
it satisfies both the ith and jth Moore-Penrose conditions. Lastly, X is the {i, j, k}-inverse of A
if it satisfies the ith, jth, and kth Moore-Penrose conditions.

Theorem 2.27. Consider a symmetric linear least-squares problem min ‖Ax− b‖, with A = AT

singular and b /∈ R(A). If βi 6= 0 for i = 1, . . . , k, βk+1 = γ
(1)
k = 0 and ‖Ark‖ = 0, then

xk := xk−1 is a {2, 3}-inverse solution, meaning xk = Xb for some X being a {2, 3}-inverse
of A. Moreover, xk is a {1, 2, 3}-inverse solution if the columns of Vk span R(A).

Proof. If βk+1 = 0 and also γ(1)
k = 0 in (2.20), then iteration k is going to be our last iteration in

the Lanczos process, and (2.20) becomes the following underdetermined least-squares problem:

min

∥∥∥∥∥∥∥∥

Rk−1 s

0 0

0

[
yk−1

ηk

]
−

tk−1

φk−1

0

∥∥∥∥∥∥∥∥ = min

∥∥∥∥∥[Rk−1 s
][yk−1

ηk

]
−

[
tk−1

φk−1

]∥∥∥∥∥ ,

where
s :=

[
ε
(1)
k ek−2

δ
(2)
k

]
6= 0 since ε

(1)
k = sk−2βk.

We choose to set ηk = 0, thus simplifying the subproblem to Rk−1yk−1 = tk−1, which is actually
our previous subproblem in the (k − 1)th iteration. Therefore

xk := xk−1 = Vk−1yk−1 = Vkyk, where yk :=

[
yk−1

0

]
, (2.26)

‖rk‖ = ‖rk−1‖ = φk−1 > 0 (or we would have stopped in the (k − 1)th iteration), (2.27)

‖Ark‖ = ‖Ark−1‖ = ‖rk−1‖
√[

γ
(2)
k

]2
+
[
δ
(2)
k+1

]2
= 0, (2.28)

since βk+1 = γ
(1)
k = 0 =⇒ γ

(2)
k = δ

(2)
k+1 = 0 by (2.22), confirming that xk−1 is our least-squares

2.3 Existing Iterative Methods for Hermitian Least-Squares 31

solution. Moreover, by (2.26)

xk = Vkyk = Vk

[
yk−1

0

]
= Vk

[
R−1
k−1 0

0 0

][
tk−1

φk−1

]
= Vk

[
R−1
k−1 0

0 0

]
(β1Qk−1e1) (2.29)

= VkR
]
kQk−1V

T
k b, where R]k :=

[
R−1
k−1 0

0 0

]
(2.30)

= A]b, where A] := VkR
]
kQk−1V

T
k . (2.31)

We will check if A] satisfies any of the Moore-Penrose conditions in the following. Recall that
when βk+1 = γ

(1)
k = 0, then

AVk = Vk+1Tk = VkTk = VkQ
T
k−1Rk, Rk =

[
Rk−1 s

0 0

]
, V Tk AVk = Tk. (2.32)

First, we show that A] satisfies the third but not the fourth Moore-Penrose conditions:

AA] = AVkR
]
kQk−1V

T
k = VkQ

T
k−1RkR

]
kQk−1V

T
k = VkQ

T
k−1

[
Ik−1

0

]
Qk−1V

T
k , (2.33)

A]A = VkR
]
kQk−1V

T
k A = VkR

]

kQk−1TkV
T
k = VkR

]
kRkV

T
k , (2.34)

so that AA] is symmetric, but
(
R]kRk

)T
=
[
Ik−1 R

−1
k−1s

0 0

]T
6= R]kRk, since s 6= 0 by (2.27). Thus

A]A is not symmetric.
Next, we check the first Moore-Penrose condition:

AA]A = (AVk)R
]
kQk−1

(
V Tk A

)
=
(
VkQ

T
k−1Rk

)
R]kQk−1

(
TkV

T
k

)
by (2.31) – (2.32) (2.35)

= VkQ
T
k−1RkR

]
kRkV

T
k = VkQ

T
k−1RkV

T
k since it is easy to verify RkR

]
kRk = Rk (2.36)

= AVkV
T
k by (2.32) (2.37)

= A(Vk,R + v1,N c
T)(Vk,R + v1,N c

T)T, where Vk,R =
[
v1,R · · · vk,R

]
by (2.2) (2.38)

= AVk,RV
T
k,R= A if the columns of Vk,R span R(A). (2.39)

Lastly, A] satisfies the second Moore-Penrose condition:

A]AA] = VkR
]
kRkV

T
k VkR

]
kQk−1V

T
k by (2.34) (2.40)

= VkR
]
kRkR

]
kQk−1V

T
k = VkR

]
kQk−1V

T
k = A] since R]kRkR

]
k = R]k. (2.41)

�

Example 3. MINRES on min ‖Ax − b‖ with A =
[

1 0 0
0 1 0
0 0 0

]
, b =

[
1
1
1

]
. The minimum-length

solution is x† =
[

1
1
0

]
and the residuals are r† = b−Ax† =

[
0
0
1

]
and Ar† = 0. However, MINRES

returns a least-squares solution x] =
[

1
1
1

]
with residuals r] = b− Ax] =

[
0
0
1

]
and Ar] = 0. Thus

we need a new stopping condition ‖Ark‖ ≤ tol and a modified MINRES algorithm to get the
minimum-length solution.

32 Chapter 2 Existing Iterative Methods for Hermitian Problems

Table 2.15
Algorithm Arnoldi.

Arnoldi(A, b,maxit)→ Vk,Hk

β1 = ‖b‖2, v1 = b/β1, k = 0
while hk,k−1 6= 0 and k ≤ maxit

k ← k + 1, w := Avk

for i = 1, . . . , k //modified Gram-Schmidt

hi,k := wTvi, w := w − hi,kvi, hk+1,k = ‖w‖2
end

if hk+1,k = 0, vk+1 = 0 else vk+1 = w/hk+1,k end

end

2.3.2 GMRES

The Lanczos process, the Arnoldi process, and the modified Gram-Schmidt process are closely
related. Given k linearly independent vectors u1, . . . , uk in Rn, the modified Gram-Schmidt
process generates k orthonormal vectors v1, . . . , vk, where each vi ∈ span{u1, . . . , ui}. Given
A ∈ Rn×n and b ∈ Rn, modified Gram-Schmidt on {b, Ab, . . . , Ak−1b} is called the Arnoldi
process, and when A is symmetric, it is equivalent to the Lanczos process.

Given A and b, the Arnoldi process computes vectors vk as follows:

β1v1 = b, where β1 = ‖b‖2 serves to normalize v1, (2.42)

wk = Avk, hi,k = wTkvi,

hk+1,kvk+1 = wk − h1,kv1 − · · · − hk,kvk, (2.43)

where hk+1,k serves to normalize vk+1 (see Table 2.15). In matrix form,

AVk = Vk+1Hk, where Vk =
[
v1 · · · vk

]
, Hk =

[
Hk

hk+1,ke
T
k

]
, Hk = [hi,j]

k,j+1
j=1,i=1. (2.44)

Note that Hk is an upper Hessenberg matrix. In exact arithmetic the columns of Vk are or-
thonormal, and the process stops when hk+1,k = 0 (k ≤ n). We then obtain AVk = VkHk.

GMRES [89] is an algorithm for solving Ax = b for square and unsymmetric A. In each
Arnoldi iteration, GMRES is prepared to solve the least-squares subproblem

yk = arg min
y∈Rk

‖Hky − β1e1‖2

and set xk = Vkyk. All vectors v1, . . . , vk are saved, and only the final yk and xk need be
computed, using QR factorization of

[
Hk β1e1

]
. We list the algorithm in Table 2.16.

When A = AT, GMRES is mathematically equivalent to MINRES but does not enjoy the
short recurrence relation. When k is large, Vk and Hk become memory-consuming. For GMRES
to be practical on large systems, it is often restarted [110, Figure 6.1] every m steps for some
small positive integer m. However, the convergence properties are then unpredictable except in
special cases, and stagnation (lack of progress) may occur for some values of m [88, p. 172].

2.3 Existing Iterative Methods for Hermitian Least-Squares 33

Table 2.16
Algorithm GMRES. This algorithm also estimates φ = ‖b−Ax‖.

GMRES(A, b, tol,maxit)→ x, φ

β1 = ‖b‖2, v1 = b/β1, x0 = 0, φ0 = β1, k = 0
while (hk,k−1 6= 0) or (φi > tol) or (k < maxit)

k ← k + 1, w := Avk

for i = 1, . . . , k //modified Gram-Schmidt

hi,k := wTvi, w := w − hi,kvi, hk+1,k = ‖w‖2
end

if hk+1,k = 0
vk+1 = 0

else

vk+1 = w/hk+1,k

for j = 2, . . . , k
r
(2)
j−1,k = cj−1r

(1)
j−1,k + sj−1hj,k, r

(1)
j,k = sj−1r

(1)
j−1,k − cj−1hj,k

end

r
(2)
k,k =

√[
r
(1)
k,k

]2
+ h2

k+1,k, ck = r
(1)
k,k/r

(2)
k,k, sk = h

(2)
k+1,k/r

(2)
k,k

τk = ckφk−1, φ̄k = skφ̄k−1, φk =
∣∣φ̄k∣∣

end

end

Solve Rkyk = tk by back substitution, x = Vkyk, φ = φk

2.3.3 LSQR

Given a linear least-squares problem min ‖Ax− b‖, r := b−Ax, the Golub-Kahan bidiagonaliza-
tion [47] may be derived by applying the Lanczos process to the augmented system[

I A

AT

][
r

x

]
=

[
b

0

]
,

but the process has structure and is better stated directly. Given A and b, the Golub-Kahan
process computes two sets of orthogonal vectors vk and uk according to

β1u1 = b, α1v1 = ATu1,

βk+1uk+1 = Avk − αkuk, αk+1vk+1 = ATuk+1 − βk+1vk,

where βi and αi serve to normalize ui and vi respectively. In matrix form,

AVk = Uk+1Bk, where Vk =
[
v1 · · · vk

]
,

ATUk+1 = VkB
T
k , where Uk+1 =

[
u1 · · · uk+1

]
,

34 Chapter 2 Existing Iterative Methods for Hermitian Problems

Table 2.17
Algorithm Bidiag1 (the Golub-Kahan process) [47],[82, section 3].

Bidiag1(A, b,maxit)→ u1, . . . , uk+1, v1, . . . , vk+1, α1, . . . , αk+1, β1, . . . , βk+1

β1u1 = b, α1v1 = ATu1, k = 1
while αk 6= 0 and βk 6= 0 and k ≤ maxit

βk+1uk+1 = Avk − αkuk //βk+1 normalizes uk+1 in 2-norm
αk+1vk+1 = ATuk+1 − βk+1vk //αk+1 normalizes vk+1 in 2-norm
k ← k + 1

end

Bk :=

α1

β2
. . .
. . . αk−1

βk−1 αk

, Bk =

[
Bk

βk+1e
T
k

]
.

In exact arithmetic, the columns of Vk and Uk are orthonormal and the process stops when
βk+1 = 0 or αk+1 = 0 (k ≤ n). Table 2.17 lists a way of implementing the process Bidiag1 [82,
section 3].

LSQR [82, 83] uses the Golub-Kahan process to solve least-squares problems min ‖Ax − b‖2
with A of arbitrary shape and rank. In the kth iteration of Bidiag1, LSQR solves a subproblem
that involves the lower bidiagonal matrix Bk of size (k + 1)× k:

min ‖Bky − β1e1‖.

Since this is an overdetermined problem, we cannot just apply forward substitution. QR fac-
torization is the natural tool. A sequence of Householder reflectors tranforms Bk to an upper
bidiagonal matrix:

Qk

[
Bk β1e1

]
=

[
Rk fk

φ
(1)
k+1

]
=

ρ1 θ2 φ1

.
...

ρk−1 θk φk−1

ρk φk

φ
(1)
k+1

,

where ρi = ρ
(2)
i and φi = φ

(2)
i in Table 2.18.

The convergence of LSQR depends on the number of distinct nonzero singular values of A,
as illustrated by the following example.

Example 4. If A = diag ([−1 1 i −i 0]) and b = e = [1 1 1 1 0]T, then A has only one distinct
nonzero singular value 1 and LSQR takes 1 iteration (2 matrix-vector multiplications) to converge
to the minimum-length solution x† = [−1 1 −i i 0]T. We note that A is complex symmetric, but not
Hermitian. Hence, CG, MINRES and SYMMLQ are not necessarily applicable to this problem.

2.4 Stopping Conditions and Norm Estimates 35

Table 2.18
Algorithm LSQR [82, section 4]. This algorithm also estimates φ = ‖r‖, ψ = ‖ATr‖, where r = b−Ax.

LSQR(A, b, tol,maxit)→ x, φ, ψ

β1u1 = b, α1v1 = ATu1, w1 = v1, x0 = 0,
φ

(1)
1 = β1, ρ

(1)
1 = α1, k = 0

while stopping conditions not satisfied
k = k + 1
βk+1uk+1 = Avk − αkuk, αk+1vk+1 = ATuk+1 − βk+1vk

SymOrtho(ρ(1)
k , βk+1)→ ck, sk, ρ

(2)
k

θk+1 = skαk+1, ρ
(1)
k+1 = −ckαk+1, φ

(2)
k = ckφ

(1)
k ,

φ
(1)
k+1 = skφ

(1)
k , ψk = φ

(1)
k+1|ρ

(1)
k+1|

xk = xk−1 + (φ(2)
k /ρ

(2)
k)wk, wk+1 = vk+1 − (θk+1/ρ

(2)
k)wk

end

x = xk, φ = φ
(1)
k+1, ψ = ψk

2.3.4 QMR and SQMR

When a matrix is unsymmetric and short recurrence relations are desired (a property not available
in the Arnoldi process), we may use the unsymmetric Lanczos process to produce two sets of
biorthogonal vectors {vi} and {wi}. If we define Vk := [v1 ... vk] and Wk := [w1 ... wk], then

WT
k Vk = D, 〈v1, . . . , vk〉 = Kk(A, v1), 〈w1, . . . , wk〉 = Kk(AT, w1),

where D is a nonsingular diagonal matrix.
Fletcher [35] originated Bi-CG and van der Vorst [109] designed Bi-CGSTAB (a stabilized

version) for solving unsymmetric Ax = b, both based on the Lanczos biorthogonalization process.
They are not intended for incompatible systems.

Freund and Nachtigal’s QMR [37] uses different subproblems from those in Bi-CG (more like
the least-squares subproblems in MINRES and LSQR). It would apply to incompatible systems
if a stopping rule based on ‖Ark‖ were implemented. SQMR [38] is a simplified version for
symmetric linear systems. When A is symmetric, QMR and SQMR without preconditioner are
mathematically equivalent to MINRES.

2.4 Stopping Conditions and Norm Estimates

This section summarizes the stopping conditions and various estimates that may be computed
in CG, SYMMLQ and MINRES. Some are new and improved over what we had before. For
convergence rates, see [62].

The stopping conditions for the solvers are much more complicated than for the Lanczos
process itself. In fact, we recommend a family of stopping conditions in a similar spirit to the
suggestions in [82, 83, 2, 84, 80]:

36 Chapter 2 Existing Iterative Methods for Hermitian Problems

Lanczos Normwise relative backward errors (NRBE) Regularization attempts

βk+1 ≤ n‖A‖ε ‖rk‖2/ (‖A‖‖xk‖+ ‖b‖) ≤ tol κ(A) ≥ maxcond

k = maxit ‖Ark‖2/ (‖A‖‖rk‖) ≤ tol ‖xk‖2 ≥ maxxnorm

where tol, maxit, maxcond, and maxxnorm are input parameters. All quantities are estimated
cheaply by updating estimates from the preceding iteration. The estimate of ‖Ark‖ is needed for
incompatible systems.

Different relative residual norms have been defined and we prefer the following:

‖rk‖2
‖A‖F ‖xk‖2 + ‖b‖2

and
‖Ark‖2
‖A‖F ‖rk‖2

, (2.45)

or
‖rk‖2

‖A‖2 ‖xk‖2 + ‖b‖2
and

‖Ark‖2
‖A‖2 ‖rk‖2

. (2.46)

Relative norms are much more telling than absolute norms when ‖A‖, ‖b‖, or ‖x‖ are tiny or large.
Since ‖A‖F =

√∑
σ2
i ≥ σ1 = ‖A‖2, (2.45) could make the algorithms stop sooner than (2.46).

2.4.1 Residual and Residual Norm

In CG, ‖rk‖ is directly computed while rk is given by a short recurrence relation. In LanczosCG,
it can be shown that

rk = (−1)k ‖rk‖ vk+1, ‖rk‖2 = |ζk|βk+1.

For SYMMLQ, by Proposition 2.11, r0 = β1v1 and ‖r0‖ = β1. Moreover, if we define
ωk+1 = γ

(2)
k+1ζk+1 and %k+2 = ε

(1)
k+2ζk, we have

rk = ωk+1vk+1 − %k+2vk+2, ‖rk‖2 =
∥∥∥[ωk+1 %k+2

]∥∥∥ .

For MINRES, by Lemma 2.18, the residual in the kth step is

rk = s2krk−1 − φkckvk+1, ‖rk‖2 = φk = φk−1sk = ‖rk−1‖2 sk ≤ ‖rk−1‖2 .

2.4.2 Norm of Ark

For LanczosCG, ‖Ark‖ can be obtained only in iteration k + 1 when βk+2 is available:

Ar0 = ‖r0‖ (β2v2 + α1v1) , ‖Ar0‖ = ‖r0‖
√
α2

1 + β2
2 ,

Ark = (−1)k ‖rk‖ (βk+2vk+2 + αk+1vk+1 + βk+1vk) ,

‖Ark‖ = ‖rk‖
√
β2
k+1 + α2

k+1 + β2
k+2 for k = 1,

2.4 Stopping Conditions and Norm Estimates 37

For CG, by Lemma 2.5, ‖Ark‖ can be computed when µk+2 and νk+1 are available in iteration
k + 1:

‖Ar0‖ = ‖r0‖

√
1 + µ2

ν2
1

,

‖Ark‖ = ‖rk‖

√
µk+1

ν2
k

(
1 + µk+1 +

2νk
νk+1

)
+

1 + µk+2

ν2
k+1

for k = 1, . . . when qTkAqk 6= 0,

‖Ark‖ = ‖rk‖
√
µk+1

ν2
k

(1 + µk+1) when qTkAqk = 0.

Lemma 2.6 says that CG is good for compatible symmetric linear systems, but not linear least-
squares problem. Thus we usually do not compute Ark or its norm.

For SYMMLQ, recall from Proposition 2.12, with %k+2 := ε
(1)
k+2ζk:

Ar0 = β1(α1v1 + β2v2), ‖Ar0‖ = β1

√
α2

1 + β2
2 ,

Ark =βk+1ωk+1vk − (αk+1ωk+1 − βk+2%k+2)vk+1

− (βk+2ωk+1 − αk+2%k+2)vk+2 − βk+3%k+2vk+3,

‖Ark‖ =

∥∥∥∥∥∥∥∥∥∥

βk+1ωk+1

αk+1ωk+1 − βk+2%k+2

βk+2ωk+1 − αk+2%k+2

−βk+3%k+2

∥∥∥∥∥∥∥∥∥∥

for k = 1,

However, by Lemma 2.13, SYMMLQ is like CG: good for linear systems but not least-squares
problems. Thus, we usually do not compute Ark or its norm.

Lastly for MINRES, by Lemma 2.19,

Ark = ‖rk‖
(
γ

(1)
k+1vk+1 + δ

(1)
k+2vk+2

)
, ‖Ark‖ = ‖rk‖

√[
γ

(1)
k+1

]2
+
[
δ
(1)
k+2

]2
.

2.4.3 Solution Norms

For CG and MINRES, we recommend computing ‖xk‖ directly. For SYMMLQ, by Lemma 2.14,
we have the following short recurrence relation:

χ1 = ‖x1‖2 = ζ1, ‖xk‖2 = ‖zk‖ =
√
χ2
k−1 + ζ2

k , k > 1.

2.4.4 Matrix Norms

The relative stopping conditions (2.45)–(2.46) require estimates of ‖A‖2 and ‖A‖F . We now
discuss a few methods for estimating these two matrix norms.

The Matlab function NORMEST applies the power method on ATA to estimate ‖A‖2 up to
some specified tolerance and is recommended for large and sparse A. The method could fail
for reasons that the power method could fail—for example, if the initial vector is orthogonal
to the dominant eigenvector of ATA or if it lies in the nullspace of A. However, unlike the
standard power method, it would work even if ATA has multiple dominant eigenvalues of the

38 Chapter 2 Existing Iterative Methods for Hermitian Problems

same magnitude because the convergence condition is∣∣∣‖Ax(k)‖ − ‖Ax(k−1)‖
∣∣∣ < tol ‖Ax(k)‖.

Lemma 2.28 ([107, Theorem 5.3]). Let A = UΣV T be the full singular value decomposition
of A with Σ = diag(σ1, . . . , σn), where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σi = 0 for i > r = rank(A).
Then ‖A‖2 = σ1 and ‖A‖F =

(∑r
i=1 σ

2
i

)1/2 = ‖Σ‖F ≥ ‖A‖2.

Given a matrix, we can estimate its singular values from any submatrix.

Theorem 2.29 (Interlacing property of matrix singular values [102]). Suppose A is a
complex matrix of size m × n and B is a submatrix of A obtained by deleting 1 column (or 1
row) from A. Define r := min{m,n} and s := min{m,n − 1}. Clearly, s = r or s = r − 1. Let
σ1, . . . , σr denote the singular values of A sorted in descending order (σ1 ≥ · · · ≥ σr ≥ 0) and
γ1, . . . , γs be the singular values of B, also in descending order. Then

σ1 ≥ γ1 ≥ σ2 ≥ γ2 ≥ · · · ≥ σr−1 ≥ γr−1 ≥ σr if s = r − 1,

σ1 ≥ γ1 ≥ σ2 ≥ γ2 ≥ · · · ≥ σr−1 ≥ γr−1 ≥ σr ≥ γr if s = r.

In particular, the equalities hold if the deleted column (or row) is a zero vector.

Since ‖A‖2 = σ1(A), an immediate result of the interlacing theorem is the following.

Corollary 2.30. The two-norm of a matrix is greater than or equal to that of its submatrix.

Lemma 2.31. For LanczosCG, SYMMLQ, and MINRES, ‖A‖2 ≥
∥∥Tk∥∥2

≥ ‖Tk‖2.

Proof. Assuming exact arithmetic, Vk has orthonormal columns. It follows that

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 ≥ sup
‖Vkx‖2=‖x‖2=1

‖AVkx‖2 = ‖AVk‖2 =
∥∥Vk+1Tk

∥∥
2

=
∥∥Tk∥∥2

≥ ‖Tk‖2 by Corollary 2.30.

