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Abstract

A common problem facing an analyst is how to interpret data collected from experiments or

observations. A mathematical model involving unknown parameters is assumed to explain how a

set of observations depends on certain other data. Under various assumptions, the model is used

to estimate numerical values for the parameters.

In the first part of the thesis, parameters are estimated by the method of least squares. We

study the “optimal backward error” problem of finding the smallest change to the data that would

make the estimated parameter values fit the mathematical model exactly. Such knowledge helps

judge the sensitivity of the data, the accuracy of the parameter estimates, and the stability of new

algorithms for computing estimates.

While it is computationally intensive to compute optimal backward errors directly, an approxi-

mate formula has been studied analytically in recent years. We develop dense, sparse, and iterative

methods to evaluate this formula numerically. We find that the computed estimate of the optimal

backward error is very near the true optimal error. Algorithms for calculating sequences of upper

and lower bounds for the estimate are also developed, based on Gauss quadrature theory. Numer-

ical results show that the bounds converge quickly and are therefore useful in practice. This solves

a twenty-five year old problem suggested by Stewart and Wilkinson.

When the data collected from experiments are not complete, they are called “censored”. In this

case, it is more natural to compute confidence intervals for the parameters (rather than estimating

the sensitivity of the data).

Clinical trials generate much incomplete data. In the second part of the thesis we study clinical

trials with time-to-event endpoints, in which the most important parameters are treatment effect

and median survival. We use test-based approaches to compute confidence intervals and confidence

regions for those parameters. Such knowledge is crucial for clinicians to make decisions from the

results of a trial.

Importance resampling techniques are developed to compute tail probabilities of the tests,

thereby reducing the variance of the Monte Carlo estimate of an error probability, and thus the

number of simulations required to compute sample size and power in the design stage of a clinical

trial, and to construct confidence intervals and regions from the trial’s data.
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Chapter 1

Introduction

“A great deal of thought, both by myself and by J. H. Wilkinson, has not solved this problem,

and I therefore pass it on to you: find easily computable statistics that are both necessary and

sufficient for the stability of a least squares solution.” — G. W. Stewart [32, pp. 6–7]

The purpose of this work is to examine the usefulness of a certain quantity as a practical backward

error estimator for the least squares (LS) problem:

min
x
‖Ax− b‖2 where b ∈ Rm and A ∈ Rm×n.

If the arbitrary vector x solves an LS problem for the data A + δA, then the perturbation δA is

called a backward error for x. This name is borrowed from the context of Stewart and Wilkinson’s

remarks, backward rounding error analysis, which finds and bounds some δA when x is a computed

solution. Since x may be chosen arbitrarily, it may be more appropriate to call δA a “data

perturbation” or a “backward perturbation” rather than a “backward error.” All three names

have been used in the literature.

The size of the smallest backward error is

µ(x) = min
δA
‖δA‖F .

A precise definition and more descriptive notation for this are

µ(x) =

{
the size of data perturbation, for matrices in least squares

problems, that is optimally small in the Frobenius norm,

as a function of the approximate solution x

}
= µ(LS)

F (x) .

This level of detail is needed here only twice, so usually it is abbreviated to “optimal backward

error” and written µ(x). The concept of optimal backward error originated with Oettli and Prager

[27] in the context of linear equations.

2
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If µ(x) can be estimated or evaluated inexpensively, then the literature describes three uses.

1. Accuracy criterion. When the data of a problem have been given with an error that is greater

than µ(x), then x must be regarded as solving the problem, to the extent the problem is

known. Conversely, if µ(x) is greater than the uncertainty in the data, then x must be

rejected. These ideas originated with John von Neumann and Herman Goldstine [26] and

were rediscovered by Oettli and Prager.

2. Run-time stability estimation. A calculation that produces x with small µ(x) is called back-

wardly stable. Stewart and Wilkinson [32, pp. 6–7], Karlson and Waldén [21, p. 862] and

Malyshev and Sadkane [22, p. 740] emphasized the need for “practical” and “accurate and

fast” ways to determine µ(x) for least squares problems.

3. Exploring the stability of new algorithms. Many fast algorithms have been developed for LS

problems with various kinds of structure. Gu [18, p. 365] [19] explained that it is useful to

examine the stability of such algorithms without having to perform backward error analyses

of them.

When x is a computed solution, Wilkinson would have described these uses for µ(x) as “a poste-

riori” rounding error analyses.

The exact value of µ(x) was discovered by Waldén, Karlson and Sun [34] in 1995. To evaluate

it, they recommended a formula that Higham had derived from their pre-publication manuscript

[34, p. 275] [20, p. 405],

µ(x) = min

{ ‖r‖
‖x‖ , σmin[A B]

}
, B =

‖r‖
‖x‖

(
I − rrt

‖r‖2
)
, (1.1)

where r = b−Ax is the residual for the approximate solution, σmin is the smallest singular value of

the m× (n+m) matrix in brackets, and ‖ · ‖ means the 2-norm unless otherwise specified. There

are similar formulas when both A and b are perturbable. It is interesting to note that a prominent

part of these formulas is the optimal backward error of the linear equations Ax = b, namely

η(x) ≡ ‖r‖‖x‖ = µ(LE)

F (x) = µ(LE)

2 (x) . (1.2)

The singular value in (1.1) is expensive to calculate by dense matrix methods, so other ways

to obtain the backward error have been sought. Malyshev and Sadkane [22] proposed an iterative

process based on Lanczos bidiagonalization to approximate µ(x). Other authors including Waldén,

Karlson and Sun have derived explicit approximations for the backward error.

One estimate in particular has been studied in various forms by Karlson and Waldén [21], Gu
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[18], and Grcar [17]. It can be written as

µ̃(x) =
∥∥∥
(
‖x‖2AtA+ ‖r‖2I

)−1/2
Atr
∥∥∥ . (1.3)

For this quantity:

• Karlson and Waldén showed [21, p. 864, eqn. 2.5 with y = yopt] that, in the notation of this

paper,
2

2 +
√
2
µ̃(x) ≤ f(yopt) ,

where f(yopt) is a complicated expression that is a lower bound for the smallest backward

error in the spectral norm, µ(LS)

2 (x). It is also a lower bound for µ(x) = µ(LS)
F (x) because

‖δA‖2 ≤ ‖δA‖F. Therefore Karlson and Waldén’s inequality can be rearranged to

µ̃(x)

µ(x)
≤ 2 +

√
2

2
≈ 1.707 . (1.4)

• Gu [18, p. 367, cor. 2.2] established the bounds

‖r∗‖
‖r‖ ≤

µ̃(x)

µ(x)
≤
√
5 + 1

2
≈ 1.618 , (1.5)

where r∗ is the unique, true residual of the LS problem. He used these inequalities to prove a

theorem about the definition of numerical stability for LS problems. Gu derived the bounds

assuming that A has full column rank. The lower bound in equation (1.5) should be slightly

less than 1 because it is always true that ‖r∗‖ ≤ ‖r‖, and because r ≈ r∗ when x is a good

approximation to a solution.

• Finally, Grcar [17, thm. 4.4] proved that µ̃(x) asymptotically equals µ(x) in the sense that

lim
x→ x∗

µ̃(x)

µ(x)
= 1 , (1.6)

where x∗ is any solution of the LS problem. The hypotheses for this are that A, r∗, and x∗

are not zero. This limit and both equations (1.1) and (1.3) do not restrict the rank of A or

the relative sizes of m and n.

All these bounds and limits suggest that equation (1.3) is a robust estimate for the optimal

backward error of least squares problems. However, this formula has not been examined numeri-

cally. It receives only brief mention in the papers of Karlson and Waldén, and Gu, and neither they

nor Grcar performed numerical experiments with it. The aim of this paper is to determine whether

µ̃(x) is an acceptable estimate for µ(x) in practice, thereby answering Stewart and Wilkinson’s

question.



Chapter 2

Evaluating the Karlson and

Waldén Estimate

Many ways to solve LS problems produce matrix factorizations that can be used to evaluate µ̃(x)

efficiently. If x is obtained in other ways, then the procedures described here still may be used to

evaluate µ̃(x) at the extra cost of calculating the factorizations just for this purpose.

2.1 SVD methods

When a singular value decomposition (SVD) is used to solve the LS problem, the economy size de-

composition A = UΣV t may be formed, where Σ and V are square matrices and U has orthonormal

columns. With this notation and η = η(x) in (1.2), it follows that

‖x‖ µ̃(x) =
∥∥∥
(
AtA+ η2I

)−1/2
Atr
∥∥∥

=
∥∥∥
(
V Σ2V t + η2I

)−1/2
V ΣU tr

∥∥∥

=
∥∥∥
[
V
(
Σ2 + η2I

)
V t
]−1/2

V ΣU tr
∥∥∥

=
∥∥∥V
(
Σ2 + η2I

)−1/2
V tV ΣU tr

∥∥∥

=
∥∥∥
(
Σ2 + η2I

)−1/2
ΣU tr

∥∥∥ . (2.1)

Calculating µ̃(x) has negligible cost once U , Σ and V have been formed. However, the most

efficient SVD algorithms for LS problems accumulate U tb rather than form U . This saving cannot

be realized when U is needed to evaluate µ̃(x). As a result, Table 2.1 shows the operations triple

from roughly 2mn2 for x, to 6mn2 for both x and µ̃(x). This is still much less than the cost of

5
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Table 2.1: Operation counts for solving LS problems by SVD methods with and without forming
µ̃(x). The work to evaluate µ̃(x) includes that of r. Only leading terms are shown.

task operations source

form U , Σ, V by Chan SVD 6mn2 + 20n3 [13, p. 175]

solve LS given U , Σ, V 2mn+ 2n2

evaluate µ̃(x) by equation
(2.1) given U , Σ, V

4mn+ 10n

solve LS by Chan SVD 2mn2 + 11n3 [14, p. 248]

evaluating the exact µ(x) by equation (1.1) because about 4m3 + 2m2n arithmetic operations are

needed to find all singular values of an m× (n+m) matrix [13, p. 175].

2.2 The KW problem, QR factors, and projections

Karlson and Waldén [21, p. 864] draw attention to the full-rank LS problem

K =




A

‖r‖
‖x‖I


 , v =



r

0


 , min

y
‖Ky − v‖, (2.2)

which proves central to the computation of µ̃(x). It should be mentioned that LS problems with

this structure are called “damped”, and have been studied in the context of Tikhonov regularization

of ill-posed LS problems [4, pp. 101–102]. We need to study three such systems involving various

A and r. To do so, we need some standard results on QR factorization and projections. We state

these in terms of a full-rank LS problem miny ‖Ky − v‖ with general K and v.

Lemma 1 Suppose the matrix K has full column rank and QR factorization

K = Q


 R

0


 = Y R , Q =

[
Y Z

]
, (2.3)

where R is upper triangular and nonsingular, and Q is square and orthogonal, so that Y tY = I,

ZtZ = I, and Y Y t + ZZt = I. The associated projection operators may be written as

P = K(KtK)−1Kt = Y Y t, I − P = ZZt. (2.4)

Lemma 2 For the quantities in Lemma 1, the LS problem miny ‖Ky − v‖ has a unique solution
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and residual vector defined by Ry = Y tv and t = v −Ky, and the two projections of v satisfy

Pv = Ky = Y Y tv, ‖Ky‖ = ‖Y tv‖, (2.5)

(I − P )v = t = ZZtv, ‖t‖ = ‖Ztv‖. (2.6)

2.3 QR methods

We now find that µ̃(x) in (1.3) is the norm of a certain vector’s projection. Let K and v be as in

the KW problem (2.2). From (1.3) and the definition of P in (2.4) we see that ‖x‖2 µ̃(x)2 = vtPv,

and from (2.5) we have vtPv = ‖Y tv‖2. It follows again from (2.5) that

µ̃(x) =
‖Pv‖
‖x‖ =

‖Y tv‖
‖x‖ =

‖Ky‖
‖x‖ , (2.7)

where Y and ‖Y tv‖ may be obtained from the reduced QR factorization K = Y R in (2.3). (It

is not essential to keep the Z part of Q.) Alternatively, ‖Ky‖ may be obtained after the KW

problem is solved by any method.

If QR factors of A are available (e.g., from solving the original LS problem), the required

projection may be evaluated in two stages. Let the factors be denoted by subscript A. Applying

Qt
A to the top parts of K and v yields an equivalent LS problem

K ′ =




RA

0

‖r‖
‖x‖I



, v′ =




Y t
Ar

Zt
Ar

0



, min

y
‖K ′y − v′‖ . (2.8)

The middle rows of K ′ and v′ can now be removed and the problem becomes

K ′′ =



RA

‖r‖
‖x‖I


 , v′′ =



Y t
Ar

0


 , min

y
‖K ′′y − v′′‖ . (2.9)

(If A has low column rank, we would still regard RA and YA as having n columns.) Either way, a

second QR factorization gives

µ̃(x) =
‖Y t

K′′ v′′‖
‖x‖ . (2.10)

This formula could use two reduced QR factorizations. Of course, YK′′ needn’t be stored because

Y t
K′′ v′′ can be accumulated as K ′′ is reduced to triangular form.

Table 2.2 shows that the optimal backward error can be estimated at little additional cost over

that of solving the LS problem when m À n. Since K ′′ is a 2n × n matrix, its QR factorization



8 CHAPTER 2. EVALUATING THE KARLSON AND WALDÉN ESTIMATE

Table 2.2: Operation counts for solving LS problems by QR methods and then evaluating µ̃(x) when
m ≥ n. The work to evaluate Y t

Ar includes that of r. Only leading terms are shown.

task operations source

solve LS by Householder QR, retaining YA 2mn2 [14, p. 248]

form Y t
Ar 4mn

apply Y t
K′′ to v′′ 8

3
n3 [21, p. 864]

finish evaluating µ̃(x) by equation (2.10) 2n

needs only O(n3) operations compared to O(mn2) for the factorization of A. Karlson and Waldén

[21, p. 864] considered this same calculation in the course of evaluating a different estimate for the

optimal backward error. They noted that sweeps of plane rotations most economically eliminate

the lower block of K ′′ while retaining the triangular structure of RA.

2.4 Operation counts for dense matrix methods

Table 2.3 summarizes the operation counts of solving the LS problem and estimating its optimal

backward errors by the QR and SVD solution methods for dense matrices. It is clear that evaluating

the estimate is negligible compared to evaluating the true optimal backward error. Obtaining the

estimate is even negligible compared to solving the LS problem by QR methods.

The table shows that the QR approach also gives the most effective way to evaluate µ̃(x) when

the LS problem is solve by SVD methods. Chan’s algorithm for calculating the SVD begins by

performing a QR factorization. Saving this intermediate factorization allows equation (2.10) to

evaluate the estimate with the same, small marginal cost as in the purely QR case of Table 2.3.

2.5 Sparse QR methods

Equation (2.10) uses both factors of A’s QR decomposition: YA to transform r, and RA occurs

in K ′. Although progress has been made towards computing both QR factors of a sparse matrix,

notably by Adlers [1], it is considerably easier to work with just the triangular factor, as described

by Matstoms [24]. Therefore methods to evaluate µ̃(x) are needed that do not presume YA.

The simplest approach may be to evaluate equation (2.7) directly by transforming K to upper

triangular form. Notice that AtA and KtK have identical sparsity patterns. Thus the same

elimination analysis would serve to determine the sparse storage space for both RA and R. Also,

Y tv can be obtained from QR factors of
[
K v

]
. The following Matlab code [23] is often effective
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Table 2.3: Summary of operation counts to solve LS problems, to evaluate the estimate µ̃(x), and
to evaluate the exact µ(x). Only leading terms are considered.

task operations
m = 1000
n = 100 source

solve LS by QR 2mn2 20,000,000 Table 2.2

solve LS by QR and
evaluate µ̃(x) by equation
(2.10)

2mn2 + 8

3
n3 22,666,667 Table 2.2

solve LS by Chan SVD 2mn2 + 11n3 31,000,000 Table 2.1

solve LS by Chan SVD and
evaluate µ̃(x) by equation
(2.10)

2mn2 + 41

3
n3 33,666,667 Tables 2.1, 2.2

solve LS by Chan SVD and
evaluate µ̃(x) by equation
(2.1)

6mn2 + 20n3 80,000,000 Table 2.1

evaluate µ(x) by equation (1.1) 4m3 + 2m2n 4,200,000,000 [13, p. 175]

for computing µ̃(x) for a sparse matrix A and sparse or dense vector b:

[m,n] = size(A);

r = b - A*x;

normx = norm(x);

eta = norm(r)/normx;

p = colamd(A);

K = [ A(:,p)

eta*speye(n)];

v = [ r

zeros(n,1)];

[c,R] = qr(K,v,0);

muKW = norm(c)/normx;

(2.11)

Note that colamd returns a good permutation p without forming A’*A, and [c,R] = qr(K,v,0)

computes an “economy size” sparse R without storing anyQ. The vector c is the required projection

Y tv.

