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Abstract

This thesis presents some algorithms for equilibrium programming under uncertainty. We consider

three equilibrium problems in which agents solve continuous stochastic nonlinear programs. The

problems differ primarily in the structure of the agent problem. In each instance, we provide a

sampling-based method for obtaining an equilibrium point. Convergence theory and computational

results are also provided.

In Chapter 2, we consider stochastic Nash games. Such problems require the determination

of a Nash equilibrium in which agents solve stochastic optimization problems. In particular, we

require that agents solve two-stage stochastic quadratic programs (QPs). We show that the resulting

equilibrium point may be obtained by solving a larger stochastic QP. A dual-decomposition method

for solving this problem is suggested with two important modifications. First, we use QP duality

to construct modified feasibility and optimality cuts. Second, we use inexact cuts that require

only dual feasible solutions. Convergence of the resulting algorithm is proved. We also present

a cut-sampling method that uses a sample of the cuts to construct probabilistic bounds on the

optimal value. We demonstrate the performance of both methods on a two-stage stochastic QP

test problem set. It is observed that using inexact cuts may reduce computational effort by as much

as 40%. The sampling method results in solutions that are within 3% of the optimal solution when

a fixed sample size of 5000 is used at each iteration.

Chapters 3 and 4 focus on mathematical programs with complementarity constraints (MPCCs).

In Chapter 3, we present a new method for solving such problems, while in Chapter 4, we extend

this method to stochastic MPCCs. A description of both chapters follows.

Interior point methods for mathematical programs with complementarity constraints (MPCC)

were first proposed by Luo et al. [LPR96] in their monograph. They have been studied extensively

over the past decade. However, existing theory supports convergence to first-order Karush-Kuhn-

Tucker (KKT) points. In Chapter 3, we present a method that ensures that the iterates converge

to a second-order KKT point. This is achieved by employing modified Newton and negative cur-

vature directions to conduct a curvilinear search on an augmented Lagrangian merit function.

Convergence theory for the method is provided. We also demonstrate that the curvilinear search

approach competes well with a linesearch approach on a test problem set of quadratic programs

with complementarity constraints (QPCCs).

We consider the generalization of the MPCC to the two-stage case under uncertainty and term

the resulting problem a stochastic MPCC. Such problems arise in the study of Stackelberg equilibria

under uncertainty. In Chapter 4, a new primal-dual method is described for this class of ill-posed

stochastic nonlinear programs. The method relies on sampling to construct the linearized KKT

system, which is subsequently solved using a scenario-based decomposition. Computational results

from a test set of stochastic MPCCs are provided.

In Chapter 5, we construct a two-period spot-forward market under uncertainty. Such games

iv



may be formulated using a Nash-Stackelberg framework. Such a structure results in a Nash-

Stackelberg equilibrium (NSE). However, computing such equilibria or verifying their existence

remains difficult. Instead, we propose a simultaneous stochastic Nash game that requires the

solution of a stochastic complementarity problem. We prove that under certain conditions, the

simultaneous stochastic Nash equilibrium (SSNE) is an NSE. We present a sampling-based iterative-

decomposition method for solving such problems efficiently and provide convergence theory for the

method. Scalability is demonstrated on a class of stochastic complementarity problems. We also

provide some policy-based insights using a 6-node model of an electricity market.

v



Acknowledgments

Over the past five years, my advisor Professor Walter Murray has perfected the role of advisor,

friend, and mentor. His advising has been deep and insightful and his expansive knowledge of

optimization constantly amazes me. My objective has always been to meet the extraordinarily high

standard of his own research. His warmth and kindness towards my entire family has made for

a wonderful relationship. He has always been very understanding about changes on the personal

front and has always provided me with unstinting support. I shall remain indebted for all that he

has done for me.

I would like to thank Professor Peter Glynn for his guidance, support and advice on a variety

of fronts. His encouragement and advice have been crucial to this research. His incisive comments

and accent on rigor and clarity made an enormous difference to the quality of work. His inordinate

ability to always ask the right questions has raised the level of the work significantly. It has been

a privilege and honor to have worked with him.

Professor Michael Saunders has been instrumental in helping me with the algorithm design and

implementation. His detailed comments on the theoretical and computational results, the language

and the use of LaTeX have had a profound impact on the quality of this dissertation. He has been

generous to a fault with his time and his suggestions unfailingly improve the performance of my

code. I shall miss his warmth, kindness, and good humor. He has inspired a whole generation of

students with his incomparable commitment to the field of optimization.

I would also like to thank Professor Gerd Infanger for his support throughout my stay here.

He was one of the first professors, I met upon my arrival here and his suggestions were crucial in

constructing the research problem. His knowledge of sampling methods and stochastic programming

proved immensely helpful in my own research.

During the last few years, several other professors have been extremely helpful. I would like

to thank Professor Benjamin Hobbs and Professor Shmuel Oren for their many conversations on

electricity markets. I would also like to thank Professor Richard Cottle for teaching me optimization

and complementarity theory. It was truly an honor to learn from him. Finally, I would also like to

thank Professor M.A. Pai. His advice and mentorship has been enormously beneficial.

I would like to thank the staff at the Department of Management Science and Engineering

at Stanford University, in particular Lorrie Papadakis, Juanita Winkelman, Roz Morf and Lori

Cottle. The Systems Optimization Laboratory has been a wonderful place, largely due to the

wonderful labmates, particularly, Michael Friedlander, Victor DeMiguel, Kien-Ming Ng, Maureen

Doyle, Che-Lin Su, Kaustuv, Samantha Infeld, and Alexis Collomb.

Several people have had an enormous impact on me over the years. My aunt (“Nini”) and

uncle (“fulaji baba”) cared for me as their own when I was an undergraduate student in Bombay.

Their legacy has been carried on by my cousin Deepu, my brother-in-law Sameer and my wonderful

nephew Akhil. Their support and kindness made our stay in California extremely memorable. My

vi



brother Uttam and his wife Sofia have always been there for us. Uttam picked me up from JFK

airport in New York City ten years ago and continues to stretch out constantly to help us along.

His constant advice and encouragement has made the journey a little less arduous.

I would like to thank my mother-in-law Maya Joshi for being a wonderful caring presence. Her

support has been crucial at various points in our lives. Both she and my brother-in-law Anjaneya

Joshi have been enormously kind and supportive.

This dissertation is dedicated to my parents, my wife Aparna, and our son Aaranya. It is as

much theirs as it is mine. My parents (“Aai” and “Baba”) have sacrificed an immense amount over

the years. I cannot imagine having progressed very far without their love, support, and guidance.

Above all, I would like to thank Aparna for everything. She has sacrificed and suffered an incredible

amount for this thesis. She had the unforgivably dubious privilege of starting her academic career

while being faced with my hectic travel schedule. But her encouragement and good humor never

waned and it was indispensable to my functioning. Aparna and Aaranya’s love has made this thesis

and all else possible.

vii



Contents

List of Tables, Figures, and Algorithms xi

1 Introduction 1

1.1 Stochastic Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Second-Order Method for MPCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Stochastic Stackelberg Equilibrium Problems . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Forward Contracting under Uncertainty in Electricity Markets . . . . . . . . . . . . 6

2 A Sampling Method for Two-Stage Stochastic QPs 8

2.1 Stochastic Nash Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Deterministic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Introducing Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 An Inexact L-shaped Method for Stochastic QPs . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The Two-Stage Stochastic Quadratic Program . . . . . . . . . . . . . . . . . 18

2.2.2 Some Properties of Q(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Optimality and Feasibility Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 The Master Problem and Subproblem . . . . . . . . . . . . . . . . . . . . . . 23

2.2.5 Upper and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.6 Introduction of Inexact Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.7 Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 The Inexact-Cut-Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Exact Cut Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Probabilistic Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Inexact Cut Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Stopping Rule and Confidence Intervals . . . . . . . . . . . . . . . . . . . . . 36

2.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 A Test Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Inexact L-Shaped Method for Stochastic QPs . . . . . . . . . . . . . . . . . . 38

2.4.3 A Sampling-based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Contributions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 A Second-order Method for MPCCs 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Early research on MPCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 A Second-Order Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3 Some Definitions and Background . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 An Interior Point Method for MPCCs . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



3.2.1 The Barrier Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 The KKT Conditions of MPCC(γ, µ) . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 The Linearized KKT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.4 A Negative Curvature Direction . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.5 Globalization through a Curvilinear Search . . . . . . . . . . . . . . . . . . . 54

3.2.6 Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Global Convergence to Second-Order Points . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Existence of Iterates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Existence of Parameter Sequences . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Boundedness of Iterates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4 Boundedness of αk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.5 Global Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Implementation Details and Numerical Results . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Some Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 A Test Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Contributions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 A KKT Sampling Method for Stochastic MPCCs 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Early Research on Stochastic Programming . . . . . . . . . . . . . . . . . . . 84

4.1.2 Research on SMPCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 An Interior Point Method for MPCCs . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 The Barrier Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 The KKT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 The Linearized KKT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 A Multi-phase Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.5 A Negative Curvature Direction . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.6 Specifying a Steplength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.7 Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.8 Algorithm Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Introducing KKT Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Solving the Sampled KKT systems . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2 Constructing a Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.3 Ensuring Global Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 SQPECgen: A Test Problem Set for Stochastic QPECs . . . . . . . . . . . . . 96

4.4.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Contributions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ix



5 Forward Contracting under Uncertainty 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Modeling Spot-Forward Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 The Spot-Market Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 A Nash-Stackelberg Equilibrium (NSE) . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 A Simultaneous Stochastic Nash Equilibrium (SSNE) . . . . . . . . . . . . . 105

5.2.4 From SSNEs to NSEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.5 A Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Application: Electricity Forward Markets . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Spot-Market Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 A Nash-Stackelberg Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.3 A Simultaneous Stochastic Nash Equilibrium . . . . . . . . . . . . . . . . . . 117

5.3.4 Relaxing the Risk-neutrality Constraint . . . . . . . . . . . . . . . . . . . . . 117

5.4 A Decomposition-based Splitting Algorithm . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.1 The DS Algorithm: Description and statement . . . . . . . . . . . . . . . . . 119

5.4.2 The DS Method: Convergence Theory . . . . . . . . . . . . . . . . . . . . . . 121

5.4.3 Introducing Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.4 Computational Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 An Electricity Market Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.2 Expected Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.3 Expected Spot-market Sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.4 Forward Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Contributions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 131

x



Tables, Figures, and Algorithms

Tables

2.1 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Comparison of two update rules with the exact-cut L-shaped method . . . . . . . . . 39

2.3 Performance of sampling method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Comparing linear-slow and linear-fast . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Comparing curvilinear-slow and curvilinear-fast . . . . . . . . . . . . . . . . . . . . . 81

4.1 Comparision of serial and parallel times . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Comparision of kktsampling and kktsorting strategies . . . . . . . . . . . . . . . . 99

5.1 Computing SSNE and NSE with zero costs . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Computing SSNE and NSE with random costs . . . . . . . . . . . . . . . . . . . . . 111

5.3 Comparison of PATH with the DS method and Monte-Carlo-DS . . . . . . . . . . . 124

5.4 Comparison of DS method with Monte-Carlo sampling, residual sorting and residual

sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Specification of cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Specification of cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figures

1.1 Stochastic Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Stackelberg equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Stochastic Stackelberg equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Stochastic Nash-Stackelberg equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Performance profiles for different updates in the ILS method . . . . . . . . . . . . . 39

2.2 Confidence bounds from sampling method . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Confidence bounds from sampling method . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Performance profiles for major iterations required by four methods . . . . . . . . . . 80

4.1 Reduced Hessian and a basis for null-Space of hessian: K = 200, n = 2 . . . . . . . . 91

4.2 The KKT sampling method: scalability and serial vs. parallel . . . . . . . . . . . . . 98

4.3 Performance profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Finite generation capacities and quadratic costs of generation . . . . . . . . . . . . . 115

xi



5.2 Uncertainty in capacity and demand functions . . . . . . . . . . . . . . . . . . . . . 118

5.3 Scalability: CPU time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Scalability: number of LCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Schematic of settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Expected profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Expected sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Expected prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xii



Chapter 1

Introduction

The concept of an equilibrium has wide applicability across diverse fields. For instance, it may

be used to articulate a notion of balance between reactants and products in a chemical reaction

or supply and demand in an economic system. In a game-theoretic setting, the term refers to

an outcome of a game between players in which no player has any incentive to deviate from his

strategy. Our interest is in precisely such a class of equilibrium problems and we shall use the term

predominantly in this context.

Equilibrium problems represent a generalization of optimization problems [NW99] to a setting

with multiple players. The underlying optimization problem, a constrained nonlinear program

(NLP), may be formulated as

NLP minimize
x,y

f(x, y)

subject to
c(x, y) = 0,

x, y ≥ 0,

where f and c are smooth functions and x ∈ IRn and y ∈ IRm. In its most general form, an

equilibrium problem, often referred to as a game, would imply a set of decisions xi, where xi solves

the following parametric optimization problem:

NLP(x−i) minimize
xi,yi

fi(x
i, yi;x−i)

subject to
ci(x

i, yi;x−i) = 0,

xi, yi ≥ 0.

The notation x−i refers to a collection of decisions of all the other agents in the game, namely xj

where j = 1, . . . , N and j 6= i. This dissertation focuses on instances where the player’s problem

NLP(x−i) is stochastic in nature. In particular, each player (hereafter referred to as an agent)

would solve the problem

SNLP(x−i) minimize
xi,yi

ω

IEfω(xi, yi
ω;x−i)

subject to

ci(x
i, yi

ω;x−i) = 0, ∀ω ∈ Ω

yi
ω ≥ 0, ∀ω ∈ Ω

xi ≥ 0.

1



2 Chapter 1 Introduction

The issue of uncertainty in optimization problems has been studied extensively [BL97, RS03] and

has recently gained immense relevance in the context of equilibrium problems.

We present algorithms for obtaining equilibrium points for several classes of such problems.

We assume that the distribution of the random variables is discrete but with an arbitrarily large

number of scenarios. This requires our algorithms to have an important property: they should be

scalable in the sense that the computational effort to solve the problem should grow slowly (ideally

linearly) with the number of scenarios in the distribution.

Our approach is similar in all the problems that we address: we attempt to define a stochastic

optimization or complementarity problem1 whose solution is an equilibrium point of the original

problem. This equivalence, when available2, provides two benefits: the ability to discuss the exis-

tence/uniqueness of a solution, and the means to construct globally convergent methods to obtain

such points.

In practical settings, games may differ widely in structure and dynamics. In some settings, one

may claim that agents behave in a Nash fashion: each agent maximizes his profit given that the

decisions (often referred to as strategies) of all other agents are known.

Often, there may be a bias in the market and an agent (leader) may be aware of another agent’s

(follower’s) optimization problem. This allows the leader to make decisions subject to the optimal

reaction of the follower. Such a game is called a Stackelberg game.

Yet another variation is possible. This may be generalized to the case in which there are

several Stackelberg leaders (such as in an airline or power market), each of whom is competing in

a Nash game. An equilibrium among such players is called a Nash-Stackelberg equilibrium. We

consider subclasses of each of these games in the next four chapters and describe them briefly in

the remainder of this chapter.

1.1 Stochastic Nash Equilibria

The concept of Nash equilibrium is widely used in game theory. While its origins are in the field

of economics, this notion of equilibrium is used extensively in other fields such as engineering,

computer science, and biology. In a Nash setting, each agent maximizes his utility assuming that

the strategies of other players are known. Our interest is in a class of stochastic Nash equilibria.

Specifically, we assume that agents solve the problem Gi(x−i), where x−i ≡ (xj)j 6=i.

The agent problems are two-stage stochastic optimization problems: agent i makes decision xi

in period 1 and recourse decisions yi
ω in period 2 for each realization of uncertainty ω, where ω

belongs to a sample-space Ω. We collectively refer to the second-stage decision of agent i as yi. The

optimization problem is then to minimize the expected cost subject to a set of first and second-level

constraints, each parameterized by ω. Figure 1.1 shows the structure of such a game.

Definition 1.1 (G). The game G is an N -player game in which player i solves stochastic opti-

1These shall be defined shortly.
2Such an equivalence may not be available in such settings, as seen in chapter 5.
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Figure 1.1 Stochastic Nash equilibrium

mization problem given by Gi(x
−i):

Gi(x
−i) minimize

xi,yi
ω

IEf i
ω(xi, yi

ω;x−i)

subject to
h(xi) ≤ 0

g(xi, yi
ω) ≤ 0, ∀ω ∈ Ω.

The stochastic Nash equilibrium is defined as follows.

Definition 1.2 (Stochastic Nash Equilibrium). The vector (x, y) = (xi, yi)N
i=1 constitutes a Nash

equilibrium for G if for each i = 1, . . . , N , (xi, yi) solves the stochastic optimization problem

Gi(x
−i).

Under the assumption that Gi is a strictly convex quadratic program, we may reformulate the

Nash equilibrium as a larger convex quadratic program, albeit a stochastic one. Such a problem has

received less attention than the stochastic linear programming problem, which is the focus of the

books by Infanger [Inf94] and Higle and Sen [HS96]. In chapter 2, we extend the work by Van Slyke

and Wets [VSW69], Dantzig and Glynn [DG89], and Infanger [Inf94] in several ways. We prove

the convergence of the L-shaped method for the quadratic case. Furthermore, this convergence

theory is presented under the weaker assumption that the cuts are inexact [ZPR00]. To ease the

computational burden, we suggest the usage of sampling of inexact cuts. The scalability of this

inexact L-shaped method is demonstrated on a stochastic quadratic programming test problem set.

1.2 A Second-Order Method for MPCCs

The Stackelberg game was put forward by Von Stackelberg [Sta52]. Such a game is characterized by

the existence of a leader and a follower. Moreover, the leader knows the optimization problem to be
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Figure 1.2 Stackelberg equilibrium

solved by a follower and thus makes decisions subject to an optimal response by the follower. The

resulting equilibrium is called a Stackelberg equilibrium. The structure of such a game is shown in

Figure 1.2.

Definition 1.3 (Stackelberg Equilibrium). If SOL(x) represents the set of optimal solutions of the

follower’s problem, given a decision x, then a vector (x, y) constitutes a Stackelberg equilibrium if

it solves the following problem:

D minimize
x,y

f(x, y)

subject to
g(x) ≤ 0

y ∈ SOL(x).

Problem D is also called a mathematical program with equilibrium constraints [LPR96]. The

constraint y ∈ SOL(x) is called an equilibrium constraint, and under some assumptions we may

replace it by a complementarity constraint 0 ≤ y ⊥ F (x, y) ≥ 0. The notation x ⊥ y means

that xiyi = 0, ∀i. The resulting optimization problem is then called a mathematical program with

complementarity constraints (MPCC).

The problem MPCC falls under a general nonlinear programming formulation, however, its

constraints do not satisfy regularity conditions3 that are commonly used to prove convergence of

the algorithm. Significant effort has been poured into extending existing nonlinear programming

algorithms to dealing with such ill-posedness [FLRS02, RB05, dMFNS05]. However, in all previous

work, the obtained point can be only guaranteed to satisfy first-order optimality conditions. To

ensure the satisfaction of second-order conditions of the solution, we need to enlist the use of

second-order directions or directions of negative curvature. In chapter 3, we present an interior

3A common regularity condition that may be imposed is the linear independence constraint qualification [NW99]
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Figure 1.3 Stochastic Stackelberg equilibria

method that solves a sequence of regularized problems to obtain a second-order point and also

discuss its associated global convergence theory. We then discuss the performance of the method

on the QPECgen [JR99] test problem set.

1.3 Stochastic Stackelberg Equilibrium Problems

A natural extension of the Stackelberg equilibrium problem is the consideration of uncertainty in

the parameters of the equilibrium constraint. Figure 1.3 shows such a generalization. We refer to

such an equilibrium as a stochastic Stackelberg equilibrium. It represents a generalization in which

the follower’s problem is parameterized by ω. Then, if the optimal solution of the follower is given

by yω ∈ SOL(x;ω), where x is the leader’s decision and SOL(.;ω) represents the solution set of

the follower under realization ω, we may define the equilibrium as follows.

Definition 1.4 (Stochastic Stackelberg Equilibrium). The vector (x, y) constitutes a Stackelberg

equilibrium if it solves the following problem:

S minimize
x,yω

IEfω(x, yω)

subject to
g(x) ≤ 0

yω ∈ SOL(x;ω) ∀ω ∈ Ω.

Problem S is a stochastic mathematical program with equilibrium constraints (SMPEC). Again,

by making suitable assumptions, one may reformulate the SMPEC as a stochastic mathematical

program with complementarity constraints (SMPCC).

The solution of stochastic MPCCs has been studied by Shapiro and Xu [SX05] among others.

Their approach employs sample-average approximation techniques [Sha03], which involve solving
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a sampled instance of a stochastic MPCC. The theory provides convergence rates of the sampled

solution to the true solution. It is assumed that such a sampled problem may be solved efficiently

by existing methods. However, we contend that even reasonably sized problems may not be solved

efficiently because there are no existing algorithms even for solving stochastic nonlinear programs.

An alternative formulation for the stochastic equilibrium problem has been proposed by Gurkan

et al. [GOR99] in which the constraints are not posed as “almost-everywhere”4 constraints but

instead as expectation type constraints.

In interior methods, one obtains a solution to the original problem by using a Newton-method

on a decreasing perturbation of the Karush-Kuhn-Tucker (KKT) system. But such a Newton

step becomes expensive when the number of complementarity constraints is arbitrarily large. We

introduce a decomposition of the KKT system such that the step may be obtained by solving a series

of smaller scenario systems in parallel. Furthermore, exact Newton steps need not be taken early

in the method, and we sample from the distribution to solve a reduced system. Such a technique

is obviously useful for solving stochastic nonlinear programs, a class of problems for which few

methods exist.

In Chapter 4, we present one of the first methods for stochastic nonlinear programming. We

extend QPECgen to SQPECgen, a stochastic QPEC test problem set. This problem set generator is

used to demonstrate the performance of our method.

1.4 Forward Contracting under Uncertainty in Electricity

Markets

One particular generalization of Nash equilibrium problems is when some or all agents are Stack-

elberg players. An instance of such a problem is an imperfectly competitive market, as illustrated

in Figure 1.4, where there are two Stackelberg leaders competing in a Nash fashion. The Nash-

Stackelberg equilibrium may be defined as follows.

Definition 1.5 (Nash-Stackelberg Equilibrium). The vector (x, y) = (xi, yi)N
i=1 constitutes a Nash-

Stackelberg equilibrium if for each i = 1, . . . , N , (xi, yi) solve the following Stackelberg problem:

Di(x−i) minimize
xi,yi

f(xi, yi;xi)

subject to
g(xi) ≤ 0

yi ∈ SOL(xi;x−i).

This definition may be extended to account for uncertainty.

Definition 1.6 (Stochastic Nash-Stackelberg Equilibrium). The vector (x, y) = (xi, yi)N
i=1 consti-

tutes a Nash-Stackelberg equilibrium, if for each i = 1, . . . , N , (xi, yi) solves the stochastic Stackel-

berg problem Di(x
−i).

In Chapter 5, the setting of a spatial electricity market is considered. Agents are assumed to

compete in a two-period market. In the first period, agents trade in forward contracts. These

4Such a formulation implies that there is one constraint corresponding to each realization of uncertainty.
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Figure 1.4 Stochastic Nash-Stackelberg equilibrium

contracts represent binding agreements to transact in power in the second period. Furthermore,

they may make recourse-based spot-market decisions in the second period. The question, then, is

to obtain an equilibrium point in forward and recourse-spot decisions under uncertainty.

These games are significantly harder to solve than the conventional Nash and Stackelberg

problems. They represent agents competing in a Nash fashion in forward contracts while being

Stackelberg leaders with respect to a spot market. The resulting equilibrium point is called a

Nash-Stackelberg equilibrium point and requires the solution of an equilibrium problem with com-

plementarity constraints (an EPCC).

In our setting, we solve a related simultaneous stochastic Nash problem. Equilibria of such

games are shown to exist. Furthermore, under some conditions we can show that such equilibria

are Nash-Stackelberg equilibria.

However, such an equilibrium is still not easy to obtain because it represents a solution of a

stochastic mixed linear complementarity problem. We present a new sampling-based iterative-

decomposition algorithm for such a class of problems and prove that it converges globally. Fur-

thermore, we show that the algorithm scales well with the size of the discrete distribution. We also

provide some policy-based insights for a 6-node electricity market model.



Chapter 2

A Sampling

Method for

Two-Stage

Stochastic QPs

Planning under uncertainty was first discussed in the seminal paper by Dantzig [Dan55] in 1955.

In the last decade, attention has shifted to stochastic integer, nonlinear, and equilibrium problems.

An important question is whether growth in the size of the sample-space (under an assumption

of a discrete distribution of uncertainty) results in a slow (say linear) growth in computational

effort. We term such a property scalable. An important requirement in the development of stochas-

tic programming algorithms is ensuring their scalability (see Birge and Louveaux [BL97] for an

introduction and a review of stochastic programming).

In this chapter, we focus on two-stage stochastic quadratic programs with recourse. In recourse-

based models, the computational burden lies in evaluating the expectation of the random recourse

function, which represents the cost of recourse as a function of the first-stage decision x and is

denoted by Q(x). Algorithms differ in spirit in the way they deal with the recourse function.

For instance, deterministic decomposition methods build an outer-approximation of the recourse

function. This approach finds its roots in the paper by Van Slyke and Wets [VSW69]. Significant

effort has been poured into variants of this method (see the review by Ruszczynski [Rus03]).

The applicability of deterministic methods rests on the number of realizations in the second-

stage being manageable in the presence of a discrete distribution. An alternate approach is to use

statistical approximations. Such approaches construct a sample-mean of the recourse function by

pre-sampling from the distribution [RS93, Sha03, GOR99].

There have been a few attempts at combining the ideas of sampling and decomposition methods.

Such methodologies are often called interior sampling methods and were first discussed by Dantzig

and Glynn [DG89]. Interior sampling methods tend to be restricted to cases in which the recourse

function is convex. The underlying idea emerges from the L-shaped method of Van Slyke and Wets

[VSW69] and involves building an outer-approximation of the recourse function in the first-stage

problem (master). This is effected by the addition of cuts. The coefficients of the cuts represent an

expectation of the dual solutions of each second-stage scenario problem. Dantzig and Glynn [DG89]

8
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and Infanger [Inf94] use sample means of these cuts in conjunction with importance sampling. In

addition, Higle and Sen [HS96] discuss a method that uses a single cut at each iteration to update

the outer-approximation of the recourse function.

Our interest is in sampling-based L-shaped methods for the stochastic quadratic program (SQP),

which may be be formulated as

SQP minimize
x

1
2x

TQx+ cTx+ Q(x)

subject to x ≥ 0,

where the recourse function Q(x) is defined as Q(x) = IEωQ(x, ω) and Q(x, ω) is given by the value

function1 of

Sω minimize
y

1
2y

TDωy + dT
ωy

subject to
By ≥ bω −Ax

y ≥ 0.

We assume that Q and Dω are symmetric positive-definite matrices.

We present an algorithm for solving stochastic convex quadratic programs with recourse. One

motivation for studying such problems emerges from Nash equilibrium problems in which players

solve stochastic quadratic programs. Earlier work on interior sampling methods has been restricted

to the realm of linear programming. Our interior sampling method differs in several ways from

previous approaches. First, we extend these methods to quadratic programs by including quadratic

terms in the objective. Second, we enlist the help of inexact cuts in generating an approximation

of the recourse function and prove the convergence of the L-shaped method for such inexact cuts.

The remaining part of this chapter is organized as follows. Section 2.1 motivates the study

of stochastic quadratic programs through the stochastic Nash game.2 Section 2.2 presents an L-

shaped method [VSW69] with inexact cuts for solving two-stage stochastic QPs. We review the

notion of inexact cuts [ZPR00] and prove the convergence of this method for the case of quadratic

programming. Convergence of the algorithms and the associated bounds are also discussed. Section

2.3 introduces an inexact-cut sampling algorithm. Section 2.4 discusses computational results on a

two-stage stochastic QP test problem set. In section 2.5, we conclude the study with a summary

of the findings and some suggestions for future work.

2.1 Stochastic Nash Games

This section discusses the class of quadratic Nash games and shows that the resulting equilibrium

problem may be solved as a larger stochastic quadratic program. In particular, our interest is in the

determination of an equilibrium when agents solve strictly convex quadratic programs. We begin

by considering the simple case in which the quadratic programs are deterministic, and subsequently

1In this context, the term value function refers to the objective function at the optimal solution.
2Throughout, we assume that agents solve quadratic programs unless mentioned otherwise.
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introduce uncertainty into the structure.

2.1.1 Deterministic Games

We begin by defining the deterministic Nash game GND and the resulting Nash equilibrium. Note

that x−i := {xj , j 6= i}. Such a definition requires the following assumption regarding the problem

data.

Definition 2.1 (GND). Consider a Nash game with N players in which each player is optimizing

over an n-dimensional space with m linear inequality constraints (excluding nonnegativity bounds).

Suppose the problem data is given by the matrices Q ∈ IRp1×p1 , A ∈ IRp2×p1 , c ∈ IRp1 and b ∈ IRp2 ,

where p1 = N × n and p2 = m×N . These matrices may be represented as

Q =




Q11 Q12 . . . Q1N

Q21 Q22 . . . Q2N

...
. . .

. . .
...

QN1 . . . QN,N−1 QNN



, A =




A1

. . .

AN


 , c =




c1
...

cN


 , b =




b1
...

bN


 ,

where Qij ∈ IRn×n, Ai ∈ IRm×n, ci ∈ IRn and bi ∈ IRm.

We make the following assumption regarding Q and its submatrices throughout the remainder

of this chapter.

Assumption 2.2. Q (and hence Qii) are assumed to be symmetric and positive-definite for i =

1, . . . , N . We write this as Q ≻ 0 and Qii ≻ 0.3

Definition 2.3. Consider an N -player deterministic Nash game denoted by GND. Given x =

(x1, . . . , xN ), the set SOL(Ai(x−i)) is the set of solutions of the problem Ai(x−i):

Ai(x
−i) minimize

xi

1
2x

T
i Qiixi + cTi xi +

∑
j 6=i x

T
i Qijxj

subject to
Aixi ≥ bi : λi

xi ≥ 0, : µi.

We say that (x∗1, . . . , x
∗
N ) is a Nash equilibrium for a deterministic Nash game if x∗i ∈ SOL(Ai(x

∗
−i))

for 1 ≤ i ≤ N .4

Since Qii ≻ 0 for all i, the agent problems are convex, and the first-order KKT conditions are

sufficient. For general nonlinear programs, the necessary conditions require the assumption of an

appropriate regularity condition or constraint qualification (see [NW99]). However, in the instance

of linear and quadratic programming, the active constraints at a solution are always linear and the

cone of feasible directions is an adequate representation of the feasible set. We refer the reader

to Lemma 12.8 from [NW99] for more details and do not concern ourselves any further with the

question of regularity conditions in this chapter.

3The notation A ≻ (�)0 means that A is a positive definite (semidefinite) matrix.
4Note that λi and µi are multipliers associated with the relevant constraints.
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The Karush-Kuhn-Tucker (or KKT) conditions for each player’s problem Ai(x
−i) at xi are given

by

Qiixi + ci +
∑

j 6=i

Qijxj −AT
i λi − µi = 0

Aixi − bi ≥ 0

xi ≥ 0

[λi]k[Aixi − bi]k = 0, k = 1, . . . ,m

[µi]j [xi]j = 0, j = 1, . . . , n

λi ≥ 0

µi ≥ 0.

These may be written compactly as

Qiixi + ci +
∑

j 6=i

Qijxj −AT
i λi − µi = 0

0 ≤ λi ⊥ Aixi − bi ≥ 0 (2.1)

0 ≤ µi ⊥ xi ≥ 0,

where u ⊥ v =⇒ [u]j[v]j = 0, ∀j. Defining Aixi − bi as si, we have

0 ≤
(
xi

λi

)
⊥
(
µi

si

)
=

(
Qii −AT

i

Ai

)(
xi

λi

)
+

(
ci +

∑
j 6=i Qijxj

−bi

)
≥ 0. (2.2)

By denoting x, s, λ and µ as

x =




x1

...

xN


 , s =




s1
...

sN


 , λ =




λ1

...

λN


 , and µ =




µ1

...

µN


 ,

we may write the set of KKT conditions for all the agents as the following linear complementarity

problem (LCP) [CPS92]:

LCPD 0 ≤
(
x

λ

)
⊥
(
µ

s

)
=

(
Q −AT

A

)(
x

λ

)
+

(
c

−b

)
≥ 0.

This leads to the following equivalence result.

Proposition 2.4. The vector x∗ is a Nash equilibrium for GND if and only if
(
x∗, λ∗

)
solves

LCPD.

Proof. (⇒) The first-order conditions of each agent problem are sufficient and may be aggregated

into LCPD.
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(⇐) : If (x∗, λ∗) solves LCPD, it follows that (x∗i , λ
∗
i ) solves (2.2) for each i. But since Qii ≻ 0,

this is a sufficient condition for x∗i being a minimizer of Ai(x
∗
−i).

�

By defining

MD =

(
Q −AT

A

)
and qD =

(
c

−b

)
,

we may state the following result concerning the feasibility and solvability of an LCP.

Definition 2.5. For given M ∈ IRn×n and q ∈ IRn, LCP(q,M) requires an x ∈ IRn that satisfies

0 ≤ x ⊥Mx+ q ≥ 0. Furthermore,

1. LCP(q,M) is said to be feasible if Mx+ q ≥ 0 for some x ≥ 0 and

2. LCP(q,M) is said to be solvable if x ⊥Mx+ q and Mx+ q ≥ 0 for some x ≥ 0.

Lemma 2.6. If Q is symmetric positive definite, then the matrix MD is positive semidefinite.

Proof. If x 6= 0, we have

(
x

λ

)T (
Q −AT

A

)(
x

λ

)
= xTQx > 0.

Note that x could be zero with λ 6= 0 implying that xTQx = 0. �

The existence of a solution to LCPD is the subject of the next result.

Lemma 2.7. Let MD be positive semidefinite. Then if LCPD is feasible, it is solvable.

Proof. See [CPS92]. �

An interesting observation is that if each agent solves an unconstrained QP, then the resulting

matrix MD is positive definite. In such a case, the resulting equilibrium point is unique.

Theorem 2.8. If Q is positive definite, then the Nash game GND has an equilibrium point if a

feasible solution to LCPD exists. Moreover, if each agent’s problem is an unconstrained quadratic

program, then GND always has a unique equilibrium.

We conclude this section with an equivalence between LCPD and the following quadratic pro-

gram.

Lemma 2.9. The complementarity problem LCPD represents the first-order conditions of the fol-

lowing convex quadratic program:

minimize
x

1
2x

TQx+ cTx

subject to
Ax ≥ b : λ

x ≥ 0 : µ.
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Proof. Immediate. �

This lemma, while obvious, has significant bearing on the rest of the discussion. In particular,

we show later that when the agents solve two-stage stochastic quadratic programs , we may rewrite

the optimality conditions as a large-scale stochastic quadratic program. Since the uncertainty in

this problem lies entirely in the second stage, we may use an extension of the L-shaped method

[VSW69] to solve such a problem.

2.1.2 Introducing Uncertainty

This section extends the agent problem from a single-stage QP to a two-stage stochastic QP with

the uncertainty being resolved in the second stage. Agent i makes a first-stage decision xi and then

takes a second-stage (recourse) decision yω
i in the event of realization ω. We assume that ω has a

discrete distribution with K realizations.5 and that the probability of realization ω occurring is pω.

