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Abstract Systems biologists are developing increasingly large models of
metabolism and integrated models of metabolism and macromolecular expression.
These Metabolic Expression (ME) models lead to sequences of multiscale linear
programs for which small solution values of order 10−6 to 10−10 are meaningful.
Standard LP solvers do not give sufficiently accurate solutions, and exact simplex
solvers are extremely slow. We investigate whether double-precision and quadruple-
precision simplex solvers can together achieve reliability at acceptable cost.

A double-precision LP solver often provides a reasonably good starting point
for a Quad simplex solver. On a range of multiscale examples we find that 34-digit
Quad floating-point achieves exceptionally small primal and dual infeasibilities (of
order 10−30) when no more than 10−15 is requested. On a significant ME model we
also observe robustness in almost all (even small) solution values following relative
perturbations of order 10−6 to non-integer data values.

Double and Quad Fortran 77 implementations of the linear and nonlinear
optimization solver MINOS are available upon request.

Keywords Flux balance analysis • Metabolic expression model • Multiscale
linear program • Simplexmethod • Quadruple precision • Gfortran libquadmath •
MINOS

1 Introduction

We consider the solution of large, multiscale linear programs (LPs) of the form

min
x

cTx s.t. ℓ≤
(

x
Ax

)
≤ u, (1)
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where A is a sparse matrix whose entries, like the variables in x, may be of
widely varying magnitude. Such problems arise in systems biology in the modeling
of biochemical reaction networks, notably Metabolic Expression (ME) models
[20, 36]. Reliable solution methods are of such importance to systems biologists
that exact simplex solvers have been employed [20], even though the typical solution
time for an exact solver is measured in weeks for genome-scalemodels (compared to
minutes for a conventional solver using double-precision floating-point arithmetic).

Exact solvers are based on rational arithmetic. There has been considerable work
on their implementation and application to important problems [1, 2, 18, 32]. The
use of quadruple-precisionfloating-point has also been mentioned in passing [1, 18].

Let Single, Double, and Quad denote the main floating-point options, with about
7, 15, 16, and 34 digits of precision, respectively. Single is not useful in the present
context, and Double may not ensure adequate accuracy. This is the reason for
our work. On today’s machines, Double is implemented in hardware, while Quad
(if available) is typically implemented in a software library such as libquadmath [8].
Fortunately, the GCC Fortran compiler now makes Quad available via the real(16)
data type. We have therefore been able to make a Quad version of the Fortran 77
linear and nonlinear optimization solver MINOS [26, 27] using the gfortran
compiler. Our aim is to explore combined use of the Double and Quad MINOS
simplex solvers for the solution of large multiscale linear programs.We seek greater
efficiency than is normally possible with exact simplex solvers.

Kahan [16] notes that “carrying somewhat more precision in the arithmetic than
twice the precision carried in the data and available for the result will vastly reduce
embarrassment due to roundoff-induced anomalies.” He further notes that Quad
precision is unlikely to be adopted widely in the foreseeable future because of the
cost in CPU time and memory (especially cache) relative to Double, but in terms of
finding ways to avoid unexpected total loss of accuracy, “default evaluation in Quad
is the humane option.”

We apply the “humane” approach to difficult LP problems by using the Double
simplex solver first, saving the final solution, and warm-starting Quad simplex from
that point. For a sequence of related problems, warm-starting each problem in Quad
is simplest, but warm-starting in Double and then in Quad may be more efficient.

2 Motivating Applications

The Constraint-Based Reconstruction and Analysis (COBRA) approach [31, 33]
has been successfully applied to biological processes such as metabolism and
macromolecular synthesis, which when integrated result in inherently multiscale
models. In the COBRA approach, a biochemical network is represented by a
stoichiometric matrix S with m rows corresponding to metabolites and n columns
representing reactions. Mathematically, S is part of the ordinary differential equation
that governs the time-evolution of concentrations in the network:

d
dt
x(t) = Sv(t), (2)
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where x(t)∈Rm is a vector of time-dependent concentrations and v(t) ∈Rn is a
vector of reaction fluxes. With cTv being a biologically motivated objective function
(such as maximizing the growth rate at steady state), the constraint-based approach
constructs the following LP:

max
v

cTv (3a)

s.t. Sv= 0, (3b)
l≤ v≤ u, (3c)

where growth is defined as the biosynthetic requirements of experimentally deter-
mined biomass composition, and biomass generation is a set of reaction fluxes
linked in appropriate ratios [31].