Another approach is to evaluate equation (2.10) but with the substitution Y t
Ar = Y t

A(b− Ax),
which gives

µ̃(x) =

∥∥∥∥∥Y
t
K′′

[
Y t
Ab−RAx

0

]∥∥∥∥∥
‖x‖ . (2.12)

This simply recognizes that Y t
Ar is the residual of the triangular linear equations used to solve
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the LS problem. Solving that problem produces Y t
Ab as an intermediary that can be saved for the

backward error estimation. Factorization of K ′′ is still required, but again the orthogonal factor

needn’t be saved because it suffices to accumulate Y t
K′′

[
Y t
Ab−RAx

0

]
.

2.6 Iterative methods

If A is too large to permit the use of direct methods, we may consider iterative solution of the

original problem min ‖Ax− b‖ as well as the KW problem (2.2):

min
y
‖Ky − v‖ ≡ min

y

∥∥∥∥∥

[
A

ηI

]
y −

[
r

0

]∥∥∥∥∥ , η ≡ η(x) = ‖r‖‖x‖ . (2.13)

In particular, LSQR [28, 29, 31] takes advantage of the damped least squares structure in (2.13).

Using results from Saunders [30], we show here that the required projection norm is available

within LSQR at negligible additional cost.

For problem (2.13), LSQR uses the Golub-Kahan bidiagonalization of A to form matrices Uk

and Vk with theoretically orthonormal columns and a lower bidiagonal matrix Bk at each step k.

With β1 = ‖r‖, a damped LS subproblem is defined and transformed by a QR factorization:

min
wk

∥∥∥∥∥

[
Bk

ηI

]
wk −

[
β1e1

0

]∥∥∥∥∥ , Qk

[
Bk β1e1

ηI 0

]
=




Rk zk

ζ̄k+1

qk


 . (2.14)

The kth estimate of y is defined to be yk = Vkwk = (VkR
−1
k )zk. From [30, pp. 99–100], the kth

estimate of the required projection is given by

Ky ≈ Kyk ≡
[
A

ηI

]
yk =

[
Uk+1

Vk

]
Qt

k

[
zk

0

]
. (2.15)

Orthogonality (and exact arithmetic) gives ‖Kyk‖ = ‖zk‖. If LSQR terminates at iteration k,

‖zk‖ may be taken as the final estimate of ‖Ky‖ for use in (2.7). Thus, µ̃(x) ≈ ‖zk‖/‖x‖. Since

zk differs from zk−1 only in its last element, only k operations are needed to accumulate ‖zk‖2.

LSQR already forms monotonic estimates of ‖y‖ and ‖v−Ky‖ for use in its stopping rules, and

the estimates are returned as output parameters. We see that the estimate ‖zk‖ ≈ ‖Ky‖ is another
useful output. Experience shows that the estimates of such norms retain excellent accuracy even

though LSQR does not use reorthogonalization.
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2.7 When both A and b are perturbed

The case where only A is perturbed has been discussed. A practical estimate for the optimal

backward error when both A and b are perturbed is also of interest.

In this case, the optimal backward error is defined as

min
∆A,∆b

{||∆A, θ∆b||F : ||(A+∆A)y − (b+∆b)||2 = min},

where θ is a weighting parameter. (Taking the limit θ →∞ forces ∆b = 0, giving the case where

only A is perturbed.) The exact backward error, µA,b(x), is given as [20, p. 393]

µA,b(x) = min{
√
νη, σmin[A B]},

where

η = ||r||/||x||, B =
√
νη

(
I − rrt

||r||2
)
, and ν =

θ2||x||2
1 + θ2||x||2 .

Using the estimate µ̃(x) ≈ µ(x) (with only A perturbed), we can derive an analogous estimate

µ̃A,b(x) ≈ µA,b(x) as follows:

µ̃A,b(x) = min{
√
νη, σmin[A B]}

=
√
νmin

{
η, σmin

[
1√
ν
A η

(
I − rrt

||r||2
)]}

=
√
ν

∥∥∥∥∥

( ||x||2
ν

AtA+ ||r||2I
)−1/2

1√
ν
Atr

∥∥∥∥∥

=
√
ν‖(||x||2AtA+ ν||r||2I)−1/2Atr‖.

Note that to proceed from the line beginning
√
νmin, we simply replaced A by A/

√
ν in the

formula for µ̃(x).

The asymptotic property (1.6) again follows because µ̃A,b(x) and µ̃(x) have the same essential

structure. All the evaluation methods for µ̃(x) can be carried out for µ̃A,b(x) in a similar way.



Chapter 3

Numerical Tests

3.1 Description of the test problems

This section presents numerical tests of the optimal backward error estimate. For this purpose it

is most desirable to make many tests with problems that occur in practice. Since large collections

of test problems are not available for least squares, it is necessary to compromise by using many

randomly generated vectors, b, with a few matrices, A, that are related to real-world problems.

Table 3.1 describes the test matrices. They originated in the least-squares analysis of gravity-

meter observations. They are available from the Harwell-Boeing sparse matrix collection [9] and

the Matrix Market [5].

Table 3.1: Matrices used in the numerical tests.

matrix rows m columns n κ2(A)

(a) well1033 1033 320 1.7e+2
(b) illc1033 1033 320 1.9e+4

3.2 Description of the calculations

For the factorization methods, 1000 sample problems are considered for each type of matrix in

Table 3.1. For each sample problem, the solution x, the backward error estimate µ̃(x) and the

optimal backward error µ(x) from Higham’s equation (1.1) are evaluated using Matlab.

12
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Figure 3.1: Histograms for the ratios of estimate to true optimal backward error for all the test
cases solved by dense matrix factorizations. The SVD and QR solution methods use the estimates
in equation (2.1) and (2.10), respectively.

3.3 Test results for SVD, QR, and sparse methods

Figure 3.1 displays the ratios of estimate µ̃(x) to optimal backward error µ(x) for all the test cases

solved by dense matrix factorizations. The SVD and QR solution methods use the estimates in

equation (2.1) and (2.10), respectively. Figure 3.2 displays the ratios for the same x obtained by

QR methods in Figure 3.1 but with µ̃(x) evaluated by equation (2.11). This formula is the first of

the two approaches suggested for use with sparse matrices. The figures show that µ̃(x) evaluated

by these formulas is a reasonable estimate for the optimal backward error.
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Figure 3.2: Histograms for the ratios of estimate to true optimal backward error for all the test
cases solved by QR methods. Equation (2.11) is used to evaluate the estimate.

3.4 Test results for iterative methods

The preceding results have been for accurate estimates of the LS solution. Applying LSQR to a

problem minx ‖Ax−b‖ generates a sequence of approximate solutions {xk}. For the well and illc

test problems we used the Matlab code (2.11) to compute µ̃(xk) for each xk. To our surprise,

these values proved to be monotonically decreasing, as illustrated by the lower curve in Figures

3.3 and 3.4. (To make it scale-independent, this curve is really µ̃(xk)/‖A‖F.)

For each xk, let rk = b−Axk and η(xk) = ‖rk‖/‖xk‖. Also, let Kk, vk and yk be the quantities

in (2.2) when x = xk. The LSQR iterates have the property that ‖rk‖ and ‖xk‖ are decreasing

and increasing respectively, so that η(xk) is monotonically decreasing. Also, we see from (2.7) that

µ̃(xk) =
‖Y t

k vk‖
‖xk‖

<
‖vk‖
‖xk‖

=
‖rk‖
‖xk‖

= η(xk),

so that η(xk) forms a monotonically decreasing bound on µ̃(x). However, we can only note empir-

ically that µ̃(xk) itself appears to decrease monotonically also.

The stopping criterion for LSQR is of interest. It is based on a non-optimal backward error

‖Ek‖F derived by Stewart [32], where

Ek = − 1

‖rk‖2
rkr

t
kA.

(If Ã = A+Ek and r̃ = b−Ãxk, then (xk, r̃k) are the exact solution and residual for minx ‖Ãx−b‖.)
Note that ‖Ek‖F = ‖Ek‖2 = ‖Atrk‖/‖rk‖. On incompatible systems, LSQR terminates when its
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estimate of ‖Ek‖2/‖A‖F is sufficiently small; i.e., when

test2k ≡
‖Atrk‖
‖A‖k‖rk‖

≤ atol, (3.1)

where ‖A‖k is a monotonically increasing estimate of ‖A‖F and atol is a user-specified tolerance.

Figures 3.3 and 3.4 show ‖rk‖ and three relative backward error quantities for problems

well1033 and illc1033 when LSQR is applied to minx ‖Ax − b‖ with atol = 10−12. From

top to bottom, the curves plot the following (log10):

• ‖rk‖ (monotonically decreasing).

• test2k, LSQR’s relative backward error estimate (3.1).

• η(xk)/‖A‖F, the optimal relative backward error for Ax = b (monotonic).

• µ̃(xk)/‖A‖F, the KW relative backward error estimate for minx ‖Ax− b‖ (apparently mono-

tonic).

The last curve is extremely close to the optimal relative backward error for LS problems. We see

that LSQR’s test2k is two or three orders of magnitude larger for most xk, and it is far from

monotonic. Nevertheless, its trend is downward in broad synchrony with µ̃(xk)/‖A‖F. We take

this as an experimental approval of Stewart’s backward error Ek and confirmation of the reliability

of LSQR’s cheaply computed stopping rule.

3.5 Iterative computation of µ̃(x)

Here we use an iterative solver twice: first on the original LS problem to obtain an approximate

solution x, and then on the associated KW problem to estimate the backward error for x.

1. Apply LSQR to minx ‖Ax − b‖ with iteration limit kmax . This generates a sequence {xk},
k = 1 : kmax . Define x = xkmax . We want to estimate the backward error for that final point

x.

2. Define r = b−Ax and atol = 0.01‖Atr‖/(‖A‖F‖x‖).

3. Apply LSQR to the KW problem miny ‖Ky − v‖ (2.13) with convergence tolerance atol.

As described in section 2.6, this generates a sequence of estimates µ̃(x) ≈ ‖z`‖/‖x‖ using

‖z`‖ ≈ ‖Ky‖ in (2.14)–(2.15).

To avoid ambiguity we use k and ` for LSQR’s iterates on the two problems. Also, the following

figures plot relative backward errors µ̃(x)/‖A‖F, even though the accompanying discussion doesn’t

mention ‖A‖F.
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Figure 3.3: Backward error estimates for each LSQR iterate xk during the solution of well1033
with atol = 10−12.
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Figure 3.4: Backward error estimates for each LSQR iterate xk during the solution of illc1033
with atol = 10−12.
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For problem well1033 with kmax = 50, Figure 3.5 shows µ̃(xk) for k = 1 : 50 (the same as

the beginning of Figure 3.3). The right-hand curve then shows about 130 estimates ‖z`‖/‖x‖
converging to µ̃(x50) with about 2 digits of accuracy (because of the choice of atol).

Similarly with kmax = 160, Figure 3.6 shows µ̃(xk) for k = 1 : 160 (the same as the beginning

of Figure 3.3). The final point x160 is close to the LS solution, and the subsequent KW problem

converges more quickly. About 20 LSQR iterations give a 2-digit estimate of µ̃(x160).

For problem illc1033, similar effects were observed. In Figure 3.7 about 2300 iterations on the

KW problem give a 2-digit estimate of µ̃(x2000), but in Figure 3.8 only 280 iterations are needed

to estimate µ̃(x3500).

3.6 Comparison with Malyshev and Sadkane’s method

Malyshev and Sadkane [22] show how to use the bidiagonalization of A with starting vector r to

estimate σmin[A B] in (1.1). This is the same bidiagonalization that LSQR uses on the KW problem

(2.2) to estimate µ̃(x). The additional work per iteration is nominal in both cases. A numerical

comparison is therefore of interest. We use the results in Tables 5.2 and 5.3 of [22] corresponding

to LSQR’s iterates x50 and x160 on problems well1033 and illc1033. Also, Matlab gives us

accurate values for µ̃(xk) and σmin[A B] via sparse qr (2.11) and dense svd respectively.

In Tables 3.2–3.4, the true backward error is µ(x) = σmin[A B], the last line in each table.

In Tables 3.2–3.3, σ` denotes Malyshev and Sadkane’s σmin(B̄`) [22, (3.7)]. Note that the

iterates σ` provide decreasing upper bounds on σmin[A B], while the LSQR iterates ‖z`‖/‖x‖ are
increasing lower bounds on µ̃(x), but they do not bound σmin.

We see that all of the Malyshev and Sadkane estimates σ` bound σmin to within a factor of 2,

but they have no significant digits in agreement with σmin. In contrast, η(xk) agrees with σmin to

3 digits in three of the cases, and indeed it provides a tighter bound whenever it satisfies η < σ`.

The estimates σ` are therefore more valuable when η > σmin (i.e., when xk is close to a solution

x∗).

However, we see that LSQR computes µ̃(xk) with 3 or 4 correct digits in all cases, and requires

fewer iterations as xk approaches x∗. The bottom-right values in Tables 3.2 and 3.4 show Gr-

car’s limit (1.6) taking effect. LSQR can compute these values to high precision with reasonable

efficiency.

The primary difficulty with our iterative computation of µ̃(x) is that when x is not close to x∗,

rather many iterations may be required, and there is no warning that µ̃ may be an underestimate

of µ.

Ironically, solving the KW problem for x = xk is akin to restarting LSQR on a slightly mod-

ified problem. We have observed that if ` iterations are needed on the KW problem to estimate

µ̃(xk)/‖A‖F, continuing the original LS problem a further ` iterations would have given a point
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Figure 3.5: Problem well1033: Iterative solution of KW problem after LSQR is terminated at x50.
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Figure 3.6: Problem well1033: Iterative solution of KW problem after LSQR is terminated at
x160.
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Figure 3.7: Problem illc1033: Iterative solution of KW problem after LSQR is terminated at
x2000.
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Figure 3.8: Problem illc1033: Iterative solution of KW problem after LSQR is terminated at
x3500.
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Table 3.2: Comparison of σ` and ‖z`‖/‖xk‖ for problem well1033.

k = 50

‖rk‖ 6.35e+1
‖Atrk‖ 5.04e+0
η(xk) 7.036807e−3
atol 4.44e−5

` σ` ‖z`‖/‖xk‖

10 2.35e−2 2.11e−3
50 1.51e−2 5.43e−3
100 1.22e−2 6.32e−3
127 6.379461e−3

µ̃(xk) 6.379462e−3
σmin[A B] 7.036158e−3

k = 160

‖rk‖ 7.52e+1
‖Atrk‖ 4.49e−4
η(xk) 7.3175e−5
atol 3.34e−7

` σ` ‖z`‖/‖xk‖

10 3.79e−5 8.9316e−8
19 8.9381e−8
50 2.95e−7
100 1.21e−7

µ̃(xk) 8.9386422278e−8
σmin[A B] 8.9386422275e−8

Table 3.3: Comparison of σ` and ‖z`‖/‖xk‖ for problem illc1033.

k = 50

‖rk‖ 3.67e+1
‖Atrk‖ 3.08e+1
η(xk) 4.6603e−3
atol 4.69e−5

` σ` ‖z`‖/‖xk‖

10 3.04e−2 1.62e−3
50 1.84e−2 3.71e−3
100 1.02e−2 4.11e−3
200 4.25e−3
300 4.28e−3
310 4.2825e−3

µ̃(xk) 4.2831e−3
σmin[A B] 4.6576e−3

k = 160

‖rk‖ 1.32e+1
‖Atrk‖ 3.78e−1
η(xk) 1.6196e−3
atol 1.60e−5

` σ` ‖z`‖/‖xk‖

10 1.10e−2 2.09e−4
50 4.63e−3 4.92e−4
100 3.40e−3 8.45e−4
200 1.23e−3
300 1.34e−3
400 1.38e−3
500 1.3841e−3
542 1.3843e−3

µ̃(xk) 1.3847e−3
σmin[A B] 1.6144e−3

Table 3.4: ‖z`‖/‖xk‖ for problem illc1033.

k = 2000

‖rk‖ 7.89e−1
‖Atrk‖ 2.45e−3
η(xk) 7.82e−5
atol 1.73e−6

` ‖z`‖/‖xk‖

500 1.22e−5
1000 1.81e−5
1500 1.97e−5
2000 2.02e−5
2330 2.08e−5

µ̃(xk) 2.10e−5
σmin[A B] 2.12e−5

k = 3500

‖rk‖ 7.52e−1
‖Atrk‖ 5.54e−8
η(xk) 7.30e−5
atol 4.11e−11

` ‖z`‖/‖xk‖

10 4.41e−11
50 1.11e−10
100 1.54e−10
200 2.28e−10
280 2.32006e−10

µ̃(xk) 2.3209779030e−10
σmin[A B] 2.3209779099e−10
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xk+` for which the Stewart-type backward error test2k+` is generally at least as small. (Compare

Figures 3.4 and 3.8.) Thus, the decision to estimate optimal backward errors by iterative means

must depend on the real need for optimality.