Definition 2.10. Consider a stochastic Nash game in N agents in which agent i makes a first-stage

decision given by xi ∈ IRn and a second-stage decision given by yω
i ∈ IRp for all ω ∈ Ω. Then, the

resulting data for the first-stage problem is given by the matrices Q ∈ IRp1×p1 and c ∈ IRp1 , where

p1 = N × n. These matrices may be represented as

Q =




Q11 Q12 . . . Q1N

Q21 Q22 . . . Q2N

...
. . .

. . .
...

QN1 . . . QN,N−1 QNN




and c =




c1
...

cN


 .

The second-stage data for each realization ω ∈ Ω is given by the matrices Dω ∈ IRp1×p1 , Aω ∈
IRp2×p1 , B ∈ IRp2×p1 , dω ∈ IRp3 and bω ∈ IRp1 , where p3 = p×N . The matrices may be represented

as

Dω =




Dω
11

Dω
22

. . .

Dω
NN



, Aω =




Aω
1

. . .

Aω
N


 , B =




B1

. . .

BN


 ,

dω =




dω
1

...

dω
N


 and b =




bω1
...

bωN


 ,

where Dω
ii ∈ IRp×p, Aω

i ∈ IRm×n, Bi ∈ IRm×p, ci ∈ IRn, dω
i ∈ IRp and bωi ∈ IRm.

In addition to Assumption 2.2, we make the following assumption regarding the matrices Dω
ii.

5In keeping with conventional notation in numerical optimization, we use lower case to specify variables and upper
case to specify matrices. Randomness in either is specified by using a superscript ω in keeping with the notation
from [Inf94]
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Assumption 2.11. Dω
ii are assumed to be symmetric and positive-definite for i = 1, . . . , N and

for all ω ∈ Ω.

Definition 2.12 (GNS). Consider an N -player stochastic Nash game denoted by GNS. Given

x = (x1, . . . , xN ), the set SOL(Si(x−i)) is the set of optimal xi of the problem Si(x−i):

Si(x−i) minimize
xi,yi

fi(xi, x
−i) + IEhi(y

ω
i ;xi, ω)

subject to

Aω
i xi +Biy

ω
i ≥ bωi : pωλω

i

xi ≥ 0 : µi

yω
i ≥ 0. : pωγi

ω, ∀ ω ∈ Ω

where

fi(xi;x
−i) :=

1

2
xT

i Qiixi + cTi xi +
∑

j 6=i

xT
i Qijxj ,

hi(y
ω
i ;xi, ω) :=

1

2
(yω

i )TDω
iiy

ω
i + (dω

i )T yω
i .

We say that (x∗1, . . . , x
∗
N ) is a Nash equilibrium for a deterministic Nash game if x∗i ∈ SOL(Si(x

∗
−i))

for 1 ≤ i ≤ N .

The first-order optimality conditions for i = 1, . . . , N are

0 ≤ xi ⊥ µi = Qiixi + ci +
∑

j 6=i

Qijxj −
∑

ω

pω(Aω
i )Tλω

i ≥ 0

0 ≤ yω
i ⊥ γω

i = Dω
iiy

ω
i + dω

i −BT
i λ

ω
i ≥ 0, ∀ω ∈ Ω

0 ≤ λω
i ⊥ sω

i = Aω
i xi +Biy

ω
i − bωi ≥ 0, ∀ω ∈ Ω.

Since the sample-space has K realizations, agent i solves a quadratic program with a first-stage

decision xi and K second-stage decisions yj
i , j = 1, . . . ,K. Using the notation z and zi to denote

z :=




z1
...

zN


 and zi =




z1
i

...

zK
i


 ,

we may define s, c, µ, λ, γ, b and y accordingly. Moreover, we define x̄i as

x̄i =




xi

...

xi
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and the following matrices:

Ai =




A1
i

. . .

AK
i


 , AP

i =




p1A1
i

...

pKAK
i


 , A =




A1

. . .

AN


 , AP =




AP
1

. . .

AP
N


 ,

Di =




D1
ii

. . .

DK
ii


 , Q =




Q11 · · · Q1N

...
. . .

...

QN1 · · · QNN


 , B̄i =




Bi

. . .

Bi


 , di =




d1
i

...

dK
i


 .

Note that Di, B̄i and A are block-diagonal matrices. Then we may write the first-order conditions

of optimality in terms of the agent problem i:

0 ≤ x ⊥ µ = Qx+ c− (AP )Tλ ≥ 0

0 ≤ yi ⊥ γi = Diyi + di − B̄T
i λi ≥ 0 (2.3)

0 ≤ λi ⊥ si = Aix̄i + B̄iyi − bi ≥ 0.

Alternatively, using the notation z and zj to denote

z :=




z1

...

zK


 and zj =




zj
1
...

zj
N


 ,

we may define s, c, µ, λ, γ, b and y accordingly to aggregate the variables and parameters by real-

ization, as opposed to by agent. We define x̄ as

x̄ =




x1

...

xN




and the following matrices:

Aj
P =




p1Aj
1

. . .

p1A
j
N


 , AP =




A1
P
...

AK
P


 , Aj =




Aj
1

. . .

Aj
N


 ,

Dj
P =




pjDj
11

. . .

pjDj
NN


 , Q =




Q11 · · · Q1N

...
. . .

...

QN1 · · · QNN


 , B̄j

P =




pjB1

. . .

pjBN


 ,

dj
P =




pjdj
1

...

pjdj
N


 .
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We may then rewrite the KKT conditions (2.3) as

0 ≤ x ⊥ µ = Qx+ c−AT
Pλ ≥ 0

0 ≤ yj ⊥ γj = Dj
P y

j + dj
P − (B̄j

P )Tλj ≥ 0 (2.4)

0 ≤ λj ⊥ sj = Aj
P x̄+ B̄j

P y
j − bjP ≥ 0.

This system can be restated as

LCPS 0 ≤



x

y

λ


 ⊥



µ

γ

s


 =



Q −AT

P

DP −B̄T
P

AP B̄P






x

y

λ


+




c

dP

−bP


 ≥ 0.

Proposition 2.13. Consider the Nash game GNS given by Definition 2.12. The vector x∗ is a

Nash equilibrium of GNS if and only if (x∗, y∗, λ∗) solves LCPS .

Proof. Follows from Proposition 2.4. �

Theorem 2.8 also holds in the stochastic case:

Theorem 2.14. Consider the Nash game GNS given by Definition 2.12. The Nash game GNS

has an equilibrium point if a feasible solution to LCPS exists. Moreover, if every agent solves an

unconstrained quadratic program, then GNS always has a unique equilibrium.

Solving LCPS becomes more difficult as the number of realizationsK grows. Unfortunately it is

not easy to introduce separability into the problem structure. We approach the problem differently:

By drawing a correspondence between LCPS and an equivalent stochastic quadratic program, we

may then discuss how to solve the resulting stochastic QP efficiently. The following result makes

this correspondence clear.

Lemma 2.15. The linear complementarity problem LCPS represents the first-order conditions for

the following equivalent quadratic problem EQP:

EQP minimize
x,y

1
2x

TQx+ cTx+ 1
2y

TDP y + dT
P y

subject to

APx+ B̄P y ≥ bP : λP

x ≥ 0 : µ

y ≥ 0, : γ.

Proof. Immediately follows. �

Corollary 2.16. The KKT conditions of the following two-stage stochastic quadratic program SQP
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are given by LCPS:

SQP minimize
x,yω

1
2x

TQx+ cTx+
∑

ω pω{ 1
2 (yω)TDωyω + (dω)T yω}

subject to

Aωx+ B̄yω ≥ bω : λω

x ≥ 0 : µ̄

yω ≥ 0 : γω, ∀ω ∈ Ω.

We may rewrite SQP using the following recourse-based formulation:

SQPE minimize
x

1
2x

TQx+ IEQ(x, ω)

subject to x ≥ 0,

where IE denotes the expectation operator and Q(x, ω) is a random recourse function:

Q(x, ω) := min
yω

{1

2
(yω)TDωyω + (dω)T yω : Aωx+ B̄yω − bω ≥ 0, yω ≥ 0}.

This leads to the following result.

Theorem 2.17. Consider the Nash game GNS in which agent i solves the stochastic quadratic

program Si(x
−i). Then the Nash equilibrium point (x∗1, . . . , x

∗
N ) is given by the solution of a corre-

sponding stochastic quadratic program SQP.

Proof. Follows by earlier discussion. �

2.2 An Inexact L-shaped Method for Stochastic QPs

Based on an approach suggested by Benders [Ben62], Van Slyke and Wets [VSW69] proposed a

decomposition method for solving two-stage linear programs. The idea hinges on the specification of

a master problem that minimizes the sum of first-stage cost and the cost of recourse Q(x) subject to

first-stage constraints on x. The convexity of Q(x) allows us to work with an increasingly accurate

outer-approximation of the recourse function. Cuts are obtained by solving the subproblems for

all realizations of ω. Infanger [Inf92] suggested the use of sampling to avoid having to solve all the

subproblems. Dantzig and Glynn [DG89] discussed importance sampling to obtain better second-

stage cost estimates. This represents our point of departure.

In this chapter, we discuss the extension of the L-shaped method [VSW69] to stochastic

quadratic programs. In addition, we use inexact cuts. The convergence of such an algorithm is

proved in this chapter. Inexact cuts ease the computational burden. They were shown to result

in a convergent algorithm for stochastic linear programming [ZPR00].6 To allow for an easier

comparison with stochastic linear programming, we restrict our discussion to stochastic quadratic

programs. However, in the last subsection, we extend the results to stochastic convex programming.

6We postpone the discussion of sampling till the next section.
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We begin by defining the stochastic quadratic program in section 2.2.1 and presenting some

of the classical results on quadratic programming duality. Convexity of the recourse function is

readily proved. Section 2.2.2 specifies the cuts that are necessary in the specification of the recourse

function and feasibility of the second-stage problems. We then formulate the two problems of

relevance in this L-shaped method: the master problem and the subproblem (section 2.2.4). Section

2.2.5 outlines the bounds and termination criteria for the L-shaped method. In section 2.2.6, we

introduce inexact cuts and restate the bounds for such cuts. Finally, in section 2.2.7, we extend

the convergence theory from [ZPR00] to account for two-stage stochastic quadratic programs.

Since our discussion from here onwards pertains only to stochastic quadratic programs, ran-

domness shall be specified using the subscript ω (as opposed to the superscript ω as in the earlier

section).

2.2.1 The Two-Stage Stochastic Quadratic Program

In this section, we consider the two-stage stochastic convex quadratic program SQP:

SQP minimize
x,y

1
2x

TQx+ cTx+
∑K

j=1 pj{ 1
2y

T
j Djyj + dT

j yj}

subject to
Ajx+Byj ≥ bj : λj , for j = 1, . . . ,K

x ≥ 0 : µ.

We may use quadratic programming duality to construct a dual problem as the following result

shows.

Lemma 2.18. Let D be symmetric and positive semidefinite. Then the primal problem

PQP minimize
y

1
2y

TDy + dT y

subject to
By ≥ b−Ax : z

y ≥ 0. : π

has the dual problem

DQP maximize
π,z

(b−Ax)T z − 1
2π

TDπ

subject to
−Dπ +BT z ≤ d

z ≥ 0,

and strong duality ((b−Ax)T z∗− 1
2 (π∗)TDπ∗ = 1

2 (y∗)TDy∗ +dT y∗) holds at the optimal solution.7

Proof. Follows from Dorn duality [Dor61]. �

As in linear programming, weak and strong duality results may be stated for this pair of problems

[CPS92].

7Note that y∗ is the optimal solution of PQP and (z∗, π∗) is the optimal solution of DQP.
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Lemma 2.19. The following extensions of weak and strong duality from linear programming may

be made.

1. Weak Duality: If y is a feasible solution of (PQP) and (π, z) is a feasible solution of (DQP),

then the following inequality holds:

(b−Ax)T z − 1

2
πTQπ ≤ 1

2
yTDy + dT y.

2. Strong Duality: If weak duality holds with equality then the solutions are optimal.

Proof. See [Dor61]. �

The second-stage primal problem 2P may be stated as

2P minimize
y

∑K
i=1 pi[

1
2y

T
i Diyi + dT

i yi]

subject to
Byi ≥ b−Aix, : pizi for i = 1, . . . ,K

yi ≥ 0. : piπi for i = 1, . . . ,K.

The dual of the second-stage problem 2D is given by

2D maximize
π,z

∑K
i=1 pi((bi −Aix)

T zi − 1
2π

T
i Diπi)

subject to
−Diπi +BT zi ≤ di, for i = 1, . . . ,K

zi ≥ 0. for i = 1, . . . ,K,

in which the objective function is parameterized by the first-stage decision x.

2.2.2 Some Properties of Q(x)

In section 2.1, we introduced the recourse function Q(x). This function is defined as the optimal

value of problem 2D, given a first-stage decision x. Problem 2D is decomposable into problems

2Dω defined by

2Dω maximize
πω ,zω

pω((bω −Aω)T zω − 1
2π

T
ωDωπω)

subject to
−Dωπω +BT zω ≤ dω,

zω ≥ 0.

The random recourse function Q(x, ω) is the optimal value function of 2Dω. We begin by proving

some properties of the recourse function Q(x) and Q(x, ω).

Lemma 2.20. The random recourse function Q(x, ω) is convex for all ω ∈ Ω.
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Proof. It suffices to show that the dual form of Q(x, ω) is convex.

Q(λx1 + (1 − λ)x2, ω) = max
z,π

(b−A(λx1 + (1 − λ)x2)T z − 1
2π

TDπ

= max
z,π

λ{(b−Ax1)T z − 1
2π

TDπ} + (1 − λ){(b −Ax2)T z − 1
2π

TDπ}

≤ max
z,π

λ{(b−Ax1)T z − 1
2π

TDπ}

+ max
z,π

(1 − λ){(b−Ax2)T z − 1
2π

TDπ}

= λQ(x1, ω) + (1 − λ)Q(x2, ω).

�

Lemma 2.21. The recourse function Q(x) is convex over its effective domain C, where C = {x ∈
X : Q(x) <∞}.

Proof. By lemma 2.20, the convexity of Q(x, ω) follows:

Q(λx1 + (1 − λ)x2) = IEQ(λx1 + (1 − λ)x2, ω)

≤ IE{λQ(x1, ω) + (1 − λ)Q(x2, ω)}
= λQ(x1) + (1 − λ)Q(x2).

�

We adapt the following result from [HS96] to the quadratic case.

Lemma 2.22. Suppose Q(x, ω) <∞ with probability one for all x ∈ X, and IE{‖Aω‖} <∞. Then

1. For almost every ω ∈ Ω, there exists an M(ω) < ∞ such that IEM(ω) < ∞ and |Q(x1, ω) −
Q(x2, ω)| ≤M(ω)‖x1 − x2‖.

2. There exists an M <∞ such that |Q(x1) −Q(x2)| ≤M‖x1 − x2‖ for all x1, x2 ∈ X.

Proof. Let C represent the set of dual feasible (π, z) and let vert(C) represent the set of vertices

of the dual feasible region.

1. By hypothesis, the primal and dual second-stage problems are feasible for all x ∈ X with

probability one. Given x1 and x2 in X , let

{πj(ω), zω} ∈ arg max{(bω −Aωx)
T zj − 1

2
(πj)TDπj | {πj , zj} ∈ vert(C)}, j = 1, 2.

By the positive semidefiniteness of D and convexity of Q(x, ω), we have

Q(x1, ω) − (Aω(x2 − x1))T z1 ≤ Q(x2, ω)

Q(x2, ω) − (Aω(x1 − x2))T z2 ≤ Q(x1, ω).
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Combining both of these, we obtain

−(Aω(x1 − x2))T z2 ≤ Q(x1, ω) −Q(x2, ω) ≤ −(Aω(x1 − x2))T z1. (2.5)

With M(ω) := max{‖z‖ | z ∈ vert(C)} · ‖Aω‖, it may be seen that

IEM(ω) = max{‖z‖ | z ∈ vert(C)} · IE‖Aω‖ <∞.

Therefore, we have

|Q(x1, ω) −Q(x2, ω)| ≤ max{|(Aω(x1 − x2))T z2|, |(Aω(x1 − x2))T z1|}
≤ max{‖zTAω‖ | z ∈ vert(C)} · ‖x1 − x2‖
≤ max{‖z‖ | z ∈ vert(C)} · ‖Aω‖ · ‖x1 − x2‖
≡M(ω), for ω a.e.

2. If we denote Q(x) := IEQ(x, ω) then we may use expectations on (2.5) to obtain

−IE(Aω(x1 − x2))T z2 ≤ IEQ(x1, ω) − IEQ(x2, ω) ≤ −IE(Aω(x1 − x2))T z1 (2.6)

−IE(Aω(x1 − x2))T z2 ≤ Q(x1) −Q(x2) ≤ −IE(Aω(x1 − x2))T z1. (2.7)

Denoting IEM(ω) as M , we have

|Q(x1) −Q(x2)| ≤M‖x1 − x2‖, ∀x ∈ X.

�

Before proceeding, we should note that the convexity of the recourse function is an essential

property for approximating the second-stage problem by a series of cuts. Obviously, when the

second-stage problem is not convex (for instance when there are integer variables in the second-

stage), the approximation of the recourse function by cutting planes is not directly possible.

2.2.3 Optimality and Feasibility Cuts

Problem 2D is separable into the following subproblems:

Sω(x) maximize
πω ,zω

pω((bω −Aωx)
T zω − 1

2π
T
ωDωπω)

subject to
−Dωπω +BT zω ≤ dω

zω ≥ 0.

Each Sω(x) is a convex quadratic program and its feasible region is dependent on ω unless one

assumes that the linear and quadratic cost of recourses are identical for all random instances of

ω. This is, in fact, the assumption made by several authors when dealing with multistage linear
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programming. We may define the random recourse function Q(x, ω) as

Q(x, ω) := min
yω≥0

{ 1
2y

T
ωDωyω + yT

ω dω : Byω ≥ bω −Aωx}.

By the duality theory of quadratic programming, Sω(x) and its dual have equal optimal values

unless both are infeasible. Therefore, the random recourse function may be restated in terms of

the dual problem:

Q(x, ω) := max
πω,zω≥0

{− 1
2π

T
ωDωπω + zT

ω (bω −Aωx) : BT z −Dπ ≤ dω}.

The convexity of Q(x, ω) and its expectation Q(x) are established by the results from the previous

section. We assume that the original large-scale QP is feasible. This implies that for at least one

x, problem SQPD is feasible with a finite solution. The finiteness of the original problem implies

that the second-stage problem 2P is also finite for some x that is feasible in the first stage. By

the duality theory of convex quadratic programming, the dual of the second-stage problem must

be feasible. Unboundedness of the second stage is precluded by the finiteness of the primal. The

feasible region of each instance of the second-stage problem is given by the polyhedron

{(πω, zω) : −Dωπω +BT zω ≤ dω, zω ≥ 0}.

If uω = (πω , zω), then the region may be defined in terms of p extreme points u1
ω, . . . , u

p
ω and q

extreme rays up+1
ω , . . . , up+q

ω . By the positive semidefiniteness of Dω, we know that

πT
ωDωπω ≥ 0, ∀πω =⇒ max

πω
−πT

ωDωπω ≤ 0.

Therefore, the finiteness of the dual of the second-stage problem is implied by the following con-

straints on the first-stage decision x:

(zj
ω)T (bω −Aωx) ≤ 0, j = p+ 1, . . . , p+ q, ∀ω ∈ Ω. (2.8)

These constraints are called feasibility cuts and may be appended to the problem. We define J fea

as the set of indices corresponding to the set of dual extreme rays corresponding to scenario ω:

J fea(x) = {(j, ω) : uj
ω represents an extreme ray}.

The feasibility cuts are identical to the two-stage linear case. They are appended to the master

problem (to be defined in the next section) to ensure feasibility of the dual for every first-stage

decision x.

In a linear program, when the optimal cost is finite, the optimal solution is either at an extreme

point of the polyhedron or on a face. However, in the case of the latter, the linearity of the objective

function implies that we may obtain an extreme point solution in both of the cases. In a QP, the

optimal solution is not necessarily at an extreme point, but any extreme point will provide a lower
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bound on the optimal solution in a maximization problem. Therefore

θ ≥
∑

ω∈Ω

pω[(bω −Aωx)
T zj

ω − 1

2
(πj

ω)TDωπ
j
ω] ∀j ∈ Jopt(x), (2.9)

where Jopt represents the set of indices corresponding to the set of dual solutions corresponding to

each scenario. Formally, we have

Jopt(x) = {j : {πωj , zωj} solves Sω(x)}.

These constraints are called optimality cuts. Given a solution (x̂, θ̂) from the master problem, we

solve the quadratic scenario problems Sω(x̂). If the primal is found to be infeasible or the dual is

found to be unbounded, then the master problem is augmented with a feasibility cut. If all the

dual problems are finite, we add an optimality cut. We may now define the master problem M,

analogous to the specification in the seminal papers by Benders [Ben62] and Van Slyke and Wets

[VSW69].

M minimize
x,θ

1
2x

TQx+ cTx+ θ

subject to

Ax = b

x ≥ 0

θ ≥ ∑ω pω[(zj
ω)T (bω −Aωx) − 1

2 (πj
ω)TDω(πj

ω)], j ∈ Jopt(x)

0 ≥ (zωj )T (bω −Aωx), j, ω ∈ J fea(x).

2.2.4 The Master Problem and Subproblem

Recall that the recourse-based formulation poses the two-stage stochastic program as

min
x≥0

f1(x) + Q(x).

We approximate Q(x) by a series of optimality cuts. To ensure that the choice of x results in a

feasible dual problem, we introduce feasibility cuts. We use Infanger’s compact notation [Inf94] to

specify the optimality and feasibility cuts:

M minimize
x,θ

1
2x

TQx+ cTx+ θ

subject to

Ax = b

x ≥ 0

−(Ḡj)Tx+ θ ≥ ḡj , j ∈ Jopt(x)

−(Gj
ω)Tx ≥ hj

ω, j, ω ∈ J fea(x),
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where

Gj
ω := (zj

ω)TAω,

gj
ω := (zj

ω)T bω − 1

2
(πj

ω)TDωπ
j
ω ,

hj
ω := (zj

ω)T bω,

Ḡj := Ḡ(xj),

ḡj := ḡ(xj),

Ḡ(xj) = IEGj
ω,

ḡ(xj) = IEgj
ω.

The cuts in the master problem are obtained by solving subproblem Sω(x) for each realization of

ω. Recall the definition of this subproblem from section 2.2.2:

Sω(x) maximize
πω ,zω

pω((bω −Aωx)
T zω − 1

2π
T
ωDωπω)

subject to
−Dωπω +BT zω ≤ dω

zω ≥ 0.

We shall reiterate the basic idea of the algorithm by discussing the kth iteration. The solution

of the master problem Mk
8 gives us a solution xk. Using the solution xk, we proceed to form

subproblems Sω(xk) for each ω ∈ Ω, obtaining solutions (πω(xk), zω(xk)). If dual unboundedness

is detected in any of the subproblems (implying primal infeasibility), we immediately switch to the

master and add a feasibility cut. If all the dual problems are bounded, then we use the optimal

dual solutions of the second stage to add an optimality cut to the master problem.

2.2.5 Upper and Lower Bounds

The L-shaped method relies on upper and lower bounds for its termination criterion. The lower

bound is obtained by noticing that whenever an optimality cut is added to the master problem,

we obtain a better outer approximation of the recourse function. The optimal value of the master

problem provides a lower bound on the optimal solution (Lemma 2.23). The sets of optimality

and feasibility cuts at iteration k are denoted by Jopt
k and J fea

k , respectively. We define a function

QL
k (x) as follows:

QL
k (x) := max

j∈J
opt
k

ḠT
j x+ ḡj .

Lemma 2.23. QL
k (x) ≤ Q(x), ∀k, x.

8The master problem Mk refers to the master problem at the kth major iteration.
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Proof. The recourse function Q(x) may be written as

Q(x) := IEωQ(x, ω)

=
∑

ω

pωQ(x, ω)

≥ (Ḡj)Tx+ ḡj , ∀j ∈ Jopt
k .

�

For a fixed value of x, the optimal solution of the master problem gives the value for θ as the

maximum of all the optimality cuts added. In other words, we have the following result.

Lemma 2.24. For a given x at the end of major iteration k, we have θ∗(x) = QL
k (x).

Proof. Follows immediately from the specification of problem M. �

The master problem M is equivalent to

ML minimize
x,θ

1
2x

TQx+ cTx+ QL
k (x)

subject to

Ax = b

x ≥ 0

x ∈ Xk,

where

Xk := { − (Gj
ω)Tx ≥ hj

ω, j, ω ∈ J fea(x),

− (Ḡj)Tx+ θ ≥ ḡj , j ∈ Jopt(x)}.

The optimal value of the master problem gives a lower bound on the solution simply because not

all the optimality cuts have been added. This may be proved formally:

Lemma 2.25. If M is feasible at iteration k, we have

cTxk +
1

2
xT

kQxk + θk ≤ f∗,

where f∗ is the true optimal solution. If M is infeasible at iteration k, then f∗ = +∞.

Proof. This follows from lemma 2.24 and Xk ⊆ Xk−1 ⊆ . . . ⊆ X1. �

Definition 2.26. The lower bound at iteration k is given by

Lk := cTxk +
1

2
xT

kQxk + θk,

where {Lk} is a monotonically increasing sequence.
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The optimal value of the master problem at the kth iteration is cTxk + 1
2 (xk)TQxk + QL(xk).

This gives the true cost of solution xk and is therefore an upper bound to the optimal value, since

xk is feasible but not necessarily optimal. The upper bound to the optimal value may then be given

by the following result.

Definition 2.27. The upper bound at iteration k is given by

Uk := min{Uk−1, c
Txk +

1

2
xT

kQxk + Q(xk)},

where {Uk} is a monotonically decreasing sequence.

The algorithm terminates based on termination criterion T1.

Definition 2.28. Termination criterion T1 is satisfied when Uk − Lk ≤ ǫ, where ǫ is a specified

tolerance.

2.2.6 Introduction of Inexact Cuts

Zakeri et al. [ZPR00] discuss the use of inexact cuts in an L-shaped method for stochastic linear

programming. Since inexact cuts may be obtained by solving the dual problems to feasibility (and

not optimality), there may be significant gain from a computational standpoint. In this section,

we present convergence theory for an inexact-cut based L-shaped method for two-stage stochastic

QPs.

We begin by defining an inexact optimality cut [ZPR00].

Definition 2.29. Suppose each dual problem Sω is solved to within a tolerance ǫ, resulting in the

expected cut (Ḡj
I , ḡ

j
I). Then the ǫ-inexact cut is defined as

(Ḡj
I)

Tx+ ḡj
I + ǫ > Q(x).

In practice, we use an interior method to solve Sω with an optimality tolerance of ǫ. We steadily

reduce this tolerance by the use of an inexactness sequence {ǫk} that converges to zero. We term

the L-shaped method with inexact cuts the ILS (Inexact L-Shaped) method. We need to restate

the bounds for this algorithm. It can be seen that if we rewrite problem M using (ḠI , ḡI), then the

solutions to the master problem provide lower bounds with a gap of ǫk. In particular, we define

the inexact-cut based master problem MI as

MI minimize
x,θI

1
2x

TQx+ cTx+ θI

subject to

Ax = b

x ≥ 0

−(Ḡj
I)

Tx+ θI ≥ ḡj
I , j ∈ Jopt(x).

Note that we assume that the primal problems are always feasible, allowing us to omit the feasibility

cuts. Suppose we denote the inexact master problem by MI
k and its solution by f I

k ; then we may

define the lower bound as follows.
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Definition 2.30. The lower bound at iteration k is given by

LI
k := cTxk +

1

2
xT

kQxk + θI
k,

where {LI
k} is a monotonically increasing sequence.

Normally, the upper bound is merely the expectation of the costs obtained from the second-

stage problem in addition to the first-stage cost. However, this upper bound may not be valid

when one uses a sample of the cuts.9 We use a modified upper bound sequence in which we add

the inexactness to the true upper bound.

Definition 2.31. The upper bound at iteration k10 is given by

U I
k := min{U I

k−1, c
Txk +

1

2
xT

kQxk + (Ḡk
I )Txk + ḡk

I + ǫk},

where {U I
k} is a monotonically decreasing sequence.

2.2.7 Convergence Theory

We begin with a statement of the L-shaped method for two-stage QPs.

1. k = 1, Uk
0 = ∞, Lk

0 = −∞

2. Given u, ǫ, ǫk = ǫ

3. While |Uk
I − Lk

I | > δ

(a) Solve MI
k to obtain θk and xk

(b) Update lower bound LI
k

(c) Solve Sω(xk) to obtain (πω , zω)

(d) If all Sω(xk) are feasible, then construct (Ḡk
I , ḡ

k
I ), otherwise add feasibility cut and go

to (a)

(e) Update lower bound U I
k and add optimality cut (Ḡk, ḡk) to Mk

(f) ǫk+1 = ǫk/u

(g) k = k + 1

In proving convergence of the ILS method, we follow the ideas of Zakeri et al. [ZPR00], which

focused on Benders decomposition for linear programming. Our method extends these ideas to

convex quadratic programming.

Lemma 2.32. If the set of cuts Jopt

k is augmented by (Ḡk
I , ḡ

k
I ), then (Ḡk

I , ḡ
k
I ) is an ǫk-subgradient

of Q at xk.

9We examine this issue more closely in the next section.
10One should note that the index j is used to specify a particular cut from the set of appended cuts at an iteration

of the algorithm. The index k refers to a particular iteration of the L-shaped algorithm. In particular, after k

iterations, the master problem can have as many as k optimality cuts.
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Proof. Recall from the statement of the algorithm that the set of cuts is only updated if (Ḡk
I )Txk +

ḡk
I + ǫk > Q(xk). Since, we have Q(x) ≥ (Ḡk

I )Tx+ ḡI
k,

Q(x) −Q(xk) ≥ (Ḡk
I )T (x − xk) − ǫk

=⇒ Q(x) ≥ Q(xk) + (Ḡk
I )T (x − xk) − ǫk.

�

Lemma 2.33. Let U I
k , L

I
k, xk and θI

k be generated by the ILS method. Then, we have

U I
k − LI

k ≤ vk − θI
k + ǫk,

where vk := (Ḡk
I )Txk + ḡk

I .

Proof. At iteration k, the inexact upper bound is bounded from above:

U I
k ≤ 1

2
xT

kQxk + cTxk + ǫk + (Ḡk
I )Txk + ḡk

I .

Moreover, the lower bound is LI
k := 1

2x
T
kQxk + cTxk + θI

k. The result follows with vk := (Ḡk
I )Txk +

ḡk
I . �

It is necessary to assume that the set of subgradients is bounded. In the linear case, we may

prove this using complete recourse. However, such a proof depends on the fact that the optimal

solution of each subproblem is a basic feasible solution. This may not occur in the case of quadratic

programming.

Assumption 2.34. The coefficient of the optimality cut Ḡk
I is bounded.

We now show that the ILS method terminates with a δ-optimal solution in a finite number of

iterations. If not, then the following two possibilities may occur:

1. There exists an m such that θk ≥ vk for all k ≥ m.

2. There exists a subsequence (xσ(k), θσ(k)) such that θσ(k) < vσ(k).

Lemma 2.35. If there exists an m such that for all k ≥ m, θk ≥ vk, then U I
k − LI

k → 0.

Proof. By invoking Lemma 2.33 and the hypothesis, we have for k ≥ m,

U I
k − LI

k ≤ vk − θk + ǫk ≤ ǫk.

Since the inexactness sequence {ǫk} → 0, the result follows. �

Lemma 2.36. If there exists a convergent subsequence {xτ(k), θτ(k)} such that θτ(k) < Q(xτ(k)) for

k ≥ 1, then

1. vτ(k) − θτ(k) ≤ vτ(k) − vτ(k−1) − ḠT
τ(k−1)(xτ(k) − xτ(k−1)).

2. lim vτ(k) − vτ(k−1) = 0.
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3. lim inf Ḡτ(k−1)(xτ(k) − xτ(k−1)) ≥ 0.

Proof. 1. The solution of the master problem at τ(k), given by (xτ(k), θτ(k)), is feasible with

respect to the cut added in iteration τ(k − 1). To be specific, we have

θτ(k) ≥ (Ḡ
τ(k−1)
I )Txτ(k) + ḡI

τ(k−1).

Therefore, it can be seen that

vτ(k) − θτ(k) ≤ vτ(k) − (Ḡ
τ(k−1)
I )Txτ(k) − ḡ

τ(k−1)
I

= vτ(k) − vτ(k−1) + vτ(k−1) − (Ḡ
τ(k−1)
I )Txτ(k) − ḡ

τ(k−1)
I

= vτ(k) − vτ(k−1) − (Ḡ
τ(k−1)
I )T (xτ(k) − xτ(k−1)).

2. By the assumption that {(xτ(k), θτ(k))} → {(x∗, θ∗)}, we have

Q(xτ(k)) − ǫk ≤ vτ(k) ≤ Q(xτ(k)),

implying that vτ(k) → Q(x∗).

3. Since lim vτ(k) = 0 and

vτ(k) − vτ(k−1) − (Ḡ
τ(k−1)
I )T (xτ(k) − xτ(k−1)) ≥ vτ(k) − θτ(k) > 0,

we have lim inf(Ḡ
τ(k−1)
I )T (xτ(k−1) − xτ(k)) ≥ 0.

�

Lemma 2.37. Suppose X = {x ≥ 0 | Ax = b} is bounded and domQ = IRn. If there exists a

subsequence {xτ(k), θτ(k)} such that Q(xτ(k)) < θτ(k) for k ≥ 1, then U I
k − LI

k → 0.

Proof. By the boundedness of X , the sequence {(xτ(k), θτ(k))} is also bounded. In particular,

we may extract a subsequence {(xτ(k), θτ(k))} that is convergent to (x∗, θ∗). By showing that

U I
τ(k) − LI

τ(k) → 0, we have the result. By lemma 2.33, we have

0 ≤ U I
τ(k) − LI

τ(k) ≤ vτ(k) − θτ(k) + ǫτ(k)

≤ vτ(k) − vτ(k−1) − (Ḡ
τ(k−1)
I )T (xτ(k) − xτ(k−1)) + ǫτ(k) by lemma 2.36, part 1.

By the boundedness of Ḡτ(k), we have (Ḡ
τ(k−1)
I )T (xτ(k) − xτ(k−1)) → 0. Moreover, by lemma 2.36

part 2, we have lim(vτ(k) − vτ(k−1)) → 0. This implies that U I
τ(k) − LI

τ(k) → 0. Since {U I
k − LI

k} is

a decreasing sequence with a convergent subsequence, this implies that U I
k − LI

k → 0. �

Theorem 2.38. If X is bounded and domQ = IRn, the ILS algorithm terminates in a finite number

of iterations with a δ-optimal solution of SQP.