The following applications have motivated our work.

Flux Balance Analysis (FBA). FBA is a mathematical and computational
approach widely used for studying biochemical reaction networks [30, 31]. The
biochemical networks reconstructed in FBA with a linear objective function
are essentially LPs as in (3), where the fluxes in vector v may have widely
varying values in the range 0–100 say, with small values such as vj = 10−10

being meaningful. With the increasingly large, sparse, and multiscale nature
of biochemical networks, a Quad solver has become more necessary, practical,
and even efficient.

ME models (FBA with Coupling Constraints). FBA has been used by Thiele
et al. [36] for the first integrated stoichiometric multiscale model of metabolism
and macromolecular synthesis for Escherichia coli K12 MG1655. The model
modifies (3) by adding constraints that couple enzyme synthesis and catalysis
reactions to (3b). Coupling constraints of the form

cmin ≤
vi
vj
≤ cmax (4)

become linear constraints

cminvj ≤ vi, vi ≤ cmaxvj (5)

for various pairs of fluxes vi,vj. They are linear approximations of nonlinear
constraints and make S in (3b) even less well-scaled because of large variations
in reaction rates. Quad precision is evidently more appealing in this case.

ME Models with Nonlinear Constraints. As coupling constraints are often
functions of the organism’s growth rate µ , O’Brien et al. [29] consider growth-
rate optimization nonlinearly with the single µ as the objective in (3a) instead
of via a linear biomass objective function. Nonlinear constraints of the form

vi
vj
≤ µ (6)
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represented as

vi ≤ µvj (7)

are added to (3b), where vi,vj,µ are all variables. Constraints (7) are linear if µ
is fixed at a specific value µk. O’Brien et al. [29] employ a binary search on a
discrete set of values within an interval [µmin,µmax] to find the largest µk ≡ µ∗
that keeps the associated linear program feasible. Thus, the procedure requires
reliable solution of a sequence of related LPs.

Flux Variability Analysis (FVA).After FBA (3) returns an optimal objective value
cTv∗=Z0 (3a), FVA examines how far a particular flux vj can vary within the
feasible region without changing the optimal objective significantly (if γ ≈ 1):

max
v

or min
v

vj

s.t. Sv= 0,

cTv≥ γZ0,
l≤ v≤ u,

(8)

where 0< γ < 1. Potentially 2n LPs (8) are solved if all reactions are of interest,
with warm starts being used when j increases to j+ 1 [12].

Other Challenging LPs. A set of difficult LP problems has been collected by
Mészáros [22], who names them problematic and notes that “modeling mistakes
made these problems “crazy,” but they are excellent examples to test numerical
robustness of a solver.” Our procedure for handling these problematic problems
seems appropriate for the systems biology models as well.

3 Algorithm and Implementation

The primal simplex solver in MINOS includes geometric-mean scaling of the
constraint matrix, the EXPAND anti-degeneracy procedure [10, 14], and partial
pricing (but no steepest-edge pricing, which would generally reduce total iterations
and time). Basis LU factorizations and updates are handled by LUSOL [9, 21]. Cold
starts use a Crash procedure to find a triangular initial basis. Basis files are used to
preserve solutions between runs.

For Double MINOS, floating-point variables are declared double precision (≈15
digits). For Quad MINOS, they are real(16) (≈34 digits). The LP data A,b,c,S,ℓ,u
are stored in Quad even though they are not known to that precision. This allows
operations such as Ax and ATy to be carried out directly on the elements of A and
the Quad vectors x,y. If A were stored in Double, such products would require each
entry Aij to be converted from Double to Quad at runtime.