3.7 Test results for perturbed b

Figure 3.9 displays the ratios of the estimate µ̃(x) to the optimal backward error µ(x) for the SVD

and the sparse QR methods for evaluating µ̃(x). θ = 0.02 for the SVD method and θ = 0.001 for

the sparse QR method. θ is chosen such that ν won’t be too close to 1. The figures show that

µ̃(x) evaluated by these formulas is a good estimate for the optimal backward error µ(x).
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Figure 3.9: Histograms for the ratios of estimate to true optimal backward error for SVD and
sparse methods. θ = 0.02 for SVD and θ = 0.001 for sparse method. θ is chosen such that ν won’t
be too close to 1.



Chapter 4

Upper and Lower Bounds for µ̃

Another way of evaluating µ̃ is to find a sequence of decreasing upper bounds and another sequence

of increasing lower bounds for µ̃, and we will have a good estimate of µ̃ when the upper and lower

bounds get close enough. This can be done by using Gauss, Gauss-Radau and Gauss-Lobbato

quadrature formulas. In order to find upper and lower bounds for µ̃, we only need to find upper

and lower bounds for µ̄ = zt(AtA+ η2I)−1z, where z = Atr/||Atr||. We have

µ̃ =
||Atr||2
||x||2 µ̄.

4.1 Matrix functions

Given a symmetric positive definite matrix A, we may write A = QΛQt, whereQ is the orthonormal

matrix whose columns are the normalized eigenvectors of A, and Λ is a diagonal matrix whose

diagonal elements are the eigenvalues λi, which we order as λ1 ≤ λ2 ≤ . . . ≤ λn.
If f(A) is an analytic function of A (such as a polynomial in A), we have

f(A) = Qf(Λ)Qt.

Therefore, for arbitrary vectors u and v,

utf(A)v = utQf(Λ)Qtv = αtf(Λ)β =
n∑

i=1

f(λi)αiβi,

where α = Qtu, β = Qtv. This last sum can be considered as a Riemann-Stieltjes integral:

I[f ] = utf(A)v =

∫ b

a

f(λ) dα(λ),

22
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where the measure α is piecewise constant and defined by

α(λ) =





0 if λ < a = λ1∑i
j=1 αjβj if λi ≤ λ < λi+1∑n
j=1 αjβj if b = λn ≤ λ.

Note that α is an increasing positive function. We are looking for methods to obtain upper and

lower bounds L and U for I[f ]:

L ≤ I[f ] ≤ U.

In the next section, we review and describe some basic results from Gauss quadrature theory

following Golub and Meurant [12], as this plays a fundamental role in estimating the integrals and

computing bounds.

4.2 Bounds on matrix functions as integrals

A way to obtain bounds for the Stieltjes integrals is to use Gauss, Gauss-Radau and Gauss-Lobatto

quadrature formulas. The general formula we use is

∫ b

a

f(λ) dα(λ) =
N∑

j=1

wjf(tj) +
M∑

k=1

vkf(zk) +R[f ],

where the weights [wj ]
N
j=1, [vk]

M
k=1 and the nodes [tj ]

N
j=1 are unknowns and the nodes [zk]

M
k=1 are

prescribed. The remainder term is

R[f ] =
f (2N+M)(ξ)

(2N +M)!

∫ b

a

M∏

k=1

(λ− zk)




N∏

j=1

(λ− tj)



2

dα(λ), a < ξ < b.

If M = 0, this leads to the Gauss rule with no prescribed nodes. If M = 1 and z1 = a or z1 = b we

have the Gauss-Radau formula. If M = 2 and z1 = a, z2 = b, this is the Gauss-Lobatto formula.

Let us recall briefly how the nodes and weights are obtained in the Gauss, Gauss-Radau and

Gauss-Lobatto rules. For the measure α, it is possible to define a sequence of polynomials p0(λ),

p1(λ), . . . that are orthonormal with respect to α:

∫ b

a

pi(λ)pj(λ) dα(λ) =

{
1 if i = j

0 otherwise,

and pk is of exact degree k. Moreover, the roots of pk are distinct, real and lie in the interval [a, b].
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If
∫
dα = 1, this set of orthonormal polynomials satisfies a three-term recurrence relationship:

γjpj(λ) = (λ− wj)pj−1(λ)− γj−1pj−2(λ), j = 1, 2, . . . , N

with p−1 ≡ 0, p0(λ) ≡ 1. In matrix form, this can be written as

λp(λ) = TNp(λ) + γNpN (λ)eN ,

where

p(λ)t = [p0(λ) p1(λ) · · · pN−1(λ)],

etN = (0 0 · · · 1),

and

TN =




ω1 γ1

γ1 ω2 γ2
. . .

. . .
. . .

γN−2 ωN−1 γN−1

γN−1 ωN




.

The eigenvalues of TN (which are the zeroes of pN ) are the nodes of the Gauss quadrature

rule (i.e. M = 0). The weights are the squares of the first elements of the normalized eigenvectors

of TN . We note that all the eigenvalues of TN are real and simple. A natural and elegant way

to compute the orthonormal polynomials, or equivalently the tridiagonal matrices, is to use the

Lanczos algorithm.

4.2.1 Gauss quadrature rule for lower bounds

For the Gauss quadrature rule (renaming the weights and nodes wG
j and tGj ) we have

∫ b

a

f(λ) dα(λ) =

N∑

j=1

wG
j f(t

G
j ) +RG[f ],

with

RG[f ] =
f (2N)(ξ)

(2N)!

∫ b

a




N∏

j=1

(λ− tGj )



2

dα(λ), a < ξ < b.

Golub and Meurant [12] showed that, given u = v,

N∑

j=1

wG
j f(t

G
j ) = et1f(TN )e1,
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where TN arises from applying the Lanczos tridiagonalization algorithm to the symmetric positive

definite matrix A with u/||u|| as the starting vector.

In our case the function f has the form f(x) = (x+ η2)−1. Thus,

f (2N)(ξ)

(2N)!
= (ξ + η2)−(2N+1) > 0.

We have RG[f ] > 0, and hence
∑N

j=1 w
G
j f(t

G
j ) gives a lower bound for I[f ]. As a result,

et1(TN + η2I)−1e1 gives a lower bound for z̄, N = 1, 2, . . ., where TN is from applying the Lanczos

tridiagonalization algorithm to AtA with z as the starting vector.

Here we describe a procedure to evaluate et1(TN + η2I)−1e1 that avoids forming AtA. First,

we apply the Golub-Kahan bidiagonalization algorithm to A with starting vector r to get lower

bidiagonal matrices

BN =




b11

b21 b22

b32
. . .

. . . bN−1,N−1

bN,N−1 bNN

bN+1,N




, N = 1, 2, . . . .

We have

TN = Bt
NBN .

Second, we calculate the QR factorization of BN :

QNBN =

(
RN

0

)
.

Third, we calculate the QR factorization of

(
RN

ηI

)
:

Q̄N

(
RN

ηI

)
=

(
R̄N

0

)
.

Then

et1(TN + η2I)−1e1 = et1(R̄
t
N R̄N )−1e1 = ‖wN‖2,

where R̄t
NwN = e1. We now have a sequence of lower bounds as N = 1, 2, . . . .
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4.2.2 Gauss-Radau rule for upper and lower bounds

To obtain the Gauss-Radau rule (M = 1), we should extend the matrix TN in such a way that it

has one prescribed eigenvalue z1. We wish to construct pN+1 such that pN+1(z1) = 0. From the

recurrence relation, we have

0 = γN+1pN+1(z1) = (z1 − wN+1)pN (z1)− γNpN−1(z1).

This gives

wN+1 = z1 − γN
pN−1(z1)

pN (z1)
.

Let us denote δ(z1) = [δ1(z1), · · · , δN (z1)]
t with

δl(z1) = −γN
pl−1(z1)

pN (z1)
, l = 1 . . . , N.

This gives ŵN+1 = z1 + δN (z1), where

(TN − z1I)δ(z1) = γ2NeN .

For the Gauss-Radau rule the remainder RGR is

RGR[f ] =
f (2N+1)(ξ)

(2N + 1)!

∫ b

a

(λ− z1)




N∏

j=1

(λ− tj)



2

dα(λ).

In our case,
f (2N+1)(ξ)

(2N + 1)!
= −(ξ + η2)−(2N+2) < 0.

As a result, the sign of the remainder is determined by the sign of

∫ b

a

(λ− z1)




N∏

j=1

(λ− tj)



2

dα(λ).

Note that a and b are the smallest and largest eigenvalues of the symmetric positive definite

matrix A, so they are positive. If we fix z1 at 0, then the integral is positive. As a result, the

remainder is negative and
∑N

j=1 wjf(tj) + v1f(z1) is an upper bound for I[f ]. If we fix z1 at√
||A||1||A||∞ (> b), then the integral is negative. As a result, the remainder is positive and

∑N
j=1 wjf(tj) + v1f(z1) is a lower bound.

The tridiagonal matrix T̂N+1 defined as T̂N+1 =

(
TN γNeN

γNe
t
N ŵN+1

)
will have z1 as an eigenvalue

and give the weights and nodes of the corresponding quadrature rule. Therefore, the recipe is to
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compute as for the Gauss quadrature rule and then to modify the last diagonal element to obtain

the prescribed node.

Golub and Meurant [12] proved that

N∑

j=1

wjf(tj) + v1f(z1) = et1f(T̂N )e1.

In order to find upper bounds for µ̄, we set z1 = 0. Next, we solve

TNδ(z1) = γ2NeN ,

where TN arises from applying Lanzos tridiagonalization to AtA with z as the starting vector. Set

ŵN+1 = z1 + δN (z1) and then et1(T̂N+1 + η2I)−1e1 gives an upper bound for µ̄, N = 1, 2, . . . .

Similar to the Gauss rule case, we can do Golub-Kahan bidiagonalization for A instead of Lanczos

tridiagonalization for AtA.

In order to find lower bounds for µ̄, we set z1 =
√
||AtA||1||AtA||∞. Next, we solve

(TN − z1I)δ(z1) = γ2NeN .

Set ŵN+1 = z1 + δN (z1) and then et1(T̂N+1 + η2I)−1e1 gives a lower bound for µ̄, N = 1, 2, . . . .

4.2.3 Gauss-Lobatto rule for upper bounds

Consider the Gauss-Lobatto rule (M = 2), with z1 and z2 as prescribed nodes. Again, we should

modify the matrix of the Gauss quadrature rule. Here, we would like to have

pN+1(z1) = pN+1(z2) = 0.

Using the recurrence relation for the polynomials, we obtain a linear system of order 2 for the

unknowns ŵN+1 and γ̂N :

(
pN (z1) pN−1(z1)

pN (z2) pN−1(z2)

)(
ŵN+1

γ̂N

)
=

(
z1 pN (z1)

z2 pN (z2)

)
.

Let δ and µ be defined as vectors with components

δl = −
pl−1(z1)

γNpN (z1)
, µl = −

pl−1(z2)

γNpN (z2)
.

Then

(TN − z1I)δ = eN , (TN − z2I)µ = eN ,
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and the linear system can be written as

(
1 −δN
1 −µN

)(
ŵN+1

γ̂2N

)
=

(
z1

z2

)
,

giving the unknowns we need. The tridiagonal matrix T̂N+1 is obtained by replacing γN and wN+1

with γ̂N and ŵN+1.

For the Gauss-Lobatto rule the remainder RGL is

RGL[f ] =
f (2N+2)(ξ)

(2N + 2)!

∫ b

a

(λ− z1)(λ− z2)




N∏

j=1

(λ− tj)



2

dα(λ).

In our case,
f (2N+2)(ξ)

(2N + 2)!
= (ξ + η2)−(2N+3) > 0.

As a result, the sign of the remainder is determined by the sign of

∫ b

a

(λ− z1)(λ− z2)




N∏

j=1

(λ− tj)



2

dα(λ).

Recall that a and b are the smallest and largest eigenvalues of the symmetric positive definite

matrix A. If we set z1 = 0 and z2 =
√
||A||1||A||∞(> b), then

∫ b

a

(λ− z1)(λ− z2)




N∏

j=1

(λ− tj)



2

dα(λ) < 0.

As a result, the remainder is negative and

N∑

j=1

wjf(tj) + v1f(z1) + v2f(z2)

is an upper bound for I[f ], N = 1, 2, . . . .

Golub and Meurant [12] proved that

N∑

j=1

wjf(tj) + v1f(z1) + v2f(z2) = et1f(T̂N )e1.

In order to find upper bounds for µ̄, we set z1 = 0 and z2 =
√
||AtA||1||AtA||∞. Next, we solve

(TN − z1I)δ = eN , (TN − z2I)µ = eN ,
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and (
1 −δN
1 −µN

)(
ŵN+1

γ̂2N

)
=

(
z1

z2

)
.

T̂N+1 is defined as

T̂N+1 =

(
TN γ̂NeN

γ̂Ne
t
N ω̂N+1

)

and et1(T̂N+1 + η2I)−1e1 gives an upper bound for µ̄, N = 1, 2, . . . .

4.3 Numerical results for bounds

Lower bounds are studied for four different approximate solutions of test problems well1033 and

illc1033 using Gauss and Gauss-Radau rules. The first approximate x1 is the solution from using

the QR method to solve the least squares problems. We perturb each element of x1 by 0.01 times a

random number generated from U(0, 1) to get the second estimate x2. Similarly, we perturb each

element of x1 by 0.1 and 10 times a random number generated from U(0, 1) to get the estimates

x3 and x4. We have the following three goals:

• See if the lower bounds are monotonically increasing.

• If so, see if the lower bounds converge to the true value.

• If so, see how the convergence behavior changes as the estimates become less accurate.

Upper bounds are studied for the same four approximate solutions using Gauss-Radau and

Gauss-Lobatto rules, and again we try to answer the same three questions.

4.3.1 Lower bounds for the Gauss rule

Figure 4.1 displays the lower bounds calculated using the Gauss rule for these four approximate

solutions for test problem well1033. The top left plot is for the approximate solution x1. The top

right plot is for x2, the bottom left plot is for x3 and the bottom right plot is for x4. Figure 4.2

displays the lower bounds calculated using Gauss rule for these four approximate solutions for test

problem illc1033. Together, the figures show that

• The lower bounds are monotonically increasing.

• They converge to the true value.

• They converge faster for less accurate approximates of the least squares problems.

• The bounds converge to the true value in just a few steps when the approximate solution is

quite inaccurate.
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Figure 4.1: Lower bounds calculated using Gauss rule for xi, i = 1, 2, 3, 4 for well1033.

0 20 40 60 80 100 120
0.2385

0.239

0.2395

0.24

0.2405

0.241

0.2415

0.242

0.2425

0.243

0.2435
illc1033

true
Gauss lower bounds

0 20 40 60 80 100 120
0.238

0.2385

0.239

0.2395

0.24

0.2405

0.241

0.2415

0.242

0.2425
illc1033

true
Gauss lower bounds

0 20 40 60 80 100 120
0.234

0.2345

0.235

0.2355

0.236

0.2365

0.237

0.2375

0.238

0.2385
illc1033

true
Gauss lower bounds

0 20 40 60 80 100 120
0.235

0.2355

0.236

0.2365

0.237

0.2375

0.238

0.2385

0.239
illc1033

true
Gauss lower bounds

Figure 4.2: Lower bounds calculated using Gauss for xi, i = 1, 2, 3, 4 for illc1033.
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4.3.2 Upper and lower bounds for the Gauss-Radau rule

Figure 4.3 displays the upper bounds calculated using Gauss-Radau rule for these four approximate

solutions for test problem well1033.