Proof. By lemmas 2.33 and 2.37, we have U I
k −LI

k → 0. There exists someK such that U I
K−LI

k < δ,

implying termination in K iterations. Let xK be such that UK = 1
2x

T
KQxK + cTxK + vK + ǫK .
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Then

1

2
xT

KQxK + cTxK + Q(xK) ≤ 1

2
xT

KQxK + cTxK + vK + ǫK ≤ LK + δ,

implying that the optimal cost at xK is within δ of the optimal value. �

2.3 The Inexact-Cut-Sampling Algorithm

In the L-shaped method, the construction of a single optimality cut requires the solution of |Ω|
subproblems (assuming the distribution is discrete). If |Ω| is large, it may be computationally

burdensome. Instead, one may use a sample of observations to estimate the coefficients and intercept

of an optimality cut.

For instance, we could sample the exact cuts (called exact-cut sampling) and construct confi-

dence intervals for the optimal value of the stochastic program. We describe this strategy in section

2.3.1. Another possibility is to make the sampled cut inexact by reducing its intercept. We provide

some details of this strategy in section 2.3.2.

2.3.1 Exact Cut Sampling

This section has its roots in the work by Dantzig and Infanger [DI95]. Recall that the optimality

cut may be specified as

θ ≥ ḠTx+ ḡ,

where we suppress the iteration subscripts. If f(yω) is given by f(yω) := 1
2y

T
ωDyω + dT

ωyω, then by

weak duality, we have

f(yω) ≥ (Gω)Tx+ gω.

Therefore,

θ + f(yω) ≥ (Gω)Tx+ gω + θ

=⇒ θ ≥ (Gω)Tx+ gω + (θ − f(yω)

=⇒ θ ≥ 1

N

∑

ω∈S

(Gω)Tx+
1

N

∑

ω∈S

gω +
1

N

∑

ω∈S

(θ − f(yω)).

This implies that

θ ≥ ĜTx+ ĝ − φ, (2.10)
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where Ĝ, ĝ and φ are defined as

Ĝ :=
1

N

∑

ω∈S

(Gω)Tx, (2.11)

ĝ :=
1

N

∑

ω∈S

gω (2.12)

and φ :=
1

N

∑

ω∈S

(θ − f(yω)). (2.13)

In other words, φ is a sample average of random variables f(yω) − θ. This leads to the following

definition.

Definition 2.39. The probabilistic and pseudo cuts are defined as

θ ≥ ĜTx+ ĝ − φ, (2.14)

and θ ≥ ĜTx+ ĝ, (2.15)

respectively.

We may use the pseudo cuts to construct a probabilistic master problem at iteration k of the

probabilistic L-shaped method:

M̂ minimize
x,θ

1
2x

TQx+ cTx+ θ

subject to

x ≥ 0 : γ

−(Ĝ1)Tx+ θ ≥ ĝ1 : λ1

−(Ĝ2)Tx+ θ ≥ ĝ2 : λ2

...

−(Ĝk)Tx+ θ ≥ ĝk. : λk

At iteration k of this method, a random sample of size Nk is generated and denoted by Sk (where

|Sk| = Nk). Then the coefficients Ĝk and ĝk are computed to enable the construction of a pseudo

cut:

−(Ĝk)Tx+ θ ≥ ĝ.

The expected second-stage costs at iteration k are IEf(yω(xk)), where yω minimizes the second-

stage problem Sω(x). However, the probabilistic L-shaped method uses a sample Sk at iteration k.

Therefore a sample mean of the minimum second-stage costs at the kth iteration is given by

θ̂k :=
1

Nk

∑

w∈Sk

f(yω).
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The sample standard variance at iteration k may be computed as

σ̂2
k :=

1

Nk(Nk − 1)

∑

w∈Sk

(f(yω) − θ̂k)2.

Suppose the solution of the probabilistic master problem is denoted by x̂k. Furthermore, an unbi-

ased estimate of the total cost is given by

v̂k := cT x̂k + 1
2 x̂

T
kQx̂k + θ̂k, (2.16)

where σ̂2
k is an unbiased estimate of the variance of v̂k. Since this is a probabilistic method, various

termination criteria may be used. We use a criterion based on the number of major iterations taken

by the method. Upon termination, one may choose xk as the one corresponding to the minimum

v̂k:

x̂∗ := x̂l, where l = arg min{v̂k}.

The optimality conditions of the probabilistic master problem at a solution x of the master problem

require the existence of λ and γ such that the following hold:

c+Qx−
K∑

j=1

Ĝjλj − γ = 0

K∑

j=1

λj = 1

γ ≥ 0

λj ≥ 0, j = 1, . . . ,K.

Theorem 2.40. Let us define C,H, h and d as

C =

(
Q 0

0 0

)
, H =




−(Ĝ1)T 1

−(Ĝ2)T 1
...

...

−(ĜK)T 1

1 0




, h =




ĝ1

ĝ2

...

ĝK

0




, d =

(
c

1

)
.

Let v̂∗ and v∗ be the solutions of the probabilistic and true master problems upon termination. Then

|v̂∗ − v∗| ≤ |∆|, (2.17)

where

∆ :=

K∑

j=1

λjφj ,

K∑

j=1

λj = 1, λj ≥ 0.
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Proof. If the primal master problem is denoted by

minimize
w

1
2w

TCw + dTw

subject to Hw ≥ h,

then the dual problem (given by Dorn duality [Dor61]) is

maximize
s,u

− 1
2s

TCs+ hTu

subject to
HTu− Cs = h

u ≥ 0.

Therefore, v̂∗ is given by

v̂∗ = −1

2
sTCs+ hTu = −1

2
sTCs+

K∑

j=1

λT
j ĝ

j .

By using the multipliers from the probabilistic master problem, we note that for the true master

problem, we have

1
2 (x∗)TQx∗ + cTx∗ + θ∗ = z∗

−(Ĝ1)Tx∗ + θ∗ ≥ ĝ1 − φ1 : λ1

...

−(ĜK)Tx∗ + θ∗ ≥ ĝK − φK : λK

x∗ ≥ 0. : γ

This leads to

v∗ −
K∑

j=1

λT
j ĝ

j +
K∑

j=1

λjφj ≥ 1
2 (x∗)TQx∗ + cTx∗ −

K∑

j=1

λT
j ((Ĝj)Tx∗) − γTx∗

v∗ −
K∑

j=1

λT
j ĝ

j +

K∑

j=1

λjφj ≥ − 1
2 (x∗)TQx∗ + (Qx∗ + c−

K∑

j=1

(Ĝj)λj − γ)Tx∗

v∗ −
K∑

j=1

λT
j ĝ

j + 1
2 (x∗)TQx∗ +

K∑

j=1

λjφj ≥ 0.

This implies that |v̂ − v∗| ≤ |∆|, where the random variable ∆ is ∆ :=
∑K

j=1 λjφj . �

The result by Dantzig and Infanger [DI95] requires that the variance of the second-stage cost

is known or can be approximated closely by σ2
k(xk). The same is true for the extension to the

quadratic case.
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2.3.2 Probabilistic Bounds

In this section, we use the distribution of ∆ in prescribing confidence bounds for the solution as

shown in [DI95]. In this analysis, the sample-size is always kept at N . In particular, if the true

variance of the error is given by (σ∗)2, then in the construction of each optimality cut, we obtain

(σ∗
j )2 =

1

N − 1

N∑

i=1

(f(yi(x
∗
j ) − θ∗j )2.

Moreover,

φj ∼ N (0,
σ∗

√
N

) =
σ∗

√
N

N (0, 1).

It should be noted that this requires the optimal solution and the true variance of the optimal

solution. We may approximate this variance by the variance of the best available solution. Dantzig

and Infanger [DI95] suggest the construction of two distributions that bound the distribution of ∆:

a worst-case distribution and a conservative distribution. We discuss the worst-case distribution

here and note that is constructed by

∆w := max
j
φj ≥

K∑

j=1

λjφj ,

since
∑K

j=1 λj = 1 and λj ≥ 0, ∀j. Then

IP(v̂∗ − ∆w ≤ v̂ − ∆ ≤ v∗) ≥ (1 − α),

since ∆w ≥ ∆.

2.3.3 Inexact Cut Sampling

The probabilistic cuts used in the earlier section were sampled exact cuts in that they represented

sample means of exact cuts. The errors in the sampled cuts given by φ could be either positive or

negative. As a result, constructing a valid lower bound to the solution was difficult. However, as

mentioned earlier, we may construct confidence intervals associated with upper and lower bounds.

In this section, we modify the sampled inexact cuts by using the sample variance of the cut.

Specifically, if the variance of the sampled cut at the kth iteration is given by σ̂2
k, then the value of

the kth optimality cut at x is given by

(Ĝk
I )Tx+ ĝk

I , (2.18)
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and we define

ĜI =
1

N

N∑

j=1

Gj
I ,

ĝI =
1

N

N∑

j=1

gj
I − βσ̂, β ≥ 1.

One would expect that in practice, such cuts would have a higher probability of being valid. As

a result, the solution to the master problem would be a valid point estimate of a lower bound for

SQP. The inexactness in the cuts defined above arises from solving the dual problems to feasibility

and from reducing the intercept term of the cut. This leads to a notion of probabilistic validity.

Definition 2.41. The α-inexact probabilistic cut (ĜI , ĝI) is said to be probabilistically valid if

IP(ĜT
I x+ ĝI + βσ̂ + ǫ > Q(x)) ≥ (1 − α).

For instance, to ensure that the cut is valid with a probability of 95%, we specify β = 4. The

inexact version of the probabilistic master problem is denoted by M̂I :

M̂I minimize
x,θ

1
2x

TQx+ cTx+ θ

subject to

x ≥ 0 : γ

−(Ĝ1
I)

Tx+ θ ≥ ĝ1
I : λ1

−(Ĝ2
I)

Tx+ θ ≥ ĝ2
I : λ2

...

−(Ĝk
I )Tx+ θ ≥ ĝk

I . : λk

This allows us to construct a probabilistic lower bound.

Lemma 2.42. The probabilistic lower bound at iteration k is given by

L̂I
k := cTxk + 1

2x
T
kQxk + θI

k,

where {LI
k} is a monotonically increasing sequence and xk and θI

k are obtained from solving the

master problem M̂ I.

Since L̂I
k is a random variable, we may obtain its variance by extending an analytical technique

adopted by Infanger [Inf94]. By using the dual of the master problem, we find that the variance of

the lower bound is given by the sum of the variances of each cut in the master problem weighted

by the appropriate multiplier. Note that every cut in the master problem is obtained by solving a

sample of subproblems, which provides a mean cost z̄j with a variance of σ2
z̄j

. In particular, this is

the variance in the cut and it allows us to state the variance of the sampled lower bound as follows:

σ2
bLI

k

:=

k∑

j=1

(ρk
j )2σ2

z̄j
.
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By monotonicity of the lower bounds, we may say that the last computed lower bound is indeed

the largest in mean and is given by

L̃I
k := N (L̂I

k, σ
2
bLI

k

).

Definition 2.43. The upper bound at iteration k is given by

Û I
k := min{Û I

k−1, c
Txk +

1

2
xT

kQxk + (Ĝk)Txk + ĝk + ǫk + βσ̂k},

where {Û I
k} is a monotonically decreasing sequence.

The upper bound is a random variable denoted by Ũ I
k because it represents the sum of the first-

stage cost fx(xk) and sample mean of the recourse cost z̃(xk), the latter being a random variable.

Therefore

Ũ I
k = N(f1(xk) + z̄(xk), σ2

z̄(xk)).

Since the random upper bounds need not be decreasing in means, we define a minimum Ũ I
k by

Ũmin,I
k = N((f1(xj) + z̄(xj), σ

2
z̄(xj)

), j = arg min
k

{Û I
k}. (2.19)

2.3.4 Stopping Rule and Confidence Intervals

Deterministic cutting-plane methods prescribe termination when the upper and lower bounds

are within a tolerance. However, in our case the bounds are random in nature and we need to

test the hypothesis that the sample means for the upper and lower bound are indeed different. A

statistical technique for conducting such a test is called the Student’s t-test and requires that the

underlying distributions of the two populations being compared are normal and independent. We

assume normality in the distributions but we do not have independence because the upper and

lower bounds are constructed from the same samples.

We ensure independence between the two sample means by resampling for the lowest upper

bound using the current xk. Note that this resampling need not be done at every point but only

when the sample means satisfy the null hypothesis. If the resampled data does satisfy the null

hypothesis, we compute a confidence interval and terminate the algorithm.

Definition 2.44. We define the t-test criterion tk as

tk =
z̄M

k − LBk√
b

and b =
(σ2

gLBk

+ σ2
gUBk

)

nk
.

The termination criterion T1 is satisfied when tk ≤ 1.96 for a 95% test.

The resulting 95% confidence interval is given by

LBk − 1.96σgLBk
≤ z∗ ≤ UBk + 1.96σgUBk

.
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2.4 Computational Results

This section discusses the behavior of the algorithm on a two-stage stochastic QP test problem set

[CW00].11 It suffices to test the algorithm on such a class, given the equivalence between stochastic

Nash games and two-stage stochastic QPs. Generally, test problem sets serve as proxies for real-life

data and it is helpful, if not essential, for one to have the optimal value and solution available at

the outset. Moreover, one would like to control various characteristics of the test problems that

may prove crucial between obtaining a solution and failing. These would include issues such as the

condition of the master and subproblems and the degeneracy of the problems. In addition, we have

control on the size of both the first and second-stage decisions.

In section 2.4.1, we give a brief description of the problem set, focusing on the various spec-

ifications of the problem and provide the parameters of our problem generator. In section 2.4.2,

we demonstrate the benefits of solving the dual problems to feasibility. Section 2.4.3 describes the

performance of the sampling-based cutting-plane method. The method uses a fixed sample at every

iteration and terminates after a fixed number of major iterations (if the sample means of the upper

and lower bounds do not come within δ). The sampling method proves useful when the size of the

sample space is large.

2.4.1 A Test Problem Set

We generate stochastic quadratic programs based on the following large-scale quadratic program:

F-QP minimize
x

1
2x

TPx+ cTx+ IEωΨ(x, ω)

subject to Ax ≤ b,

where Ψ(x, ω) is the optimal value of the subproblem

S-QP(ω) maximize
z

− 1
2z

THz + zT (Sω − Tx)

subject to Wz ≤ q(ω).

Chen and Womersely [CW00] describe an approach for generating random two-stage stochastic

quadratic programs F-QP and S-QP.

Assumption 2.45. The following assumptions hold for every problem:

1. P and H are symmetric positive definite matrices.

2.
∑r

j=1 p(ωj) = 1, where j represents the index of the appropriate subproblem.

3. Each of the r realizations ωj, j = 1, . . . , r, has equal probability.

Important benefits of any test problem set include knowledge of the optimal solution a priori as

well as ability to control various aspects of the test problem such as the condition of the Hessian at

11We constructed a Matlab version of this test problem set.
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the first and second stage. Our problem set allows control on the number of active constraints with

positive multipliers at the solution. In Table 2.1, we provide an incomplete list of the inputs to the

problem set and refer the reader to [CW00] for a more exhaustive set. The algorithms have been

implemented in Matlab 7.0 and tested on a Linux-based (2 GB of RAM and 3.3 GHz) processor.

We use Mex file interfaces from TOMLAB [Hol99] for the sparse QP solvers SQOPT [GMS97] and

CPLEX. The barrier version of the latter is used to solve the QP subproblems.

We restrict the testing to problems in which the first stage has m = 4 constraints and n = 5

variables. The second-stage quadratic programs are also assumed to have m2 = 4 constraints and

n2 = 5 variables. The number r of quadratic programs in the second stage is contingent on the

number of random parameters no-comps and the number of realizations (ℓ) each random parameter

is assumed to take. In particular, r = no-compsℓ.

2.4.2 Inexact L-Shaped Method for Stochastic QPs

We compared two update strategies. The first started the inexactness sequence at 1e-3 and reduced

it by a factor of 5 at every major iteration. The second strategy started the sequence at 1e-5 and

reduced it by a factor of 2 at every major iteration. We compared these update strategies with an

exact cut approach that specified an optimality tolerance of 1e-8 at every major iteration.

Table 2.2 compares the performance of the three methods. We solved problems with r as large

as 65000. The ILS method is terminated if the upper and lower bounds fall within 1e-6 or the

maximum number of major iterations is exceeded. We find that the first strategy always performs

the best. In fact, for some problems, using inexact cuts saves nearly 40% in terms of computational

effort compared to when using exact cuts. Note that we measure this effort in terms of the number

of QP iterations.

Figure 2.4.2 shows the performance profiles of the 4 algorithms constructed on the basis of

major iterations. The construction of such profiles is discussed by Dolan and Moré [DM02]. We

summarize the construction of such profiles for a specific performance metric. Suppose we intend

to provide a benchmark for computational time. Then, for solver s, we have the time tp,s to solve

problem p, and we may define a performance ratio

rp,s =
tp,s

mins∈S tp,s
, ∀s ∈ S, p ∈ P .

Note that S and P are the set of solvers and problems, respectively. Then, the performance profile

Table 2.1

Input parameters

Parameter Definition
r No. of second-stage quadratic programs
n, n2 Size of x and zω

m,m2 No. of linear constraints in first and second stage
t, a Condition no. of P and H
µ0, ν0 No. of active constraints with positive/zero multipliers at x∗

m0 Largest no. of active constraints at any of the r constraints
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K ǫ0=1e-3, ǫk+1 = ǫk/5 ǫ0 = 1e-5, ǫk+1 = ǫk/2 ǫ0 = 1e-8, ǫk+1 = ǫk

UI
k − LI

k fk qpIter UI
k − LI

k fk qpIter UI
k − LI

k fk qpIter

243 2.26e-6 1.63e+2 6769 8.84e-6 1.63e+2 8611 2.09e-6 1.63e+2 11960
729 5.20e-6 1.35e+3 48122 3.45e-6 1.35e+3 52886 3.39e-6 1.35e+3 69172

1024 6.08e-6 6.54e+2 79939 3.95e-4 6.54e+2 143334 2.60e-6 6.54e+2 69473
2048 1.78e-4 8.16e+2 298894 2.29e-4 8.16e+2 310550 5.71e-5 8.16e+2 362801
4096 4.56e-6 5.52e+3 128343 8.24e-6 5.52e+3 156547 2.86e-6 5.52e+3 216419
6561 9.22e-6 8.73e+3 452254 9.32e-6 8.73e+3 481118 9.37e-6 8.73e+3 626814

16384 1.52e-7 7.88e+3 791463 1.21e-7 7.88e+3 904883 7.35e-8 7.88e+3 1256028
19683 4.01e-6 4.30e+2 2285399 2.43e-5 4.30e+2 2582340 2.29e-5 4.30e+2 2925343
32768 2.83e-6 6.23e+2 3050896 1.53e-5 6.23e+2 4840473 2.13e-5 6.23e+2 5612627
65536 8.75e-7 3.36e+3 5287912 1.43e-6 3.36e+3 5535908 9.22e-7 3.36e+3 6567603

Table 2.2

Comparison of two update rules with the exact-cut L-shaped method
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Figure 2.1 Performance profiles for different updates in the ILS method
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Table 2.3

Performance of sampling method

K f∗ N=1000 N=2,500 N = 5000
z̄LB qpiter z̄LB qpiter z̄LB qpiter

15625 1.52e+3 1.52e+3 125571 1.49e+3 314681 1.50e+3 627455
16384 7.88e+3 7.64e+3 117360 7.57e+3 294124 7.83e+3 588041
16384 4.11e+2 4.09e+2 133785 4.02e+2 333729 4.04e+2 667167
16807 4.36e+4 4.37e+4 116802 4.25e+4 297148 4.24e+4 595825
32768 6.23e+2 6.00e+2 134305 6.17e+2 335131 6.16e+2 671115
46656 2.86e+2 2.90e+2 128331 2.85e+2 320330 2.86e+2 642430
59049 7.85e+3 7.66e+3 120485 7.72e+3 299979 7.65e+3 600952
65536 3.36e+3 3.36e+3 113944 3.29e+3 282442 3.30e+3 572170
65536 4.97e+3 4.77e+3 120972 4.88e+3 303125 4.95e+3 605597
78125 1.19e+3 1.17e+3 112622 1.18e+3 281680 1.17e+3 563376

117649 2.78e+3 2.73e+4 111247 2.77e+4 179562 2.71e+4 572044
131072 1.27e+3 1.19e+3 97636 1.24e+3 299735 1.27e+3 435338

for a particular solver, say s, is

ρs(τ) :=
1

np
size{p ∈ P : rp,s ≤ τ},

where np is the number of problems in the test problem set. Intuitively, the performance profile

charts out a ratio that represents how well a solver does with respect to its competitors.

2.4.3 A Sampling-based Method

To accommodate large sample sizes, one may be satisfied with bounds on the optimal value of

the optimization problem. By using a sample of the cuts at every major iteration, we construct

probabilistic upper and lower bounds on the optimal value. The use of inexact cuts ensures that

one may obtain an approximately valid point estimate of the lower bound.

Our sampling method terminates after a fixed number of major iterations. In the future, we

plan to use more sophisticated termination criteria. At each major iteration, we obtain a random

sample of size N . We compare the performance of the method under three settings of N : 1000,

2500 and 5000. Table 2.3 provides a point estimate for the lower bound and the number of QP

iterations for each problem. The column f∗ shows the optimal value for the problem.

We observe that the sampling method is significantly cheaper than the ILS method. For instance,

if one considers the problem with 65, 536 realizations, the ILS method with the fastest update takes

over 5 million QP iterations. The sampling-based method with N = 1000 results in a point estimate

of 3.36e3 but requires approximately 113,000 QP iterations. If one considers a problem with 32,768

realizations, the sampling method wit N = 5000 saves nearly 80% in terms of computational effort.

This comes at the cost of 1.12% gap between the point estimate of the solution and the true solution.

Our sampling method provides us with probabilistic lower and upper bounds. Moreover, by

using the variances of the obtained cuts, we may construct confidence intervals on these bounds.

Figures 2.2 and 2.3 compare the scaled bounds for N = 1000, 2500 and 5000. Note that the scaling

is carried out with reference to the true solution.

As one would expect, the use of a larger sample results in tighter confidence bounds. Further-

more, it is observed that the point estimates of the solution (approximate lower bounds) are within

6.30%, 3.93% and 2.75% of the true solution for N = 1000, 2500 and 5000, respectively.
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Figure 2.2 Confidence bounds from sampling method
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2.5 Contributions and Future Research

We have presented a method for solving a class of stochastic quadratic programs. One instance

of such problems is provided by a class of games in which agents solve two-stage stochastic con-

vex quadratic programs. We show an equivalence of this class of problems to a larger two-stage

stochastic quadratic program.

Zakeri et al. [ZPR00] discuss an inexact-cut method for linear programming. By using the

duality theory of convex quadratic programming, we construct an inexact-cut based L-shaped

method. The convergence of this algorithm is proved in section 2.2.7. An implementation of this

method shows that using inexact cuts results in significant savings in computational effort.

Often the size of the number of realizations in the second-stage makes it difficult to compute

an expectation of the recourse function. Dantzig and Infanger [DI95] suggest the sampling of

cuts and prescribe probabilistic lower and upper bounds. These ideas are extended to the case

of quadratic programming. By using the variance of the cuts, we modify the optimality cuts

that are added to the master problem. This results in approximately valid cuts. We use these

ideas to construct a sampling-based method that uses a fixed sample size and terminates after

a specific termination criterion is satisfied. We find that such a method performs well on very

large problems. In particular, we obtain point estimates of the solution that are less than 3%

away from the true solution when using a sample of N = 5000 at each iteration. The ideas about

inexact cuts need not be restricted to continuous programs but may be extended to other areas

where cutting-plane methods are employed. For instance, cutting-plane methods are used in integer

and convex programing and these ideas may be adapted to stochastic integer programming and

stochastic convex programming. This is the subject of current research.



Chapter 3

A Second-order

Method for

MPCCs

3.1 Introduction

We consider the mathematical program with complementarity constraints (MPCC)

MPCC minimize
x,y,w

f(x, y, w)

subject to
c(x, y, w) = 0,

0 ≤ y ⊥ w ≥ 0,

in which f and c represent the objective function and a vector of constraints. Both are assumed

to be twice continuously-differentiable over x ∈ IRn and y and w ∈ IRm. The complementarity

constraint y ⊥ w implies that either yi or wi (or both) is (are) zero for i = 1, . . . ,m. Such problems

arise in the modeling of Stackelberg equilibria, traffic equilibria, and contact problems [LPR96].

Mathematical programs with complementarity constraints (MPCC) are discussed in detail in the

books by Luo et al. [LPR96] and Outrata et al. [OKZ98]. One may rewrite the complementarity

constraint as Y w ≤ 0, where Y = diag(y). However, the resulting nonlinear program lacks a strict

interior, implying that the Mangasarian-Fromovitz constraint qualification (MFCQ) fails to hold

at every feasible point.

3.1.1 Early research on MPCCs

Over the past few years, significant effort has been applied towards solving MPCCs. Fletcher et al.

[FLRS02] reformulate the complementarity constraint as Y w ≤ 0 and report promising results using

sequential quadratic programming (SQP) methods. Anitescu [Ani05] provides global convergence

theory for SQP methods.

Hu and Ralph [HR04] and Leyffer et al. [LLCN05] solve a sequence of nonlinear programs with

penalized complementarity constraints. The latter work also provides convergence theory for the

method. Regularization methods require a solution of a sequence of regularized problems involving

the relaxed constraints Y w ≤ tk with {tk} → 0. These regularized problems may be solved by

44
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interior methods or by SQP methods. Luo et al. [LPR96] discussed an interior method for MPCCs.

Subsequently, Liu and Sun [LS04a] and Ragunathan and Biegler [RB05] provided interior methods

under weaker assumptions. DeMiguel et al. [dMFNS05] discuss a two-sided relaxation scheme and

provide local convergence theory for an interior method coupled with such a relaxation scheme.

Several other algorithms have been proposed to solve the original MPCC with differing local and

global convergence properties, such as [JR00, Pie01], penalty-based methods [LPR96], and others.

3.1.2 A Second-Order Method

One of the first primal-dual methods to obtain convergence to second-order points was by Moguerza

and Prieto [MP03]. They focused on constrained nonlinear programs and discussed the performance

of the algorithm on a set of test problems. Global convergence theory of the algorithm is provided

under the assumptions of strict complementarity at the limit points and the compactness of pri-

mal and dual iterates. Subsequently Doyle [Doy03] presented a method for large-scale nonlinear

programming that also employed negative curvature directions. Local and global convergence of

the algorithm is also discussed. The dissertation by Ng [Ng03] presents a second-order primal-dual

method for solving a class of discrete nonlinear programs.

The global convergence theory in [Doy03] leans on the work by Murray and Prieto [MP95a],

which appears to be one of the few SQP algorithms that uses exact second-derivatives while showing

convergence to second-order points. In [MP03], the authors present a primal-dual method and show

convergence to second-order points. However, they consider well-posed nonlinear programs and

assume that primal and dual iterates are bounded . We weaken both assumptions in this paper. In

particular, our method is designed for mathematical programs with complementarity constraints

and we only assume compactness of the non-slack primal variables. The convergence theory in this

chapter uses the work by Murray and Prieto [MP95a] as a guide but has obvious major differences.

We propose a line-search based interior method for solving MPCCs. The important difference

between our method and earlier algorithms for MPCCs is that we ensure convergence to second-

order points. Such points satisfy the second-order sufficiency conditions, implying that they are

local minimizers in a reduced space. In §3.2 we present our algorithm, focusing on the formulation,

the specification of the Newton and negative curvature directions, the linesearch and the curvilinear

search.

Section 3.3 discusses the convergence properties of the algorithm. We assume that the primal

iterates (not including the slack variables) generated by the algorithm are in a compact set. We

prove that the dual and slack variables are therefore bounded. In addition, we prove that the

iterates generated by the algorithm converge to a second-order KKT point of MPCC.

In §3.4, we discuss some computational results for the method on the QPECgen test problem set.
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3.1.3 Some Definitions and Background

We provide a quick survey of some of the important concepts for nonlinear programs, using the

following nonlinear problem (NLP) as the basis of our discussions:

NLP minimize
x

f(x)

subject to
c(x) = 0 : λ

x ≥ 0 : σ.

The Lagrangian function defined as L(x) := f(x)−λT c(x)−σT x allows for the specification of the

first-order Karush-Kuhn-Tucker (KKT) conditions.

Definition 3.1. First-order KKT Conditions: The triple (x∗, λ∗, σ∗) is a first-order KKT point

for NLP if

∇xL(x∗, λ∗, σ∗) = 0

c(x∗) = 0

0 ≤ x∗ ⊥ σ∗ ≥ 0.

The second-order sufficient conditions are defined next.

Definition 3.2. Second-order sufficient conditions (SOSC): The KKT point (x∗, λ∗, σ∗) satisfies

SOSC for NLP if it satisfies the first-order KKT conditions and if

pT∇xxL(x∗, λ∗, σ∗)p > 0

for all nonzero p such that ∇xc(x
∗)p = 0 and also

pj = 0 if x∗j > 0 and pj ≥ 0 if x∗j = 0.

The specification of necessary optimality conditions requires the point to subscribe to a regu-

larity condition. One such condition is the linear independence constraint qualification (LICQ).

Definition 3.3. (LICQ): A point (x, λ, σ) satisfies the linear independence constraint qualification

for NLP if (
∇c(x)
IA

)

has full row-rank, where A = {j : xj = 0} and IA refers to the columns of the identity corresponding

to the index set A.

Since MPCCs do not satisfy the LICQ, a different tack is needed in specifying the stationarity

conditions: one may define a relaxed form of MPCC denoted by RNLP. Using a form adopted in
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[dMFNS05], we define RNLP at a feasible point z̄ = (x̄, ȳ, w̄) as

RNLP minimize
x,y,w

f(x, y, w)

subject to

c(x, y, w) = 0

yj = 0, wj ≥ 0, j ∈ Iy(z̄)

yj ≥ 0, wj = 0, j ∈ Iw(z̄)

yj ≥ 0, wj ≥ 0, j ∈ Iy(z̄) ∩ Iw(z̄).

The index sets Iy(z̄) and Iw(z̄) are defined as {j : ȳj = 0} and {j : w̄j = 0}, respectively. The

crucial difference between RNLP and MPCC is in the treatment of complementarity constraints.

When ȳj = 0 < w̄j , the constraint wjyj = 0 is replaced by yj = 0 and wj ≥ 0. However, when

ȳj = 0 = w̄j , yjwj = 0 is replaced by yj , wj ≥ 0. In all these instances, the gradients of the active

constraints are linearly independent. The term relaxation emerges from the fact that the feasible

region of MPCC is contained in the feasible region of RNLP (i.e. FMPCC ⊆ FRNLP ). Furthermore,

we may define an MPCC-LICQ as follows.

Definition 3.4 (MPCC-LICQ). The MPCC satisfies an MPCC-LICQ at a feasible point z̄ if RNLP

satisfies the LICQ at z̄.1

This allows us to define a strong stationary point.

Definition 3.5 (Strong Stationarity). A point (x∗, y∗, w∗, λ∗, π∗) is said to be a strong stationary

point of MPCC if it is a KKT point of RNLP. In particular, it satisfies the first-order conditions:



∇xf(z∗)

∇wf(z∗)

∇yf(z∗)


−



∇xc(z

∗)

∇wc(z
∗)

∇yc(z
∗)




T

π∗ −


λ∗w
λ∗y


 = 0, (3.1)

[λ∗w]j , [λ
∗
y]j ≥ 0, i ∈ Iy(z∗) ∩ Iw(z∗) (3.2)

c(z∗) = 0, (3.3)

w∗
j [λ∗w]j = 0, (3.4)

y∗j [λ∗y]j = 0, (3.5)

z∗ ∈ FMPCC . (3.6)

If z∗ satisfies MPCC-LICQ, then (λ∗, π∗) is unique.

Next, we discuss the different types of complementary slackness or complementarity conditions

that may be posed.

Definition 3.6. The point (z∗, λ∗, π∗) satisfies strict complementarity slackness or MPCC-SCS if

(z∗, λ∗, π∗) is a strong stationary point and [y∗]j + [λ∗y ]j 6= 0 and [w∗]j + [λ∗w ]j 6= 0, for all j.

1Note that we use z to denote the triple vector (x, y, w).
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Definition 3.7. The point (z∗, λ∗, π∗) satisfies weak strict complementarity slackness or MPCC-

WSCS if it is a strong stationary point of MPCC.2

Our interest is in the solution of MPCC using nonlinear programming techniques. We therefore

use the following formulation, similar to that used in [RB05]. Problem MPCC is equivalent to

ENLP:

ENLP minimize
x,y,w

f(x, y, w)

subject to

c(x, y, w) = 0,

Y w ≤ 0,

y ≥ 0,

w ≥ 0.

The nonlinear program ENLP is ill-posed in that the constraints do not satisfy the Mangasarian

Fromovitz constraint qualification (MFCQ) as observed by the fact that the complementarity con-

straints do not have a strict interior at any feasible point. However, such regularity conditions are

crucial in proving the convergence of nonlinear programming methods. The stationarity conditions

of ENLP are



∇xf(z∗)

∇wf(z∗)

∇yf(z∗)


−



∇xc(z

∗)

∇wc(z
∗)

∇yc(z
∗)




T

π +


 Ȳ

W̄


λcc −


λw

λy


 = 0,

[λ∗w]j ≥ 0, [w∗]j [λ
∗
w]j = 0,

[λ∗y ]j ≥ 0, [y∗]j [λ
∗
y]j = 0,

c(z∗) = 0,

z∗ ∈ FMPCC .

Since ENLP is equivalent to MPCC, the assumptions of MPCC-LICQ, strong stationarity and

second-order sufficiency can be used. Moreover, our objective is then to obtain a strong-stationary

point of ENLP by using a barrier method. An important distinguishing feature of this method

compared to that proposed by [RB05] is the incorporation of a curvilinear search that ensures

convergence to second-order points. We may then specify the set of NLP multipliers Λ∗ associated

with ENLP as

Λ∗ := {(λcc, λw, λy, π) : π = π∗, (3.7)

Ȳ λcc − λw = −λ∗w, (3.8)

W̄λcc − λy = −λ∗y, (3.9)

λcc, λy, λw ≥ 0}. (3.10)

The uniqueness of λ∗ based on MPCC-LICQ implies that Λ∗ is unambiguously specified. In [RB05],

2Only requires strict complementarity for multipliers associated with inequality constraints not related to com-
plementarity constraints.
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the authors show that by appropriately bounding the sequence of multipliers, one may approach

a multiplier in Λ∗ satisfying strict complementarity. This is important from the standpoint of

constructing an algorithm that converges to a KKT point satisfying strict complementarity.

The second-order sufficiency conditions for an MPCC are of particular importance given our

focus on second-order points. We may define the tangent cone TMPCC(x∗, y∗, w∗) associated with

a feasible point of an MPCC:

TMPCC(x∗) = {α(∆x∗,∆y∗,∆w∗) : ∇c(x∗, y∗, w∗)(∆x∗,∆y∗,∆w∗) = 0,

∆w∗
i ≥ 0 for all i such that w∗

i = 0,

∆y∗i ≥ 0 for all i such that y∗i = 0}.

We now define the strong second-order sufficiency condition for MPCC.

Definition 3.8. (MPCC-SSOSC) The point (x∗, y∗, w∗, π, λ∗) is said to satisfy MPCC-SSOSC if

∆uT∇2
zzL∆u > 0 with ∆u 6= 0 and ∆u ∈ F , where F is defined as

F = {∆u ∈ TMPCC : ∆yi = 0 for all i such that y∗i = 0, (λ∗y 6= 0),

∆wi = 0 for all i such that w∗
i = 0, (λ∗w 6= 0)}.