�

To estimate a lower bound for ‖A‖ from within the Lanczos process, we can use maxi=1,...,k ‖pi‖
with pi = Avi, because vi is a unit vector. The largest ‖pi‖ is the best estimate. However,
pi = Avi is the i-th column of AVi = Vi+1Ti and hence pi = Vi+1Tiei. A good approximation to
‖pi‖ should therefore be ∥∥Tiei∥∥2

=
∥∥∥∥[βi αi βi+1

]T∥∥∥∥ ,
which is cheaper than directly computing ‖pi‖. Although orthogonality of Vi+1 is assumed, the
norms are essentially the same in practice. See Figure 2.2 to see how typically close they are. In
fact, Paige [78, equation (19)] showed that if A has at most m nonzeros per row,∣∣∣∣∣

∥∥∥∥[βk αk βk+1

]T∥∥∥∥2

− ‖pk‖2
∣∣∣∣∣ ≤ 4k(3n+ 19 +m ‖pk − αkvk‖) ‖A‖22 ε.

2.4 Stopping Conditions and Norm Estimates 39

We have proven the following lemma, which allows us to estimate a lower bound for ‖A‖2
from k samples within SYMMLQ and MINRES, without having to use NORMEST as we have
recommended in the CG case.

Lemma 2.32. For LanczosCG, SYMMLQ, and MINRES, ‖A‖2 ≥ max{
∥∥T1e1

∥∥
2
, . . . ,

∥∥Tkek∥∥2
},

where
∥∥Tiei∥∥2

=
∥∥[βi αi βi+1]T

∥∥. If we define A(1)
2 =

∥∥T1e1
∥∥

2
, then A(k)

2 = max{A(k−1)
2 ,

∥∥Tkek∥∥2
}

is monotonically increasing and thus gives an improving estimate of ‖A‖2 as k increases.

A lower bound for ‖A‖2 in (2.45) means that the Lanczos-based algorithms may iterate more
than necessary, so we want a good lower bound. With the test cases we have run, Lemma 2.32
does seem to provide a good estimate of the order of matrix norms—see Figure 2.2 for the norm
estimates on 12 matrices of different sizes from the Florida matrix collection [108].

If (2.46) is to be used instead of (2.45), then the following lemma would be helpful.

Lemma 2.33. For LanczosCG, MINRES, and SYMMLQ, ‖A‖F ≥
∥∥Tk∥∥F . Moreover, if we

define A(1)
F :=

∥∥T1

∥∥
F

=
∥∥[α1 β2]T

∥∥
2
, then A(k)

F :=
√

(A(k−1)
F)2 +

∥∥Tkek∥∥2

2
is strictly increasing

and thus gives an improving estimate of ‖A‖F as k increases.

Proof. Assuming exact arithmetic, Vk has orthonormal columns. Let A = UΣV T be the full
singular value decomposition of A. It follows that∥∥Tk∥∥F =

∥∥Vk+1Tk
∥∥
F

= ‖AVk‖F =
∥∥UΣV TVk

∥∥
F

=
∥∥ΣV TVk∥∥F =: ‖ΣW‖F ,

where W = V TVk is of size n× k (n ≥ k) with orthonormal columns. Thus

‖ΣW‖2F = trace(ΣWWTΣ) = trace(ΣZΣ), where Z := WWT

=
n∑
i=1

σ2
i zii =

n∑
i=1

σ2
i

k∑
j=1

w2
ij

=
n∑
i=1

σ2
i ‖W (i, :)‖22 , where W (i, :) denotes the ith row of W

≤
n∑
i=1

σ2
i ‖W‖

2
2 by Corollary 2.30

≤
n∑
i=1

σ2
i = ‖Σ‖2F = ‖A‖2F since σ1(W) = 1 = ‖W‖2 .

�

Earlier implementations of SYMMLQ and MINRES use ‖A‖F estimated from ‖Tk‖F , but it
is an upper bound for ‖A‖2 by Lemma 2.28. This upper bound actually works well in most test
cases we have tried. However, when there are many iterations (meaning Tk has high dimension
possibly > n), it could be a large overestimate and lead to premature termination.

40 Chapter 2 Existing Iterative Methods for Hermitian Problems

1 2 3 4 5 6 7 8 9 10 11 12

10
−6

10
−4

10
−2

| NORMEST (A)− ‖A‖2|/‖A‖2
|max‖pi‖2 − ‖A‖2|/‖A‖2
|max‖Tke i‖2 − ‖A‖2|/‖A‖2

1 2 3 4 5 6 7 8 9 10 11 12

10
−1

10
0

|‖Tk‖F − ‖A‖F |/‖A‖F

Figure 2.2 Estimating ‖A‖2 and ‖A‖F using different methods on 12 test cases. The results show that
Lemmas 2.32 and 2.33 provide good estimates of the matrix norms. This figure can be reproduced by
testminresQLPNormA4.

2.4.5 Matrix Condition Numbers

Theorem 2.34. [107, Theorem 12.1, Theorem 12.2] Let A ∈ Rn×n be nonsingular and consider
the equation Ax = b. The problem of computing b, given x, has condition number

κb =
‖A‖ ‖x‖
‖b‖

≤ κ(A)

with respect to perturbations of x. The problem of computing x, given b, has condition number

κx =

∥∥A−1
∥∥ ‖x‖
‖b‖

≤ κ(A).

The above theorem says that if A is perturbed by ∆A and x is given, then the perturbation
in b is approximately bounded as follows:

‖∆b‖ / ‖b‖
‖∆A‖ / ‖A‖

≈ κb ≤ κ(A) =⇒ ‖∆b‖ .
κ(A) ‖b‖ ‖∆A‖

‖A‖
.

2.4 Stopping Conditions and Norm Estimates 41

Likewise, if A is perturbed by ∆A and b is given, then the perturbation in x is approximately
bounded as follows:

‖∆x‖ / ‖x‖
‖∆A‖ / ‖A‖

≈ κx ≤ κ(A) =⇒ ‖∆x‖ .
κ(A) ‖x‖ ‖∆A‖

‖A‖
.

Suppose ‖∆A‖ = O(ε). Then the output could be perturbed by κ(A)‖b‖
‖A‖ O (ε). If κ(A) is too large,

then the perturbed output may no longer be a good approximation. Hence, in iterative methods
where matrix-vector multiplications are carried out repeatedly, it is important to monitor κ(A).

The matrix condition number with respect to the two-norm could be expensive. If the matrix
is triangular, we use the following lemma to estimate the condition number with respect to the
infinity norm, which is much cheaper.

Lemma 2.35 ([41, Exercise 4.9]). Given a nonsingular upper-triangular matrix U , the diag-
onal elements of U−1 are the reciprocals of the diagonal elements of U . Moreover,

‖U‖∞ ≥ max
i
|uii| ,

∥∥U−1
∥∥
∞ ≥

1
mini |uii|

, κ∞(U) ≥ maxi |uii|
mini |uii|

. (2.47)

Similarly for a nonsingular lower-triangular matrix.
In LanczosCG, since the subproblem Tkyk= β1e1 involves Tk, we are interested in κ(Tk).

‖Tk‖∞ =
∥∥LkDkL

T
k

∥∥
∞ ≤ ‖Lk‖∞ ‖Dk‖∞

∥∥LTk ∥∥∞ ≈ max
i
δi,∥∥T−1

k

∥∥
∞ =

∥∥L−Tk D−1
k L−1

k

∥∥
∞ ≤

∥∥L−Tk ∥∥
∞

∥∥D−1
k

∥∥
∞

∥∥L−1
k

∥∥
∞ ≈

1
mini δi

,

κ∞(Tk) = ‖Tk‖∞
∥∥T−1

k

∥∥
∞ ≈

maxi δi
mini δi

. (2.48)

For CG, it can be shown that δk = 1
νk

, and thus (2.48) becomes

‖Tk‖∞ ≈
1

mini νi
,

∥∥T−1
k

∥∥
∞ ≈ max νi, κ∞(Tk) ≈

maxi νi
mini νi

. (2.49)

As for MINRES and SYMMLQ, assuming orthogonality of Vk,

κ2(AVk) = κ2(Vk+1Tk) = κ2(Tk)

= κ2(QkTk) = κ2(Rk) = κ2(Rk) by Theorem 2.29

= κ2(LTk) = κ2(Lk).

κ∞(Rk) ≈
maxi γ

(2)
i

mini γ
(2)
i

. (2.50)

42

Chapter 3

MINRES-QLP: an Algorithm for

Hermitian Systems

3.1 Introduction

This chapter develops the main new algorithm in our thesis: MINRES-QLP. The aim is to
deal reliably with singular symmetric systems, and to return the minimum-length least-squares
solution. At the same time, we improve the accuracy of MINRES on ill-conditioned nonsingular
systems.

3.1.1 Effects of Rounding Errors in MINRES

Recall that in the kth Lanczos iteration, MINRES is based on the subproblem

min ‖Tkyk − β1e1‖2, xk = Vkyk,

the QR factorization

Qk

[
Tk β1e1

]
=

[
Rk tk

0 φk

]
, (3.1)

and the update
xk = (VkR

−1
k)tk ≡ Dktk ≡ xk−1 + τkdk.

The algorithm should stop if Rk is singular (which would imply singularity of A). Singularity
was not discussed by Paige and Saunders [81], but they did raise the question: Is MINRES stable
when Rk is ill-conditioned? Their concern was that ‖Dk‖ could be large and there could be
cancellation in forming xk−1 + τkdk.

Sleijpen, Van der Vorst, and Modersitzki [96] analyze the effects of rounding errors in MINRES
and report examples of apparent failure with a matrix of the form A = QDQT, where D is
an ill-conditioned diagonal matrix and Q involves a single Givens rotation. We attempted but
unfortunately failed to reproduce MINRES’s performance on the two examples defined in Figure 4
of their paper. We modified their examples by using an n × n Householder transformation
for Q, and then observed similar problems with MINRES—see Figure 3.1. The recurred residual
norms φk are good approximations of the directly computed ‖rk‖ until the last few iterations.
The φk’s then keep decreasing but the directly computed ‖rk‖’s become stagnant or even increase.

The analysis in [96] focuses on the rounding errors involved in the n triangular solves for the
rows of Dk, compared to the single triangular solve Rkyk = tk and then xk = Vkyk that would
be possible (at the final k) if Vk were stored as in GMRES. The key feature of MINRES-QLP is
that a single (lower) triangular solve suffices with no need to store Vk (much like in SYMMLQ).

43

44 Chapter 3 MINRES-QLP

5 10 15 20 25
10

−15

10
−10

10
−5

10
0

k

κ ≈ 108, ‖A‖ = 3, ‖x‖ ≈ 108, ‖b‖ ≈ 102, tol = 10−14

‖rk‖

φk

NRBE ‖rk‖

NRBE φk

5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

κ ≈ 108, ‖A‖ = 3, ‖x‖ ≈ 101, ‖b‖ ≈ 102, tol = 10−14

k

5 10 15 20 25
10

−15

10
−10

10
−5

10
0

κ ≈ 1010, ‖A‖ = 3, ‖x‖ ≈ 1010, ‖b‖ ≈ 102, tol = 10−14

k
5 10 15 20 25 30 35

10
−15

10
−10

10
−5

10
0

κ ≈ 1010, ‖A‖ = 3, ‖x‖ ≈ 101, ‖b‖ ≈ 102, tol = 10−14

k

Four symmetric positive definite ill−conditioned systems

Figure 3.1 MINRES solving Ax = b with symmetric positive definite A = Qdiag([η, 2η, 2 : 1
789

: 3])Q of
dimension n = 792 and norm ‖A‖2 = 3, where Q = I − (2/n)eeT is a Householder matrix generated by
e = [1, . . . , 1]T. These plots illustrate the effect of rounding errors in MINRES similar to the examples
reported in [96, Figure 4]. The upper part of each plot shows the computed and recurred residual norms,
and the lower part shows the computed and recurred normwise relative backward errors (NRBE). MINRES
terminates when the recurred NRBE is less than the given tol = 10−14.

Upper left: η = 10−8 and thus κ(A) ≈ 108. Also b = e and therefore ‖x‖ � ‖b‖. The graphs of directly
computed residual norms ‖rk‖ and recurrently computed residual norms φk start to differ at iteration 21
when ‖rk‖ ≈ 10−1. While the ‖rk‖’s eventually level off at 10−2, the φk’s decrease monotonically and
are misleadingly small in the last few iterations.

Upper right: Again η = 10−8 but b = Ae. Thus ‖x‖ = ‖e‖ = O(‖b‖). The graphs of ‖rk‖ and φk

start to differ when they reach a much smaller level of 10−10 at iteration 33. The final ‖rk‖ ≈ 10−10 is
satisfactory but not as accurate as φk claims at 10−13.

Lower left: η = 10−10 and thus A is even more ill-conditioned than the matrix in the upper plots. Here
b = e and ‖x‖ is again exploding. MINRES ends with ‖rk‖ ≈ 102 > ‖b‖, which means no convergence.

Lower right: η = 10−10 and b = Ae. The solution norm is small and the final ‖rk‖ ≈ 10−8 is
satisfactory but not as accurate as φk claims at 10−13.

This figure can be reproduced from the Matlab program DPtest5b.m.

3.1 Introduction 45

3.1.2 Existing Approaches to Solving Hermitian Least-Squares

If we talk about a symmetric or Hermitian least-squares problem min ‖Ax− b‖, we mean that A
is singular (otherwise Ax = b is simply a linear system with unique solution).

Inconsistent (singular) symmetric systems could arise from discretized semidefinite Neumann
boundary value problems [61, section 6], and naturally any systems involving measurement errors
in b. Another potential application is large symmetric indefinite singular Toeplitz least-squares
problems as described in [39, section 6].

Recall from Theorem 2.27 that MINRES does not give the minimum-length least-squares
solution to an inconsistent symmetric system Ax ≈ b. To obtain the minimum-length solution,
we could apply MINRES to various modified compatible systems as follows (cf. Theorem 2.25).
(We write AT at times because some of the methods are applicable to general least-squares
problems.)

Normal equations: The classical symmetric compatible system is ATAx = ATb (or A2x = Ab

in the symmetric case), but when A is ill-conditioned there will be loss of accuracy in
forming ATb and the products AT(Avk) in the Lanczos process.

Augmented systems: We could apply MINRES to the larger compatible system[
γI A

AT δI

][
s

x

]
=

[
b

0

]
(3.2)

with γ = 1 and δ ≤ 0. However, LSQR already does that more efficiently. On the other
hand, a special version of MINRES does seem a viable approach for solving (3.2) when
γ > 0 and δ > 0; in fact, AMRES [97] is such a method. One purpose of AMRES is
for computing left or right singular vectors of A by inverse iteration (with γ = δ = σi, a
singular value of A).

LSQR and AMRES are both based on the Golub-Kahan process for (A, b) in place of
Lanczos on the augmented system (3.2), and their convergence rate is governed by the
eigenvalues of ATA− γδI.

Two-step procedure: Another approach [12, Algorithm 6.1] is equivalent to solving one least-
squares problem followed by one linear system:

1. Compute a least-squares solution xLS of min ‖Ax− b‖, e.g., using MINRES.

2. Compute the minimum-length solution of the compatible system Ax = AxLS .

Note that only AxLS is required in step 2 (not xLS itself). This could be obtained in
various ways. For example, if we know an orthogonal basis Y for the range space R(A)
or an orthogonal basis Z for the null space N (AT) (e.g., [17, section 4]), then we have
AxLS = Y Y Tb = b− ZZTb. In either case, step 1 is not needed.

MINRES-L: Bobrovnikova and Vavasis [14] treat weighted least-squares problems by applying
MINRES to certain symmetric, indefinite, singular systems.

These approaches are expensive or numerically not ideal. We see the need for a MINRES-like
method that can handle singular incompatible systems directly.

46 Chapter 3 MINRES-QLP

3.1.3 Orthogonal Matrix Decompositions for Singular Matrices

A complete orthogonal decomposition of a singular matrix A takes the form A = U [T 0
0 0]V for

some orthogonal matrices U and V and triangular T [10].
The singular value decomposition (SVD) is clearly a complete orthogonal decomposition. It

is well known that it is rank-revealing, while the QR decomposition is sometimes not. However,
the SVD of a large matrix is usually too expensive to compute.

In 1965 Golub originated QR decomposition with column pivoting (QRP) for solving least-
squares problems [19, 43]:

QAΠ = R, (3.3)

where Q is orthogonal, Π a permutation matrix, and R upper triangular. The diagonal elements
of R, later called the R-values by Stewart [100], are generally good estimates for the singular
values σi of A. If A is singular, so is R, and we can write R =

[
R1 S
0 0

]
, where R1 is upper

triangular and S is rectangular. Although QRP is often rank-revealing, it is not a complete
orthogonal decomposition.

Hanson and Lawson in 1969 [56] applied a series of Householder transformations from the
right of [R1 S] to yield [R2 0], where R2 is upper triangular:

QAΠH =

[
R1 S

0 0

]
H =

[
R2 0

0 0

]
.

This is a complete orthogonal decomposition of A. It takes advantage of the triangularity of R1.
In 1999 Stewart proposed the pivoted QLP decomposition [100], which is equivalent to two

consecutive QRP decompositions: on A as before (see (3.3)), then on RT :

QRAΠR =

[
R1 S

0 0

]
, QL

[
RT1 0

ST 0

]
ΠL =

[
R̄2 0

0 0

]
. (3.4)

This gives

A = QLP, where Q = QTRΠL, L =

[
R̄T2 0

0 0

]
, P = QLΠT

R, (3.5)

with Q and P orthogonal. Stewart demonstrates that the diagonal elements of L (the L-values)
are better singular-value estimates than the R-values, and the accuracy is particularly good for
the extreme singular values σ1 and σn:

Rii ≈ σi, Lii ≈ σi, σ1 ≥ max
i
Lii ≥ max

i
Rii, min

i
Rii ≥ min

i
Lii ≥ σn. (3.6)

The first permutation ΠR in pivoted-QLP is as important as in QRP. However, the main purpose
of the second permutation ΠL is to make sure the L-values present themselves monotonically de-
creasing, and is not always necessary. (If ΠR = ΠL = I, we call it simply the QLP decomposition.)

As a historical note, Golub and Van Loan [49, section 5.4.2], [50, sections 5.4–5.5] used QRP
and then QR to obtain a pivoted QLP decomposition (with ΠL = I) without naming it so. As
here, the context was minimum-length solution of singular least-squares problems.

3.2 MINRES-QLP 47

3.2 MINRES-QLP

In this section, we develop MINRES-QLP for solving ill-conditioned or singular symmetric sys-
tems Ax ≈ b. The Lanczos framework is the same as in MINRES, but we allow the subproblem
to be singular.

3.2.1 The MINRES-QLP Subproblem

When A is singular, both Tk and Tk in the Lanczos process could also be singular (rank < k).
The subproblem that defines MINRES-QLP is therefore chosen to be

min
y
‖y‖ s.t. y = arg min

y∈Rk
‖Tky − β1e1‖. (3.7)

The solution yk then defines xk = Vkyk ∈ Kk(A, b) as the kth approximation to x. In the
nonsingular case, yk and xk are the same as in MINRES.

As usual, yk is not actually computed because all elements change when k increases.

3.2.2 Solving the Subproblem

Ideally, we would like to compute a pivoted QLP decomposition of each Tk. However, for imple-
mentation reasons it must be without pivoting, to permit updating of the factors as k increases.
Perhaps because of the tridiagonal structure of Tk and the convergence properties of the under-
lying Lanczos process, our experience is that the desired rank-revealing properties are retained.

The unpivoted QLP decomposition is the MINRES QR factorization followed by an LQ
factorization of the triangular factor:

QkTk =

[
Rk

0

]
, RkPk = Lk,

where Rk is upper tridiagonal and Lk is lower tridiagonal. As in MINRES, Qk is a product of
Householder reflectors, while Pk involves a product of pairs of reflectors:

Qk = · · · Q34 Q23 Q12, Pk = P12 P13P23 P24P34 P35P45 · · · .

Conceptually, the QR and LQ factorizations could proceed separately as in Figure 3.2 (upper
part). However, to be efficient, in the kth iteration of MINRES-QLP, the left reflector Qk,k+1

and right reflectors Pk−2,k, Pk−1,k are interleaved so that only the lower-right 3× 3 submatrices
of Tk are changed, as in Figure 3.2 (lower part).

The QLP decomposition allows subproblem (3.7) with y = Pku to be written equivalently as

min
u
‖u‖ s.t. u = arg min

u∈Rk

∥∥∥∥∥
[
Lk

0

]
u−

[
tk

φk

]∥∥∥∥∥ , (3.8)

where tk and φk are as in (3.1). At iteration k, the first k − 3 components of uk are already
known. The remainder depend on the rank of Lk. In particular,

1. if rank(Lk) = k, then we need to solve the bottom three equations of Lkuk = tk;

48 Chapter 3 MINRES-QLP

T5

R5

L5

T5

L5

•P3,5

•P1,2

Q4,5•

•P2,3

•P4,5

•P1,3

Q1,2• Q3,4•Q2,3•

•P2,4

•P3,4

Q5,6•

•P3,5

•P2,3

Q3.4•

•P2,4

•P4,5

Q4,5•

Q1,2• •P1,2Q2,3•

•P3,4

Q5,6•

•P1,3

Figure 3.2 Upper: QLP with left reflectors and then right reflectors on T5. Lower: QLP with inter-
leaving left and right reflectors on T5. This figure can be reproduced by QLPfig3.m.

2. if rank(Lk) = k − 1, then we only need to solve the bottom two equations of

L
(2)
k−1u

(2)
k−1 = tk−1, Lk =

[
L

(2)
k−1 0

0 0

]
, uk =

[
u

(2)
k−1

0

]
.

The corresponding solution estimate xk = Vkyk = VkPkuk suggests that we change from the
orthonormal basis Vk to another orthonormal basis Wk = VkPk in Kk(A, b) and update xk by
short-recurrence orthogonal steps:

Wk =
[
Wk−3 Wk(:, J)

]
, J = k − 2 : k,

xk = Wkuk = Wk−3u
(3)
k−3 +Wk(:, J)uk(J)

= x
(2)
k−3 +

(
µ

(3)
k−2w

(4)
k−2 + µ

(2)
k−1w

(3)
k−1 + µ

(1)
k w

(2)
k

)
= x

(2)
k−3 + µ

(3)
k−2w

(4)
k−2︸ ︷︷ ︸

x
(2)
k−2

+ µ
(2)
k−1w

(3)
k−1 + µ

(1)
k w

(2)
k , (3.9)

where wj and µj refer to columns of Wk and elements of uk, the superscripts show how many
times each quantity is updated, and x(2)

k−2 is needed later (sections 3.2.4 and 3.3.5).

3.2 MINRES-QLP 49

5 10 15

2

4

6

nonzero σ(A) = |λ(A)|,n = 25

5 10 15

2

4

6

γQk , k = 20

5 10 15
10

−8

10
−4

10
0

|γQk − σ(A)|

5 10 15

2

4

6

γMk , k = 19

5 10 15
10

−4

10
−2

10
0

|γMk − σ(A)|

Figure 3.3 Upper left: Matrix ID 1177 from [108] (n = 25). Nonzero singular values of A sorted in
decreasing order. Upper middle and right: Each diagonal element γM

i of Rk from MINRES is plotted
as a red circle above or below the nearest nonsingular value of A. The γM

i ’s approximate the extreme
nonzero singular values of A particularly well. Lower: The diagonal elements of Lk (red circles) from
MINRES-QLP approximate the extreme nonzero singular values of A even better than those of Rk from
MINRES. This figure illustrates equation (3.6). An immediate implication is that the ratio of the largest
and smallest diagonals of Lk provides a good estimate of the condition number κ2(A). To reproduce this
figure, run testminresQLP27(2).