Figure 4.4 displays the upper bounds calculated using Gauss-Radau rule for these four approx-

imate solutions for test problem illc1033.

Figure 4.5 displays the lower bounds calculated using Gauss-Radau rule for these four approx-

imate solutions for test problem well1033.

Figure 4.6 displays the lower bounds calculated using Gauss-Radau rule for these four approx-

imate solutions for test problem illc1033.

The figures show that

• The lower bounds are monotonically increasing.

• The upper bounds are monotonically decreasing.

• They converge to the true value.

• They converge faster for less accurate approximates of the least squares problems.

• The bounds converge to the true value in just a few steps when the approximate solution is

quite inaccurate.

4.3.3 Upper bounds for the Gauss-Lobatto rule

Figure 4.7 displays the upper bounds calculated using Gauss-Lobatto rule for these four approxi-

mate solutions for test problem well1033.

Figure 4.8 displays the upper bounds calculated using Gauss-Lobatto rule for these four ap-

proximate solutions for test problem illc1033.

Again, the figures show that

• The upper bounds are monotonically decreasing.

• They converge to the true value.

• They converge faster for less accurate approximates of the least squares problems.

• The bounds converge to the true value in just a few steps when the approximate solution is

quite inaccurate.
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Figure 4.3: Upper bounds calculated using Gauss-Radau rule for xi, i = 1, 2, 3, 4 for well1033.
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Figure 4.4: Upper bounds calculated using Gauss-Radau rule for xi, i = 1, 2, 3, 4 for illc1033.
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Figure 4.5: Lower bounds calculated using Gauss-Radau rule for xi, i = 1, 2, 3, 4 for well1033.
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Figure 4.6: Lower bounds calculated using Gauss-Radau rule for xi, i = 1, 2, 3, 4 for illc1033.
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Figure 4.7: Upper bounds calculated using Gauss-Lobatto rule for xi, i = 1, 2, 3, 4 for well1033.
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Figure 4.8: Upper bounds calculated using Gauss-Lobatto rule for xi, i = 1, 2, 3, 4 for illc1033.
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4.3.4 z1 and z2 fixed at the extreme eigenvalues of AtA

We set

z1 = 0 and
√
||AtA||1||AtA||∞

in the Gauss-Radau rule, and

z1 = 0, z2 =
√
||AtA||1||AtA||∞

in the Gauss-Lobatto rule. The latter values 0 and
√
||AtA||1||AtA||∞ are the best lower and upper

bounds we know for a and b, the smallest and largest eigenvalues of AtA. It would be interesting

to see if there is a big difference if we fix z1 = a and b for upper and lower bounds in Gauss-Radau

rule and z1 = a, z2 = b for upper bounds in Gauss-Lobatto rule.

Figure 4.9 displays the lower bounds calculated using the Gauss-Radau rule for test problem

illc1033 with z1 = b. Figure 4.10 displays the upper bounds calculated using the Gauss-Radau rule

for test problem well1033 with z1 = a. Figure 4.11 displays the upper bounds calculated using the

Gauss-Labotto rule for test problem illc1033 with z1 = a and z2 = b.

The figures show that no big improvement can be achieved by using z1 = a and b for the Gauss-

Radau rule and z1 = a, z2 = b for the Gauss-Lobatto rule instead of using z1 = 0, and
√
||A||1||A||∞

for the Gauss-Radau rule and z1 = 0, z2 =
√
||A||1||A||∞ for the Gauss-Lobatto rule.
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Figure 4.9: Lower bounds calculated using the Gauss-Radau rule for illc1033 with z1 = b.
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Figure 4.10: Upper bounds calculated using the Gauss-Radau rule for well1033 with z1 = a.
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Figure 4.11: Upper bounds calculated using Gauss-Lobatto for illc1033 with z1 = a and z2 = b.



Chapter 5

Conclusions

Several approaches are suggested and tested to evaluate an estimate for the optimal (that is, the

minimal Frobenius norm) size of backward errors for LS problems. The numerical tests support

the following conclusions.

Regarding the estimates:

1. The computed estimate of the optimal backward error is very near the true optimal backward

error in all but a small percent of the tests.

(a) Grcar’s limit (1.6) for the ratio of the estimate to the optimal backward error appears

to approach 1 very quickly.

(b) The greater part of the fluctuation in the estimate is caused by rounding error in its

evaluation.

2. Gu’s lower bound (1.5) for the ratio of the estimate to the optimal backward error often fails

in practice because of rounding error in evaluating the estimate.

3. As the computed solution of the LS problem becomes more accurate, the estimate may

become more difficult to evaluate accurately due to the unavoidable rounding error in forming

the residual.

4. For QR methods, evaluating the estimate is insignificant compared to the cost of solving a

dense LS problem. A version of the estimate that does not either retain or recompute the

orthogonal decomposition is less accurate.

5. When iterative methods become necessary, applying LSQR to the KW problem is a practical

alternative to the bidiagonalization approach of Malyshev and Sadkane [22], particularly

when x is close to x∗. No special coding is required (except a few new lines in LSQR to
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compute ‖zk‖ ≈ Ky as in section 2.6), and LSQR’s normal stopping rules ensure at least

some good digits in the computed µ̃(x).

6. The smooth lower curves in Figures 3.3 and 3.4 suggest that when LSQR is applied to

an LS problem, the backward errors for the sequence of approximate solutions {xk} are

(unexpectedly) monotonically decreasing.

Regarding the bounds obtained from quadrature rules:

7. The computed lower bounds are monotonically increasing and the computed upper bounds

are monotonically decreasing.

8. The computed bounds converge to the true value.

9. The computed bounds converge faster for less accurate approximations of the least squares

solutions.

10. The computed bounds converge to the true value in just a few steps when the approximate

solution is quite inaccurate.

11. No big improvement can be achieved by using z1 = a and b for the Gauss-Radau rule and

z1 = a, z2 = b for the Gauss-Lobatto rule instead of using z1 = 0, and
√
||A||1||A||∞ for

Gauss-Radau and z1 = 0, z2 =
√
||A||1||A||∞ for Gauss-Lobatto.

12. The LSQR based algorithm and the Gauss quadrature based algorithm give complementary

results. The former converges faster for more accurate solutions while the latter converges

faster for less accurate solutions.
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Chapter 6

Introduction

Part II of the dissertation explores test-based approaches to constructing confidence intervals in

clinical trials with survival time as the primary response. It also develops importance resampling

techniques to compute tail probabilities of the tests, thereby reducing the variance of the Monte

Carlo estimate of an error probability and thus the number of simulations required to compute

sample size and power in the design stage of a clinical trial and to construct confidence intervals

from the trial’s data. In this chapter we first review some basic methods and long-standing problems

in survival analysis and then give an outline of the dissertation.

6.1 Censored rank statistics

Suppose we have K groups of censored data. Let t1 < t2 < . . . < tD be the distinct death times in

the pooled data. At time ti we observe dij deaths in the jth group out of Yij individuals at risk,

j = 1, . . . ,K, i = 1, . . . , D. Let di =
∑K

j=1 dij and Yi =
∑K

j=1 Yij be the number of deaths and

the number at risk in the pooled data at time ti, i = 1, . . . , D.

Let Wj(t) be a positive weight function with the property that Wj(ti) is zero whenever Yij is

zero. We have the following censored rank statistics:

Sj =

D∑

i=1

Wj(ti)

{
dij
Yij
− di
Yi

}
, j = 1, . . . ,K.

In practice, all commonly used statistics have a weight function Wj(ti) = YijW (ti). With this

choice of weight functions,

Sj =

D∑

i=1

W (ti)

{
dij − Yij

di
Yi

}
, j = 1, . . . ,K.
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The weight function W (ti) = Yi yields Gehan’s (1965) generalization of the two-sample Mann-

Whitney form of the Wilcoxon statistic, and the weight function W (t) ≡ 1 leads to the logrank

statistic. These two statistics are used in Halpern and Brown’s (1987) simulation program for the

design of fixed-duration clinical trials, which will be reviewed in Section 7.1.

6.2 Estimation of the distribution function and its quantiles

In this section we review some techniques for drawing an inference about the distribution function

and its quantiles based on a sample of censored survival data.

The survival function, i.e., the distribution of lifetime X, is

S(t) = P (X ≥ t).

The hazard function is defined as

h(t) = P (X = t | X ≥ t) = − d

dt
logS(t).

The cumulative hazard is the integral of the hazard function:

Λ(t) =

∫ t

0

h(u) du = − logS(t).

A standard estimator of the survival function, proposed by Kaplan and Meier (1958), is called

the product-limit estimator (also called the Kaplan-Meier estimator). This estimator is defined as

Ŝ(t) =

{
1 if t < t1,∏

ti≤t[1− di
Yi
] if t1 ≤ t,

where t1 < t2 < · · · < tD are the D death times, di is the number of deaths at time ti, and Yi is the

number of individuals who are at risk at time ti. The Kaplan-Meier estimator is a step function

with jumps at the observed death times. The size of these jumps depends not only on the number

of deaths observed at each death time ti but also on the pattern of the censored observations prior

to ti. The variance of the Kaplan-Meier estimator is estimated by Greenwood’s formula:

V̂ [Ŝ(t)] = Ŝ(t)2
∑

ti≤t

di
Yi(Yi − di)

.

The pth quantile µ̂p of the Kaplan-Meier estimator Ŝ(t) is given as follows:

µ̂p = inf{t : Ŝ(t) ≤ 1− p}.
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In the case of p = 1
2 , µ̂ 1

2
is the estimated median survival time.

6.3 Cox’s proportional hazards model

Let T1, . . . , Tn; C1, . . . , Cn be independent random variables. Ci is the censoring time associated

with the survival time Ti. We observe (Y1, δ1), . . . , (Yn, δn) where

Yi = Ti ∧ Ci, δi = I(Yi = Ti).

Let zi be the vector of covariates associated with Ti.

Cox (1972) proposed the following proportional hazards model:

h(t; z) = eβ
′zh0(t),

where β is the vector of regression coefficients and h0(t) is the baseline hazard function.

Breslow’s (1974) estimator of the cumulative hazard function from all the data is as follows:

Λ̂(s) =
∑

i:Yi≤s

{
δi

/(
∑

j∈Ri

eβ̂
′zj

)}
,

in which β̂ is Cox’s (1972) estimate of β that maximizes the partial likelihood and Ri = {j : Yj ≥
Yi}. Cox’s partial likelihood can be expressed as

L(β) =
n∏

i=1

[
eβ

′zi

∑
j∈Ri

eβ
′zj

]δi
.

We can estimate the baseline survival function by

Ŝ(s) = exp(−Λ̂(s)).

This in turn yields the following estimate of the survival function of a patient with covariate z:

Ŝz(s) = exp(−Λ̂(s)eβ̂z).

6.4 Design of clinical trials with failure-time endpoints

A typical clinical trial tests whether a new treatment is better than an established one, which is

called the control by clinicians. To be approved by the Food and Drug Administration (FDA), a

new drug or treatment must perform as well as or no worse than the currently available one. The
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test needs to satisfy a prescribed type I error probability, following the guidelines of the FDA.

An important part of planning a trial comparing two treatments is the determination of the

approximate number of patients required to achieve adequate sensitivity of power for detecting

a specified difference between the two treatments, if such difference exists. To design a clinical

trial with failure-time endpoints, the null and alternative survival distributions need to be specified.

Also, a censored rank statistic needs to be chosen. The goal of the design is to find the combination

of accrual and follow-up times most attractive given the Type I error and the power. Monte Carlo

simulations are often used in the design stage to compute power and sample size of clinical trials;

see Halpern & Brown (1987).

For clinical trials with failure-time endpoints, it is often the case that certain of the observations

are right censored at the time of analysis. Typically, this situation arises when the patients enter

the clinical trial in sequence rather than all starting at the same time. At the end of the study,

survival times are observed on those who have died, but for the survivors, the observations are

censored and the time to censoring varies with the date of entry. In this case the determination

of sample size at the design stage involves how long the accrual of patients should continue, given

the rate of entry, in order to accrue and follow enough patients to obtain the desired power.

6.5 Data monitoring, interim analysis, and time-sequential

designs

Clinical trials with time-to-event as the primary response are usually conducted for a period of

several years. It is very advantageous if a definitive conclusion can be reached earlier than originally

planned. There are substantial savings in the cost of the trial and the time saved can be used to put

the drug on the market earlier and to be allocated to trials for other new treatments. Moreover,

if there is enough evidence showing one treatment is better than the other, it is unethical to

continue the trial in which some patients are randomly allocated to receive the inferior treatment.

Typically, a Data and Safety Monitoring Board meets periodically to examine the treatment and

adverse effects of the new drug. If the adverse effect of any drug or treatment turns out to be

excessive, the trial is stopped for safety reasons.

To design a group sequential test, one needs to specify the stopping rule and the terminal

decision rule that satisfy a prescribed type I error probability of the test, following the guidelines

of the FDA.

Since the trial is typically monitored at prescribed calendar times, there are two time-scales

in the problem. One is calendar time, while the other is “information time”, which is related to

how much information has been accrued at the calendar time of interim analysis. As explained in

Section 8.1, these two time-scales create substantial difficulties in the analysis of group sequential

clinical trials with time-to-event endpoints.
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Table 6.1: Coverage errors in % for lower (L) and upper (U) confidence limits for normal mean for
different values of

√
15µ. Methods: N, naive normal; B, bootstrap.

0 0.5 1 2.5 5
Method L U L U L U L U L U

N 6.20 5.60 10.55 4.80 8.45 4.50 5.40 3.25 4.05 4.30
B 4.75 4.60 9.45 2.65 9.40 4.05 7.15 4.25 6.65 9.00

6.6 Confidence intervals following group sequential tests

We review in this section some methods for constructing confidence intervals following group

sequential tests.

Let Sn be the partial sum of n independent and identically distributed normal random variables

X1, . . . , Xn with unknown mean µ and known variance 1. The stopping rule T for a group sequential

test is a random variable taking values in the set J = {n1, n1 + n2, . . . , n1 + · · ·+ nk}, where nj is

the jth group size. Consider stopping rules of the form

T = min{n ∈ J : Sn ≥ bn or Sn ≤ an}, with an < bn.

The special case bj = −aj = c
√
nj corresponds to Pocock’s (1977) boundary.

If we ignore the group sequential nature and treat the experiment as if it were obtained from

a sample of fixed size, then we have the naive confidence interval

(X̄T − z1−α/
√
T , X̄T − zα/

√
T ),

where zp is the pth quantile of the standard normal distribution. However, the confidence intervals

thus constructed are biased toward the extremes and the coverage probabilities are not correct.

In a group sequential setting, T
1
2 (X̄T − µ) differs substantially from a standard normal random

variable; see Fig. 1 of Chuang & Lai (1998).

The bootstrap method is known to give second-order accurate confidence intervals when the

stopping rule T is replaced by a fixed sample size n. In the group sequential case, since T
1
2 (X̄T −µ)

is no longer an approximate pivot, the coverage errors of the bootstrap confidence intervals can

differ substantially from the nominal values.

For example, if Xi are i.i.d. normal, J = {15j : j = 1, . . . , 5}, and T = min{n ∈ J : |Sn| ≥
2.413

√
n}, Table 6.1 taken from Chuang & Lai (1998) shows that both the naive method and the

bootstrap method give coverage errors that differ substantially from the nominal values.
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6.6.1 Ordering scheme for (T, ST )

Exact confidence intervals have been developed by making use of various orderings of the sample

space (T, ST ) when the group sizes are pre-determined constants. Under a total ordering ≤ of the

sample space, an exact 1− 2α confidence interval for µ is µα < µ < µ1−α, where µc is the value of

µ for which

Pµ{(T, ST ) > (to, so)} = c, (6.1)

in which (to, so) denotes the observed value of (T, ST ).

