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Abstract

A feature common to many optimization problems is a weak connectivity between
component systems. Decomposition algorithms exploit this feature by breaking the
problem into a set of smaller independent problems. One type of connectivity oc-
curs when only a few of the variables, known as global variables, are relevant to all
systems, while the remainder are local to a single component. We term these prob-
lems Optimization Problems with Global Variables. Examples arise in the design of
complex systems such as an aircraft or automobile and in the solution of stochastic
problems such as portfolio management.

Collaborative Optimization (CO) is a promising decomposition algorithm that
transforms an Optimization Problem with Global Variables into an equivalent master
problem and a set of subproblems. Unfortunately, both the CO master problem
and the subproblems are degenerate. Nondegeneracy is a common assumption when
proving convergence for most optimization algorithms. Not surprisingly, CO fails to
solve some simple test problems.

We propose two novel decomposition algorithms that circumvent some of the
difficulties associated with CO. The first algorithm, named Inexact Penalty Decom-
position (IPD), uses an inexact penalty function. The second algorithm, termed Ex-
act Penalty Decomposition (EPD), employs an exact penalty function and a barrier
function. The main advantage is that these new approaches result in nondegenerate
problems. Consequently, there exist algorithms that are fast locally convergent for
both the master problem and the subproblems.

To test the new algorithms we present a new quadratic programming test-problem
set. The user can choose problem size, convexity, degeneracy, and degree of coupling.
All test-problem minimizers are known a priori. Both IPD and EPD successfully

solve the test set for a wide variety of circumstances.
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Chapter 1

Introduction

Many optimization problems combine objective and constraint functions correspond-
ing to a set of weakly connected systems. One class of connectivity occurs when only
a few of the variables, known as global variables, appear in all systems, while the
remainder occur in only a single component. These problems are known as Optimiza-
tion Problems with Global Variables (OPGVs).

Decomposition algorithms break an OPGYV into a set of smaller independent sub-
problems. The advantage is usually that the subproblems are easier to solve than the
original problem. In this dissertation we propose two new decomposition algorithms

for the nonconvex OPGV and investigate their analytical and numerical properties.

This chapter is organized as follows. In Section 1.1, we state the OPGV and the
closely related Optimization Problem with Global Constraints (OPGC). In Section
1.2, we describe two problems from business and engineering that can be modeled
as OPGVs. In Section 1.3, we discuss how decomposition algorithms work and re-
view some of the most popular algorithms available. In Section 1.4, we describe the
main contributions of this dissertation. Finally, Section 1.5 gives an overview of the

remaining chapters.
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1.1 Problem Statement

We distinguish two types of problems according to the modality of coupling among
systems: (i) optimization problems with global variables and (ii) optimization prob-
lems with global constraints. Although this dissertation focuses on the OPGV, in

this chapter, we discuss the characteristics of both types of problems.

1.1.1 Optimization Problems with Global Variables

In an OPGYV, constraints are naturally classified as belonging to N different systems.
Then some of the variables (known as global variables) are needed to evaluate all of
the constraints, whereas the rest of variables (known as local variables) are needed
only in the evaluation of the constraints belonging to one of the systems. Likewise,
the objective function is the summation of N different terms, one per system. Again,
while the global variables are needed in the evaluation of all of the terms, the local
variables are needed only in the evaluation of one term. The OPGV may be stated

as:

Z,Yi

min Z2_;171@,%) (L.1)

st. c(z,y;) > 0, i=1:N,
where x € R™ are the global variables, y; € R™ are the local variables, F;(x,y;) :
R"*™ — TR is the objective function term corresponding to the ith system, and
ci(x,y;) : R™™ — R™: are the constraints corresponding to the ith system.
If, in an OPGYV, we set the global variables to a fixed value, the problem breaks into
N independent subproblems. Decomposition algorithms use information gathered at
the solution of these N independent subproblems to determine the optimal value of

the global variables.

1.1.2 Optimization Problems with Global Constraints

In an OPGC, variables are naturally classified as belonging to N different systems.
Then a few of the constraints (known as global constraints) depend on all of the vari-

ables, whereas the rest of the constraints (known as local constraints) only depend on
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variables corresponding to one of the systems. The objective function is a summation

of N different terms, one per system. The OPGC may be stated as:

N
min Y Fi(y)
=1

st. byi,...,yn)
Cz‘(i‘/z’)

N (1.2)

>
> 0, 2= 1:N,

where y; € R™ are the variables corresponding to the ith system, F;(y;) : R™ —
R is the objective function term corresponding to the ith system, b(y;,...,yn) :
RESim 5 R™ are the global constraints, and c¢;(y;) : R™ — R™ are the local
constraints.

If, in an OPGC, we ignore the global constraints the problem breaks into N
independent subproblems. Decomposition algorithms use information gathered at
the solution of these N independent subproblems to minimize the objective function

while ensuring that the global constraints are satisfied.

1.2 Applications

1.2.1 Aircraft Wing Design

When designing an aircraft wing, we wish to minimize the drag, that is, air resistance
to aircraft movement, subject to constraints corresponding to two different analysis
disciplines: (i) aerodynamics and (ii) structures. The aerodynamic constraints are the
discretization of the partial differential equations that describe the air flow around
the wing. Likewise, the structure constraints are the discrete version of the partial
differential equations that model the stress distribution in the wing interior.

In essence, the air flowing around the wing creates a pressure distribution that
determines the load on the wing. This load causes a deflection on the wing that alters
the pressure distribution. Overall, we want to minimize the drag while keeping the
wing weight bounded and ensuring that the structure will resist the load imposed on

it. This problem is depicted in Figure 1.1.
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Figure 1.1: Aircraft wing design
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The aircraft wing design is an instance of OPGV. Variables global to both the
aerodynamic and the structure systems are the undeflected wing shape, the wing de-
flection, the load on the wing, and the drag. On the other hand, variables local to the
aerodynamic analysis are the air pressure and speed distributions around the wing
surface. Finally, variables local to the structure analysis are the wing structure geom-
etry and the stress distribution in the wing interior. For a more detailed treatment
of the aircraft wing design problem see Cramer et al. [CDF194] and the references

therein.

1.2.2 Electricity Generation Planning

Consider an electricity producer operating a mix of thermal and hydro power plants.
The operation of the thermal plants (nuclear, coal, and gas) involves important vari-
able costs such as fuel and maintenance. In contrast, the variable costs associated
with hydro plants are usually negligible. Consequently, the producer wishes to pro-
duce as much energy as possible using its hydro plants. Unfortunately, the amount of
water available in the reservoir system is not enough in general to satisfy all the elec-
tricity demand. To complicate matters, in most cases water inflows into the reservoirs
are highly stochastic. Scheduling how much water should be released for generation
now and how much should be stored for future use is a major challenge for electricity

producers.

To make a good decision the producer has to take into account the stochastic
nature of the water inflows and the electricity demand. The probability distribution
of the water inflows into the reservoirs is usually available. Moreover, we assume that
the probability distribution of the electricity demand that the producer will serve is
also known. This is not a strong assumption even in deregulated electricity markets,
where producers often use historical data to forecast the total demand and their
market share. Given the probability distributions for water inflows and electricity
demand, the target is to compute the generation schedule that minimizes the expected

total generation costs along a one-year time horizon.
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Escudero et al. [EAGP96] proposed a scenario tree approach to model the stochas-
ticity. Basically, the one-year time horizon is divided into 7" time periods. The water
inflows and the demand for the first time period are considered deterministic. On
the other hand, four different events are considered for the second time period: (i)
high water inflows and high demand, (ii) high water inflows and low demand, (iii)
low water inflows and high demand, and (iv) low water inflows and low demand. The
probability of each of these events is assigned using the probability distributions for
water inflows and demand. The scenario tree is the result of replicating this procedure
for each of the remaining time periods. A typical scenario tree is depicted in Figure
1.2.

The producer uses the scenario tree to compute the production schedule that
minimizes the expected total generation costs. The scenario tree is updated and the
analysis rerun on a weekly basis.

This problem is an example of OPGV. Each node in the scenario tree can be con-
sidered as a component system within the optimization problem. The only variables
global to all nodes are the amounts of water stored in the reservoirs at the end of
each time period. Variables local to each node include the amount of water released
for generation at each hydro power plant and the energy generated using each of the

thermal plants.

1.3 Decomposition Algorithms

1.3.1 How Decomposition Algorithms Work

If, in an OPGV or OPGC, we eliminate the global variables or constraints, the prob-
lem breaks into N independent subproblems. Decomposition algorithms coordinate
the solution to these N subproblems to find the minimizer to the original problem.
The coordination is carried out by a so-called master problem, an optimization
problem whose objective and/or constraint functions are defined using information
gathered at the subproblem solutions. At each iteration of the optimization algorithm
solving the master problem, all of the NV subproblems are solved and information is

exchanged between the master problem and the subproblems.
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In the OPGYV case, if we set the global variables to a fixed value, the problem
breaks into /N independent subproblems. A master problem is used to find the optimal
value of the global variables. Local variables and constraints corresponding to the
1th system are kept within the ith subproblem. In the OPGC case, N independent
subproblems are obtained by ignoring the global constraints. A master problem
subject only to the global constraints is used to ensure that the global constraints are
satisfied. Local constraints corresponding to the ith system are kept within the ith

subproblem.

1.3.2 Why Decompose?

There are computational and organizational advantages in the use of decomposition
algorithms. From a computational perspective, the advantage is that the subprob-
lems are usually easier to solve than the original problem. The subproblems are, by
definition, smaller than the original problem. Moreover, in many cases the subprob-
lems have special properties such as convexity, sparsity, or network constraints that
enable the use of efficient specialized algorithms to solve them. By decomposing the
original problem, we can take advantage of the efficient solution method available for
the subproblems.

For example, in the electricity generation planning problem discussed, the original
problem has hundreds of thousands of variables. By using decomposition algorithms,
we can break the problem into one subproblem per tree node. Each of the subproblems
has only hundreds of variables. Moreover, Escudero et al. show that, unlike the
original problem, the subproblems have network structure. The advantage in the
use of decomposition algorithms is that, in addition to the subproblems having only
hundreds of variables, now we can apply specialized network algorithms to solve them.

In some cases the main motivation for the use of decomposition algorithms is
related to their organizational aspects. Most engineering design problems involve the
participation of different design groups who work largely in isolation [Kro97].

For instance, in the aircraft wing design problem, two different departments carry

out the aerodynamic and the structure analysis. Each department must rely on



1.3. DECOMPOSITION ALGORITHMS 9

complex software codes whose method of use is subject to constant modification.
Porting all the code to a specific machine is judged to be impractical (sometimes the
source code is not available). Also it would raise the issue of how local modifications
to the use of such codes would be incorporated into the integrated code. What is
required is some procedure to optimize the whole design while keeping the work of
the different departments as independent as possible.

Decomposition algorithms allow these problems to be solved in a distributed en-
vironment in the manner described above. The key point in the design of a decom-
position algorithm in this environment is that only a limited communication between
the subproblems and the master problem is required. The aim is that different en-
gineering teams should solve only their own subproblem and only a small amount of
communication should be required with the central coordinator. For a survey of the
application of decomposition algorithms to aerospace design problems see Haftka and
Sobieszczanski-Sobieski [HSS97].

1.3.3 Analyzing Decomposition Algorithms

Alexandrov and Lewis [AL99] distinguish two different ingredients in the analysis of

a decomposition algorithm:

e The equivalence between the minimizers to the original problem and the mini-
mizers to the proposed master problem must be shown. Otherwise, when finding
a minimizer to the master problem, we would not be able to claim that we found

a minimizer to the original problem.

e The existence of globally and fast locally convergent optimization algorithms for
both the master problem and the subproblems must be shown. Global conver-
gence means the iterates will converge to a minimizer from any starting point,
possibly far from any minimizer. Fast local convergence means the algorithm
must converge to the minimizer at a high rate (superlinear or quadratic) once
the iterates are sufficiently close to it. To prove the existence of globally and fast
locally convergent optimization algorithms, we usually need to make assump-

tions about the optimization problem such as smoothness and nondegeneracy
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[MP95]. When analyzing a decomposition algorithm, we would like to prove
that if those assumptions are satisfied for the original problem, then they are

also satisfied for the proposed master problem and the subproblems.

In the remainder of this section, we review some of the most popular decomposition
algorithms proposed for the OPGV and the OPGC. For each of these algorithms, we

study the two analysis ingredients introduced above.

1.3.4 State of the Art: Convex Problems

In 1960, Dantzig and Wolfe [DW60] developed an efficient decomposition algorithm
to deal with the linear programming OPGC. A few years later, Benders [Ben62] devel-
oped a decomposition algorithm for OPGVs whose objective and constraint functions
are linear in the local variables.

Both Dantzig-Wolfe and Benders decompositions are widely used to solve linear
programs. The key to their widespread use is twofold. Firstly, we can prove global
minimizer equivalence between the original problem and the proposed master prob-
lem. Secondly, there exist algorithms that find the minimizer to the master problem

in a finite number of steps from any starting point.

Benders Decomposition

Benders decomposition [Ben62] deals with OPGVs whose objective and constraint
functions are linear in the local variables. Geoffrion [Geo72| extended Benders de-
composition to problems whose objective and constraints are convex in the local
variables. Both the Benders and Geoffrion algorithms are efficient only when the
problem functions are separable with respect to global and local variables.

In a Benders decomposition approach, local variables and constraints correspond-
ing to the ith system are kept within the sth subproblem. The master problem de-
pends only on the global variables. However, the master problem includes a possibly
large number of newly generated constraints known as cuts.

At each iteration, a relaxed version of the master problem (that is, a master

problem with only a few of the cuts) is solved and the current estimate of the global
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variables zj is obtained. Then all subproblems are solved using z, as a parameter.
When a given subproblem is feasible at x, a new optimality cut is generated. If, on
the other hand, a subproblem is infeasible at xx, a feasibility cut is generated. The
current relaxed master problem is updated by including all cuts generated together
with all or some of the cuts available previously.

Benders showed that a minimizer to the master problem is a minimizer to the
original problem. He also proved that, for linear programs, a finite number of iter-
ations suffices to find the minimizer from any starting point. For the convex case
Geoffrion showed that an approximate solution can be found in a finite number of
iterations.

The main limitation of Benders decomposition is that it can only be used when
the problem functions are convex in the local variables, the reason being that the
cuts are generated by means of convex duality theory. A more detailed discussion of

Benders decomposition is given in Chapter 2.

Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition [DW60] deals with linear programming OPGCs. In
a Dantzig-Wolfe scheme, local constraints are kept within the ith subproblem. The
master problem includes only the global constraints. The difficulty is that a change of
variables is introduced in the master problem that results in a possibly large number
of variables.

At each iteration, a relaxed version of the master problem (that is, a master
problem including only a few of the variables) is solved. Then the N subproblems
are solved using the reduced costs of the master linear program as parameters. As a
result, each subproblem generates a candidate variable to be introduced in the master
problem. The current relaxed master problem is updated by including all candidate
variables found by the subproblems.

Dantzig and Wolfe showed that a minimizer to the master problem is a minimizer
to the original linear program. They also proved that a finite number of iterations
suffices to find the minimizer from any starting point.

The Dantzig-Wolfe decomposition is applicable only to the linear case, the reason
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being that to introduce the change of variables in the master problem we make use of
the Resolution Theorem for convex polyhedra [Gol56], which can only be applied in
the linear case. For detailed discussions of Dantzig-Wolfe decomposition see [Dan63,
Chapter 23] and [DT, Chapter 2].

1.3.5 State of the Art: Nonconvex Problems

Decomposition algorithms transform a weakly connected optimization problem into
a master problem and a set of subproblems. Optimization problems involving a
master problem and subproblems are known as bilevel programs [Bar98, FL.95, SIB97].
Unfortunately, bilevel programs are difficult to solve.

Dantzig and Wolfe, and Benders developed efficient ways to deal with the bilevel
programs resulting from the decomposition of linear programs. The situation is a
lot more complicated for nonconvex problems. Few decomposition algorithms have
been proposed for nonconvex problems. Although local minimizer equivalence can
be proven for most approaches, we do not know of any globally convergent algo-
rithms. Some fast locally convergent algorithms have been proposed but they rely
on strong nondegeneracy assumptions or the use of optimization algorithms for non-

smooth problems.

Tammer’s Decomposition

Tammer proposed a decomposition algorithm for the nonconvex OPGV [Tam87]. The
subproblems are obtained by setting the global variables to a fixed value. The optimal
objective function to a subproblem as a function of the global variables is known as
the optimal-value function. The master problem is the unconstrained problem whose
objective function is the summation of the optimal-value functions corresponding to
all subproblems.

At each iteration, all of the subproblems are solved and a master problem search
direction is generated. Then, a line search is performed to ensure a sufficient descent
for the master problem objective while keeping feasibility with respect to the original
OPGYV constraints.
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Tammer showed that for every OPGV minimizer satisfying the Strong Linear
Independence Constraint Qualification! (SLICQ) and the Strong Second Order Suf-
ficient Conditions (SSOSC) there exists an equivalent master problem minimizer.
Moreover, assuming the SLICQ), the Second Order Sufficient Conditions (SOSC), and
the Strict Complementarity Slackness Conditions (SCSC) hold at the OPGV mini-
mizer, he showed that optimization algorithms for smooth problems achieve fast local
convergence when applied to the master problem and the subproblems.

The main limitation to this approach is that the nondegeneracy conditions as-
sumed to prove fast local convergence include the SLICQ. This condition implies
that, at the minimizer to the OPGV, for any small perturbation of the global vari-
ables, we can find values of the local variables that are feasible with respect to the
OPGYV constraints. The SLICQ is not likely to hold for many real problems.