3.2 An Interior Point Method for MPCCs

We begin by stating the regularized problem MPCC(γ):

MPCC(γ) minimize
x,y,w

f(x, y, w)

subject to

c(x, y, w) = 0

Y w + scc − γe = 0

y − sy = 0

w − sw = 0

sy, sw, scc ≥ 0.

For γ > 0, problem MPCC(γ) is a well-posed nonlinear program; it satisfies the common con-

straint qualifications such as the Mangasarian-Fromovitz constraint qualification. Specifically, the

positivity of γ ensures that the regularized complementarity constraint set

{(y, w) | Y w ≤ γe, y, w ≥ 0}

has a nonempty interior.

The idea is then to solve a sequence of problems MPCC(γk) with γk → 0. Under some assump-

tions, the sequence of stationary points of MPCC(γk) converges to the strong-stationary point or

the stationary point of MPCC(0). By using a log-barrier function, we rid ourselves of the inequality
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constraints and solve a sequence of regularized barrier problems. By defining d(.) and s as

d(x, y, w, s; γ) =



Y w + scc − γe

y − sy

w − sw


 and s =



sy

sw

scc


 , (3.11)

we obtain a more compact representation of MPCC(γ):

MPCC(γ) minimize
x,y,w

f(x, y, w)

subject to

c(x, y, w) = 0

d(x, y, w, s; γ) = 0

s ≥ 0.

3.2.1 The Barrier Problem

The crucial idea in interior methods for optimization is that the inequality constraints and nonneg-

ativity bounds are kept strictly satisfied. One such interior method uses the logarithmic function

to replace inequality constraints by barrier terms in the objective. These terms tend to infinity

if the iterates tend towards the boundary. The resulting problem is parameterized by γ and the

barrier parameter µ:

MPCC(γ, µ) minimize
z,s

f(z) − µ
∑

j ln[s]j

subject to
c(z) = 0 : β

d(z, s; γ) = 0 : ξ.

Note that β and ξ represent the Lagrange multipliers associated with constraints c(·) and d(·).
The proposed interior method solves problem MPCC by approximately solving a sequence of

regularized barrier subproblems MPCC(γ, µ). For each subproblem, the KKT conditions are lin-

earized to provide primal and dual search directions. If the reduced Hessian is not positive definite,

it may be modified resulting in a modified Newton direction. In such an instance, we may also

obtain directions of negative curvature. A stepsize along the modified Newton directions is obtained

by conducting a linesearch using an augmented-Lagrangian merit function. Alternately, if we have

a direction of sufficient negative curvature, we may conduct a curvilinear search along the merit

function. From either search, we obtain a stepsize enabling us to take a step to the new iterate.

Then the parameters γ and µ are reduced unless a suitable termination criterion is satisfied. Before

commencing the linesearch or curvilinear search, we may modify the penalty parameter to obtain

sufficient descent.
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3.2.2 The KKT Conditions of MPCC(γ, µ)

We may define a Lagrangian function L for the regularized barrier problem by

L(z, s, β, ξ;µ, γ) = f(z) − µ
∑

j

ln sj − βT c(z) − ξTd(z, s; γ). (3.12)

The first-order conditions for MPCC(γ, µ) may be stated as ∇L = 0. Define the associated residuals

as follows:

rz := ∇zL = 0

rs := ∇sL = 0 (3.13)

rc := c(z) = 0

rd := d(z, s) = 0.

Note that

∇sL = −v −∇sc
Tβ −∇sd

T ξ

is simplified by defining a new variable v, where Sv = µe and S = diag(s). Let the associated

residual be rv = Sv − µe.

3.2.3 The Linearized KKT Conditions

Newton’s method applied to (3.13) plus rv = 0 results in the system

M∆p = −r, (3.14)

where M, r and ∆p are given by

M =




∇zzL ∇zsL −∇zc
T −∇zd

T

∇szL ∇ssL −∇sd
T −I

∇zc

∇zd ∇sd

V S



, r =




rz

rs

rc

rd

rv




and ∆p =




∆z

∆s

∆β

∆ξ

∆v



, (3.15)

where V = diag(v). We may eliminate ∆v in each scenario-based subsystem to obtain




∇2
zzL ∇2

zsL −∇zc
T −∇zd

T

∇2
szL ∇2

ssL + S−1V −∇sd
T

∇zc

∇zd ∇sd







∆z

∆s

∆β

∆ξ


 = −




rz

rs + S−1rv

rc

rd


 . (3.16)
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A more compact representation is

(
H −∇hT

∇h

)(
∆u

∆λ

)
=

(
ru

rh

)
,

where

H =

(
∇2

zzL ∇2
zsL

∇2
szL ∇2

ssL + S−1V

)
, ∇h =

(
∇zc

∇zd ∇sd

)
, rh =

(
rc

rd

)
, (3.17)

∆λ =

(
∆β

∆ξ

)
,∆u =

(
∆z

∆s

)
, and ru =

(
rz

rs + V −1rv

)
. (3.18)

The search direction for v may be obtained by solving S∆v = (rv − V∆s). The system

(
H −∇hT

∇h

)
(3.19)

is often called a KKT system and its invertibility is linked intimately to the rank of the Jacobian

matrix ∇h and the invertibility of the reduced Hessian of the Lagrangian ZTHZ, where Z is a basis

for the null-space of ∇h.
We may compute the primal and dual search directions efficiently by using the ideas from

[Doy03]. Such a computation requires modifying the reduced Hessian ZTHZ to ensure that it is

positive definite. This may be achieved by computing the modified Cholesky factorization [GMW81]

of ZTHZ. Such a factorization adds a sufficiently large nonnegative diagonal matrix E to ZTHZ

to ensure that ZTHZ+E is positive definite. An important by-product of this factorization is that

with a little more effort, one may obtain a direction of negative curvature.

3.2.4 A Negative Curvature Direction

Our intention is to compute points that satisfy first and second-order necessary conditions. To

this end, it is necessary to use directions of negative curvature. In the case of unconstrained

optimization, such directions ∆pc would only exist when the Hessian H is indefinite and would

satisfy

(∆pc)TH∆pc < 0. (3.20)

A motivation for negative curvature directions (see [MS79, FGM95, MP95a]) may be seen from

noticing that whenever the current iterate is a first-order KKT point (but not a minimizer), then

the Newton direction would be zero (because the right-hand side of the linearized KKT system

would be zero). Therefore, the algorithm would converge at a local saddle-point or maximizer. To
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move away from such a point, we need a direction of negative curvature. Consider the example

E minimize
x,y

(x3 − xy + y3)

subject to 0 ≤ y + 2 ⊥ x− y ≥ 0.

The objective function has a saddle point at (0, 0) and a minimizer at (1
3 ,

1
3 ). Both points are

feasible but only (1
3 ,

1
3 ) is a second-order point. This follows from noting that the reduced Hessian

is indefinite at (0, 0). Since y − x = 0 at (0, 0), we have

ZTHZ =

(
1

1

)T (
6x −1

−1 6y

)(
1

1

)

= 6(x+ y) − 2

= −2 at (0, 0).

The negative curvature direction at (0, 0) is given by a ∆pc such that −2(∆pc)2 < 0. If we choose

∆pc = 1
3 , then the new iterate (x̂, ŷ) is given by

(
x̂

ŷ

)
=

(
x

y

)
+

1

3

(
1

1

)
=

(
x∗

y∗

)

and the negative curvature direction leads to the local minimizer (1
3 ,

1
3 ). (In this particular case,

we know the minimizer so we can take an appropriate step size.)

A different approach may be followed by combining the Newton and negative curvature direc-

tions (see Murray and Prieto [MP95a], Moguerza and Prieto [MP03] and Doyle [Doy03]). In such

an approach, the variables pk are changed according to

pk+1 = pk + α2
k∆pk + αk∆pc

k, (3.21)

where αk is the steplength. The choice of an αk is through a curvilinear search. The computation

of ∆pc is based on the modified Cholesky factorization:

ZTHZ + E = RTR, (3.22)

where R is a nonsingular upper triangular matrix and E is a nonnegative diagonal matrix. If

i = arg min{Hii}, then

R∆pc
z = ei. (3.23)

However, the vector ∆pc
z is in a reduced space and ∆pc may be obtained as ∆pc = Z∆pc

z . Directions

of negative curvature do not have a natural size associated with them and we may scale the direction

so that ‖∆pc‖2 = ‖∆p‖2.

In defining the direction of negative curvature, one question that has been left open is what



54 Chapter 3 A Second-order Method for MPCCs

one should use for the multiplier estimate in the construction of the Hessian of the Lagrangian. In

[MP95a], the authors use a (β′
k, ξ

′
k) given by

(
β′

k

ξ′k

)
=

(
βk

ξk

)
− ρk−1

(
ck

dk

)
. (3.24)

If ρk is assumed to be bounded, then for a sequence converging to a first-order KKT point,

∥∥∥∥∥

(
β′

k − βk

ξ′k − ξk

)∥∥∥∥∥→ 0, as k → ∞.

We shall use the same estimate in our construction of ∆pc.

3.2.5 Globalization through a Curvilinear Search

To ensure convergence from an arbitrary starting point, algorithms for general nonlinear programs

are equipped with a globalization strategy. Such a strategy requires the specification of a merit

function that represents a metric of progress for the optimization algorithm. For instance, in an

unconstrained optimization problem, an appropriate merit function is simply the function value.

In nonlinearly constrained problems, a suitable merit function is given by a measure of primal and

dual infeasibilities. In particular, we use the augmented Lagrangian merit function. In the current

setting, a merit function for MPCC(γ, µ) may be defined at an iterate (z, s, β, ξ) as

M(z, s, β, ξ; ρ, µ, γ) = L(z, s, β, ξ;µ, γ) +
1

2
ρ(‖c‖2 + ‖d‖2

2). (3.25)

Linesearch Conditions

Linesearch methods are well studied and form part of the globalization strategies in several NLP

algorithms such as SNOPT [GMS05] and LOQO [VS99]. A backtracking linesearch seeks an α̂ ∈
(0, 1] satisfying

ψL(α̂) ≤ ψL(0) + γ1α̂ψ
′
L(0),

|ψ′
L(α̂)| ≤ γ2|ψ′

L(0)|, (3.26)

where

ψL(α) := M(z + α∆z, s+ α∆s, β + α∆β, ξ + α∆ξ).

We also use the notation M(α) to mean M(z + α∆z, s + α∆s, β + α∆β, ξ + α∆ξ). If we have

0 < γ2 ≤ γ1 < 1, we may be assured of the existence of such an α [GMW81]. However, this is

predicated on the fact that the computed direction is a direction of descent for the merit function

(3.25). If the original direction is not one of descent, it becomes one for a sufficiently large ρ, as we

show later.
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Curvilinear Search Conditions

We now discuss the curvilinear search, proceeding in a fashion similar to that of Doyle [Doy03].

Let the curvilinear search conditions be

z(α) := z + α2∆z + α∆zc

s(α) := s+ α2∆s+ α∆sc (3.27)

β(α) := β + α2∆β

ξ(α) := ξ + α2∆ξ

and let ψC(α) be defined as

ψC(α) := M(z + α∆zc + α2∆z, s+ α∆sc + α2∆s, β + α2∆β, ξ + α2∆ξ).

There are several considerations in obtaining the stepsize α.

1. If one obtains a nonzero direction of negative curvature, it may be that no linear combination

of ∆p and ∆pc gives a direction of descent. If we have sufficient negative curvature, then the

merit function may be reduced by conducting a curvilinear search.

2. If ψ′
C(0) = ∇zM(0)T ∆zc + ∇sM(0)T ∆sc < 0, then a step along the direction of negative

curvature is indeed a direction of descent. If not, we use −∆zc and −∆sc instead.

3. If the obtained ∆pc is not a direction of sufficient negative curvature, we drop the direction

and use the modified Newton direction. Moreover, we are guaranteed that ψ′′
C(0) < 0 with a

sufficiently large penalty parameter.

4. If the obtained direction is one of sufficient negative curvature, then we may conduct a

curvilinear search as described next.

5. We define an αmax by ensuring that s stays nonnegative. Such an αmax is given by

αmax := min
i
{arg min

αi>0
mi(αi)}, where mi(αi) = si + α2

i [∆s]i + αi[∆s
c]i ≥ 0.

6. Then by backtracking from αmax, we obtain an α̂ that maintains s > 0 and satisfies

ψC(α̂) ≤ ψC(0) + γ1(α̂ψ
′
C(0) +

α̂2

2
ψ′′

C(0))

ψ′
C(α̂) ≥ γ2(ψ

′
C(0) + α̂ψ′′

C(0)), (3.28)

where 0 ≤ γ2 ≤ 1
2 ≤ γ1 ≤ 1.

To summarize, we obtain modified Newton and negative curvature directions. We immediately

obtain ψ′
C(0) < 0 because the sign of ∆pc may be switched. If the negative curvature direction

does not result in sufficient negative curvature, we drop the direction and by raising the penalty

parameter sufficiently, obtain ψ′′
C(0) < 0. If ∆pc

k results in sufficient negative curvature, then a

curvilinear search provides us with an improvement in the merit function.
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3.2.6 Termination Criteria

Our method solves the barrier problems inexactly. For given values of γ and µ, the algorithm for

solving the barrier problem is terminated when the following conditions are satisfied:

‖∇zL(zk, sk, βk, ξk, vk)‖∞ ≤ ǫk

‖∇sL(zk, sk, βk, ξk, vk)‖∞ ≤ ǫk

‖c(zk, sk, βk, ξk, vk)‖∞ ≤ ǫk

‖d(zk, sk, βk, ξk, vk; γk)‖∞ ≤ ǫk (3.29)

‖Skvk − µke‖∞ ≤ ǫk

−λmin(Z
T∇2

zLZ) < ǫk,

where ǫk = min(γk, µk). In the following summary the primal and dual variables are denoted by

pk. Algorithm 1 provides a brief description of the steps of our method.

Algorithm 1: A second-order method for MPCCs

Initial: (p0;µ0, ρ0, γ0)
k = 1
while ǫk > ǫ do

while ‖rk‖∞ ≥ ǫk or −λmin(ZT
k HkZk) ≥ ǫk do

Solve (3.15) to obtain ∆pk = (∆z,∆s,∆β,∆ξ,∆v)
Solve (3.23) to obtain ∆pc

k = (∆zc,∆sc)
Raise ρk to ensure sufficient descent
Obtain αk satisfying (3.28)
Take step based on (3.27)

γk+1 = uγ
kγk

µk+1 = uµ
kµk

k := k + 1

3.3 Global Convergence to Second-Order Points

Our algorithm generates an infinite sequence {(zk, sk, βk, ξk)}. In this section, we prove that the

sequence converges to a second-order point (z∗, s∗, β∗, ξ∗). In addition, the algorithm relies on

barrier, penalty, and regularization parameter sequences for different tasks:

1. The barrier parameter sequence {µk} ensures that the primal iterates strictly satisfy inequal-

ity constraints and convert our inequality constrained problem to an equality constrained

problem. Consequently, the stationarity conditions are expressible as a system of equations.

2. The regularization parameter sequence {γk} ensures well-posedness at each step.

3. The penalty parameter sequence {ρk} ensures that the combination of the Newton and neg-

ative curvature direction is one of descent with respect to the augmented Lagrangian merit

function.
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The next subsections prove several important intermediate results that are then invoked to prove

our main result:

1. Existence of iterates: This set of results ensures that the primal and dual iterates are well-

defined by showing that the Newton and negative curvature directions are always computable.

2. Existence of αk and ρk: Given search directions, a curvilinear search is carried out to de-

termine an acceptable steplength α. Moreover, by raising the penalty parameter to a finite

value, we ensure that the directions obtained are indeed descent directions with regard to the

merit function.

3. Boundedness of iterates: In [MP95a], the authors prove that the primal iterates generated by

the algorithm lie in a compact set. In [MP03], the authors assume that both primal and dual

iterates lie in a compact set. We take a middle ground in assuming that only the zk are in a

compact set. But, we prove that the slack variables sk and the dual variables βk and ξk are

also bounded.

4. Sequence of search directions: We state some results concerning the sequence of search direc-

tions, in order to prove some properties of the steplength sequence.

5. Boundedness of steplengths: We prove that the the sequence {αk} is bounded away from

zero.

6. Global convergence results: We prove that the primal and dual feasibility conditions are

satisfied in the limit, thus showing that the iterates converge to a first-order KKT point.

Then, we invoke some results regarding the limit points of the negative curvature directions

to claim that the iterates converge to a second-order point.

We begin with a statement of the assumptions.

Assumption 3.9.

A1. The subproblem termination criteria are satisfied in a finite number of iterations.

A2. The objective and constraint functions are thrice continuously-differentiable. Moreover, the

functions and their first three derivatives are uniformly bounded on any compact set.

A3. Problem MPCC satisfies the MPCC-LICQ at any first-order KKT point.

A4. Strict complementarity holds at all KKT points of MPCC.

A5. The reduced Hessian of the Lagrangian is nonsingular at all first-order KKT points of MPCC.

A6. The primal iterates given by {zk} = {(xk, yk, wk)} are bounded.
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3.3.1 Existence of Iterates

In this section, we show that the primal and dual iterates are always computable. This requires

showing that the Newton direction and negative curvature direction may always be obtained. Note

that if the reduced Hessian of the Lagrangian is positive definite, then the negative curvature

direction is zero.

The primal and dual iterates are obtained by solving the following linear system.




∇2
zzL ∇2

zsL −∇zc
T −∇zd

T

∇2
szL ∇2

ssL + S−1V −∇sd
T

∇zc

∇zd(γ) ∇sd(γ)







∆z

∆s

∆β

∆ξ


 = −




rz

rs + S−1rv(µ)

rc

rd


 .

We also show where the dependence on γ and µ appears in the specification of the linear system.

Showing that the system is nonsingular requires proving a result concerning the barrier problem

MPCC(γ) for γ > 0.

Lemma 3.10. If MPCC satisfies MPCC-LICQ at every feasible point of MPCC and ∇c(x) is of

full row rank at every iterate, then MPCC(γ) for γ > 0 always satisfies LICQ at every feasible point

z̄ = (x̄, ȳ, w̄) of MPCC(γ), where ȳ and w̄ are strictly positive.

Proof. By MPCC-LICQ, ∇zc(z̄) has full row rank. If the bounds on w and γ are strictly inactive,

the only other active constraints are given by d(γ), whose constraint normals are independent of

∇zc(z̄). This can be concluded from the definition of d(γ):

d(γ) =



Y w + scc = γe

y − sy = 0

w − sw = 0


 .

�

The variables w and y are kept strictly positive by keeping the barrier parameter µ strictly

positive (which in turn ensures that the slack variables sw and sy stay strictly positive).3 The

existence of the primal and dual iterates is ensured by the positive definiteness of the modified

reduced Hessian of the Lagrangian ZTHZ, where Z is a basis for the null-space for ∇h. This

modified M (see (3.15)) is denoted by M̄ :

M̄ :=

(
H̄ −∇hT

∇h

)
.

The following result proves that M̄ is nonsingular.

Lemma 3.11. Given a feasible point z̄ of MPCC(γ, µ) with γ and µ > 0. If H̄ satisfies ZT H̄Z ≻ 0,

then M̄ is nonsingular.

3Here we assume that y − sy = 0 and w − sw = 0 are satisfied at every iteration.
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Proof. The result follows from ∇h having full row rank and from lemma 16.1 from [NW99]. The

full rankedness of ∇h follows from Lemma 3.10. �

The following theorem formalizes the existence of primal and dual iterates at every feasible

point of MPCC(γ, µ) with γ and µ positive.

Theorem 3.12. By the nonsingularity of M̄ , the primal directions ∆z and ∆s and the dual direc-

tions ∆β and ∆ξ are well-defined. Furthermore, the negative curvature direction exists if ZTHZ 6� 0

and is zero otherwise.

3.3.2 Existence of Parameter Sequences

In this subsection, we show that the penalty parameter ρ and the steplength α are always well-

defined. Our algorithm relies on a curvilinear search when the reduced Hessian of the Lagrangian

is indefinite. Such a search combines a Newton direction (using a modified reduced Hessian) and a

negative curvature direction. We also discuss the option of using only the Newton direction (termed

a linear search). We begin by recalling the definitions

ψL(α) := M(z + α∆z, s+ α∆s, β + α∆β, ξ + α∆ξ) (3.30)

ψC(α) := M(z + α∆zc + α2∆z, s+ α∆sc + α2∆s, β + α2∆β, ξ + α2∆ξ).

The gradients of these functions are given by

ψ′
C(α) = ∇M(α)T




∆zc + 2α∆z

∆sc + 2α∆s

2α∆β

2α∆ξ




=⇒ ψ′
C(0) = ∇zM(0)T ∆zc + ∇sM(0)T ∆sc,

and

ψ′
L(α) = ∇M(α)T




∆z

∆s

∆β

∆ξ




=⇒ ψ′
L(0) = ∇zM(0)T ∆z + ∇sM(0)T ∆s+ ∇βM(0)T ∆β + ∇ξM(0)T ∆ξ.

Lemma 3.13. The penalty parameter ρk is well-defined and finite for a linear search.

Proof. The penalty parameter is only increased whenever the modified Newton direction is one of

ascent with regard to the merit function. In this lemma, we prove that the penalty parameter is
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raised to a ρ̄ that is finite (<∞). The gradient of the merit function is given by

∇zM = ∇zL + ρ∇zc
T c+ ρ∇zd

T d

∇sM = ∇sL + ρ∇sc
T c+ ρ∇sd

Td

∇βM = −c
∇ξM = −d. (3.31)

We now consider the expression for ψ′
L(0) based on (3.30):

ψ′
L(0) = ∇zMT ∆z + ∇sMT ∆s+ ∇βMT ∆β + ∇ξMT ∆ξ

= ∇zLT ∆z − ρcT∇zc∆z − ρdT∇zd∆z + ∇sLT ∆s− ρdT∇sd∆s− cT ∆β − dT ∆ξ

= −∆zT∇2
zzL∆z − ∆sT∇2

zsL∆z − ∆sT∇2
szL∆z − ∆sT∇2

ssL∆s− ρ(‖c‖2 + ‖d‖2)

+ ∆zT∇cT ∆β + ∆zT∇dT ∆ξ + ∆sT∇dT ∆ξ − cT (β + ∆β) − dT (ξ + ∆ξ)

= −∆pT H̄∆p− ρ(‖c‖2 + ‖d‖2) − 2cT (β + ∆β) − 2dT (ξ + ∆ξ)

= ǫ− ρ(‖c‖2 + ‖d‖2),

where

ǫ := −∆pT H̄∆p− 2cT (β + ∆β) − 2dT (ξ + ∆ξ).

Then the negativity of ψ′
L(0) can be ensured as the next three points show:

1. If the current iterate is feasible, then c and d are zero and ǫ < 0 since ∆pT H̄∆p > 0. Therefore

ψ′
L(0) < 0.

2. If the current iterate is infeasible and ǫ ≤ 0, then ψ′
L(0) < 0.

3. If the current iterate is infeasible and ǫ > 0, then ψ′
L(0) < 0 for

ρ > ρ̄ :=
ǫ

‖c‖2 + ‖d‖2
.

�

Lemma 3.14. The penalty parameter ρk is well-defined and finite for a curvilinear search.

Proof. When considering the curvilinear search, we need the first and second derivatives of ψC .

The first derivative ψ′
C(0) is given by

ψ′
C(α) = ∇M(α)T




∆zc + 2α∆z

∆sc + 2α∆s

2α∆β

2α∆ξ




=⇒ ψ′
C(0) = ∇zM(0)T ∆zc + ∇sM(0)T ∆sc.



3.3 Global Convergence to Second-Order Points 61

Then if ψ′
C > 0, we merely need to replace ∆zc and ∆sc by −∆zc and −∆sc. This does not alter

the fact that these are negative curvature directions. Ensuring that ψ′′
C(0) < 0 is a little more

challenging. We define the second derivative of ψc(α) as follows:

ψ′′
C(α) = 2∇M(α)T




∆z

∆s

∆β

∆ξ


+




∆zc + 2α∆z

∆sc + 2α∆s

2α∆β

2α∆ξ




T

∇2M(α)




∆zc + 2α∆z

∆sc + 2α∆s

2α∆β

2α∆ξ




=⇒ ψ′′
C(0) = 2∇M(0)T




∆z

∆s

∆β

∆ξ


+




∆zc

∆sc

0

0




T

∇2M(0)




∆zc

∆sc

0

0




= 2∇M(0)T




∆p

∆β

∆ξ


+ (∆pc)T∇2

ppM(0)∆pc.

The first and second derivatives of M are

∇M(0) =



∇pL + ρ∇pc

T c+ ρ∇pd
T d

−c
−d




and ∇2M(0) =



∇2

ppL + ρ(∇pc
T∇pc+ ∇pd

T∇pd) −∇pc
T −∇pd

T

∇pc

∇pd


 .

Therefore,

ψ′′
C(0) = (∆pc)T∇2

ppM∆pc + 2(∇pM)T ∆p+ 2(∇βM)T ∆β + 2∇ξMT ∆ξ. (3.32)

If fB(z, s) = f(z) − µ
∑

j ln sj , we may write the first term as follows:

(∆pc)T∇2
ppM∆pc = (∆pc)T

(
∇2fB −

∑

i

λi∇2hi + ρ∇hT∇h+ ρ
∑

i

hi∇2hi

)
∆pc

= (∆pc)T

(
∇2fB −

∑

i

(λi − ρhi)∇2hi + ρ∇hT∇h
)

∆pc

= (∆pc)T
(
H + ρ∇hT∇h

)
∆pc

= (∆pc)TH∆pc + ρ∆pc
zZ

T∇hT∇hZ∆pc
z

= (∆pc)TH∆pc.
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Therefore ψ′′
C(0) may be written as

ψ′′
C(0) = (∆pc)TH∆pc + ρ(‖c̄‖2 + ‖d̄‖2) + 2gT

B∆p

− 2cT (β + ∆β) − 2dT (ξ + ∆ξ) − 2ρ(‖c‖2 + ‖d‖2)

= (∆pc)TH∆pc) + 2gT
B∆p− 2cT (β + ∆β) − 2dT (ξ + ∆ξ) − ρ(‖c‖2 + ‖d‖2), (3.33)

where gB = ∇p(f(z) − µ
∑

j ln sj). It is interesting to note that the specification of ψ′′
C(0) has a

very similar structure to a similar result for second-order methods for SQP (see equation (3.4) in

[MP95a]).

There are two possibilities to consider:

1. The current iterate is infeasible, implying that ‖d‖ + ‖c‖ > 0. Then we may define ǫ as

ǫ := (∆pc)TH∆pc + 2gT
B∆p− 2cT (β + ∆β) − 2dT (ξ + ∆ξ).

Then the following specification of ρ ensures that ψ′′
C(0) < 0:

ρ ≥ max(ρ̄, 0), where ρ̄ :=
ǫ

‖c‖2 + ‖d‖2
.

2. The current iterate is feasible, implying that ‖d‖ + ‖c‖ = 0. We then have

ψ′′
C(0) = (∆pc)TH∆pc + 2gT

B∆p.

The negativity of ψ′′
C(0) is ensured by making ∆p a direction of descent for fB.

�

In general, if the penalty parameter is updated to ensure sufficient descent, then the negative

curvature direction may not be valid any longer and is set to zero. The previous result required a

specification of ρ that ensured ψ′′
C(0) was negative but perhaps not sufficiently negative. Next, we

strengthen this result by requiring that ψ′′
C(0) is sufficiently negative.

Lemma 3.15. The minimum penalty parameter to ensure that (∆pc,∆p,∆β,∆ξ) is a direction of

descent for the augmented Lagrangian merit function is given by ρ̄:

ρ̄ =
w̄ + 2gT

B∆p− 2cT (β + ∆β) − 2dT (ξ + ∆ξ)

‖c‖2 + ‖d‖2
. (3.34)

Proof. From (3.33), we have

ψ′′
C(0) = (∆pc)TH∆pc + 2gT

B∆p− 2cT (β + ∆β) − 2dT (ξ + ∆ξ) − ρ(‖c‖2 + ‖d‖2).

If ̟ is defined as

̟ := 1
2∆pT H̄∆p+ ‖d‖2 + ‖c‖2, (3.35)
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then at a feasible iterate, ̟ = 1
2∆pT H̄∆p. We may use this in constructing an upper bound for

ψ′′
C(0) at a feasible iterate:

ψ′′
C(0) = (∆pc)TH∆pc + 2gT

B∆p

≤ (∆pc)TH∆pc − ∆pTH∆p

= (∆pc)TH∆pc − 2̟.

Therefore at a feasible iterate, we have that ∆p does not have any components in the range space

of ∇h and may be written as ∆p = Z∆pz. Therefore ̟ > 0 because ZTHZ has been modified to

be positive definite and the penalty parameter need not be modified.

If ‖c‖2 + ‖d‖2 > 0, we set ∆pc = 0 and ψ′′
C(0) = −̟ if

ρ̄ =
̟ + 2gT

B∆p− 2cT (β + ∆β) − 2dT (ξ + ∆ξ)

‖c‖2 + ‖d‖2
.

This implies that for ρ ≥ ρ̄, we have ψ′′
C(0) ≤ −̟. �

Next, we prove that the steplength α is always well-defined.

Lemma 3.16. The linesearch and curvilinear search conditions for an acceptable steplength α̂ are

ψ(α̂) ≤ ψ(0) + γ1α̂ψ
′(0), (3.36)

|ψ′(α̂)| ≤ γ2|ψ′(0)|

and

ψ(α̂) ≤ ψ(0) + γ1(α̂ψ
′(0) +

α̂2

2
ψ′′(0)) (3.37)

ψ′(α̂) ≥ γ2(ψ
′(0) + α̂ψ′′(0)), (3.38)

where 0 ≤ γ2 ≤ 1
2 ≤ γ1 ≤ 1. Based on the type of search employed, an acceptable α̂ is guaranteed

to exist.

Proof. We omit the proof for the linesearch and prove the existence of an α̂ for the case of a

curvilinear search. We begin by assuming that (3.37) does not hold. Then we define ψ̄(α; γ1) as

ψ̄(α; γ1) ≡ ψ(α) − ψ(0) − γ1(αψ
′(0) +

α2

2
ψ′′(0)),

where ψ̄(0; γ1) = 0, ψ̄(0; γ1) = (1 − γ1)ψ
′(0) ≤ 0 and ψ̄′′(0; γ1) = (1 − γ1)ψ

′′(0) < 0. Since (3.37) is

not satisfied, we have ψ̄(1; γ1) > 0 and there must exist an α̂ ∈ (0, 1] for which ψ̄′(α̂; γ2) ≥ 0 for

γ2 ∈ (1
2 , 1) as specified in (3.38). If this were not the case, then ψ̄′(α; γ2) < 0 for all α ∈ (0, 1].

Moreover, from γ2 > γ1, we have that ψ′(0) ≤ 0 and ψ′′(0) < 0, implying that ψ̄′(α; γ1) < 0 for all

α ∈ (0, 1] and (3.37) would then hold, contradicting our assumption.
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Assume that α̂ is the smallest such α with ψ̄′(α; γ1) for all α ∈ (0, α̂). Then, we may claim that

ψ(α̂) ≤ ψ(0) + γ2(α̂ψ
′(0) +

α̂2

2
ψ′′(0)).

From ψ′(0) ≤ 0 and ψ′′(0) < 0 with γ1 < γ2, the first equation of (3.38) is satisfied at α̂. By

ψ̄′(α̂; γ2) ≥ 0, the second equation of (3.38) is also satisfied. �

The strategy for updating the penalty parameter is straightforward. If the obtained directions

result in sufficient descent in the merit function, then ρk+1 = ρk. Otherwise, the earlier two results

show that ρk = max(ρ̄, ρk).

3.3.3 Boundedness of Iterates

The proof of the next two results may be found in Lemma 3.5 from [MP95b] and Lemma 3.9 from

[MP95a], respectively.

Lemma 3.17. The first-order strong-stationary points for MPCC are isolated.

Lemma 3.18. There exists a positive constant βH such that for any iteration we have

−̟ + 1
2 (∆pc)TH∆pc ≤ −βH(‖∆p‖2 + ‖∆pc‖3) (3.39)

and

ψ′′
C(0) ≤ −βH(‖∆p‖2 + ‖∆pc‖3). (3.40)

Lemma 3.19. If along a sequence S, we have ‖∆pc
k‖ → 0 for k ∈ S, then there exists a constant

βc such that for any iteration k ∈ S, ‖∆pc
k‖ = 0 or ‖∆pc

k‖ > βc.

Lemma 3.20. There exists a constant M such that, for all k,

ρk(‖c(zk)‖ + ‖d(zk, sk; γk)‖) ≤M. (3.41)

We may invoke the boundedness of the primal variables to prove that sk, βk and ξk are bounded.

Moreover, we also show that sk is componentwise bounded away from zero. Part (a) of this result

is adapted from [LS04a].

Lemma 3.21. Suppose ρk = ρ̄ for k ≥ K. Then the following hold:

(a) The slack variables sk are bounded above in norm.

(b) The multipliers λk = (βk, ξk) are bounded above in norm.

(c) Moreover, sk is componentwise bounded away from zero.

Proof.
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(a) Assume that sk is not bounded. By the boundedness of ρ, we have ρ = ρ̄ for k ≥ K. Without

loss of generality, we may assume that ρ = ρ̄ for k ≥ 0. At the (k + 1)th iteration, we have

Mk+1 ≤ Mk.

At the beginning of the (k+1)th iteration, we specify Mk+1 using an updated µk, viz. µk+1.

Therefore, the merit function gets modified because of the reduction in the barrier parameter.

If we denote the jth component of the kth iterate of s by [sk]j , then the modification in the

merit function is given by

(µk − µk+1)

n∑

j=1

ln[sk]j .

We may sum over the first k iterations to obtain

Mk+1 +

k∑

i=1

(µi − µi+1)

n∑

j=1

ln[sk]j ≤ M0.

Consequently, we may claim that

f(zk+1) − µk+1

n∑

j=1

ln[sk+1]j − λT
k+1hk+1 + 1

2 ρ̄‖hk+1‖2 +
k∑

i=1

(µi − µi+1)
n∑

j=1

ln[sk]j

≤f(z0) − µ0

n∑

j=1

ln[s0]j − λT
0 h0 + 1

2 ρ̄‖h0‖2.

Suppose the qth component of sk is unbounded: [sk]q → ∞ as k → ∞. We may divide the

inequality by ([sk]q)
2 and let k go to ∞. As a result, every term converges to zero except

limk→∞
‖hk‖

2

([sk]q)2 ≥ 1. Therefore we have ρ̄ ≤ 0 which is a contradiction. Therefore {sk} is

bounded.

(b) To show the boundedness of λk throughout the algorithm, we note that from the first-order

conditions, we have

∇zf −∇zh
Tλ(γk, µk) = 0. (3.42)

Then

∇zh∇hTλ(µk, γk) = ∇h∇zf

λ(µk, γk) = (∇zh∇zh
T )−1∇h∇zf

‖λ(µk, λk)‖ ≤ ‖(∇zh∇zh
T )−1‖‖∇zh‖‖∇f‖.

The boundedness of λk = λ(µk, γk) follows from the boundedness of zk.