To achieve reliability on the Mészáros problems, we developed the following
three-step procedure for solving challenging examples of problems (1)–(8):

Step 1 (Cold start in Double with scaling) Apply Double MINOS with somewhat
strict options. Save a final basis file.
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Table 1 MINOS runtime
options (defaults and those
selected for Steps 1–3)

Default Step1 Step2 Step3
Double Double Quad Quad

Scale option 2 2 2 0
Feasibility tol 1e−6 1e−7 1e−15 1e−15
Optimality tol 1e−6 1e−7 1e−15 1e−15
LU factor tol 100.0 10.0 10.0 5.0
LU update tol 10.0 10.0 10.0 5.0
Expand frequency 10,000 100,000 100,000 100,000

Step 2 (Warm start in Quad with scaling) Start Quad MINOS from the saved file
with stricter Feasibility and Optimality tolerances. Save a final basis file.

Step 3 (Warm start in Quad without scaling) Start Quad MINOS from the second
saved file with no scaling but stricter LU tolerances.

Steps 1 and 2 are “obvious” and should usually be sufficient. In case Step 2
is interrupted, Step 3 provides some insurance and ensures that the Feasibility
and Optimality tolerances are imposed upon the original problem (not the scaled
problem).

Table 1 shows the default runtime options for Double MINOS and the options
chosen for Steps 1–3 above. The Feasibility tolerance δ1 is applied in absolute form.
Thus, a (possibly scaled) solution v is considered feasible for problem (3) if ℓ−δ1≤
v ≤ u+ δ1. The Optimality tolerance δ2 is applied in a relative way. If the current
basic solution is of the form Sv≡ BvB+NvN = b and if BTy= cB for the nonsingular
basis matrix B, the current v is considered optimal if z≡ c−ATy has the correct sign
to within the tolerance (1+ ∥y∥∞)δ2.

For conventional Double solvers it is reasonable to set δ1 and δ2 in the range
10−6 to 10−8. For Quad MINOS we set δ1 = δ2 = 10−15 to be sure of capturing
accurately any fluxes vj as small as O(10−10).

4 Numerical Results

We report results from Double and Quad versions of the primal simplex solver in
MINOS. All runs were on a 2.93GHz Apple iMac with quad-core Intel i7, using
the gfortran compiler with -O flag. Double MINOS uses 64-bit hardware floating-
point throughout. Quad MINOS uses 128-bit software floating-point throughout via
gfortran’s libquadmath library.

We applied our three-step procedure to three sets of LP problems. Table 2 lists the
problem dimensions and the norms of the optimal primal and dual solution vectors
x∗, y∗. Table 3 summarizes the results of Steps 1–3 for each problem.

All problems were input from files in the classical MPS format of commercial
mathematical programming systems [24] with 12-character fields for all data values.
This was a fortuitous limitation for the ME models, as we mention below. The MPS
files for these 14 LP models are downloadable from [25].
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Table 2 Three pilot models from Netlib [28], eight Mészáros problematic
LPs [22], and three ME biochemical network models [19, 35, 36]

Model m n nnz(A) max |Aij| ∥x∗∥∞ ∥y∗∥∞
pilot4 411 1,000 5,145 2.8e+04 9.6e+04 2.7e+02
pilot 1,442 3,652 43,220 1.5e+02 4.1e+03 2.0e+02
pilot87 2,031 4,883 73,804 1.0e+03 2.4e+04 1.1e+01
de063155 853 1,488 5,405 8.3e+11 3.1e+13 6.2e+04
de063157 937 1,488 5,551 2.3e+18 2.3e+17 6.2e+04
de080285 937 1,488 5,471 9.7e+02 1.1e+02 2.6e+01
gen1 770 2,560 64,621 1.0e+00 3.0e+00 1.0e+00
gen2 1,122 3,264 84,095 1.0e+00 3.3e+00 1.0e+00
gen4 1,538 4,297 110,174 1.0e+00 3.0e+00 1.0e+00
l30 2,702 15,380 64,790 1.8e+00 1.0e+09 4.2e+00
iprob 3,002 3,001 12,000 9.9e+03 3.1e+02 1.1e+00
TMA_ME 18,210 17,535 336,302 2.1e+04 5.9e+00 1.1e+00
GlcAerWT 68,300 76,664 926,357 8.0e+05 6.3e+07 2.4e+07
GlcAlift 69,529 77,893 928,815 2.6e+05 6.3e+07 2.4e+07

Dimensions of m× n constraint matrices A (= S for the ME models), and
size of the largest optimal primal and dual variables x∗, y∗

The Pilot Problems

These are economic models developed by Prof George Dantzig’s group in the
Systems Optimization Laboratory at Stanford University during the 1980s. They
are available from Netlib [28]. For the middle example (pilot), MINOS required
about 24 h on a DEC MicroVAX II during 1987, and did not perform reliably until
the EXPAND anti-degeneracy procedure was developed.