Collaborative Optimization

Collaborative Optimization (CO) is a decomposition algorithm proposed by Braun
[Bra96] for nonconvex OPGVs. In a CO scheme, the global variables are allowed to
take different values within each of the subproblems. However, inexact (quadratic)
penalty functions are used as the subproblem objective functions to ensure that the
value of the global variables in each of the subproblems converges to the so-called
target variables.

As in Tammer’s decomposition, the subproblem solutions are used to compute a
search direction for the master problem. Then, a line search is performed to ensure
we achieve a sufficient descent in the master problem objective. At the same time, as
a result of the use of quadratic penalty terms, the global variables in each subproblem
may be adjusted to ensure feasibility. This is an important advantage compared to
Tammer’s decomposition.

Braun showed minimizer equivalence between the original problem and the pro-
posed master problem. Unfortunately, both the CO master problem and the sub-
problems are degenerate [AL00, dM00]. In particular, the subproblems do not satisfy
the SCSC and therefore the master problem is not differentiable in general. The

1See Appendix A for a review of nondegeneracy conditions.
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SCSC and the smoothness of the objective and constraint functions are common as-
sumptions to prove fast local convergence. Therefore we can expect difficulty when
trying to solve the CO master problem and subproblems using algorithms for smooth

problems.

Despite the fact that no convergence proof is known for CO, Braun’s approach
has an important advantage over Tammer’s decomposition. Namely, the subproblems
are feasible for any value of the target variables even if the SLICQ does not hold. In
Chapter 2, we give a detailed analysis of CO. We also propose two alternative de-
composition algorithms that overcome the degeneracy and nonsmoothness difficulties

inherent in Braun’s approach.

Nonsmooth Bilevel Programming Approaches

Tammer showed that if the SLICQ, SCSC, and SOSC hold at the OPGV minimizer,
then the optimal-value functions for the subproblems he proposed are twice continu-
ously differentiable and therefore optimization algorithms for smooth problems show

fast local convergence when applied to the master problem [Tam87].

Under weaker nondegeneracy assumptions it is possible to prove that the subprob-
lem optimal-value functions are locally Lipschitz. Then an optimization algorithm
for nonsmooth problems such as a bundle method [Mif77, SZ92, HUL93| can be used
to solve the resulting Lipschitz master problem. In particular, assuming the OPGV
minimizer satisfies the SLICQ and the SSOSC, Tammer showed that the master prob-
lem is Lipschitz. Moreover, he proved that a method of feasible directions is locally

convergent when applied to the master problem.

Shimizu, Ishizuka, and Bard [SIB97, Chapter 8] propose a master problem for
the nonconvex separable OPGC. Assuming the OPGC minimizer satisfies the SLICQ
and that the subproblem feasible region is uniformly compact near the minimizer they
show that their master problem objective function is Lipschitz. They also prove that
the bundle method by Mifflin [Mif77] is locally convergent when applied to solve the

resulting Lipschitz master problem.
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1.4 Main Contributions

There is a recognized demand for an efficient decomposition algorithm for the non-
convex OPGV. Firstly, the severe SLICQ is required to show local convergence for
Tammer’s decomposition. Secondly, no convergence proof is known for CO because of
the degeneracy difficulties associated with it. Finally, there exist several nonsmooth
bilevel programming approaches but they preclude the use of the efficient and reli-
able optimization software available for smooth problems such as NPSOL or SNOPT
[GMSW86, GMS97].

In this dissertation we propose two novel decomposition algorithms based on opti-
mization techniques for smooth problems and show that they overcome the difficulties
associated with CO even when only the LICQ holds instead of the more restrictive
SLICQ. As a consequence, fast local convergence can be expected from optimization
algorithms for smooth problems when applied to the proposed master problems and
subproblems.

A major difficulty in developing a decomposition algorithm for the nonconvex
OPGYV is the lack of an adequate test-problem set. To fill this gap, we introduce
a new quadratic programming OPGYV test-problem set. The user can control prob-
lem characteristics such as dimension, convexity, degeneracy, and degree of coupling
among systems. We use the test-problem set to investigate the numerical behavior of
the new decomposition algorithms and show that both of them behave satisfactorily

on the test set for a wide range of circumstances.

1.5 Overview of Remaining Chapters

Chapter 2 gives a detailed analysis of the most relevant decomposition algorithms
available for the OPGV. We also propose two novel decomposition algorithms that
we term Inexact Penalty Decomposition (IPD) and Exact Penalty Decomposition
(EPD).

In Chapter 3, we give nondegeneracy results proving that optimization algorithms

for smooth problems are fast locally convergent on the IPD and EPD master problems
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and subproblems. We also discuss the difficulties encountered when we try to prove
global convergence for decomposition algorithms for the nonconvex OPGV.

In Chapter 4, we present a new quadratic programming OPGYV test-problem set.
In Chapter 5, we discuss the numerical behavior of IPD and EPD on the new test-

problem set. Finally, we give some concluding remarks and directions of future re-

search in Chapter 6.



Chapter 2
Decomposition Algorithms

We review several decomposition algorithms for the OPGV. We describe how gener-
alized Benders decomposition efficiently deals with the convex OPGV. We discuss the
difficulties associated with several decomposition algorithms available for nonconvex
OPGVs and propose two new decomposition algorithms that overcome some of these
difficulties.

2.1 Generalized Benders Decomposition

In this section we first show how to transform an OPGV whose objective and con-
straint functions are convex in the local variables into a master problem and a set
of subproblems. Then we give an algorithm to find an approximate minimizer to
the resulting master problem. Finally, we prove that the algorithm converges in a
finite number of iterations. For a more detailed study of Benders decomposition see
Benders [Ben62] and Geoffrion [GeoT2).

2.1.1 Problem Formulation

The master problem is obtained from the OPGV by a sequence of two manipulations:
(i) projection and (ii) dualization. Projection is the result of setting the global variable

vector to a fixed value. As a consequence, the OPGYV breaks into the NV independent

17
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subproblems,
min  Fi(z,y;)
w0 i =1:N. (2.1)
s.t. Ci(xayi) 2 Oa
Note that x is a parameter in each of the subproblems. The optimal objective for
the 7th subproblem as a function of the global variables is called the optimal-value
function Fj*(z). The optimal-value functions are used to form the following master

problem:
N
min Z F’(z). (2.2)
i=1

The equivalence between the master problem (2.2) and the OPGV in terms of
global minimizers follows from Theorem 2.1 in Geoffrion [Geo72]. The main benefit
obtained from projection is that now we deal with a master problem that only depends
on the global variables x. Local variables and constraints belonging to the ith system
are kept within the sth subproblem.

The second transformation is called dualization because it makes use of convex
duality theory. Let X; be the set of values of x such that the 7th subproblem defined
in (2.1) is feasible. When F; and —c; are convex for fixed z, and ¢; satisfies some
additional mild conditions, Geoffrion [Geo72] showed, using convex duality theory,
that z € X, iff

sup g Gi(z, %) >0, V> 0. (2.3)
Yi

Moreover, if in addition to F; and —c¢; being convex for fixed x € X;, for all x € X
either the 7th subproblem is unbounded or there exists a minimizer satisfying the
LICQ, then

Fr(z)= sup |inf Fi(z,9) +v; ci(z, )| , Vo€ X, (2.4)
v;<0 Yi
Let
Filw,u;) = sup v i, i)
Yi
and

Oi(z,v;) = inf  Fy(z,y;) +v] c;(z,:)-
Yi
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Then, from (2.3), (2.4), and the definition of the infimum as the greatest lower bound

the master problem can be written as

N
min i
Ty Z_:/y

=1 _ (2.5)
st. Fi(z,u;)) > 0, Vu; >0, i=1N,

OZ‘(CC,’UZ) S Y VUZ' S O: 1= 1:N7

where the constraints F;(z,u;) > 0 are known as feasibility cuts and the constraints
O;(z,v;) < ~; are known as optimality cuts. The optimality cuts build an approxima-
tion of the optimal-value functions F*(z). Likewise, the feasibility cuts approximate
the region formed by the values of z that make all the subproblems feasible, namely
ﬂfil X;. Note that, in general, there might exist an infinite number of feasibility and

optimality cuts.

2.1.2 Computational Procedure

In this section, we outline an algorithm leading to an approximate minimizer of the
master problem (2.5) in a finite number of iterations. The main difficulty in solving
(2.5) is that it has an infinite number of constraints. A natural strategy to deal with
a large number of constraints is relaxation. First, solve a relaxed master problem
including only a few of the constraints. If the solution to the relaxed master problem
is not feasible with respect to all constraints, then add some of the violated constraints
to the relaxed master problem and compute a new solution. We iterate this procedure
until a solution feasible to all constraints is found.

When the solution to the kth relaxed master problem xj; is computed, the N
subproblems are solved using z, as a parameter. If a given subproblem is feasible,
the computed Lagrange multipliers v; are used to generate a new optimality cut for
the master problem. If, on the other hand, a subproblem is infeasible, we compute
u; > 0 such that F;(z,u;) < 0 and a new feasibility cut is generated.

The minimum to the relaxed master problem is a lower bound on the original
OPGYV because we take only a few of the cuts into account. In contrast, the mini-

mum to the subproblems is an upper bound because we do satisfy all of the OPGV
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constraints, but we set the global variables = to a fixed value x. The procedure is
terminated when the lower and upper bounds are sufficiently close. The procedure is

described by the following three steps:

e Step 1. Given the current iterate for the global variables z;, solve the N
subproblems defined by (2.1). Set p = 1 and generate uf > 0 for i € ¢, =
{7 : ith subproblem is infeasible for z;} and v} < 0 for i € ©, = {i : ith
subproblem is feasible for x1}. If all subproblems are feasible, then set the
objective upper bound U, = Y.~ | F(x), otherwise set Uy = co. Select the

convergence tolerance e.

e Step 2. Solve the current relaxed master problem,

Z,Yi

N
min Z%

=1 , 2.6
st Fi(z,ul) (2:6)

O;(z, vf)

> Oa v] = 1:pa (A4S (I)ja

< Yis V_] = 11p, 1€ ®j-

Let (Z,%;) be a minimizer. Then sz\il 4; is a lower bound for the OPGV. If
U, < Zf\;l i + €, stop.

e Step 3. Solve the N subproblems at . If S°1 | FF(2) < Y.V, % + ¢, stop.
Otherwise, increase p by one and generate 4f > 0 for 7 € ®, = {i : ith subprob-
lem is infeasible for #} and v? < 0 for i € ©; = {i : ith subproblem is feasible
for z}. If all the subproblems are feasible, then set the objective upper bound
Uy = min(Uy, Y. | F*(24)). Return to Step 2.

Remark 2.1 The computational procedure stated above is efficient only if the fea-
stbility and optimality cuts are easy to evaluate. A condition sufficient for this is
that the OPGYV objective and constraint functions are separable in the global and local
variables. Geoffrion [Geo72] discusses other situations under which the cuts are easy

to evaluate.



2.2. TAMMER’S DECOMPOSITION 21

2.1.3 Finite Convergence

The following theorem is a consequence of Theorem 2.5 in Geoffrion [Geo72| and shows
that the computational procedure defined converges to an approximate solution in a

finite number of steps.

Theorem 2.2 Assume that, for all i = 1:N, X; is a nonempty compact set, the
feasible region for the ith subproblem for all x € X; is a nonempty compact set, the
OPGYV objective and constraint functions are convexr and continuous for fized x, and
the set of optimal multiplier vectors for the ith subproblem is nonempty for any x
and uniformly bounded in some neighborhood of each such point. Then, for any given
€ > 0, the generalized Benders decomposition procedure terminates in a finite number

of steps.

The most restrictive assumption used in the above theorem is the one regarding
convexity of the OPGV. In the remainder of this dissertation we focus on nonconvex
OPGVs.

2.2 Tammer’s Decomposition

Geoffrion showed that Benders decomposition is a globally and fast locally conver-
gent, algorithm for the convex OPGV. Moreover, the computational procedure he
proposed finds a global minimizer. The situation is far more complicated for the non-
convex OPGYV. For the nonconvex case, one can only aspire to find local minimizers.
Moreover, we believe global convergence can not be proven for a decomposition algo-
rithm applied to the nonconvex OPGV. However, we would like to have fast locally
convergent decomposition algorithms.

Nonconvex duality theory [TW81] leads to decomposition algorithms that require
the solution of problems in infinite dimensional spaces [FK93|. Therefore, if finite
dimensionality is to be preserved, out of the two manipulations used to obtain the
Benders master problem, only projection can be used for nonconvex OPGVs. Tam-
mer [Tam87] proposed a decomposition algorithm, based on projection, for which he

showed local convergence under rather restrictive nondegeneracy assumptions.
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2.2.1 Problem Formulation

Tammer proposed solving the following master problem:
N
min Z F}(x) (2.7)
R

where F*(x) is the optimal-value function corresponding to the ith subproblem,

Fi(z) = min Fzy) 28)

s.t. ci(z,y;) > 0.
The proposed master problem and subproblems are obtained by setting the global
variables to a fixed value. As in Benders, constraints and terms in the objective
function corresponding to the ith system are kept within the ith subproblem. The
difference is that, in the absence of an adequate duality theory, cuts are not introduced

in the master problem. Instead, the master problem is just the unconstrained problem

whose objective function is the summation of the subproblem optimal-value functions.

2.2.2 Analysis

A major difficulty in Tammer’s approach is that the algorithm fails when it arrives
at a value of the global variables for which one of the subproblems is infeasible. To
preclude this possibility, Tammer assumes the restrictive Strong Linear Independence
Constraint Qualification (SLICQ).

To define the SLICQ we need to introduce a little notation. The OPGV Jacobian

at a point (z,y1,...,yYn) is

Al Bl
A2 BQ
AN BN

where A; = V,¢(z,v;), B = Vy,6i(x,vy:), and ¢; are the active constraints.

Definition 2.3 The SLICQ holds at a feasible OPGV point if for 2 = 1: N the matrix
B; has full rank.
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By the implicit function theorem, we know that if the SLICQ holds at a feasible
point (x,y1,-..,yn), then the subproblems defined in (2.8) are feasible for any value
of the global variables in a neighborhood of z. By assuming the SLICQ holds at the
OPGYV minimizer, Tammer ensures that the subproblems are always feasible once the

iterates are sufficiently close to the solution.

Minimizer Equivalence

Tammer proved that if the SLICQ and the Strong Second-Order Sufficient Condi-
tions (SSOSC) hold at an OPGV minimizer (z*,y;,...,yx), then z* is an isolated

minimizer to the master problem (2.7).

Fast Local Convergence

Assuming an OPGV minimizer satisfies the SSOSC and the SLICQ, Tammer showed
local convergence for a method of feasible directions applied to the master problem.
If, in addition to SSOSC and SLICQ, the SCSC hold, fast local convergence can also
be proven for Newton-type algorithms for smooth problems.

Tammer gave a fast locally convergent algorithm for the nonconvex OPGV un-
der the assumption that SLICQ holds at the minimizer to the OPGV. We propose
two decomposition algorithms that are fast locally convergent under the less restric-
tive Linear Independence Constraint Qualification (LICQ). The SLICQ is in fact a

sufficient but not necessary condition for LICQ.

2.3 Collaborative Optimization

Tammer assumed the SLICQ to ensure that the subproblems are always feasible once
the iterates are sufficiently close to the minimizer. Unfortunately, the SLICQ does
not hold for many problems. Braun [Bra96] proposed a decomposition algorithm,
known as Collaborative Optimization (CO), that uses quadratic penalty functions to
formulate subproblems that are always feasible even if the SLICQ does not hold.

However, in this section we show that the master problem and the subproblems
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proposed by Braun are degenerate at the solution. Moreover, the subproblem degener-
acy implies that the master problem is nonsmooth. Nondegeneracy and smoothness
are usual assumptions for most local convergence proofs available for optimization
algorithms. Therefore, we expect numerical difficulty in the computation of the min-
imizers of the CO master problem and subproblems. This expectation is supported
by numerical results that show how CO fails to solve some simple test problems
[AK98, AL00].

2.3.1 Problem Formulation

Braun proposed the following master problem:

min F(z)
z (2.9)
st. pi(z) =0, i=1:N,
where p}(z) is the optimal-value function corresponding to the ith subproblem,

pi(z) = min glz; —2f3 (2.10)
s.t. ci(xi,y:) > 0.
Braun allows the global variables to take a different value x; within each of the
subproblems. A quadratic penalty is used as the subproblem objective function to
force the z; to converge to the so-called target variables z. At a solution to the master
problem, p?(z) = 0 and therefore x; = z for ¢ = 1:N. Note that CO only works when
the OPGYV objective function depends exclusively on the global variables (that is, the
OPGYV objective function ) . F;(x,y;) takes the specific form F'(z)) since otherwise
the master problem would also depend on the local variables. Finally, Braun in his
numerical experiments used a slightly more elaborate form than the one given above,

but we retain this form for expository purposes.

2.3.2 Minimizer Equivalence

It is easy to show that the OPGYV feasible region and the CO master problem feasible

region are identical. Since the objective function corresponding to both problems is
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the same, the OPGV and the CO master problem obviously have the same set of

minimizers.

2.3.3 Fast Local Convergence
Subproblem Degeneracy

The 2th subproblem objective function gradient is

1 T;— 2
V.’Ewyz§||xl _ZHg = ( ZO ) .

At the solution, z7 = z and therefore the ith subproblem objective function gradient
is zero. Given that the original OPGV satisfies LICQ at its minimizers, this in turn
implies that the subproblem Lagrange multipliers are zero and therefore the SCSC

do not hold at the subproblem minimizer.