(c) It suffices to show that ‖S−1
k ‖ is bounded from above, where Sk = diag(sk). From the
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first-order conditions, we have

µkS
−1
k e = ∇sh

T
k λk

S−1
k e =

∇sh
T
k λk

µk

‖S−1
k ‖ ≤ ‖∇sh

T
k λk‖/µk

≤ ‖∇shk‖‖λk‖/µk.

Recall that

∇sh =

(
∇sc

∇sd

)
.

Moreover, c is independent of the slack variables, while

∇sd =



I

−I
−I


 .

Therefore, we have

‖S−1
k ‖ ≤ ‖λk‖/µk.

Under the boundedness of the λk and the strict positivity of µk, we have [sk]j > 0 for all j.

�

It remains to show that the directions ∆p and ∆pc are bounded in norm.

Lemma 3.22. The Newton direction ∆p and the negative curvature direction ∆pc are bounded in

norm.

Proof. From Theorem 3.12, ∆p is well-defined. By the boundedness of the iterates, the boundedness

of ∆p follows. Furthermore, the negative curvature direction does not have a natural norm but is

scaled with reference to the norm of the Newton direction. Therefore ∆pc is also bounded. �

We refer the reader to [MP95a] for the proof of the following result.

Lemma 3.23. For any iteration kl in which the value of the penalty parameter ρ is modified,

ρkl
‖h(zkl

)‖ ≤ N

and

ρkl
‖∆pkl

‖2 + ‖∆pc
kl
‖3 ≤ N,

for some constant N .
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3.3.4 Boundedness of αk

In an earlier section, we showed that the steplengths are well-defined. We now prove that they are

bounded away from zero.

Lemma 3.24. Assume that {zk, sk} generated by the algorithm lie in a compact set and that

‖∆pk‖ ≤ βp, ‖∆pc
k‖ ≤ βc and ‖h‖ ≤ βh, where h = (c, d). For 0 ≤ θ ≤ αk,

ψ′′′
k (θ) ≤ 24θ∆λTh+ 2gT

B∆p− 2cT ∆β − 2dT ∆ξ +O(‖∆p‖2 + ‖∆pc‖).

Furthermore, we may claim that

ψ′′′(θ) ≤ β1(‖∆p‖2 + ‖∆pc‖).

Proof. We suppress the subscript k to simplify the notation. Recall that

ψ(θ) := f(z + θ∆zc + θ2∆z)

− µ ln(s+ θ∆sc + θ2∆s)

+ (β + θ2∆β)T c(z + θ∆zc + θ2∆z)

+ (ξ + θ2∆ξ)T d(z + θ∆zc + θ2∆z, s+ θ∆sc + θ2∆s)

+ 1
2ρ(‖c(z + θ∆zc + θ2∆z)‖2 + ‖d(z + θ∆zc + θ2∆z, s+ θ∆sc + θ2∆s)‖2).

We introduce the following notation:

ψ1(θ) := f(z + θ∆zc + θ2∆z) − µ ln(s+ θ∆sc + θ2∆s)

:= fB(p+ θ∆pc + θ2∆p)

ψ2(θ) := (β + θ2∆β)T c(z + θ∆zc + θ2∆z)

+ (ξ + θ2∆ξ)Td(z + θ∆zc + θ2∆z, s+ θ∆sc + θ2∆s)

= (λ + θ2∆λ)Th(p+ θ∆pc + θ2∆p)

ψ3(θ) := 1
2‖c(z + θ∆zc + θ2∆z)‖2 + 1

2‖d(z + θ∆zc + θ2∆z, s+ θ∆sc + θ2∆s‖2

= 1
2 (‖h(p+ θ∆pc + θ2∆p)‖2).

The third derivative may be expressed as

ψ′′′(θ) := ψ′′′
1 (θ) − ψ′′′

2 (θ) + ρψ′′′
3 (θ). (3.43)

To simplify the expressions further, we denote z̄ = (∆pc + 2θ∆p). The third derivatives of ψ1(θ),
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ψ2(θ) and ψ3(θ) are given by

ψ′′′
1 (θ) := 6∆pT∇2fB(p+ θ∆pc + θ2∆p)z̄ +

∑

i

z̄T∇3
i fB(p+ θ∆pc + θ2∆p)z̄z̄i

ψ′′′
2 (θ) := 6θ

∑

j

∆λj z̄
T∇2hj(p+ θ∆pc + θ2∆p)z̄ + 12θ∆λT∇h(p+ θ∆pc + θ2∆p)z̄

+
∑

j

(
(λj + θ2∆λj)

∑

i

z̄T∇3
i hj(p+ θ∆pc + θ2∆p)z̄z̄i

)

+
∑

j

(
6∆pT∇2hj(p+ θ∆pc + θ2∆p)z̄

)

+ 6∆λT∇h(p+ θ∆pc + θ2∆p∆p

ψ′′′
3 (θ) := 3

∑

j

(∇hj(p+ θ∆pc + θ2∆p)z̄)z̄T∇2hj(p+ θ∆pc + θ2∆p)z̄

+ 6∇h(p+ θ∆pc + θ2∆p)T∇h(p+ θ∆pc + θ2∆p)

+
∑

j

hj(p+ θ∆pc + θ2∆p)6∆pT∇2hj(p+ θ∆pc + θ2∆p)z̄

+
∑

i

z̄T∇3
i hj(p+ θ∆pc + θ2∆p)z̄z̄i,

where ∇3
ihj represents the matrix of derivatives

(
∂3hj

∂xi∂xl∂xk

)
for a given value of i and all values of

l and k. We may use the following results from the Taylor’s expansions of hj :

hj(p+ θ∆pc + θ2∆p) = hj + ∇hT
j (θ∆pc + θ2∆p)

+ 1
2 (θ∆pc + θ2∆p)T∇2hj(y1)(θ∆p

c + θ2∆p)

= (1 − θ2)hj + θ∇hT
j ∆pc (3.44)

+ 1
2 (θ∆pc + θ2∆p)T∇2hj(y1)(θ∆p

c + θ2∆p)

= (1 − θ2)hj + 1
2 (θ∆pc + θ2∆p)T∇2hj(y1)(θ∆p

c + θ2∆p)

∇hj(p+ θ∆pc + θ2∆p)T z̄ = ∇hT
j z̄ + (θ∆pc + θ2∆p)T∇2hj z̄

= −2θhj + (θ∆pc + θ2∆p)T∇2hj z̄

∇hj(p+ θ∆pc + θ2∆p)T ∆p = −hj + (θ∆pc + θ2∆p)T∇2hj(y2)∆p, (3.45)

for some yi = p+ θi∆p
c + θ2i ∆p for θi ∈ [0, θ]. We may then obtain the following bounds on third

derivative terms:

ψ′′′
1 (θ) ≤ 6M1(‖∆p‖2 + ‖∆p‖‖∆pc‖) +M2(‖∆p‖ + ‖∆pc‖)3

≤ 6M1(‖∆p‖2 + 1
2 (‖∆p‖2 + ‖∆pc‖2)) +M2(‖∆p‖ + ‖∆pc‖)3

≤M3(‖∆p‖2 + ‖∆pc‖)2

for some positive constants M1,M2 and M3. We may also construct a bound for ψ′′′
2 (θ) using (3.45)
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and 2ab ≤ a2 + b2 as follows:

−ψ′′′
2 (θ) =

∑

j

(
(λj + θ2∆λj)

∑

i

z̄T∇3hj(p+ θ∆pc + θ2∆p)z̄z̄i

)

+
∑

j

(
6∆pT∇2hj(p+ θ∆pc + θ2∆p)z̄

)

+ 6θ
∑

j

∆λj z̄
T∇2hj(p+ θ∆pc + θ2∆p)z̄ + 12θ∆λT∇h(p+ θ∆pc + θ2∆p)z̄

+ 6∆λT∇h(p+ θ∆pc + θ2∆p)∆p

=
∑

j

(
(λj + θ2∆λj)

∑

i

z̄T∇3hj(p+ θ∆pc + θ2∆p)z̄z̄i

)

+
∑

j

(
6∆pT∇2hj(p+ θ∆pc + θ2∆p)z̄

)

+ 6θ
∑

j

∆λj z̄
T∇2hj(p+ θ∆pc + θ2∆p)z̄

+ 12θ∆λT (−2θhj + (θ∆pc + θ2∆p)T∇2hj z̄)

+ 6∆λT (−hj + (θ∆pc + θ2∆p)T∇2hj(y2)∆p)

≤M4((‖∆p‖2 + ‖∆pc‖)3 + ‖∆p‖2 + ‖∆p‖‖∆pc‖ + (‖∆p‖2 + ‖∆pc‖)2) + 24θ∆λTh

≤M5((‖∆p‖2 + ‖∆pc‖)2) + 24θ∆λTh,

for some constants M4 and M5. Finally, a bound for ψ′′′
3 (θ) may be obtained using similar ideas.

ψ′′′
3 (θ) ≤M6‖z̄‖2(‖h‖ + ‖z̄‖(‖∆pc‖ + ‖∆p‖) + 12θh2 +M7‖h‖‖z̄‖(‖∆pc‖ + ‖∆p‖)

+M8‖z̄‖2(‖∆pc‖2 + ‖∆p‖2) +M9((‖∆p‖ + ‖∆pc‖)2 + ‖h‖)(‖z̄‖3 + ‖z̄‖‖∆p‖))
≤ 12θ‖h‖2 +M10‖h‖(‖∆p‖2 + ‖∆pc‖2) +M11(‖∆p‖4 + ‖∆pc‖4),

where M6,M7,M8,M9,M10 and M11 are positive constants. Then by Lemmas 3.23, 3.19, 3.20 and

the boundedness of ‖∆pc‖, we have

ρψ′′′
3 (θ) ≤ 12θρ‖h‖2 +M12(‖∆p‖2 + ‖∆pc‖),

for some constant M12 > 0. From (3.43), we have

ψ′′′(θ) ≤M3(‖∆p‖2 + ‖∆pc‖)2 +M5((‖∆p‖2 + ‖∆pc‖)2) + 24θ∆λTh+ θρ‖h‖2

+M12(‖∆p‖2 + ‖∆pc‖)
≤ 24θ∆λTh+ θρ‖h‖2 +O(‖∆p‖2 + ‖∆pc‖).

From (3.33), we have

ρ(‖h‖2) = (∆pc)T∇2
pL∆pc) + 2gT

B∆p− 2cT ∆β − 2dT ∆ξ − ψ′′
C(0).
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Then, we may claim that

ψ′′′(θ) ≤M3(‖∆p‖2 + ‖∆pc‖)2 +M5((‖∆p‖2 + ‖∆pc‖)2) + 24θ∆λTh+ θρ‖h‖2

+M12(‖∆p‖2 + ‖∆pc‖)
≤ 24θ∆λTh+ θ(∆pc)T∇2

pL∆pc) + 2gT
B∆p− 2cT ∆β − 2dT ∆ξ − ψ′′

C(0))

+O(‖∆p‖2 + ‖∆pc‖).

�

Lemma 3.25. There exists a value ᾱ such that α̂ ≥ ᾱ > 0, where α̂ is the steplength computed by

the algorithm.

Proof. Since α̂ satisfies the curvilinear search conditions, we have

ψ(α̂) ≤ ψ(0) + σ(α̂ψ′(0) + 1
2 α̂

2ψ′′(0))

ψ′(α̂) ≥ η(ψ′(0) + α̂ψ′′(0)),

where 0 < σ < 1
2 < η < 1. It was shown in [MP95a] if the above conditions are satisfied for an α̂,

the second condition cannot hold for any α ∈ (0, α̂). Therefore, we have

ψ′(α̂) = η(ψ′(0) + α̂ψ′′(0)).

From the Taylor’s expansion of ψ′(α) we have

ψ′(α̂) = ψ′(0) + α̂ψ′′(0) + 1
2 α̂

2ψ′′′(θ), θ ∈ [0, α̂].

We may combine these two results to obtain

(1 − η)ψ′(0) + (1 − η)ψ′′(0)α̂+ 1
2ψ

′′′(θ)α̂2 = 0. (3.46)

Since ψ′(0) ≤ 0 and ψ′′(0) < 0 and a positive root of the equation (3.46) must exist, we have

φ′′′(0) > 0. (3.46) has roots given by

α̂ := −(1 − η)
ψ′′(0)

ψ′′′(θ)
±
√

(1 − η)2
ψ′′(0)

ψ′′′(θ)

2

− 2(1 − η)
ψ′(0)

ψ′′′(θ)
. (3.47)

Since (1 − η)ψ′(0)/ψ′′′(θ) ≤ 0, the following bound holds:

α̂ ≥ −2(1 − η)
ψ′′(0)

ψ′′′(θ)
.

From Lemma 3.18,

α̂ ≥ −2(1 − η)
ψ′′(0)

ψ′′′(θ)
≥ 2(1 − η)

βH(‖∆p‖2 + ‖∆pc‖3)

ψ′′′(θ)
.
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Furthermore, from Lemma 3.24, we have

α̂ ≥ 2(1 − η)
βH(‖∆p‖2 + ‖∆pc‖3)

ψ′′′(θ)
≥ 2(1 − η)βH

β1

(‖∆p‖2 + ‖∆pc‖3

‖∆p‖ + ‖∆pc‖ ,

for some β1 > 0. Using results from Lemma 3.21 in [MP95a], we may show that the lemma

follows. �

3.3.5 Global Convergence Results

We are now ready to present some of the global convergence results for our interior method.

Theorem 3.26. The sequence of Newton and negative curvature directions converge to zero in

norm:

lim
k→∞

‖∆pk‖ = 0 and lim
k→∞

‖∆pc
k‖ = 0. (3.48)

Proof. From Lemma 3.23, we have

ρkl
‖∆pkl

‖2 + ‖∆pc
kl
‖3 ≤ N.

When ρk → ∞, from the boundedness of αk, we obtain the required result. If ρk → ρ∗ <∞, then

we have

ψk+1 − ψk = αkψ
′
k + 1

2α
2
kψ

′′(ᾱk)

≤ − 1
2α

2
kβH(‖∆pk‖2 + ‖∆pc

k‖3)

≤ − 1
2 ᾱ

2βH(‖∆pk‖2 + ‖∆pc
k‖3).

Assume that the result does not hold. Then we have ψk → −∞. But this is impossible by the

compactness of the iterates and strict positivity of all slack variables. Therefore, the desired result

follows. �

In addition, we prove that the first-order KKT conditions hold in the limit.

Theorem 3.27. Let {ζk(µk, γk)}∞k=1 be the sequence of iterates generated by the algorithm satisfying

∇zLk = O(ǫk) (3.49)

∇sLk = O(ǫk) (3.50)

c(zk) = O(ǫk) (3.51)

d(zk, sk) = O(ǫk) (3.52)

Skvk = O(ǫk), (3.53)

where ǫk = min(γk, µk). Then there exists a limit point ζ∗ of the sequence {ζ(µk, γk)}∞k=1 that

satisfies the first-order and second-order conditions of MPCC.
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Proof. Boundedness of the sequence {ζk}∞k=1 follows from the assumption of boundedness of {zk}
and Lemma 3.21. Then {ζk}∞k=1 has a convergent subsequence K with a limit point ζ∗. In particular,

we have

lim
k∈K,k→∞

ζ(µk, γk) = ζ∗. (3.54)

If we take limits with k → ∞, k ∈ K in (3.49)–(3.53), and by using (3.54), the desired result follows.

From Lemma 3.19, the negative curvature direction is nonzero only for a finite number of iterations.

Therefore, there must exist an iteration index K̄ such that for k ≥ K̄, ‖∆pc‖ = 0. Consequently,

λmin(ZT∇2LkZ) > 0 for all k ≥ K̄, implying that ZT∇2L∗Z is positive definite. �

Theorem 3.28. Under the assumptions of Theorem 3.27, the limit point {ζ∗} is a second-order

point.

Proof. We use the ideas of [MP03] in proving this result. In particular, we show that if the

limit point is not a second-order point, then the merit function must be unbounded below, in

contradiction with the compactness of the iterates.

From Lemma 3.15, we have ψ′′
k (0) ≤ −̟k + 1

2 (∆pk
c )THk∆pk

c at any iteration. We define a

subsequence K̄ such that ‖∆pc
k‖ ≥ βc for k ∈ K̄, implying that the iterates are converging to a

first-order KKT point that does not satisfy the second-order conditions (because ∆pc is nonzero at

the limit point). Therefore, there exists some βC > 0 such that

ψ′′
k (0) ≤ −βC , k ∈ K̄. (3.55)

Let us now consider the change in the merit function for all iterations greater than K. Without

loss of generality, the boundedness of the penalty parameter allows us to assume that ρk = ρ̄ for

k ≥ K. Then for all k ≥ K,

M(ζk+1;µk+1, γk+1, ρ̄) ≤ M(ζk, ρ̄) + 1
2γ1α

2
kψ

′′(0) +
n∑

i=1

(µk − µk+1) ln[sk+1]i. (3.56)

By the boundedness of sk, there exists an [s̄k]i > 1 for all i = 1, . . . , n such that [sk]i ≤ [s̄k]i, i =

1, . . . , n. This allows us to rewrite (3.56) as

M(ζk+1;µk+1, γk+1, ρ̄) ≤ M(ζk, ρ̄) + 1
2γ1α

2
kψ

′′(0) +

n∑

i=1

(µk − µk+1) ln[s̄k+1]i. (3.57)
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Then by summing up the inequalities from k to r, we have

M(ζk+1;µk+1, γk+1, ρ̄) ≤ M(ζr , ρ̄) +

r∑

j=1

1
2γ1α

2
jψ

′′(0) +

n∑

i=1

(µr − µk+1) ln[s̄k+1]i

≤ M(ζr , ρ̄) +
∑

j∈K̄,j≤k

1
2γ1α

2
jψ

′′(0) +

n∑

i=1

µr ln[s̄k+1]i

≤ M(ζr , ρ̄) +
∑

j∈K̄,j≤k

1
2γ1α

2
j(−̟k + 1

2 (∆pc
k)THk∆pc

k)

+

n∑

i=1

µr ln[s̄k+1]i.

By the compactness of the iterates, we have M(ζk+1;µk+1, γk+1, ρ̄) > βM . Then

M(ζr, ρ̄) +

n∑

i=1

µr ln[s̄k+1]i ≥ βC −
∑

j∈K̄,j≤k

1
2γ1α

2
j (−̟k + 1

2 (∆pc
k)THk∆pc

k).

But from Lemma 3.25, we know that αk ≥ ᾱ > 0. Moreover, ̟ > 0 and

(∆pc
k)THk∆pc

k < 0

for all k ∈ K̄. This implies that as k → ∞, k ∈ K̄, we have M(ζr;µr, γr, ρ̄) → ∞. But this

contradicts the compactness of iterates. Therefore our assertion (3.55) must be false and ‖∆pc
k‖ →

0, k ∈ K̄.

�

The final results in this section show that the multipliers converge to the multiplier associated

with the strong-stationary point. We use the ideas of Leyffer et al. [LLCN05], albeit for an interior-

relaxation approach.4 In this section, we remove the constraints

w − sw = 0 and y − sy = 0

and keep the constraints w ≥ 0 and y ≥ 0 strictly inactive by using barrier functions. The following

result from [FLRS02] states the first-order conditions for MPCC. To allow for easier reading, we

use different notation for our last result.

Theorem 3.29. Consider the following problem:

MPCC minimize
x,y,w

f(x, y, w)

subject to

c(x, y, w) = 0

Y w ≤ 0

w ≥ 0

y ≥ 0.

4Leyffer et al. [LLCN05] provide convergence theory for an interior-penalty approach.
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Suppose MPCC-LICQ holds at (x∗, y∗, w∗), a minimizer of MPCC. Then there exist multipliers

satisfying the following system:



∇xf

∇yf

∇wf


−



∇xc

∇yc

∇wc




T

β −




0

ψy

ψw


 = 0

c(x, y, w) = 0

y ≥ 0

w ≥ 0 (3.58)

Y w = 0

Y ψy = 0

Wψw = 0

[ψy]i, [ψw]i ≥ 0, i ∈ {i : wi, yi = 0}.

Proof. See [FLRS02]. �

The resulting barrier problem BP(γ, µ)5 is given by

BP(γ, µ) minimize
x,y,w,s

f(x, y, w) − µ
∑

j ln sj − µ
∑

j ln yj − µ
∑

j lnwj

subject to
c(x, y, w) = 0 : β,

Y w + s = γe : λ.

Its stationarity conditions are given by




∇xf

∇yf

∇wf


−




∇xc

∇yc

∇wc




T

β −




0

µY −1e−Wλ

µW−1e− Y λ

µS−1e− λ


 = 0

c(x, y, w) = 0

Y w + s = γe.

The last result of this section shows that the first-order KKT point is a strong-stationary point of

MPCC. It is adapted from [LLCN05].

Theorem 3.30. Suppose that the algorithm generates an infinite sequence (zk, sk, βk, λk) satisfying

the termination criteria for sequences {µk} and {γk} converging to zero. The sequence {ǫk} is

constructed on the basis of ǫk = min(γk, µk). Also, we assume that f and c are twice continuously

differentiable in the neighborhood of the limit point (z∗, s∗, β∗, λ∗). Also suppose that the regularized

barrier problems MPCC(γ, µ) are always solvable. Then the following hold:

1. If (z∗, s∗, β∗, λ∗) is a limit point of this sequence, then it is a feasible point of MPCC.

5This barrier problem is similar to MPCC(γ, µ) but in this particular case w and y are kept strictly positive.
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2. If MPCC-LICQ holds at (z∗, s∗, β∗, λ∗), then (z∗, s∗, β∗, λ∗) is a strong stationary point.

Proof. Throughout this proof, we use the compact notation of

u(µ, γ) = (z, s, β, λ;µ, γ).

If {uk(µk, γk)} represents the set of iterates generated by the algorithm, then, by assumption, we

have {uk(µk, γk)} → u∗(0, 0). This requires that the sequences {µk}, {γk} converge to zero. This

implies that for k sufficiently large or k ∈ K and

lim
k∈K

uk = u∗,

we may conclude that the sequences {∇fk}k∈K and {∇ck}k∈K have limits and are therefore

bounded.

1. Feasibility of u∗: Since MPCC(γ, µ) is always solvable and that ǫk → 0 in (3.29), we have

c(u∗) = 0. Moreover, Y ∗w∗ = 0 because γk → 0. The nonnegativity of w∗ and y∗ is by

definition because the barrier problem keeps the iterates strictly feasible. Thus, u∗ is feasible

for MPCC.

2. Existence of multipliers: We may define

[ψk
y ]i =

µk

yk
i

− wk
i λ

k
i

[ψk
w]i =

µk

wk
i

− yk
i λ

k
i ,

and ηk = ‖(βk, λk, ψk
y , ψ

k
w)‖∞. Furthermore, we may claim that if the stationarity conditions

of the regularized problem are evaluated with µ = γ = 0, we have

Y ψy = 0

Wψw = 0

Wy = 0.

We show that the sequence {ηk}k∈K is bounded. We may claim that ηk ≥ τ > 0 for k ∈ K
because ψk

w and ψk
y are bounded away from zero. Then the multiplier set may be normalized

as follows:

β̂k =
βk

ηk
, λ̂k =

λk

ηk
, ψ̂k

y =
ψk

y

ηk
and ψ̂k

w =
ψk

w

ηk
.

We define Iw(u) and Iy(u) as

Iw(u∗) := {i : w∗
i = 0}

Iy(u∗) := {i : y∗i = 0}.
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Consider an index i 6∈ Iw(u∗). We have w∗
i → w∗

i > 0, implying that y∗i → 0 and ǫk → 0. We

proceed by contradiction and assume that [ψk
w]i 6= 0, k ∈ K. Then by definition,

[ψk
w]i 6= 0

=⇒ µk

wk
i

− yk
i λ

k
i 6= 0

=⇒ wk
i

yk
i

(
µk

wk
i

− yk
i λ

k
i ) 6= 0

=⇒ (
µk

yk
i

− wk
i λ

k
i ) 6= 0

=⇒ [ψk
y ]i 6= 0.

Therefore, we may claim that

|[ψ̂k
w]i| =

|[ψ̂k
w]i|
ηk

≤ |[ψ̂k
w]i|

|[ψ̂k
y ]i|

≤ yk
i

wk
i

→ 0.

However, we also know that [ψ̂k
w]i converges to zero when i ∈ Iw, implying that [ψ̂k

w]i converges

to zero for all indices i. Similarly, we have [ψ̂k
y ]i → 0, for all indices i. Therefore, the

multipliers [ψk
w]i and [ψ̂k

y ]i both converge to zero for inactive constraints.

The boundedness of {ηk}k∈K may be proved by contradiction. Assume that there exists a

subsequence K′ in which {ηk}k∈K′ → ∞. Moreover, the sequences of gradients and Jacobians

are convergent, allowing us to divide by ηk and take k to the limit. This implies that

lim
k→∞,k∈K′

‖ 1

αk
∇xL(uk;µk, γk)‖ ≤ lim

k→∞,k∈K′

ǫk

ηk
= 0.

Hence

lim
k→∞,k∈K′




1

ηk
∇f(uk) −∇c(uk)T β̂k −




0

ψ̂k
y

0


−




0

0

ψ̂k
w





 = 0

=⇒


−∇c(u∗)T β̂∗ −




0

ψ̂∗
y

0


−




0

0

ψ̂∗
w





 = 0

=⇒


−∇c(u∗)T β̂∗ −

∑

i∈Iy∗

[ψ̂∗
y ]i




0

ei

0


−

∑

i∈Iw∗

[ψ̂∗
w]i




0

0

ei





 = 0.

However, since the limit point x∗ satisfies MPCC-LICQ, we have β̂∗, ψ̂∗
y and ψ̂∗

y equal to zero.

However, since the sequences of normalized multipliers are convergent, we may claim that

without loss of generality, ηk = 1 for all k ∈ K′. Therefore, no such unbounded sequence

exists and the multiplier sequences {βk}, {ψk
w} and {ψk

y} for k ∈ K are all bounded with limit
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points.

3. Strong-stationarity: We now prove that the limit point of the sequence is indeed a strong

stationary point. This requires proving that the limit point u∗ satisfies (3.58). By the

continuity of f and c, we may claim that




∇xf
k

∇yf
k

∇wf
k


−




∇xc
k

∇yc
k

∇wc
k




T

βk −




0

µk(Y k)−1e−W kλk

µk(W k)−1e− Y kλk

µk(Sk)−1e− λk


 ≤ ǫk → 0

=⇒




∇xf
∗

∇yf
∗

∇wf
∗


−




∇xc
∗

∇yc
∗

∇wc
∗




T

β∗ −




0

ψ∗
y

ψ∗
w

0


 = 0.

The first part of this proof has shown that the limit point is a feasible point of the MPCC.

Therefore, we need to show that

(a) W ∗ψ∗
w = 0 and Y ∗ψ∗

y = 0: This may be rewritten as

w∗
i [ψ∗

w]i = 0, y∗i [ψ∗
y ]i = 0.

If i ∈ Iw∗ , then w∗
i [ψ∗

w]i = 0. Therefore, it suffices to consider indices i 6∈ Iw∗ and show

that [ψ∗
w]i = 0. Let us consider a subsequence K′′ ∈ K in which [ψk

w]i 6= 0. Then, using

the same argument as earlier, we may claim that [ψk
y ]i 6= 0. This leads to

lim
k→∞,k∈K′′

|[ψk
w]i|

|[ψk
y ]i|

= lim
k→∞,k∈K′′

yk
i

wk
i

= 0,

since [yk
i ] → 0 and wk

i > 0 and [ψk
y ]i is bounded for k ∈ K′′. This can only imply that

limk∈K′′ [ψk
w]i = 0, giving us the required result. The same holds for ψ∗

w.

(b) [ψ∗
y ]i, [ψ

∗
w]i ≥ 0, i ∈ {i : w∗

i , y
∗
i = 0}: This follows by noting that if i ∈ Iw∗ ∩ Iy∗ , then

w∗
i = y∗i = 0. Therefore, limk∈K w

k
i λ

k
i = 0 and limk∈K y

k
i λ

k
i = 0. Therefore, we have

[ψ∗
w]i = lim

k∈K
[ψk

w]i = lim
k∈K

µk

wk
i

− yk
i λ

k
i = lim

k∈K

µk

wk
i

≥ 0.

Similarly, [ψ∗
y ]i ≥ 0 for i ∈ Iw∗ ∩ Iy∗ .

�

3.4 Implementation Details and Numerical Results

We implemented the barrier method using Matlab 6.5 on a Pentium 4 with 512 MB of RAM

running Windows XP. In this section, we discuss various aspects of the implementation. We begin
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by discussing some algebraic details of the implementation. Next, we discuss four implementations

of the barrier method. This is followed by a description of the numerical results.

3.4.1 Some Implementation Details

In this section, we first discuss some details pertaining to the implementation. In particular, we

shall discuss how one obtains a basis for the null-space of the Jacobian of the constraints viz. Z.

Then we provide some insight into how we modify the Hessian of the Lagrangian to ensure that the

reduced Hessian is positive definite. Finally, we briefly describe the four methods that we compare

in the next section.

We use a QR factorization to obtain a basis for the null-space of ∇h (see (3.19):

∇hT = Q

(
R

0

)
.

Then

∇hQ = (QT∇hT )T =
(
RT 0

)
.

If ∇h ∈ IRm×n, then the last n−m columns of Q give a basis for the null-space of ∇h. An alternate

approach for obtaining a basis for the null-space is described in [Doy03, GMS05].

Recalled that the reduced Hessian of the Lagrangian is modified to ensure its positive defi-

niteness. Given a symmetric matrix H , the modified Cholesky factorization [GMW81] is given

by

H + E = LDLT ,

where E is a nonnegative diagonal matrix, L is a nonsingular lower triangular matrix and D is a

positive diagonal matrix. In other words, the modified Cholesky factorization produces a posititive

definite matrix that differs from the original matrix in some of its diagonal elements. If H is

sufficiently positive definite, this factorization reduces to the Cholesky factorization with E = 0.

Therefore, in our implementation, we may use E to construct a modified reduced Hessian that

is positive definite. Furthermore, if E 6= 0, we may obtain a direction d such that LTd = eq,

where q = argminj Hjj . This direction is a direction of negative curvature and approximates the

eigenvector corresponding to the minimum eigenvalue of H [GMW81]. We implemented the linear

search and the curvilinear search in our barrier method:

1. Linear: This implementation did not use negative curvature directions and instead modi-

fied the reduced Hessian of the Lagrangian. This was to ensure that the Newton direction

associated with the linearized KKT system was a descent direction for the merit function.

Globalization of the method was provided through a backtracking line search.

2. Curvilinear: This implementation used a curvilinear search that determined a step size based

on the modified Newton and the negative-curvature directions.

We remove the need to update the regularization parameter separately by keeping γ = µ. Two
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different update strategies are compared: Strategy slow requires that

µ =





µ
2 if µ > 1e−4

µ
1.2 otherwise

(3.59)

while fast implies that

µ =





µ
4 if µ > 1e−4

µ
1.2 otherwise .

(3.60)

Using each of the update strategies, we are left with four implementations:

1. LS: Linear search with a slow barrier update

2. LF: Linear search with a fast barrier update

3. CS: Curvilinear search with a slow barrier update

4. CF: Curvilinear search with a fast barrier update

3.4.2 A Test Problem Set

We tested the method on the QPECgen [JR99] test problem set. In [JR99], Jiang and Ralph pre-

sented a problem generator for deterministic quadratic programs with equilibrium constraints. Such

problems possess a quadratic objective with polyhedral first-level constraints and complementarity

second-level constraints.6

The quadratic program with complementarity constraints (QPCC) is given by

QPCC minimize
x,y

1
2

(
x

y

)T (
Pxx Pxy

Pyx Pyy

)(
x

y

)
+

(
c

d

)T (
x

y

)

subject to
Gx ≤ a

0 ≤ y ⊥ Nx+My + q ≥ 0,

where x ∈ IRn and y ∈ IRm. The generator has some very desirable features in that the user

can control problem size, degeneracy, condition number of P , monotonicity of P and convexity of

f . We tested our implementations on a set of 20 problems from QPECgen. The specifications of

the problems are n = 2 and m = 5k, where k = 1, . . . , 20. The set of problems satisfies strict

complementarity at the lower level.

3.4.3 Numerical Results

Figure 3.1 shows the performance profiles of the four algorithms constructed on the basis of major

iterations. Performance profiles are discussed by Dolan and Moré [DM02] and summarized in

6Actually, the second-level constraints are affine variational inequalities, but we restrict the discussion to affine
complementarity constraints.
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Figure 3.1 Performance profiles for major iterations required by four methods

Table 3.1

Comparing linear-slow and linear-fast

Dimension Linear-Slow Linear-Fast
n m major ‖kkt‖ ρ major ‖kkt‖ ρ

10 5 30 1.0e-4 1.0e+4 19 5.5e-5 1.0e+4
10 10 33 8.6e-5 1.0e+4 22 5.0e-3 1.0e+4
10 15 38 1.2e-5 8.1e+9 23 1.7e-6 1.8e+10
10 20 39 9.2e-6 6.1e+9 23 1.3e-5 1.5e+7
10 25 31 8.6e-5 1.0e+4 17 9.4e-5 1.0e+4
10 30 29 8.7e-5 1.0e+4 17 5.7e-5 1.0e+4
10 35 38 4.9e-5 3.5e+9 22 3.5e-5 6.7e+6
10 40 38 1.7e-5 3.8e+9 42 4.7e-5 1.0e+4
10 45 38 1.9e-5 2.7e+9 23 5.8e-6 1.0e+4
10 50 39 3.6e-5 2.4e+9 25 1.7e-5 1.8e+7
10 55 39 5.3e-6 2.2e+9 30 8.7e-5 2.4e+11
10 60 39 4.6e-5 2.0e+9 24 9.7e-5 1.0e+4
10 65 38 4.4e-5 1.9e+9 23 2.9e-5 4.1e+9
10 70 39 5.4e-5 1.8e+9 24 3.5e-5 3.3e+7
10 75 38 3.7e-6 1.6e+9 25 5.3e-5 2.2e+8
10 80 40 7.9e-5 1.5e+9 26 9.5e-5 4.9e+7
10 85 38 7.2e-5 1.4e+9 37 3.4e-6 2.8e+9
10 90 38 3.9e-5 1.4e+9 25 4.4e-5 1.0e+4
10 95 40 2.0e-5 1.3e+9 26 4.6e-5 2.8e+8
10 100 40 3.6e-5 1.2e+9 29 9.6e-5 5.7e+6

chapter 2.

The graph on the left in Figure 3.1 shows that the fast updates would solve 80% of the problems

in the fewest major iterations. Moreover, when we consider methods that performed within a factor

of 2 of the best method (τ = 2), we find that the LS method is the only one that qualifies. Generally,

it appears that the linesearch approaches do slightly better than the curvilinear approaches but

this distinction may be a result of implementation issues. We also observe that the fast updates

do not solve a small percentage of the problems even when we relax τ to 5. Tables 3.1 and 3.2

show detailed computational results of all the methods. It may be observed that the faster updates

do much better in general. Also, the penalty parameters stay within 1e+11 for the most part.