Such confidence intervals were first introduced by Siegmund (1978) for stopping rules of the

form

T = min{n ∈ J : Sn ≥ bn or Sn ≤ an}, with an < bn. (6.2)

Siegmund used the following ordering of the sample space of (T, ST ) : (t, s) > (t̃, s̃) if and only if

one of the following holds:

• t = t̃ and s > s̃,

• t < t̃ and s ≥ bt,

• t > t̃ and s̃ ≤ at̃.

Rosner & Tsiatis (1988) and Chang (1989) used an alternative ordering that is based on the

signed root likelihood ratio statistic for testing a given value of µ. It is called the “likelihood ratio

ordering”, for which (t, s) > (t̃, s̃) whenever t1/2(s− µ) > t̃1/2(s̃− µ). Emerson & Fleming (1990)

proposed ordering (T, ST ) according to ST /T . Under their “sample mean ordering”, (t, s) > (t̃, s̃)

whenever s/t > s̃/t̃.

In practice, however, the group sizes are often unpredictable instead of being pre-assigned

constants; see §7.1 of Jennison & Turnbull (2000). Interim analyses are usually scheduled at fixed

calendar times for administrative reasons, but patients are recruited at an uneven rate, so nj

is a random variable that is unobservable if n1 + · · · + nj exceeds the stopping time T . Since

randomness of the nj is due to the accrual pattern, which is unrelated to the Xi, we can assume

that {n1, . . . , nk} is independent of {X1, X2, . . .}.
For Siegmund’s ordering, (T, ST ) > (to, so) if and only if ST∧to > sT∧to , it only involves sample

points that stop before or at to, and the group sizes nj need only be specified for j ≤ j(to). We

can therefore condition on n1, . . . , nj(to) in evaluating the probability in (6.1) when Siegmund’s

ordering is used, and thereby still obtain an exact 1− 2α confidence interval for µ even when it is

not known how the nj are generated for j > j(to); see Lai & Li (2004).

This important property of Siegmund’s ordering is not shared by the likelihood ratio and mean

orderings. Under the last two orderings, the event {(T, ST ) > (to, so)} contains sample points with

T > to when to is smaller than the largest allowable sample size N = n1 + · · · + nk. Therefore,
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unless one imposes assumptions on the (typically unknown) probability mechanism generating the

group sizes after to, one cannot evaluate the probability in (6.1); see Lai & Li (2004).

6.6.2 A hybrid resampling method under Siegmund’s ordering

A fundamental technique we use in our approach is the hybrid resampling method developed by

Chuang & Lai (1998; 2000), which “hybridizes” the essential features of the bootstrap and exact

methods. Following Chuang & Lai (2000), we give a brief description of the exact, bootstrap, and

hybrid resampling methods for constructing confidence intervals.

Exact Method: The family of distributions is known except for the parameter of interest. If

F = {Fθ : θ ∈ Θ} is indexed by a real-valued parameter θ, an exact method can use test inversion

to construct confidence intervals. Specifically, suppose that R(X, θ0) is the test statistic for the

null hypothesis H0 : θ = θ0. Let uα(θ0) be the α-quantile of the distribution of R(X, θ0) under

distribution Fθ0 . An exact 1− 2α confidence set is given by

{θ : uα(θ) < R(X, θ) < u1−α(θ)}.

Bootstrap method: A basic underlying assumption of the exact method is that there are no

nuisance parameters, but this is rarely satisfied in practice. The bootstrap method replaces F ∈ F
by an estimate F̂ and θ by θ̂ = θ(F̂ ), so that uα(θ) and u1−α(θ) can be approximated by u∗α and

u∗1−α, where u
∗
p is the pth quantile of the distribution of R(X∗, θ̂) with X∗ generated from F̂ . The

bootstrap method yields an approximate 1 − 2α confidence set of the form {θ : u∗α < R(X, θ) <

u∗1−α}.
Hybrid resampling method: Whereas the bootstrap method replaces the family F in the ex-

act method by the singleton {F̂}, the hybrid resampling method replaces it by a one-parameter

resampling family {F̂θ, θ ∈ Θ}, where θ is the parameter of interest. Let ûα(θ) be the α-

quantile of the sampling distribution of R(X, θ) under the assumption that X has distribution

F̂θ. The hybrid resampling method yields an approximate 1 − 2α confidence set of the form

{θ : ûα(θ) < R(X, θ} < û1−α(θ)}. It therefore involves two issues, the selection of the root R(X, θ)

and the resampling family {Fθ}. Chuang & Lai (2000) discuss these issues in general settings and

give specific examples in group sequential trials with fixed group sizes and in possibly non-ergodic

autoregressive models and branching processes.

Suppose we remove the assumption of normally distributedXi and only assume that theXi have

mean µ and variance 1. We can estimate G by the empirical distribution ĜT of (Xi−X̄T )/σ̂T (1 ≤
i ≤ T ), where σ̂2T = T−1Σ(Xi−X̄T )

2 and X̄T = ST /T . Let ε1, ε2, . . . be independent with common

distribution ĜT and let Xi(µ) = µ + εi. Let Tµ be the stopping rule applied to X1(µ), X2(µ), . . .

instead of toX1, X2, . . ., and let Sn(µ) = X1(µ)+· · ·+Xn(µ). Approximating pr{(T, ST ) ≥ (to, so)}
in (6.1) by P{(Tµ, STµ(µ)) > (to, so) | ĜT }, an approximate 1 − 2α confidence interval for µ is
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Table 6.2: Coverage errors in % for lower (L) and upper (U) confidence limits for normal mean for
different values of

√
15µ. Methods: HS, hybrid resampling with Siegmund’s ordering; HL, hybrid

resampling with likelihood ratio ordering.

0 0.5 1 2.5 5
Method L U L U L U L U L U

HS 5.15 5.20 5.40 4.80 4.45 4.55 5.35 5.15 5.05 4.60
HL 5.25 5.20 5.40 4.65 5.40 4.55 5.40 5.55 4.90 4.55

µ̂α < µ < µ̂1−α, where µ̂c is the value of µ for which

P{(Tµ, STµ(µ)) > (to, so) | ĜT } = c. (6.3)

The probability in (6.3) can be computed by Monte Carlo. This method for constructing confidence

intervals is called the “hybrid resampling method”, and is shown by Chuang & Lai (1998) to

yield second-order accurate confidence intervals for µ as N →∞ when the group sizes n1, . . . , nk

are nonrandom. Table 6.2 taken from Chuang & Lai (1998) shows that hybrid resampling with

Siegmund’s ordering and likelihood ratio ordering give coverage errors close to the nominal values

for the same normal mean example for which both naive method and bootstrap method give poor

coverage errors.

By conditioning on n1, . . . , nk and noting that the probability in (6.3) only involves n1, . . . , nj(to),

Lai & Li (2004) established the second-order accuracy of µ̂α < µ < µ̂1−α when the ni are random

variables independent of X1, X2, . . . , XN , where N = n1 + · · · + nk is the maximum allowable

sample size, in the following theorem.

Theorem 1 Suppose N/min{n1, . . . , nk} is bounded in probability as N → ∞ and the stopping

rule T is of the form (6.2). Let ψ(t) be the characteristic function of X1 and assume that

lim sup|t|→∞|ψ(t)| < 1 and E|X1 − µ|r ≤ C

for some r > 18 and C > 0. Then the confidence interval µ̂α < µ < µ̂1−α has coverage probability

1− 2α+O(N−1), where µ̂c is the value of µ that satisfies (6.3).

6.7 Some long-standing problems and recent developments

It has been a long-standing problem concerning how confidence intervals can be constructed for

the treatment effect following a group sequential clinical trial, in which the study duration or the

number of subjects is a random variable that depends on the data collected so far, instead of being

fixed in advance.
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6.7.1 Multivariate quantiles and a general ordering scheme

The ordering schemes for (T, ST ) in Section 6.6.1 lead to corresponding bivariate quantiles of

(T, ST ). Under a total ordering ≤ of the sample space of (T, ST ), (t, s) is called a pth quantile if

P{(T, ST ) ≤ (t, s)} = p,

assuming the Xi have a strictly increasing continuous distribution. This is a natural generalization

of the pth quantile of a univariate random variable. For the general setting where a stochastic

process Xu (in which u denotes either discrete or continuous time) is observed up to a stopping

time T , we can likewise define x = (xu, u ≤ t) to be a pth quantile if

P{X ≤ x} ≥ p and P{X ≥ x} ≥ 1− p

after we define a total ordering ≤ for the sample space of X = (Xu, u ≤ T ).
For applications to confidence intervals of a real parameter θ, the choice of the total ordering

should be targeted towards the objective of interval estimation. Let Ur, r ≤ T , be real-valued

statistics based on the observed process Xs, s ≤ T . Lai & Li (2004) proposed the following total

ordering on the sample space of X via (Ur, r ≤ T ):

X ≥ x if and only if UT∧t ≥ uT∧t, (6.4)

where (ur, r ≤ t) is defined from x = (xr, r ≤ t) the same as (Ur, r ≤ T ) is defined from X.

In particular, supposeXi are independent normal. Let Un be the sample mean X̄n ofX1, . . . , Xn.

In this case, (6.4) yields the following ordering:

(T, ST ) ≥ (t, st) if and only if X̄T∧t ≥ sT∧t/(T ∧ t). (6.5)

Note that (6.5) is equivalent to Sτ∧t ≥ sτ∧t, which is the same as Siegmund’s ordering for stopping

rules T of the type (6.2). Thus (6.4) can be considered as a generalization of Siegmund’s ordering;

moreover, it relates Siegmund’s ordering to the intuitively appealing ordering via sample means

advocated by Emerson & Fleming (1990).

Like Siegmund’s ordering, (6.4) has the attractive feature that the probability mechanism

generating Xt only needs to be specified up to the stopping time T to define the quantile x.

Lai & Li (2004) recently applied this ordering to construct confidence intervals for the treatment

effect following group sequential trials in the case of univariate covariates.

Another long-standing problem is the construction of confidence intervals for median survival

as a function of the covariates in the Cox model. Burr & Doss (1993; 1994) proposed a bootstrap

method, which is reviewed in Section 7.3.
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6.8 Outline of remaining chapters

Monte Carlo simulations are generally used in the design stage to compute power and sample size in

clinical trials. The classic simulation program of Halpern and Brown (1987) is reviewed in Section

7.1. A clear disadvantage to Monte Carlo simulations is that they are computationally intensive.

Importance resampling techniques are developed in Section 7.2 to compute tail probabilities, which

can be incorporated into the simulation program of Halpern and Brown (1987) to reduce the

computing time substantially.

Burr & Doss’s (1993; 1994) method for constructing confidence bands of median survival in

the Cox model is reviewed in Section 7.3. While their method involves estimating a probability

density function in the denominator that can be quite unstable, a stable test-based method for

constructing confidence intervals for median survival is developed in Section 7.2.4 via bootstrap.

Simulation studies show that the confidence intervals thus constructed have coverage probabilities

close to the nominal values.

In sequentially designed experiments the sample size is not fixed in advance but is a random

variable that depends on the data collected so far. This creates bias in parameter estimation

and introduces substantial difficulties in constructing valid confidence intervals. We explore in

Section 8.2 the Monte Carlo computation of hybrid resampling confidence intervals following time-

sequential tests in the Cox model. Confidence intervals for the treatment effect following group

sequential trials for multivariate covariates using ordering with partial likelihoods are developed

in Section 8.3. This partial likelihood based method is applied to the β-blocker heart attack

trial and some other hypothetical clinical trial examples in Section 8.4, and it yields accurate

coverage probabilities within 1% of the nominal values. In Section 8.5, by combining the two test-

based methods for constructing confidence intervals for treatment effect and median survival, we

construct test-based confidence regions for treatment effect as the primary endpoint and median

survival as the secondary endpoint.
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Monte Carlo Methods for Clinical

Trials

Monte Carlo simulations are generally used in the design stage to compute power and sample size

in clinical trials. A clear disadvantage to Monte Carlo simulations is that they are computationally

intensive. Importance resampling techniques are developed to compute tail probabilities, which

can be incorporated into the classic simulation program of Halpern and Brown (1987) to reduce

the computing time substantially.

Burr & Doss’s (1993; 1994) method for constructing confidence bands of median survival in

the Cox model needs to estimate a probability density function in the denominator, which can

be an unstable process. Test-based confidence intervals for median survival are constructed via

bootstrap. Simulation studies show that the confidence intervals thus constructed have coverage

probabilities close to the nominal values.

7.1 The simulation program of Halpern and Brown (1987)

Monte Carlo simulations are generally used in the design stage to compute power and sample size

of clinical trials. Halpern and Brown (1987) developed a simulation program for the design of fixed-

duration clinical trials using Monte Carlo simulations. The program allows arbitrary specifications

of the null and alternative survival distributions and either the Gehan test or the logrank test of

the null hypothesis. The goal of the design is to find the combination of accrual and follow-up

times most attractive given the Type I error and the power. A clear disadvantage of Monte Carlo

simulations is that they are computationally intensive.

53
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7.2 Importance resampling techniques

Here we develop importance resampling techniques to compute tail probabilities, which are used

to reduce substantially the number of simulations required to compute power and sample size in

the design of clinical trials.

7.2.1 Importance resampling concept

Following Hall (1992), we give a brief description of the concept of importance resampling. The

method of importance resampling is a standard technique for improving the efficiency of Monte

Carlo approximations; see Hammersley and Handscomb (1964). It was first suggested in the

context of bootstrap resampling by Johns (1988) and Davison (1988).

Let χ = {X1, . . . , Xn} denote the sample from which a resample will be drawn. Under impor-

tance resampling, each Xi is assigned a probability pi of being selected on any given draw, where

Σpi = 1. Sampling is conducted with replacement, so that the chance of drawing a resample of

size n in which Xi appears just mi times (1 ≤ i ≤ n) is given by a multinomial formula,

n!

m1! . . .mn!

n∏

i=1

pmi

i .

Of course, Σmi = n. Taking pi = n−1 for each i, we obtain the uniform resampling method. The

name “importance” derives from the fact that resampling is designed to take place in a manner

that ascribes more importance to some sample values than to others. The aim is to select the pi’s

so that the value assumed by a bootstrap statistic is relatively likely to be close to the quantity

whose value we wish to approximate.

There are two parts to the method of importance resampling: first, a technique for passing

from a sequence of importance samples to an approximation of a quantity that would normally

be defined in terms of a uniform resample; and second, a method for computing the appropriate

values of pi’s so as to minimize the error, or variability, of the approximation. We know that there

are N =
(
2n−1
n

)
different possible resamples. Let these be χ1, . . . , χN , indexed in any order, and

let mji denote the number of times Xi appears in χj . The probability of obtaining χj after n

resampling operations, under uniform resampling or importance resampling, is

πj =
n!

mj1! . . .mjn!
n−n

or

π′j =
n!

mj1! . . .mjn!

n∏

i=1

p
mji

i = πj

n∏

i=1

(npi)
mji ,

respectively. Let U be the statistic of interest, a function of the original sample. We wish to
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construct a Monte Carlo approximation to the bootstrap estimate û of the mean of U , u = E(U).

Let χ∗ denote a resample drawn by uniform resampling, and write U ∗ for the value of U computed

from χ∗. Of course, χ∗ will be one of the χj ’s. Write uj for the value of U∗ when χ∗ = χj . In this

notation,

û = E(U∗ | χ) =
N∑

j=1

ujπj =

N∑

j=1

ujπ
′
j

n∏

i=1

(npi)
−mji .

Let χ+ denote a resample drawn by importance resampling, write U+ for the value of U computed

from χ+, and let M+
i be the number of times Xi appears in χ

+. Then,

û = E{U+
n∏

i=1

(npi)
−M+

i | χ}.

Therefore, it is possible to approximate û by importance resampling. In particular, if χ+b , 1 ≤ b ≤ B
denote independent resamples drawn by importance resampling, and if U+b equals the value of U

computed for χ+b , then the importance resampling approximant of û is given by

û+B = B−1
B∑

b=1

U+b

n∏

i=1

(npi)
−M+

bi .