3.2.3 Further Details

Figure 3.3 illustrates the relation between the singular values of A and the diagonal elements of
Rk (k = 19) and Lk (k = 20). This is for matrix ID 1177 from [108] with n = 25.

In MINRES, if βk+1 = 0 then no further work is necessary since sk = 0, ‖rk‖ = ‖rk−1‖ sk = 0,
and the algorithm stops. In MINRES-QLP, if βk+1 = 0 it is still true that ‖rk‖ = 0 but we
continue to apply reflectors on the right in order to obtain the minimum-length solution.

The following theorem follows from the proofs of Theorem 2.25 and Theorem 2.27 with only
slight modification needed.

Theorem 3.1 (Pseudoinverse solution of MINRES-QLP). In MINRES-QLP, if βi > 0
for i = 1, . . . , k but βk+1 = 0, then xk is the pseudoinverse solution of Ax ≈ b.

We list the algorithm developed in the above discussion in Table 3.1. Software code of
MINRES-QLP in Matlab is available as freeware implemented by the author [97]. A detailed
derivation of MINRES-QLP is also given there.

MINRES-QLP requires only 1 more vector of storage compared to MINRES. As for flops,
MINRES-QLP would need per iteration: 4 more saxpy’s (y ← αx+y) and 3 more vector scalings
(x ← αx) in comparison with MINRES. We compare MINRES-QLP with CG, SYMMLQ, and
MINRES in Tables 3.2 and 3.3.

50 Chapter 3 MINRES-QLP

Table 3.1
Algorithm MINRES-QLP. The algorithm also computes φk = ‖rk‖, ψk = ‖Ark‖, χk = ‖xk‖, A = ‖A‖,
κ = κ(A), and ω = ‖Axk‖. The superscript numbers in parentheses indicate how many times the variables
have been changed in the program (assuming total number of iterations k ≥ 4). A more memory-efficient
implementation is demonstrated in minresQLPs.m.

MINRES-QLP(A, b, σ,maxit)→ x, φ, ψ, χ,A, κ, ω
β1 = ‖b‖2 , β1v1 = b, v−1 = v0 = 0, w0 = w−1 = 0, x−2 = x−1 = x0 = 0
c01 = c02 = c03 = −1, s01 = s02 = s03 = 0, φ0 = β1, τ0 = ω0 = χ−2 = χ−1 = χ0 = 0
δ
(1)
1 = γ−1 = γ0 = η−1 = η0 = η1 = ϑ−1 = ϑ0 = ϑ1 = µ−1 = µ0 = 0, κ = 1, k = 1

while no stopping condition is true
LanczosStep(A, vk, vk−1, βk, σ)→ αk, βk+1, vk+1

if k = 1, ρk =
√
α2
k + β2

k+1 else ρk =
√
α2
k + β2

k + β2
k+1 end

//last left orthogonalization on the middle two entries in Tkek

δ
(2)
k = ck−1,1δ

(1)
k + sk−1,1αk, γ

(1)
k = sk−1,1δ

(1)
k − ck−1,1αk

//last left orthogonalization to produce the first two entries in Tk+1ek+1

ε
(1)
k+1 = sk−1,1βk+1, δ

(1)
k+1 = −ck−1,1βk+1

//current left orthogonalization and first right orthogonalization

SymOrtho(γ(1)
k , βk+1)→ ck1, sk1, γ

(2)
k , SymOrtho(γ(5)

k−2, ε
(1)
k)→ ck2, sk2, γ

(6)
k−2

δ
(3)
k = sk2ϑ

(1)
k−1 − ck2δ

(2)
k , γ

(3)
k = −ck2γ(2)

k , η
(1)
k = sk2γ

(2)
k

ϑ
(2)
k−1 = ck2ϑ

(1)
k−1 + sk2δ

(2)
k

//second right orthogonalization to zero out δ
(3)
k

SymOrtho(γ(4)
k−1, δ

(3)
k)→ ck3, sk3, γ

(5)
k−1, ϑ

(1)
k = sk3γ

(3)
k , γ

(4)
k = −ck3γ(3)

k

//update rhs, residual norms, matrix norms and condition no., ‖Axk‖
τk = ck1φk−1, φk = sk1φk−1, ψk−1 = φk−1

√
(γ(1)
k)2 + (δ(1)k+1)

2

if k = 1, γmin = γ1 else γmin ← min {γmin, γ
(6)
k−2, γ

(5)
k−1, |γ

(4)
k |} end

A(k)
2 = max {A(k−1)

2 , ρk, γ
(6)
k−2, γ

(5)
k−1, |γ

(4)
k |}, κ← A(k)

2 /γmin, ωk =
√
ω2
k + τ2

k

//update wk, xk and solution norm

w
(1)
k = −ck2vk + sk2w

(3)
k−2, w

(4)
k−2 = sk2vk + ck2w

(3)
k−2

if k > 2,
w

(2)
k = sk3w

(2)
k−1 − ck3w

(1)
k , w

(3)
k−1 = ck3w

(2)
k−1 + sk3w

(1)
k

µ
(3)
k−2 = (τk−2 − µ(3)

k−3ϑ
(1)
k−2)/γ

(6)
k−2

end

if k > 1, µ
(2)
k−1 = (τk−1 − η(1)

k−1µ
(3)
k−3 − ϑ

(2)
k−1µ

(3)
k−2)/γ

(5)
k−1 end

if γ
(2)
k 6= 0, µ

(1)
k = (τk − η(1)

k µ
(3)
k−2 − ϑ

(1)
k µ

(2)
k−1)/γ

(4)
k else µ

(1)
k = 0 end

xk−2 = xk−3 + µ
(3)
k−2w

(3)
k−2, χk−2 =

√
(χk−3)2 + (µ(3)

k−2)
2

xk = xk−2 + µ
(2)
k−1w

(3)
k−1 + µ

(1)
k w

(2)
k , χk =

√
(χk−2)2 + (µ(2)

k−1)
2 + (µ(1)

k)2

k ← k + 1
end

x = xk, φ = φk, ψ = φk

√
(γ(1)
k+1)

2 + (δ(1)k+2)
2, χ = χk, A = A(k)

2 , ω = ωk

3.2 MINRES-QLP 51

Table 3.2
Subproblem definitions of CG, SYMMLQ, MINRES, and MINRES-QLP.

Method Subproblem Factorization Estimate of xk

LanczosCG Tkyk= β1e1 Cholesky: xk= Vkyk

or CG [57] Tk= LkDkL
T
k ∈ Kk(A, b)

SYMMLQ [81, 90] yk+1 = arg miny∈Rk+1 LQ: xk= Vk+1yk+1

{‖y‖ | TT
k y = β1e1} Tk

TQk =
[
Lk 0

]
∈ Kk+1(A, b)

MINRES [81] yk= arg miny∈Rk

∥∥Tky − β1e1
∥∥ QR: xk= Vkyk

QkTk =

[
Rk

0

]
∈ Kk(A, b)

MINRES-QLP yk = arg miny∈Rk ‖y‖ QLP: xk= Vkyk

s.t. y = arg min ‖Tky − β1e1‖ QkTkPk=

[
Lk

0

]
∈ Kk(A, b)

Table 3.3
Bases and subproblem solutions in CG, SYMMLQ, MINRES, and MINRES-QLP.

Method New basis zk Estimate of xk

LanczosCG Wk := VkL
−T
k LkDkzk= β1e1 xk= Wkzk

CG Wk := VkL
−T
k Φk LkDkΦkzk= β1e1 xk= Wkzk

Φk:= diag (‖r1‖ , . . . , ‖rk‖)

SYMMLQ Wk := Vk+1Qk

[
Ik

0

]
Lkzk= β1e1 xk= Wkzk

MINRES Dk := VkR
−1
k Rkzk = β1

[
Ik 0

]
Qke1 xk= Dkzk

MINRES-QLP Wk := VkPk Lkuk = β1

[
Ik 0

]
Qke1 xk= Wkzk

2 4 6 8 10
10

−12

10
−6

10
0

k

‖r
k
‖ 2

MINRES

MINRES−QLP

2 4 6 8 10
10

−10

10
−5

10
0

‖A
r k
‖ 2

k
2 4 6 8 10

2

3

4

‖x
k
‖ 2

k

Figure 3.4 The behavior of MINRES and MINRES-QLP is almost identical on a well-conditioned
linear system such as this one, where ‖A‖ = κ(A) = O(10). This figure can be reproduced by
testminresQLP27(1).

52 Chapter 3 MINRES-QLP

3.2.4 Transfer from MINRES to MINRES-QLP

The behavior of MINRES and MINRES-QLP is very similar on well-conditioned linear systems.
For example, see Figure 3.4. However, MINRES is cheaper in terms of both memory and flops.
Thus it would be a desirable feature to invoke MINRES-QLP from MINRES only if A is ill-
conditioned or if we have a least-squares problem at hand. The key idea is to transfer from
MINRES to MINRES-QLP at an iteration where Tk is not yet too ill-conditioned. At such a
point, the MINRES and MINRES-QLP solution estimates are the same:

xMk = xk ⇐⇒ Dktk = Wkuk = WkL
−1
k tk.

Therefore,
Wk = DkLk (3.10)

and the last three columns of Wk can be obtained from the last three columns of Dk and Lk.
(Thus, we transfer the three MINRES basis vectors dk−2, dk−1, dk to wk−2, wk−1, wk.) In addi-
tion, we need to generate x(2)

k−2 using (3.9):

x
(2)
k−2 = xMk − µ

(2)
k−1w

(3)
k−1 − µ

(1)
k w

(2)
k . (3.11)

It is clear from (3.10) that we still need to do the right orthogonalizations RkPk = Lk in
the MINRES phase and keep the lower-right 3 × 3 submatrix of Lk for each k so that we are
ready to transfer to MINRES-QLP when necessary. We then obtain a short recurrence for ‖xk‖
(see section 3.3.5) and thus save flops relative to the original MINRES algorithm, where ‖xk‖ is
computed directly.

In the implementation, an input parameter trancond determines when the transfer from the
MINRES iterates to the MINRES-QLP iterates should occur: when an estimate of the condition
number of Tk (see (3.20)) exceeds trancond. Thus, trancond > 1/ε leads to MINRES iterates
throughout, while trancond = 1 generates MINRES-QLP iterates from the start.

3.3 Stopping Conditions and Norm Estimates

This section summarizes the stopping conditions and various estimates computed in MINRES-
QLP. Some of them are new and improved estimates relative to those presented in section 2.4.
We derive a recurrence relation for ‖xk‖ whose cost is as cheap as computing the norm of a 3-
or 4- vector. This feature is not available in MINRES.

MINRES-QLP uses the same three groups of stopping conditions as MINRES:

Lanczos Normwise relative backward errors (NRBE) Regularization attempts

βk+1 ≤ n‖A‖ε ‖rk‖2/ (‖A‖‖xk‖+ ‖b‖) ≤ tol κ(A) ≥ maxcond

k = maxit ‖Ark‖2/ (‖A‖‖rk‖) ≤ tol ‖xk‖2 ≥ maxxnorm

where tol, maxit, maxcond, and maxxnorm are input parameters.

3.3 Stopping Conditions and Norm Estimates 53

3.3.1 Residual and Residual Norm

The following proposition says that the intermediate rk’s in MINRES-QLP are not orthogonal to
Kk(A, b); only if βk+1 = 0, then sk = 0 and thus rk = −φkvk+1 is finally orthogonal to Kk(A, b).
Moreover, ‖rk‖2 can be obtained without computing rk.

Proposition 3.2 (rk for MINRES-QLP and monotonicity of ‖rk‖2).

rk =

s2krk−1 − φkckvk+1 if rank(Lk) = k

rk−1 if rank(Lk) = k − 1
,

‖rk‖2 =

‖rk−1‖2 sk if rank(Lk) = k

‖rk−1‖2 if rank(Lk) = k − 1
.

It follows that ‖rk‖2 ≤ ‖rk−1‖2.

Proof. The residual in the kth step is

rk = b−Axk = β1v1 −AVkyk = β1v1 − Vk+1Tkyk = Vk+1

(
β1e1 − Tkyk

)
= Vk+1Q

T
k

(
β1Qke1 −

[
Rk

0

]
Pkuk

)
where yk = Pkuk

= Vk+1Q
T
k

([
tk

φk

]
−

[
Lk

0

]
uk

)
where tk =:

τ1

τ2
...

τk

 = β1

c1

s1c2
...

s1s2 · · · sk−1ck

= Vk+1Q

T
k

([
tk

φk

]
−

[
Lkuk

0

])
. (3.12)

Note that φk = β1s1s2 · · · sk−1sk ≥ 0 since βi = ‖vi‖2 ≥ 0 and si = βi+1√[
δ
(1)
i

]2
+β2

i+1

≥ 0.

Case 1 If rank(Lk) = k, we can solve Lkuk = tk and simplify (3.12):

rk = φkVk+1Q
T
kek+1 (3.13)

= φkVk+1

[
QTk−1

1

]
Qk,k+1ek+1

= φk

[
Vk vk+1

][QTk−1

1

]
Ik−1

ck sk

sk −ck

0k−1

0

1

= φk

[
Vk vk+1

][QTk−1

1

][
skek

−ck

]
= φk

[
Vk vk+1

][skQTk−1ek

−ck

]
(3.14)

= φkskVkQ
T
k−1ek − φkckvk+1 = φk−1s

2
kVkQ

T
k−1ek − φkckvk+1

= s2krk−1 − φkckvk+1 by (3.13). (3.15)

54 Chapter 3 MINRES-QLP

By (3.14), the recurrence relation for the kth residual norm is

‖rk‖2 = φk

∥∥∥∥∥
[
skQ

T
k−1ek

−ck

]∥∥∥∥∥
2

= φk

√∥∥skQTk−1ek
∥∥2

2
+ c2k = φk

√
‖skek‖22 + c2k = φk

√
s2k + c2k

= φk = φk−1sk = ‖rk−1‖2 sk.

Case 2 If rank(Lk) = k−1, then the last column and row of Lk are zero. Thus ‖rk‖2 = ‖rk−1‖2.

�

3.3.2 Norm of Ark

Next we want to derive recurrence relations for Ark and its norm. The following proposition also
shows that Ark is orthogonal to Kk(A, b).

Proposition 3.3 (Ark for MINRES-QLP).

Ark =

‖rk‖
(
γ

(1)
k+1vk+1 + δ

(1)
k+2vk+2

)
if rank(Lk) = k

Ark−1 if rank(Lk) = k − 1
,

‖Ark‖ =

‖rk‖
√[

γ
(1)
k+1

]2
+
[
δ
(1)
k+2

]2
if rank(Lk) = k

‖Ark−1‖ if rank(Lk) = k − 1
.

Proof. Case 1 If rank(Lk) = k, by (3.13),

Ark = φkAVk+1Q
T
kek+1 = φkVk+2Tk+1Q

T
kek+1. (3.16)

Using the recurrence relations

Tk+1 =

[
Tk+1

βk+2e
T
k+1

]
=

Tk βk+1ek

βk+1e
T
k αk+1

βk+2

,
we have

QkT
T
k+1 = Qk

[
Tk βk+1ek

βk+1e
T
k αk+1 βk+2ek+1

]

=

[[
Rk

0

]
βk+1Qkek + αk+1Qkek+1 βk+2Qkek+1

]

=

[
Rk

0

]
βk+1

sk−1ek−1

−ck−1ck

−ck−1sk

+ αk+1

[
skek

−ck

]
βk+2

[
skek

−ck

] (3.17)

3.3 Stopping Conditions and Norm Estimates 55

since

Qkek = Qk,k+1 · · ·Q2,3Q1,2ek = Qk,k+1 · · ·Q2,3ek = Qk,k+1Qk−1,kek

=

Ik−1

ck sk

sk −ck

Ik−2

ck−1 sk−1

sk−1 −ck−1

1

ek

=

Ik−1

ck sk

sk −ck

0k−2

sk−1

−ck−1

0

 =

0k−2

sk−1

−ck−1ck

−ck−1sk

,

Qkek+1 = Qk,k+1 · · ·Q2,3Q1,2ek+1 = Qk,k+1 · · ·Q2,3ek+1 = Qk,k+1ek+1 =

[
skek

−ck

]
.

Hence the last row of (3.17) gives

Tk+1Q
T
kek+1 =

[
(−βk+1ck−1sk − αk+1ck)ek+1

−βk+2ck

]
=

[
(δ(1)k+1sk − αk+1ck)ek+1

δ
(1)
k+2

]
by (2.22)

=

[
γ

(1)
k+1ek+1

δ
(1)
k+2

]
by (2.22).

Therefore, (3.16) becomes

Ark = φk

(
γ

(1)
k+1vk+1 + δ

(1)
k+2vk+2

)
, ψk := ‖Ark‖2 = ‖rk‖

√(
γ

(1)
k+1

)2

+
(
δ
(1)
k+2

)2

.

Case 2 If rank(Lk) = k − 1, then Ark = Ark−1 and ψk := ‖Ark‖ = ‖Ark−1‖.
�

3.3.3 Matrix Norms

If A is symmetric and nonsingular, then κ2(A) = max|λi|
min|λi| = ‖A‖2‖A−1‖2. However, if A is

symmetric and singular, then κ2(A) = max|λi|
minλi 6=0|λi| = ‖A‖2‖A†‖2. In both cases, we say that A

is ill-conditioned if the smallest nonzero eigenvalue in magnitude is tiny relative to the largest
eigenvalue in magnitude. Consequently, an ill-conditioned matrix has a large condition number
and κ2(A)� ‖A‖2. For a well-conditioned matrix such as diag(1, 3), we may have κ2(A) = ‖A‖2.

As in MINRES and Lemma 2.32, the following is used to estimate ‖A‖2 in MINRES-QLP:

‖A‖2 ≥ max
{∥∥T1e1

∥∥
2
, . . . ,

∥∥Tkek∥∥2

}
, where

∥∥Tiei∥∥2
=

∥∥∥∥∥∥∥∥

βi

αi

βi+1

∥∥∥∥∥∥∥∥ .

56 Chapter 3 MINRES-QLP

1 2 3 4 5 6 7 8 9 10 11 12

10
 15

10
 10

10
 5

10
0

|maxi ‖Tie i‖2 − ‖A‖2|/‖A‖2

|‖Tk‖1 − ‖A‖2|/‖A‖2

∣∣∣∣
√
‖Tk

T Tk‖1 − ‖A‖2

∣∣∣∣/‖A‖2

|σ1(T5)− ‖A‖2|/‖A‖2

|σ1(T20)− ‖A‖2|/‖A‖2

|maxi |γi|− ‖A‖2|/‖A‖2

|NORMEST(A)− ‖A‖2|/‖A‖2

Figure 3.5 Estimating ‖A‖2 and ‖A‖F using different methods in MINRES-QLP. These 12 test cases
show that provides a good estimate of the order of matrix norms. This figure can be reproduced by
testminresQLPNormA4.

If we define A(1)
2 :=

∥∥T1e1
∥∥

2
, then

A(k)
2 := max{A(k−1)

2 ,
∥∥Tkek∥∥2

} (3.18)

is monotonically increasing and is thus an improving estimate for ‖A‖2 as k increases. By the
property of QLP decomposition in (3.6), we could easily extend (3.18) to

A(k)
2 := max{A(k−1)

2 ,
∥∥Tkek∥∥2

, γk−2, γk−1, |γk|}. (3.19)

Some other schemes inspired by Larsen [66, section A.6.1] and Higham [58] follow:

1. ‖Tk‖1 ≥ ‖Tk‖2

2.
√
‖TkTTk‖1 ≥ ‖Tk‖2

3. ‖Tj‖2 ≤ ‖Tk‖2 for small j = 5, 20

4. Matlab function NORMEST(A), which is based on the power method

Figure 3.5 plots estimates of ‖Tk‖2 (≤ ‖A‖2 by Lemma 2.31) for 12 matrices from the Florida
matrix collection [108], whose sizes n vary from 25 to 3002. In particular, scheme 3 above with
j = 20 gives significantly more accurate estimates than other schemes for the 12 matrices we
tried. However, the choice of j is not always clear and the scheme certainly adds to the cost of
MINRES-QLP. Hence we propose incorporating it into MINRES-QLP (or other Lanzcos based
iterative methods) only if very accurate ‖A‖2 is needed. Otherwise (3.19) uses quantities readily
available from MINRES-QLP and gives us satisfactory estimates for the order of ‖A‖2.

3.3.4 Matrix Condition Numbers

We again apply the property of QLP decomposition in (3.6) to estimate κ2(Tk), which is a lower
bound for κ2(A):

κ2(A) ≥ κ2(Tk) ≈
maxk γk
mink γk

. (3.20)

3.3 Stopping Conditions and Norm Estimates 57

3.3.5 Solution Norms

Since ‖xk‖ = ‖VkPkuk‖ = ‖uk‖, we can estimate ‖xk‖ by computing χk := ‖uk‖. However, the
last two components of uk change in uk+1 (and a new component µ(1)

k+1 is added). We therefore
maintain

ξ = ‖uk(1 : k − 2)‖ = ‖x(2)
k−2‖ cf. (3.9)

by updating its previous value and then using it according to

ξ ←

∥∥∥∥∥
[

ξ

µ
(3)
k−2

]∥∥∥∥∥ , χk = ‖xk‖ =

∥∥∥∥∥∥∥∥

ξ

µ
(2)
k−1

µ
(1)
k

∥∥∥∥∥∥∥∥ .

Thus ξ increases monotonically but we cannot guarantee that ‖xk‖ and its recurred estimate χk
are increasing, and indeed they do not in some examples (e.g., see Figures 1.3 and 3.6).

The following example illustrates the regularizing effect of MINRES-QLP with the stopping
condition χk ≤ maxxnorm.

Example 5. For k ≥ 18 in Figure 3.6, we observe the following numerical values:

χ18 =
∥∥∥∥[2.51 3.87× 10−11 1.38× 102

]T∥∥∥∥ = 1.38× 102,

χ19 =
∥∥∥∥[2.51 −8.00× 10−10 −1.52× 102

]T∥∥∥∥ = 1.52× 102,

χ20 =
∥∥∥∥[2.51 1.62× 10−10 −1.62× 106

]T∥∥∥∥ = 1.62× 106 > maxxnorm = 104.

Because the last value exceeds maxxnorm, MINRES-QLP regards the last diagonal element of Lk
as a singular value to be ignored (in the spirit of truncated SVD solutions). It discards the last
component of u20 and updates

χ20 ←
∥∥∥∥[2.51 1.62× 10−10 0

]T∥∥∥∥ = 2.51.

The full truncation strategy used in the implementation is justified by the fact that xk = Wkuk

with Wk orthogonal. When ‖xk‖ becomes large, the last element of uk is treated as zero. If ‖xk‖
is still large, the second-to-last element of uk is treated as zero. If ‖xk‖ is still large, the third-
to-last element of uk is treated as zero.