The curvilinear search method compares well with the linear search for most problems. In some

cases (such as m = 85, 95), the curvilinear search methods outperform the linesearch approach. We

also note that the number of major iterations with the slow update is never more than double the
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Table 3.2

Comparing curvilinear-slow and curvilinear-fast

Dimension Curvilinear-Slow Curvilinear-Fast
n m major ‖kkt‖ ρ major ‖kkt‖ ρ

10 5 30 1.0e-4 1.0e+4 19 5.5e-5 1.0e+4
10 10 33 8.6e-5 1.0e+4 23 3.9e-5 2.7e+10
10 15 38 1.2e-5 8.1e+9 26 5.1e-5 1.0e+4
10 20 39 9.2e-6 6.1e+9 23 1.3e-5 1.5e+7
10 25 31 8.6e-5 1.0e+4 17 9.4e-5 1.0e+4
10 30 29 8.7e-5 1.0e+4 17 5.7e-5 1.0e+4
10 35 38 4.9e-5 3.5e+9 22 3.5e-5 6.7e+6
10 40 16 3.9e+6 1.8e+14 73 3.4e-5 1.0e+4
10 45 38 1.9e-5 2.7e+9 23 5.8e-6 1.0e+4
10 50 39 3.6e-5 2.4e+9 25 1.7e-5 1.8e+7
10 55 39 5.3e-6 2.2e+9 30 8.7e-5 2.4e+11
10 60 39 4.6e-5 2.0e+9 24 9.7e-5 1.0e+4
10 65 38 4.4e-5 1.9e+9 23 2.9e-5 4.1e+9
10 70 39 5.4e-5 1.8e+9 24 3.5e-5 3.3e+7
10 75 34 2.9e-6 2.4e+9 24 1.4e-6 4.7e+7
10 80 40 7.9e-5 1.5e+9 26 9.5e-5 4.9e+7
10 85 34 5.9e-5 2.1e+9 32 3.6e-5 1.0e+4
10 90 38 3.9e-5 1.4e+9 25 4.4e-5 1.0e+4
10 95 35 8.9e-5 1.9e+9 24 7.8e-2 9.1e+8
10 100 40 3.6e-5 1.2e+9 29 9.6e-5 5.7e+6

iterations taken by the fast update.

Another observation is that the number of major iterations does not change significantly for

a specific method. For instance, the Linear-Fast method takes 19 iterations for a problem with

m = 5, but for the problem with m = 100, the number of major iterations is 29. (However a major

iteration takes much more effort as the problem size increases.)

3.5 Contributions and Future Research

We present a regularization-based interior method for mathematical programs with complemen-

tarity constraints. Through the use of modified Newton and negative curvature directions, the

algorithm generates a sequence of iterates that converges to second-order points. Existing algo-

rithms for MPCCs only allow for convergence to first-order points.

The convergence of the algorithm is proved under weaker assumptions than in [MP03]. In

particular, we only require that the non-slack primal variables be in a compact set and prove that

the remaining dual and slack variables are bounded.

We also discuss a Matlab-based implementation’s results on the QPECgen test-problem set.

We compare the performance of the curvilinear search with the linear search for fast and slow

updates of the barrier parameter sequence. We observe that the performance of the curvilinear

search compares well with that of the linear search. Specifically, for a particular update rule, the

curvilinear search outperforms the linear search on only one of twenty test problems. For nearly

80% of the problems, the performance is identical.

There are several issues that we leave for future research:

• Theoretical issues: First, the work by Murray and Prieto [MP95a] proves that all iterates are

in a compact set. This appears to be possible in the current setting and shall be investigated

further. Furthermore, the current analysis has been carried out for a single barrier and penalty

parameter. Ideally, there should be a vector of penalty and barrier parameters (see [Doy03]).
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Third, questions of ill-conditioning have been left unanswered and shall be a focus of future

work.

• Algorithmic issues: The implementation needs to be tested on a broader class of MPCCs, in

particular the macMPEC test problem set [Ley00]. Second, a more detailed study of the results

is required. In particular, we plan to examine specific problems for which the curvilinear and

linesearch approach result in differing performance. Third, currently the construction of the

basis for the null-space is achieved through a QR factorization. However, there are several

better methods based on the sparse LU factorization (see [Doy03, GMS05]) that we plan to

investigate further.



Chapter 4

A KKT Sampling

Method for

Stochastic MPCCs

4.1 Introduction

We consider the stochastic mathematical program with complementarity constraints (SMPCC)

SMPCC minimize
x,yω,wω

IEfω(x, yω , wω)

subject to
cω(x, yω, wω) = 0,

0 ≤ yω ⊥ wω ≥ 0 ∀ ω ∈ Ω,

where fω(.) and cω(.) represent the objective function and vector of constraint functions. The

parametrization ω corresponds to realization ω, where ω ∈ Ω, the sample space. It is assumed

that fω and cω are twice continuously differentiable over x, yω and wω, which lie in IRn, IRm and

IRm respectively. We assume that the probability space is given by (Ω,F , IP) and IP is a discrete

distribution.

The complementarity constraint yω ⊥ wω implies that either [yω]i or [wω]i (or both) is (are)

zero for i = 1, . . . ,m. Such problems arise in the modeling of Stackelberg equilibria, traffic equilbria

and contact problems under uncertainty [LPR96]. The specification of uncertainty is through an

“almost-sure” formulation in which there is one constraint for every realization ω of uncertainty,

where ω ∈ Ω. The deterministic problem, known as a mathematical program with complementarity

constraints (MPCC), is discussed in detail in the monographs by Luo et al. [LPR96] and Outrata

et al. [OKZ98].

The solution of SMPCCs is plagued by two difficulties. First, the optimization problem does

not have any feasible point that satisfies the inequality constraints strictly. This implies that the

Mangasarian-Fromovitz constraint qualification (MFCQ) (and therefore the linear-independence

constraint qualification (LICQ)) fails at every feasible point. Second, we make no assumption

regarding the size of the discrete distribution IP. Therefore, the number of constraints in SMPCC

may be arbitrarily large implying, that a direct application of NLP-based methods may not be

sensible.

83
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4.1.1 Early Research on Stochastic Programming

The last two decades have seen significant advancement in stochastic programming research (see

Birge and Louveaux [BL97]). Consider a general two-stage stochastic programming problem in

which a decision x is made in the first stage and a recourse decision yω is made in the second stage,

contingent on x and the realization ω. The first-stage problem may be formulated as

min
x∈X

(f(x) + Q(x)),

where x,X, f(x) and Q(x) represent the first-stage decision, the first-stage feasible region, first-

stage cost and the second-stage recourse function, respectively. The recourse function Q(x) is the

expectation of the random recourse function Q(x, ω), which is the optimal value of an ω-scenario

problem.

Under assumptions of convexity, we may approximate the recourse function Q(x) by a set of

cuts. Van Slyke and Wets [VSW69] proposed such a method to solve stochastic linear programs.

However, each cut required the solution of |Ω| dual problems. To alleviate the burden of computing

|Ω| dual problems to add a single cut, Dantzig and Glynn [DG89], Higle and Sen [HS91] and Infanger

[Inf94] suggested the use of sampling to construct the cuts (see Chapter 2 for more details).

One of the restrictions of such a class of methods is the reliance on convexity of the recourse

function. In the case of two-stage stochastic nonlinear programming methods, convexity of the

recourse function cannot be assumed. One possible approach is through the use of sample-average

approximation (SAA) methods [Sha03]. Such methods rely on solving sampled versions of the

problem to obtain estimators. Furthermore, under some assumptions, one may claim convergence

of the estimators to the true solution at an appropriate rate. One of the shortcomings of this

approach is that it assumes that large instances of the problem may be solved efficiently by existing

methods. This does not appear to be the case for nonlinear programming.

4.1.2 Research on SMPCCs

The SMPCC rerpresents an instance of a stochastic equilibrium problem. Recently, there have been

several efforts to address such problems. Lin and Fukushima [LCF03] discuss a smoothing method

for stochastic programs with LCP constraints. Shapiro et al. [Sha03] discuss an SAA method. This

work is an extension of earlier SAA research on stochastic programs and provides theory to show

convergence of optimal values and solutions for a sampled problem to those of the true problem.

It does not address the question of how one may solve the sampled problem efficiently.

We present a method that can deal with ill-posedness1 in the constraints and the large number

of constraints. To address the former, we rely on ideas discussed in Chapter 3. Dealing with

the latter requires extending stochastic programming to the area of two-stage stochastic nonlinear

programming.

The solution of SMPCCs requires the solution of stochastic nonlinear (albeit ill-posed) programs.

Any suggested method should be scalable in that the computational burden should grow slowly

1Ill-posedness in this context refers to the fact that complementarity constraints do not satisfy the common
regularity conditions at any feasible point.



4.2 An Interior Point Method for MPCCs 85

with the sample-size. We propose a primal-dual method with some important modifications. First,

the linearized KKT systems are sparse and nearly scenario-separable. This property is utilized in

constructing a parallelizable method for obtaining the Newton steps. Second, we may take inexact

Newton steps by using a sample of the distribution to construct a step. The sparsity of the reduced

Hessian allows us to compute negative curvature directions efficiently. The use of such directions

allows proof of convergence to a local minimizer.

The rest of this chapter is organized into five sections. In §4.2, we discuss our interior-point

algorithm, focusing on how one may obtain the Newton and negative curvature directions. The

use of sampling within the method is discussed in §4.3. The algorithm has been applied to a set of

stochastic quadratic programs with complementarity constraints and the findings are discussed in

§4.4.

4.2 An Interior Point Method for MPCCs

We begin by restating the problem SMPCC as a regularized problem SMPCC(γ):

SMPCC(γ) minimize
x,y,w

IEfω(x,wω , yω)

subject to

cω(x, yω, wω, γ) = 0

Yωwω + scc
ω − γe = 0

yω − sy
ω = 0

wω − sw
ω = 0

sy
ω, s

w
ω , s

cc
ω ≥ 0 ∀ω ∈ Ω,

where γ is a positive scalar parameter. By defining dω(.) as

dω(x, yω , wω, sω; γ) =



Yωwω + scc

ω − γe

yω − sy
ω

wω − sw
ω


 , (4.1)

we obtain a simpler formulation:

SMPCC(γ) minimize
x,y,w

IEfω(x,wω , yω)

subject to

cω(x, yω , wω, γ) = 0

dω(x, yω , wω, sω; γ) = 0

sω ≥ 0, ∀ω.

For γ > 0, problem SMPCC(γ) is a well-posed nonlinear program; it satisfies the Mangasarian-

Fromovitz constraint qualification. Specifically, the positivity of γ ensures that the interior of the

inequality constraint is non-empty.

The idea is to solve a sequence of problems SMPCC(γk), where γk → 0 (as in Chapter 3). Under

some assumptions, the sequence of stationary points of SMPCC(γk) converges to a strong-stationary
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point or a stationary point of SMPCC(0).

4.2.1 The Barrier Problem

The crucial idea in interior methods for optimization is that the inequality constraints and nonneg-

ativity bounds are kept strictly satisfied. One such interior method uses the logarithmic function

to replace inequality constraints by barrier terms in the objective. These terms tend to infinity if

the iterates tend towards the boundary. The resulting problem is parameterized by γ and µ, the

barrier parameter, and is denoted by SMPCC(γ, µ):

SMPCC(γ, µ) minimize
x,y,w,s

IEfω(x, yω , wω) − µ
∑

ω

∑
i(ln[sy

ω]i + ln[sw
ω ]i + ln[scc

ω ]i)

subject to
cω(x, yω , wω) = 0

dω(x, yω, wω , sω; γ) = 0 ∀ω.

We replace x by xω for all ω ∈ Ω, with constraints that say all xω are identical. These coupling

constraints are often termed nonanticipativity constraints. We shall be working in the framework of

discrete probability distributions, where ω may take on a finite number of realizations, say K. We

shall drop the subscript ω and use (xi, yi, wi) to specify that the variables correspond to scenario

i. If πj represents the probability of scenario j, then problem SMPCC(γ, µ) may be stated as

SMPCC(γ, µ) minimize
x,y,w

∑
j πjfj(xj , yj, wj) − µ

∑
j

∑
i(ln[sy

j ]i + ln[sw
j ]i + ln[scc

j ]i)

subject to

cj(xj , yj , wj) = 0, for j = 1, . . . ,K

dj(xj , yj , wj ; γ) = 0, for j = 1, . . . ,K

x1 − xj = 0, for j = 2, . . . ,K.

Next, we present the first-order KKT conditions for SMPCC.

4.2.2 The KKT Conditions

By labeling the coupling constraints as qj(x1, xj) = x1 − xj and zj = (xj , yj, wj) and sj =

(sw
j , s

y
j , s

cc
j ) , one may rewrite the barrier problem with the appropriate multipliers:

SMPCC(γ, µ) minimize
z,s

∑
j πjfj(zj) − µ

∑
k ln[sj ]k

subject to

cj(zj) = 0 : βj , j = 1, . . . ,K

dj(zj , sj) = 0 : ξj , j = 1, . . . ,K

qj(z1, zj) = 0 : ζj , j = 2, . . . ,K.
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We may define a scenario-Lagrangian function of the barrier problem as

L1(zj , sj, βj , ξj , ζj) = π1f1 − µ ln(s1) − cT1 β1 − dT
1 ξ1 −

∑

j

qT
j ζj , (4.2)

Lj(zj , sj, βj , ξj , ζj) = πjfj − µ ln(sj) − cTj βj − dT
j ξj − qT

j ζj , j 6= 1.

By introducing vectors vj satisfying Sjvj = µe, we may state the first-order KKT conditions as

πj∇zj
fj −∇zj

cTj βj −∇T
zj
dT

j ξj −
∑

j

∇zj
qT
j ζj = 0 = rz

j , j = 1

πj∇zj
fj −∇zj

cTj βj −∇T
zj
dT

j ξj −∇zj
qT
j ζj = 0 = rz

j , j 6= 1

πj∇sj
fj −∇sj

cTj − βj∇T
sj
dT

j ξj −
∑

j

∇sj
qT
j ζj − zj = 0 = rs

j (4.3)

cj(zj) = 0 = rc
j

dj(zj , sj) = 0 = rd
j

qj(zj) = 0 = rq
j

Sjvj − µe = 0 = rv
j .

4.2.3 The Linearized KKT Conditions

Newton’s method may be applied to the set of equations (4.3). This system grows with the number

of scenarios but still follows a particular structure. In particular, if we denote the jth scenario

(both primal and dual) step as ∆pj , we may rewrite the system as




M1 −Ī . . . −Ī
M2 Ī

. . .
. . .

MK Ī

Ī −Ī
...

. . .

Ī −Ī







∆p1

∆p2

...

∆pK

∆ζ2
...

∆ζK




= −




r1

r2
...

rK

rq
2

...

rq
K




, (4.4)

where

Mj =




Hzjzj
Hsjzj

−∇zj
cTj −∇zj

dT
j

Hzjsj
Hsjsj

−∇sj
dT

j −I
∇zj

cj

∇zj
dj ∇sj

dj

Vj Sj




and ∆pj =




∆zj

∆sj

∆βj

∆ξj

∆ζj

∆vj




.
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Note that Hzjzj
= ∇2

zjzj
Lj and Hzjsj

,Hsjzj
and Hsjsj

are defined accordingly. By eliminating

∆vj in each scenario subsystem, we obtain the system




Hzjzj
Hsjzj

−∇zj
cTj −∇zj

dT
j

Hzjsj
Hsjsj

+ S−1
j Vj −∇sj

dT
j

∇zj
cj

∇zj
dj ∇sj

dj







∆zj

∆sj

∆βj

∆ξj


 = −




rz
j

rs
j + S−1

j rv
j

rc
j

rd
j


 . (4.5)

A compact symmetrized representation may then be obtained:

(
−Hj ∇hT

j

∇hj

)(
∆uj

∆λj

)
=

(
−ru

j

rj
h

)
, (4.6)

where

Hj =

(
Hzjzj

Hsjzj

Hzjsj
Hsjsj

+ S−1
j Vj

)
, rh

j =

(
rc
j

rd
j

)
, ∆uj =

(
∆zj

∆sj

)
,

∆λj =

(
∆βj

∆ξj

)
and ru

j =

(
rz
j

rs
j + V −1

j rv
j

)
.

The steps in vj may be obtained by solving

Sj∆vj = (rv
j − Vj∆sj).

Since the coupling constraints involve only the terms in xj , they are unaffected by the elimination

process. A solution of (4.4) may be obtained by a multi-phase approach. This was discussed in

a linear programming context by Liu and Sun [LS04b] and subsequently by Bastin et al. [Bas04].

This is the subject of the next section.

4.2.4 A Multi-phase Approach

Directly solving the system (4.4) becomes increasingly difficult as the distribution grows in size.

Instead, we propose a multi-phase approach to solving the problem. It involves first obtaining

scenario directions ∆p̄j for each scenario under the assumption that ∆ζj = 0 for all j. Then, we

obtain the direction ∆ζ by employing the ideas of Schur complements. Lastly, we re-solve to obtain

the actual directions ∆pj . We may rewrite (4.4) as




M1 −∇p1
qT

M2 −∇p2
qT

. . .
...

MK −∇pq
T
K

∇p1
q ∇p2

q . . . ∇pK
q







∆p1

∆p2

...

∆pK

ζ + ∆ζ




= −




r̄1

r̄2
...

r̄K

rq




, (4.7)
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where

∇q =




Ī −Ī
...

. . .

Ī −Ī


 .

Then, if we assume that (ζ + ∆ζ) = 0, this system is separable and may be solved for each j to

obtain ∆p̄j :




M1

M2

. . .

MK







∆p̄1

∆p̄2

...

∆p̄K




=




r̄1

r̄2
...

r̄K



. (4.8)

The coupling constraints may then be evaluated as
∑

j qj(∆p̄j), resulting in the system




M1 −∇p1
qT

M2 −∇p2
qT

. . .
...

MK −∇pK
qT

∇p1
q ∇p2

q . . . ∇pK
q







∆p̄1

∆p̄2

...

∆p̄K

0




=




r̄1

r̄2
...

r̄K∑
j qj(∆p̄j)




. (4.9)

By adding (4.9) to (4.7) and recalling that rq =
∑

j qj(pj), we obtain




M1 −∇p1
qT

M2 −∇p1
qT

. . .
...

MK −∇pK
qT

∇p1
q ∇p2

q . . . ∇pK
q







∆p̄1 + ∆p1

∆p̄2 + ∆p2

...

∆p̄K + ∆pK

ζ + ∆ζ




=




0

0
...

0∑
j qj(∆p̄j − pj)




. (4.10)

We may obtain ∆ζ by solving the system

−(
∑

j

(∇pj
qM−1

j ∇pj
qT ))(ζ + ∆ζ) =

∑

j

qj(pj − ∆p̄j). (4.11)

In general, the matrices Mj may not be invertible unless we modify the scenario-based reduced

Hessians appropriately.

Theorem 4.1. If

M =

(
H AT

A

)
,

and Z is a basis for the null-space of A, then M is invertible if ZTHZ is positive definite and A

has full row rank.

Proof. See theorem 16.6 in [NW99]. �
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Modification of the reduced Hessians may be carried out by using a modified Cholesky factor-

ization of the entire reduced Hessian system. We assume that these reduced Hessians have been

made positive definite when proving the next result.

Lemma 4.2. If the matrices Mj are modified such that all ZT
j Hc

jZj are positive definite, then the

Mj are invertible for j = 1, . . . ,K.

Proof. Follows from positive definiteness of ZT
j Hc

jZj and full row-rank of ∇hj (see (4.6)). �

We may then represent the system as

B =

(
−M ∇qT

∇q

)
where M =




M1

. . .

MK


 and ∇q =

(
∇p1

q . . . ∇pK
q
)
.

Lemma 4.3. B is invertible if ∇qTM−1∇q is invertible.

Proof. See [CPS92]. �

Theorem 4.4. Let M c be given by M + δI such that ZT
q M

cZq ≻ 0, where Zq represents a basis

for the null-space for ∇q. Then B is invertible.

Proof. This follows immediately from lemma 4.2 and theorem 4.1. �

This theorem allows us to claim that system (4.10) is always solvable, if suitably modified.

4.2.5 A Negative Curvature Direction

The true reduced Hessian of the system has a sparse arrowhead structure as shown in figure 4.1.

The structure of this matrix is relevant because we intend to compute points that satisfy second-

order conditions of optimality. To this end, it is necessary to use directions of negative curvature.

In the unconstrained case, such directions would only exist when the Hessian matrix is indefinite

and would satisfy

pTHp < 0. (4.12)

An eigenvector associated with a negative eigenvalue would provide such a direction. Alternatively,

p can be computed using the modified Cholesky factorization [GMW81]. Recall that for an indefinite

matrix H , the modified Cholesky factorization may be stated as

H + E = RTR, (4.13)

where R is a nonsingular upper triangular matrix. If i = argmin{Hii}, then

Rdc = ei (4.14)



4.2 An Interior Point Method for MPCCs 91

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2404
0 200 400

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 5784

Figure 4.1 Reduced Hessian and a basis for null-Space of hessian: K = 200, n = 2

provides dc, a direction of negative curvature. The reduced Hessian of the full KKT system may

be written as

H̄ :=




U0 UT
1 . . . UT

K

U1 W1

...
. . .

UK WK



.

Lemma 4.5. A modified Cholesky factorization of H̄ can be obtained in the form




U0 UT
1 . . . UT

K

U1 W1

.

.

.
.
.
.

UK WK


+




E0

.
.
.

.
.
.

EK


 =




RT
0 ST

1 . . . ST
K

RT
1

.
.
.

RT
K







R0

S1 R1

.
.
.

SK RK


 .

Moreover, we have

RT
j Rj = Wj + Ej , j = 1, . . . ,K

RT
j Sj = Uj , j = 1, . . . ,K

U0 + E0 = RT
0 R0 +

∑

j

ST
j Sj .

Note that the factors obtained in the previous Lemma are not the normal lower triangular

Cholesky factors. Obtaining the scenario-based negative curvature directions is now straightfor-

ward. To ensure convergence from any starting point, a curvilinear search is carried out to determine

the stepsize. In the current setting, we prescribe a single stepsize for each set of scenario variables.

We do not discuss this any further in this chapter and instead refer the reader to chapter 3 for

more details on the curvilinear search.
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4.2.6 Specifying a Steplength

As mentioned in Chapter 3, nonlinear programming algorithms are equipped with a globalization

strategy to ensure convergence from arbitrary starting points. Such a strategy requires the speci-

fication of a merit function that represents a metric of progress for the optimization algorithm. In

nonlinearly constrained problems, a suitable merit function is given by a measure of primal and

dual infeasibilities. In particular, we define the augmented Lagrangian merit function for two-stage

stochastic nonlinear programming:

M(z, s, β, ξ; ρ, µ, γ) =

K∑

j=1

(
πjfj − µ

∑

i

ln[sj ]i − cTj βj − dT
j βj + 1

2ρ(‖cj‖2 + ‖dj‖2)

)

+

K∑

j=2

(1
2ρ‖qj‖2 − qT

j ζj). (4.15)

A motivation for the use of negative curvature directions is provided in Chapter 3. We combine

the modified Newton and negative curvature directions by using a steplength α obtained from a

curvilinear search over the augmented Lagrangian merit function (4.15). Combining such directions

with Newton directions, we obtain a new iterate in the form

(
pk+1

ζk+1

)
=

(
pk

ζk

)
+ α2

k

(
∆pk

∆ζk

)
+ αk

(
∆pc

k

)
, (4.16)

where ∆pc
k is the direction of negative curvature.

4.2.7 Termination Criteria

Our method requires solving the barrier problems until the following termination criteria are sat-

isfied:

‖∇zj
L(zk

j , s
k
j , β

k
j , ξ

k
j , v

k
j )‖∞ ≤ ǫk

‖∇sL(zk
j , s

k
j , β

k
j , ξ

k
j , v

k
j )‖∞ ≤ ǫk

‖c(zk
j , s

k
j , β

k
j , ξ

k
j , v

k
j )‖∞ ≤ ǫk

‖d(zk
j , s

k
j , β

k
j , ξ

k
j , v

k
j ; γk)‖∞ ≤ ǫk (4.17)

‖Sk
j v

k
j − µke‖∞ ≤ ǫk

−λmin(Z
THZ) ≤ ǫk

‖qj(zk
1 , z

k
j )‖ ≤ ǫk,

where ǫk is a stopping tolerance, with {ǫk} → 0. In practice, we may set ǫk = min(γk, µk).

Algorithm 2 describes the steps of the primal-dual method for stochastic MPCCs.
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Algorithm 2: A primal-dual method for stochastic MPCCs

Initial: (p0, ζ0;µ0, ρ0, γ0, θ0)
k = 1
while ‖(rP

k , r
D
k , r

CC
k , rNA

k )‖∞ > ǫ1 or λmin(ZT
k HkZk) < ǫ2 do

while ‖(rP
k , r

D
k , r

CC
k , rNA

k )‖∞ > τǫ1 or λmin(ZT
k HkZk) > −τ5ǫ2 do

Solve (4.4) in a multiphase fashion to obtain (∆p,∆ζ)
Raise ρk to ensure sufficient descent
Obtain αk satisfying Armijo criteria
Take step (pk+1, ζk+1) := (pk + αk∆pk, ζk + αk∆ζk)

γk+1 = uγ
kγk

µk+1 = uµ
kµk

k := k + 1

4.2.8 Algorithm Statement

Algorithm 2 differs from a direct method in the fashion in which the direction is computed. Essen-

tially, the multiphase approach of solving the linearized KKT system prevents the reduced Hessian

of the Lagrangian from getting too large because it only works with the scenario systems. Moreover,

the computation of the null-space basis may be done scenario-wise. This can be carried out in par-

allel as well for a scenario-based Jacobian matrix. However, there is still significant improvement

that can be garnered. For instance, it is unnecessary to compute the entire linearized KKT system,

far from the solution particularly because we are solving it for a fairly relaxed residual. We could

obtain an incomplete solution that restricts the move to a subset of scenario variables or essentially

makes a move in a subspace. This has an important advantage:

The incomplete solution is cheaper to compute because it is for a subset of the scenarios.

Using an incomplete solution has an impact on the linesearch technique that is adopted. Since the

linearized KKT system is nearly separable, a parallelized linesearch may be adopted. This results

in a steplength associated with each scenario variable. We do not use a parallel search in this thesis

and instead use a single stepsize for all scenarios.

4.3 Introducing KKT Sampling

One of the observations already made is that at every major iteration, we take a series of steps

along a combination of Newton and negative curvature directions so as to satisfy the subproblem

termination criteria. However, these directions are the result of considering all the scenarios origi-

nating from what we consider the true distribution. This system represents a perturbation of the

true system in two ways: in terms of the barrier and the regularization parameter.

In this section, we consider another perturbation within the same setting: one that results

from taking a sample of the distribution. This sample would then be used to construct the KKT

conditions and the directions would be taken so as to satisfy the linearization of the sampled system.

Another perspective of such an approach is that we use an approximation of the random distribution

in taking a step and then keep improving such an approximation as the solution is approached.
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Several questions emerge from considering such an approach. What sample size does one start

with and how rapidly does one increase the sample-size? Also, how do we ensure that the true

residuals are decreasing rapidly enough, given that a particular scenario may not get sampled

enough to ensure its residual is reduced sufficiently?

We begin by outlining the sampled KKT conditions and the resulting direction in section 4.3.1.

In section 4.3.2, we discuss two techniques of sampling from the distribution. This is followed by

a discussion of the impact of sampling on sufficient descent. Specifically, the failure of sufficient

descent in the sampled system may be remedied by either increasing the penalty or increasing

the sample size. Finally, in section 4.3.4, we propose a set of termination criteria that are also

dependent on a function of the sample size. Note that we assume that the true distribution is

discrete but may have a very large number of realizations.

4.3.1 Solving the Sampled KKT systems

The sampled KKT system requires a sample of K̄ realizations, where K̄ ≤ K. Since the reference

scenario is 1 as specified by the coupling constraints, we always include this scenario. A sampled

step would take linearizations for the sampled components and determine the sampled scenario

directions. The directions corresponding to the unsampled scenarios will be set to zero. If one

assumes without loss of generality that the first K̄ scenarios appear in the sample, then ∆pk, k ≤ K̄

are defined by (4.18) and ∆pk = 0, k > K̄.




M1 −Ī . . . −Ī
M2 Ī

. . .
. . .

MK̄ Ī

Ī −Ī
...

. . .

Ī −Ī







∆p1

∆p2

...

∆pK̄

∆ζ2
...

∆ζK̄




= −




r1

r2
...

rK̄
rq
2
...

rq
K̄




. (4.18)

Since we set ∆pj = 0, j > K̄ and ∆ζj = 0, k > K̄, we may represent this solution as a solution to




M̄ B̄

I

−B̄T

I







∆pS

∆pNS

∆ζS

∆ζNS


 = −




rS

rNS

rq
S

rq
NS


 , (4.19)

where S = {1, . . . , K̄} and NS = {K̄, . . . ,K}. Moreover, rNS and rq
NS are set to zero, and at the

end of the major iteration, µ and γ are updated, and the sample size is also increased.

To ensure that the sample size is sufficiently large, we need to determine whether the sampled

direction is a direction of descent for the original merit function (see section 4.2.6). If not, we

proceed to increase the sample size or the penalty parameter ρ or possibly both.
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4.3.2 Constructing a Sample

Given a distribution IP, the question arises of which scenarios to select from a sample space |Ω|.
The samples could be selected in accordance with their likelihood, as with Monte-Carlo sampling.

However, such a technique does not utilize all information available to us. For instance, corre-

sponding to each scenario is the residual of its KKT system, denoted by ‖rj‖. It may be preferable

for the iterates to move along a direction that reduces the scenario residuals. Therefore, one could

bias the distribution by using weights wj , where

wj :=
‖rj‖∑
j ‖rj‖

.

Clearly, along a trajectory of iterates in which all the scenarios have similar residuals, this strategy

reduces to Monte-Carlo sampling and is referred to as kktsampling.

We may use a deterministic sampling strategy as well, in which we sort the scenarios by some

parameter and select the first K̄ scenarios. We denote this strategy as kktsorting.

A third possibility is to construct scenario-based augmented Lagrangian merit functions denoted

by Mj . The directions from the previous major iteration may be used to compute ψ′
j := ∇MT

j ∆pj .

These ψ′
j provide an indication of how much reduction can be made in a scenario-based merit

function by a full step. These may again be used to bias the distribution in order to obtain a

sample or be used to construct a deterministic sample. We do not employ such a strategy here but

suggest it as a topic for further research.

4.3.3 Ensuring Global Convergence

Ensuring global convergence requires the use of a merit function. The modified Newton direction

must be a direction of descent for the merit function. As discussed in Chapter 3, we may raise the

penalty parameter to a suitable finite level. When the entire sample is used, the penalty parameter

allows us to ensure that such a condition always holds.

However, for a step in the subspace defined by the sampled iterates, it may be that lack of

sufficient descent could be cured by an increased sample size. Clearly, one would like to minimize

the increase to ensure that the computational effort stays low. By the same token, if the penalty

parameter is increased significantly, then the constraints residuals are made needlessly small early

in the algorithm. These objectives are conflicting and have to be balanced in the implementation.

If the sufficient descent condition is satisfied, the linesearch may proceed.

4.4 Numerical Results

The algorithm of this chapter has been implemented in Matlab 6.5 and tested on a Linux-based

server (2 GB of RAM). The performance and scalability of the described barrier method is demon-

strated on an extension of the QPECgen [JR99] test problem set. In particular, we extend the

QPECgen Matlab problem generator to the realm of stochastic quadratic programs with equilib-

rium constraints and refer to it as SQPECgen.
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4.4.1 SQPECgen: A Test Problem Set for Stochastic QPECs

In [JR99], Jiang and Ralph presented a problem generator for deterministic quadratic programs

with equilibrium constraints. Such problems possess a quadratic objective with polyhedral first-level

constraints and complementarity second-level constraints:

QPCC minimize
x,y

1
2

(
x

y

)T (
Pxx Pxy

Pyx Pyy

)(
x

y

)
+

(
c

d

)T (
x

y

)

subject to
Gx ≤ a

0 ≤ y ⊥ Nx+My + q ≥ 0,

where x ∈ IRn and y ∈ IRm.2 The generator has some very desirable features in that the user can

control problem size, degeneracy, condition number of P , monotonicity of P and convexity of f .

The stochastic generalization of the QPCC may be best illustrated by an application of equilibrium

problems. The deterministic QPCC models a Stackelberg equilibrium in which the leader makes a

decision “x” subject to equilibrium in the followers decisions “y”. This equilibrium condition is

0 ≤ y ⊥ Nx+My + q ≥ 0.

One motivation for a stochastic QPCC arises from the possibility that the decisions made by

followers are contingent on the realization of some uncertainty given by ω. Specifically, ω ∈ Ω and

for each realization ω, one may articulate an equilibrium constraint:

0 ≤ yω ⊥ Nωx+Myω + qω ≥ 0.

As a result, the follower’s decision is based on ω. The objective function is then modified to an

expectation function:

f(x, y) := IEf(x, yω) := IEω


1

2

(
x

yω

)T (
Pxx Pω

xy

Pω
yx Pω

yy

)(
x

yω

)
+

(
c

dω

)T (
x

yω

)
 .

If we assume that the distribution of ω is finite and takes on K realizations, then the expectation

function may be rewritten as

1

2




x

yω1

...

yωK




T 


Pxx Pxyω1
. . . PxyωK

Pyω1
x π1Pyω1

yω1

...
. . .

PyωK
x πKPyωK

yωK







x

yω1

...

yωK




+




c

π1dω1

...

πKdωK




T 


x

yω1

...

yωK



,

2Since we only use complementarity constraints in constructing the problem, we refer to the problem as a quadratic
program with complementarity constraints (QPCC) (and not a quadratic program with equilibrium constraints
(QPEC)).
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where πj is the probability of scenario j. The stochastic QPCC may be formulated as

SQPCC minimize
x,yj

f(x, y)

subject to
Gx ≤ a

0 ≤ yωj
⊥ Nωj

x+Myωj
+ q ≥ 0, j = 1, . . . ,K.

4.4.2 Computational Results

We present some aspects of the performance of the stochastic primal-dual code in this section. Two

facets of the algorithm are discussed here:

1. Scalability: The growth in computational effort with the size of Ω. Also of interest is the

difference between serial and parallel CPU time.

2. Performance profiles: We present performance profiles to demonstrate the difference in per-

formance for three algorithms: full-sample, kktsampling and kktsorting. The first of

these refers to a strategy in which the entire sample size is always used, while the second and

third are described in section 4.3.2.

Any method for the solution of stochastic optimization problems needs to be relatively insensitive

to growth in the size of the discrete distribution. This is of immense relevance when one models

uncertainty using an “almost-sure” formulation. In primal-dual methods for the solution of such

problems, the computationally burdensome step is the solution of the linearized KKT system. If

one solves this directly, the effort may grow with the square of the number of realizations K.3

Therefore, it is essential to introduce a decomposition to ensure that a direct solve is only carried

out on the smaller scenario systems (which do not grow in size). Figure 4.2 shows that the growth

in computational effort is linear. Specifically, it takes approximately 11 times as long to solve the

150 scenario case as it takes for the 10 scenario case. This ratio drops to a little less than 4 when

one uses parallel CPU time. Note that we assume that two of the phases of the multiphase effort

are carried out in parallel when measuring parallel CPU time.

The use of sampling in the early iterations results in some computational benefit. Figure 4.3

shows performance for the three methods discussed earlier. The construction of these profiles is

discussed by Dolan and Moré [DM02] and is summarized in chapter 3. The profiles were constructed

on the basis of serial CPU time. We find that the kktsampling method performs best while the

kktsorting method is not significantly behind.