This approximation is unbiased, in the sense that E(û+B | χ) = û. Note too that conditional on

χ, û+B → û with probability 1 as B → ∞. If we take each pi = n−1 then û+B is just the usual

uniform resampling approximant û∗B . We wish to choose p1, . . . , pn to optimize the performance

of û+B . Since û
+
B is unbiased, the performance of û+B may be described in terms of variance:

var(û+B | χ) = B−1var{U+b
n∏

i=1

(npi)
−M+

bi | χ}

= B−1(v̂ − û2),

where

v̂ = v̂(p1, . . . , pn) = E[{U+b
n∏

i=1

(npi)
−M+

bi}2 | χ]

=

N∑

j=1

π′ju
2
j

n∏

i=1

(npi)
−2mji

=

N∑

j=1

πju
2
j

n∏

i=1

(npi)
−mji

= E{U∗2
n∏

i=1

(npi)
−M∗

i | χ}.
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On the last line, M∗
i denotes the number of times Xi appears in the uniform resample χ∗. Ideally

we would like to choose p1, . . . , pn so as to minimize v̂(p1, . . . , pn) subject to
∑
pi = 1.

In the case of estimating a distribution function there can be a significant advantage in choosing

nonidentical pi’s, with the amount of improvement depending on the argument of the distribution

function.

7.2.2 Two-sample problem with complete observations

For a two-sample problem, denote the two samples by χ1 = {X1, . . . , Xm} and χ2 = {Y1, . . . , Yn}.
The Mann-Whitney form of the Wilcoxon statistics is given by

U(Xi, Yj) = Uij =





+1 if Xi > Yj ,

0 if Xi = Yj ,

−1 if Xi < Yj ,

U =

m∑

i=1

n∑

j=1

Uij .

In this case, we fix the first sample and use importance resampling on the second sample:

v̂ = v̂(p1, · · · , pn) = E{I(U∗ ≤ x)
n∏

i=1

(npi)
−M∗

i | χ2}

= E{I
( n∑

i=1

M∗
i ui ≤ x

) n∏

i=1

(npi)
−M∗

i | χ2}

= E{I
( n∑

i=1

M∗
i (ui − ū) ≤ x− nū

) n∏

i=1

(npi)
−M∗

i | χ2}

= E{I
( n∑

i=1

M∗
i

ui − ū√∑
(ui − ū)2

≤ x− nū√∑
(ui − ū)2

) n∏

i=1

(npi)
−M∗

i | χ2}

= E{I
( n∑

i=1

M∗
i ũi ≤ x̃

) n∏

i=1

(npi)
−M∗

i | χ2}

∼ E{I(N1 ≤ x̃)eN2 | χ2},

where (N1, N2) is bivariate normal with means (0, 12s
2), variances (1, s2) and covariance

∑
ũiδi.

Here

uj =

m∑

i=1

Uij , δi = − log(npi), s2 =
∑

δ2i ,

ū =

∑n
i=1 ui
n

, x̃ =
x− nū√∑
(ui − ū)2

, ũi =
ui − ū√∑
(ui − ū)2

.
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Table 7.1: p̂± s.e. for 2-sample Wilcoxon statistic, m = 30, n = 25, generated from an exponential
distribution with a median of 3.

Φ(x̃) A(x) uniform importance
0.005 2.6561 0.0044 ± 0.0046 0.0045 ± 0.0006
0.01 2.5704 0.0096 ± 0.0078 0.0110 ± 0.0012
0.025 2.1787 0.0279 ± 0.0132 0.0279 ± 0.0030
0.05 1.8940 0.0472 ± 0.0139 0.0464 ± 0.0040
0.1 1.5751 0.1023 ± 0.0214 0.0994 ± 0.0078
0.5 0.6120 0.5084 ± 0.0382 0.5038 ± 0.0278
0.95 0.0602 0.9752 ± 0.0110 0.9753 ± 0.0105

We now have

E{I(N1 ≤ x̃)eN2 | χ2} = Φ(x̃− sρ)es2 ,

where ρ =
∑
uiδi/

√∑
u2js.

The values of s and ρ that minimize Φ(x̃ − sρ)es2 are (s, ρ) = ±(A, 1), where A = A(x) > 0

is chosen to minimize Φ(x̃ − A)eA
2

. Taking δi = Aũi + C, where C is chosen to ensure that
∑
pi = n−1

∑
e−δi = 1, we see that s → A and ρ → 1. Therefore, the minimum asymptotic

variance of the importance resampling approximant occurs when

pi =
e−Aũi

∑n
j=1 e

−Aũj
, 1 ≤ i ≤ n.

Table 7.1 shows that this importance resampling approach is considerably more effective for

tail probabilities. Uniform resampling fails when the probability is too small, while importance

resampling can still give an accurate estimate. When we have high probabilities and A(x) is close to

0, there is not much difference between importance resampling and uniform resampling; therefore

not much variance reduction can be achieved. If we wish to approximate a high probability

P (U∗ ≤ x | χ), it is advisable to work throughout with −U ∗ rather than U∗ and use importance

resampling to calculate P (−U∗ ≤ −x | χ) = 1− P (U∗ ≤ x | χ).
The Gehan statistic is another widely used statistic. Ordering the combined sample, defining

Z(1) < · · · < Z(m+n),

and letting R1i = rank of Xi, we have R1 =
∑m

i=1R1i. Since

R1 =
m(m+ n+ 1)

2
+

1

2
U,

the same approach can be applied to the Gehan statistic.
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In general, this approach may be applied to any statistic whose value computed from a uniform

resample can be written as a linear combination of multinomial random variables M ∗
i so that

normal approximation theory can be applied. The rank statistics reviewed in Section 6.1 differ

only by weights; therefore their values computed from a uniform resample can all be written as a

linear combination of multinomial random variablesM ∗
i in the same way as the Gehan statistic. As

a result, they yield the same exponential tilting. Halpern and Brown’s (1987) simulation program

allows the user to choose either the Gehan or the logrank statistic, which are two examples of this

class of rank statistics.

7.2.3 Two-sample problem with censored data

For a two-sample problem with censored data, let

χ1 = {(X1, δ1), . . . , (Xm, δm)}, χ2 = {(Y1, γ1), . . . , (Yn, γn)}.

Gehan defines

U(Xi, Yj) = Uij =





+1 if (Xi > Yj , γj = 1)

or (Xi = Yj , δi = 0, γj = 1),

0 otherwise,

−1 if (Xi < Yj , δi = 1)

or (Xi = Yj , δi = 1, γi = 0),

U =

m∑

i=1

n∑

j=1

Uij ,

where Xi = Xo
i ∧Wi, X

o
i is the variable of interest, Wi is some independent censoring variable,

and δi = 1 or 0 as Xi = Xo
i or Wi.

One way of doing bootstrap is to obtain Xo∗
i ∼ Ŝo and W ∗

i ∼ R̂ independently, where Ŝo and

R̂ are the Kaplan-Meier estimators of the distribution functions of Xo
i andWi, respectively. Define

X∗i = Xo∗
i ∧W ∗

i and δ∗i = 1 or 0 as X∗i = Xo∗
i or W ∗

i .

Efron (1981) showed that the procedure is the same as resampling the pairs uniformly. As a

result, the approach for uncensored data can be applied to censored data directly.

7.2.4 Treating censoring as ancillary

Alternatively, we can treat the censoring variable δi as ancillary. Let Ŝ and Ĉ be the Kaplan-

Meier estimators of the survival distribution and the censoring distribution of the pooled data,

respectively. If Xi is uncensored, then Wi is censored by Xo
i , and we generate W ∗

i ≥ Xi from R̂ by

rejection sampling and then generate X∗i ≤ W ∗
i from Ŝ by rejection sampling. If Xi is censored,

there is no need to generate X∗i . The above simulation method preserves the censoring indicator.
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7.2.5 More general statistics

LetX1, . . . , Xn be i.i.d. p-dimensional random vectors. For any symmetric statistic S = S(X1, . . . , Xn),

we have the following i.i.d. approximation to S (Lai and Wang, 1993):

S = nµ+

n∑

i=1

β(Xi) +Rn,

where β is a nonrandom Borel function that is invariant under permutation of the arguments, and

Rn is of smaller order of magnitude. Thus,

S ≈ nµ+

n∑

i=1

β(Xi)

and the weights for these statistics are

pi =
e−Aβ(Xi)

∑n
j=1 e

−Aβ(Xj)
.

Censoring is also addressed by this approximation because the censoring random variable can be

incorporated into the Xi, i.e., Xi = (Yi, δi), where Yi is the observed lifetime.

7.2.6 Improvements of Halpern & Brown’s simulation program

The importance resampling techniques can be incorporated in the simulation program of Halpern

and Brown (1987) to reduce the computational cost substantially for the design of fixed-duration

clinical trials. When computing the power of a test, Halpern & Brown’s program needs to run a

large number of simulations to make sure that the variance of the Monte Carlo estimate of the

power is small. For each simulation a sample of survival time needs to be generated from the

survival distributions. By incorporating the importance resampling techniques in the program,

we only need to generate one sample and then do importance resampling on top of it. Since the

importance resampling techniques reduce the variance of the Monte Carlo estimate of the power

greatly, far fewer simulations are needed and thus the computation time is greatly reduced.

7.3 The Burr-Doss confidence bands of median survival

Burr & Doss (1993; 1994) constructed confidence bands for median survival as a function of the

covariates in the Cox model.

Let ξp be the pth quantile of the distribution of the life length of an individual with covariate

x in the Cox model. Burr & Doss introduced an estimator ξ̃p of ξp and developed confidence

bands. First, they showed that as n → ∞, where n is the number of individuals in the study,
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√
n(ξ̂p(x) − ξp(x)) converges weakly to a Gaussian process W (x) with a complicated covariance

structure. They then estimated this covariance structure from the data, and simulated many

Gaussian processes with this estimated covariance structure. The critical constants required for

the construction of the confidence bands are obtained from the simulated processes.

When estimating the covariance structure of W (x), the method needs to estimate a probability

density function in the denominator. This process can be quite unstable.

7.4 Improved test-based bootstrap confidence intervals

In this section we propose a test-based stable method to construct confidence intervals for median

survival as a function of the covariates in the Cox model using bootstrap.

For survival data, Brookmeyer and Crowley (1982) proposed the test-based interval estimator

{
t : |Ŝ(t)− 1

2
| ≤ ξ̂S(t)z1−α/2

}

for the median survival time, where Ŝt is the Kaplan-Meier estimator of the survival function,

ξ̂2S(t) is the Greenwood’s estimator for the variance of Ŝ(t), and z1−α/2 is the (1−α/2)th quantile

of standard normal.

We can generalize this idea to construct confidence intervals for median survival as a function

of the covariates in the Cox model.

A 1− 2α confidence region is the set of all parameters not rejected by

{
t : cα(t) ≤

Ŝz(t)− 1
2

ξ̂z(t)
≤ c1−α(t)

}
,

where z is the covariate, Ŝz(t) is an estimate of Sz(t), the survival function with covariate z, ξ̂2z(t) is

an estimate of ξ2z(t), the variance of Sz(t), and cp is the pth quantile of the distribution of
Ŝz(t)−

1
2

ξ̂z(t)
.

For every t, instead of using normal quantiles, we use ĉα and ĉ1−α, the αth and (1 − α)th

bootstrap quantiles of
Ŝ∗z (t)− Ŝz(t)

ξ̂∗z (t)

to estimate cα and c1−α. Here, Ŝ∗z (t) is the value of Ŝz(t) computed from a bootstrap sample.

Let Λ̂(t) be Breslow’s (1974) estimator of the cumulative hazard function. The estimate of the

baseline survival function is given by Ŝ0(t) = exp(−Λ̂(t)) and the estimate of the survival function

with covariate z is given by Ŝz(t) = Ŝ0(t)
exp(β̂z), where β̂ maximizes the partial likelihood at time

t. Under mild regularity conditions, Ŝz(t) has an asymptotic normal distribution with mean Sz(t)

and a variance that can be estimated by ξ̂2z(t); see Klein & Moeschberger (2003).
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Table 7.2: Example 7.1: Coverage errors in % for lower (L) and upper (U) confidence limits and
coverage probabilities (P) of confidence intervals for median survival of the control group and the
treatment group.

β = 0 β = log 23 β = log 12
L U P L U P L U P

Control 4.75 5.95 89.30 4.35 4.70 90.95 4.95 5.80 89.25
Treatment 4.95 5.90 89.15 4.55 6.10 89.35 4.95 5.95 89.10

We now have

ξ̂2z(t) = Ŝ2z (t)[Q1(t) +Q2(t; z)],

where

Q1(t) =
n∑

i=1

δi(t)

W (0)(Yi(t), β̂)2
,

Q2(t; z) =

(
n∑

i=1

[
W (1)(Yi(t), β̂)

W (0)(Yi(t), β̂)
− z
][

δi(t)

W (0)(Yi(t), β̂)

])2
/V̂ (β̂),

V̂ (β̂) = δi(t)




n∑

i=1

W (2)(Yi(t), β̂)

W (0)(Yi(t), β̂)
−

n∑

i=1

(
W (1)(Yi(t), β̂)

W (0)(Yi(t), β̂)

)2
 .

Here, W (k)(Yi(t), β̂) =
∑

j∈Ri(t)
zkj exp(β̂zj) for k = 0, 1, 2. It is straightforward to apply this

method to construct confidence bands instead of confidence intervals.

Burr & Doss (1993; 1994) did not do coverage studies with their method, which makes it hard

to compare our method with theirs numerically. We demonstrate the accuracy of our method

through the following example.

Example 7.1. Consider a trial in which n = 100 patients enter the trial uniformly during a

3-year recruitment period and are randomized to treatment or control with probability 1
2 . The

trial is designed to last for 5.5 years.

Table 7.2 reports a simulation study of the coverage errors of upper and lower confidence limits

for median survival of treatment and control, with nominal error α = 0.05. It also gives the coverage

probabilities of the two-sided confidence intervals with 90% nominal coverage probability. This

simulation study assumes that the lifetimes of the control group have an exponential distribution

with mean 3 years, and that those of the treatment group have an exponential distribution with

mean 3e−β years, with eβ = 1, 23 ,
1
2 . Table 7.2 shows that the method yields quite accurate

confidence intervals, with all probabilities within 1% of their nominal values.
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7.4.1 Computation of the confidence limits

We now describe an algorithm, based on the method of successive secant approximations, to find

the limits of the confidence interval. To find the upper limit, we let

f(t) =
Ŝz(t)− 1

2

ξ̂z(t)
− ĉα(t)

and solve the equation f(t) = 0. First we find a1 < b1 such that f(a1) > 0 and f(b1) < 0. Let f1(t)

be linear in t ∈ [a1, b1] with f1(a1) = f(a1) and f1(b1) = f(b1), and let t1 be the root of f1(t) = 0.

If f(t1) > 0, set a2 = t1 and b2 = b1. If f(t1) < 0, set b2 = t1 and a2 = a1. We can proceed

inductively in this manner, letting fk(t) linearly interpolate f(ak) and f(bk) for ak ≤ t ≤ bk, and

letting tk be the root of fk(t) = 0. This procedure terminates if tk differs little from tk−1 or if k

reaches some upper bound, and the terminal value of tk is taken to be the upper limit. The same

induction process can be applied to

f(t) =
Ŝz(t)− 1

2

ξ̂z(t)
− ĉ1−α(t)

to find the lower limit of the confidence interval. Chuang & Lai (2000) used a similar approach to

compute limits of confidence intervals.



Chapter 8

Confidence Intervals in

Time-Sequential Trials

8.1 Introduction and background

8.1.1 Time-sequential clinical trials

Suppose that n patients enter a trial serially. Let Ti ≥ 0 denote the entry time and Yi > 0 the

survival time after entry of the ith patient. Interim analyses of the trial are scheduled at calendar

times tj (1 ≤ j ≤ k), 0 < t1 < · · · < tk, where tk = t∗ is the pre-scheduled duration of the trial.

The data at calendar time t consist of (Yi(t), δi(t), zi), i = 1, . . . , n, where

Yi(t) = min{Yi, ξi, (t− Ti)+}, δi(t) = I{Yi(t)=Yi},

zi is the covariate, and ξi is the withdrawal time of the ith patient. This is illustrated schematically

in Figure 8.1.

Since a time-sequential trial is typically monitored at prescribed calendar times, there are two

time-scales in the problem. One is calendar time, while the other is “information time”, which is

related to how much information has been accrued at the calendar time of the interim analysis.