Master Problem Nonsmoothness

The degeneracy of the CO subproblem minimizers implies that the subproblem optimal-
value functions pf(z) are not smooth in general. Fiacco and McCormick [FM68]
showed that the optimal-value function to a parametric nonlinear program is smooth
at a point z if the minimizer to the parametric nonlinear program satisfies LICQ),
SCSC, and SOSC. Unfortunately, we have shown that the SCSC are not satisfied at

the subproblem minimizer. Therefore, p}(z) is not differentiable in general.

Master Problem Degeneracy

Assuming the optimal-value functions pf(z) are smooth, Braun shows that the gradi-

ents for the master problem constraints can be computed analytically as
Vi (z) = = (27 — 2).

Clearly, even when each p}(z) is smooth the Jacobian for the master problem con-
straints is singular at the solution (indeed it becomes the zero matrix since at the

solution x; = z). Thus the LICQ does not hold at the master problem minimizer.
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Master Problem Active Set

A somewhat more subtle problem is the difficulty in identifying the active set of
the master problem. It may seem odd to suggest difficulty in identifying the active
set when only equality constraints are present. However, a worrying feature of the
subproblems is that they fail to distinguish the case when z} = z is only just feasible,
from the case when any change in z of sufficiently small magnitude would still result
in 7 = z. In other words, this formulation is not able to identify those constraints in

the master problem that are truly constraining the solution from those that are not.

2.3.4 Global Convergence

Global convergence proofs for optimization algorithms for smooth problems can not
be applied to the CO master problem because of the nonsmoothness of p}(z). This
difficulty could be overcome by the use of optimization algorithms for nonsmooth
problems such as bundle methods [Mif77, SZ92, HUL93|. However, this precludes the
use of optimization algorithms for smooth problems.

Even if we used an optimization algorithm for nonsmooth problems, global con-
vergence may still be hindered (for the nonconvex case) by the existence of multiple
local minimizers to the CO subproblems. In that case pf(z) is not a function but
rather a set-valued function.! No global convergence proof is known for optimization

algorithms applied to set-valued functions.

2.4 Inexact Penalty Decomposition (IPD)

In Section 2.3, we showed that there are numerical and analytical difficulties associ-
ated with the use of CO. However, an advantage of CO is that its subproblems are
feasible for any value of the target variables. Moreover, CO has been successfully
applied to the solution of some real problems [Man99, Sob98]. In this section we

propose a new decomposition algorithm based also on the use of quadratic penalty

!See Aubin and Frankowska [AF90] for a reference on set-valued analysis.
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functions that overcomes some of the difficulties associated with CO. We term the

algorithm Inexact Penalty Decomposition (IPD).

2.4.1 Problem Formulation

The degeneracy of the CO master problem and subproblems is due to the specific form
in which quadratic penalty functions are used. Here, we propose a more classical use

of quadratic penalty functions. Solve the following master problem:
N
min 3" F7(y,2) (2.11)
i=1

where F*(z) is the optimal-value function corresponding to the ith subproblem,

* : 2
Fi(v,2) = min Fi(zi, yi) +7llzi — 2|3 (2.12)
s.t. ci(xi, ;) > 0.

Unlike CO, IPD keeps the OPGV objective function term Fj(z;,y;) within the ith
subproblem. Then, a penalty parameter « is used to weight the quadratic penalty
term ||z; — z||3 with respect to Fj(z,y;). Quadratic penalty functions are inezact
penalty functions in the sense that the exact solution (x; = z) is retrieved only for
v = oo. Thus, the IPD master problem needs be solved for a sequence of penalty
parameters {7} such that limy_,. v = 0o. Another difference between IPD and
CO is that IPD uses the subproblem optimal-value functions F;*(z) as penalty terms

within the objective function of an unconstrained master problem.

2.4.2 Minimizer Equivalence

In Chapter 3, we show that there exists a trajectory of minimizers to the IPD master
problem converging to any OPGV minimizer satisfying the LICQ, SCSC, and SOSC.
The OPGV minimizer can be found by solving the IPD master problem for a sequence

of penalty parameters {7;} such that limy_,, 7, = oc.
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2.4.3 Fast Local Convergence

The main advantage of IPD over CO is that, as we show in Chapter 3, the IPD master
problem and subproblem minimizers satisfy the LICQ, SCSC,and SOSC. Moreover,
the master problem is smooth in a neighborhood of the minimizer. Therefore, op-
timization algorithms for smooth problems will show fast local convergence when
applied to the IPD master problem and subproblems. This improves on the result by

Tammer because the restrictive SLICQ is not needed.

The difficulty is now we need to solve the master problem for a sequence of penalty
parameters {7} such that limg_,, 7 = oo. For large 7, numerical difficulty might
be expected due to the ill conditioning introduced by quadratic penalty functions
[Mur71, Wri99]. Nevertheless, we believe certain sequential quadratic programming
algorithms [GMSW86, GMS97, Mur97] can resolve this ill conditioning satisfactorily.

2.5 Exact Penalty Decomposition (EPD)

An alternative to inexact penalty functions are the so-called exact penalty functions
[NW99, Chapter 17]. The term ezact refers to the fact that the exact solution (z; = 2)
is computed for finite values of the penalty parameter «v. Thus exact penalty functions

avoid the ill conditioning associated with large penalty parameters.

In this section, we propose a novel decomposition algorithm based on the use of an
exact penalty function. The advantage is that the penalty parameter need no longer
be driven to infinity. The difficulty is that, as a consequence of the use of exact penalty
functions, the subproblem optimal-value functions become nonsmooth. To alleviate
this difficulty, we propose solving a sequence of perturbed problems that have better
smoothness properties. We call the new algorithm Exact Penalty Decomposition
(EPD).
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2.5.1 Problem Formulation

Solve the following master problem:

n
min Y | F(2)
i=1
where F*(z) is the optimal-value function corresponding to the ith subproblem,

Fi(z) = min Fi(xi, y;) +ve' (si + 1)

TisYisTi,Si,bi

st ci(@iy)—ri=0 (2.13)
it 8 —ti=z

T4, S, ti > 0.

The exact penalty function used is the /; penalty function |lz; — 2|y = >0, |24 — 2]
However, to avoid the nonsmoothness of the absolute value function, rather than
using the [; exact penalty function explicitly, we introduce elastic variables s; and
t;. Then, it can be shown that the [; exact penalty function may be computed as
|z; — 2||1 = € (s; + t;). We also introduce slack variables r; in the constraints so that
the subproblems only have equality constraints and nonnegativity bounds.

The advantage of exact penalty functions is that it suffices to solve the master
problem for a sufficiently large but finite value of . The difficulty is that, if only
the LICQ holds at the OPGV minimizer, then only the Mangasarian-Fromovitz Con-
straint Qualification holds, in general, at the subproblem minimizer, and not the
LICQ. This implies that the optimal-value function F;*(z) is not smooth in general.

We overcome this difficulty by using barrier terms to remove the nonnegativity
constraints from the subproblems. Then we solve the following master problem for a

decreasing sequence of barrier parameters {py} such that limg_,o p = 0:

N
min Y F;(u, 2) (2.14)
i=1
where F*(u, z) is the optimal-value function corresponding to the ith subproblem,
Fr(pz) = ymrlg . Fy(wi, yi) + ve' (si + ti) — pd(rs, si, i)
s.t. ci(xiyy;) — ;=0 (2.15)

xi-l—sz-—ti:z,
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where the barrier function ¢ is defined as

(14, 85, 1) = Zlog Tij + Z(log sij + logti;).

=1 =1

2.5.2 Minimizer Equivalence

In Chapter 3, we show that there exists a trajectory of minimizers of the EPD master
problem (2.14) converging to any OPGV minimizer satisfying the LICQ, SCSC, and
SOSC. Thus, we can find the OPGV minimizer by driving u to zero.

2.5.3 Fast Local Convergence

As in the IPD case, the main advantage of EPD over CO is that the EPD minimizers
are nondegenerate with respect to the master problem and the subproblems. Since the
EPD subproblems (2.15) only have equality constraints, the SCSC are automatically
satisfied at any minimizer. Moreover, the LICQ is obviously satisfied because the
EPD subproblem Jacobian clearly has full rank. Finally, the SOSC are likely to
hold at the minimizer to the subproblems because in a barrier formulation, usually
isolated minimizers are attained. In fact, we show in Chapter 3 that if an OPGV
minimizer satisfies LICQ, SCSC, and SOSC, then the equivalent EPD minimizer is
nondegenerate with respect to the master problem and the subproblems.
Consequently, optimization algorithms for smooth problems will be fast locally
convergent on the EPD master problem and subproblems. The difficulty is that,
for small y, both the master problem and the subproblems may become ill condi-
tioned [Mur71, Wri99]. However, we believe that sequential quadratic programming
algorithms [GMSW86, GMS97, Mur97| can be used to deal efficiently with the ill-
conditioned master problems and primal-dual interior point methods can deal with

the ill conditioning introduced by the barrier terms in the EPD subproblems.



Chapter 3
Convergence Analysis

We study the convergence properties of Inexact Penalty Decomposition (IPD) and
Exact Penalty Decomposition (EPD). We show that for every OPGV minimizer sat-
isfying the LICQ, SCSC, and SOSC, there exist trajectories of IPD and EPD min-
imizers converging to it. Moreover, we give nondegeneracy results on the IPD and
EPD minimizers that imply there exist optimization algorithms for smooth problems
that will show fast local convergence when applied to the master problem and the
subproblems. In other words, we show that IPD and EPD are fast locally convergent
decomposition algorithms.

This chapter is organized as follows. In Section 3.1, we show that IPD is fast
locally convergent. In Section 3.2, we show that EPD is fast locally convergent.
In Section 3.3, we discuss the difficulties encountered when we try to prove global
convergence for decomposition algorithms for the nonconvex OPGYV such as EPD or
IPD.

3.1 Local Convergence Results for IPD

Let a nondegenerate minimizer be one that satisfies the LICQ, SCSC, and SOSC.
In this section we show that for every nondegenerate OPGV minimizer X, there
exists a trajectory of IPD minimizers X () such that lim, . X;(y) = X5. Thus

X( can be computed by solving the IPD master problem for a sequence of penalty

31
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parameters {7} such that limg ., 7% = co. Moreover, we show that for each value
of the penalty parameter -y, the minimizer X;(v) is nondegenerate with respect to
the IPD master problem and subproblems. This in turn implies the existence of
optimization algorithms for smooth problems that will converge at a fast rate when
applied to the IPD master problem and subproblems.

To prove the result, we first show how the IPD master problem can be obtained
from the OPGV. Then we use the nondegeneracy of the OPGV and the implicit

function theorem to show that X7 (7) is a nondegenerate minimizer.

3.1.1 IPD Master Problem Derivation

The IPD master problem is obtained from the OPGV through a sequence of three
manipulations: (i) introduction of target variables, (ii) introduction of an inexact

penalty function, and (iii) projection. The OPGYV is

N
min »  Fi(z,y;)
=1

Z,Yi

st. c(xyy;) > 0, i=1:N,

where z € R", y; € R™, Fy(z,y;) : R""™ — R, and ¢;(z,y;) : R"™ — R™:.

Target Variables

The first manipulation operated on the OPGV is the introduction of the target vari-
ables z. Then, a different vector z; is used to represent the value of the global variables
at each of the systems. Compatibility constraints (z; = z) are introduced to force the
global variables to take the same value, equal to the target variables, for all systems.

The resulting problem is the Individual System Separable Problem (ISSP):

N
min Y Fy(z;, ;)
2,T3,Y5 i1

st ci(xi,y:) > 0, i=1:N,

zi—z = 0, 1=1:N,
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where x;,z € R™. The ISSP objective and constraint functions are separable with
respect to the ith system variables (z;,y;). Clearly, (3.1) and (3.2) have the same set

of minimizers.

Inexact Penalty Function

The second transformation is the introduction of quadratic penalty terms in the ISSP
objective function to remove the compatibility constraints z; = z. The result is the
Penalty Individual System Separable Problem (PISSP):

i Fi(zi, y; i— 23

st ci(xi,y) > 0, i=1:N.

These quadratic penalty functions are inexact because the PISSP minimizers only
satisfy the compatibility constraints x; = z asymptotically as v — oo. For finite 7,
the PISSP minimizer is only in general an approximation to the ISSP minimizer and

hence the minimizer of (3.1).

Projection

Finally, if we set the target variables to a fixed value, the PISSP breaks into N
independent subproblems. The subproblem optimal-value functions can be used to
formulate a master problem that only depends on the target variables. This procedure
is known as projection. The result is the IPD problem, namely solve the following

master problem for a sequence of penalty parameters {7} such that limy_, yx = 0o:

N
min Y F(7,2)
i=1
where F(7, z) is the optimal-value function corresponding to the ith subproblem,

Fi(y,7) = min Fi(xs,y:) + llws — 2|13

i Yi

s.t. ci(xs,y:) > 0.
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3.1.2 IPD Nondegeneracy

We prove the existence of a trajectory of nondegenerate IPD minimizers converging
to each nondegenerate OPGV minimizer. The result is obtained in three steps. First,
we show that for any nondegenerate OPGV minimizer there exists an equivalent
nondegenerate ISSP minimizer. Second, we show that there exists a trajectory of
PISSP minimizers that converges to each nondegenerate ISSP minimizer as we drive
the penalty parameter to infinity. Finally, we show that each nondegenerate PISSP
minimizer is an IPD minimizer satisfying the nondegeneracy conditions for both the

IPD master problem and subproblems.

ISSP Nondegeneracy

First, we introduce some notation. The subindex O is used to distinguish variables
related to the OPGV, S is used for ISSP variables, P for PISSP variables, and I for
IPD variables. For a given set of vectors {v;}¥,, we denote the column vector
U1
v=| "
UN

by V = (v1,v,...,vy). Likewise, for a given a set of matrices {M;}Y,, we denote

the matrix

byM: (Ml,MQ,...,MN).

Definition 3.1 An OPGYV point is a vector Xp = (z,Y), where z € R" and Y =
(Y1, Y2, - - ., yn) with y; € R™.

Definition 3.2 For a given OPGV point Xp = (z,Y"), the equivalent ISSP point is
Xg=(2,X,Y), where X € R¥" is X = (z,2,...,1).
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Note that the equivalent ISSP point is obtained from the OPGV point by setting
x; = x for 4 = 1:N, and z = x. Roughly speaking, the equivalent ISSP point is the
projection of an OPGYV point onto the ISSP variable space.

The transposed OPGV Jacobian at a point X, is

(AT AT ... AL
Bf

SR
I

By : (3.4)

\ By
where A; = V,éi(z,v;), Bi = V,,é(x,y;), and ¢ are the constraints active at Xo.
This matrix is also written as JJ = (/1 B)T, where A= (A1, Ag,..., Ay) and B is
the block diagonal matrix B = diag(Bs, Bs, ..., By). The transposed ISSP Jacobian
at a point Xy is
ZT
JT = AT IN-n ’ (35)
BT

where A is the block diagonal matrix A = diag(A;, As, ..., Ay), I is the k-dimensional
identity matrix, and Z is the matrix Z = (=1, — I, ..., —1I).

Finally, in the remainder of this section we assume that the functions F;(x,y;)
and ¢;(z,y;) are three times continuously differentiable.

We now turn to proving that if an OPGV minimizer X, is nondegenerate, then

its equivalent ISSP point X§ is a nondegenerate ISSP minimizer. We start by proving
that the LICQ holds at XZ.

Lemma 3.3 The LICQ holds at an OPGYV point iff the LICQ holds at its equivalent
ISSP point.

Proof: Suppose there exists Ao # 0 such that J35Ao = 0. Let

Ao
Ag = .
5 ( AT\, )
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Then \g is obviously nonzero and it is easy to show that JZAg = 0. Conversely,

/\Sz(i:>7é0

such that JXAg = 0; then from (3.5) we know that

suppose there exists

7"\ =0, (3.6)
AT + X9 =0, (3.7)
BT, =0. (3.8)

From (3.7) we know that Ay = —AT\;. Substituting )\, into (3.6) we get
—ZTAT)\, =0. (3.9)
This in turn implies by the definitions of AT and Z* that
AT\ = 0. (3.10)

From (3.8) and (3.10) we know that J5A; = 0. Moreover, \; # 0 because otherwise
Ag = 0 from (3.7). [ |

In the following lemma we show that if an OPGV minimizer satisfies the first-order
KKT conditions for the OPGV, then its equivalent ISSP point satisfies the first-order
KKT conditions for the ISSP.

Lemma 3.4 The point (X0, Ao) is a first-order KK T point for the OPGV iff (Xg, As)
1s a first-order KKT point for the ISSP, where X is the ISSP point equivalent to Xo

and
A
As = v e . , (3.11)
VX Zi:l E(xa yz) —A AO

VwFl(xayl)

N
Vo Fo(, yo)
VXZE(xayz) = 2: ’

=1

where

szN(ma yN)
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Proof: We need to show that the first-order KKT conditions A.2-A.6 are satisfied
for the OPGV at Xy iff they are satisfied for the ISSP at Xg. From the definition
of the equivalent ISSP point, it is obvious that the feasibility conditions A.2 and A.3
are satisfied at Xy iff they are satisfied at Xg. It remains to show that conditions
A.4-A.6 are satisfied for the OPGV at X, iff they are satisfied for the ISSP at Xg.

Assume there exists A\p > 0 satisfying the complementarity condition A.4 at Xo

such that
Zi]\il vmﬂ(xv yz) _ AT )\
VY Zfil E(mayz) BT ©

vylFl(xa yl)

N
V. Fa(z,yo)
VYZFi(l",yi): ! 2. ’

i=1

where

VZJNFN('Z" yN)

Then it is easy to show that condition (A.6) holds at Xg with Ag as defined in (3.11);
that is,

0 ZT
VX Zi\il E(xayz) = AT I /\5.
Vy Zfi1 Fi(z, ;) BT

Moreover, if the nonnegativity and the complementarity conditions A.5 and A.4
hold at X} for the OPGV, then they obviously also hold at (zg, Ag) for the ISSP.