Tables 4.1 and 4.2 provide further details of the performances of the three algorithms.

4.5 Contributions and Future Research

We present one of the first methods for the solution of two-stage stochastic mathematical programs

with complementarity constraints. In fact, even two-stage stochastic nonlinear programming has

been a little-studied topic over the years. We believe that the customization of primal-dual methods

3Note that this assumes that the scenario-based KKT systems are sparse.
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Table 4.1

Comparision of serial and parallel times

| Ω | full-sample

K major ‖kkt‖ serial parallel

10 94 1.3e-6 1.47 1.46
20 94 3.8e-6 2.26 1.82
30 94 8.3e-7 2.78 2.02
40 94 1.7e-6 3.73 2.48
50 105 2.5e-6 5.25 2.69
60 107 1.8e-6 5.95 3.23
70 133 1.1e-6 8.63 4.15
80 120 6.1e-6 8.87 3.96
90 119 8.1e-6 10.36 3.84

100 132 8.2e-6 11.81 4.75
120 118 1.1e-6 12.39 4.70
140 120 5.2e-6 15.11 5.33
150 118 3.9e-6 16.01 5.56
160 119 9.9e-7 18.16 6.00
170 134 6.3e-6 21.27 7.27
180 119 9.3e-7 20.02 6.74

Table 4.2

Comparision of kktsampling and kktsorting strategies

| Ω | kktsampling kktsorting

K major ‖kkt‖ serial parallel major ‖kkt‖ serial parallel

10 94 1.3e-6 1.59 1.58 94 1.3e-6 1.55 1.46
20 93 3.3e-6 2.14 1.77 93 3.3e-6 2.33 1.82
30 94 8.3e-7 3.02 2.06 94 8.3e-7 2.94 2.02
40 94 1.1e-6 3.49 2.37 94 1.1e-6 3.83 2.48
50 105 2.5e-6 4.89 2.69 105 2.5e-6 4.77 2.69
60 106 3.0e-6 5.80 3.18 106 3.0e-6 6.02 3.23
70 118 1.2e-6 7.38 3.73 118 1.2e-6 7.46 4.15
80 124 5.3e-6 8.68 4.06 124 5.3e-6 9.45 3.96
90 119 8.1e-6 9.05 3.76 119 8.1e-6 9.63 3.84

100 120 5.8e-6 10.07 4.30 120 5.8e-6 10.43 4.75
120 118 1.1e-6 12.17 4.55 118 1.1e-6 12.02 4.70
140 120 5.2e-6 14.28 5.11 120 5.2e-6 14.56 5.33
150 122 6.8e-6 16.03 5.50 122 6.8e-6 16.02 5.56
160 119 9.9e-7 16.96 5.77 119 9.9e-7 17.13 6.00
170 118 1.4e-6 18.35 6.05 118 1.4e-6 18.20 7.27
180 127 6.3e-6 20.20 6.96 127 6.3e-6 20.33 6.74
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to handle stochasticity is of particular relevance because of the broader applicability of primal-dual

methods. For instance, primal-dual methods have been used to solve complementarity problems

and variational inequalities [FP03]. They have also been effective in obtaining solutions to nonlinear

integer programs [Ng03].

We extend the ideas presented for deterministic MPCCs in chapter 3. An important modification

is the multiphase approach for the solution of the linearized KKT system. This takes advantage of

the structure of the problem and ensures that the computational effort grows slowly. A negative

curvature direction is also obtained for each scenario, requiring us to use a curvilinear search to

obtain an appropriate stepsize.

To further ease the computational burden, we may use a sample of the scenarios. There are

different ways to construct such a sample and we discuss two approaches. The first biases the

distribution using the residuals of the scenario KKT systems. The second is a deterministic method

that sorts the scenarios based on the residuals and picks the top K̄.

We construct a new test problem set based on stochastic QPCCs for the purpose of testing a

Matlab implementation. It is observed that the biased sampling approach using the KKT residuals

performs better than the other methods. Also, we find that the computational effort grows linearly

with the number of scenarios.

There are several issues that shall be the focus of future research:

• The current implementation does not employ directions of negative curvature. We need to

extend the implementation to ensure convergence to second-order points.

• Currently, the linesearch employed specifies a single stepsize for all scenario variables. Con-

ceivably, using different steplengths for each scenario would prove advantageous from a com-

putational standpoint. We plan to extend the existing theory to allow for a parallelized

linesearch.

• One of the shortcomings of the algorithm is that it requires solution of the linearized KKT

conditions with all the scenarios, as the solution is approached. For large sample sizes, this is

difficult. One possibility is to use a fixed sample size at each major iteration. In such a case,

the kktsampling approach should perform well. However, these ideas need further research.

In particular, can one relate the norm of the infeasibility in the KKT system to the fixed

sample size employed at each iteration?



Chapter 5

Forward

Contracting under

Uncertainty

5.1 Introduction

In a Nash-Stackelberg game, agents compete in a Nash manner while being Stackelberg leaders

with respect to a set of second-period players (called followers). In particular, first-period decisions

are made contingent on an equilibrium in the second period. For instance, when agents have access

to spot and forward markets, forward decisions are made contingent on spot-market equilibrium.

In his seminal work, Allaz [All92] solves for a Nash-Stackelberg equilibrium in which participants in

the forward market maximize profit subject to equilibrium in the spot market. Under assumptions

of convexity in the spot market problem, the first-order optimality conditions are sufficient and the

forward market problem is to maximize profit subject to these conditions.

The resulting optimization problem falls under the category of hard nonconvex problems called

mathematical programs with complementarity constraints1 or MPCCs [LPR96] (see appendix for

a statement of such problems). But defining a Nash equilibrium in forward decisions is a far

more difficult proposition because it requires solving for an equilibrium in which each agent solves

an MPCC. The resulting equilibrium is called a Nash-Stackelberg equilibrium because it requires

determining a Nash equilibrium in Stackelberg agents. Its solution is neither guaranteed to exist

nor known to be unique. Algorithms for obtaining such problems are notoriously dependent on an

initial solution [HMP00, YOA04] and currently have no global convergence theory.

In [YOA04], Yao et al. formulate an equilibrium problem with Stackelberg players using a

comprehensive model of the electrical network. Such a problem is often referred to as an equilibrium

problem with complementarity constraints or an EPCC. A common heuristic used to solve such

problems is an iterative method that passes the decisions of one agent to the next in a round-robin

fashion. Each agent’s decisions are decided by solving an MPCC. Such a heuristic may not always

converge. Moreover, the existence of equilibria in the original EPCC may not be taken for granted.

Furthermore, the scalability of such a methodology to accommodate uncertainty in the system

requires efficient methods to solve stochastic MPECs (see Chapter 4.)

1Complementarity constraints are generally of the form 0 ≤ G(x) ⊥ H(x) ≥ 0, where ⊥ implies that
[G(x)]i[H(x)]i = 0 for all i.

101
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From the earlier discussion, one may notice that the sequential decision-making leads to difficulty

because it requires making first-period decisions subject to complicating nonconvex constraints. We

propose a different approach that is based on each agent playing a single-period game in forward and

recourse-spot decisions. We term such a game a simultaneous stochastic Nash (SSN) game because

the decisions are made simultaneously. The games are constructed from stochastic programs; in

particular, we make a recourse-spot decision for each realization of uncertainty in the spot-market.

This has several consequences:

1. It introduces robustness in our decision-making process by introducing stochasticity in the

second-stage parameters.

2. Questions of existence and uniqueness questions may be answered for such a formulation.

More importantly, we may use these ideas to provide an important existence result for Nash-

Stackelberg equilibria.

3. The resulting equilibria are obtainable by a scalable globally convergent method.

Excluding the introduction, this chapter has 6 sections. §5.2 introduces the forward market

model proposed by Allaz [All92] and contrasts it with a complementarity-based formulation result-

ing from a simultaneous Nash game. §5.3 generalizes this framework to an oligopolistic two-period

electricity market model. In particular, we provide existence theory for the equilibria associated

with the simultaneous Nash game. The resulting stochastic complementarity problem is discussed

under different risk-neutrality assumptions.

In §5.4, an iterative decomposition method is presented for solving such a class of stochastic

equilibrium problems. An important characteristic of stochastic programming algorithms is their

ability to scale well with the number of scenarios. We demonstrate this property for a set of

problems in §5.5. We provide some computational evidence of the use of sampling within the

algorithm. Since the discussion of forward markets has been carried out in the context of electricity

markets, some insight is provided from a 6-node network in a variety of settings and different

assumptions of stochasticity. We also show how the obtained equilibria are also Nash-Stackelberg

equilibria (NSE).2

5.2 Modeling Spot-Forward Markets

Allaz [All92] provides a framework for analyzing spot-forward decisions in a general market. We

provide a description of this model and the resulting Nash-Stackelberg equilibrium. Then, we

provide a formulation for the SSN game and compare the solutions from each model. We use the

context of electricity markets without loss of generality.

Consider a simple two-node market in which there are n generating firms operating at node 1.

It is assumed that each firm sells as much as it generates. Each firm may sell its power at node 2

2Nash-Stackelberg equilibria refer to Nash equilibria between a set of agents, some of whom could be Stackelberg
leaders with respect to some set of followers.
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across a transmission line connecting the two nodes. The price of power at node 2 is given by

pω
s := aω

s −
∑

i

gω
i ,

where gω
i is the generation level of firm i for a realization ω and aω

s is the random intercept of the

price function. Specifically, ω lies in the sample-space Ω. The generation cost for firm i is assumed

to be linear and is given by cig
ω
i . The price of forwards is endogenously determined by a price

function based on forward decisions of all the firms. It is defined by

pf := af −
∑

fi,

where fi is the forward transaction of firm i and af is the intercept of forward-price function. The

expected spot and forward-market profit associated with firm i is denoted by πi and is defined by

πi := pffi + IE{pω
s (gω

i − fi) − cig
ω
i }. (5.1)

If we assume perfect foresight in the specification of forward prices, then we have pf = IEpω
s and

the resulting profit function πi may be written as

πi := IEω{(pω
s − ci)g

ω
i }.

5.2.1 The Spot-Market Equilibrium

In the spot-market, under realization ω, agent i maximizes his profit given forward positions fi and

the generation decisions of all other agents (given by g−i)3, as shown by the following parametric

optimization problem Bω
i :

Bω
i maximize

gω
i
≥0

(pω
s (gω

i − fi) − cig
ω
i ).

We define the spot-market equilibrium as follows.

Definition 5.1. Given a set of forward positions (f1, . . . , fn), the spot-market equilibrium is given

by (g∗1 , . . . , g
∗
n), where g∗i = (gω

i )∗ for all ω ∈ Ω, and (gω
i )∗ solves Bω

i . Furthermore, the generation

decisions are in accordance with the risk-neutrality constraint: af −∑i f
∗
i = IEω(aω

s −∑i(g
ω
i )∗).

Since this is a convex problem in gω
i , the equilibrium point is given by the following stochastic

mixed-linear complementarity problem LCP1:

LCP1
0 ≤ gω

i ⊥ 2gω
i +

∑
j 6=i g

ω
j + fi + (ci − aω

s ) ≥ 0, ∀i, ω
af −∑j fj = IEω(aω

s −∑j g
ω
j ).

Note that in LCP1, the first system refers to the first-order optimality conditions of the scenario-

based spot-market problem. The equality constraint prescribes that the expected spot-price is equal

3The notation g−i refers to the generation decisions of all agents except agent i.
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to the forward price.

The following result proves that for every set of forward decisions, a unique spot-market equi-

librium exists. Note that if the equilibrium problem could be written as an LCP, we could use

some matrix properties to show existence and uniqueness. However, in this particular case, we use

a different approach given that we have linear constraints as well.

Proposition 5.2. For a given set of forward decisions, the solution to the spot-market equilibrium

(definition 5.1) always exists.

Proof. We begin by stating some elementary results concerning fixed-point theory and linear com-

plementarity problems. Recall that the solution of a linear complementarity problem

LCP 0 ≤ z ⊥Mz + q ≥ 0

may be stated as

min(z,Mz + q) = 0.

Let g(z) := min(z,Mz + q). Then the solution of the zero-finding problem may be cast as a

fixed-point problem h(z) = z, where h(z) = z − g(z). Then, h(z) is given by

h(z) = max(0, (I −M)z − q).

The complementarity constraint in LCP1 may be written as

0 ≤ gω
i ⊥ gω

i + (
∑

j

gω
j − aω

s ) + fi + ci ≥ 0, ∀i, ω.

One possible solution to the under-determined system af −∑j fj = IEω(aω
s −∑j g

ω
j ) is given by

(aω
s −

∑

j

gω
j ) = af −

∑

j

fj , ∀ω ∈ Ω.

Therefore, the complementarity system becomes

0 ≤ gω
i ⊥ gω

i + (
∑

j

fj − af ) + fi + ci ≥ 0, ∀i, ω.

But a solution to such a problem always exists and is given by

gi
ω = max(0,−(

∑

j

fj − af ) − fi − ci), ∀ω, i.

�

5.2.2 A Nash-Stackelberg Equilibrium (NSE)

The Stackelberg approach solves for an equilibrium in forward contracts subject to equilibrium in

the spot-market (as specified by LCP1). The ith firm then solves Gi in g and fi while taking all
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the other forward positions f−i as inputs:

Gi(f
−i) maximize

g≥0,fi

IEω{(pω
s − ci)g

ω
i }

subject to LCP1(g, fi; f−i).

The problem Gi is an ill-posed nonlinearly constrained optimization problem: it contains a nons-

mooth equilibrium or complementarity constraint. The resulting problem is often called a mathe-

matical program with complementarity (or equilibrium) constraints or MPCC (or MPEC) [LPR96].

Apart from the complementarity constraint being nonconvex, it also lacks an interior, implying that

the Mangasarian-Fromovitz constraint qualification does not hold at any feasible point. The re-

sulting Nash equilibrium problem is defined as follows.

Definition 5.3. (EPCC1): The Nash-Stackelberg equilibrium in fi is an equilibrium in forward

decisions {f∗
1 , . . . , f

∗
n}, where f∗

i solves the Stackelberg problem Gi(f
−i,∗):

f∗
i = SOL(Gi(f

−i,∗)), i = 1, . . . , n. (5.2)

Such a problem is a multi-leader multi-follower game and has been recently termed an equilib-

rium problem with equilibrium (complementarity) constraints or an EPEC (or EPCC). This leads

us to the natural notions of EPCC-feasibility and EPCC-optimality.

Definition 5.4.

1. The vector (f, g) is EPCC-feasible if (f, g) is a solution of LCP1.

2. The vector (f, g) is EPCC-optimal if (fi, g) is a strong-stationary4 point of Gi(f
−i) for all i.

These notions are important in helping us characterize the equilibria obtained by solving related

games. There are no globally convergent algorithms for such problems. Other commonly used

approaches include a Jacobi-iteration approach that solves each generator’s problem and passes the

solution to the next generator with the hope that the iterates converge to an equilibrium point.

Scholtes [Sch01] shows that such approaches may result in cycling. However, we use this approach

to solve EPCC1 in §5.2.4.

5.2.3 A Simultaneous Stochastic Nash Equilibrium (SSNE)

The nonconvexity and ill-posedness of each generator’s problem in the previous approach is prob-

lematic. It prevents the construction of globally convergent algorithms for finding an equilibrium.

Moreover, existence and uniqueness answers are less easily provided.

An easier problem arises if we remove the restriction that the first-period decisions should

be subject to a complementarity constraint. Instead, we require that agents make forward and

recourse-based spot decisions simultaneously. The intention is to find an equilibrium point in

forward and spot-decisions.

4We postpone defining strong-stationarity till section 5.2.5.
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It is important to consider the effect on the structure of the problem. In the NSE framework,

agents make decisions in two stages. In the SSNE framework, the decisions are made in a single

period yet agents solve recourse problems, providing an implicit two-stage structure to the decision-

making. More importantly, such a structure does not adversely impact obtaining an algorithm as we

shall show. Moreover, the SSNE has a relationship with the original EPCC: it is an EPCC-feasible

solution. Under some circumstances, it may even be an NSE or an EPCC-optimal solution.

We term this game a simultaneous stochastic Nash game and term the equilibrium a simulta-

neous stochastic Nash equilibrium or SSNE and define it as follows.

Definition 5.5. Simultaneous Stochastic Nash Equilibrium (SSNE): Let (gω
i )∗ for all ω ∈ Ω be

denoted by g∗i . Then a simultaneous stochastic Nash equilibrium is defined as a set of (g∗i , f
∗
i ), i =

1, . . . , n, where firm i solves a spot-market problem Pω
i for each ω ∈ Ω and a forward-market

problem P f
i simultaneously. The two problems are defined as

Pω
i maximize

gω
i
≥0

(pω
s (gω

i − fi) − cig
ω
i )

and

Pf
i maximize

fi

(pf − IEωp
ω
s )fi.

However, if one imposes a risk-neutrality constraint pf
i = IEωp

ω
s , it suffices to consider a game

in which agent i solves

Pω
i maximize

fi,gω
i
≥0

(pω
s (gω

i − fi) − cig
ω
i )

subject to pf = IEpω
s .

The existence of an equilibrium to this game may be proved constructively.

Lemma 5.6. The Nash equilibrium problem in which generator i simultaneously solves P f
i and Pω

i

for each ω ∈ Ω, has a solution given by f = IEω(gω − qf/n), where gω is the unique solution of an

LCP and qf := af − IEωa
ω
s .

Proof. We shall prove this constructively by providing a solution for LCP1. The system

IEeT gω − eT f + af − IEωa
ω
s = 0

is underdetermined and one solution to this system may be obtained by stating that

eT f = IEωe
T gω + af − IEωa

ω
s = eT IEω(gω − qf/n),

where qf := af − IEωa
ω
s . Therefore, a feasible solution to the equality constraints is f = IEω(gω −
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qf/n). It suffices to show that the resulting complementarity problem

0 ≤ gω ⊥Mgω + IEω(gω − qf/n) + qω ≥ 0, ∀ω (5.3)

is solvable, where M = I + eeT . This may be expanded as

0 ≤




gω1

gω2

...

gωn




⊥




(M + pω1
I) pω2

I . . . pωn
I

pω1
I (M + pω2

I)
. . .

...
...

. . .
. . . pωn

I

pω1
I . . . pωn−1

I (M + pωn
I)







gω1

gω2

...

gωn




+




q̄ω1

q̄ω2

...

q̄ωn




≥ 0

or 0 ≤ g ⊥ Mg + q ≥ 0, (5.4)

where M is clearly a P matrix (a matrix with positive principal minors). This in turn allows us to

claim that the resulting solution of (5.4) is unique. �

In the EPCC approach, generator imay control fi and g while being given f−i. In this approach,

however, one may obtain g and f by solving the mixed LCP given by LCP1 directly. The following

trivial result relates the two equilibria.

Theorem 5.7. If (gLCP , fLCP ) solves LCP1, then the SSNE, (gLCP , fLCP ), is an EPCC-feasible

solution.

Proof. This follows from noting that a solution to LCP1 is feasible for all the generator’s problems.

�

Essentially, the NSE, as one may expect, is a refinement of the SSNE.

5.2.4 From SSNEs to NSEs

An important question is when is an SSNE an NSE. Clearly, all NSEs are SSNEs. But the reverse

characterization does not always hold and requires a deeper discussion of NSEs. Recall that an

NSE requires that every agent solves a Stackelberg problem or a mathematical program with

complementarity constraints. Consider such a problem denoted by MPCC:

MPCC minimize
x,y,w

f(x, y, w)

subject to
c(x, y, w) = 0,

0 ≤ y ⊥ w ≥ 0,

in which f and c represent the objective function and a vector of constraints. Both are assumed to

be twice continuously-differentiable over x ∈ ℜn and y and w ∈ ℜm. The specification of necessary

optimality conditions requires the point to subscribe to a regularity condition. One such condition

is the linear independence constraint qualification (LICQ).
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Since MPCCs do not satisfy the LICQ at any feasible point, a different tack is taken in specifying

the stationarity conditions: one defines a relaxed problem denoted by RNLP. This relaxed problem

uses the active inequality constraints in the complementarity system and represents them as equality

constraints in the relaxed problem. In addition, the complementarity constraint is dropped. For

example, if the solution to the complementarity constraint 0 ≤ wj ⊥ yj ≥ 0 is given by w∗
j > 0 = y∗j ,

then we use constraints w∗
j ≥ 0 and y∗j = 0 and drop w∗

j y
∗
j = 0. We now define RNLP at z̄ using a

form adopted by [dMFNS05]:

RNLP minimize
x,y,w

f(x, y, w)

subject to

c(x, y, w) = 0

(y)j = 0, (w)j ≥ 0, j ∈ Iy(z̄)

(y)j ≥ 0, (w)j = 0, j ∈ Iw(z̄)

(y)j ≥ 0, (w)j ≥ 0. j ∈ Iy(z̄) ∩ Iw(z̄).

The index sets Iy(z̄) and Iw(z̄) are defined as {j : ȳj = 0} and {j : w̄j = 0}, respectively. We

reiterate that the crucial difference between RNLP and MPCC is in the treatment of complemen-

tarity constraints. When ȳj = 0 < w̄j , it replaces the constraint wjyj = 0 by yj = 0 and wj ≥ 0.

However, when ȳj = 0 = w̄j , yjwj = 0 is replaced by yj , wj ≥ 0. In all these instances, the gradients

of the active constraints are linearly independent. The term relaxation emerges from the fact that

the feasible region of MPCC, namely FMPCC , is contained in the feasible region of FRNLP (that

is FMPCC ⊆ FRNLP ). Furthermore, we may define an MPCC-LICQ (MFCQ) as follows.

Definition 5.8 (MPCC-LICQ (MFCQ)). The MPCC satisfies an MPCC-LICQ (MFCQ) at a

feasible point z̄ if RNLP, the relaxed NLP, satisfies the LICQ (MFCQ) at z̄.

This allows us to define a strong stationary point.

Definition 5.9 (Strong Stationarity). A point (x∗, y∗, w∗, λ∗, π∗) is said to be a strong stationary

point of MPCC if it is a KKT point of RNLP. In particular, it satisfies the first-order conditions:



∇xf(z∗)

∇wf(z∗)

∇yf(z∗)


−



∇xc(z

∗)

∇wc(z
∗)

∇yc(z
∗)




T

π∗ −


λ∗w
λ∗y


 = 0, (5.5)

[λ∗w]j , [λ
∗
y]j ≥ 0, i ∈ Iy(z∗) ∩ Iw(z∗) (5.6)

c(z∗) = 0, (5.7)

w∗
j [λ∗w]j = 0, (5.8)

y∗j [λ∗y]j = 0, (5.9)

z∗ ∈ FMPCC . (5.10)

If z∗ satisfies MPCC-LICQ, then (λ∗, π∗) is unique.

We may now refine the notion of Nash-Stackelberg game.
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Definition 5.10. (Strong-Stationary Equilibrium Point) A Nash-Stackelberg equilibrium in forward

decisions is defined as a strong-stationary equilibrium point in forward decisions {f∗
1 , . . . , f

∗
n}, where

(f∗
i , g

∗, λ∗i ) is a strong-stationary point of Gi(f
−i,∗). If Gi(f

−i,∗) satisfies the MPCC-LICQ for

i = 1, . . . , n, then (λ∗1, . . . , λ
∗
n) is unique.

The remainder of this section focuses on proving an important result: the SSNE is indeed an

NSE. Proving such a result is not always possible and entails answering the following question:

Given that we have a feasible point for each agent problem, is the point a strong-stationary point?

This question requires the construction of a feasible set of multipliers for each agent problem. Our

discussion is restricted to the deterministic case but is easily extended to account for stochasticity.

Recall that the SSNE requires the solution of the following mixed-complementarity problem:

SSNE
0 ≤ g ⊥ Mg + f + (b− a) ≥ 0,

a− eT g = af − eT f.

The NSE is given by an equilibrium problem with complementarity constraints (EPCC). In partic-

ular, an EPCC represents an equilibrium problem in forward decisions fi in which agent i solves

MPCC(f−i) minimize
g,fi

1
2g

T
i Bigi + cTi gi

subject to
0 ≤ g ⊥ Mg + f + (b − a) ≥ 0,

a− eT g = af − eT f,

where M = I + eeT and Bi is defined in accordance with gTBig =
∑

j gigj + g2
i . Similarly, ci is

defined by [ci]i = bi − a and [ci]j = 0, j 6= i. We assume without loss of generality that the price

functions of forwards and generation are identical as specified by af = a.

Definition 5.11. Let (ḡ, f̄) be an SSNE. Then the index sets IM and Ig are defined by

IM = {i : [Mḡ + f̄ + q]i = 0}
and Ig = {i : [ḡ]i = 0}.

Then we define a strong-stationary point of the EPCC as (g∗, f∗), where (g∗, f∗
i ) is a strong-

stationary point of MPCC(f−i,∗), which along with λ∗i is given by

(
Big + ci

0

)
−
(
MT

IT
i

)
λM −

(
I

0

)
λg −

(
−e
e

)
λE = 0

λM
i , λg

i ≥ 0, i ∈ IM ∩ Ig

[Mḡ + f̄ + q]iλ
M
i = 0

[ḡ]iλ
i
g = 0

a− eT ḡ = af − eT f̄ .

Theorem 5.12. Assume that the SSNE satisfies strict complementarity, implying that IM (ḡ, f̄) ∩
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Ig(ḡ, f̄) = ∅, and that the agent problems satisfy MPCC-LICQ. Then the vector (ḡ, f̄i) represents

a strong-stationary equilibrium point of the EPCC(f̄−i,∗) with a feasible multiplier vector λ∗i .

Proof. We must show that given a solution to the mixed-complementarity problem, we can construct

a λ∗i that is feasible with regard to the strong-stationarity conditions. Under the assumption of

strict complementarity, we evade the problem of ensuring nonnegative multiplers for biactive indices

(indices from the set IM (ḡ, f̄) ∩ Ig(ḡ, f̄)).

We consider the three possible cases arising from different possibilities of index sets.

1. Ig = ∅: This implies that λg = 0 by the complementarity condition. Then, we may obtain

λM and λE by solving

(
MT −e
IT
i 1

)(
λM

λE

)
=

(
Big + ci

0

)
.

By MPCC-LICQ, the active constraints are linearly independent, implying that the system

is nonsingular.

2. IM = ∅ : This follows in an identical fashion but the system to be solved is

(
I −e

1

)(
λg

λE

)
=

(
Big + ci

0

)

and λM = 0.

3. IM ∩ Ig = ∅: We note that [λM ]i = 0 for i ∈ {1, . . . , n} ∩ Ic
M and [λg]i = 0 for i ∈

{1, . . . , n} ∩ Ic
g . The remaining multiplier vector may be obtained from the following system:



M̄ −e

I −e
IT
i 1






λc

M

λc
g

λE


 =

(
Big + ci

0

)
.

Again by invoking MPCC-LICQ, we may claim that the system is nonsingular.

The uniqueness of the multiplier set follows from the fact that the systems are square and nonsin-

gular. �

This is an important result because in general it is difficult to be certain of the existence of

Nash-Stackelberg equilibria. However, in this context, under the assumption of MPCC-LICQ and

strict complementarity for all the agent problems, we may claim the existence of a Nash-Stackelberg

equilibrium point.

5.2.5 A Numerical Comparison

This subsection focuses on comparing an SSNE with an NSE. We consider an equilibrium problem

with n players with the cost of generation b specified as zero or as a random vector. The price
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Table 5.1

Computing SSNE and NSE with zero costs

n ‖gssne − g∗‖ ‖fssne − f∗‖ ‖grand − g∗‖ ‖frand − f∗‖ tssne tnse
ssne tnse

rand

5 3.7e-09 3.7e-09 1.8e-2 1.8e-2 0.01 0.250 0.351
10 1.9e-09 1.9e-09 3.7e-2 3.7e-2 0.03 0.360 0.752
15 8.3e-10 8.3e-10 6.1e-2 6.1e-2 0.01 0.621 1.532
20 4.2e-10 4.2e-10 7.8e-2 7.8e-2 0.05 0.791 1.613
25 2.4e-10 2.4e-10 1.0e-1 1.0e-1 0.04 1.041 2.074
30 1.5e-10 1.5e-10 1.5e-1 1.5e-1 0.03 1.282 2.484
35 9.4e-11 9.4e-11 1.8e-1 1.8e-1 0.06 1.482 3.045
40 6.5e-11 6.5e-11 1.8e-1 1.8e-1 0.07 1.892 3.546

Table 5.2

Computing SSNE and NSE with random costs

n ‖gssne − g∗‖ ‖fssne − f∗‖ ‖grand − g∗‖ ‖frand − f∗‖ tssne tnse
ssne tnse

rand

5 3.7e-09 3.7e-09 1.8e-02 1.8e-02 0.01 0.250 0.351
10 1.9e-09 1.9e-09 3.7e-02 3.7e-02 0.03 0.360 0.752
15 8.3e-10 8.3e-10 6.1e-02 6.1e-02 0.01 0.621 1.532
20 4.2e-10 4.2e-10 7.8e-02 7.8e-02 0.05 0.791 1.613
25 2.4e-10 2.4e-10 1.0e-01 1.0e-01 0.04 1.041 2.074
30 1.5e-10 1.5e-10 1.5e-01 1.5e-01 0.03 1.282 2.484
35 9.4e-11 9.4e-11 1.8e-01 1.8e-01 0.06 1.482 3.045
40 6.5e-11 6.5e-11 1.8e-01 1.8e-01 0.07 1.892 3.546

functions at the spot and forward market have the same intercept, a = af . For purposes of

simplicity, we assume a single scenario, implying that |Ω| = 1.

The SSNE is given by a mixed-LCP and is solvable by PATH [DF93]. The NSE is given by

an EPCC and may be solved by a Jacobi iteration. This involves solving the MPCC for the first

agent and passing its forward decision to the next agent and so on. This method may not always

converge. We consider two different starting points. The first starting point is the SSNE. The

second starting point is randomly chosen.

We show the results for the zero and random costs in Tables 5.1 and 5.2. We note that the

SSNE is an NSE in that the agents do not deviate from it. However, from a random starting point,

the algorithm may not always converge toward the neighborhood of the SSNE. This is expected

because the Jacobi iteration has no global convergence theory and is merely a heuristic for solving

the problem.

In terms of computational effort, there is an immense difference when one raises the number

of agents from 5 to 40. We see that while the growth in computational cost is similar in ratio,

it is nearly 30 times more expensive for a small deterministic problem. In a stochastic large-scale

setting, the Jacobi method would be very computationally intensive.
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5.3 Application: Electricity Forward Markets

§5.2 introduced a 2-node spot-forward market model in a simple setting with n producers and

infinite capacities. In this section, we place the problem in the context of electricity markets.

Technically speaking, alternating-current (AC) power flows across an electrical path in a net-

work and is comprised of real and reactive power. The former (measured in Watts) is consumed

by the resistive appliances on the network. The latter (measured in Volt-Amps-Reactive or VARs)

is required by inductive or capacitive loads. Such a model requires the specification of real and

reactive power flows at each node as well as the voltage magnitudes and phase angles. Generally,

only physical linkages between nodes or buses are considered and this node-linkage specification is

denoted by the node-admittance matrix. The admittance characteristics of the linkages are articu-

lated through the branch-admittance matrix. Our analysis is restricted to high voltage transmission

systems, allowing us to assume that the voltage angles are small and the voltage magnitudes are

constant. Moreover, the losses are considered to be negligible. The resulting power flow equations

are often termed DC load flow equations. Further details may be found in [SCTB88]. Throughout

our analysis, we use DC load flow analysis to specify flows.

5.3.1 Spot-Market Equilibrium

Consider an n-node network with a firm at each node. We assume that firm i has a generator

at node i but may sell to all other nodes in the network (we assume a fully connected grid but

this assumption is without loss of generality). The sales by firm i (housed at node i) to node j

are denoted by sij . We collectively denote the sales decisions by firm i by si,. = (sω
i1, . . . , s

ω
in).

In addition, sω
−i refers to the generation decisions of all agents excepting i, namely, (sω

j,., j 6= i).

Suppose that the nodal demand function at node j under realization ω is given by

pω
j (s.,j) := aω

j −mω
j

∑

i

sω
ij . (5.11)

Suppose firm i generates gω
i units of power and sells sω

ij units of power to node j under realization ω.

Also the capacity on sales and generation is denoted by Cω
ij and Gω

i . The capacity and conservation

constraints are given by gω
i ≤ Gω

i and gω
i =

∑
j s

ω
ij , respectively. The resulting firm problem is a

stochastic quadratic program:

Bω
i maximize

sω
i,.

,gω
i

h(sω
i,., g

ω
i )

subject to

gω
ij −

∑
j s

ω
ij = 0 : ψi

Gω
i − gω

ij ≥ 0 : θij

sω
ij ≥ 0 : γω

ij ∀j
Cω

ij − sij ≥ 0 : αω
ij , ∀j,
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where h(sω
i,., g

ω
i ) is defined as

h(sω
i,., g

ω
i ) := pi(s

ω
i,.)(s

ω
ii − fii) +

∑

k 6=i

(pω
k (sω

k,.))(s
ω
ik − fik)

− cωi g
ω
i − 1

2
dω

i (gω
i )2.

We may eliminate the generation variable gω
i by using the conservation constraints to obtain a

reduced model:

maximize
sω

i,.

h(sω
i,.)

subject to

Gω
i −∑j s

ω
ij ≥ 0 : ψω

i

sω
ij ≥ 0 : γω

ij ∀j
Cω

ij − sω
ij ≥ 0 : αω

ij , ∀j,

where h(sω
i,.) is defined as

h(sω
.,i) := pi(s

ω
.,i)(sii − fii) +

∑

k 6=i

(pω
k (sω

.,k))(sω
ik − fik)

− cωi
∑

j

sω
ij −

1

2
dω

i

∑

j

(sω
ij)

2.

In addition to the firm problems, the firms have to ensure that they satisfy risk-neutrality con-

straints. We may now define the spot-market Nash equilibrium.

Definition 5.13. Let s∗i denote (sω
i )∗ for all ω ∈ Ω . Then, given forward decisions (fi), the Nash

equilibrium in sales decisions is given by (s∗1, . . . , s
∗
n), where (sω

i )∗ is a solution of Bω
i for all ω ∈ Ω

and

af
j −mf

j

∑

i

fij = IE(aω
i −mω

j

∑

j

(sω
ij)

∗), ∀j. (5.12)

This equilibrium point may be obtained by solving the set of sufficient stationarity conditions

associated with each problem:

0 ≤ sω
ij ⊥ 2mω

j s
ω
ij +

∑

k 6=j

mω
j s

ω
kj +mω

j fij + cωi − aω
j = γij ≥ 0, ∀j, i

af
j −mf

j

∑

i

fij = IE(aω
j −mω

j

∑

i

sω
ij), ∀j.
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This set may be compactly written as the linear complementarity problem LCP2:

LCP2

0 ≤



sω

ψω

αω


 ⊥




M̂ω ĒT I

−Ē
−I






sω

ψω

αω


+Nωf +



ℓω

Gω

Cω


 ≥ 0

Bff − IEDωs
ω + (IEaω − af ) = 0,

where

ℓωij = cωi − aω
j , Ē =




eT

. . .

eT


 , Nω =




diag(mω)

 , Bf =

(
diag(mf ) . . . diag(mf )

)
,

Dω =
(
diag(mω) . . . diag(mω)

)
and M̂ω = M̄ω +




dω
1 I

. . .

dω
nI


 .