These two time-scales create substantial difficulties in the analysis of group sequential clinical trials

with time-to-event endpoints because there is no simple relationship between them. As a result,

one does not know at interim analysis the information time that corresponds to the calendar time

when the trial ends.

63
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Figure 8.1: Data accrual in a time-sequential design. Patient 1 entered the trial 40 days after the
trial began and died 72 days after the 2nd interim analysis; patient 2 entered the trial 15 days after
the 1st interim analysis and was still alive at the end of the trial; patient 6 entered the trial 12
days after the trial began and was lost to follow-up 28 days after the 5th interim analysis.

8.1.2 Review of Lai & Li (2004)

We review in this section the hybrid resampling method Lai & Li (2004) proposed to overcome the

difficulties due to the two different time-scales in constructing valid confidence intervals, following

a time-sequential test, for the regression parameter in a Cox model with univariate covariates.

Assume that Ti is independent of (Yi, ξi, zi) and ξi is independent of (zi, Yi). Also assume that

the hazard function of Yi is given by Cox’s (1972) proportional hazards model

P{y ≤ Yi ≤ y + dy | Yi ≥ y, zi} = eβzidΛ(y),

where β is the regression parameter and Λ is the baseline cumulative hazard function. To test

the null hypothesis H0 : β = 0, we can differentiate the log partial likelihood for β at β = 0 and

calendar time t to get Cox’s score statistic,

Sn(t) =

n∑

i=1

δi(t)

{
zi −

(
∑

j∈Ri(t)

zj

)/
|Ri(t)|

}
, (8.1)
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where Ri(t) = {j : Yj(t) ≥ Yi(t)} and |Ri(t)| denotes the size of Ri(t). The observed Fisher

information at calendar time t is

Vn(t) =

n∑

i=1

δi(t)

[
∑

j∈Ri(t)

z2j /|Ri(t)| −
{

∑

j∈Ri(t)

zj/|Ri(t)|
}2]

, (8.2)

which provides an estimate of the null variance of Sn(t). Asymptotic theory suggests use of a

repeated significance test that rejects H0 at the jth interim analysis (1 ≤ j ≤ k) if

Sn(tj)/V
1/2
n (tj) ≥ bj or Sn(tj)/V

1/2
n (tj) ≤ aj , (8.3)

and stops the trial as soon as (8.3) occurs, where aj < 0 < bj .

Let τ be the stopping time of the trial. Denote Sn(t) by S(t) and Vn(t) by V (t) for notation

simplicity. A standard approach in the literature is to use the space-time Brownian motion approx-

imation of (S(t), V (t)) (see Jones & Whitehead (1979) and Siegmund (1985)), to which Siegmund’s

ordering can be applied because stopping rule (8.3) has the form (6.2) under this approximation.

Letting Ψt = S(t)/V (t), Lai & Li (2004) proposed a general ordering to construct confidence

intervals for treatment effect assuming univariate covariates, which orders the sample space of

(τ,Ψτ ) by

(τ1,Ψ
(1)
τ1 ) ≤ (τ2,Ψ

(2)
τ2 ) if and only if Ψ

(1)
τ1∧τ2 ≤ Ψ

(2)
τ1∧τ2 .

Similar to the normal mean case, let p(β) = prβ{(τ,Ψτ ) > (τ,Ψτ )obs}, where (τ,Ψτ )obs denotes

the observed value of (τ,Ψτ ). Then {β : α < p(β) < 1− α} is a 1− 2α confidence set for β. The

probability p(β) has to be evaluated by simulation. Lai & Li (2004) replaced G by Ĝ = 1− e−Λ̂,
where Λ̂ is Breslow’s (1974) estimator of the cumulative hazard function from all the data at the

end of the trial:

Λ̂(s) =
∑

i:Yi(τ)≤s

{
δi(τ)

/(
∑

j∈Ri(τ)

eβ̂zj

)}
,

in which β̂ is Cox’s (1972) estimate of β that maximizes the partial likelihood at time τ . They

also replaced C by the Kaplan-Meier estimator Ĉ. Thus, p(β) was replaced by

p̂(β) = P{(τ (β),Ψ(β)
τ (β)) > (τ,Ψτ )obs}, (8.4)

where the superscript (β) means that the observations are generated with regression parameter β.

Usually p̂(β) is monotone in β, so the confidence set {β : α < p̂(β) < 1 − α} with approximate

coverage probability 1− 2α can be expressed as an interval, whose endpoints β < β̄ are defined by

p̂(β) = α, p̂(β̄) = 1 − α. The following example and Table 8.1 taken from Lai & Li (2004) show

that their hybrid resampling method gives coverage probabilities close to the nominal values while

the Brownian motion approximation does not give accurate coverage probabilities.
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Table 8.1: Example 8.1: Coverage errors in % for lower (L) and upper (U) confidence limits
and coverage probabilities (P) of confidence intervals for β. Methods: H, hybrid resampling; S,
Siegmund; N, naive normal.

β = 0 β = log 23 β = log 12
Method L U P L U P L U P

H 4.45 4.55 91.00 5.25 5.35 89.40 5.05 4.05 90.90
S 4.45 5.05 90.50 4.65 0.35 95.00 5.75 0.00 94.25
N 4.15 5.05 90.80 5.80 7.75 86.45 3.75 3.15 93.10

Example 8.1. Consider a time-sequential trial in which n = 350 patients enter the trial uniformly

during a 3-year recruitment period and are randomized to treatment or control with probability
1
2 . The trial is designed to last for a maximum of t∗ = 5.5 years, with interim analyses after 1

year and every 6 months thereafter. The logrank statistic is used to test H0 : β = 0 at each data

monitoring time tj (j = 1, . . . , 10) and the test is stopped at the smallest tj such that

Vn(tj) ≥ 55, or Vn(tj) ≥ 11 and |Sn(tj)|/V
1
2
n (tj) ≥ 2.85, (8.5)

or at t10(= t∗) when (8.5) does not occur, where Vn(t) is defined by (8.2). If the test stops with

Vn(tj) ≥ 55 or at t∗, reject H0 if |Sn(t∗)|/V
1
2
n (t∗) ≥ 2.05. Also reject H0 if the second event in

(8.5) occurs for some j < 10. The lifetimes of the control group have an exponential distribution

with mean 3 years and those of the treatment group have an exponential distribution with mean

3e−β years, with eβ = 1, 23 ,
1
2 .

8.1.3 Extensions to multivariate covariates and multiple endpoints

Lai & Li (2004) assumed univariate covariates when constructing confidence intervals for the treat-

ment effect. The theory for constructing confidence intervals for the treatment effect given mul-

tivariate covariates is still lacking. In Section 8.3 we develop a method to construct confidence

intervals for the treatment effect given general covariates using Wilk’s statistic and ordering with

partial likelihoods. Section 8.4 then generalizes our method to construct confidence regions for

multiple endpoints. Specifically, confidence regions for the treatment effect (primary endpoint)

and median survival (secondary endpoint) are constructed. As noted by Lai & Li (2004), their

method is computationally intensive, and it takes about 8 hours of 3.2GHz Pentium 4 CPU time to

generate a table like Table 8.1. In Section 8.2 we develop importance resampling techniques to re-

duce substantially the computing time for both Lai & Li’s (2004) method and our likelihood-based

method.
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8.2 Monte Carlo computation of confidence intervals

8.2.1 Importance resampling

Lai & Li (2004) used a straightforward Monte Carlo implementation to compute p̂(β) defined in

(8.4) as follows. The observed entry times Ti and covariates zi are taken as fixed constants in p̂(β),

for which only the survival times Y ∗i and censoring times ξ∗i need to be generated. Since Ĝ (or

Ĉ) can only be estimated up to the longest observed survival (or censoring) time, denoted by t′

(or t′′), only Y ∗i ∧ t′ and ξ∗i ∧ t′′ can be generated. However, this suffices for the time-sequential

score statistic (8.1) and its estimated null variance (8.2) for t ≤ τ . To generate Y ∗i ∧ t′, note that

if U is uniformly distributed on [0, 1], then (1 − Ĝ)−1(max{U exp(−βzi), 1 − Ĝ(t′)}) has the same

distribution as Y ∗i ∧ t′.

The above Monte Carlo simulation procedure is computationally intensive. The reason is that

a large number of simulations are needed to compute p̂(β) for each β, and a sample of survival

time needs to be generated for each simulation. We propose an importance sampling technique

to reduce substantially the variance of the Monte Carlo estimate of the probability and thus the

number of simulations required.

Specifically, when computing

p̂(β) = pr{(τ (β),Ψ(β)
τ (β)) > (τ,Ψτ )obs},

the Monte Carlo method computes the average of N1 realizations of

I
(
(τ (β),Ψ

(β)

τ (β)) > (τ,Ψτ )obs
)
,

where I(·) is the indicator function. Our importance sampling method computes the average of

N2 realizations of

I
(
(τ (β̂),Ψ

(β̂)

τ (β̂)
) > (τ,Ψτ )obs

)L(β)
L(β̂)

,

where β̂ is Cox’s (1972) estimate of β that maximizes the partial likelihood at time τ and L(·) is
the full likelihood at time τ ; see Siegmund (1985, p. 122). This importance sampling technique

reduces the variance of the Monte Carlo estimate of the probability. As a result, N2 can be much

smaller than N1 and computing time is greatly reduced. Another important advantage to the

importance sampling method is that it is a one-pass algorithm. Instead of generating data for each

β in the Monte Carlo case, we only need to generate data once under β̂. Since every β is tilted to

β̂, we can do resampling from the data set generated under β̂ for each β, and it greatly reduces

the computing time required. β̂ is a good choice for tilting because Pr{(τ (β̂),Ψ(β̂)
τ (β̂)

) > (τ,Ψτ )obs}
is around 1

2 .
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8.2.2 Treating censoring indicators as ancillary

When the control group (zi = 0) and the treatment group (zi = 1) have different censoring

distributions C1 and C2, a straightforward extension is to use separate Kaplan-Meier estimators

Ĉ1 and Ĉ2. An alternative approach is to treat the censoring variable ξi as ancillary like zi, thereby

allowing possible dependence between zi and ξi. For Monte Carlo simulation of p̂(β) in (8.4), let Ĝi

denote the distribution whose cumulative hazard function is eβziΛ̂, and Ĉ denote the Kaplan-Meier

estimator of the combined data. If Yi is uncensored, then ξi is censored by Yi, and we generate

ξ∗i ≥ Yi from Ĉ by rejection sampling and then generate Y ∗i ≤ ξ∗i from Ĝi by rejection sampling.

If Yi is censored, there is no need to generate Y ∗i . The above simulation method preserves the

censoring indicators.

8.2.3 Computation of the confidence limits

We can use the method of successive secant approximations to find the limits of the confidence

intervals. To find the lower limit, we define

f(β) = p̂(β)− α

and solve the equation f(β) = 0 as in section 7.4.1. The same induction process can be applied to

f(β) = p̂(β)− (1− α)

to find the upper limit of the confidence interval. Chuang & Lai (2000) used a similar approach

to compute limits of confidence intervals.

8.3 Multivariate covariates and ordering with partial likeli-

hoods

Methods for constructing confidence intervals for the treatment effect given univariate covariates

have been developed by Lai & Li (2004). The theory for constructing confidence intervals for

the treatment effect given general covariates is still lacking. Whereas it is hard to generalize the

methodology from the univariate covariates case to the general covariates case when Cox’s score

statistic is used, we use Wilks statistic and ordering with partial likelihoods to construct confidence

intervals for the treatment effect given general covariates.

For univariate covariates, the log partial likelihood at calendar time t is

lt(β) =

n∑

i=1

δi(t)

{
βzi − log

(
∑

j∈Ri(t)

eβzj

)}
.
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Letting Ψt =

√
lt(β̂)− lt(β), where β̂ is Cox’s (1972) estimate of β that maximizes the partial

likelihood at time t, we order the sample space of (τ,Ψτ ) by

(τ1,Ψ
(1)
τ1 ) ≤ (τ2,Ψ

(2)
τ2 ) if and only if Ψ

(1)
τ1∧τ2 ≤ Ψ

(2)
τ1∧τ2 .

In the normal mean case,

Ψt =
St − µt√

t
,

which is equivalent to Siegmund’s ordering because

Ψ
(1)
τ1∧τ2 ≤ Ψ

(2)
τ1∧τ2 ⇔ S

(1)
τ1∧τ2 ≤ S

(2)
τ1∧τ2 .

In the case of general covariates, suppose β = (β1, . . . , βK)T and β1 corresponds to the treat-

ment effect, which is the primary endpoint. Defining

lt(β1) = sup
β2,...,βK

n∑

i=1

δi(t)

{
βT zi − log

(
∑

j∈Ri(t)

eβ
T zj

)}

and letting Ψt =

√
lt(β̂1)− lt(β1), we can use the same ordering with partial likelihoods. The im-

portance sampling method developed in Section 8.2.1, the resampling method developed in Section

8.2.2 (which keeps the censoring variables as ancillary), and the method to compute endpoints of

confidence intervals developed in Section 8.2.3, can all be incorporated to speed up the computa-

tions. By doing Edgeworth expansions, we can show that our method is first-order accurate, which

is as good as the method proposed by Lai & Li (2004) but with the advantage that our method

can be generalized to the multivariate covariates case naturally.

The following hypothetical clinical trial example shows that our likelihood-based method gives

accurate coverage probabilities.

Example 8.2. Consider a time-sequential trial in which n = 350 subjects enter the trial uniformly

during a 3-year recruitment period and are randomized to treatment or control with probability
1
2 . The trial is designed to last for a maximum of t∗ = 5.5 years, with interim analyses after 1

year and every 6 months thereafter. The Wilks statistic is used to test H0 : β = 0 at each data

monitoring time tj (j = 1, . . . , 10) and the test is stopped at the smallest tj such that

Vn(tj) ≥ 55, or Vn(tj) ≥ 11 and

√
lt ˆ(β)− lt(0) ≥ 2.85, (8.6)

or at t10(= t∗) when (8.6) does not occur, where Vn(t) is defined by (8.2). If the test stops with

Vn(tj) ≥ 55 or at t∗, reject H0 if

√
lt∗ ˆ(β)− lt∗(0) ≥ 2.05. Also reject H0 if the second event in

(8.6) occurs for some j < 10. For the control group, each year there is a 7% chance of being lost
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Table 8.2: Example 8.2: Coverage errors in % for lower (L) and upper (U) confidence limits and
coverage probabilities (P) of confidence intervals for β using Wilk’s statistic with ordering with

partial likelihoods. Methods: H, hybrid resampling with different Kaplan-Meier estimators Ĉ1 and
Ĉ2; Ha, bybrid resampling treating ξi as ancillary.

β = 0 β = log 23 β = log 12
Method L U P L U P L U P

H 4.85 4.65 90.50 5.10 5.70 89.20 5.15 3.95 90.90
Ha 4.55 4.60 90.85 4.95 5.95 89.10 5.10 4.05 90.85

to follow-up. For the treatment group, there is a 12% chance of loss to follow-up during the first

year, 8% during the second year, and 6% per year starting from the third year. The lifetimes of

the control group have an exponential distribution with mean 3 years, and those of the treatment

group have an exponential distribution with mean 3e−β years, with eβ = 1, 23 ,
1
2 .

Table 8.2 shows that hybrid resampling in conjunction with ordering with partial likelihoods

give accurate coverage probabilities within 1% of their nominal values.

8.4 The β-blocker heart attack trial

Time-sequential clinical trials received much attention from the biomedical community following

early termination of the Beta-Blocker Heart Attack Trial (BHAT) in the early 1980s. The primary

objective of BHAT was to determine whether regular, chronic administration of propranolol, a

beta-blocker, to patients who had at least one documented myocardial infarction (MI) would

result in significant reduction in mortality from all causes during the follow-up period. It was

designed as a multicenter, double-blind, randomized placebo-controlled trial with a projected total

of 4200 eligible patients recruited within 21 days of the onset of hospitalization for MI. The trial

was planned to last 4 years, beginning in June 1978 and ending in June 1982, with patient accrual

completed within the first 2 years so that all patients could be followed for a period of 2 to 4 years.

The sample size calculation was based on a 3-year mortality rate of 18% in the placebo group

and a 28% reduction of this rate in the treatment group, with a significance level of 0.05 and 0.9

power using a two-sided logrank test. In addition, periodic reviews of the data were planned to be

conducted by a Data and Safety Monitoring Board roughly once every 6 months beginning at the

end of the first year, whose functions were to monitor safety and adverse events and to advise the

Steering and Executive Committees on policy issues related to the progress of the trial.