Conversely, assume conditions A.4—-A.6 are satisfied for the ISSP at Xg with
As = (A1, A2). Then it is easy to prove by arguments identical to those used above
that conditions A.4-A.6 are satisfied for the OPGV at X with A\p = A;. [ |

Definition 3.5 For a given OPGYV first-order KKT point (Xp, Ao), the equivalent
ISSP first-order KKT pointis (Xs, Ag), where Xg is the ISSP point equivalent to X,
and Ag is given by (3.11).

The following corollary is a consequence of Lemma 3.4.
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Corollary 3.6 The SCSC hold at a first-order KKT point for the OPGYV iff the
SCSC hold at its equivalent ISSP first-order KKT point.

The following proposition shows the equivalence between the OPGV tangent cone
7o and the ISSP tangent cone 7g.! This result is used later to prove equivalence
between OPGYV and ISSP in terms of SOSC.

Proposition 3.7 For a given OPGYV first-order KKT point (Xo, \o), there is a one-
to-one correspondence between the set of vectors 1o € To(Xo, o) and the set of
vectors s € Ts(Xs, As), where (Xs, \g) is the ISSP first-order KKT point equivalent
to (Xo,Ao)-

Proof: Given 70 = (z,Y) € To(Xo, Ao), we construct the ISSP vector
Ts = ('7/" X’ Y)a
where X € RV¥" is X = (z,7,...,7). Then
x
A B AX + BY
JsTS = X = . (3.12)
zZ 1 v Zx+ X

Moreover, it is obvious from the definitions of A, B, Z, X, and Y that

AX + BY J,
JsTs = * = [ 7o, (3.13)
Zx+ X 0
Then from (3.13) and the definition of \g it follows that 75 € T5(Xs, Asg)-
Conversely, let X = (z1, 29, ...,2y) and assume 75 = (z, X, Y) satisfies Jg75 = 0;
then
AX +BY =0 (3.14)
Zz+X =0. (3.15)

Then (3.15) implies that X = (z,z,...,z) and from (3.14) and the definition of Ag
by (3.11) we know that 7o = (z,Y") € To(Xo, o). [

1See A.12 for a definition of tangent cone.
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Definition 3.8 Let (Xo, Ao) be an OPGV first-order KKT point. For a given OPGV
tangent cone vector 7o = (z,Y) € To(Xo, o), the equivalent ISSP tangent cone
vector is 7 = (x, X,Y), where X € R¥"is X = (z,z,...,1).

Finally, the following theorem builds on the results given in Lemma 3.4 and Propo-

sition 3.7.

Theorem 3.9 An OPGYV point X} is a minimizer satisfying the SOSC for the OPGV
iff its equivalent ISSP point X§ is a minimizer satisfying the SOSC for the ISSP.

Proof: In Lemma 3.4 we showed that (X}, A\o) is a first-order KKT point for the
OPGYV iff its equivalent ISSP first-order KKT point (X}, Ag) satisfies the KKT con-
ditions for the ISSP. Also, in Proposition 3.7 we showed that there is a one-to-one
correspondence between vectors 7o € To(X, Ao) and vectors 75 € Tg(X%, Ag). The

proof will be complete if we show that for all 7o = (z,Y) € To(X§, Ao),
TgVZ,Co(XB, /\0)7’0 = T§V2£5(X§, )\5)7’5,

where 75 is the ISSP tangent cone vector equivalent to 7o and V2L is the Hes-
sian of the Lagrangian. Denote the OPGV Lagrange multiplier vector by Ao =
((Ao)1, (Ao)2s---,(Ao)n), where (Ag); are the OPGV Lagrange multipliers corre-

sponding to the ith system active constraints é(x,y;). It follows that

0 T
74 V2 Ls (X5, As)Ts = (2, X, Y)T C D X |, (3.16)
DT FE Y

where C' is the block diagonal matrix whose ith block is
VizF,(SE*, y:) - (/\O)Zvimcl(x*v y:)v
D is the block diagonal matrix whose th block is

\% F,(:c*,y;“) - ()‘O)ivi,yici(x*a y:)a

Z,Yi

and E' is the block diagonal matrix whose ith block is

V2 E(x*vy:) - (/\O)zvzuleZ(x*vyz*)

YisYi
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From (3.16) we deduce that

N
TV Ls(X5 As)Ts = Y " (V2 Fi(z*, y}) — (Mo0)iViei(a®, u)) «

1=1

N
+ Yyl (V2 Fi(@™,u)) — (20)iVe. iz, u) vi
=1

(3.17)
N
+2) yl (V2 Fi(ar,u) — (\o)iVa ez, ) o
1=1
=75 V*Lo (X5, Ao)To-
[ |

Theorem 3.10 An OPGYV point X}, is a minimizer satisfying the LICQ), SCSC, and
SOSC for the OPGYV iff its equivalent ISSP point X3 is a minimizer satisfying the
LICQ, SCSC, and SOSC for the ISSP.

Proof. The result is an immediate consequence of Lemma 3.3, Corollary 3.6, and
Theorem 3.9. u

PISSP Nondegeneracy

The following theorem follows from Theorems 14 and 17 in Fiacco and McCormick
[FM68] and ensures the existence of a trajectory of nondegenerate PISSP minimizers

converging to every nondegenerate ISSP minimizer.

Theorem 3.11 If X§ is an ISSP minimizer satisfying the LICQ, SCSC and SOSC
then, for v sufficiently large, there exists a unique once continuously differentiable
trajectory of PISSP minimizers X 5(7y) satisfying the LICQ, SCSC, and SOSC such
that lim, . X7 (7) = X&.

IPD Nondegeneracy

We show that for any nondegenerate PISSP minimizer X5(7), there exists an equiv-
alent IPD minimizer X;(y). Moreover, we show that X;(y) is nondegenerate with

respect to the IPD master problem and subproblems.
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First we introduce some notation. Notice that PISSP points Xp and IPD points
X; have the same dimension. In particular, Xp, X; € R™, where n; = (N +
)n + Zf\il n;. We denote an IPD point by X; = (2, X,Y), where z € R", X =
(x1,Z2,...,zx) with z; € R™, and Y = (y1, %o, - - -, yn) with y; € R™. An IPD point
can also be written as X; = P(z, (X1)1, (X1)2,--., (X1)n), where (X7); = (x;,y;) and
PT € Rv*™ is a permutation matrix that rearranges X; so that the components

corresponding to the ith system are contiguous.

Definition 3.12 A point X} = (2*, X*, Y*) is a semi-local IPD minimizer if (X7); =

(xF,y¥) is a local minimizer for the ith IPD subproblem with z = z*.

Definition 3.13 A point X; € R™ is a strict local IPD minimizer if: (i) X; is a
semi-local IPD minimizer, and (ii) there exists a neighborhood N.(X7;) such that if

X1 € N.(X73) is a semi-local minimizer then

N N
D G v) + ol = 2715] < D [Falw, i) + 9l — 2113 -
i=1 i=1

Lemma 3.14 If X} is a PISSP minimizer satisfying SOSC, then X}, is also a strict

local IPD minimizer.

Proof: We need to show that conditions (i) and (ii) in Definition 3.13 are satisfied
at Xj5. Assume X} is a PISSP minimizer satisfying SOSC. Then there exists a
neighborhood NV (X}) such that for all feasible points Xp € N (X}),

N N
> [Fiad ) +llei = 215) < Y [Fiwi, i) + vl — 21l3) - (3.18)
i=1 i=1

In particular, for all
Xp = P(Z*, (XP)T, (Xp);, ey (Xp)j: + A(XP)Z, ey (XP)}(V)

such that ||A(Xp)T|| < € we know by (3.18) that

Fy(zi, ) +9llei — 2113 < Fila] + Az, yf + Ays) + 9llaf + Az — 23, (3.19)
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and therefore X} is a semi-local IPD minimizer, i.e., condition (i) in Definition 3.13
holds at X}. Also, every semi-local IPD minimizer is a feasible PISSP point. There-
fore, by (3.18), we know that X} satisfies condition (ii) in Definition 3.13. [ |

Theorem 3.15 If X; = (2%, X*,Y*) is a PISSP minimizer satisfying the LICQ,
SCSC, and SOSC, then (X3); = (zF,y}) is a minimizer satisfying the LICQ, SCSC,
and SOSC for the ith IPD subproblem with z = z*.

Proof: Let Ap be the unique Lagrange multiplier vector for the PISSP at X5.
Then

2y sz\;(z — ;) 0
VSN Faty) +29(X +2Z2) | =] AT | Ap. (3.20)
Vy Y Fi(a7, y)) BT

From (3.20) we know that for i = 1:N,

( Vo Fi(st, ) + 20— 2 ) _ ( A ) (he) (3.21)
Vo Fi@7, ) ’

where (Ap); are the components in Ap corresponding to the ith system constraints.
Therefore, ((X5)i, (Ap);) is a first-order KKT point for the ith IPD subproblem.
Moreover, if the LICQ and SCSC hold at X}, then they obviously hold also at
((X5)i, (Ap);) for the ith IPD subproblem. It remains to show that the SOSC hold
at ((X}5)i, (Ap);) for the ith IPD subproblem. The PISSP Jacobian at X} is

(Ji)1

(J1)2

Js = PT, (3.22)

o O O o

(Jr)n

where PT is a permutation matrix that rearranges the columns of the PISSP Jacobian
so that columns corresponding to the same system are contiguous and (J;); is the
Jacobian of the ith IPD subproblem evaluated at (X});. From (3.22) it is clear that
for any vector (77); belonging to the ith subproblem tangent cone at (X}); we can

form a vector
Tp:P(O,O,...,0,(7’1)2',0,...,0) (323)
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belonging to the PISSP tangent cone at Xj. The PISSP Lagrangian Hessian is

[0 )
(VL)
ViLp=P (V2L1)s Pt (3.24)

\ (V2Lo)w )

where (V2L;); is the ith subproblem Lagrangian Hessian at (X});. Because the SOSC

hold at X}, for any PISSP tangent cone vector 7p we have

5 (V2Lp)7p > 0. (3.25)

Then (3.23)~(3.25) imply
(11); (V2Lr)i(7r)i > 0. (3.26)
|

Lemma 3.16 If the functions F; and c; are three times continuously differentiable
and the PISSP minimizer Xy = P(2*,(X}p)1, (Xp)a, ..., (Xp)n) satisfies the LICQ,
SCSC, and SOSC, then the IPD master problem objective

N

F*(y,2) =Y _F7(v,2)
i=1
can be defined as a twice continuously differentiable function in a neighborhood N (z*)

with € > 0.

Proof: From Theorem 3.15 we know that if X} is a nondegenerate PISSP minimizer,
then (X}); is a minimizer satisfying the LICQ, SCSC, and SOSC for the ith IPD
subproblem with z = z*. Therefore, by the implicit function theorem and Theorem 6
in [FM68] we know that if F; and ¢; are three times continuously differentiable, then
there exists a unique twice continuously differentiable trajectory of minimizers to the
ith IPD subproblem (X7);(z) defined in a neighborhood N, (z*) with ¢; > 0. The
(X35)i(z) define in turn a unique twice continuously differentiable function F*(v, z) =
SV Fi(y,2) on N(2*), where € = min(ey, €y, . .., ex). [
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Definition 3.17 Let X} = P(z*, (X}5)1,(Xp)2,-..,(Xp)n) be a PISSP point such
that for i = 1: N the vector (X5); is a minimizer satisfying the LICQ, SCSC, and SOSC
for the ¢th IPD subproblem with z = z*. Then z* is a strict IPD master problem
minimizer if there exists a neighborhood N, (z*) with € > 0 such that Vz € N (z*) we
have F*(v,z) > F*(v, 2*), where F* is the twice continuously differentiable master

problem objective given by Theorem 3.16.

Theorem 3.18 If X}, = P(z*, (X})1, (X5)2,---, (X5)N) is a PISSP minimizer sat-
wsfying the LICQ, SCSC, and SOSC, then z* is a strict IPD master problem minimizer
satisfying the SOSC.

Proof: From Theorem 3.15 and Lemma 3.16 we know that there exist twice contin-
uously differentiable trajectories of IPD subproblem minimizers (X});(z) defined in
a neighborhood N, (z*). Then, by the differentiability of (X});(z) we know that for
all e > 0 we can always find e3 > 0 such that €3 < ¢ and for all z € N, (z*),

Xp(2) = (2, (Xp)1(2), (XP)2(2), - -, (X (2)) € Noo(XE). (3.27)

Because we know by Lemma 3.14 that X} is a strict IPD local minimizer, (3.27)
implies that there exists €, < €3 such that F*(v,z) > F*(v, z*) for all z € N, (z*),
where F™ is the master problem objective given by Lemma 3.16. Thus 2* is a strict
IPD master problem minimizer. It only remains to show that the SOSC hold at z*
for the IPD master problem. It suffices to show that for all v # 0,

d*F* (v, 2* + rv)

g > 0.

But notice that
F*(y,z2"+rv) = FP(XP(T)),

where Fp is the PISSP objective function and Xp(r) = Xp(z* + rv). Moreover,
because (X}j, \*) satisfies the complementarity conditions for the PISSP and the
implicit function theorem guarantees that the active set remains fixed at X5(r) for r
small, we know that

A~

Fp(Xp(r)) = Lp(Xp(r),\"),
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where Lp is the Lagrangian function. Therefore,
PF(y, 2 +1v) _ dLp(Xp(r),\)
dr? B dr? '
The first derivative of the PISSP Lagrangian function with respect to r is
dLp(Xp(r), \*) dXp(r)
dr dr ’
and the second derivative is
PLp(Xp(r),\*) _dXp(r)
dr? - dr

+ Vo Lp(Xp(r), \)

= VxLp(Xp(r),\*)

VixLr(Xp(r), \) dX;T(T) (3.28)

d2XP(7')
dr?
Evaluating (3.28) at r = 0 and because Xp(0) is a PISSP stationary point we get

d>F*(v,2* + rv)
dr?

_dXp(0)"

dXp(0)
dr '

Vi xLp(Xp(0), X7) o

(3.29)

r=0
Because Xp(r) is twice continuously differentiable, X p(r) remains PISSP feasible for
r small, and the LICQ holds for the PISSP at X7, we know that dXP(O) belongs to the
PISSP tangent cone. Moreover, because (XI’S,/\*) satisfies the SOSC, (3.29) implies

that R ,
dXp(0 A
= PO) G (K0(0), )

dXp(0)
dr

d>F*(vy, 2" + rv)

dr2 > 0.

r=0

3.2 Local Convergence Results for EPD

In this section we show that EPD is a fast locally convergent decomposition algorithm.
In particular, we show that for any nondegenerate OPGV minimizer X, there exists
a trajectory of nondegenerate EPD minimizers X} (1) such that lim, o Xf(u) = X5.

The proof parallels the one given for IPD, but the notation is complicated by the
presence of the elastic variables R, S, and T. We first show how the EPD master
problem can be obtained from the OPGV. Then we use the nondegeneracy of the
OPGYV and the implicit function theorem to show that Xj(u) is a nondegenerate

minimizer.
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3.2.1 EPD Master Problem Derivation

The EPD master problem is obtained from the OPGV through a sequence of three
manipulations: (i) introduction of an exact penalty function, (ii) introduction of

barrier terms, and (iii) projection.

Exact Penalty Function

The first manipulation operated on the OPGV is the introduction of the target vari-
ables z. Then a different vector z; is used to represent the value of the global variables
at each system. The /; exact penalty function y||lz; — 2|1 = v > _7_, |2i; — 2] is used to
force the global variables to take the same value, equal to the target variables, for all
systems. To avoid the nonsmoothness of the absolute value function, rather than us-
ing the exact penalty function explicitly, we introduce elastic variables s; and t;. The
I, exact penalty function can then be computed as v||z; — z||1 = ve” (s; +t;). Slack
variables r; are also introduced so that only equality constraints and nonnegativity
bounds remain. The resulting problem is the Individual System Feasible Problem
(ISFP):
N

min Y " [Fi(zi, yi) + e’ (si + 1))

2,X45Yi,Ti5S45b;

i=1
s.t. ci(ziy;) —r; = 0, i=1:N, (3.30)
Il?i-i—Si—ti = Z, Z:1N,

Ti,Si,ti 2 0, Z:1N,

where v is the penalty parameter, e € R™ is the vector of ones, r; € R™ and
Siytiyz € R™ The term Individual System Feasible refers to the fact that, if the
original OPGYV is feasible, then the ISFP is feasible for any value of z.

Barrier Terms

The second transformation is the introduction of barrier terms in the ISFP objective

function to remove the nonnegativity constraints. The result is the Barrier Individual



3.2. LOCAL CONVERGENCE RESULTS FOR EPD 47

System Feasible Problem (BISFP):
N
min Z [(Fi(zs,y:) + ve' (ti + si) — pd(rs, si, ti))]

2,T4,Yi 5705805t -
=1 , (3.31)
s.t. ci(ziyy;)) —r; = 0, i=1N,

.’Ei+8i—ti = Z, ’[,ZlN,

where 4 is the barrier parameter and the barrier function @(ry, s;, ;) = Y72, logry; +
Z?Zl(log sij +1ogt;;). Notice that the BISFP is an equality constrained problem and
therefore the SCSC hold at any KKT point.

Projection

Finally, if we project the BISFP onto the target variable space we get the EPD
problem. We solve the following master problem for a sequence of barrier parameters

{pr} such that limy_, g = O:

N
min Y F(n,2)
i=1
where F*(1u,z) is the optimal-value function corresponding to the ith subproblem,

wynbn}st Fi(wi, yi) + ve" (si + i) — po(ri, si, ti)

s.t. ci(xiy) —r; = 0,

.Ii—f—Si—ti = Z.