3.3.6 Projection of Right-hand Side onto Krylov Subspaces

In least-squares problems, sometimes projections of the right-hand side vector b onto Kk(A, b)
are required [91]. We can derive a simple recurrence relation for ‖Axk‖:

‖Axk‖ = ‖AVkyk‖ = ‖Vk+1Tkyk‖ ≈ ‖QkTkyk‖ = ‖Rkyk‖ = ‖tk‖.

58 Chapter 3 MINRES-QLP

5 10 15 20

10
−14

10
−7

10
0

k

φMk

φQk

NRBE φMk

NRBE φQk

5 10 15 20

10
−14

10
−7

10
0

k

ψMk

ψQk

NRBE ψMk

NRBE ψQk

5 10 15 20

10
2

k

‖xMk ‖

χQk

Figure 3.6 Recurred ‖rk‖, ‖Ark‖, and ‖xk‖ for MINRES and MINRES-QLP. The matrix A (ID 1177
from the Florida matrix collection) is positive semidefinite, and b is randomly generated with ‖b‖ ' 1.7.
Both solvers could have achieved essentially the TEVD solution of Ax ' b at iteration 11. However, the
stringent tolerance tol = 10−14 on the recurred normwise relative backward errors (NRBE) φk and ψk

prevents them from stopping “in time”. MINRES ends with an exploding solution, yet MINRES-QLP
manages to bring the exploding solution back to the TEVD solution at iteration 20—like a magical touch—
see Example 5 for numerical details. Left: φM

k and φQ
k are recurred ‖rk‖ of MINRES and MINRES-QLP

respectively, and their NRBE. Middle: ψM
k and ψQ

k are recurred ‖Ark‖ and and their NRBE. Right:
‖xM

k ‖ are norms of solution estimates from MINRES and χQ
k = recurred ‖xk‖ from MINRES-QLP with

maxxnorm = 104. This figure can be reproduced by testminresQLP27(2).

Therefore,

ωk := ‖Axk‖2 =

∥∥∥∥∥
[
ωk−1

τk

]∥∥∥∥∥ , ω0 = 0. (3.21)

3.4 Preconditioned MINRES and MINRES-QLP

It is often asked: How to construct a preconditioner for a linear system so that the same problem
is solved with fewer iterations? Previous work on preconditioning the symmetric solvers CG,
SYMMLQ, or MINRES includes [76, 40, 29, 34, 74, 86, 73, 51, 52, 6, 105].

We have the same question for singular symmetric equations Ax = b, and for symmetric
least-squares problems Ax ≈ b.

In all cases, two-sided preconditioning is generally needed in order to preserve symmetry. We
can still solve compatible singular systems, but we will no longer obtain the minimum-length
solution. For incompatible systems, preconditioning alters the “least squares” norm. In this case
we must work with larger equivalent systems that are compatible.

We consider each case in turn, using a positive definite preconditioner M = CCT with
MINRES and MINRES-QLP to solve symmetric compatible systems Ax = b. Implicitly, we
are solving equivalent symmetric systems C−1AC−T y = C−1b, where CTx = y. As usual, it is
possible to arrange the algebra in terms of M itself, so without loss of generality we can assume
C = M

1
2 , where M = V DV T (its eigensystem) and M

1
2 = V D

1
2 V T.

3.4 Preconditioned MINRES and MINRES-QLP 59

As the preconditioned conjugate-gradient method is often abbreviated PCG, we denote the
preconditioned MINRES algorithms as PMINRES and PMINRES-QLP respectively.

3.4.1 Derivation

Let Ã := M−
1
2AM−

1
2 and b̃ := M−

1
2 b. Given the linear system Ax = b, we derive PMINRES

by applying MINRES to the equivalent problem

Ãx̃ = b̃, M
1
2 x = x̃. (3.22)

Preconditioned Lanczos Process

Let ṽk denote the Lanczos vectors of K(Ã, b̃). For notational convenience, we define ṽ0 = 0, and
as before, β̃1ṽ1 = b̃. For k = 1, 2, . . . we define

zk = β̃kM
1
2 ṽk, qk = β̃kM

−
1
2 ṽk, so that Mqk = zk. (3.23)

Then
β̃k = ‖β̃kṽk‖ = ‖M−

1
2zk‖ = ‖zk‖M−1 = ‖qk‖M =

√
qTkzk,

where the square root is well-defined because M is positive definite, and the Lanczos iteration is

p̃k = Ãṽk = M−
1
2AM−

1
2 ṽk =

1

β̃k
M−

1
2Aqk,

α̃k = ṽTk p̃k =
1

β̃2
k

qTkAqk,

β̃k+1ṽk+1 = M−
1
2AM−

1
2 ṽk − α̃kṽk − β̃kṽk−1.

Multiplying the last equation by M
1
2 we get

zk+1 = β̃k+1M
1
2 ṽk+1 = AM−

1
2 ṽk − α̃kM

1
2 ṽk − β̃kM

1
2 ṽk−1

=
1

β̃k
Aqk −

α̃k

β̃k
zk −

β̃k

β̃k−1

zk−1. (3.24)

The last expression involving consecutive zj ’s replaces the three-term recurrence in ṽj ’s. In
addition, we need to solve a linear system Mqk = zk (3.23) in each iteration.

PMINRES

Applying reflectors Q̃k to T̃k and β̃1e1, we have

R̃k = Q̃kT̃k =

γ̃
(2)
1 δ̃

(2)
2 ε̃

(1)
3

. ε̃
(1)
k

. . . δ̃
(2)
k

γ̃
(2)
k

0

,

[
t̃k

φ̃k

]
= β̃1Q̃ke1 =

τ̃1
...
...

τ̃k

φ̃k

, (3.25)

60 Chapter 3 MINRES-QLP

which defines the subproblem miny∈Rk

∥∥∥R̃ky − t̃k∥∥∥. Changing basis of the subproblem from Ṽk to

D̃k = ṼkR̃
−1
k , where the kth column of Ṽk is ṽk and x̃k = D̃k t̃k, we have the following recurrence

for the kth column of D̃k and x̃k:

d̃k =
1

γ̃
(2)
k

(
ṽk − δ̃(2)k d̃k−1 − ε̃(1)k d̃k−2

)
, x̃k = x̃k−1 + τ̃kd̃k.

Multiplying the above two equations by M−
1
2 on the left and defining dk = M−

1
2 d̃k, we can

update the solution of our original problem by

dk =
1

γ̃
(2)
k

(
1

β̃k
qk − δ̃(2)k dk−1 − ε̃(1)k dk−2

)
, xk = M−

1
2 x̃k = xk−1 + τ̃kdk.

We list the algorithm in Table 3.4.

Table 3.4
Algorithm PMINRES. Preconditioned MINRES.

PMINRES(A, b,M, σ,maxit)→ x, φ̃, ψ̃

z0 = 0, z1 = b, Solve Mq1 = z1, β̃1 =
√
bTq1

δ̃
(1)
1 = 0, d0 = d−1 = x0 = 0, c̃0 = −1, s̃0 = 0, k = 1

while no stopping condition is true

pk = Aqk, α̃k = 1

β̃2
k

qTkpk, zk+1 = 1

β̃k
pk − α̃k

β̃k
zk − β̃k

β̃k−1
zk−1

Solve Mqk+1 = zk+1, β̃k+1 =
√
qTk+1zk+1

δ̃
(2)
k = c̃k−1δ̃

(1)
k + s̃k−1α̃k, γ̃

(1)
k = s̃k−1δ̃

(1)
k − c̃k−1α̃k,

ε̃
(1)
k+1 = s̃k−1β̃k+1, δ̃

(1)
k+1 = −c̃k−1β̃k+1, SymOrtho(γ̃(1)

k , β̃k+1)→ c̃k, s̃k, γ̃
(2)
k

τ̃k = c̃kφ̃k−1, φ̃k = s̃kφ̃k−1, ψ̃k−1 = φ̃k−1

√(
γ̃

(1)
k

)2

+
(
δ̃
(1)
k+1

)2

if γ̃
(2)
k 6= 0,

dk = 1

γ̃
(2)
k

(
1

β̃k
qk − δ̃(2)k dk−1 − ε̃(1)k dk−2

)
, xk = xk−1 + τ̃kdk

end

k ← k + 1
end

x = xk, φ̃ = φ̃k, ψ̃k = φ̃k

√(
γ̃

(1)
k+1

)2

+
(
δ̃
(1)
k+2

)2

PMINRES-QLP

PMINRES-QLP can be derived very similarly. See Table 3.5. The additional work is to apply
right reflectors P̃k to R̃k, and the new subproblem bases are W̃k := ṼkP̃k, with x̃k = W̃kũk.
Multiplying the new basis and solution estimate by M−

1
2 on the left, we obtain

Wk := M−
1
2 W̃k = M−

1
2 ṼkP̃k, (3.26)

xk = M−
1
2 x̃k = M−

1
2 W̃kũk = Wkũk = x

(2)
k−2 + µ̃

(2)
k−1w

(3)
k−1 + µ̃

(1)
k w

(2)
k . (3.27)

3.4 Preconditioned MINRES and MINRES-QLP 61

Table 3.5
Algorithm PMINRES-QLP. Preconditioned MINRES-QLP.

PMINRES-QLP(A, b,M, σ,maxit)→ x, φ̃, ψ̃,χ̃, Ã, κ̃, ω̃
z0 = 0, z1 = b, Solve Mq1 = z1, β̃1 =

√
bTq1

w0 = w−1 = 0, x−2 = x−1 = x0 = 0
c̃01 = c̃02 = c̃03 = −1, s̃01 = s̃02 = s̃03 = 0, φ̃0 = β̃1, τ̃0 = ω̃0 = χ̃−2 = χ̃−1 = χ̃0 = 0
δ̃
(1)
1 = γ̃−1 = γ̃0 = η̃−1 = η̃0 = η̃1 = ϑ̃−1 = ϑ̃0 = ϑ̃1 = µ̃−1 = µ̃0 = 0, κ̃ = 1, k = 1

while no stopping condition is true
//preconditioned Lanczos Step

pk = Aqk, α̃k = 1

β̃2
k

qTkpk, zk+1 = 1

β̃k
pk − α̃k

β̃k
zk − β̃k

β̃k−1
zk−1

Solve Mqk+1 = zk+1, β̃k+1 =
√
qTk+1zk+1

if k = 1, ρ̃k =
√
α̃2
k + β̃2

k+1 else ρ̃k =
√
α̃2
k + β̃2

k + β̃2
k+1 end

//last left orthogonalization on the middle two entries in Tkek

δ̃
(2)
k = c̃k−1,1δ̃

(1)
k + s̃k−1,1α̃k, γ̃

(1)
k = s̃k−1,1δ̃

(1)
k − c̃k−1,1α̃k

//last left orthogonalization to produce the first two entries in Tk+1ek+1

ε̃
(1)
k+1 = s̃k−1,1β̃k+1, δ̃

(1)
k+1 = −c̃k−1,1β̃k+1

//current left orthogonalization and first right orthogonalization

SymOrtho(γ̃(1)
k , β̃k+1)→ c̃k1, s̃k1, γ̃

(2)
k , SymOrtho(γ̃(5)

k−2, ε̃
(1)
k)→ c̃k2, s̃k2, γ̃

(6)
k−2

δ̃
(3)
k = s̃k2ϑ̃

(1)
k−1 − c̃k2δ̃

(2)
k , γ̃

(3)
k = −c̃k2γ̃(2)

k , η̃
(1)
k = s̃k2γ̃

(2)
k

ϑ̃
(2)
k−1 = c̃k2ϑ̃

(1)
k−1 + s̃k2δ̃

(2)
k

//second right orthogonalization to zero out δ̃
(3)
k

SymOrtho(γ̃(4)
k−1, δ̃

(3)
k)→ c̃k3, s̃k3, γ̃

(5)
k−1, ϑ̃

(1)
k = s̃k3γ̃

(3)
k , γ̃

(4)
k = −c̃k3γ̃(3)

k

//update rhs, residual norms, matrix norms and condition no., ‖Axk‖
τ̃k = c̃k1φ̃k−1, φ̃k = s̃k1φ̃k−1, ψ̃k−1 = φ̃k−1

√
(γ̃(1)
k)2 + (δ̃(1)k+1)

2

if k = 1, γ̃min = γ̃1 else γ̃min ← min {γ̃min, γ̃
(6)
k−2, γ̃

(5)
k−1, |γ̃

(4)
k |} end

Ã(k)
2 = max {Ã(k−1)

2 , ρ̃k, γ̃
(6)
k−2, γ̃

(5)
k−1, |γ̃

(4)
k |}, κ̃← Ã(k)

2 /γ̃min, ω̃k =
√
ω̃2
k + τ̃2

k

//update wk, xk and solution norm

w
(1)
k = −(c̃k2/β̃k)qk + s̃k2w

(3)
k−2, w

(4)
k−2 = (s̃k2/β̃k)qk + c̃k2w

(3)
k−2

if k > 2,
w

(2)
k = s̃k3w

(2)
k−1 − c̃k3w

(1)
k , w

(3)
k−1 = c̃k3w

(2)
k−1 + s̃k3w

(1)
k

µ̃
(3)
k−2 = (τ̃k−2 − µ̃(3)

k−3ϑ̃
(1)
k−2)/γ̃

(6)
k−2

end

if k > 1, µ̃
(2)
k−1 = (τ̃k−1 − η̃k−1µ̃

(3)
k−3 − ϑ̃

(2)
k−1µ̃

(3)
k−2)/γ̃

(5)
k−1 end

if γ̃
(2)
k 6= 0, µ̃

(1)
k = (τ̃k − η̃(1)

k µ̃
(3)
k−2 − ϑ̃

(1)
k µ̃

(2)
k−1)/γ̃

(4)
k else µ̃

(1)
k = 0 end

xk−2 = xk−3 + µ̃
(3)
k−2w

(3)
k−2, χ̃k−2 =

√
(χ̃k−3)2 + (µ̃(3)

k−2)
2

xk = xk−2 + µ̃
(2)
k−1w

(3)
k−1 + µ̃

(1)
k w

(2)
k , χ̃k =

√
(χ̃k−2)2 + (µ̃(2)

k−1)
2 + (µ̃(1)

k)2

k ← k + 1
end

x = xk, φ̃ = φ̃k, ψ̃=φ̃k

√
(γ̃(1)
k+1)

2 + (δ̃(1)k+2)
2, χ̃ = χ̃k, Ã = Ã(k)

2 , ω̃ = ω̃k

62 Chapter 3 MINRES-QLP

To summarize, if A and C are nonsingular and the eigenvalues of C−1AC−T are more clustered
than those of A, and if systems Mq = b with M = CCT are easy to solve, then we could expect
preconditioned CG-type methods to converge to x† more efficiently than without preconditioning.

The requirement of positive-definite preconditioners M in PMINRES and PMINRES-QLP
may seem unnatural for a problem with indefinite A since we cannot achieve M−

1
2AM−

1
2 ≈ I.

However, as shown in [40], we can achieve M−
1
2AM−

1
2 ≈

[
I
−I
]

using an approximate block-
LDLT factorization A ≈ LDLT to get M = L|D|LT, where D is indefinite with blocks of order 1
and 2, and |D| has the same eigensystem as D except negative eigenvalues are changed in sign.

Otherwise, SQMR [38] could work directly with an indefinite preconditioner (such as LDLT).

3.4.2 Preconditioning Singular Ax = b

For singular compatible systems Ax = b, MINRES-QLP finds the minimum-length solution (see
Theorem 3.1). If M is nonsingular, the preconditioned system Ãx̃ = b̃ (3.22) is also compatible

with minimum-length solution x̃. The unpreconditioned solution x = M−
1
2 x̃ is a solution to

Ax = b, but is not necessarily a minimum-length solution.

Example 6.

1. If A =
[

2
1

0

]
, b =

[
2
1
0

]
, M =

[1 √
2

1

]
, then CG on Ax = b converges in 2 iterations to

x† =
[

1
1
0

]
. But MAM =

[
2

2
0

]
and CG converges in 1 iteration to y = (MAM)†Mb =[

1
1√
2

0

]
. Then z = My =

[1 √
2

1

] [1
1√
2

0

]
=
[

1
1
0

]
= x†.

2. Let B =
[

0.20146 0.71637
0.87843 0.74523
0.98696 0.94299
0.40047 0.21457

]
, A = BBT =

[
0.55377 0.71083 0.87437 0.23439
0.71083 1.3270 1.5697 0.51169
0.87437 1.5697 1.8633 0.59758
0.23439 0.51169 0.59758 0.20641

]
, and b =

[
2.3734
4.1192
4.9050
1.5501

]
.

The matrix A is of rank 2 and Ax = b is a compatible system. The minimum-length solution
is x† = [0.79657 1.0375 1.2740 0.34481]T. By binormalization (see section 3.5.2), we construct
the diagonal matrix D = diag(1.0590 0.61899 0.52000 1.6378). The minimum-length solution of
the diagonally preconditioned problem DADy = Db is y† = [1.2452 1.2851 1.2834 1.2872]T. It
follows that x = Dy† = [1.3187 0.79543 0.66738 2.1081]T is a solution of Ax = b but x 6= x†.

3.4.3 Preconditioning Singular Ax ≈ b

We propose the following techniques for obtaining minimum-residual, but not necessarily minimum-
length, solutions of singular incompatible problems. We assume A = AT throughout this section.

Augmented system

When A is singular, the augmented system [I AA] [rx] = [b0] is also singular. However, the system
is always compatible, and thus preconditioning always gives us a solution [rx]. Note that x is
not necessarily the minimum-length solution x† for the original problem min ‖Ax− b‖, meaning
x = x† + xN for some possibly nonzero xN ∈ N (A), but r = b−Ax = b−Ax† is unique.

A Giant KKT System

The minimum-length least-squares problem min ‖x‖22 subject to min ‖Ax − b‖22 is equivalent to
min [rx]T [0 0

0 I] [rx] subject to [I AA 0] [rx] = [b0], which is an equality-contrained quadratic program.

3.4 Preconditioned MINRES and MINRES-QLP 63

The corresponding KKT (Karush-Kuhn-Tucker) system [75, section 16.1] is both symmetric and
compatible:

I A

±I A

I A

A

r

x

y

z

 =

0

0

b

0

. (3.28)

Although this is still a singular system, the upper-left 3× 3 block-submatrix is nonsingular and
therefore

[r
x
y

]
is unique and a preconditioner applied to the KKT system would give x as the

minimum-length solution of our original problem.

Regularization

When the numerical rank of a given matrix is ill-determined, such as with ill-conditioned weighted
least-squares problems minx ‖D

1
2Ax−b‖ with D diagonal positive definite but ill-conditioned [14],

we may want to regularize the problem [30, 54]. The regularized least-squares problem is really
different from the original problem; it minimizes min ‖Ax− b‖22 + ‖δx‖22:

min

∥∥∥∥∥
[
A

δI

]
x−

[
b

0

]∥∥∥∥∥
2

2

, (3.29)

where δ > 0 is a small parameter. The matrix
[
A
δI

]
is of full-rank and always better conditioned.

Alternatively, we could transform (3.29) into the following symmetric and compatible systems
before applying preconditioning techniques:

Normal equation:
(ATA+ δ2I)x = ATb. (3.30)

Augmented system: [
I A

AT −δ2I

][
r

x

]
=

[
b

0

]
. (3.31)

A two-layered problem: If we eliminate v from
[

I ATA
ATA −δ2ATA

]
[xv] =

[
0
ATb

]
, we obtain (3.30).

Thus x from the solution of the following system (with A = AT) is also a solution of our
regularized problem (3.29): [

I A2

A2 −δ2A2

][
x

v

]
=

[
0

Ab

]
. (3.32)

This is equivalent to the two-layered formulation (4.3) in Bobrovnikova and Vavasis [14]
(with A1 = A, A2 = D1 = D2 = I, b1 = b, b2 = 0, δ1 = 1, δ2 = δ2). A key property is that
x→ x† as δ → 0.

A KKT-like system: If we define y = −Av and r = b − Ax − δ2y, then we can show (by

64 Chapter 3 MINRES-QLP

eliminating r and y from the following system) that x from the solution of
I A

−I AT

I A δ2I

AT

r

x

y

v

 =

0

0

b

0

 (3.33)

is also a solution of (3.32) and thus of (3.29). The upper-left 3×3 block-submatrix of (3.33)
is nonsingular, and the correct limiting behavior occurs: x → x† as δ → 0. In fact, (3.33)
reduces to (3.28).

3.5 General Preconditioners

Construction of preconditioners is very problem-dependent. If we do not know in advance much
about the structure of matrix A, then we could only consider general methods such as diagonal
preconditioning and incomplete Cholesky factorization. These methods require access to the
nonzero elements of Aij . (They are not applicable if A exists only as an operator for returning
the product Ax.)

For a comprehensive survey of preconditioning techniques, see Benzi [8].

3.5.1 Diagonal Preconditioning

If A has entries that are very large and different in magnitude, we can perform diagonal pre-
conditioning to make the matrix better conditioned. Further, if A is diagonally dominant and
nonsingular, we can define D = diag(d1, . . . , dn), where

dj = 1/
√
|ajj |, j = 1, . . . , n. (3.34)

Instead of solving Ax = b, we solve DADy = Db, where DAD is still diagonally dominant and
nonsingular with all entries ≤ 1 in magnitude, and x = Dy.

More generally, if A is not diagonally dominant and possibly singular, we can safeguard
division-by-zero errors by defining

dj(δ) = 1/max{δ,
√
|ajj |,max

i 6=j
|ai,j |}, j = 1, . . . , n (3.35)

for some parameter δ > 0.

Example 7.

1. If A =

[
−1 10−8

10−8 1 104

104 0
0

]
, then κ2(A) ≈ 104. Let δ = 1, D = diag(1, 10−2, 10−2, 1) in (3.35).

Then DAD =

[
−1 10−10

10−10 10−4 1
1 0

0

]
and κ2(DAD) ≈ 1.

2. A =

[
10−4 10−8

10−8 10−4 10−8

10−8 0
0

]
contains mostly very small entries, and κ2(A) ≈ 1010. Let δ = 10−8

3.5 General Preconditioners 65

and D = diag(102, 102, 108, 108). Then DAD =

[
1 10−4

10−4 1 102

102 0
0

]
and κ2(DAD) ≈ 102.

(The choice of δ makes a critical difference in this case: with δ = 1, we have D = I.)

3.5.2 Binormalization (BIN)

Livne and Golub [70] scale a symmetric matrix by a series of k diagonal matrices on both sides
until all rows and columns of the scaled matrix have unit 2-norm:

DAD = Dk · · ·D1AD1 · · ·Dk. (3.36)

Example 8. If A =
[

10−8 1
1 10−8 104

104 0

]
, then κ2(A) ≈ 1012. With just one sweep of BIN, we obtain

D = diag(8.1 × 10−3, 6.6 × 10−5, 1.5), DAD ≈
[

6.5×10−1 5.3×10−1 0
5.3×10−1 0 1

0 1 0

]
and κ2(DAD) ≈ 2.6 even

though the rows and columns have not converged to one in the two-norm. In contrast, diagonal
scaling (3.35) defined by δ = 1 and D = diag(1, 10−4, 10−4) reduces the condition number to
approximately 104.