A transmission provider is now introduced into the framework. He maximizes transmission revenue

subject to meeting transmission constraints as shown in the transmission provider’s problem T (s),

where s collectively refers to the sales decisions (see below). Let the price of transmitting a unit

across link (ij) for realization ω be given by wω
ij with the corresponding flow being denoted by yω

ij .

The linkage capacity during realization ω is given by tωij .

Tω maximize
∑

i,j(w
ω
ij)

T yω
ij

subject to
tωij − yω

ij ≥ 0 : λω
ij

tωij + yω
ij ≥ 0 : λω

ji, ∀i, j.

The ith generator’s problem, Bω
i , is now modified to the following:

maximize
sω

i,.

h(sω
i,.)

subject to

∑
j s

ω
ij −Gω

i ≤ 0 : θω
ij

sω
ij ≥ 0 : γω

ij ∀j
Cω

ij − sij ≥ 0 : αω
ij , ∀j,

where h(si,.) is defined by

h(sω
i,.) := pω

i (si,.)(s
ω
ii − fii) +

∑

k 6=i

(pω
k (sω

k,.) + wω
ik)(sω

ik − fik)

− cωi
∑

j

sω
ij −

1

2
dω

i (
∑

j

sω
ij)

2.
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Figure 5.1 Finite generation capacities and quadratic costs of generation

The net flow across linkage (ij) during realization ω is given by

yω
ij = sω

ij − sω
ji, ∀j, i. (5.13)

We may now provide a revised definition for the spot-market Nash equilibrium.

Definition 5.14. The Nash equilibrium in sales, generation, and transmission decisions is given

by the tuples (s∗1,., . . . , s
∗
n,.), (g∗1 , . . . , g

∗
n), and (y∗1,., . . . , y

∗
n,.), where s∗i,. is a solution of Bω

i for all

ω ∈ Ω, (yω)∗ solves Tω and

af
i −mf

i

∑

j

fji = IE(aω
i −mω

i

∑

j

sω
ji), ∀i. (5.14)

The equilibrium point may be obtained by solving a larger mixed-complementarity problem

LCP3:

LCP3
0 ≤




sω

ψω

λω

αω


 ⊥




M̂ω ĒT F̄T I

−Ē
−F̄
−I







sω

ψω

λω

αω


+




I

 f +




ℓω

Gω

tω

Cω


 ≥ 0

Df − IEDωs
ω + (IEaω − af ) = 0.

Suppose that the kth row of F̄ corresponds to link (i, j). Then F̄k,i∗n+j = −F̄k,j∗n+i = 1.
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Lemma 5.15. The matrix M̄3 is positive semidefinite, where

M̄3 :=




M̄ ĒT F̄T I

−Ē
−F̄
−I


 .

Proof. This follows from the definition of M̄3 and the positive definiteness of M̄ . �

We conclude this section with an existence theorem for the spot-market equilibrium.

Lemma 5.16. Given a set of forward decisions, the solution to the spot-market equilibrium as

specified by definition (5.13) exists.

Proof. The proof follows from lemma 5.2. �

Having shown the existence of a spot-market equilibrium, we introduce the Nash-Stackelberg

equilibrium in the next section.

5.3.2 A Nash-Stackelberg Equilibrium

The Nash-Stackelberg equilibrium in forward decisions requires each generator to maximize the

expected profit from forward and spot positions subject to the following complementarity constraint

and risk-neutrality constraint:

SCP1
0 ≤ zω ⊥ Mωzω +Nωf + qω ≥ 0 ∀ω

IEωW
ωzω −Bff + qf = 0.

Agent i’s optimization problem is

Di(f
−i) maximize

fi,z
IE(1

2z
ω,TQωzω + (rω)T zω)

subject to
0 ≤ zω ⊥ Mωzω +Nωf + qω ≥ 0 ∀ω

IEωW
ωzω −Bff + qf = 0,

where the cost function is defined by (5.15):

1

2
(zω)TQωzω + (rω)T zω := pω

i (si,.)s
ω
ii +

∑

k 6=i

(pω
k (sω

jk) + wω
ik)sω

ik − cωi g
ω
i − 1

2
dω

i (gω
i )2. (5.15)

We may now define the Nash-Stackelberg equilibrium as a solution to the equilibrium problem with

complementarity constraints (EPCC2).

Definition 5.17. EPCC2: The Nash-Stackelberg equilibrium in forward decisions is given by a

tuple (f∗
1 , . . . , f

∗
n), where (f∗

i , z
∗) is a solution of Di(f

−i,∗).

In §5.2.2, we discussed how such equilibrium problems are often termed EPCCs or stochastic

EPCCs to be precise. The Nash-Stackelberg equilibrium point is an EPCC-optimal point.
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5.3.3 A Simultaneous Stochastic Nash Equilibrium

We begin by defining an SSNE in the context of a spot-forward electricity market. Such a definition

needs an extension of the definition of the forward-market problem P f
i for i = 1, . . . , n. In the earlier

section, we avoided having to define this problem by using the risk-neutrality constraint (which is

a sufficient condition for optimality in the forward-market problem). The forward-market problem

is given by

Bf
i maximize

fi,.

(pf
i − IEωp

ω
i )fi,

where pf
i = (af

i −mf
i

∑
j fji) and pω

i = (aω
i −mω

i

∑
j s

ω
ji).

Definition 5.18. An SSNE is defined as a set of (s, f, y), where generator i solves a spot-market

problem Bω
i for all ω ∈ Ω and a forward market problem Bf

i , subject to a risk-neutrality constraint.

Moreover, the transmission provider solves the problem Tω for all ω ∈ Ω.

If we insist that the expected price of spot-sales is equal to the price of forwards, then generator

i only solves Bs
i (f) with the equilibrium point being constrained by the risk-neutrality constraint.

Lemma 5.19. Consider a game in which generator i solves Bω
i , ∀ω ∈ Ω and the transmission

provider solves Tω, ∀ω ∈ Ω. Then a Nash equilibrium exists.

Proof. Follows from lemma 5.6. �

5.3.4 Relaxing the Risk-neutrality Constraint

We now consider the problem that emerges from relaxing the risk-neutrality constraint. In effect,

our complementarity problem SCP1 is modified to be

SCP2
0 ≤ zω ⊥ M̄ωzω +Nωf + q̄ω ≥ 0 ∀ω

IEWωzω −Bff + qf = 0,

where Bf is symmetric positive definite. The resulting forward positions may then be stated as

f = (Bf )−1
K∑

j=1

pωjWωjzωj + (Bf )−1qf .

This expression may be substituted into the complementarity constraint, resulting in a set of

complementarity constraints

0 ≤ zωi ⊥ M̄ω
i z

ωi + q̄ω
i ≥ 0, (5.16)

where M̄ω
i = (Mωi + pωiNωi(Bf )−1Wωi)

and q̄ω
i =

∑

j 6=i

pωjNωj (Bf )−1Wωjzωj + qωi + pωi(Bf )−1qf
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Figure 5.2 Uncertainty in capacity and demand functions

for i = 1, . . . , n. In matrix form, this may be represented as 0 ≤ z ⊥ M̄z + q̄ ≥ 0, where M̄ and q̄

are given by




Mω1 + pω1N̄ωiWω1 pω2N̄ω2Wω2 . . . pωK N̄ωKWωK

pω1N̄ω1Wω1 Mω2 + pω2N̄ω2Wω2 . . . pωK N̄ωKWωK

...
. . .

pω1N̄ω1Wω1 pω2N̄ω2Wω2 . . . MωK + pωK N̄ωKWωK




and




qω1 + (Bf )−1qf

...

qωK + (Bf )−1qf


 , and where N̄ωi = Nωi(Bf )−1.

The following theorem provides a condition for solvability of the problem.

Proposition 5.20. Suppose there exists a z such that M̄z + q̄ ≥ 0 and z ≥ 0. Then if M̄ is a P0

matrix, an equilibrium point exists.

Proof. It suffices to show that M̄ is a P0 matrix. The matrix M̄ may be decomposed as follows:

M̄ =




Mω1

. . .

MωK


+




m̄ω1Wω1 . . . m̄ωKWωK

...
...

...

m̄ω1Wω1 . . . m̄ωKWωK




= M̄1 + M̄2.

The matrix M̄1 is positive semidefinite because Mω
1 is positive semidefinite. It suffices to show that
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M̄2 is a positive semidefinite matrix:

xT M̄2x ≥ min
j

{m̄ωj}




x1

...

xn




T 


Wω1 . . . WωK

...
...

...

Wω1 . . . WωK







x1

...

xn




≥ (min
j

{m̄ωj})2




x1

...

xn




T 


W . . . W
...

...
...

W . . . W







x1

...

xn




= (min
j

{m̄ωj})2(x1 + . . .+ xn)TW (x1 + . . .+ xn)

≥ 0.

The last inequality follows from minj{m̄ωj} > 0 and W � 0. Therefore M̄1 + M̄2 � 0. �

5.4 A Decomposition-based Splitting Algorithm

The past section has introduced two stochastic complementarity problems SCP1 and SCP2. The

important distinction between the two problems lies in the singularity of Bf . In this section, we

propose an algorithm for solving a mixed-complementarity problem with a singular Bf .

We present an algorithm based on solving the mixed-LCP through a sequence of LCPs. Each

LCP is stochastic in nature and can be arbitrarily large. We employ a decomposition-based iter-

ative method for solving this LCP. We refer to this method as the Decomposition and Splitting

(DS) method. In §5.4.1 and 5.4.2, we present the DS algorithm and prove its convergence. The

computational burden may be lightened considerably by the use of sampling, and these ideas are

discussed in section 5.4.3. Finally, in section 5.4.4 we provide a description of the performance of

the DS method and compare it with solving the problem directly using PATH.

5.4.1 The DS Algorithm: Description and statement

We begin by stating the complementarity problem of interest:

SCP1
0 ≤ zω ⊥ M̄ωzω +Nωf + q̄ω ≥ 0 ∀ω

IEWωzω − Bff + qf = 0.

We solve the stochastic optimization problem by decomposing the problem by scenarios. This

ensures that when the number of scenarios grows, the problem may still be solved efficiently.

However, problem SCP1 is not immediately scenario-separable because

1. the equality constraints contain an expectation term;

2. the complementarity constraint contains the first-stage forward decisions f .
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We propose an iterative method for the solution of such a problem and begin by restating the

problem compactly. By denoting

z =




zω1

...

zωK


 , M̄ =




M̄ω1

. . .

M̄ωK


 , N =




Nω1

...

NωK


 q̄ =




qω1

...

q̄ωK


 ,W =




pω1(Wω1)T

...

pωK (WωK )T




T

,

we may write SCP1 as

SCP1
0 ≤ z ⊥ M̄z +Nf + q̄ ≥ 0

Wz − Bff + qf = 0.

Our intention is to construct a sequence of (fk, zk) such that (fk, zk) → (f∗, z∗) as k → ∞, where

(f∗, z∗) is a solution to SCP1. Since Bf is singular, we may not express f as an explicit function

of zk. However, we may rewrite the risk-neutrality constraint at the solution as

(Bf + I)f∗ = Wz∗ + f∗

Using the same idea at the kth iterate, we obtain

(Bf + θI)fk = Wzk + θfk−1, (5.17)

where θ > 1. This allows us to write fk as

fk = (Bf + θI)−1(Wzk + fk−1)

= (Bf + θI)−1Wzk + (Bf + θI)−2Wzk−1 + (Bf + θI)−2fk−2

= (Bf + θI)−1Wzk + · · · + (Bf + θI)−kWz1 + (Bf + θI)−kf0. (5.18)

We may now define SCPk
1 as

SCPk
1 0 ≤ zk ⊥ M̂zk + q̄k ≥ 0,

where5

M̂ = M̄ +N(Bf + θI)−1W

and q̄k = (Bf + θI)−2Wzk−1 + · · · + (Bf + θI)−kWz1 + (Bf )−1qf + q̄.

The statement of the outer-loop of the DS algorithm follows.

1. Initialize: Let k = 0 and let z0 ≥ 0 be an arbitrary vector in IRn and f0 = 0.

2. Major: Solve SCPk
1 to obtain zk, and define fk by (5.18).

5Note that if Bf is nonsingular, then we may write f as (Bf )−1(Wz + qf ) and the resulting matrices cM and q̄k

may be written as cM = M̄ + N(Bf )−1W and q̄k = (Bf )−1qf + q̄.
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3. Termination: If ‖zk − zk−1‖ < ǫ, terminate; else k := k + 1 and return to step 2.

This algorithm does not specify how one may solve SCPk
1 . Notice that SCPk

1 is a linear com-

plementarity problem given by LCP(M̂, qk) in which the matrix M̂ may be written as B + C,

where

B = M̄ + δI and C = M̂ −B.

The specification of B in this fashion allows us to claim the following trivial result.

Lemma 5.21. The matrix B is positive definite.

Proof. Follows immediately by definition and by noting that B is positive semidefinite, where

B′ =




Mω1

. . .

Mωn




�

SCPk
1 may now be written as

SCPk
1 0 ≤ y ⊥ By + Cy + c ≥ 0.

Such a decomposition of matrices is often called a splitting and is discussed extensively in [CPS92]

in the context of LCPs. The idea is to solve this inner problem using an iterative method that

solves a sequence of problems LCP(B, ck), where ck = Cyk−1. The benefit of solving the original

subproblem in this fashion is that LCP(B, ck) is separable into scenario-based LCPs. This is ensured

by an appropriate choice of B.

5.4.2 The DS Method: Convergence Theory

This section provides convergence theory for the proposed decomposition method. There are two

parts to proving convergence of this method:

1. Prove that the constructed sequence (fk, zk) does indeed converge to (f∗, z∗).

2. Prove that an iterative-splitting method for solving the subproblem, viz. SCPk
1 , is convergent.

Before proceeding with the first part, we show that the sequence (zk, fk) stays bounded. The

construction of this sequence requires the solution of the sequence SCP1
k(M̂, q̄k), which gives us the

sequence {zk}. We may then obtain fk from (5.17), assuming that f0 is given. In showing some

properties of this sequence, we need to show some properties of the underlying matrix M̄ .

Lemma 5.22. The matrix M̄ in SCPk
1 is a copositive R0 matrix. The solution zk of SCPk

1 is

therefore bounded. Furthermore, problem SCPk
1 is always solvable.
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Proof.

1. The matrix M̄ is R0 if SOL(0, M̄) = {0}. But this follows from noting that if q̄ = 0, then

the generation and transmission capacities are zero. This implies that the sales, generations,

and transmissions have to be zero. In other words, the only solution of SOL(0, M̄) is the zero

vector and M̄ is an R0 matrix. The boundedness of the solution set of the complementarity

problem follows from proposition 3.9.23 in [CPS92].

2. The agent problems Bi and T are convex over a compact set for all specifications of f . There-

fore, a first-order KKT point always exists and represents a solution to the complementarity

system SCP1
k.

�

Lemma 5.23. Assume that ‖W‖ ≤ W̄ , |f0| ≤ f̄ and θ > 1 from (5.17). Then the sequence {fk}
always stays bounded. Furthermore, q̄k → q̄∗.

Proof. From (5.17), we have

‖fk‖ = ‖(Bf + θI)−1Wzk + . . .+ (Bf + θI)−kWz1 + (Bf + θI)−kf0‖

≤
k∑

j=1

‖(Bf + θI)j−k−1Wzj‖ + ‖(Bf + θI)−kf0‖

≤
k∑

j=1

‖(Bf + θI)j−k−1‖‖W‖‖zj‖ + ‖(Bf + θI)−k‖‖f0‖

≤
k∑

j=1

‖(Bf + θI)j−k−1‖W̄ z̄ + ‖(Bf + θI)−k‖f̄ .

But (Bf + θI) is the sum of a positive semidefinite singular matrix Bf and θI. Therefore, the

minimum eigenvalue of Bf + θI is θ. This implies that

‖(Bf + θI)−k‖ ≤ 1

λmin(Bf + θI)
k

= θ−k <∞.

Furthermore, as k → ∞, we have ‖(Bf + θI)−k‖ → 0. Consequently, the sequence

k∑

j=1

‖(Bf + θI)j−k−1Wzj‖ <∞

as k → ∞, implying that q̄k → q̄∗. �

Theorem 5.24. If fk and zk are defined by (5.17) and the solution of SCP1
k, then the sequence

(fk, zk) converges to (f∗, z∗), the solution of SCP1.

Proof. By Lemma 5.23, we have q̄k → q̄∗. Then, we have that SCP1
k → SCP1

∗. Moreover, the

solution zk → z∗. The sequence {zk} gives rise to a unique bounded fk for each k. By definition of

{fk} and θ > 1, we have {fk} → f∗. �
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Our next step is to prove that the iterative-splitting method used to solve SCP1
k is a convergent

method. This theory was developed for deterministic LCPs in Cottle et al. [CPS92]. We merely

state the theorem from this reference. Note that the theorem applies to the solution of an LCP:

0 ≤ x ⊥ (B + C)x + q ≥ 0.

Theorem 5.25. Let M be positive semidefinite and B be symmetric positive definite. Then if

LCP(q,M) is feasible, {xk} is uniquely defined and converges to x∗, a solution of LCP(q,M).

Before we proceed, it should be noted that in our context M is positive semidefinite and B is

positive definite by construction.

5.4.3 Introducing Sampling

In this section, we consider how one may further ease the computational burden by using a sample

of the distribution. Specifically, at the kth iteration of the DSM method, we solve

ˆSCP
k

1

0 ≤ zω
k ⊥ M̄ωzω

k +Nfk + q̄ω ≥ 0 ∀ω ∈ Ωk

1
|Ωk|

∑
ω∈Ωk

Wωzω
k − Bffk + qf = 0.

In effect, at the kth iteration, the problem size is proportional to nk. If the sequence nk increases

fast enough, such a scheme is seen to converge in practice. The set of steps may then be summarized

as follows:

0. Set k = 1 and initialize fk
j and zωj,k for all j. Let nk := N < s.

1. Generate nk scenarios from distribution IP of ω.

2. For j = 1, . . . , nk, solve the scenario-based mixed-LCP to obtain fk
j and zωj,k.

3. If ‖fk − fk−1‖ < ǫ then terminate; else k := k + 1 and nk := min(s, γnk) and return to step

1.

An important question is which distribution to use in the construction of the sample. We could use

a Monte-Carlo strategy that chooses from the original distribution and refer to this technique as

MC. However, we may use the current solution to construct a sample. For instance, given zω
k for

each ω ∈ Ω. Note that for the unsampled scenarios, zω
k = z0

k (the initial estimate). We construct

residuals based on

rω
k = (zω

k )T (M̄ωzω + q̄ω
k ).

The physical interpretation of this residual vector is that scenarios with large residuals are further

away from the solution than those scenarios with smaller residuals.

We propose two sampling techniques. The first technique merely sorts the residual vector and

chooses the largest nk, and is denoted by Sort. The second technique biases the true distribution

by the normalized residual vector. In effect, this raises the likelihood of choosing a scenario if the

the residual associated with it is large. We refer to this strategy as Samp.
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Table 5.3

Comparison of PATH with the DS method and Monte-Carlo-DS

n s PATH ‖fDS
∗

− f∗‖ DS ‖fMC
∗

− f∗‖ MC
5 30 1.08 2.7e-7 1.67 4.4e-7 1.23
5 35 1.20 3.4e-7 1.35 6.4e-7 1.05
5 40 1.44 3.2e-7 1.64 1.6e-3 0.40
5 45 1.67 2.8e-7 1.85 2.9e-7 1.65
5 50 2.04 2.8e-7 2.04 6.0e-7 1.61
5 55 2.26 2.8e-7 2.21 4.6e-7 1.73
5 60 2.63 2.9e-7 2.62 9.1e-7 2.23
5 65 2.94 2.7e-7 2.66 7.2e-7 2.84
5 70 3.72 2.6e-7 2.89 1.0e-6 1.73
5 75 3.99 2.6e-7 3.02 9.8e-7 2.50
5 80 4.52 2.7e-7 3.30 1.1e-6 2.76
5 85 5.11 2.8e-7 3.43 3.3e-7 3.03
5 90 5.69 3.0e-7 3.60 4.1e-7 2.98

5.4.4 Computational Experience

In this section, we provide two comparisons. Table 5.3 provides a comparison between PATH, the

DS method and the MC sampling method. The implementation was tested on a 1.8GHz Pentium

with 512 MB of RAM running Windows XP. Table 5.4 compares the behavior of the DS method

and the three sampling methods discussed in section 5.4.3, viz. MC, Sort, and Samp. Our basis

of comparison is a set of equilibrium problems based on an n-node network with s scenarios. The

resulting deterministic problems are of the order of n2s. The termination criterion in the DS

methods and its sampling variations is

‖fk − fk−1‖ < 10−5. (5.19)

The initial values for the forward and spot-positions are zero. Moreover, the sampling extensions

are started at n1 = K/4 and are incremented by 1.7 at the end of each major iteration. When

comparing PATH to the iterative methods, we use CPU time as a basis of comparison. Note

that the CPU time only accounts for the calls to the solver and not for linear algebra operations.

Moreover, all calls to PATH are with default options in terms of optimality criteria. However, when

comparing the iterative methods, we use the number of LCPs solved. This is analogous to using

the number of function and gradient evaluations for first-derivative optimization methods.

In Table 5.3, we compare the performance of PATH, the DS method and the Monte-Carlo

sampling extension for problems with an n-node network with s scenarios. In each instance, we

compare the obtained forward positions with that obtained from the base method, which in this

case is PATH.

We observe from Table 5.3 that the growth in CPU time for PATH is nearly twice as much as

for MC. Moreover, this ratio grows with the number of realizations and the size of the underlying

network. We find that the real benefit of sampling methods only becomes evident for larger problems

and is not clearly observable for the sizes considered in Table 5.3. Figure 5.3 shows the normalized

computational effort across PATH, the DS method, and the Monte-Carlo sampling extension. The

normalization is with respect to the effort to solve the problem for 30 scenarios. In Figure 5.4, we

compare the DS method with the three sampling extensions, MC, Sort, and Samp. We make this

comparison for a 3-node network with scenarios growing from 90 to 250. We find a clear linear
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Table 5.4

Comparison of DS method with Monte-Carlo sampling, residual sorting and residual sampling

n s DS ‖∆MC‖ MC ‖∆Sort‖ Sort ‖∆Samp‖ Samp
3 90 630 2.5e-6 398 1.3e-6 578 7.2e-7 488
3 95 665 1.3e-6 609 2.1e-6 514 9.8e-8 514
3 100 700 1.1e-7 541 5.6e-7 341 1.4e-6 641
3 105 735 2.2e-6 568 4.6e-7 463 7.4e-8 568
3 110 770 2.2e-7 595 1.4e-6 485 4.4e-7 595
3 115 805 1.1e-7 622 9.0e-8 622 1.4e-6 507
3 120 840 1.7e-6 648 2.3e-6 528 2.2e-7 528
3 125 875 1.9e-6 552 2.1e-7 677 2.8e-7 677
3 130 910 1.6e-6 703 1.9e-6 703 1.8e-7 573
3 135 945 1.4e-6 595 1.3e-6 865 2.8e-7 730
3 140 980 7.3e-7 757 7.2e-7 757 1.9e-7 757
3 145 1015 6.9e-7 349 1.5e-6 639 1.4e-6 784
3 150 1050 1.4e-6 961 5.9e-8 811 2.8e-7 361
3 155 1085 2.5e-6 682 1.8e-8 837 5.0e-7 527
3 160 1120 1.5e-6 864 4.2e-7 864 1.9e-6 864
3 165 1155 5.0e-7 893 4.2e-7 893 1.5e-6 728
3 170 1190 8.7e-9 919 3.9e-7 919 1.2e-7 919
3 175 1225 5.2e-7 946 1.0e-7 946 2.0e-7 946
3 180 1260 6.3e-7 973 5.3e-7 973 3.8e-7 973
3 185 1295 1.5e-6 815 1.6e-6 815 3.4e-7 1000
3 190 1330 2.5e-6 837 2.6e-7 1027 1.4e-6 1217
3 195 1365 3.0e-7 1053 4.8e-7 1053 1.6e-7 1053
3 200 1400 1.4e-7 1080 2.4e-6 880 2.3e-7 1080
3 205 1435 2.5e-7 1109 1.2e-7 1109 2.7e-7 1109
3 210 1470 3.9e-7 1135 1.0e-9 1135 1.9e-6 925
3 215 1505 3.6e-7 1162 1.2e-6 1377 5.0e-7 1162
3 220 1540 3.8e-7 1188 5.3e-7 1188 5.5e-7 968
3 225 1575 1.0e-8 1216 3.9e-7 1216 3.2e-7 1216
3 230 1610 3.1e-8 1243 1.3e-7 1243 4.4e-7 1243
3 235 1645 1.6e-6 1034 3.8e-7 1269 4.6e-7 1269
3 240 1680 8.8e-8 1296 1.2e-7 1296 3.3e-7 1296
3 245 1715 3.8e-7 1325 8.5e-8 1325 5.7e-7 1325
3 250 1750 1.9e-6 1101 4.4e-8 1351 5.2e-7 1351
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Figure 5.3 Scalability: CPU time
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Figure 5.4 Scalability: number of LCPs
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relationship between the number of LCPs solved and the number of realizations in the discrete

distribution. We see that the sampling methods do significantly better than the DS algorithm. In

fact, we construct a ratio between the number of LCPs solved by the sampling extension to that

by the DS method. This ratio is denoted by rLCP
MC , rLCP

Sort , and rLCP
Samp. We find that the mean ratios

for the three methods are 0.733, 0.75, and 0.73. In general, we find that there is at least a 25%

gain from the use of sampling.

To judge which sampling extension is superior, more testing is required. We find that for some

problems, the Samp approach did significantly better (such as with s = 150, 210, 220)6 and on other

occasions both MC (s = 145, 1043) and Sort (s = 200) outperformed the rest. For some proportion

of the test problems, all three methods performed the same.

5.5 An Electricity Market Model

In this section, we consider an n-node electrical network. We assume that each node houses an

independent generator. Moreover, the node-arc incidence matrix of the network is given. Each firm

is faced with specifying forward positions in the first period. Subject to these positions and the

realization of the uncertainty, the firms then compete on a spot-market so as to meet the random

demand at each node. It is assumed that there are s possible realizations that the randomness can

assume.

In §5.5.1, we describe the model in greater detail and articulate the sources of uncertainty. We

also discuss the four settings that we shall be using to analyze the model. Then §5.5.2–5.5.5 discuss

the comparisons of the firm behavior in these settings based on expected profits, expected sales,

and expected prices.

5.5.1 Description of the model

We restrict ourselves to a 6-node model with 20 scenarios in the second period (n = 6, s = 20).

Forward sales are assumed to be endogenously priced using the function

pf
i = af

i −mf
i

∑

j

fji, i = 1, . . . , 6. (5.20)

Similarly spot-market prices are specified based on a random demand function

pω
i = aω

i −mω
i

∑

j

sω
ji, i = 1, . . . , 6. (5.21)

Risk-neutrality constraints are imposed along the lines of SCP1. For all 4 settings, we assume

that both forward and spot-market demand functions are given by pi := (40 − 10qi). The cost of

generation is given by cig
ω
i + 1

2di(g
ω
i )2, where di = 0, ∀i. Moreover, ci is specified as in Table 5.5.

Note that the cost of generator 3 changes in scenarios 2,3,4. Moreover, this cost is randomized for

each of the s scenarios in a given setting, by adding a normal random variable. We assume that the

6s is the number of realizations in the distribution.
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Table 5.5

Specification of cost functions

Scenario ci
S1 ci = 10 for all i
S2 c3 = 150, ci6=3 = 10 and ci = ci + 0.1N(0, 1)
S3 c3 = 150, ci6=3 = 10 and ci = ci + 0.1N(0, 1)
S4 c3 = 15, ci6=3 = 10 and ci = ci + 0.1N(0, 1)

Figure 5.5 Schematic of settings

generation capacity of generator j may take value Gω
j in realization ω. We also assume that the

capacity of the single link between the nodes is given by tωcap. Again, generation capacity is kept

fixed for all scenarios but at levels specified in Table 5.6. The transmission capacity is normally

distributed at a mean of 1 for the first three settings. In the last setting, the means for all linkages

connecting node 1 are brought down to 0.01. Figure 5.5 provides a schematic summary of each

setting. The resulting complementarity problems were solved by the PATH solver [DF93] with

Matlab 6.5 and a Windows XP operating system.

Table 5.6

Specification of cost functions

Scenario Gi tcap
S1 Gi = 1 for all i ti = 1 + 0.001N(0, 1)
S2 Gi = 1 for all i ti = 1 + 0.001N(0, 1)
S3 G1 = 0.5, Gi6=1 = 1 ti = 1 + 0.001N(0, 1)
S4 G1 = 0.5, Gi6=1 = 1 t12,14,16 = 0.01, ti6=12,14,16 = 1, ti = ti + 0.001N(0, 1)
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Figure 5.6 Expected profits

5.5.2 Expected Profits

Figure 5.6 shows the expected profits of each firm in each of the four settings. In S2, the main

change is that the cost of generation is raised by a factor of 10 and it is impossible for the firm

to make any profits on the spot-market. Note that the risk-neutrality constraints imply that the

expected spot-price is equal to forward price, implying zero profits on the forward market. Also

a prisoner’s dilemma effect is observed in that the profits of the other firms rise in S2. In S3,

generator 1 has a lower capacity, which directly impacts its spot profits. It may be noticed that the

remaining firms see an increment in profit. Finally, in S4, the transmission linkages emanating from

node 1 are congested. Firm 1’s profits see a small upward change because the expected spot-price

rises slightly (see Figure 5.8).

5.5.3 Expected Spot-market Sales

In Figure 5.7, it can be seen that all the generation constraints are binding in S1. In S2, this

still holds except for generator 3, which does not generate any power. In S3 and S4, generator 1

supplies at 0.5 (the upper bound on its capacity in those two settings). Note that the cost of firm

3’s generation is dropped in S4, resulting in firm 4 generating 0.48 units of power.

5.5.4 Forward Prices

Finally, Figure 5.8 shows the forward prices at each of the nodes in each setting. By the risk-

neutrality constraint, the expected spot-price is equal to the forward price. It can be seen that

steadily constraining the model results in higher prices (S2 and S3). In S4, the connectivity to node

1 is congested, implying that less of its demand can be met, implying that its spot-price goes up.
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Figure 5.7 Expected sales

Also interesting is that despite congestion, profits of firm 1 increase from 11 to 12.

5.6 Contributions and Future Research

This chapter is motivated by the difficulties in obtaining a Nash-Stackelberg equilibrium in a mul-

tiperiod equilibrium problem under uncertainty. We introduce a simultaneous stochastic Nash

equilibrium in the context of a forward contracting model. Existence of such an equilibrium is

proved.

We compare the SSNE with the NSE and computationally show that the SSNE is indeed an

NSE. Also, the effort to find an NSE is far less if one begins from an SSNE. We prove that the

SSNE obtained in simpler settings is indeed an NSE. We also demonstrate computationally that

this is indeed the case.

The SSNE may be obtained as a solution to a stochastic mixed-complementarity problem. We

present a scalable algorithm for solving large-scale problems. The convergence of both algorithms

to the equilibrium point is proved. Computational tests are used to compare the scalability of the

algorithm relative to PATH. Also, sampled variants of the algorithms are shown to perform even

better.

Finally, some insights are provided from a 6-node electricity market model with stochastic

demand and capacity. The following intuitive results are obtained from the model:

• Under the possibilities of generator outage, agents participate in the forward market to a

greater extent. This compensates for lost generator sales.

• If we introduce a high chance of network congestion in the linkages to a particular node,

then the prices at that node increase. In fact, a firm may make more profit on average
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Figure 5.8 Expected prices

under congestion providing there is a somewhat perverse incentive in the presence of vertical

integration.

Several questions emerge from this chapter and shall be tackled as future research:

• An important question that has been partially answered is the existence of Nash-Stackelberg

equilibria. It seems that under somewhat strong conditions, one may show existence. Can

one further weaken the assumptions required to claim existence of such equilibria?

• We present one of the first few algorithms for stochastic complementarity problems. One

question is whether these ideas may be formalized to construct an algorithm for more general,

albeit, monotone complementarity problems.

• We present a reasonably general electricity market model. It is necessary to add more realistic

features to this model. One question that has received some attention has been the use of

piecewise-linear demand functions. Also of relevance is the implicit dynamics in the system,

so far ignored. In particular, one may need to introduce ramping constraints to constrain the

change in output of a generator. This would require mixed-integer formulations.
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[OKZ98] J. Outrata, M. Kočvara, and J. Zowe. Nonsmooth Approach to Optimization Problems

with Equilibrium Constraints, volume 28 of Nonconvex Optimization and its Appli-

cations. Kluwer Academic Publishers, Dordrecht, 1998. Theory, applications and

numerical results.

[Pie01] H. Pieper. Algorithms for Mathematical Programs with Equilibrium Constraints with

Applications to Deregulated Electricity Markets. PhD thesis, Department of Manage-

ment Science and Engineering, Stanford University, 2001.

[RB05] A. U. Raghunathan and L. T. Biegler. An interior point method for mathematical

programs with complementarity constraints (MPCCs). SIAM J. Optim., 15(3):720–

750 (electronic), 2005.

[RS93] R. Y. Rubinstein and A. Shapiro. Discrete Event Systems. Wiley Series in Probability

and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley &

Sons Ltd., Chichester, 1993.

[RS03] A. Ruszczynski and A. Shapiro. Introduction. In Handbook in Operations Research

and Management Science, volume 10, pages 1–64. Elsevier Science, Amsterdam, 2003.

[Rus03] A. Ruszczynski. Decomposition methods. In Handbook in Operations Research and

Management Science, volume 10, pages 141–212. Elsevier Science, Amsterdam, 2003.

[Sch01] S. Scholtes. Convergence properties of a regularization scheme for mathematical pro-

grams with complementarity constraints. SIAM J. Optim., 11(4):918–936 (electronic),

2001.

[SCTB88] F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn. Spot Pricing of

Electricity. Kluwer Academic Publishers, 1988.

[Sha03] A. Shapiro. Monte carlo sampling methods. In Handbook in Operations Research and

Management Science, volume 10, pages 353–426. Elsevier Science, Amsterdam, 2003.

[Sta52] H. V. Stackelberg. The Theory of Market Economy. Oxford University Press, London,

1952.

[SX05] A. Shapiro and H. Xu. Stochastic mathematical programs with equilibrium constraints,

modeling and sample average approximation. Optimization-Online, 2005.

[VS99] R. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear

programming. Computational Optimization and Applications, 13:231–252, 1999.

[VSW69] R. M. Van Slyke and R. Wets. L-shaped linear programs with applications to optimal

control and stochastic programming. SIAM J. Appl. Math., 17:638–663, 1969.



Bibliography 135

[YOA04] J. Yao, S. Oren, and I. Adler. Computing Cournot equilibria in two settlement elec-

tricity markets with transmission constraints. In Proceeding of the 38th Hawaii Inter-

national Conference on Systems Sciences (HICSS 38). Big Island, Hawaii, 2004.

[ZPR00] G. Zakeri, A. B. Philpott, and D. M. Ryan. Inexact cuts in Benders decomposition.

SIAM J. Optim., 10(3):643–657, 2000.