3.2.2 EPD Nondegeneracy

We prove the existence of a trajectory of nondegenerate EPD minimizers converging
to each nondegenerate OPGV minimizer. The result is obtained in three steps. First,
we show that for any nondegenerate OPGV minimizer there exists an equivalent
nondegenerate ISFP minimizer. Second, we show that there exists a trajectory of
BISFP minimizers that converges to each nondegenerate ISFP minimizer as we drive
the barrier parameter to zero. Finally, we show that each nondegenerate BISFP
minimizer is an EPD minimizer satisfying the nondegeneracy conditions for the EPD

master problem and subproblems.
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ISFP Nondegeneracy

First, we introduce some notation. The subindex O is used to distinguish variables
related to the OPGV, F' is used for ISFP variables, B for BISFP variables, and FE for
EPD variables.

Definition 3.19 An OPGV point is a vector Xpo = (z,Y), where z € R" and
Y = (ylay27 s ayN) with Yi € R™.

Definition 3.20 For a given OPGV point Xp = (z,Y), the equivalent ISFP point
is Xp = (z,X,Y,R,S,T), where X € RV is X = (z,z,...,2), R € RE=L1mi g

R = (c1(z1,y1), co(T2, ¥a), - - -, c3(3,y3)), and S, T € RN are zero vectors.

Note that the equivalent ISFP point is obtained from the OPGYV point by setting
ri = ¢i(z,v;), x; = x, and s;,t; = 0 for 7 = 1:N, and z = z. Roughly speaking, the
equivalent ISFP point is the projection of an OPGV point onto the ISFP variable
space.

Because the ISFP constraints ¢;(z;,y;) — r; = 0 are equality constraints, they are
active at all feasible points. However, for the sake of clarity, we only consider as
active those constraints c;;(z;,y;) — rij = 0 for which r;; = 0. There is no loss of
generality in doing so because when r;; > 0, the constraint ¢;;(x,y;) — r;; = 0 plays
no role in the nondegeneracy conditions because its gradient is linearly independent
with respect to the other active constraint gradients and its corresponding Lagrange

multiplier is zero. Hence, the transposed ISFP Jacobian at X is

( 77 \

AT Iy,
BT
Jr = L L : (3.32)
Iy Iy
\ ~Inn Ing )
where A is the block diagonal matrix A = diag(A;, As, ..., Ay), I is the k-dimensional
identity matrix, Z is the matrix Z = (—I,, —I, ..., —I,), 1 = SO~ 7, and 10; is

the number of active constraints in the ¢th system.
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Finally, in the remainder of this section we assume that the functions F; and ¢;
are three times continuously differentiable.

We now turn to proving that provided an OPGV minimizer X is nondegenerate,
its equivalent ISFP point X7, is a nondegenerate ISFP minimizer. We start by proving
that the LICQ holds at X.

Lemma 3.21 The LICQ holds at an OPGYV point iff the LICQ holds at its equivalent
ISFP point.

Proof: Suppose there exists Ap # 0 such that J5Ao = 0. Let

[ do )
— AT,
A\p = Ao
AT )

\ A7)0 |

Then \p is obviously nonzero and it is easy to show that J.Ap = 0. Conversely
(M)
A2
Ar=1| N | #0
Ag
\ %/

such that JZAr = 0. Then from (3.32) we know that

suppose there exists

ZT )\ =0, (3.33)
AT 4+ )X =0, (3.34)
BT\ =0, (3.35)
~A1+ A3 =0, (3.36)
Ao+ Ay =0, (3.37)
—X2 + A5 = 0. (3.38)
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From (3.34) we know that A\, = —AT\;. Substituting A, into (3.33) we get
—ZTAT)\ =0. (3.39)
This in turn implies by the definitions of AT and Z7 that
AT) =0. (3.40)

From (3.35) and (3.40) we know that J5\; = 0. Moreover, \; # 0 because otherwise
Ar =0 from (3.34), (3.36), (3.37), and (3.38). [

In the following lemma we show that an OPGV point satisfies the first-order
KKT conditions for the OPGV if and only if its equivalent ISFP point satisfies the
first-order KK'T' conditions for the ISFP.

Lemma 3.22 Provided v > ||Vx 3.~ | Fi(z,y;) — AT Xo||oo, where

VwFl(mayl)
N
V. Fy(z,ys)
Vx> Filw,y) = DU
i=1 -
VoFn(z,yn)

(Xo,Ao) is a first-order KKT point for the OPGV iff (Xp, Ar) is a first-order KKT
point for the ISFP, where Xy 1s the ISFP point equivalent to Xo and

r o

Vx ZZJL Fi(z,y;) — AT o
A = Ao : (3.41)
ve—(Vx Zfil Fi(z,y:) — AT o)

\ ve+ (Vx ZZJL Fi(z,y:) — ATXo) /
Proof: We need to show that the first-order KK'T conditions A.2-A.6 are satisfied for

the OPGV at X iff they are satisfied for the ISFP at Xg. From the definition of
the equivalent ISFP point, it is obvious that the feasibility conditions A.2 and A.3

are satisfied at Xy iff they are satisfied at Xp. It remains to show that conditions
A.4-A.6 are satisfied for the OPGV at X, iff they are satisfied for the ISFP at Xp.
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Assume there exists A\p > 0 satisfying the complementarity condition A.4 at Xo

such that B
VY Zf\il E(xayz) BT ©
Vy1F1 (xa yl)

N
V2F2(33,y2)
VY E@w=| "
i=1 :

where

Then it is easy to show that condition A.6 holds at X with Ap as defined in (3.41);

that is,
( 0 \ ([ 7 )
VX Zzz\il F’Z(%ayz) AT I
VY Zfil E(xayz) _ BT A
= I
0 —TI 1
ve 1 1

S

Moreover, if v > ||[Vx SN, Fi(x, %)~ A" Ao ||, then the non-negativity conditions
A5 hold at (zp, Ar). The complementarity conditions A.4 are customarily satisfied
for the ISFP at X because all of the nonnegativity constraints are active at the
equivalent ISFP point.

Conversely, assume conditions A.4-A.6 are satisfied for the ISFP at Xp with
Ar = (M, A2, A3, A4, As). Then it is easy to prove by arguments identical to those
used above that conditions A.4-A.6 are satisfied for the OPGV at X with A\p = ;.
[ |

Definition 3.23 For a given OPGYV first-order KKT point (Xo, Ao), the equivalent
ISFP first-order KKT point is (Xp, Ar), where Xy is the ISFP point equivalent to
Xo and Ag is given by (3.41).

The following corollary is a consequence of Lemma 3.22.
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Corollary 3.24 Provided v > |Vx SN, Fi(x, %) — ATAolleo, the SCSC hold at a
first-order KK'T point for the OPGYV iff the SCSC hold at its equivalent ISFP first-
order KK'T point.

The following proposition shows the equivalence between the OPGV tangent cone

To and the ISFP tangent cone 7.2 This result is used later to prove equivalence
between OPGV and ISFP in terms of SOSC.

Proposition 3.25 For a given OPGYV first-order KKT point (Xo, o), there is a
one-to-one correspondence between the set of vectors 7o € To(Xo, Ao) and the set of
vectors Tp € Tp(Xp, Ar), where (Xp, A\p) is the ISFP first-order KKT point equivalent

to (Xo, /\0)

Proof: Given 70 = (z,Y) € To(Xo, Ao), we construct the following ISFP vector

0 = (2, X,Y, (AX 4+ BY),0,0),

where X € RV is X = (z,2,...,7). Then

(

x
[ A B -I \ [0
X
Z I I —I v Zx + X
JpTp = I = AX + BY (342)
AX + BY
I 0 0
\ 1) \ 0
.0 )
Moreover, it is obvious from the definitions of A, B, Z, X, and Y that
(0 [ o)
Zr+ X 0
JFTF = AX + BY == JoTO (343)
0 0
\ o ) \ o

Then from (3.43) and the definition of Ag, it follows that 7x € Tp(Xp, Ar).

2See A.12 for a definition of tangent cone.
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Conversely, assume 7 = (z,X,Y,R,S,T) with X = (z1,%9,...,2y) satisfies
JF’TF = (0. Then

AX+BY -R=0 (3.44)
Zr+X+8-T=0 (3.45)
R=0 (3.46)
S=0 (3.47)
T=0. (3.48)
From (3.47)—(3.48), S =T = 0. Hence from (3.45) we know that
X =(z,z,...,7). (3.49)

Consider the OPGV vector 7o = (z,Y). We have J57o = Az + BY', and then (3.44),
(3.46), (3.49), and the definition of Ar imply that 70 € To(Xo, Ao)- |

Definition 3.26 For a given OPGYV first-order KKT point (X, Ap) and a tangent
cone vector 7o = (z,Y) € To(Xo,Ao), the ISFP tangent cone vector equivalent to
10 is 77 = (z, X, Y, (AX + BY),0,0), where X € R"" is X = (v, z,...,1).

Finally, the following theorem builds on Lemma 3.22 and Proposition 3.25.

Theorem 3.27 An OPGV point X(, is a minimizer satisfying the SOSC for the
OPGYV iff its equivalent ISFP point X}, is a minimizer satisfying the SOSC for the
ISFP.

Proof: In Lemma 3.22 we showed that a first-order KKT point (X, A\o) satisfies
the KKT conditions iff its equivalent ISFP first-order KKT point (X}, Ar) satisfies
the KKT conditions for the ISFP. Also, in Proposition 3.25, we showed that there
is a one-to-one correspondence between vectors 7o € To(X{, Ao) and vectors 7p €
Tr(X5, Ar). The proof will be complete if we show that for all 7o = (z,Y) €
To(XE, Ao) we have

Tgv2£0(X6, )\0)7'0 = T£V2LF(X;, )\F)TF,



54 CHAPTER 3. CONVERGENCE ANALYSIS

where 75 is the ISFP tangent cone vector equivalent to 7o and V2L is the Hes-
sian of the Lagrangian. Denote the OPGV Lagrange multiplier vector by Ao =
((Ao)1, (Ao)2s---,(Ao)n), where (A\o); are the OPGV Lagrange multipliers corre-
sponding to the ith system active constraints ¢é(z,y;). It follows that the quantity
TEV2Lp (X5, Ap) TR is

([0 )

——
8
-

C D X
DT E Y
(r,X,Y,(AX + BY),0,0)" ,  (3.50)
0 AX + BY
0 0

\ LN

where C' is the block-diagonal matrix whose sth block is
Ve Fi(a*,y7) — (A0)iVasei(z, y)),
D is the block-diagonal matrix whose #th block is
V2 Fila u) — (Mo0)i Vi cile™, u),
and E is the block-diagonal matrix whose ¢th block is
Ve Fi@,y) — (M0)iVy, .cila™, up).-

From (3.50) we deduce that

N
TV Lp(Xp, Ap)Tr =Y 2" (VL Fi(a",57) — (Ao)iVasai(a®,y})) =

=1

+> yl (Vi F@, ) — (X0)iVe, i@, u)) i
Z y 7:’/ Yi Y. ) (351)
+ QZyz (@5, 5;) — (Mo)iVaycle, y)))

= TOV2£0(XO, )\0)7’0



3.2. LOCAL CONVERGENCE RESULTS FOR EPD 35

Theorem 3.28 An OPGV point X}, is a minimizer satisfying the LICQ), SCSC, and
SOSC for the OPGV iff its equivalent ISFP point X} is a minimizer satisfying the
LICQ, SCSC, and SOSC for the ISFP.

Proof. The result is an immediate consequence of Lemma 3.21, Corollary 3.24, and
Theorem 3.27. |

BISFP Nondegeneracy

The following theorem follows from Theorems 14 and 17 in Fiacco and McCormick
[FM68] and ensures the existence of a trajectory of nondegenerate BISFP minimizers

converging to every nondegenerate ISFP minimizer.

Theorem 3.29 If X7, is an ISFP minimizer satisfying the LICQ, SCSC and SOSC,
then there is a positive neighborhood of ;1 = 0 for which there exists a unique once con-
tinuously differentiable trajectory X3 (u) of BISFP minimizers satisfying the LICQ,
SCSC, and SOSC such that lim,_,0 X g (1) = X5

EPD Nondegeneracy

We show that for any nondegenerate BISFP minimizer X (u) there exists an equiv-
alent EPD minimizer X} (u). Moreover, we show that X3 (u) is nondegenerate with
respect to the EPD master problem and subproblems.

First we introduce notation. Note that BISFP points Xz and EPD points X have
the same dimension. In particular X5, Xz € R"#, where ng = (3N +1)n+31  n;+
Zf-vzl m;. We may write an EPD point as Xg = (2, X,Y,R,S,T), where X =
(x1,Z9,...,xx) with z; € R™, Y = (y1,92,...,yn) With y; € R™, R = (r,79,...,7TN)
with r; € R™, S = (s1,89,...,8y5) with s; € R", and T = (t1,1s,...,ty) with
t; € R". An EPD point can also be written as

Xg =Pz, Xg)1,( Xg)2, ..., (Xg)n),

where (Xg); = (75, ys, 74, i, t;) and PT € R"8X"F is a permutation matrix that rear-

ranges Xg so that the components corresponding to the ith system are contiguous.
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Definition 3.30 A point X} = (2*, X*,Y* R* S*,T*) is a semi-local EPD mini-
mizer if (X3); = (xF,yf,rf, st t) is a local minimizer for the ith EPD subproblem

R R

with z = z*.

Definition 3.31 A point X}, € R" is a strict local EPD minimizer if: (i) X}, is a
semi-local EPD minimizer, and (ii) there exists a neighborhood N, (X},) such that if

X € N(X}) is a semi-local minimizer, then

N
Z xzayz +’76T(t: +S'>Lk) - /’L¢(T'L7S'L’tz)]

=1

Mz

mzayz + e (t + Si) - IU'QS(Tia Siati)} . (352)
=1

Lemma 3.32 If X} s a BISFP minimizer satisfying SOSC, then X} is also a strict

local EPD mainimizer.

Proof: We need to show that conditions (i) and (ii) in Definition 3.31 are satisfied
at X5. Assume X} is a BISFP minimizer satisfying SOSC. Then there exists a
neighborhood N (X}) such that for all feasible points Xp € N (X}),

N
Z xzayz +76T(t: +S:) _N¢(sz>tz’T1)] <

i=1
N
Z i(ziyi) + e’ (ti+ i) — po(ri, sinti)] - (3.53)
In particular, for all
Xp = P(",(Xp)1,(Xp)s, -, (XB); + AXp)], ..., (Xp)x)

such that [|A(Xp)T]|| < e we know by (3.53) that

Fi(wi,yp) + e’ (8 + s7) — no(ri, 5], 1)) < Fya] + Az, yf + Ayy)
+ el (t; + Aty + 57 + As;) — po(ry + Ary, 87 + Az, t7 + At), (3.54)

and therefore X}, is a semi-local EPD minimizer; that is, condition (i) in Definition

3.31 holds at Xj. Also, every semi-local minimum for problem EPD is a feasible
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BISFP point. Therefore, by (3.53), we know that X7}, satisfies condition (ii) in Defi-
nition 3.31. |

Theorem 3.33 If X5 = (2, X*,Y*, R*, S*,T*) is a minimizer satisfying the LICQ),
SCSC, and SOSC for the BISFP, then (X3): = (xf,yf,rf, si,t7) is a minimizer

17%17 71

satisfying the LICQ), SCSC, and SOSC for the ith EPD subproblem with z = z*.

Proof: Let Ap be the unique Lagrange multiplier vector for the BISFP at Xj.
Then

( 0 \ 77

Vx Ziil Fy(z7, ;) AT Iy
Vy SN Fyar,yr BT
Y szlA (.’L‘z yz) — )\B, (355)
/’LR?Z _Im
ve + pS—2 Ing
ve + ul—2 / \ —Inag, )

where R = diag(R*), S = diag(S*), T = diag(T*). From (3.55) we know that for
1=1:N,

[ VoF(aty)\ AT L)

Vi Fi(a}, ;) B}
pi? = | -1, (AB)i, (3.56)
ve + us;? I,
\ re+ui? )\ ~1,

where #; = diag(r}), §; = diag(s}), t; = diag(t}), and (Ap); are those components
in the Lagrange multiplier vector Ap corresponding to the ith system constraints.
Therefore, ((X}):, (Ag):) is a first-order KKT point for the ith EPD subproblem.
Moreover, the EPD constraints corresponding to the ith EPD subproblem obviously
satisfy LICQ at any point. Furthermore, the SCSC always hold because the ith

subproblem is an equality constrained problem. It remains to show that SOSC hold
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at ((X3):, (Ap);) for the ith EPD subproblem. The BISFP Jacobian at X7}, is

Zy (Je)h

Zo (JB)2

Z3

Zy (Je)n

I
B
N

T , (3.57)

where P is a permutation matrix that rearranges the columns of the BISFP Jacobian
so that columns corresponding to the same system are contiguous, Z; = (0, xm;, In)
and (Jg); is the Jacobian of the ith EPD subproblem evaluated at (X});. From (3.57)
it is clear that for any vector (7g); belonging to the ith subproblem tangent cone at

(X5): we can form a vector
5 = P(0,0,...,0,(1):,0,. ..,0) (3.58)

belonging to the BISFP tangent cone at Xj. The BISFP Lagrangian Hessian is

(0 )
(V2Lg)
V2L =P (V2LE), PT, (3.59)

\ | (V2Lp)n )

where (V2Lg); is the ith subproblem Lagrangian Hessian at (X3);. Because the

SOSC hold at X}, for any tangent cone vector 75 we have
75(V2Lp)T > 0, (3.60)
where 75 is given by (3.58). Then (3.58)—(3.60) imply
(78); (V2Lg)i(78)i > 0. (3.61)
[

Lemma 3.34 If the functions F; and c; are three times continuously differentiable
and the BISFP minimizer X3, = P(2*,(X5)1, (X3)2, ..., (X5)n) satisfies the LICQ,
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SCSC, and SOSC, then the EPD master problem objective

F*(p,2) = ) F; (1,2)

can be defined as a twice continuously differentiable function in a neighborhood N (z*).