3.5.3 Incomplete Cholesky Factorization

For a sparse symmetric positive definite matrix A, we could compute a preconditioner by the
incomplete Cholesky factorization that preserves the sparsity pattern of A. This is known as IC0
in the literature. Sometimes there exists a permutation P such that the IC0 factor of PAPT is
more sparse than that of A.

When A is semidefinite or indefinite, IC0 may not exist, but a simple variant that may work
is incomplete Cholesky-infinity factorization [116, section 5].

66

Chapter 4

Numerical Experiments on

Symmetric Systems

We compare the computational results of MINRES-QLP and various other Krylov subspace
methods to solutions computed directly by the eigenvalue decomposition (EVD) and the trun-
cated eigenvalue decompositions (TEVD) of A. Let A = UΛUT, where Λ := diag(λ1, . . . , λn).
Then we have

xEVD :=
∑
|λi|>0

1
λi
uiu

T
i b,

xTEVD :=
∑

|λi|>c‖A‖2ε

1
λi
uiu

T
i b, where c is some positive real parameter,

‖A‖EVD2 = ‖A‖TEVD2 = max |λi| ,

κEVD2 (A) =
max |λi|
min
|λi|>0

|λi|
, κTEVD2 (A) =

max |λi|
min

|λi|>c‖A‖2ε
|λi|

.

We note that c in TEVD is often set to 1 and sometimes set to a moderate positive number
such as 10 or 20; it helps to define a “cut-off” point relative to the largest eigenvalue of A.
For example, with matrix ID 1239 (section 4.1) we noticed that all eigenvalues are between 0.1
and 5 in magnitude except for two: −3.72× 10−15 and −1.68× 10−15, just slightly bigger than
‖A‖2 ε ≈ 10−16. We expect TEVD to work better when the two small eigenvalues are excluded.

Table 4.1 reviews the key features of software implementations available as Matlab files.
Note that Matlab MINRES and Matlab SYMMLQ are Matlab’s implementation of MINRES
and SYMMLQ repectively. We also reset iteration of Matlab SYMMLQ to the length of its
resvec output. Lacking the correct stopping condition for singular problems, Matlab SYMMLQ
works more than necessary and then selects the smallest residual norm from all computed iterates;
it would sometimes report that the method did not converge while the selected estimate appeared
to be reasonably accurate.

Matlab’s implementation of MINRES and SYMMLQ incorporate local reorthogonalization
of the Lanczos vector v2, which could enhance the accuracy of the computations if b is close to
an eigenvector of A [69]:

Second Lanczos step: β1v1 = b, and q2 := β2v2 = Av1 − α1v1, (4.1)

Initial local reorthogonalization: q2 ← q2 − (vT1 q2)v1.

The computations in this chapter were performed on a Windows XP machine with a 3.2GHz
Intel Pentium D Processor 940 and 3GB RAM.

67

68 Chapter 4 Numerical Experiments on Symmetric Systems

Table 4.1
Different Matlab implementations of various Krylov subspace methods from SOL [97] and The Math-
Works.

Matlab filename Algorithm Stopping Conditions
(β1 := ‖b‖ = ‖r0‖)

EVD Eigenvalue decomposition

TEVD Truncated eigenvalue decomposition

Matlab 7 PCG CG in Table 2.7 ‖rk‖
β1

< tol

Matlab 7 PCGI CGI in Table 2.8 ‖rk‖
A‖xk‖+β1

< tol,

A = NORMEST(A)

Matlab 7 SYMMLQ SYMMLQ in Table 2.10 ‖rk‖
β1

< tol

SOL SYMMLQ SYMMLQ in Table 2.10 φk

A(k)
F χk+β1

< tol

SOL SYMMLQ3 SYMMLQ in Table 2.10 φk

A(k)
2 χk+β1

< tol

with stabilized reflectors in Table 2.9

Matlab 7 MINRES MINRES in Table 2.11 φk

β1
< tol

SOL MINRES MINRES in Table 2.11 φk

A(k)
F ‖xk‖+β1

< tol

SOL MINRES69 MINRES in Table 2.11 φk

A(k)
2 ‖xk‖+β1

< tol

with stabilized reflectors in Table 2.9 ψk

A(k)
2 φk

< tol

MINRES-QLP43 MINRES-QLP in Table 3.1 φk

A(k)
2 ‖xk‖+β1

< tol

with stabilized reflectors in Table 2.9 ψk

A(k)
2 φk

< tol

Matlab GMRES(10) GMRES in Table 2.16 with restart 10 ‖rk‖
β1

< tol

Matlab 7 LSQR LSQR in Table 2.18 ‖rk‖
β1

< tol

SOL LSQR LSQR in Table 2.18 φk

A(k)
F ‖xk‖+β1

< tol

with right-orthogonalization to recur ‖xk‖

Matlab 7 BiCG BiCG ‖rk‖
β1

< tol

Matlab 7 BiCGSTAB BiCGSTAB ‖rk‖
β1

< tol

Matlab 7 QMR QMR ‖rk‖
β1

< tol

SQMR SQMR ‖rk‖
β1

< tol

4.1 A Singular Indefinite System 69

Tests were performed with each solver on four types of problem:

1. symmetric linear systems,

2. mildly incompatible symmetric systems (meaning ‖r‖ is rather small with respect to ‖b‖),

3. symmetric (and singular) least-squares problems, and

4. compatible Hermitian systems.

For a compatible system, we generate a random right-hand side vector b that is in the range
of the test matrix (b := Ay, yi ∼ U(0, 1)). For a least-squares problem, we generate a random
right-hand side vector b that is not in the range of the test matrix (bi ∼ U(0, 1) often suffices).

We could say from the results that the Lanczos-based methods have built-in regularization
features [62], often matching the TEVD solutions very well.

4.1 A Singular Indefinite System

In this example, A is indefinite and singular of order n = 3002; it is available from University of
Floria sparse matrix collection [108] (matrix ID 1239, contributed by Gould, Hu, & Scott). We
set b = Ae, where e is the vector of all 1’s giving a compatible system. Matlab PCG (without
preconditioner) terminates early because of the indefiniteness, but PCGI, which is Matlab

PCG with stopping conditions changed as we defined in CGI, works competitively. All variations
of SYMMLQ and MINRES converge to the TEVD solution, although they stop at different
iterations due to different stopping conditions: Matlab MINRES and SYMMLQ use rk

β1
≤ tol

and run more iterations than the other solvers; PCGI and MINRES-SOL69 use ‖rk‖
A2‖xk‖+β1

≤ tol,

where A2 estimates ‖A‖2; MINRES-SOL uses ‖rk‖
AF ‖xk‖+β1

≤ tol, where AF estimates ‖A‖F .
EVD (or TEVD) took about 6 minutes to produce the solution, while all iterative methods

together took less than 1 second.
We plot residual and solution norms in Figure 4.1 at each iteration from the most competitive

solvers PCGI, MINRES-SOL69, and SYMMLQ-SOL3. MINRES-SOL69 and MINRES-QLP43
achieve the minimum-residual norm (by design) and also the smallest solution norm over most
iterations. We observe a spike in PCGI’s solution norms and more ups and downs in PCGI
and SYMMLQ’s residual norms, although they do not prevent the methods from converging
accurately in this case. To reproduce this example, run testminresQLP27(9).

Matrix ID = 1239, title = Gould, Hu, & Scott:

n = 3002, maxit = 500, nnz = 9000, nnz / n = 3, numerical rank = 3000

shift = 0.00e+00, tol = 1e-09, maxxnorm = 1e+09, maxcond = 1e+14, ||b|| = 1.0e+02.

No. of positive eigenvalue(s) = 2000: between 2.26e-01 and 4.25e+00.

No. of almost zero eigenvalue(s) = 2: between -3.53e-15 and 3.43e-15.

No. of negative eigenvalue(s) = 1000: between -1.10e+00 and -4.64e-01.

EVD. || AV - VD ||_2 / ||A||_2 = 1.60e-14. || V’V - I ||_2 = 4.45e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 1.60e-14. || V’V - I ||_2 = 4.45e-14

Matlab 7 PCG. Some scalar quantities became too small or too large.

Matlab 7 PCGI. Converged to TOL within MAXIT iterations.

70 Chapter 4 Numerical Experiments on Symmetric Systems

Matlab 7 SYMMLQ. Converged to TOL within MAXIT iterations.

SYMMLQ SOL. Reasonable accuracy achieved, given eps.

SYMMLQ SOL3. Reasonable accuracy achieved, given eps.

Matlab 7 MINRES. Converged to TOL within MAXIT iterations.

MINRES SOL. A solution to Ax = b was found, given rtol.

MINRES SOL69. A solution to (poss. singular) Ax = b found, given rtol.

MINRES QLP43. A solution to (poss. singular) Ax = b found, given rtol.

trancond = 1e+007, Mitn = 54, Qitn = 0.

Matlab 7 LSQR. Converged to TOL within MAXIT iterations.

LSQR SOL. Ax - b is small enough, given atol, btol.

Matlab 7 GMRES(10). Converged to TOL within MAXIT iterations.

SQMR. ||r_k|| < TOL within MAXIT iterations.

Matlab 7 QMR. Converged to TOL within MAXIT iterations.

Matlab 7 BICG. Converged to TOL within MAXIT iterations

Matlab 7 BICGSTAB. Converged to TOL within MAXIT iterations.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- -4.257e+00 5.498e+01 4.7e+00 1.9e-12 7.4e-12 4.2e+00 1.2e+15

TEVD. -- 2.679e-01 5.478e+01 0.0e+00 1.9e-12 7.4e-12 4.2e+00 1.9e+01

Matlab 7 PCG. 2 2.714e-01 6.303e+01 2.3e+01 2.4e+01 2.7e+01 -- --

Matlab 7 PCGI. 39 2.679e-01 5.478e+01 3.6e-05 1.7e-05 2.9e-05 -- --

Matlab 7 SYMMLQ. 59 2.679e-01 5.478e+01 1.3e-07 9.4e-08 2.1e-07 -- --

SYMMLQ SOL. 32 2.679e-01 5.478e+01 2.2e-04 1.1e-04 2.0e-04 1.3e+01 6.7e+00

SYMMLQ SOL3. 41 2.679e-01 5.478e+01 1.5e-05 1.6e-05 5.3e-05 3.9e+00 6.7e+00

Matlab 7 MINRES. 57 2.679e-01 5.478e+01 2.6e-07 8.9e-08 5.7e-08 -- --

MINRES SOL. 46 2.679e-01 5.478e+01 5.1e-06 2.0e-06 4.7e-06 1.0e+02 6.7e+00

MINRES SOL69. 54 2.679e-01 5.478e+01 5.2e-07 2.1e-07 2.5e-07 3.9e+00 4.6e+01

MINRES QLP43. 54 2.679e-01 5.478e+01 5.2e-07 2.1e-07 2.5e-07 4.2e+00 9.6e+00

Matlab 7 LSQR. 118 2.679e-01 5.478e+01 2.2e-07 6.9e-08 4.4e-08 -- --

LSQR SOL. 98 2.679e-01 5.478e+01 3.1e-06 9.9e-07 1.6e-06 1.9e+01 2.0e+02

Matlab 7 GMRES(10). 76 2.679e-01 5.478e+01 2.8e-07 9.2e-08 5.4e-08 -- --

SQMR. 55 2.679e-01 5.478e+01 4.3e-07 2.3e-07 2.7e-07 -- --

Matlab 7 QMR. 116 2.679e-01 5.478e+01 2.6e-07 8.9e-08 5.7e-08 -- --

Matlab 7 BICG. 120 2.679e-01 5.478e+01 1.3e-07 9.4e-08 2.1e-07 -- --

Matlab 7 BICGSTAB. 252 2.679e-01 5.478e+01 1.6e-07 9.9e-08 8.6e-08 -- --

4.2 Two Laplacian Systems

4.2.1 An Almost Compatible System

Our first example is an n = 400 symmetric singular indefinite linear system with A being a
Laplacian matrix, i.e. a symmetric block-tridiagonal matrix with each block equal to a tridiagonal

4.2 Two Laplacian Systems 71

10 20 30 40 50
10

−8

10
−4

10
0

‖r
k
‖ 2

k

CGI
SYMMLQ
MINRES
MINRES−QLP

10 20 30 40 50
20

40

65

‖x
k
‖ 2

k

Figure 4.1 Indefinite and singular Ax = b, with A from University of Florida sparse matrix col-
lection (Matrix ID 1239) and b = Ae. For details, see section 4.1. To reproduce this figure, run
testminresQLP27(9).

matrix T of order N = 20 with all nonzeros equal to 1:

A =

T T

T T
. . .

. T

T T

n×n

, T =

1 1

1 1
. . .

. 1

1 1

N×N

.

The right-hand side b = Ay+10−10z (with yi and zi ∼ U(0, 1)) has a very small incompatible
component. MINRES-SOL gives a larger solution than MINRES-QLP. This example has a
residual norm of about 1.7× 10−10, so it is not clear whether to classify it as a linear system or a
least-squares problem. To the credit of PCGI and Matlab SYMMLQ, they think it is a linear
system and return good solutions. LSQR converges but with more than twice the number of
iterations of MINRES-QLP. The other solvers fall short in some way. To reproduce this example,
run testminresQLP27(24).

The termination message for MINRES-QLP shows that the first 424 iterations were in stan-
dard “MINRES mode”, with a transfer to “MINRES-QLP mode” for the last 278 iterations.

Title = FINITE ELEMENT PROBLEM. LAPLACIAN ON A 20 BY 20 GRID.

n = 400, maxit = 1200, nnz = 3364, nnz / n = 9, numerical rank = 361

shift = 0.00e+00, tol = 1e-15, maxxnorm = 1e+02, maxcond = 1e+15, ||b|| = 8.7e+01.

No. of positive eigenvalue(s) = 205: between 6.10e-02 and 8.87e+00.

No. of almost zero eigenvalue(s) = 39: between -2.36e-15 and 2.65e-15.

No. of negative eigenvalue(s) = 156: between -2.91e+00 and -6.65e-02.

EVD. || AV - VD ||_2 / ||A||_2 = 3.84e-15. || V’V - I ||_2 = 1.12e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 3.81e-15. || V’V - I ||_2 = 1.12e-14

Matlab 7 PCG. Some scalar quantities became too small or too large.

72 Chapter 4 Numerical Experiments on Symmetric Systems

Matlab 7 PCGI. Iterated MAXIT times but did not converge.

Matlab 7 SYMMLQ. Iterated MAXIT times but did not converge.

SYMMLQ SOL. xnorm has exceeded maxxnorm.

SYMMLQ SOL3. xnorm has exceeded maxxnorm.

Matlab 7 MINRES. Iterated MAXIT times but did not converge.

MINRES SOL. The iteration limit was reached.

MINRES SOL69. xnorm has exceeded maxxnorm.

MINRES QLP43. xnorm has exceeded maxxnorm. trancond = 1e+007, Mitn = 424, Qitn = 278.

Matlab 7 LSQR. Converged to TOL within MAXIT iterations.

LSQR SOL. The least-squares solution is good enough, given atol.

Matlab 7 GMRES(10). Iterated MAXIT times but did not converge.

SQMR. q^T A q = 0.

Matlab 7 QMR. Iterated MAXIT times but did not converge.

Matlab 7 BICG. Iterated MAXIT times but did not converge.

Matlab 7 BICGSTAB. Iterated MAXIT times but did not converge.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- -2.986e+04 5.300e+05 5.3e+05 2.3e-09 9.8e-09 8.9e+00 2.9e+17

TEVD. -- 3.892e-01 1.147e+01 0.0e+00 1.7e-10 2.7e-12 8.9e+00 1.5e+02

Matlab 7 PCG. 2 1.974e-01 1.025e+01 5.5e+00 1.2e+01 5.1e+01 -- --

Matlab 7 PCGI. 1200 3.892e-01 1.147e+01 4.8e-09 3.1e-10 1.8e-09 -- --

Matlab 7 SYMMLQ. 1200 3.892e-01 1.147e+01 9.5e-10 1.9e-09 6.0e-09 -- --

SYMMLQ SOL. 652 1.049e+01 9.511e+01 9.5e+01 1.3e+02 9.7e+02 1.2e+02 1.2e+01

SYMMLQ SOL3. 652 -3.277e+03 4.753e+05 4.8e+05 2.2e+02 1.6e+03 8.6e+00 1.2e+01

Matlab 7 MINRES. 1200 5.577e+02 1.071e+05 1.1e+05 1.4e+03 8.4e+03 -- --

MINRES SOL. 1200 5.965e+03 4.105e+05 4.1e+05 3.8e+04 2.7e+05 1.8e+02 1.8e+01

MINRES SOL69. 701 -9.515e-02 7.121e+01 7.0e+01 1.7e-10 3.7e-12 8.6e+00 2.8e+14

MINRES QLP43. 702 3.892e-01 1.147e+01 4.5e-12 1.7e-10 9.4e-12 8.7e+00 2.1e+14

Matlab 7 LSQR. 1762 3.892e-01 1.147e+01 2.6e-13 1.7e-10 2.1e-13 -- --

LSQR SOL. 1758 3.892e-01 1.147e+01 2.7e-13 1.7e-10 2.8e-13 1.6e+02 8.0e+03

Matlab 7 GMRES(10).1200 3.915e-01 1.145e+01 4.0e-01 2.6e-02 5.7e-03 -- --

SQMR. 399 3.892e-01 1.147e+01 2.4e-08 2.1e-08 4.4e-08 -- --

Matlab 7 QMR. 2400 3.892e-01 1.147e+01 4.6e-09 1.7e-10 2.0e-11 -- --

Matlab 7 BICG. 2400 3.892e-01 1.147e+01 4.8e-09 3.1e-10 1.8e-09 -- --

Matlab 7 BICGSTAB. 4800 3.892e-01 1.147e+01 5.9e-09 1.7e-10 4.9e-13 -- --

4.2.2 A Least-Squares Problem

This example is a clear-cut least-squares problem with A again the Laplace matrix in the last ex-
ample, while b = 10×rand(n, 1). The residual norm is about 16. MINRES gives a least-squares so-
lution. MINRES-QLP is the only solver that matches the solution of TEVD. All the other solvers
are not satisfactory in performance. To reproduce this example, run testminresQLP27(25).

4.2 Two Laplacian Systems 73

Title = FINITE ELEMENT PROBLEM. LAPLACIAN ON A 20 BY 20 GRID.

n = 400, maxit = 500, nnz = 3364, nnz / n = 9, numerical rank = 361

shift = 0.00e+00, tol = 1e-14, maxxnorm = 1e+04, maxcond = 1e+14, ||b|| = 1.2e+02.

No. of positive eigenvalue(s) = 205: between 6.10e-02 and 8.87e+00.

No. of almost zero eigenvalue(s) = 39: between -2.36e-15 and 2.65e-15.

No. of negative eigenvalue(s) = 156: between -2.91e+00 and -6.65e-02.

EVD. || AV - VD ||_2 / ||A||_2 = 3.84e-15. || V’V - I ||_2 = 1.12e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 3.81e-15. || V’V - I ||_2 = 1.12e-14

Matlab 7 PCG. Some scalar quantities became too small or too large.

Matlab 7 PCGI. Iterated MAXIT times but did not converge.

Matlab 7 SYMMLQ. Iterated MAXIT times but did not converge.

SYMMLQ SOL. xnorm has exceeded maxxnorm.

SYMMLQ SOL3. xnorm has exceeded maxxnorm.

Matlab 7 MINRES. Iterated MAXIT times but did not converge.

MINRES SOL. The iteration limit was reached.

MINRES SOL69. xnorm has exceeded maxxnorm.

MINRES QLP43. xnorm has exceeded maxxnorm.

trancond = 1e+007, Mitn = 347, Qitn = 36.

Matlab 7 LSQR. Iterated MAXIT times but did not converge.

LSQR SOL. The iteration limit has been reached.

Matlab 7 GMRES(10). Iterated MAXIT times but did not converge.

SQMR. Iterated MAXIT times but did not converge.

Matlab 7 QMR. Iterated MAXIT times but did not converge.

Matlab 7 BICG. Iterated MAXIT times but did not converge.

Matlab 7 BICGSTAB. Iterated MAXIT times but did not converge.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- -2.984e+15 5.300e+16 5.3e+16 2.3e+02 9.5e+02 8.9e+00 2.9e+17

TEVD. -- -8.750e+00 1.426e+02 0.0e+00 1.7e+01 4.8e-12 8.9e+00 1.5e+02

Matlab 7 PCG. 1 1.402e+00 1.708e+01 1.4e+02 6.0e+01 2.6e+02 -- --

Matlab 7 PCGI. 500 1.402e+00 1.708e+01 1.4e+02 6.0e+01 2.6e+02 -- --

Matlab 7 SYMMLQ. 500 2.735e-01 1.517e+01 1.4e+02 6.0e+01 2.9e+02 -- --

SYMMLQ SOL. 228 -6.961e+02 9.667e+03 9.7e+03 1.1e+04 6.0e+04 6.8e+01 8.5e+00

SYMMLQ SOL3. 228 -6.961e+02 9.667e+03 9.7e+03 1.1e+04 6.0e+04 7.6e+00 8.5e+00

Matlab 7 MINRES. 500 -1.981e+14 2.875e+16 2.9e+16 2.1e+02 1.2e+03 -- --

MINRES SOL. 500 2.493e+14 3.619e+16 3.6e+16 1.8e+02 9.8e+02 1.5e+02 1.1e+01

MINRES SOL69. 382 -1.447e+01 8.428e+02 8.3e+02 1.7e+01 1.0e-05 7.6e+00 3.0e+09

MINRES QLP43. 383 -8.750e+00 1.426e+02 4.4e-06 1.7e+01 1.1e-05 8.6e+00 1.2e+10

Matlab 7 LSQR. 1000 -8.750e+00 1.426e+02 3.0e-05 1.7e+01 2.3e-05 -- --

LSQR SOL. 1000 -8.750e+00 1.426e+02 3.3e-05 1.7e+01 9.6e-06 1.2e+02 4.4e+03

Matlab 7 GMRES(10). 500 -7.678e+00 1.088e+02 6.3e+01 1.7e+01 1.6e+00 -- --

SQMR. 500 -9.711e+15 1.409e+18 1.4e+18 7.2e+10 2.5e+11 -- --

Matlab 7 QMR. 1000 -7.300e+00 2.336e+02 1.9e+02 1.7e+01 3.6e+00 -- --

Matlab 7 BICG. 1000 1.402e+00 1.708e+01 1.4e+02 6.0e+01 2.6e+02 -- --

Matlab 7 BICGSTAB. 2000 -1.651e+01 2.368e+02 1.5e+02 2.7e+01 2.8e+01 -- --

74 Chapter 4 Numerical Experiments on Symmetric Systems

4.3 Hermitian Problems

If A is Hermitian, then vHAv is real for all complex vectors v. In this example, A is the only
Hermitian matrix found in Matrix Market as of April 2006, and b = Az with zi ∼ U(0, 1).