Line 1 for pilot in Table 3 shows that Double MINOS with cold start and scaling
required 16,060 primal simplex iterations and 5.7 CPU seconds. The final unscaled
primal solution x satisfied the bounds ℓ and u in (1) to within O(10−6), and the dual
solution y satisfied the optimality conditions to within O(10−3).

Line 2 for pilot shows that Quad MINOS starting from that point with scaling
needed only 29 iterations and 0.7 s to obtain a very accurate solution (where Pinf=
10−99 means that the maximum primal infeasibility was 0.0).

Line 3 for pilot shows that in the “insurance” step, Quad MINOS warm-starting
again but with no scaling gave a full quad-precision solution at almost no cost:
maximum infeasibilities 0.0 and O(10−32). The final Double and Quad objective
values differ in the fourth significant digit, as suggested by removal of Step 1’s
O(10−3) dual infeasibility.

Results for the bigger problem pilot87 are analogous.
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Table 3 Iterations and runtimes in seconds for Step 1 (Double MINOS) and
Steps 2 and 3 (Quad MINOS)

Model Iterations Times Final objective Pinf Dinf

pilot4 1,571 0.1 −2.5811392602e+03 −05 −13
6 0.0 −2.5811392589e+03 −39 −31
0 0.0 −2.5811392589e+03 −99 −30

pilot 16,060 5.7 −5.5739887685e+02 −06 −03
29 0.7 −5.5748972928e+02 −99 −27
0 0.2 −5.5748972928e+02 −99 −32

pilot87 19,340 15.1 3.0171038489e+02 −09 −06
32 2.2 3.0171034733e+02 −99 −33
0 1.2 3.0171034733e+02 −99 −33

de063155 921 0.0 1.8968704286e+10 −13 +03
78 0.1 9.8830944565e+09 −99 −17
0 0.0 9.8830944565e+09 −99 −24

de063157 488 0.0 1.4561118445e+11 +20 +18
476 0.5 2.1528501109e+07 −27 −12
0 0.0 2.1528501109e+07 −99 −12

de080285 418 0.0 1.4495817688e+01 −09 −02
132 0.1 1.3924732864e+01 −35 −32
0 0.0 1.3924732864e+01 −99 −32

gen1 369,502 205.3 −1.6903658594e−08 −06 −12
246,428 9,331.3 1.2935699163e−06 −12 −31

2,394 81.6 1.2953925804e−06 −45 −30
gen2 44,073 60.0 3.2927907828e+00 −04 −11

1,599 359.9 3.2927907840e+00 −99 −29
0 10.4 3.2927907840e+00 −99 −32

gen4 45,369 212.4 1.5793970394e−07 −06 −10
53,849 14,812.5 2.8932268196e−06 −12 −30

37 10.4 2.8933064888e−06 −54 −30
l30 1,229,326 876.7 9.5266141574e−01 −10 −09

275,287 7,507.1 −7.5190273434e−26 −25 −32
0 0.2 −4.2586876849e−24 −24 −33

iprob 1,087 0.2 2.6891551285e+03 +02 −11
0 0.0 2.6891551285e+03 +02 −31
0 0.0 2.6891551285e+03 +02 −28

(continued)
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Table 3 (continued)

Model Iterations Times Final objective Pinf Dinf

TMA_ME 12,225 37.1 8.0051076669e−07 −06 −05
685 61.5 8.7036315385e−07 −24 −30
0 6.7 8.7036315385e−07 −99 −31

GlcAerWT 62,856 9,707.3 −2.4489880182e+04 +04 −05
5,580 3,995.6 −7.0382449681e+05 −07 −26

4 60.1 −7.0382449681e+05 −19 −21
GlcAlift 134,693 14,552.8 −5.1613878666e+05 −03 −01