Proof: From Theorem 3.33 we know that if X% is a nondegenerate BISFP minimizer,
then (X3); is a minimizer satisfying the LICQ, SCSC, and SOSC for the ith EPD
subproblem with z = z*. Therefore, by the implicit function theorem and Theorem 6
in [FM68] we know that if F; and ¢; are three times continuously differentiable, then
there exists a unique twice continuously differentiable trajectory of minimizers to the
ith EPD subproblem (X});(z) defined in a neighborhood N, (z*). The (X});(z) define
in turn a unique twice continuously differentiable function F*(u,2) = SN | Ff(u, 2)

on N (z*), where € = min(ey, €1, ..., €x). [

Definition 3.35 Let X} = P(2*, (X5)1, (X5)2,---, (X5)n) be a BISFP point such
that for ¢ = 1: N the vector (X};); is a minimizer satisfying the SOSC for the ith EPD
subproblem with z = z*. Then z* is an EPD master problem minimizer if there exists
a neighborhood N (2*) such that for all z € N (2*) we have F*(u,z) > F*(u,z*),
where F™* is the twice continuously differentiable master problem objective given by
Theorem 3.34.

Theorem 3.36 If X5 = P(z*, (X5)1, (X5)2, -, (X5)N) s a minimizer satisfying
the LICQ, SCSC, and SOSC for the BISFP, then z* is a strict EPD master problem
minimizer satisfying the SOSC.

Proof: From Theorem 3.33 and Lemma 3.34 we know that there exist twice contin-
uously differentiable trajectories of EPD subproblem minimizers (X});(z) defined in
a neighborhood N, (z*). Then, by the differentiability of (X});(z) we know that for
all e, > 0 we can always find e3 > 0 such that €3 < ¢; and for all z € N, (z*),

Xp(2) = (2, (Xp)i(2), (Xp)2(2), - -, (Xp)n(2)) € Noo(XE). (3.62)

Because X}, is a strict EPD local minimizer, by Lemma 3.32, (3.62) implies that
there exists €, < €3 such that F*(u,z) > F*(u,2*) for all z € N, (z*), where F* is
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the master problem objective given by Lemma 3.34. Thus z* is a strict EPD master
problem minimizer. It only remains to show that the SOSC hold at z* for the EPD
master problem. It suffices to show that for all v # 0,

d2F*(u, 2* + rv)

g > 0.

But notice that
F*(u, 2 4 rv) = F(Xp(r)),
where Fg is the BISFP objective function and Xp(r) = Xp(z* + rv). Moreover,
because Xp(r) is BISFP feasible and the BISFP only has equality constraints, we
know that
Fp(Xs(r)) = Ls(Xp(r), \¥),
where Lp is the Lagrangian function. Therefore,
d*F*(u, 2% +1v) PLp(Xp(r),\)
dr? dr? )
The first derivative of the BISFP Lagrangian function with respect to r is

dLp(Xp(r), X?) X W dXp(r)
dr = VX,CB(XB(T),)\ )7,

dr
and the second derivative is

dLp(Xg(r),\)  dXg(r)
dr? T dr

dXB (’I‘)
dr (3.63)

T
VaxLs(Xp(r), ")
% * dQXB(T)
+ V;L-LB(XB(T'), A )T
Evaluating (3.63) at r = 0 and because XB(O) is a BISFP stationary point, we get
d>F*(u, 2* + rv)
dr?

_dX50)"

dX5(0)
dr )

dr

V% Ls(X5(0), \*) (3.64)

r=0
Because X p(r) is twice continuously differentiable, X g (r) remains feasible for r small,
and the LICQ holds for the BISFP at X}, we know that dXdL;(O) belongs to the BISFP
tangent cone. Moreover, because (X}, \*) satisfies the SOSC, (3.64) implies that

~ T ~
X (0 . dX5(0
= 7;( ) VixLs(X5(0), A )—CZ“( ) > 0.

d>F*(u, 2* + rv)
dr?

r=0
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3.3 Global Convergence Discussion

In Sections 3.1 and 3.2, we showed that IPD and EPD are fast locally convergent
for the nonconvex OPGYV. Unfortunately, we do not know of any globally convergent
decomposition algorithm for the nonconvex OPGV. In this section we discuss the main
difficulties encountered when trying to prove global convergence for decomposition

algorithms for the nonconvex OPGV.

3.3.1 Multiple Subproblem Minimizers

For the nonconvex OPGYV there might exist multiple local minimizers for each of
the IPD and EPD subproblems. Consequently, the master problem objective is a
set-valued function (see Aubin and Frankowska [AF90] for a reference on set-valued
analysis.) Global convergence proofs for most optimization algorithms assume that
the problem is defined in terms of single-valued functions [OR70].

Even if we assumed the set-valued function F*(z) is composed of a set of disjoint
smooth functions {f7(z)}*_, (a situation depicted in Figure 3.1), a line-search opti-
mization algorithm could fail if, when it performs the master problem line search, it
finds subproblem minimizers corresponding to different components functions. Like-
wise, a trust-region optimization algorithm would fail if, when it checks the accuracy
of the local model for the master problem objective, it finds subproblem minimizers
corresponding to different component functions. This difficulty could be alleviated
by using parametric optimization algorithms [GVJ90]. However, global convergence

has not been shown for parametric optimization algorithms.

3.3.2 Nonsmoothness

In Sections 3.1 and 3.2, we showed that given a nondegenerate OPGV minimizer,
the IPD and EPD master problem objective function F* is differentiable in a neigh-
borhood of the equivalent IPD and EPD minimizers. However, F* may be, for the
nonconvex OPGYV, nondifferentiable or even discontinuous at points located far from

the minimizer. A discontinuous master problem objective is depicted in Figure 3.2.
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F(2)

Figure 3.1: Master problem objective set-valued function.

F*(2)

z* 21 22 z
Figure 3.2: Master problem nonsmooth objective function: F*(z) is differentiable at
the minimizer z* but nondifferentiable at z; and discontinuous at z,.



Chapter 4

A Test-Problem Set

A key factor in the development of any optimization algorithm is the availability of a
suitable test-problem set. Unfortunately, there does not exist an appropriate noncon-
vex OPGYV test-problem set. Although several OPGV test-problem sets [BDG187],
[Inf94, p. 47] have been developed in the context of the stochastic programming prob-
lem [BL97, Inf94], most of them correspond to linear or convex problems.

A more general test-problem set is the multidisciplinary design optimization test
suite [PAGY96]. For each test problem, a problem description, a benchmark solution
method, sample input and output files, as well as source codes are available from
the NASA Langley Research Center internet site. Test problems range from simple
synthetic problems to some real engineering design problems. Unfortunately, the user
has no control over important problem characteristics such as convexity and degree of
degeneracy. Moreover, different test problems are given in different formats, and the
implementation requires the modification of complicated FORTRAN source codes.

Easy-to-use nonconvex test-problem sets are available for several types of opti-
mization problems related to the OPGV. Calamai and Vicente [CV94] developed a
FORTRAN code to generate quadratic bilevel programs. The user can choose the
test-problem size and the number of local and global minimizers. Moreover, all local
and global minimizers are known a priori. Jiang and Ralph [JR99] developed a M AT-
LAB code to generate mathematical programs with equilibrium constraints. Their

test problems are more general than Calamai and Vicente’s (which can be generated
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as a particular case) and the user can choose test-problem characteristics such as size,
convexity, degeneracy, and ill conditioning. A disadvantage is that the minimizers of
the test problems are not known in general.

In this chapter, we modify Calamai and Vicente’s test problems to create a
quadratic programming OPGV test-problem set. The test problem objective and
constraint functions can be evaluated using two MATLAB M-files available from the
author upon request. The user can choose the test-problem size, convexity, degen-
eracy, and degree of coupling. We calculate all local and global minimizers of the
test-problem set and study their degree of degeneracy. Finally, the quadratic pro-
gramming character of these test problems is not the limitation it may appear at
first, because the master problem resulting from decomposition of a quadratic pro-

gramming test problem is not, in general, a quadratic program.

4.1 A Convex Separable Test Problem

We propose the following convex quadratic programming OPGV:

min sk lz — al® + 3kallyn — 2|” + 5 llyeallP+
T,Y1,Yy2

skil|lz — all® + 3kl ly2r + 2| + 3]|y22|?

st. e < z4+yn < Ze (4.1)
r—yn < €
e < —r+yn < 2e
—T—yn < e

where z € R™ are the global variables, y; = (yi1,¥i2) € R™ are the ith system local
variables with y;; € R", y;0 € R™™™, ki1,ky € R, and e € R" is the vector whose
components are all ones.

For ki,ky > 0 the objective function Hessian corresponding to (4.1) is positive
definite and therefore the quadratic program is strictly convex. By changing n, ni,
and no, we can choose the size of the test problem. Likewise, by changing the ratios
ni/n and ny/n, the user can control the degree of coupling among the two systems
that compose (4.1). Finally, different degrees of degeneracy can be obtained by careful

choice of a.
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Note that Problem 4.1 can be separated into n + 2 independent problems. Each
of the first n problems is formed by the objective function terms and the constraints
that depend on the rth component of the vectors x, y11, and yo;, which we denote as

Zr, Y117, and yo1,.. We term these n problems three-variable convexr problems, namely,

xT,gfﬂiI,;/m ski(zr — a)? + Ska(y11r — )2+
ki (zr — a)? + Sko(yorr + z,)?
s.t. I < z+ynr < 2 (4.2)
Tr —Yur <1
1 < —2, +yor < 2,
—Zr — Yo1r < L.

The last two problems that compose (4.1) are unconstrained quadratic programs
formed by the objective function terms that depend only on y;5 or a5, namely,

o1
m1n—||y,«2||2, r=1,2. (4.3)
Yr2 2

Although these unconstrained problems may seem trivial at first glance, in Section
4.3 we explain how a change of variables can be used to intertwine Problems 4.2 and
4.3 into a nonseparable test problem. Moreover, these unconstrained problems allow
us to control the degree of coupling among systems by changing the dimension of ;-

and Ya2.

4.1.1 Minimizers

To find the minimizer of the convex test problem it suffices to find the minimizer of
the n 4+ 2 problems that compose it. Since the minimizers of the two unconstrained
problems (4.3) are obviously yj, = 0 and y3, = 0, it only remains to calculate the
minimizers of the three-variable convex problem.

Provided ki, ko > 0, (4.2) is a strictly convex quadratic program. Moreover, its
objective function is nonnegative and hence bounded below. Therefore, for each a,
there exists a unique minimizer of (4.2). This unique minimizer can be found by

solving the KKT conditions. Here, we give the minimizer for a > 0. Because of
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the symmetry of the problem, the minimizer for a < 0 is just (—z7, yi,, ¥3;,), where
(@, Y51, Ys1,) 1s the minimizer corresponding to |a|. We distinguish four cases:
Case 1 (0 < a < 1/2 + 2ky/ky): The active set is formed by the constraints

T, +Y11» = 1 and —x, + Y21, = 1. The minimizer is

* k1

Ly k1+4ko a
* — *
Yi1r = 1 —uay
* %
Yo1r 1+

Case 2 (1/242ky/k1 < a < 1+43ky/ky): The active set is formed by the constraint

—Zr + Y91, = 1. The minimizer is

* kia—k2
Ly k1+2k2
* p— *
Y11r - z,
* *
Yo1r 1 + Z,

Case 3 (14+3ky/k; < a < 3/245ky/k1): The active set is formed by the constraints

Ty + Y11 = 2 and —x, + Y21, = 1. The minimizer is

.T* kia+ko
T k1+4k2
* J— *
Y11r = 2—z;
* *
Yo1r 1+ z;

Case 4 (3/2+45ka/k1 < a): The active set is formed by the constraints x, +y11, =

2, ¢, — Y11, = 1 and —z, + Y91, = 1. The minimizer is

zy 1.5
yikl'r = 05
Yorr 2.5

The set of minimizers of the three-variable convex problem corresponding to a €
(—00, 00) is depicted in Figure 4.1. The graph at the top represents y;,, as a function

of z} and the graph at the bottom represents y3,, as a function of z;.
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3.5
Feasible
3 P = Minimizers
2.5 e =
~
¥
0 a
-1.0 0>I< 1.0
x?"
3.5
Feasible
3 B = Minimizers
CYo1r = — Xy
~
Ao
* N
=
'~
0 , B : :
-1.0 0>I< 1.0
x?"

Figure 4.1: Minimizers to the three variable convex problem for a € (—oc, o0).
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4.1.2 Degeneracy

The degree of degeneracy of the minimizer of (4.1) depends on the value of a. Provided
n > 1 and ki, ky > 0, the following propositions give the set of values of a for which
the LICQ, SCSC, and SOSC hold at the minimizer.

Proposition 4.1 The LICQ and SOSC hold at the unique minimizer of (4.1) for all

a.

Proof: 1t is easy to show from the structure of the active set at the minimizer of
(4.2) that the LICQ holds. Also, if k1, ks > 0, then the Hessian of the Lagrangian for
Problem 4.1 is positive definite for all a and therefore the SOSC hold. [ |

Proposition 4.2 The SCSC holds at the minimizer of (4.1) iff for i = 1:n, a; is not
in the set {1/2 + 2]€2/k1, 1+ 3]€2/k1, 3/2 + 5k2/k1}

Proof: This follows immediately from the KKT conditions of (4.2). |

Proposition 4.3 The SLICQ holds at the minimizer of (4.1) iff for i = 1in, a; <
3/2 + 5ka/ k1.

Proof: This is obvious from the active set at the minimizer of (4.2). |

4.2 A Nonconvex Separable Test Problem

We propose the following nonconvex quadratic programming OPGV:

min %/ﬁ”l‘ —al)* - %k2||y11 — (=7 +be)|I” + %||?J12||2+

T,Y1,Y2

skillz = all? = 3kallyar — ( + be)||* + 3|y |®

st. e < z4+yn < 2e (4.4)
r—yn < e
e < —z+yn < 2e
—T—yn < €

Note that the feasible regions of the convex and nonconvex test problems are

identical. The nonconvex test problem is obtained from the convex test problem by
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replacing the objective function terms $ks|ly11 — = + 3ko||y21 + «||* by the terms
~Lkallyns — (2 + bO)[2 = hallyer — (z + be)| 2.

As in the convex case, the nonconvex test problem can be separated into n + 2
independent problems. The first n problems are termed three-variable nonconvex

problems and can be written as follows:

mh;ﬂigm ski(zr —a)® + 3ka(y11r — (=2 + 1))+
1ki(zr — a)® + Sko(yorr — (zr +1))?
s.t. I < 24y < 2 (4.5)
Tr —Y11r <1
I < =2 +ya, < 2
—ZTr — Yorr < 1.

The last two problems that compose the nonconvex test problem are the following

unconstrained optimization problems:

!
min = ||y, r=1,2. (4.6)
Yr2 2

4.2.1 Minimizers

Since the minimizers of the two unconstrained problems (4.3) are obviously yi, = 0
and y5, = 0, we only need to calculate the minimizers of the three-variable nonconvex
problem. Because of the symmetry of the problem it suffices to compute the local
minimizers for a > 0. Here, we give the local minimizers for k; > 2ks > 0 and b = 1.5.
We distinguish five cases:

Case 1 (0 < a < 1): There exist four local minimizers that are also global:

*

z, a a a a
yiklr = 1—$: y 2_37: ; 1_-T: y 2—.’L':
Yoir 14+ 14+ 24z 2+

Case 2 (1 <a <1+ (b—1)ky/ky): There exist two global minimizers:

*

z, a a

yoe [T 2= || 2o |
* * *

Yorr 1+ Ly 2+ Ty
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and two local minimizers:

*

Ty
Y, | =1 0,0
y;lr 2 3

Case 3 (1+ (b—1)ky/k1 < a < 1.25): There exist two global minimizers:

*

z, a a
e (= 220 || 227 |
i 1+a ) \2+a
and two local minimizers:
./L'* kla—(l-l—b)k:z kla—(1+b)k2
T k1—2ks k1—2ks
* — * *
Y11r - z, — 1 ) x, — 1

Case 4 (1.25 < a < 1.5): There exist two global minimizers:

*

Tk a a

* _ * *
Yi1r - 2- Ty ’ 2- Ly
v 1+ ) \ 2+a;

Case 5 (1.5 < a): There exist two global minimizers:

oo 1.5 1.5
vi, | =1 05 |,] 05
Yoir 2.5 3.5

The set of minimizers of the three-variable nonconvex problem for k1 > 2ky > 0
and b = 1.5 is depicted in Figure 4.2 for a € (—o0,00) . The graph at the top
represents yj;, as a function of z; and the graph at the bottom represents y3,, as a

function of z;.
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Figure 4.2: Minimizers to the three variable nonconvex problem for a € (—o0, 00).
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4.2.2 Degeneracy

Provided n > 1, ky > 2ky > 0 and b = 1.5 the following propositions give the
particular values of a for which the LICQ, SCSC, and SOSC hold at the minimizer
of (4.4).

Proposition 4.4 The LICQ and SOSC hold at all local minimizers of (4.4) for all

a.