Numerically (in double precision), all αk = vHk Avk turn out to have small imaginary parts in
the first few iterations and snowball to have large imaginary parts in later iterations. This would
result in a poor estimation of ‖Tk‖F or ‖A‖F , and unnecessary error in the Lanczos iteration.
Thus we made sure to typecast αk = real(vHk Avk) in MINRES-QLP and MINRES-SOL.

The matrix is positive definite but not diagonally dominant. Some elements have magnitude
of order ε; the other nonzeros are between 2.5× 10−10 and 53.2.

4.3.1 Without Preconditioning

The matrix condition number of A is approximately 1011. All iterative solvers exhibit slow
convergence; after n iterations the solution estimates are all different from the TEVD solution.
To reproduce this example, run testminresQLP27(21).

Title = Matrix Market, MHD1280B: Alfven Spectra in Magnetohydrodynamics

n = 1280, maxit = 1280, nnz = 22778, nnz / n = 18, numerical rank = 1280

shift = 0.00e+00, tol = 1e-12, maxxnorm = 1e+09, maxcond = 1e+14, ||b|| = 9.3e+01.

No. of positive eigenvalue(s) = 1280: between 1.48e-11 and 7.03e+01.

No. of almost zero eigenvalue(s) = 0

No. of negative eigenvalue(s) = 0

EVD. || AV - VD ||_2 / ||A||_2 = 7.45e-15. || V’V - I ||_2 = 2.40e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 7.45e-15. || V’V - I ||_2 = 2.40e-14

Matlab 7 PCG. Iterated MAXIT times but did not converge.

Matlab 7 PCGI. Iterated MAXIT times but did not converge.

Matlab 7 SYMMLQ. Iterated MAXIT times but did not converge.

SYMMLQ SOL. The iteration limit was reached.

SYMMLQ SOL3. The iteration limit was reached.

Matlab 7 MINRES. Iterated MAXIT times but did not converge.

MINRES SOL. The iteration limit was reached.

MINRES SOL69. The iteration limit was reached.

MINRES QLP45. The iteration limit was reached.

trancond = 1e+007, Mitn = 1280, Qitn = 0.

Matlab 7 LSQR. Iterated MAXIT times but did not converge.

LSQR SOL. The iteration limit has been reached.

Matlab 7 GMRES(10). Iterated MAXIT times but did not converge.

SQMR. Iterated MAXIT times but did not converge.

Matlab 7 QMR. Iterated MAXIT times but did not converge.

Matlab 7 BICG. Iterated MAXIT times but did not converge.

Matlab 7 BICGSTAB. Iterated MAXIT times but did not converge.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- 9.501e-01 2.069e+01 0.0e+00 7.1e-13 3.6e-11 7.0e+01 4.8e+12

4.3 Hermitian Problems 75

TEVD. -- 9.501e-01 2.069e+01 0.0e+00 7.1e-13 3.6e-11 7.0e+01 4.8e+12

Matlab 7 PCG. 1280 9.501e-01 1.860e+01 8.7e+00 9.6e-05 1.2e-04 -- --

Matlab 7 PCGI. 1280 9.501e-01 1.860e+01 8.7e+00 9.6e-05 1.2e-04 -- --

Matlab 7 SYMMLQ. 1280 9.501e-01 1.848e+01 9.3e+00 2.7e-02 6.0e-02 -- --

SYMMLQ SOL. 1280 9.484e-01 1.854e+01 9.2e+00 2.2e-01 3.9e+00 1.1e+03 2.1e+02

SYMMLQ SOL3. 1280 9.501e-01 1.860e+01 8.7e+00 1.6e-04 4.2e-04 7.0e+01 2.1e+02

Matlab 7 MINRES. 1280 9.501e-01 1.855e+01 8.8e+00 1.0e-05 9.7e-07 -- --

MINRES SOL. 1280 9.501e-01 1.855e+01 8.8e+00 1.0e-05 1.6e-06 1.0e+03 2.8e+02

MINRES SOL69. 1280 9.501e-01 1.854e+01 8.9e+00 1.2e-05 1.9e-06 7.0e+01 3.5e+06

MINRES QLP45. 1280 9.501e-01 1.854e+01 8.9e+00 1.2e-05 1.9e-06 7.0e+01 4.7e+05

Matlab 7 LSQR. 2560 9.501e-01 1.485e+01 1.3e+01 2.8e-02 6.5e-03 -- --

LSQR SOL. 2560 9.501e-01 1.484e+01 1.3e+01 2.8e-02 2.3e-03 1.3e+03 2.0e+05

Matlab 7 GMRES(10).1280 9.501e-01 1.773e+01 9.7e+00 2.1e-03 3.7e-03 -- --

SQMR. 1280 9.501e-01 1.861e+01 8.6e+00 1.2e-04 1.6e-03 -- --

Matlab 7 QMR. 2560 9.501e-01 1.853e+01 8.9e+00 2.6e-05 2.3e-04 -- --

Matlab 7 BICG. 2560 9.501e-01 1.860e+01 8.7e+00 1.1e-04 4.3e-04 -- --

Matlab 7 BICGSTAB. 5120 9.501e-01 1.852e+01 9.0e+00 1.7e-05 1.2e-06 -- --

4.3.2 With Diagonal Preconditioning

We applied diagonal preconditioning. The matrix condition number of DAD is approximately
104 with δ = 1 in (3.35), the performance of all solvers improve. To reproduce this example, run
testminresQLP27(27).

Title = Matrix Market, MHD1280B: Alfven Spectra in Magnetohydrodynamics

n = 1280, maxit = 2560, nnz = 22778, nnz / n = 18, numerical rank = 1280

shift = 0.00e+00, tol = 1e-12, maxxnorm = 1e+09, maxcond = 1e+14, ||b|| = 2.7e+01.

No. of positive eigenvalue(s) = 1280: between 3.28e-04 and 2.73e+00.

No. of almost zero eigenvalue(s) = 0

No. of negative eigenvalue(s) = 0

EVD. || AV - VD ||_2 / ||A||_2 = 7.46e-15. || V’V - I ||_2 = 6.04e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 7.46e-15. || V’V - I ||_2 = 6.04e-14

Matlab 7 PCG. Converged to TOL within MAXIT iterations.

Matlab 7 PCGI. Converged to TOL within MAXIT iterations.

Matlab 7 SYMMLQ. Converged to TOL within MAXIT iterations.

SYMMLQ SOL. Reasonable accuracy achieved, given eps.

SYMMLQ SOL3. Reasonable accuracy achieved, given eps.

Matlab 7 MINRES. Converged to TOL within MAXIT iterations.

MINRES SOL. A solution to Ax = b was found, given rtol.

MINRES SOL69. A solution to (poss. singular) Ax = b found, given rtol.

MINRES QLP43. A solution to (poss. singular) Ax = b found, given rtol.

trancond = 1e+007, Mitn = 414, Qitn = 0.

Matlab 7 LSQR. Iterated MAXIT times but did not converge.

LSQR SOL. The iteration limit has been reached.

Matlab 7 GMRES(10). Iterated MAXIT times but did not converge.

SQMR. q^T A q = 0.

Matlab 7 QMR. Converged to TOL within MAXIT iterations.

76 Chapter 4 Numerical Experiments on Symmetric Systems

Matlab 7 BICG. Converged to TOL within MAXIT iterations

Matlab 7 BICGSTAB. Converged to TOL within MAXIT iterations.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- 9.501e-01 2.069e+01 0.0e+00 2.1e-13 2.9e-13 2.7e+00 8.3e+03

TEVD. -- 9.501e-01 2.069e+01 0.0e+00 2.1e-13 2.9e-13 2.7e+00 8.3e+03

Matlab 7 PCG. 467 9.501e-01 2.069e+01 8.5e-10 1.6e-11 2.4e-11 -- --

Matlab 7 PCGI. 351 9.501e-01 2.069e+01 1.6e-06 2.1e-09 2.6e-09 -- --

Matlab 7 SYMMLQ. 465 9.501e-01 2.069e+01 8.7e-10 2.0e-11 2.6e-11 -- --

SYMMLQ SOL. 407 9.501e-01 2.069e+01 5.5e-08 5.8e-10 8.7e-10 3.1e+01 4.9e+00

SYMMLQ SOL3. 491 9.501e-01 2.069e+01 1.1e-10 4.0e-12 5.1e-12 2.1e+00 4.9e+00

Matlab 7 MINRES. 424 9.501e-01 2.069e+01 4.8e-08 2.7e-11 7.0e-12 -- --

MINRES SOL. 365 9.501e-01 2.069e+01 1.5e-06 6.1e-10 5.9e-11 4.0e+01 5.0e+00

MINRES SOL69. 414 9.501e-01 2.069e+01 6.4e-08 7.1e-11 2.4e-11 2.1e+00 1.2e+04

MINRES QLP43. 414 9.501e-01 2.069e+01 6.4e-08 7.1e-11 2.4e-11 2.1e+00 1.9e+03

Matlab 7 LSQR. 5120 9.501e-01 2.068e+01 3.7e-01 1.4e-04 6.1e-06 -- --

LSQR SOL. 5120 9.501e-01 2.068e+01 3.4e-01 1.3e-04 1.8e-05 8.9e+01 2.4e+05

Matlab 7 GMRES(10). 2560 9.501e-01 2.069e+01 6.5e-04 2.2e-07 2.9e-08 -- --

SQMR. 327 9.501e-01 2.069e+01 2.2e-06 1.4e-08 1.2e-08 -- --

Matlab 7 QMR. 912 9.501e-01 2.069e+01 2.5e-08 2.7e-11 1.9e-11 -- --

Matlab 7 BICG. 932 9.501e-01 2.069e+01 2.0e-09 2.5e-11 3.1e-11 -- --

Matlab 7 BICGSTAB. 1732 9.501e-01 2.069e+01 6.9e-08 2.7e-11 1.4e-11 -- --

We ran the example again with δ = 10−10 in the diagonal scaling (3.35). The condition
number of DAD was then approximately 102, and the number of iterations reduced further.

Title = Matrix Market, MHD1280B: Alfven Spectra in Magnetohydrodynamics

n = 1280, maxit = 2560, nnz = 22778, nnz / n = 18, numerical rank = 1280

shift = 0.00e+00, tol = 1e-12, maxxnorm = 1e+09, maxcond = 1e+14, ||b|| = 2.8e+01.

No. of positive eigenvalue(s) = 1280: between 3.36e-02 and 2.90e+00.

No. of almost zero eigenvalue(s) = 0

No. of negative eigenvalue(s) = 0

Methods:

EVD. || AV - VD ||_2 / ||A||_2 = 8.59e-15. || V’V - I ||_2 = 2.72e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 8.59e-15. || V’V - I ||_2 = 2.72e-14

Matlab 7 PCG. Converged to TOL within MAXIT iterations.

Matlab 7 PCGI. Converged to TOL within MAXIT iterations.

Matlab 7 SYMMLQ. Converged to TOL within MAXIT iterations.

SYMMLQ SOL. Reasonable accuracy achieved, given eps.

SYMMLQ SOL3. Reasonable accuracy achieved, given eps.

Matlab 7 MINRES. Converged to TOL within MAXIT iterations.

MINRES SOL. A solution to Ax = b was found, given rtol.

MINRES SOL69. A solution to (poss. singular) Ax = b found, given rtol.

MINRES QLP45. A solution to (poss. singular) Ax = b found, given rtol.

trancond = 1e+007, Mitn = 84, Qitn = 0.

Matlab 7 LSQR. Converged to TOL within MAXIT iterations.

4.3 Hermitian Problems 77

LSQR SOL. Ax - b is small enough, given atol, btol.

Matlab 7 GMRES(10). Converged to TOL within MAXIT iterations.

SQMR. q^T A q = 0.

Matlab 7 QMR. Converged to TOL within MAXIT iterations.

Matlab 7 BICG. Converged to TOL within MAXIT iterations

Matlab 7 BICGSTAB. Converged to TOL within MAXIT iterations.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- 9.501e-01 2.069e+01 0.0e+00 2.5e-13 4.0e-13 2.9e+00 8.6e+01

TEVD. -- 9.501e-01 2.069e+01 0.0e+00 2.5e-13 4.0e-13 2.9e+00 8.6e+01

Matlab 7 PCG. 89 9.501e-01 2.069e+01 7.1e-11 2.2e-11 3.2e-11 -- --

Matlab 7 PCGI. 73 9.501e-01 2.069e+01 1.2e-08 2.1e-09 3.4e-09 -- --

Matlab 7 SYMMLQ. 88 9.501e-01 2.069e+01 7.1e-11 2.2e-11 3.2e-11 -- --

SYMMLQ SOL. 76 9.501e-01 2.069e+01 3.8e-09 7.3e-10 1.1e-09 1.5e+01 2.5e+00

SYMMLQ SOL3. 89 9.501e-01 2.069e+01 4.3e-11 1.4e-11 2.0e-11 2.1e+00 2.7e+00

Matlab 7 MINRES. 87 9.501e-01 2.069e+01 2.5e-10 2.2e-11 1.4e-11 -- --

MINRES SOL. 78 9.501e-01 2.069e+01 4.3e-09 3.6e-10 2.5e-10 3.2e+01 2.5e+00

MINRES SOL69. 84 9.501e-01 2.069e+01 9.6e-10 6.7e-11 3.9e-11 2.1e+00 1.1e+02

MINRES QLP45. 84 9.501e-01 2.069e+01 9.6e-10 6.7e-11 3.9e-11 2.1e+00 2.2e+01

Matlab 7 LSQR. 916 9.501e-01 2.069e+01 1.1e-10 2.4e-11 1.4e-11 -- --

LSQR SOL. 862 9.501e-01 2.069e+01 4.2e-09 7.2e-10 4.0e-10 3.8e+01 2.3e+03

Matlab 7 GMRES(10). 144 9.501e-01 2.069e+01 6.5e-10 2.5e-11 1.4e-11 -- --

SQMR. 69 9.501e-01 2.069e+01 4.7e-08 8.7e-09 1.2e-08 -- --

Matlab 7 QMR. 176 9.501e-01 2.069e+01 2.5e-10 2.2e-11 1.4e-11 -- --

Matlab 7 BICG. 178 9.501e-01 2.069e+01 7.1e-11 2.2e-11 3.2e-11 -- --

Matlab 7 BICGSTAB. 246 9.501e-01 2.069e+01 2.5e-10 1.4e-11 4.0e-12 -- --

4.3.3 With Binormalization

Ten sweeps of BIN took 1.5 seconds and produced κ(DAD) ≈ 100. The number of iter-
ations of the Hermitian solvers reduced to less than 100. To reproduce this example, run
testminresQLP27(30).

Title = Matrix Market, MHD1280B: Alfven Spectra in Magnetohydrodynamics

n = 1280, maxit = 2560, nnz = 22778, nnz / n = 18, numerical rank = 1280

shift = 0.00e+00, tol = 1e-12, maxxnorm = 1e+09, maxcond = 1e+14, ||b|| = 2.5e+01.

No. of positive eigenvalue(s) = 1280: between 2.27e-02 and 2.10e+00.

No. of almost zero eigenvalue(s) = 0

No. of negative eigenvalue(s) = 0

EVD. || AV - VD ||_2 / ||A||_2 = 6.55e-15. || V’V - I ||_2 = 2.07e-14

TEVD. || AV - VD ||_2 / ||A||_2 = 6.55e-15. || V’V - I ||_2 = 2.07e-14

Matlab 7 PCG. Converged to TOL within MAXIT iterations.

Matlab 7 PCGI. Converged to TOL within MAXIT iterations.

Matlab 7 SYMMLQ. Converged to TOL within MAXIT iterations.

SYMMLQ SOL. Reasonable accuracy achieved, given eps.

SYMMLQ SOL3. Reasonable accuracy achieved, given eps.

78 Chapter 4 Numerical Experiments on Symmetric Systems

Matlab 7 MINRES. Converged to TOL within MAXIT iterations.

MINRES SOL. A solution to Ax = b was found, given rtol.

MINRES SOL69. A solution to (poss. singular) Ax = b found, given rtol.

MINRES QLP43. A solution to (poss. singular) Ax = b found, given rtol.

trancond = 1e+007, Mitn = 85, Qitn = 0.

Matlab 7 LSQR. Converged to TOL within MAXIT iterations.

LSQR SOL. Ax - b is small enough, given atol, btol.

Matlab 7 GMRES(10). Converged to TOL within MAXIT iterations.

SQMR. q^T A q = 0.

Matlab 7 QMR. Converged to TOL within MAXIT iterations.

Matlab 7 BICG. Converged to TOL within MAXIT iterations

Matlab 7 BICGSTAB. Converged to TOL within MAXIT iterations.

Method A*v x(1) ||x|| ||e|| ||r|| ||Ar|| ||A|| K(A)

direct =||x-xTEVD|| direct direct

EVD. -- 9.501e-01 2.069e+01 0.0e+00 2.2e-13 3.0e-13 2.1e+00 9.3e+01

TEVD. -- 9.501e-01 2.069e+01 0.0e+00 2.2e-13 3.0e-13 2.1e+00 9.3e+01

Matlab 7 PCG. 88 9.501e-01 2.069e+01 6.8e-11 1.9e-11 2.4e-11 -- --

Matlab 7 PCGI. 74 9.501e-01 2.069e+01 1.0e-08 1.3e-09 1.6e-09 -- --

Matlab 7 SYMMLQ. 87 9.501e-01 2.069e+01 6.8e-11 1.9e-11 2.4e-11 -- --

SYMMLQ SOL. 77 9.501e-01 2.069e+01 4.4e-09 5.0e-10 6.3e-10 1.1e+01 2.7e+00

SYMMLQ SOL3. 90 9.501e-01 2.069e+01 1.8e-11 5.0e-12 6.1e-12 1.5e+00 2.7e+00

Matlab 7 MINRES. 86 9.501e-01 2.069e+01 1.9e-10 2.3e-11 1.7e-11 -- --

MINRES SOL. 77 9.501e-01 2.069e+01 7.1e-09 3.8e-10 1.9e-10 2.7e+01 2.7e+00

MINRES SOL69. 85 9.501e-01 2.069e+01 7.1e-10 5.4e-11 3.2e-11 1.5e+00 1.1e+02

MINRES QLP43. 85 9.501e-01 2.069e+01 7.1e-10 5.4e-11 3.2e-11 1.6e+00 2.4e+01

Matlab 7 LSQR. 826 9.501e-01 2.069e+01 1.2e-10 2.4e-11 1.3e-11 -- --

LSQR SOL. 784 9.501e-01 2.069e+01 3.1e-09 5.4e-10 2.7e-10 2.8e+01 2.2e+03

Matlab 7 GMRES(10). 150 9.501e-01 2.069e+01 6.6e-10 2.3e-11 1.3e-11 -- --

SQMR. 68 9.501e-01 2.069e+01 1.0e-07 1.3e-08 1.1e-08 -- --

Matlab 7 QMR. 174 9.501e-01 2.069e+01 1.9e-10 2.3e-11 1.7e-11 -- --

Matlab 7 BICG. 176 9.501e-01 2.069e+01 6.8e-11 1.9e-11 2.4e-11 -- --

Matlab 7 BICGSTAB. 248 9.501e-01 2.069e+01 4.3e-10 2.2e-11 1.9e-11 -- --

4.4 Effects of Rounding Errors in MINRES-QLP

The recurred residual norms φMk in MINRES usually approximates the directly computed ones
‖rMk ‖ very well, until ‖rMk ‖ becomes small. We observe that φMk continues to decrease in the last
few iterations, even though ‖rMk ‖ has become stagnant. This is desirable in the sense that the
stopping rule will cause termination, although the final solution is not as accurate as predicted.

We present similar plots of MINRES-QLP in the following examples, with the corresponding
quantities as φQk and ‖rQk ‖. We observe that except in very ill-conditioned least-squares problems,
φQk approximates ‖rQk ‖ very closely.

1. four singular linear systems: see Figure 4.2.

2. four singular least-squares problems: see Figure 4.3.

4.4 Effects of Rounding Errors in MINRES-QLP 79

5 10 15 20 25
10

−15

10
−10

10
−5

10
0

k

κ ≈ 108, ‖A‖ = 3, ‖x‖ ≈ 108, ‖b‖ ≈ 101, tol = 10−14

‖rMk ‖

φMk

‖rQk ‖

φQk

5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

κ ≈ 108, ‖A‖ = 3, ‖x‖ ≈ 101, ‖b‖ ≈ 102, tol = 10−14

k

5 10 15 20 25
10

−15

10
−10

10
−5

10
0

κ ≈ 1010, ‖A‖ = 3, ‖x‖ ≈ 1010, ‖b‖ ≈ 101, tol = 10−14

k
5 10 15 20 25 30 35

10
−15

10
−10

10
−5

10
0

κ ≈ 1010, ‖A‖ = 3, ‖x‖ ≈ 101, ‖b‖ ≈ 102, tol = 10−14

k

Four symmetric positive semidefinite ill−conditioned systems.

Figure 4.2 Solving Ax = b with symmetric positive semidefinite A = Qdiag([05, η, 2η, 2 : 1
789

: 3])Q of
dimension n = 797, nullity 5, and norm ‖A‖2 = 3, where Q = I − (2/n)wwT is a Householder matrix
generated by v = [05, 1, . . . , 1]T, w = v/‖v‖. These plots illustrate and compare the effect of rounding
errors in MINRES and MINRES-QLP similar to the nonsingular example in Figure 3.1. The upper part
of each plot shows the computed and recurred residual norms, and the lower part shows the computed and
recurred normwise relative backward errors (NRBE). MINRES and MINRES-QLP terminate when the
recurred NRBE is less than the given tol = 10−14.

Upper left: η = 10−8 and thus κ(A) ≈ 108. Also b = e and therefore ‖x‖ � ‖b‖. The graphs of
MINRES’s directly computed residual norms ‖rM

k ‖ and recurrently computed residual norms φM
k start

to differ at the level of 10−1 starting at iteration 21, while the values φQ
k ≈ ‖rQ

k ‖ from MINRES-QLP
decrease monotonically and stop near 10−6 at iteration 26.

Upper right: Again η = 10−8 but b = Ae. Thus ‖x‖ = ‖e‖ = O(‖b‖). The MINRES graphs of ‖rM
k ‖

and φM
k start to differ when they reach a much smaller level of 10−10 at iteration 30. The MINRES-QLP

φQ
k ’s are excellent approximations of φQ

k , with both reaching 10−13 at iteration 33.

Lower left: η = 10−10 and thus A is even more ill-conditioned than the matrix in the upper plots. Here
b = e and ‖x‖ is again exploding. MINRES ends with ‖rM

k ‖ ≈ 102, which means no convergence at all,
while MINRES-QLP reaches a residual norm of 10−4.

Lower right: η = 10−10 and b = Ae. The final MINRES residual norm ‖rM
k ‖ ≈ 10−8, which is

satisfactory but not as accurate as φM
k claims at 10−13. MINRES-QLP again has φQ

k ≈ ‖rQ
k ‖ ≈ 10−13

at iteration 37.

This figure can be reproduced from the Matlab program DPtestSing5.m.