The actual recruitment period was 27 months, within which 3837 patients were accrued from

136 coronary care units in 31 clinical centers, with 1916 patients randomized into the propranolol

group and 1921 into the placebo group. Although the recruitment goal of 4200 patients had not

been met, the projected power was only slightly reduced to 0.89, as accrual was approximately

uniform during the recruitment period.
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The Data and Safety Monitoring Board arranged meetings at 11, 16, 21, 28, 34, and 40 months

to review the data collected so far, before the scheduled end of the trial at 48 months. Besides

monitoring safety and adverse events, the board also examined the standardized logrank statistics

to examine if propranolol was indeed effective. Instead of continuing the trial to its scheduled 48

months, the Data and Safety Monitoring Board recommended terminating it in their last meeting

because of conclusive evidence in favor of propranolol. Their recommendation was adopted and

the trial was terminated on October 2, 1980.

We demonstrate the accuracy of our method by constructing confidence intervals for the β-

blocker heart attack trial.

Example 8.3: Confidence intervals for the β-blocker heart attack trial. Applying our hybrid

resampling method in conjunction with ordering with partial likelihoods, we found the 90% confi-

dence interval for the treatment effect to be −0.51 ≤ β ≤ −0.09, and the 80% confidence interval

to be −0.43 ≤ β ≤ −0.12. Lai & Li (2004) found the 90% confidence interval for the treatment

effect to be −0.50 ≤ β ≤ −0.08, and the 80% confidence interval to be −0.43 ≤ β ≤ −0.12,
which are quite close to our results. Using the Wiener process approximation to time-sequential

logrank statistics under the proportional hazards model together with his own ordering scheme for

normal data, Siegmund (1985, p. 134) found the 80% confidence interval to be −0.42 ≤ β ≤ −0.11,
which is also close to ours. Siegmund considered −β and assumed the Pocock-Haybittle stop-

ping boundary instead of the O’Brien-Fleming stopping boundary. He also noted the asymmetry

of the confidence interval about β̂ = −0.32, in contrast with the naive 80% confidence interval

−0.32± 0.14 = [−0.46,−0.18].

8.5 Bivariate confidence regions

It has been a long-standing problem how confidence regions can be constructed for multiple end-

points following group sequential clinical trials. We review in Section 8.5.1 Chuang & Lai’s (2000)

method for constructing bivariate confidence regions following group sequential tests for two pop-

ulation means, and generalize it in Section 8.5.2 to construct bivariate confidence regions for

treatment effect and median survival following group sequential tests when treatment effect is the

primary endpoint and median survival is the secondary endpoint.

8.5.1 Review of Chuang & Lai (2000)

We review in this section Chuang & Lai’s (2000) hybrid resampling method for constructing bi-

variate confidence regions for two population means.

Let X1, X2, . . . be i.i.d. random variables with unknown mean θ, and suppose the stopping

rule τ of a group sequential test depends on the sample sum Sn =
∑n

i=1Xi up to the stopping

time. Suppose that one is also interested in estimating the common mean µ of i.i.d. random
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variables Y1, Y2, . . . that are observed up to the stopping time τ . Let Ȳn = n−1
∑n

i=1 Yi. Although
√
n(Ȳn − µ) is an asymptotic pivot having a limiting standard normal distribution,

√
τ(Ȳτ − µ)

is no longer an asymptotic pivot because its limiting distribution depends on θ, which determines

the distribution of τ .

First, suppose that (Xi, Yi) is bivariate normal with known correlation coefficient ρ, and Xi

and Yi have common known variance 1. Let V denote the covariance matrix of (Xi, Yi), and let

X = (X1, . . . , Xτ ;Y1, . . . , Yτ ; τ). An exact 1− 2α confidence region for (θ, µ) is

{(θ, µ) : R(X, θ, µ) ≤ u1−2α(θ)},

where R(X, θ, µ) = τ(X̄τ −θ, Ȳτ −µ)V −1(X̄τ −θ, Ȳτ −µ)T , and u1−2α(θ) is the (1−2α)th quantile

of R(X, θ, µ).

Without assuming (Xi, Yi) to be standard normal and ρ to be known, we can replace ρ by the

sample correlation ρ̂τ . Letting V̂ denote the matrix with 1 on the diagonal and ρ̂τ elsewhere, we

have

R̂(X, θ, µ) = τ(X̄τ − θ, Ȳτ − µ)V̂ −1(X̄τ − θ, Ȳτ − µ)T . (8.7)

Let Ĝ be the empirical distribution of ((Xi − X̄τ )/σ̂x,τ , (Yi − Ȳτ )/σ̂y,τ ), where σ̂x,τ and σ̂y,τ are

the sample variances. Let (ε1, η1), . . . be i.i.d. with common distribution Ĝ and let Xi(θ) = θ+ εi.

Let τ(θ) be the stopping rule applied to X1(θ), . . . . Using ρ̃τ(θ) to denote the sample correlation

coefficient of the (εi, ηi), 1 ≤ i ≤ τ(θ), we let V̂τ(θ) denote the matrix with 1 on the diagonal and

ρ̃τ(θ) elsewhere. Defining û1−2α(θ) as the (1− 2α)th quantile of

(τ(θ))−1
(τ(θ)∑

i=1

εi,

τ(θ)∑

i=1

ηi
)
V̂ −1τ(θ)

(τ(θ)∑

i=1

εi,

τ(θ)∑

i=1

ηi
)T
, (8.8)

we obtain the hybrid confidence region for (µ, θ) with nominal coverage error 2α as

{(θ, µ) : R̂(X, θ, µ) ≤ û1−2α(θ)}.

Without assuming unit variance of Yi, we can replace V̂ and V̂τ(θ) by

Ṽ =

(
1 ρ̂τ σ̂y,τ

ρ̂τ σ̂y,τ σ̂2y,τ

)
, Ṽτ(θ) =

(
1 ρ̂τ(θ)σ̂y,τ(θ)

ρ̂τ(θ)σ̂y,τ(θ) σ̂2y,τ(θ)

)
,

where σ̃2η,m = m−1
∑m

i=1(ηi − η̄m)2. Let ũ1−2α(θ) be the (1 − 2α)th quantile of (8.8) with V̂τ(θ)

replaced by Ṽτ(θ). The hybrid confidence region is

{(θ, µ) : R̃(X, θ, µ) ≤ ũ1−2α(θ)},



8.5. BIVARIATE CONFIDENCE REGIONS 73

where R̃(X, θ, µ) is defined by (8.7) with V̂ replaced by Ṽ . Chuang & Lai (2000, p. 19) gave an

algorithm to compute the hybrid confidence regions explicitly.

8.5.2 Confidence regions for treatment effect and median survival

Motivated by Chuang & Lai (2000) and our methods for constructing confidence intervals for

treatment effect and for median survival, we can combine these two methods for constructing

confidence intervals to develop a method for constructing bivariate confidence regions for treatment

effect and median survival following group sequential trials, where treatment effect is the primary

endpoint and median survival is the secondary endpoint.

For Chuang & Lai’s (2000) method for constructing bivariate confidence regions for two popula-

tion means, taking the root R(X, θ, µ) = τ(X̄τ −θ, Ȳτ −µ)V −1(X̄τ −θ, Ȳτ −µ)T is straightforward.

In the case of constructing confidence regions for treatment effect and median survival, the root

needs to be chosen carefully.

Motivated by standard multiple hypotheses testing approaches, we can take the maximum of

the two self-normalized statistics

lτ (β̂)− lτ (β),
(
Ŝz(m)− 1

2

ξ̂z(m)

)2

to form the new statistic Uτ that will be used to order the sample space:

Uτ = max



lτ (β̂)− lτ (β),

(
Ŝz(m)− 1

2

ξ̂z(m)

)2
 .

A 1− 2α confidence region is the set of all parameters (β,m) not rejected by

{(β,m) : α < P̂β{(τ, Uτ ) > (τ, Uτ )obs} < 1− α},

where

(T,UT ) ≥ (t, ut) if and only if UT∧t ≥ uT∧t.

Similar to the case where confidence intervals for treatment effect β are constructed, P̂β{(τ, Uτ ) >

(τ, Uτ )obs} needs to be calculated via simulations. Again, Breslow’s (1974) estimator of the cumu-

lative hazard function from all the data at the end of the trial is used for simulations.

Chuang & Lai’s (2000) algorithm for computing the confidence regions for two population

means explicitly can be incorporated in our method to compute the confidence regions explicitly

for treatment effect and median survival, and the importance sampling techniques developed in

Section 8.2 can be incorporated to speed up the simulations and thus reduce the computing time

substantially.
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The following hypothetical clinical trial example shows that our method gives accurate coverage

probabilities.

Example 8.4. Consider a time-sequential trial in which n = 350 subjects enter the trial uniformly

during a 3-year recruitment period and are randomized to treatment or control with probability
1
2 . The trial is designed to last for a maximum of t∗ = 5.5 years, with interim analyses after 1

year and every 6 months thereafter. The Wilks statistic is used to test H0 : β = 0 at each data

monitoring time tj (j = 1, . . . , 10), and the test is stopped at the smallest tj such that

Vn(tj) ≥ 55, or Vn(tj) ≥ 11 and

√
lt ˆ(β)− lt(0) ≥ 2.85, (8.9)

or at t10(= t∗) when (8.9) does not occur, where Vn(t) is defined by (8.2). If the test stops with

Vn(tj) ≥ 55 or at t∗, reject H0 if

√
lt∗ ˆ(β)− lt∗(0) ≥ 2.05. Also reject H0 if the second event in

(8.9) occurs for some j < 10. The distribution for loss to follow-up is exponential with a median of

12 years. The lifetimes of the control group have an exponential distribution with mean 3 years,

and those of the treatment group have an exponential distribution with mean 3e−β years, with

eβ = 1, 23 ,
1
2 .

Table 8.3 shows that our method for constructing bivariate confidence regions gives accurate

coverage probabilities that are within 1.2% of their nominal values.

Table 8.3: Example 8.4: Coverage errors in % for lower (L) and upper (U) confidence limits and
coverage probabilities (P) of confidence regions for treatment effect as the primary endpoint and
median survival as the secondary endpoint. Two bivariate confidence regions are constructed:
the confidence region for treatment effect and the median survival of the control group, and the
confidence region for treatment effect and the median survival of the treatment group.

β = 0 β = log 23 β = log 12
Group L U P L U P L U P
Control 4.25 4.90 90.85 3.95 4.90 91.15 4.10 4.70 91.20

Treatment 4.55 4.80 90.65 4.50 4.90 90.60 5.05 4.00 90.95



Chapter 9

Concluding remarks

9.1 Summary of methods and results

Monte Carlo simulations are often used in the design stage to compute power and sample size in

clinical trials. A clear disadvantage of Monte Carlo simulations is that they are computationally

intensive. Importance resampling techniques are developed in Section 7.2 to compute tail proba-

bilities, in order to reduce the number of simulations required to compute power and sample size

in the design of fixed-duration clinical trials. They can be incorporated in the simulation program

of Halpern and Brown (1987) to reduce computing time substantially. A test-based method for

constructing confidence intervals for median survival in a proportional hazards model via bootstrap

is given in Section 7.2.4 and shown to give coverage probabilities close to the nominal values.

Lai & Li (2004) developed a hybrid resampling method to construct test-based confidence inter-

vals for treatment effect given univariate covariates. Importance sampling techniques are developed

in Section 8.2 to speed up Lai & Li’s (2004) computations of the confidence intervals substantially.

Section 8.3 gives a method for constructing test-based confidence intervals for treatment effect

given multivariate covariates, which is shown to give coverage probabilities close to the nominal

values. In Section 8.5, by combining the two test-based methods for constructing confidence in-

tervals for treatment effect and median survival, we construct test-based confidence regions for

treatment effect as the primary endpoint and median survival as the secondary endpoint.

9.2 Goal of the study

Clinical trial design and analysis software is crucial to the success of clinical trials. Our ultimate

goal is to provide clinicians with powerful clinical trial design and analysis software to give them

the flexibility to design and analyze fixed-duration and time-sequential clinical trials with failure-

time endpoints. This software will have two modules: the design module and the analysis module.

75
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Importance sampling and resampling techniques will be incorporated in both modules to speed

up the Monte Carlo simulations and thus reduce computational cost. Software packages currently

available serve as a benchmark for the development of our new software; they are reviewed in

Section 9.2.1. The on-going work towards the realization of our goal is described in Section 9.2.2.

9.2.1 Review of available software

• Halpern and Brown (1987) developed a simulation program for the design of fixed-duration

clinical trials using Monte Carlo simulations, which we have improved by using importance

resampling techniques. The program allows arbitrary specifications of the null and alternative

survival distributions for the logrank or Gehan test, which are assumed to be either piecewise

exponential or cure-rate models. Halpern & Brown (1993) subsequently developed another

simulation program for these test statistics incorporating group sequential testing using either

the Pocock or the O’Brien-Fleming boundary.

• Gu & Lai (1999) developed a simulation program for the design of group sequential clinical

trials. This broadened the scope of the Halpern-Brown programs in several major ways to

provide the investigator with a flexible tool to plan clinical trials with failure-time endpoints

and interim analyses. First, instead of the Pocock and O’Brien-Fleming boundaries, the

program provides four options to the user for choosing a stopping boundary: Slud-Wei, Lan-

DeMets, Haybittle-type boundaries, plus any other boundary specified by the user. Second,

the program allows the user to incorporate withdrawal and noncompliance by specifying the

censoring distributions and crossover rates of the two treatment groups. Third, the program

gives the user an additional way to specify the survival distribution of the new treatment

by specifying its time-dependent hazard ratio relative to the baseline survival distribution,

which is assumed to be piecewise constant. Finally, the program allows the user to choose

any test statistic in the beta family of statistics, in which the logrank statistic and the Gehan

statistic are two examples.

• EAST is commercial clinical trial design and analysis software; it is developed by Cytel

company and can be purchased from the company’s website. EAST has a design module and

an analysis module. The design module calculates sample size and stopping boundaries for

superiority, futility, and non-inferiority studies. The design module provides different choices

to the user for choosing a stopping boundary: Wang-Tsiatis, Lan-Demets, Haybittle-Peto

families, plus stopping boundaries derived from a series of published error-spending functions.

EAST provides a user-friendly Excel interface and well-prepared documentation, which are

advantages over the free programs of Halpern & Brown (1987; 1993) and Gu & Lai (1999).

Unlike the free programs, EAST has an analysis module. However, the information that the

analysis module can provide is limited. It gives point estimates of the regression parameter
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at the end of the study, and gives confidence intervals for the treatment effect following a

group sequential test that is based on Brownian motion approximations. We have shown

in Chapter 8 that confidence intervals based on Brownian motion approximations give poor

coverage probabilities. The analysis module does not provide confidence intervals for median

survival.

• PEST is another commercial clinical trial design and analysis package; it is developed by MPS

Research Unit and can be purchased from its website. The most recent version is PEST4,

which also has both design and analysis modules. PEST4 provides a user-friendly interface

based on SAS/AF, and has well-prepared documentation. PEST4 provides direct reading of

SAS permanent datasets. However, the information that the analysis module can provide is

also limited. Similar to EAST, PEST4 gives point estimates of the regression parameter at

the end of the study, and gives confidence intervals for the treatment effect following a group

sequential test based on Brownian motion approximations. The analysis module does not

provide confidence intervals for median survival.

9.2.2 On-going work towards the goal

Since confidence intervals for treatment effect and median survival are important for clini-

cians to draw conclusions about a new treatment, we are currently developing an analysis

module that can provide confidence intervals for treatment effect and median survival follow-

ing group sequential tests. Bearing in mind the goal of providing clinicians with a powerful

software package that has both design and analysis modules for fixed-duration and time-

sequential trials, we are extending our importance sampling and resampling techniques for

fixed-duration tests to group sequential tests so that the simulation time for both the design

module and the analysis module of group sequential trials can also be reduced substantially.

Although our current analysis module is already capable of giving confidence intervals for

treatment effect and median survival based on the methodology we developed in Chapter

7 and Chapter 8, we are working on extensions of our methods to other (non-proportional

hazards) survival models and other test statistics in order to make our analysis module more

versatile.
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