Proof: Tt is easy to show from the structure of the active set at the minimizer of (4.5)
that the LICQ holds. Likewise, if k1 > 2k, > 0 and b = 1.5 it is easy to show that

the SOSC are satisfied at all local minimizers. [ |

Proposition 4.5 The SCSC holds at all local minimizers of (4.4) iff for i = 1:n, a;
is not in the set {1,1.5}.

Proof: This follows immediately from the KKT conditions of (4.5). |

Proposition 4.6 The SLICQ holds at the minimizer of (4.1) iff for i = 1in, a; <
3/2.

Proof: This is obvious from the active set at the minimizer. |

4.3 A Nonseparable Test Problem

The convex and nonconvex test problems can be separated into n + 2 independent
problems. The iterative procedure required to solve these separable test problems
is numerically equivalent, for most algorithms, to the one needed to solve the n + 2
problems independently. Therefore, to analyze how the performance of a decomposi-
tion algorithm depends on problem size, we need to modify our test problems so that
they are not separable.

Vicente and Calamai used a transformation matrix to obtain nonseparable test
problems from their separable bilevel quadratic test problems. Here, we need to
ensure that the test problems maintain the OPGYV structure. The transformation we

propose is
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z Q2 x
{1 = Qy1 Y1 )
U2 ng Y2

where @)z, Qy,, and @, are randomly generated orthogonal matrices. It is easy to
show that the test problems in the variables (2,9, 92) are OPGVs. Moreover, the

transformed test problems are not separable.
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Chapter 5
Computational Results

Both IPD and EPD have been implemented and applied to the OPGYV test-problem
set introduced in Chapter 4. A variety of convex and nonconvex test problems cor-
responding to different sizes, degrees of degeneracy, and intensity of coupling among
systems were solved. The results show that both decomposition algorithms performed

satisfactorily on the test-problem set.

In Section 5.1, we give the details of the IPD and EPD algorithms. In Section 5.2,
we compute minimizers of the IPD and EPD subproblems and analyze the charac-
teristics of the computed solution. Finally, in Section 5.3, we analyze the numerical

performance of IPD and EPD on the test-problem set.

5.1 Algorithm Statement

5.1.1 Master Problem Algorithm

We use the MATLAB M-file QNSOL, which is a modification of a previous code
obtained from Philip Gill, to solve the IPD and EPD master problems. QNSOL is
a BFGS quasi-Newton unconstrained optimization algorithm [GMW81, Chapter 4].
QNSOL may be stated as follows:
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Algorithm QNSOL

Step O (Initialization) Initialize the penalty parameter v := g, the quasi-
Newton Hessian approximation B := I, and the optimality tolerance
€ := €. If EPD then initialize the barrier parameter u := py.

Step 1 (Starting point) Set z := z; call SUBSOL with v (and p if EPD)
to evaluate the objective function F*(z) and its gradient VF*(z).

Step 2 (Solve master problem with current v, ¢ (and p if EPD))
while (|[VEF*(2)|/(1+ F*(z)) <)

Step 2.1 (Search direction) Solve BAz = —VF*(z).
Step 2.3 (Line search) Set o = 1.
while (F*(z + aAz) — F*(z) > o VF*(2)Az)
Set a = «/2; call SUBSOL with v (and p if EPD) to
evaluate F*(z + aAz) and VF*(z + aAz).
endwhile
Set s := alAz, y:= VF*(z + aAz) — VF*(2)
Set z := z + s; update F*(z) and VF*(z)
Step 2.4 (BFGS update)

_ Bss'B  yy?

B:
sTBs yT's

B

endwhile
Step 3 (Convergence check and parameter update)

if IPD
if (¢ < e AND 331, [lo7 — 23 < €) then stop,

else update v and ¢; call SUBSOL with 7 to evaluate F*(z) and
V F*(z); go to Step 2.

elseif EPD
if (e < e, AND S°N  ||2} — z||; < ¢ AND pu < €) then stop,

else update 7, € and p; call SUBSOL with v and p to evaluate
F*(z) and VF*(z); go to Step 2.

endif
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Note that, although second-order derivatives are known for the OPGV test-problem
set, we assume only first-order derivatives can be computed because this is the case
for many real-world OPGVs. As a consequence, the exact master problem Hessian
cannot be computed from the subproblem solution. However, a BFGS quasi-Newton
update is used to build an approximation to the master problem Hessian.

The algorithm parameters are updated in Step 2. The penalty parameter v is
increased until max; ||z} — 2||« is smaller than the optimality tolerance e. In addition,
for EPD, the barrier parameter p is also driven below e. Meanwhile, € is driven below

the small number ;. In our implementation we set ¢; = 107°.

5.1.2 Subproblem Algorithm

To evaluate the master problem objective function, QNSOL calls the MATLAB M-file
SUBSOL. This M-file uses the sequential quadratic programming algorithm NPSOL
[GMSW86] to solve the IPD subproblems (2.12) and the rudimentary primal-dual al-
gorithm PDSOL (coded in MATLAB) to solve the EPD subproblems (2.15). SUBSOL

may be stated as follows:

Algorithm SUBSOL

if IPD then

for i=1:N call NPSOL to solve the ith IPD subproblem (2.12) at .
Compute F*(z) = Zf\;l F}(z) and VF*(z) = — Zfil(x;k - 2),

elseif EPD then

for i=1:N call PDSOL to solve the ith EPD subproblem (2.15) at

z.

Compute F*(z) = Zf\;l F}(z) and VF*(z) = Zf\;l A, where A,

are the multipliers corresponding to the constraints z; — s; +t; = 2.

endif
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To compute the master problem objective function with the precision necessary to
ensure fast local convergence for QNSOL, a tight optimality tolerance must be used
to solve the subproblems in SUBSOL. In our implementation, we use a subproblem

optimality tolerance of €2, where ¢ is the current master problem optimality tolerance.

5.2 Solving the Subproblems

NPSOL and PDSOL are used to compute minimizers of the IPD and EPD sub-
problems corresponding to the three-variable convex and nonconvex test problems.
We analyze the characteristics of the computed minimizers and the corresponding
optimal-value functions, that is, the subproblem minimum objectives as a function of
the target variables. These characteristics will in turn influence the behavior of the

optimization algorithms used to solve the master problem.

5.2.1 Convex Subproblems

To study the smoothness properties of the IPD and EPD subproblem optimal-value
functions we solve the first of the two subproblems that result from the decomposition
of the three-variable convex test problem (4.2). We set k; =1, k; = 1, and ¢ = 0 and
find the unique subproblem minimizer for z € (—1.6,1.6). We plot the IPD subprob-
lem minimizer and optimal-value function for v = 20, 50, 10° and the EPD subproblem

minimizer and optimal-value function for v = 20 and = 0.3,0.1,0.06,0.01, 0.001.

Minimizer

Figure 5.1 depicts the trajectories of IPD and EPD subproblem minimizers corre-
sponding to z € (0,1.6). The IPD minimizer trajectory (thick line) is nonsmooth
around the points 7 = 0.5 and z] = 1.0. On the other hand, the EPD minimizer
trajectory (thin line) is smooth around these points. However, as y is driven to zero,
the EPD trajectory converges to the IPD trajectory and in the limit is nonsmooth

also.
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Figure 5.1: IPD and EPD convex subproblem minimizers (1/2).

Figure 5.2 depicts the optimal global variable z} as a function of the target variable
z, that is, z7(z). Notice that the EPD subproblem minimizer (solid line) satisfies
x3(z) = z for v = 20. In other words, the exact penalty function recovers the exact
minimizer for finite values of 7. On the other hand, when using IPD (dashed line),
we need to drive 7 to infinity in order to enforce zj(z) = z . In particular, note that

for small 7, x3(z) is considerably greater than z.

Optimal-Value Function

Figure 5.3 depicts the optimal-value function F}(z). Both the IPD and EPD optimal-
value functions are differentiable for all z. However, when 7 is large the IPD optimal-
value function has large second derivatives around z = 1.5. Likewise, when pu is
small the EPD optimal-value function has large second derivatives. In both cases,
the minimizer of F7(2) is not close to z = 1.5 and therefore numerical difficulty is not

expected when solving either the IPD or the EPD master problem.
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-15) ‘ |- D

Figure 5.2: IPD and EPD convex subproblem minimizers (2/2).

15p

101

Figure 5.3: IPD and EPD convex subproblem optimal-value functions for a = 0.
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801

701

Figure 5.4: IPD and EPD convex subproblem optimal-value functions for a = 9.6.

Figure 5.4 depicts Fy(z) for a = 9.6. In this case, the minimizer of F}*(z) is z = 1.5.
Notice that the IPD and EPD optimal-value functions have large second derivatives
around their minimizers. Hence, numerical difficulty can be expected when we try to

solve the IPD and EPD master problems near the point of convergence.

5.2.2 Nonconvex Subproblems

When decomposing the nonconvex OPGV, we might find that there exist multiple lo-
cal minimizers of the subproblems for each value of the target variables. Consequently,
there exist several trajectories of subproblem minimizers defined as a function of the
target variables. Unfortunately, the algorithm solving the master problem will break
if, during the line search, the subproblem solver finds minimizers corresponding to
different trajectories.

This difficulty can be alleviated by using the subproblem minimizer found at the
current iterate for the target variables as a starting point to solve the subproblem
at other points along the search direction. For small step lengths, all subproblem
minimizers are likely to belong to the same trajectory.

To illustrate this, we solve the first of the two IPD and EPD subproblems that
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Figure 5.5: IPD and EPD minimizers of a nonconvex subproblem using a good start-
ing point.

result from the decomposition of the three-variable nonconvex test problem (4.5). We
set ki =1,ky=1,a =0, and b = 1.8 and find a local minimizer for z = —1.6:0.01:1.6.
At each point z, we use the subproblem minimizer found for z — 0.01 as a starting
point. We compute the IPD subproblem minimizer trajectory and optimal-value
function (dashed lines) for v = 20,50, 10° and the EPD subproblem minimizer and
optimal-value function (solid lines) for v = 20 and = 0.3, 0.1, 0.06, 0.01, 0.001.
Figure 5.5 depicts the minimizer trajectory (z7(z),y7;(z)). Note that by using
a good starting point we manage to find a set of connected local minimizers with
x; € [-1.6,1.4). At z7 = 1.4 the lower trajectory of minimizers ends and as a
consequence we find minimizers corresponding to the upper trajectory of minimizers
with 27 > 1.4. Figure 5.6 depicts F(z). Note that jumps do not occur in the
optimal-value function for z € [—1.6,1.4). Also, note that the optimal-value function

is nonconvex for z € [1.0,1.4).

Finally, we solve the EPD nonconvex subproblem for £, = 1, ky = 10, a = 0,

b =18, v =20, and g = 0.01 and manipulate the starting point so that we find
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Figure 5.6: IPD and EPD nonconvex subproblem optimal value-function using a good
starting point.

minimizers belonging to the lower trajectory of minimizers for z € (0.5,1.0) and
minimizers belonging to the upper trajectory at all other points. Figure 5.7 depicts
(3(2),y5;(2)) and Figure 5.8 depicts F;*(z). Note that discontinuities occur in the

optimal-value function when we jump between different trajectories of minimizers.

5.3 Solving the Master Problem

QNSOL is used to solve the IPD and EPD master problems corresponding to a
number of OPGV test problems. In Section 5.3.1, we discuss results corresponding
to convex test problems. Section 5.3.2 deals with nonconvex test problems. Finally,

Section 5.3.3 studies the influence of the degree of coupling among subproblems on
the behavior of IPD and EPD.

5.3.1 Convex Test Problems

The convex test problems corresponding to k1 = 1, ko = 1, ny/n =5, ny/n =5 and

n = 2,3,4,56,7,8,9,10 were solved. We distinguish two cases: (i) test problems
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Figure 5.7: EPD minimizers of a nonconvex subproblem using a bad starting point.

Figure 5.8: EPD nonconvex subproblem optimal value-function using a bad starting
point.
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satisfying the SLICQ (¢ = 0) and (ii) test problems satisfying only the LICQ (a =
9.6¢).

Convex Test Problems satisfying SLICQ

The results for a = 0 are given in Table 5.1. The first column is the number of
variables in the test problem. The next three columns give information regarding
the computational effort required to solve the test problem. In particular, the second
column is the number of QNSOL iterations required to solve the master problem.
The third column is the number of subproblems whose minimizer was found over
the number of subproblems tried. The number of subproblems tried reflects the
amount of communication required between the master problem and the subproblems.
The fourth column is the total number of test-problem function evaluations, which
represents the total computational effort needed to solve the test problem. The fifth
column gives an exit code equal to 0 if a stationary point for the master problem
was found, 6 if the master problem line search failed, and 3 if the iteration limit for
QNSOL was exceeded. The sixth column is the final value of the penalty parameter
7. The seventh column is max(||z — z||c, ||%5 — 2||c0), Which is a measure of the
feasibility of the final iterate. The eighth column gives the master problem objective
function at the final iterate. Finally, the ninth column gives the norm of the objective
function gradient scaled by the value of the objective function ||[VF*(2)||/|1+ F*(2)|,
where the master problem objective F*(2) = Fy(2) + F5(2).

Table 5.1 shows that both IPD and EPD find stationary points of all convex test
problems tried. Note that IPD is slightly more efficient than EPD in terms of number
of subproblems tried and number of function evaluations. This could be explained
by the quadratic nature of the OPGYV test-problem set. In particular, a sequential
quadratic programming algorithm such as NPSOL is more efficient than a primal-dual
method such as PDSOL on quadratic programming test problems.

Note that in IPD, « has to be driven to 10° in order to achieve feasibility, whereas
~v = 10 suffices to achieve feasibility for EPD. Finally, the master problem mini-
mum values computed by IPD and EPD are slightly different because of the different

penalty terms used in the subproblem objective functions.
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IPD
n | it | nsub | feval | ifl | gamma | feasib objective grad
2213 |13/13 | 152 | 0 | 1.0e4+07 | 1.4e-07 | 2.0000e+00 | 4.7e-07
33| 4]16/16 | 187 | 0 | 1.0e+07 | 1.5e-07 | 3.0000e+00 | 2.6e-06
44 11| 11/11 | 141 | 0 | 1.0e+07 | 1.7e-07 | 4.0000e+00 | 1.0e-08
55| 3 | 13/13 | 168 | 0 | 1.0e4+07 | 2.0e-07 | 5.0000e+00 | 3.6e-06
66 | 3 |13/13 | 171 | 0 | 1.0e+07 | 2.1e-07 | 6.0000e+00 | 1.4e-06
77| 5 | 18/18 | 313 | 0 | 1.0e4+07 | 2.4e-07 | 7.0000e+00 | 7.6e-08
88| 5119/19 | 313 | 0 | 1.0e+07 | 2.5e-07 | 8.0000e+00 | 3.6e-07
99| 2| 12/12 | 164 | 0 | 1.0e+07 | 2.6e-07 | 9.0000e+00 | 3.9e-06
110 | 4 | 17/17 | 286 | 0 | 1.0e4+07 | 2.7e-07 | 1.0000e+01 | 3.3e-06
EPD
n | it | nsub | feval | ifl | gamma | feasib objective grad
22 |6 | 19/19 | 265 | 0 | 1.0e4+01 | 6.0e-08 | 2.0002e+00 | 3.7e-06
33| 7121/21 | 303 | 0 | 1.0e+01 | 6.4e-07 | 3.0025e+00 | 1.1e-06
44 1 7120/20 | 290 | 0 | 1.0e+01 | 7.9e-07 | 4.0033e+00 | 2.1e-06
55| 8 | 24/24 | 358 | 0 | 1.0e4+01 | 9.5e-07 | 5.0041e+00 | 8.4e-06
66 | 8 |25/25 | 378 | 0 | 1.0e+01 | 1.0e-06 | 6.0050e+00 | 2.9e-06
7719 |24/24 | 372 | 0 | 1.0e4+01 | 1.2e-06 | 7.0058e+00 | 2.8e-06
88| 8123/23 | 354 | 0 | 1.0e+01 | 1.4e-06 | 8.0066e+00 | 1.9e-06
99| 9]25/25| 409 | 0 | 1.0e+01 | 1.5e-06 | 9.0075e+00 | 3.7e-06
110 | 8 | 22/22 | 396 | 0 | 1.0e+01 | 1.6e-06 | 1.0008e+01 | 2.9e-06

Table 5.1: Convex test problems satisfying SLICQ.
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IPD
n| it | nsub | feval | ifl | gamma | feasib objective grad
22|16 | b57/57 405 | 0 | 1.0e+05 | 7.0e-07 | 1.4822e+02 | 1.9e-07
33|22 | 79/79 615 | 0 | 1.0e+05 | 7.3e-07 | 2.2233e+02 | 5.1e-08
44 | 14 | T7/77 733 | 0 | 1.0e+05 | 8.8e-07 | 2.9644e+02 | 6.8e-06
55| 19 | 107/107 | 1004 | 0 | 1.0e+05 | 1.0e-06 | 3.7055e+02 | 1.5e-06
66 | 36 | 149/149 | 1282 | 0 | 1.0e+06 | 1.1e-07 | 4.4466e+02 | 1.9e-07
77133 |161/161 | 1762 | 0 | 1.0e+06 | 1.2e-07 | 5.1877e+02 | 1.7e-06
88 | 35 | 189/189 | 2613 | 0 | 1.0e+06 | 1.3e-07 | 5.9288e+02 | 2.6e-06
99 | 37 | 205/205 | 3107 | O | 1.0e+06 | 1.3e-07 | 6.6699e+02 | 6.7e-07
110 | 47 | 221/221 | 3303 | 0 | 1.0e+06 | 1.4e-07 | 7.4110e+02 | 3.8e-07
EPD
n it | nsub | feval | ifl | gamma | feasib objective grad
22| 43 | 113/113 | 15632 | 0 | 1.0e+01 | 2.8¢-09 | 1.4822e+02 | 2.1e-07
33| 49 | 126/126 | 1806 | 0 | 1.0e+01 | 2.9e-09 | 2.2233e+02 | 4.4e-08
44 | 53 | 145/145 | 2159 | 0 | 1.0e+01 | 3.5e-09 | 2.9644e+02 | 9.5e-07
55 | 62 | 182/182 | 2831 | 0 | 1.0e+01 | 4.0e-09 | 3.7055e+02 | 1.1e-06
66 | 73 |204/204 | 3247 | 0 | 1.0e+01 | 4.3e-09 | 4.4466e+02 | 2.5e-07
77| 80 |233/233 | 3636 | 0 | 1.0e+01 | 4.9¢-09 | 5.1877e+02 | 2.9¢-06
88 | 89 | 254/254 | 4062 | 0 | 1.0e+01 | 5.1e-09 | 5.9288e+02 | 3.0e-07
99 | 95 |269/269 | 4436 | 0 | 1.0e+01 | 5.3e-09 | 6.6699e+02 | 2.4e-06
110 | 104 | 297/297 | 5035 | 0 | 1.0e+01 | 5.5e-09 | 7.4110e+02 | 8.8e-07

Table 5.2: Convex test problems satisfying only LICQ.