80 Chapter 4 Numerical Experiments on Symmetric Systems

5 10 15 20
10

−10

10
−5

10
0

k

κ ≈ 102, ‖A‖ = 3, ‖x‖ ≈ 1011, ‖b‖ ≈ 101, tol = 10−9

‖ArMk ‖

ψMk

‖ArQk ‖

ψQk

5 10 15 20 25
10

−10

10
−5

10
0

κ ≈ 104, ‖A‖ = 3, ‖x‖ ≈ 1010, ‖b‖ ≈ 101, tol = 10−9

k

5 10 15 20 25 30
10

−10

10
−5

10
0

κ ≈ 106, ‖A‖ = 3, ‖x‖ ≈ 1011, ‖b‖ ≈ 101, tol = 10−9

k
5 10 15 20 25 30

10
−10

10
−5

10
0

κ ≈ 108, ‖A‖ = 3, ‖x‖ ≈ 1011, ‖b‖ ≈ 101, tol = 10−9

k

Four (singular) symmetric least squares problems.

Figure 4.3 Solving Ax = b with symmetric positive semidefinite A = Qdiag([05, η, 2η, 2 : 1
789

: 3])Q
of dimension n = 797 with ‖A‖2 = 3, where Q = I − (2/n)eeT is a Householder matrix generated by
e = [1, . . . , 1]T.

Upper left: η = 10−2 and thus cond(A) ≈ 102. Also b = e and therefore ‖x‖ � ‖b‖. The graphs
of MINRES’s directly computed ‖ArM

k ‖ and recurrently computed ψM
k , and also ψQ

k ≈ ‖ArQ
k ‖ from

MINRES-QLP, match very well throughout the iterations.

Upper right: Here, η = 10−4 and A is more ill-conditioned than the last example. The final MINRES
residual norm ψM

k ≈ ‖ArM
k ‖ is slightly larger than the final MINRES-QLP residual norm ψQ

k ≈ ‖ArQ
k ‖.

The MINRES-QLP ψQ
k are excellent approximations of ψQ

k , and both reach 10−13 at iteration 33.

Lower left: η = 10−6 and cond(A) ≈ 106. MINRES’s ψM
k and ‖ArM

k ‖ differ starting at iteration
21. Eventually, ‖ArM

k ‖ ≈ 3, which means no convergence. MINRES-QLP reaches a residual norm of
ψQ

k = ‖ArQ
k ‖ = 10−2.

Lower right: η = 10−8. MINRES performs even worse than last example. MINRES-QLP reaches a
minimum ‖ArQ

k ‖ ≈ 10−7 but the solver does not manage to shut down soon enough and ends with a final
ψQ

k = ‖ArQ
k ‖ = 10−2. The values of ψQ

k and ‖ArQ
k ‖ differ only at iterations 27–28.

This figure can be reproduced from the Matlab program DPtestLSSing3.m.

Chapter 5

Computation of Null Vectors,

Eigenvectors, and Singular Vectors

We return now to the original motivating problem described in Chapter 1: that of computing a
null vector for an arbitrary matrix A. If the nullity of A is one, then the null vector is unique up
to a (complex) scalar multiple and we consider the null-vector problem well-posed. Otherwise,
it is ill-posed and we are satisfied with a set of orthogonal unit vectors that span N (A).

5.1 Applications

5.1.1 Eigenvalue Problem

If an eigenvalue λ̂ of a given matrix A is known or approximated, the method of inverse iteration
as defined in (1.2) or Rayleigh quotient iteration in (5.1) could be used in conjunction with Krylov
subspace solvers [87, 81, 101, 5, 77, 9]. Either scheme involves a sequence of linear systems in
the following iteration:

(A− λ̂I)xk = vk−1, vk = xk/‖xk‖, λ̂← vTkAvk, k = 1, . . . , kI , (5.1)

where the number of iterations kI would be only 1 or few. The matrix A − λ̂I is intentionally
singular, and the computed solutions xk are expected to grow extremely large (‖xk‖ = O(1/ε),
where ε is the machine precision), so that the normalized vectors vk would satisfy

(A− λ̂I)vk ≈ 0 (5.2)

and hence Avk ≈ λ̂vk as required.
ARPACK [67] provides alternative Lanczos- and Arnoldi-based approaches for computing

several eigenvalues and/or vectors.

5.1.2 Singular Value Problem

The singular value problem Avi = σiui, ATui = σivi, may be reformulated as an eigenvalue
problem, or a null-vector problem when σi is known:[

A

AT

][
ui

vi

]
= σi

[
ui

vi

]
⇔

([
A

AT

]
− σiI

)[
ui

vi

]
= 0.

AMRES [97] is a special version of MINRES for this purpose. ARPACK [67] operates on the
same matrix to obtain several singular values/vectors. PROPACK [65] operates directly on A.

81

82 Chapter 5 Computation of Null Vectors, Eigenvectors, and Singular Vectors

5.1.3 Generalized, Quadratic, and Polynomial Eigenvalue Problems

Given matrices A0, A1, . . . , Ad ∈ Cn×n, we want to find an eigenvalue λ ∈ C and its corresponding
eigenvector x ∈ Cn, x 6= 0 such that

(A0 + λA1 + · · ·+ λdAd)x = 0. (5.3)

This is called the polynomial eigenvalue problem [95, 28, 104, 59].
In particular, when d = 2, it is called the quadratic eigenvalue problem. When d = 1, it

is called the generalized eigenvalue problem. One may also encounter rectangular generalized
eigenvalue problems [15, 99], where A0 and A1 are rectangular matrices of the same size.

Clearly, when A1 = I, the generalized eigenvalue problem reduces to an eigenvalue problem.
However, these two problem classes are very different in nature. An eigenvalue problem has n
eigenvalues guaranteed by the roots of the degree-n characteristic polynomial pn(λ) = det(A−λI).
A generalized eigenvalue problem may not have n eigenvalues. For example, if A0 = I and A1 = 0,
then A0 + λA1 = I 6= 0 for any scalar λ. Generally speaking, the number of eigenvalues in a
generalized eigenvalue problem is given by the nullity of A0 + λA1.

When λ is known in a polynomial eigenvalue problem (5.3), we effectively have a null-vector
problem. The corresponding generalized eigenvector may be solved by inverse iteration coupled
with CG-type methods [68, 117, 29, 5, 113].

5.1.4 Multiparameter Eigenvalue Problem

For this problem problem [4, 1] we want to find scalars λ1, . . . , λd ∈ C and a corresponding
eigenvector x ∈ Cn, x 6= 0 such that

(A0 + λ1A1 + · · ·+ λdAd)x = 0. (5.4)

5.2 Computing a Single Null Vector

We may abstract problems (1.2) and (5.2) by writing A in place of the (nearly) singular A− λ̂I,
and likewise for the other more general eigenvalue problems. This gives us a null-vector problem
(or homogeneous equation) Av ≈ 0, with A essentially singular.

Chapter 1 already discussed the following iterative methods:

Inverse iteration: For a random vector b, apply LSQR or MINRES to the least-squares problem
minx ‖Ax− b‖2, A ∈ Rm×n, rank(A) < n. The normalized vector v = x/‖x‖ approximates
a null vector of A.

Least-squares approach: For a random vector c, apply LSQR, MINRES or MINRES-QLP to
the problem miny ‖ATy − c‖2, A ∈ Rm×n, rank(A) < n. The optimal residual s = c−ATy
satisfies As = 0, and the required null vector is v = s/‖s‖. Convergence should occur
sooner than with inverse iteration, as we have seen in Figures 1.1–1.2.

We compare the vectors involved in the inverse-iteration approach and the least-squares approach
in Table 5.1.

5.3 Computing Multiple Null Vectors 83

Table 5.1
Null vectors from various Krylov subspace methods using the inverse-iteration and matrix-transpose ap-
proaches.

Method Stopping Conditions Disabled Normal Stopping Conditions

CG xk/‖xk‖, or qk/‖qk‖ rk/‖rk‖
SYMMLQ xCk /‖xCk ‖ rk/‖rk‖ or w̄k
MINRES xk/‖xk‖ rk/‖rk‖
MINRES-QLP xk/‖xk‖ rk/‖rk‖
LSQR xk/‖xk‖ rk/‖rk‖

Table 5.2
Algorithm MCGLS [66] for solving a sequence of least-squares problems min ‖Ax− b(k)‖.

MCGLS (A, b(1), . . . , b(q), tol,maxit)→ x(1), . . . , x(q)

for k = 1, 2, . . . , q
r
(k)
0 = b(k)

end

for k = 1, 2, . . . , q
//select the kth system as seed

p0 = s0 = ATr
(k)
0 , γ0 = ‖s0‖22, i = 0

while γi > operatornametol and i ≤ maxit
//take a CGLS step

qi = Api, αi = γi/‖qi‖22, x
(k)
i+1 = x

(k)
i + αipi, r

(k)
i+1 = r

(k)
i − αiqi,

si+1 = AT r
(k)
i+1, γi+1 = ‖si+1‖, βi = γi+1/γi

//Perform Galerkin projection

for j = k + 1, k + 2, . . . , q
ηj = (qTi r

(j)
0)αi/γi, x

(j)
0 = x

(j)
0 + ηjpi, r

(j)
0 = r

(j)
0 − ηjqi,

end

pi+1 = si+1 + βipi, i = i+ 1
end

end

5.3 Computing Multiple Null Vectors

If the nullity of A is bigger than one and we wish to compute q null vectors for some q such that
1 < q ≤ nullity(A), a first strategy is to apply the least-squares approach repeatedly, solving q
singular least-squares problems with different random right-hand sides c (chosen in advance).

5.3.1 MCGLS: Least-Squares with Multiple Right-Hand Sides

Larsen [66, Paper A, section 4.2] has proposed MCGLS for this purpose; see Table 5.2 for solving
a sequence of least-squares problems min ‖Ax−b(k)‖, k = 1, 2, . . . , q. We would apply the method
to the problems y(k) = arg min ‖ATy − c(k)‖ with q random vectors c(k). At the end, we could
orthogonalize all the residual vectors r(k) = c(k)−ATy(k) by the modified Gram-Schmidt process.

84 Chapter 5 Computation of Null Vectors, Eigenvectors, and Singular Vectors

Table 5.3
Algorithm MLSQRnull for computing multiple orthogonal null vectors. Matlab file: NullBasis.m.

MLSQRnull(A, tol,maxit)→ nullity, r1, r2, . . .
for i = 1, 2, . . .

Choose random vector c
Orthogonalize c to r1, . . . , ri−1

c← c/‖c‖
y = LSQR(AT, c, tol,maxit)
ri = c−ATy
if ‖ri‖ < tol(‖A‖‖y‖+ ‖c‖) // ATy ≈ c is compatible

nullity = i− 1, STOP
end

end

5.3.2 MLSQR: Least-Squares with Multiple Right-Hand Sides

In [82, section 8.7] (see also [13]), it is demonstrated that CGLS and LSQR have comparable
numerical performance on well-conditioned least-squares problems, but the latter can be supe-
rior on ill-conditioned problems. Thus it is natural to consider using LSQR instead of CGLS in
an ill-conditioned least-squares problem with multiple right-hand sides. This was already sug-
gested by Larsen [66, Paper A] with the caution that reorthogonalization (or at least partial
reorthogonalization) would be necessary in the Golub-Kahan process.

We should note Björck’s [11] band decomposition for least-squares with multiple right-hand
sides—a natural extension of the Golub-Kahan bidiagonalization and LSQR.

5.3.3 MLSQRnull: Multiple Null Vectors

For our null-vector problem, we do not have to generate all right-hand sides in the beginning
and thus we can be more memory efficient. Also, we can generate random right-hand sides
in increasingly small subspaces in the following fashion, so that the LSQR iterations might be
reduced.

With a slight change of notation, suppose we have obtained the first null vector r1 normalized
so that ‖r1‖ = 1 from the solution y1 of miny ‖ATy − c1‖. To obtain the second null vector, we
choose a nonzero vector c2 /∈ R(AT) and c2 ⊥ r1. Then the residual r2 = c2 − ATy2 from the
solution y2 of miny ‖ATy − c2‖ is orthogonal to r1 because

rT1r2 = rT1(c2 −ATy2) = rT1c2 − yT2Ar1 = rT1c2 = 0.

Thus, r2 is a second null vector of A. We can proceed to choose c3 /∈ R(AT) and make c3 ⊥ r1, r2
by the modified Gram-Schmidt process. Repeat the procedure to get all the null vectors of A.

We list the steps as algorithm MLSQRnull in Table 5.3.
In practice, to produce a vector not in R(AT) for a given singular matrix A, we simply

generate a random vector: the probability of it having no component in N (A) is zero.

5.4 Numerical Experiments on Unsymmetric Systems 85

5.4 Numerical Experiments on Unsymmetric Systems

5.4.1 The PageRank Problem

In this application, we happen to know an exact eigenvalue of an unsymmetric matrix, and we
wish to compute the corresponding eigenvector x. It is the dominant eigenvector of an n × n
Markov matrix A that arises from PageRank [16] (see [64] for a survey):

A := αP +
1− α
n

eeT, α ∈ (0, 1), Ax = x,

where P is sparse, unsymmetric, and column-stochastic (satisfying PTe = e). Note that A is dense
and thus not explicitly formed. Also, A is both column-stochastic and irreducible (its underlying
graph is strongly connected), even if P is reducible. By the Perron-Frobenius theorem, A has
a simple maximal eigenvalue equal to 1. The corresponding right-eigenvector x is non-negative,
and when normalized to unit 1-norm it is known as the stationary probability distribution of the
Markov chain represented by AT. Under the PageRank model, xi measures the importance of
the ith web page.

In practice, P could have some zero columns, and then A will not be column-stochastic.
In this case, we can define an irreducible column-stochastic matrix B of order n + 1 and its
eigenvector as follows (extending Tomlin [106] to handle zero columns in P):

B =

[
αP 1

ne

eT− α(eTP) 0

]
, Bv = v, where v =

[
x

θ

]
. (5.5)

In essence, the graph of B has one extra node that links to every other node in the graph of P .
When n is extremely large (currently many billions for the whole WWW), perhaps the only

practical approach is to apply the classical power method, as in the original paper [16].
In the following numerical experiment, we used P from the harvard500 web-graph—a col-

lection of 500 hyperlinked Harvard web pages assembled by Moler [71]. We defined B using
α = 0.999 and computed its eigenvector v by the power method and by our least-squares ap-
proach of finding the (essentially unique) null vector of C := BT− I:

min
y
‖Cy − b‖, r = b− Cy, v = r/‖r‖ x = v(1 :n)/‖v(1 :n)‖1. (5.6)

To improve the performance of LSQR on this problem, we used NBIN [70] to compute diagonal
matrices S and T , then solved the scaled problem

min
ȳ
‖(SCT)ȳ − b‖, s = S(b− (SCT)ȳ), v = s/‖s‖, x = v(1 :n)/‖v(1 :n)‖1. (5.7)

Note that we usually cannot use two-sided preconditioning on least-squares problems, and indeed
y 6= T ȳ above, but we do have CTv = 0 in both cases (and hence Bv = v).

The power method required about 650 iterations (each consisting of 1 matrix-vector multi-
plication) to achieve a final error ‖Bvk − vk‖ ≈ 10−12, while LSQR took 115 iterations (each
requiring two matrix-vector multiplications). Figure 5.1 compares ‖Bvk − vk‖ for the two meth-
ods. For reference purposes, Figure 5.2 is a bar-graph of the PageRank x.

86 Chapter 5 Computation of Null Vectors, Eigenvectors, and Singular Vectors

0 100 200 300 400 500 600 700
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

‖B
v k
−
v k
‖ 2

Power Method
LSQR

Figure 5.1 Convergence of the power method and the least-squares approach with diagonally pre-
conditioned LSQR (see equation (5.7)) on the harvard500 web matrix, with α = 0.999 in (5.5).
‖Bvk − vk‖ is plotted against iteration number k. This figure is reproducible by PageRank-

LSQR EigsDriverScalingDummyNode4Harvard.m.

100 200 300 400 500
0

0.05

0.1

Power method PageRank

100 200 300 400 500
0

0.05

0.1

LSQR PageRank

k

Figure 5.2 PageRank of harvard500 computed by the power method and the least-squares approach with
diagonally preconditioned LSQR. Since each solution is very accurate, the figures appear identical. This
figure is reproducible by PageRankLSQREigsDriverScalingDummyNode4Harvard.m.

5.4 Numerical Experiments on Unsymmetric Systems 87

5.4.2 PageRank Applied to Citation Data

Research papers are traditionally ranked by number of citations. However, if we model each
paper as a web page and the citation relation as hyperlinks, we could compute its PageRank as
an alternative literature ranking scheme.

Readers of a paper often follow the bibliography rather closely for further reading (they seldom
pick another paper at random!). Thus α = 0.999 is a reasonable modeling parameter value.
We have obtained the citation data of 531,675 sample papers available from the computer and
information science digital library CiteSeer [26] as of August 2002. Figures 5.3 and 5.4 show the
convergence and the computed PageRank using the power method and LSQR on problem (5.7).
Although LSQR has a rather oscillatory performance on the error measure ‖Bvk − vk‖, it takes
only 50% of the matrix-vector products required by the power method to achieve the accuracy
‖Bvk − vk‖ < 10−6.

The top 20 papers in descending order of PageRank are as follows:

1. The UNIX Time-Sharing System, D. Ritchie and K. Thompson, 1974.

2. A System for Typesetting Mathematics, B. Kernighan and L. Cherry, 1975.

3. Congestion Avoidance in Computer Networks with a Connectionless Network Layer,

R. Jain, K. Ramakrishnan, and D.-M. Chiu, 1997.

4. Almost Optimal Lower Bounds for Small Depth Circuits, J. Hastad, 1989.

5. Relational Queries Computable in Polynomial Time, N. Immerman, 1986.

6. Probabilistic Methods in Combinatorics, J. Spencer, 1974.

7. Discrepancy in Arithmetic Progressions, J. Matoušek and J. Spencer, 1996.

8. Generalized Additive Models, T. Hastie and R. Tibshirani, 1995.

9. Why Functional Programming Matters, J. Hughes, 1984.

10. Logic Programming with Sets, G. Kuper, 1990.

11. Shape and Motion from Image Streams: a Factorization Method, C. Tomasi and T. Kanade, 1992.

12. Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management,

S. Kent, 1993.

13. Deriving Production Rules for Constraint Maintenance, S. Ceri and J. Widom, 1990.

14. Reaching Approximate Agreement in the Presence of Faults, D. Dolev, N. Lynch, S. Pinter,

E. Stark, and W. Weihl, 1985.

15. Hazard Regression, C. Kooperberg, C. Stone, and Y. Truong, 1994.

16. Dynamic Perfect Hashing: Upper and Lower Bounds, M. Dietzfelbinger, A. Karlin, K. Mehlhorn,

F. Meyer auf der Heide, H. Rohnert, R. Tarjan, 1990.

17. On the Length of Programs for Computing Finite Binary Sequences, G. Chaitin, 1966.

18. Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers,

D. Balenson, 1993.

19. Model Selection and Accounting for Model Uncertainty in Linear Regression Models, A. Raftery,

D. Madigan, and J. Hoeting, 1993.

20. Set-Oriented Production Rules in Relational Database Systems, J. Widom and S. Finkelstein, 1990.

88 Chapter 5 Computation of Null Vectors, Eigenvectors, and Singular Vectors

0 2000 4000 6000
10

−6

10
−3

10
0

‖B
v k
−
v k
‖ 2

k

Power method

0 500 1000 1500
10

−6

10
−3

10
0

‖B
v k
−
v k
‖ 2

k

LSQR

Figure 5.3 Convergence of the power method and the least-squares approach with diagonally precondi-
tioned LSQR (see equation (5.7)) on the CiteSeer citation matrix, with α = 0.999 in (5.5). This figure
is reproducible by PageRankLSQR EigsDriverScalingDummyNode4Cite.m.

Figure 5.4 Essentially identical PageRank solutions from the methods in the preceding figure. This figure
is reproducible by PageRankLSQR EigsDriverScalingDummyNode4Cite.m.

5.4 Numerical Experiments on Unsymmetric Systems 89

5.4.3 A Multiple Null-Vector Problem from Helioseismology

Here we present a problem that arises from a helioseismology application at HEPL (the Hansen
Experimental Physics Laboratory at Stanford) in 2003. Using algorithm MLSQRnull in Table 5.3,
we computed several null vectors of a dense, square matrix A of order n = 540, 672 and condition
number κ(A) = O(104). In this case, A is defined by convolution operators for computing Ax
and ATy, given inputs x and y.

Figure 5.5 shows ‖rk‖ and ‖Ark‖ for each LSQR iteration on min ‖ATx − c‖ (where rk =
c − ATxk), along with the kth estimates of x(1) and ‖A‖, using a particular random vector c.
The figures for the other null-vectors are similar and thus omitted.

0 500 1000 1500 2000
0.3

0.4

0.5

0.6

0.7

0.8

nullvec6 ||r
k
||

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

log10 (||Ar
k
||/(||A|| ||r

k
||))

0 500 1000 1500 2000
−2

0

2

4

6

8

10

12
x 10

−3 x(1)

0 500 1000 1500 2000
0

100

200

300

400

500

600

700
norm(A)

Figure 5.5 An application that arises from helioseismology. A is a large, dense, unsymmetric square
matrix of order n = 540, 672. We compute x = LSQR(AT, c) for a random vector c. The residual
vector r = c − ATx is a null vector of A. This experiment was performed on a 2.4GHz Intel Xeon
Linux machine with 2GB RAM. It took 5 hours for 2,000 iterations. To reproduce this figure, run
td inversion nullvec6.m.

90

Chapter 6

Conclusions and Future Work

6.1 Summary

Krylov subspace methods find approximate solutions to linear systems Ax = b or least-squares
problems min ‖Ax − b‖. Each iteration requires one matrix-vector product Avk (and possi-
bly one product ATuk) for a certain vector vk (and uk) generated by the method. This is
the mechanism by which A makes itself known. The kth approximate solution xk lies in the
Krylov subspace spanned by the vectors {b, Ab,A2b, . . . , Ak−1b} (in most cases) or by the vectors
{ATb, (ATA)ATb, (ATA)2ATb, . . . , (ATA)k−1ATb}.

Table 6.1 summarizes the main Krylov subspace methods according to problem types. Our
solver MINRES-QLP fills a gap by extending the symmetric solver MINRES to the case of
singular or ill-conditioned symmetric systems.

Table 6.1
Problem types and algorithms. CGLS applies to the same categories as LSQR. The condition number of
A is denoted by κ.

Problem A full rank or rank-deficient A unknown rank

compatible

Ax = b

incompatible

min ‖Ax− b‖
unknown compatibility

unknown κ

square

A = A∗

±A � 0:

CG

±A � 0, κ = O(1):

MINRES

SYMMLQ

SQMR

±A � 0, κ� 1:

MINRES-QLP

minimum-length solution:

MINRES-QLP

LSQR

least-squares solution:

MINRES

SQMR

MINRES-QLP

LSQR

square

A 6= A∗

LSQR

GMRES

QMR

Bi-CGSTAB

LSQR LSQR

rectangular LSQR LSQR LSQR

91

92 Chapter 6 Conclusions and Future Work

6.2 Contributions

This research began with a new approach for null-vector computation, based on least-squares
problems and the observation that min ‖Ax − b‖ gives a residual vector r = b − Ax satisfying
ATr = 0.

Applications include eigenvector and singular vector computations, as an alternative to inverse
iteration when an exact eigenvalue or singular value is known. Iterative solution of the singular
least-squares problem converges sooner than when the solver is forced to compute an exploding
solution.

The approach extends to computing multiple null vectors, and thus estimating the nullity of
a sparse matrix and obtaining an orthogonal null basis (assuming the nullity is relatively small).

Our experimentation with LSQR on singular least-squares problems led us to focus on the
behavior of MINRES on singular symmetric systems. We realized that MINRES computes the
minimum-length solution for singular compatible systems Ax = b, but not for singular symmetric
least-squares problems min ‖Ax − b‖. The major part of our research became the development
of a new algorithm (MINRES-QLP) for this purpose.

MINRES-QLP constructs its kth iterate with orthogonal steps: xQk = (VkPk)uk. One trian-
gular system Lkuk = Qk(β1e1) is involved for each k, compared to the n systems present in the
standard MINRES computation VkR

−1
k (that is, the n lower-triangular systems RTkD

T
k = V Tk).

Thus MINRES-QLP overcomes the potential instability predicted by the MINRES authors [81]
and analyzed by Sleijpen et al. [96]. The additional work and storage are moderate, and max-
imum efficiency is retained by transferring from MINRES to the MINRES-QLP iterates only
when the estimated condition number of A exceeds a specified value.

MINRES and MINRES-QLP are readily applicable to Hermitian matrices, once αk is typecast
as a real scalar in finite-precision arithmetic. For both algorithms, we derived recurrence relations
for ‖Ark‖ and ‖Axk‖ and used them to formulate new stopping conditions for singular problems.

TEVD or TSVD are commonly known to use rank-k approximations to A to find approximate
solutions to min ‖Ax − b‖ that serve as a form of regularization. Krylov subspace methods also
have regularization properties [55, 53, 62]. Since MINRES-QLP monitors more carefully the
rank of Tk, which could be k or k − 1, we may say that regularization is a stronger feature in
MINRES-QLP, as we have shown in our numerical examples.

6.3 Ongoing Work

We hope to study more in depth the error and convergence analysis for MINRES and MINRES-
QLP in the fashion of [96]. Specifically, their kth iterates xMk = (VkR−1

k)tk and xQk = (VkPk)uk
give some hints on better rounding-error properties of MINRES-QLP. The question remains
whether MINRES-QLP is capable of delivering the level of accuracy in finite precision as expected
from the norm-wise relative backward errors.

Like all solvers, MINRES-QLP is challenged by very ill-conditioned least-squares problems,
including the weighted least-squares problems studied in Bobrovnikova and Vavasis [14]. The
difficulties are more pronounced for matrices whose numerical rank is ill-determined. Regulariza-
tion schemes [54], selective and partial reorthogonalization [85, 92, 93, 65] remain helpful. These
are certainly active areas of research not restricted to symmetric problems.

6.3 Ongoing Work 93

Our approach in extending MINRES to MINRES-QLP may be applied to existing iterative
algorithms such as GMRES and QMR for unsymmetric singular least-squares problems. Clearly,
both methods need efficient estimates of ‖ATrk‖ for singular least-squares problems. If GMRES
without restarting is practical (in terms of memory), a modified version GMRES-QLP could
compute QLP factors of the Arnoldi Hessenberg matrix at the final iteration k:

QkHk = Rk =

[
Rk

0

]
, RkPk = Lk.

This would probably reveal rank better and thus give a more regularized solution xk = VkPkuk

with uk(k) = 0. But if restarting is necessary after m steps (where m cannot be too large), the
Hessenberg matrix Hm need not be singular nor ill-conditioned (that is, not rank revealing), in
which case QLP factors of Hm may not be helpful.

We are also interested in studying the convergence of ‖Aw̄k‖ for singular A and b /∈ R(A) in
SYMMLQ. This has applications in null-vector computations.

As pointed out by Larsen [66], least-squares problems with multiple right-hand sides are less
studied than linear systems with multiple right-hand sides. We would like to pursue the design of
efficient algorithms for large least-squares problems with multiple right-hand sides, as suggested
by Larsen in connection with his PROPACK software [65]. Such algorithms could be applied to
large-scale multiple null-vector problems.

LSQR has a connection to partial least squares (PLS) [32]. We can expect similar character-
istics of MINRES-QLP in the symmetric case.

Lastly, it would be ideal to estimate upper and lower bounds for the error norm ||x− xk|| in
MINRES and MINRES-QLP using moments and quadrature techniques following the series of
work published by Golub on symmetric positive definite matrices [44, 45, 48].

94

Bibliography

[1] M. A. Amer. Constructive solutions for nonlinear multiparameter eigenvalue problems.
Comput. Math. Appl., 35(11):83–90, 1998.

[2] M. Arioli, I. Duff, and D. Ruiz. Stopping criteria for iterative solvers. SIAM J. Matrix
Anal. Appl., 13(1):138–144, 1992.

[3] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue
problem. Quart. Appl. Math., 9:17–29, 1951.

[4] F. V. Atkinson. Multiparameter Eigenvalue Problems. Academic Press, New York, 1972.

[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the
Solution of Algebraic Eigenvalue Problems. SIAM, Philadelphia, PA, 2000.

[6] Z.-Z. Bai and G.-Q. Li. Restrictively preconditioned conjugate gradient methods for systems
of linear equations. IMA J. Numer. Anal., 23(4):561–580, 2003.

[7] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applications.
Springer-Verlag, New York, second edition, 2003.

[8] M. Benzi. Preconditioning techniques for large linear systems: a survey. J. Comput. Phys.,
182(2):418–477, 2002.

[9] J. Berns-Müller, I. G. Graham, and A. Spence. Inexact inverse iteration for symmetric
matrices. Linear Algebra Appl., 416(2-3):389–413, 2006.

[10] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996.

[11] Å. Björck. Bidiagonal decomposition and statistical computing. Presented at the 15th
International Workshop on Matrices and Statistics, University of Uppsala, Sweden, 2006.

[12] Å. Björck and T. Elfving. Accelerated projection methods for computing pseudoinverse
solutions of systems of linear equations. BIT, 19(2):145–163, 1979.

[13] Å. Björck, T. Elfving, and Z. Strakos̆. Stability of conjugate gradient and Lanczos methods
for linear least squares problems. SIAM J. Matrix Anal. Appl., 19(3):720–736, 1998.

[14] E. Y. Bobrovnikova and S. A. Vavasis. Accurate solution of weighted least squares by
iterative methods. SIAM J. Matrix Anal. Appl., 22(4):1153–1174, 2001.

[15] D. Boley. Computing rank-deficiency of rectangular matrix pencils. Systems Control Lett.,
9(3):207–214, 1987.

[16] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
WWW7: Proceedings of the Seventh International Conference on World Wide Web, pages
107–117. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1998.

95

96 Bibliography

[17] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIAM J. Matrix
Anal. Appl., 18(1):37–51, 1997.

[18] J. C. Browne, M. Yalamanchi, K. Kane, and K. Sankaralingam. General parallel compu-
tations on desktop grid and p2p systems. In LCR ’04: Proceedings of the 7th Workshop
on Languages, Compilers, and Run-Time Support for Scalable Systems, pages 1–8. ACM
Press, New York, NY, USA, 2004.

[19] P. Businger and G. H. Golub. Linear least squares solutions by Householder transforma-
tions. Numer. Math., 7:269–276, 1965.

[20] S.-L. Chang and C.-S. Chien. A multigrid-Lanczos algorithm for the numerical solutions
of nonlinear eigenvalue problems. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13(5):1217–
1228, 2003.

[21] D. Chen and S. Toledo. Combinatorial characterization of the null spaces of symmetric
H-matrices. Linear Algebra Appl., 392:71–90, 2004.

[22] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20(1):33–61, 1998.

[23] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Review, 43(1):129–159, 2001.

[24] Y. T. Chen. Iterative methods for linear least-squares problems. Res. Rep. CS-75-04,
Department of Computer Science, University of Waterloo, ON, Canada, 1975.

[25] S.-C. Choi, D. L. Donoho, A. G. Flesia, X. Huo, O. Levi, and D. Shi. About Beamlab—a
toolbox for new multiscale methodologies. http://www-stat.stanford.edu/˜beamlab/, 2002.

[26] CiteSeer.IST Scientific Digital Library. http://citeseer.ist.psu.edu/.

[27] J. Claerbout. Hypertext documents about reproducible research.
http://sepwww.stanford.edu.

[28] J.-P. Dedieu and F. Tisseur. Perturbation theory for homogeneous polynomial eigenvalue
problems. Linear Algebra Appl., 358:71–94, 2003.

[29] F. A. Dul. MINRES and MINERR are better than SYMMLQ in eigenpair computations.
SIAM J. Sci. Comput., 19(6):1767–1782, 1998.

[30] L. Eldén. Algorithms for the regularization of ill-conditioned least squares problems.
Nordisk Tidskr. Informationsbehandling (BIT), 17(2):134–145, 1977.

[31] L. Eldén. The eigenvalues of the Google matrix. Tech. Rep. LiTHMAT-R-04-01, Linköping
University, Linköping, Sweden, 2004.

[32] L. Eldén. Partial least-squares vs. Lanczos bidiagonalization. I. Analysis of a projection
method for multiple regression. Comput. Statist. Data Anal., 46(1):11–31, 2004.

[33] D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra. Translated
by Robert C. Williams. W. H. Freeman and Co., San Francisco, 1963.

Bibliography 97

[34] B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen. Minimum residual methods for
augmented systems. BIT, 38(3):527–543, 1998.

[35] R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical Analysis
(Proc 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975), pages 73–89. Lecture
Notes in Math., Vol. 506. Springer, Berlin, 1976.

[36] R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. SIAM J. Sci. Comput., 14(2):470–482, 1993.

[37] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Numer. Math., 60(3):315–339, 1991.

[38] R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method for symmetric indefinite
linear systems. In W. F. Ames, editor, Proceedings of the 14th IMACS World Congress on
Computational and Applied Mathematics, pages 1253–1256. IMACS, 1994.

[39] K. A. Gallivan, S. Thirumalai, P. Van Dooren, and V. Vermaut. High performance algo-
rithms for Toeplitz and block Toeplitz matrices. In Proceedings of the Fourth Conference of
the International Linear Algebra Society (Rotterdam, 1994), volume 241/243, pages 343–
388, 1996.

[40] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Preconditioners for indefinite
systems arising in optimization. SIAM J. Matrix Anal. Appl., 13(1):292–311, 1992.

[41] P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Algebra and Optimization.
Vol. 1. Addison-Wesley Publishing Company Advanced Book Program, Redwood City,
CA, 1991.

[42] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageRank: A linear system approach.
Technical Report YRL-2004-038, Yahoo! Research Labs, 2004.

[43] G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math.,
7:206–216, 1965.

[44] G. H. Golub. Matrix computation and the theory of moments. In Proceedings of the
International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 1440–1448.
Birkhäuser, Basel, 1995.

[45] G. H. Golub. Matrix computation and the theory of moments. Bull. Belg. Math. Soc.
Simon Stevin, suppl.:1–9, 1996. Numerical analysis (Louvain-la-Neuve, 1995).

[46] G. H. Golub and C. Greif. An Arnoldi-type algorithm for computing PageRank. BIT
Numerical Mathematics, published online (Springerlink), 2006.

[47] G. H. Golub and W. M. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2:205–224, 1965.

[48] G. H. Golub and G. Meurant. Matrices, moments and quadrature. II. How to compute the
norm of the error in iterative methods. BIT, 37(3):687–705, 1997.

98 Bibliography

[49] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, second edition, 1989.

[50] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[51] M. H. Gutknecht and M. Rozložnik. Residual smoothing techniques: do they improve the
limiting accuracy of iterative solvers? BIT, 41(1):86–114, 2001.

[52] W. W. Hager. Iterative methods for nearly singular linear systems. SIAM J. Sci. Comput.,
22(2):747–766, 2000.

[53] M. Hanke and J. G. Nagy. Restoration of atmospherically blurred images by symmetric
indefinite conjugate gradient techniques. Inverse Problems, 12(2):157–173, 1996.

[54] P. C. Hansen. Truncated singular value decomposition solutions to discrete ill-posed prob-
lems with ill-determined numerical rank. SIAM J. Sci. Statist. Comput., 11(3):503–518,
1990.

[55] P. C. Hansen and D. P. O’Leary. The use of the L-curve in the regularization of discrete
ill-posed problems. SIAM J. Sci. Comput., 14(6):1487–1503, 1993.

[56] R. J. Hanson and C. L. Lawson. Extensions and applications of the Householder algorithm
for solving linear least squares problems. Math. Comp., 23:787–812, 1969.

[57] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Research Nat. Bur. Standards, 49:409–436, 1952.

[58] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA,
second edition, 2002.

[59] N. J. Higham and F. Tisseur. More on pseudospectra for polynomial eigenvalue problems
and applications in control theory. Linear Algebra Appl., 351/352:435–453, 2002.

[60] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. Amer. Math. Monthly,
105(10):889–899, 1998.

[61] E. F. Kaasschieter. Preconditioned conjugate gradients for solving singular systems. J.
Comput. Appl. Math., 24(1-2):265–275, 1988.

[62] M. Kilmer and G. W. Stewart. Iterative regularization and MINRES. SIAM J. Matrix
Anal. Appl., 21(2):613–628, 1999.

[63] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Research Nat. Bur. Standards, 45:255–282, 1950.

[64] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science of Search
Engine Rankings. Princeton University Press, Princeton, NJ, 2006.

[65] R. M. Larsen. PROPACK downloadable software.
http://soi.stanford.edu/˜rmunk/PROPACK/index.html.

Bibliography 99

[66] R. M. Larsen. Efficient Algorithms for Helioseismic Inversion. PhD thesis, Dept of Com-
puter Science, University of Aarhus, 1998.

[67] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide. SIAM, Philadelphia,
PA, 1998.

[68] A. Y. T. Leung. Inverse iteration for the quadratic eigenvalue problem. J. Sound Vibration,
124(2):249–267, 1988.

[69] J. G. Lewis. Algorithms for Sparse Matrix Eigenvalue Problems. PhD thesis, Dept of
Computer Science, Stanford University, 1976.

[70] O. E. Livne and G. H. Golub. Scaling by binormalization. Numer. Algorithms, 35(1):97–
120, 2004.

[71] C. B. Moler. Numerical Computing with MATLAB. SIAM, Philadelphia, PA, 2004.

[72] R. B. Morgan. Computing interior eigenvalues of large matrices. Linear Algebra Appl.,
154/156:289–309, 1991.

[73] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite
linear systems. SIAM J. Sci. Comput., 21(6):1969–1972, 2000.

[74] M. G. Neytcheva and P. S. Vassilevski. Preconditioning of indefinite and almost singular
finite element elliptic equations. SIAM J. Sci. Comput., 19(5):1471–1485, 1998.

[75] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second edition,
2006.

[76] Y. Notay. Solving positive (semi)definite linear systems by preconditioned iterative meth-
ods. In Preconditioned Conjugate Gradient Methods (Nijmegen, 1989), volume 1457 of
Lecture Notes in Math., pages 105–125. Springer, Berlin, 1990.

[77] Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the partial sym-
metric eigenproblem. Numer. Linear Algebra Appl., 9(1):21–44, 2002.

[78] C. C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric
matrix. J. Inst. Math. Appl., 18(3):341–349, 1976.

[79] C. C. Paige. Krylov subspace processes, Krylov subspace methods, and iteration polynomi-
als. In Proceedings of the Cornelius Lanczos International Centenary Conference (Raleigh,
NC, 1993), pages 83–92. SIAM. Philadelphia, PA, 1994.

[80] C. C. Paige, M. Rozložńık, and Z. Strakoš. Modified Gram-Schmidt (MGS), least squares,
and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1):264–284,
2006.

[81] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12(4):617–629, 1975.

[82] C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Software, 8(1):43–71, 1982.

100 Bibliography

[83] C. C. Paige and M. A. Saunders. algorithm 583; LSQR: Sparse linear equations and least-
squares problems. ACM Trans. Math. Software, 8(2):195–209, 1982.

[84] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, 1998.

[85] B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthogonalization.
Math. Comp., 33(145):217–238, 1979.

[86] W.-q. Ren and J.-x. Zhao. Iterative methods with preconditioners for indefinite systems.
J. Comput. Math., 17(1):89–96, 1999.

[87] A. Ruhe and T. Wiberg. The method of conjugate gradients used in inverse iteration.
Nordisk Tidskr. Informationsbehandling (BIT), 12:543–554, 1972.

[88] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, second
edition, 2003.

[89] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.

[90] M. A. Saunders. Solution of sparse rectangular systems using LSQR and Craig. BIT,
35(4):588–604, 1995.

[91] M. A. Saunders. Computing projections with LSQR. BIT, 37(1):96–104, 1997.

[92] H. D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization meth-
ods. Linear Algebra Appl., 61:101–131, 1984.

[93] H. D. Simon. The Lanczos algorithm with partial reorthogonalization. Math. Comp.,
42(165):115–142, 1984.

[94] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, Boston,
MA, 1997.

[95] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. Van der Vorst. Jacobi-
Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT,
36(3):595–633, 1996.

[96] G. L. G. Sleijpen, H. A. Van der Vorst, and J. Modersitzki. Differences in the effects of
rounding errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix
Anal. Appl., 22(3):726–751, 2000.

[97] Systems Optimization Laboratory (SOL), Stanford University, downloadable software:
AMRES, CGLS, LSQR, LUMOD, MINRES, MINRES-QLP, PDCO, PDSCO, SYMMLQ.
http://www.stanford.edu/group/SOL/software.html.

[98] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J.
Sci. Statist. Comput., 10(1):36–52, 1989.

[99] G. W. Stewart. Perturbation theory for rectangular matrix pencils. Linear Algebra Appl.,
208/209:297–301, 1994.

Bibliography 101

[100] G. W. Stewart. The QLP approximation to the singular value decomposition. SIAM J.
Sci. Comput., 20(4):1336–1348, 1999.

[101] D. B. Szyld and O. B. Widlund. Applications of conjugate gradient type methods to eigen-
value calculations. In Advances in Computer Methods for Partial Differential Equations,
III (Proc. Third IMACS Internat. Sympos., Lehigh Univ., Bethlehem, Pa., 1979), pages
167–173. IMACS, New Brunswick, N.J., 1979.

[102] R. C. Thompson. Principal submatrices. IX. Interlacing inequalities for singular values of
submatrices. Linear Algebra and Appl., 5:1–12, 1972.

[103] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser.
B, 58(1):267–288, 1996.

[104] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. In Proceedings
of the International Workshop on Accurate Solution of Eigenvalue Problems (University
Park, PA, 1998), volume 309, pages 339–361, 2000.

[105] K.-C. Toh, K.-K. Phoon, and S.-H. Chan. Block preconditioners for symmetric indefinite
linear systems. Internat. J. Numer. Methods Engrg., 60(8):1361–1381, 2004.

[106] J. A. Tomlin. A new paradigm for ranking pages on the world wide web. In Proceedings of
the World Wide Web conference 2003 (WWW2003), pages 350–355, May 2003.

[107] L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[108] University of Florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices/.

[109] H. A. Van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631–644,
1992.

[110] H. A. Van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge
University Press, Cambridge, 2003.

[111] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49–95, 1996.

[112] S. Varadhan, M. W. Berry, and G. H. Golub. Approximating dominant singular triplets of
large sparse matrices via modified moments. Numer. Algorithms, 13(1-2):123–152, 1996.

[113] C.-h. Yu and O. Axelsson. A process for solving a few extreme eigenpairs of large sparse
positive definite generalized eigenvalue problem. J. Comput. Math., 18(4):387–402, 2000.

[114] H.-G. Yu and G. Nyman. A spectral transform minimum residual filter diagonalization
method for interior eigenvalues of physical systems. J. Chem. Phys., 110(23):11133–11140,
1999.

[115] J. Y. Yuan. Numerical methods for generalized least squares problems. In Proceedings
of the Sixth International Congress on Computational and Applied Mathematics (Leuven,
1994), volume 66, pages 571–584, 1996.

102 Bibliography

[116] Y. Zhang. Solving large-scale linear programs by interior-point methods under the MAT-
LAB environment. Optim. Methods Softw., 10(1):1–31, 1998.

[117] T. S. Zheng, W. M. Liu, and Z. B. Cai. A generalized inverse iteration method for solution
of quadratic eigenvalue problems in structural dynamic analysis. Comput. & Structures,
33(5):1139–1143, 1989.

	List of Tables and Figures
	Introduction
	The Motivating Problem
	Null Vectors
	A Revelation
	Symmetric Systems

	Preliminaries
	Problem Description and Formal Solutions
	Existing Numerical Algorithms
	Background for MINRES
	Notation
	Computations
	Roadmap

	Existing Iterative Methods for Hermitian Problems
	The Lanczos Process
	Lanczos-Based Methods for Linear Systems
	CG
	SYMMLQ
	MINRES

	Existing Iterative Methods for Hermitian Least-Squares
	MINRES
	GMRES
	LSQR
	QMR and SQMR

	Stopping Conditions and Norm Estimates
	Residual and Residual Norm
	Norm of Ark
	Solution Norms
	Matrix Norms
	Matrix Condition Numbers

	MINRES-QLP
	Introduction
	Effects of Rounding Errors in MINRES
	Existing Approaches to Solving Hermitian Least-Squares
	Orthogonal Matrix Decompositions for Singular Matrices

	MINRES-QLP
	The MINRES-QLP Subproblem
	Solving the Subproblem
	Further Details
	Transfer from MINRES to MINRES-QLP

	Stopping Conditions and Norm Estimates
	Residual and Residual Norm
	Norm of Ark
	Matrix Norms
	Matrix Condition Numbers
	Solution Norms
	Projection of Right-hand Side onto Krylov Subspaces

	Preconditioned MINRES and MINRES-QLP
	Derivation
	Preconditioning Singular Ax = b
	Preconditioning Singular Ax b

	General Preconditioners
	Diagonal Preconditioning
	Binormalization (BIN)
	Incomplete Cholesky Factorization

	Numerical Experiments on Symmetric Systems
	A Singular Indefinite System
	Two Laplacian Systems
	An Almost Compatible System
	A Least-Squares Problem

	Hermitian Problems
	Without Preconditioning
	With Diagonal Preconditioning
	With Binormalization

	Effects of Rounding Errors in MINRES-QLP

	Computation of Null Vectors, Eigenvectors, and Singular Vectors
	Applications
	Eigenvalue Problem
	Singular Value Problem
	Generalized, Quadratic, and Polynomial Eigenvalue Problems
	Multiparameter Eigenvalue Problem

	Computing a Single Null Vector
	Computing Multiple Null Vectors
	MCGLS: Least-Squares with Multiple Right-Hand Sides
	MLSQR: Least-Squares with Multiple Right-Hand Sides
	MLSQRnull: Multiple Null Vectors

	Numerical Experiments on Unsymmetric Systems
	The PageRank Problem
	PageRank Applied to Citation Data
	A Multiple Null-Vector Problem from Helioseismology

	Conclusions and Future Work
	Summary
	Contributions
	Ongoing Work

	Bibliography