Convex Test Problems satisfying LICQ

87

The results for a = 9.6e are given in Table 5.2. Both IPD and EPD solve all test

problems tried. Notice that the computational effort required to solve test problems

satisfying the LICQ is an order of magnitude higher than that required to solve test
problems satisfying the SLICQ. Also, for test problems satisfying only the LICQ the

computational effort grows considerably with problem dimension.
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IPD
n | it | nsub | feval | ifl | gamma | feasib objective grad
22| 2| 7/7 | 105| 0 | 1.0e+02 | 5.2e-12 | -9.8000e-01 | 1.0e-09
33| 2| 6/6 | 100 | O | 1.0e+02 | 7.5e-12 | -7.2000e-01 | 2.6e-09
44| 1| 6/6 | 116 | 0 | 1.0e+02 | 2.6e-11 | -1.6600e+00 | 4.0e-09
55| 2| 8/8 | 174 | 0 | 1.0e+02 | 3.2e-09 | -2.3000e+-00 | 6.4e-07
66 | 2| 8/8 | 168 | 0 | 1.0e+02 | 2.2e-09 | -3.2400e+00 | 2.3e-07
T 2| 7/7 | 143 | 0 | 1.0e+02 | 1.2e-09 | -2.6800e+00 | 1.8e-07
88| 2| 7/7 | 141 | 0 | 1.0e+02 | 1.7e-08 | -1.8200e+00 | 3.2e-06
99| 2| 8/8 | 185 | 0 | 1.0e+02 | 7.2e-09 | -2.7600e+00 | 1.3e-06
110 | 2| 7/7 | 158 | 0 | 1.0e+02 | 5.7e-09 | -3.7000e+00 | 5.9e-07
EPD
n | it | nsub | feval | ifl | gamma | feasib objective grad
22| 5| 15/15| 204 | 0 | 1.0e4+01 | 3.1e-12 | -1.2784e+00 | 1.4e-06
33| 4|14/14 | 203 | 0 | 1.0e4+01 | 4.5e-12 | -1.9175e+00 | 6.0e-06
44 | 6| 18/18 | 266 | 0 | 1.0e+01 | 5.4e-12 | -2.2567e+00 | 9.3e-06
55| 7120/20 | 323 | 0 | 1.0e+01 | 3.6e-12 | -2.2959e+00 | 3.1e-07
66 | 4| 15/15| 236 | 0 | 1.0e4+01 | 5.4e-12 | -3.8351e+00 | 8.6e-06
771 5| 17/17 | 259 | O | 1.0e+01 | 4.8e-12 | -4.4742e+00 | 2.1e-07
88| 5| 17/17 | 259 | 0 | 1.0e+01 | 5.2e-12 | -5.1134e+00 | 1.6e-07
99 | 5| 17/17 | 262 | 0 | 1.0e+01 | 5.4e-12 | -5.7526e+00 | 2.2e-07
110 | 5 | 17/17| 261 | 0 | 1.0e+01 | 5.6e-12 | -6.3918e+00 | 1.5e-07

Table 5.3: Nonconvex test-problems satisfying SLICQ.

5.3.2 Nonconvex Test Problems

The nonconvex test problems corresponding to ky = 1, ks = 1, b = 1.8, ny/n = 5,
ny/n=>5and n =2,3,4,5,6,7,8,9,10 were solved using IPD and EPD. The results
for test problems satisfying SLICQ (a = 0.0) are given in Table 5.3 and the results for
test problems satisfying LICQ (a = 9.6) are given in Table 5.4. The behavior of IPD
and EPD on the nonconvex test problems is similar to their behavior on convex test
problems. However, for some of the nonconvex problems, IPD and EPD find different
local minimizers. In particular, for all of the test problems satisfying the SLICQ, IPD

and EPD find different local minimizers.
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IPD
n| it | nsub | feval | ifl | gamma | feasib objective grad
22|36 | 100/100 | 961 | 0 | 2.5e+07 | 2.3e-07 | 1.3114e+02 | 2.9e-07
33|41 | 116/116 | 1298 | 0 | 1.0e+07 | 5.9¢-07 | 1.9641e+02 | 2.5e-08
44 | 36 | 151/151 | 1874 | 0 | 5.0e-+07 | 1.4e-07 | 2.6228e+02 | 9.9e-07
55 | 52 | 175/175 | 2312 | 0 | 1.0e+07 | 8.1e-07 | 3.2785e+02 | 7.0e-07
66 | 65 | 211/211 | 3288 | 0 | 5.0e+07 | 1.7e-07 | 3.9342e+02 | 1.6e-07
77|65 | 213/213 | 3822 | 0 | 1.0e+07 | 9.5e-07 | 4.5869e+02 | 5.3e-06
88 | 87 | 259/259 | 5160 | 0 | 5.0e+07 | 2.1e-07 | 5.2396e+02 | 5.5e-06
99 | 77 | 303/303 | 6044 | 0 | 1.0e+08 | 1.1e-07 | 5.8983e+02 | 4.4e-06
110 | 93 | 307/307 | 7194 | 0 | 1.0e+08 | 1.1e-07 | 6.5360e+02 | 5.5e-07
EPD
n it | nsub | feval | ifl | gamma | feasib objective grad
22| 40| 133/133 | 1848 | 0 | 1.0e+02 | 1.1e-08 | 1.3054e+02 | 1.7e-06
33| 69 | 200/200 | 2895 | 0 | 5.0e+01 | 5.0e-09 | 1.9581e+02 | 4.7e-07
44 |1 69 | 196/196 | 2933 | 0 | 5.0e+01 | 1.2e-08 | 2.6108e+02 | 2.1e-06
55 | 76 | 227/227 | 3503 | 0 | 1.0e4+02 | 3.3e-09 | 3.2635e+02 | 3.7e-07
66 | 129 | 451/451 | 7688 | 0 | 1.0e+02 | 3.6e-09 | 3.9192e+02 | 6.9e-07
77| 102 | 304/304 | 4876 | 0 | 5.0e+01 | 1.8e-08 | 4.5719e+02 | 4.7e-06
88 | 107 | 331/331 | 5265 | 0 | 1.0e+02 | 4.3e-09 | 5.2216e+02 | 4.2e-06
99 | 131 | 416/416 | 7293 | 0 | 1.0e+02 | 4.5e-09 | 5.8743e+02 | 4.4e-06
110 | 144 | 424/424 | 7341 | 0 | 1.0e+02 | 4.6e-09 | 6.5270e+02 | 4.8e-06

Table 5.4: Nonconvex test problems satisfying only LICQ.
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IPD

n | it | nsub | feval | ifl | gamma | feasib objective grad
18 | 47 | 145/145 | 2266 | 0 | 1.0e+06 | 2.0e-07 | 4.4466e+02 | 7.1e-007
54 | 48 | 153/153 | 2375 | 0 | 1.0e+06 | 2.0e-07 | 4.4466e+02 | 2.3e-006
90 | 43 | 144/144 | 2543 | 0 | 1.0e+06 | 2.0e-07 | 4.4466e+02 | 3.3e-006
126 | 43 | 136/136 | 2265 | 0 | 1.0e+06 | 2.0e-07 | 4.4466e+02 | 1.5e-006

EPD
n | it | nsub feval | ifl | gamma | feasib objective grad
18 | 71 | 198/198 | 3178 1.0e+01 | 8.1e-09 | 4.4466e+02 | 3.1e-006
54 | 71| 198/198 | 3695 1.0e+01 | 8.1e-09 | 4.4466e+02 | 3.1e-006
90 | 71 | 198/198 | 5899 1.0e+01 | 8.1e-09 | 4.4466e+402 | 3.1e-006
126 | 71 | 198/198 | 13532 1.0e+01 | 8.1e-09 | 4.4466e+02 | 3.1e-006

Table 5.5: Effect of coupling among subproblems.

5.3.3 Coupling Among Subproblems

The convex test problems corresponding to k& = 1, ky = 1, n = 6, a = 9.6, and
ni/n =ny/n =1,4,7,10 were solved by IPD and EPD. In other words, the number
of global variables was held constant while the number of local variables was increased.
The results are given in Table 5.5.

Note that the number of subproblems needed to find a master problem stationary
point is roughly the same for all test problems. This seems to imply that the commu-
nication between the master problem and the subproblems required to solve the IPD
and EPD master problems is entirely determined by the number of global variables.
Therefore, IPD and EPD will be efficient decomposition algorithms for OPGVs that

have only a few global variables and a possibly large number of local variables.

5.3.4 Observed Convergence Rate

In Chapter 3, we proved that the IPD and EPD master problem minimizers satisfy
the SOSC and therefore a superlinear convergence rate can be expected from QNSOL.
However, in some cases only a linear convergence rate is achieved. This is explained

by the ill conditioning of the IPD and EPD subproblems near the minimizer. This ill
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conditioning adversely affects the accuracy of the computed subproblem minimizers
and hence the precision of the master problem objective function. In the absence
of a precise objective function, the master problem iterates might never get inside
the region of superlinear convergence. Moreover, the master problem region of fast
convergence is likely to be small because the IPD and EPD master problems become

ill conditioned as the iterates approach the minimizer.

5.4 Summary

Despite the difficulties encountered in our efforts to prove global convergence for
decomposition algorithms for the nonconvex OPGV, our implementation of IPD and
EPD solved all test problems tried from random starting points. This seems to imply
that the theoretical global convergence difficulties discussed in Chapter 2 may not
affect the performance of IPD and EPD in practice.

In Chapter 3, we proved that a superlinear convergence rate can be expected
from QNSOL when applied to the IPD and EPD master problems. However, in our
experiments we observe that, in some cases, the actual convergence rate achieved is
only linear because of the ill conditioning of the IPD and EPD master problems and
subproblems.

The communication required between the master problem and the subproblems
seems to depend only on the number of global variables. Also, those test problems
satisfying only LICQ are much more difficult to solve than the test problems satisfying
SLICQ. Finally, our experiments show that our IPD implementation is slightly more
efficient on the OPGV test-problem set than our EPD implementation (which could
be explained by the quadratic nature of the test-problem set).

Note that CO cannot be run on the OPGYV test-problem set because it is designed
for OPGVs whose objective function depends exclusively on the global variables.
However, IPD and EPD successfully solved the two sample test problems proposed
by Alexandrov and Lewis [ALOO] on which CO failed because of the singularity of
the CO master problem Jacobian. IPD and EPD avoided this difficulty by solving a

sequence of unconstrained master problems.
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Chapter 6

Conclusions and Future Research

6.1 Local Convergence

In Chapter 3, we prove fast local convergence for conventional optimization algorithms
for smooth problems when applied to the IPD (EPD) master problem for each value
of the penalty (barrier) parameter. Hence we overcome the degeneracy difficulties
associated with CO on the one hand, and, on the other hand, we relax the assumptions
made by Tammer [Tam87] because we just assume the LICQ instead of the restrictive
SLICQ.

A natural extension of our fast local convergence result would be proving that a
fast convergence rate can still be achieved while simultaneously updating the penalty
(barrier) parameter. The result would follow if we could prove that once the iterates
are close to the minimizer, the penalty (barrier) parameter can be updated at a su-
perlinear or quadratic rate and only one iteration suffices to solve the master problem
to the degree of accuracy required. For EPD the result would be an extension of
previous theory developed for primal-dual methods [GOST00, VTZ99].

6.2 Global Convergence

Despite the fact that there does not exist any global convergence proof for decompo-

sition algorithms for the nonconvex OPGV, our numerical results indicate that this
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might not be a difficulty in practice. In either case, we believe that the application of
parametric optimization algorithms [GVJ90] to solve the subproblems could improve

the global convergence behavior of IPD and EPD.

6.3 Computational Results

In Chapter 5, we described our implementation of IPD and EPD and applied both
algorithms to solve the new OPGV test-problem set introduced in Chapter 4. Both
IPD and EPD successfully solved a variety of convex and nonconvex test problems
corresponding to different degrees of degeneracy and coupling among systems. IPD
was found to be more efficient than EPD and we conjectured that this could be
attributed to the quadratic nature of the OPGYV test-problem set. We plan to confirm
our hypothesis by replacing the linear constraints in the OPGV test-problem set by
nonlinear constraints and running the experiments again.

We noticed that, in some instances, the ill conditioning of the IPD and EPD
master problems prevents QNSOL from achieving superlinear convergence. Another
interesting topic of future research is the development of specialized algorithms capa-
ble of dealing with this ill conditioning. The work developed for primal-dual methods

could be vital in developing such algorithms for the EPD master problem.



Appendix A
Optimality Conditions

We consider a general nonlinear optimization problem of the form

mwin F(x)
st. c(x) > 0, (A1)
diz) = 0,

where z € R™, ¢(z) : R® — R™, and d(z) : R" — RP.

Definition A.1 A neighborhood of a point z* is N (z) = {z : ||z — z*|| < €}, where
e > 0.

Definition A.2 The feasible setis Q = {z : ¢(x) > 0,d(z) = 0}.

Definition A.3 Any nonempty set of the form L(Fy) = {z : ¢(z) > 0,d(z) = 0 and
F(z) < Fy} is a level set of problem A.1.

Definition A.4 A point z* is a local minimizer of A.1 if 2* € Q) and there exists
€ > 0 such that if x € N (z*) N Q then F(z*) < F(x).

Definition A.5 A point z* is an isolated local minimizer of A.1 if z* € ) and there

exists € > 0 such that z* is the only local minimizer in N, (z*) N Q.

Definition A.6 For a given a feasible point x, the set of active inequality constraints
is B={i:c(x)=0}.
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Definition A.7 The Lagrangian function L(x,\,v) is
Lz, \,v)=F(x) —c(@)' X +d(z)" v

Definition A.8 The Linear Independence Constraint Qualification (LICQ) holds at
a feasible point z if the gradients of all active inequality constraints (Ve;(z), all
i € B) and the gradients of all equality constraints (Vd;(z), ¢ = 1 : p) are linearly

independent.

Theorem A.9 (First-order necessary conditions) Provided F, ¢ and d are dif-
ferentiable at x* and the LICQ holds at x*, if * is a local minimizer of problem A.1

then there exist vectors \* and v* such that

c(z*) >0, (A.2)

d(z*) =0, (A.3)
c(z*)' A\ =0, (A.4)

A" >0, (A.5)

VL(z", A", v*) = 0. (A.6)

Definition A.10 The triple (z, A, v) is a first-order KKT point for problem A.1 if it
satisfies conditions A.2-A.6.

Definition A.11 The Strict Complementarity Slackness Conditions (SCSC) hold at
a first-order KKT point (z*, \*, v*) for problem A.1 if exactly one of A} and ¢;(z*) is

zero for each 7 =1 :m.

Definition A.12 For a given first-order KKT point (z*, \*, v*) for problem A.1, the

tangent cone T (z*, \*,v*) is the set of vectors 7 such that

Ve (z*) =0, Vie D={i:\ >0},
IVei(z*) >0, Vie B-D,
IVdi(z*) =0, Vi=1l:p.
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Definition A.13 For a given first-order KKT point (z*, \*, v*) for problem A.1, the

strict tangent cone T (z*, \*, v*) is the set of vectors 7 such that

V(') =0, VieD={i:\ >0},
mIVdi(z*) =0, Vi=1lp.

Theorem A.14 (Second-order sufficient conditions (SOSC)) Second-order suf-
ficient conditions that a point * be an isolated local minimizer when F, ¢ and d are
twice differentiable at x*, are that there exist vectors \* and v* satisfying conditions

A.2-A.6 and for every T in the tangent cone T (z*, \*,v*),
IV L(z*, M, v*)T > 0.

Theorem A.15 (Strong second-order sufficient conditions (SSOSC)) Strong
second-order sufficient conditions that a point x* be an isolated local minimizer when
F, ¢ and d are tunce differentiable at x*, are that there exist vectors \* and v* satis-

A

fying conditions A.2-A.6 and for every T in the strict tangent cone T (x*, \*, v*),
TIV2L(x*, N, V)T > 0.

Note that the Optimization Problem with Global Variables (OPGV) (1.1) is just
a particular case of problem A.l1. Thus, all definitions and theorems given above
may be applied to the OPGV. In addition, we make use of the following constraint
qualification for the OPGV.

Definition A.16 The Strong Linear Independence Constraint Qualification (SLICQ)
holds for the OPGV at a feasible point (z,yy,...,yn) if for i = 1:N the matrix

B; = V,,¢i(z,y;), where ¢; are the active constraints, has full rank.
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