3,258 1,067.1 −7.0434008750e+05 −09 −26
2 48.1 −7.0434008750e+05 −20 −22

Pinf and Dinf = final maximum primal and dual infeasibilities (log10 values
tabulated). Problem iprob is infeasible. Bold figures show Pinf and Dinf at
the end of Step 3. Pinf = 10−99 means Pinf = 0. Note that Pinf/∥x∗∥∞ and
Dinf/∥y∗∥∞ are all O(10−30) or smaller, even though only O(10−15) was
requested. This is an unexpectedly favorable empirical finding

The Mészáros Problems

The problematic LPs were provided as MPS files by Ed Klotz [17]. The first
two problems have unusually large entries in the constraint matrix A. The Step 1
Double MINOS solution has at best one digit of precision in the objective value
for de063155, and is quite erroneous for de063157. Nevertheless, the Steps 2 and 3
Quad solutions are seen to be highly accurate when the solution norms are taken
into account.

The gen* problems come from image reconstruction, with no large entries in A,
x, y, but highly degenerate primal solutions x. (In both Steps 1 and 2 for gen1, 60%
of the iterations made no improvement to the objective, and the final solution has
30% of the basic variables on their lower bound.) For gen1, warm-starting Quad
MINOS from the Step 1 basis gave an almost feasible initial solution (266 basic
variables outside their bounds by more than 10−15 with a sum of infeasibilities
of only O(10−8)), yet nearly 250,000 iterations were needed in Step 2 to reach
optimality. These examples show that Quad precision does not remove the need for
a more rigorous anti-degeneracy procedure (such as Wolfe’s method as advocated
by Fletcher [6]), and/or steepest-edge pricing [7], to reduce significantly the total
number of iterations.

Problem l30 behaved similarly (80% degenerate iterations in Steps 1 and 2).
The tiny objective value is essentially zero, so we can’t expect the Steps 2 and 3
objectives to agree in their leading digits.

Problem iprob is an artificial one that was intended to be feasible with a very ill-
conditioned optimal basis, but the MPS file provided to us contained low-precision
data (many entries like 0.604 or 0.0422). Our Double and Quad runs agree that the
problem is infeasible. This is an example of Quad removing some doubt that was
inevitable with just Double.
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The Systems Biology ME Problems

Like the gen* problems, the ME models showed 40–60% degenerate iterations in
Step 1, but fortunately not so many total iterations in Step 2. This is important for
FVA and for ME with nonlinear constraints, where there are many warm starts.

Problem TMA_ME developed by Lerman [19] has some large matrix entries |Sij|
andmany small solution values vj that are meaningful to systems biologists. TheME
part of the model also contains small matrix entries. In Step 1, almost all iterations
went on finding a feasible solution, and the objective then had the correct order of
magnitude.

This was the first ME model that we used for Quad experiments (in April 2012).
The data S, c, ℓ, u in (3) came as a Matlab structure with cj = 0, lj = 0, uj = 1,000
for most j, except c17533 = 1 (meaning maximize flux v17533), four variables had
smaller positive upper bounds, the last variable had moderate positive bounds,
and 64 variables were fixed at zero. We output the data to a plain text file. Most
entries of S are integers (represented exactly), but about 5,000 Sij values are of
the form 8.037943687315e−01 or 3.488862338191e−06 with 13 significant digits.
The text data was read into Double and Quad versions of a prototype Fortran 90
implementation of SQOPT [11].

For the present paper, we used the same Matlab data to generate an MPS file
for input into MINOS. Since this is limited to six significant digits, the values in
the preceding paragraph were rounded to 8.03794e−01 and 3.48886e−06 and in total
about 5,000 Sij values hadO(10−6) relative perturbations of this kind. We have been
concerned that such data perturbations could alter the FBA solution greatly because
the final basis matrices could have condition number as large as 106 or even 1012

(as estimated by LUSOL). In comparing Quad SQOPT on Matlab data with Quad
MINOS on MPS data, we fortunately observe that the final objective values for
TMA_ME agree to five digits and match the results from SoPlex [34] and the exact
simplex solver QSopt_ex [32], as reported by Lerman [19]:

Optimal objective
SoPlex 80bit 8.703671403e−07 Matlab data
QSopt_ex 8.703646169e−07 Matlab data
Quad SQOPT 8.703646169e−07 Matlab data
Quad MINOS 8.703631539e−07 MPS data

More importantly, for the most part even small solution values are perturbed in only
the 5th or 6th significant digit. Let v and w be the solutions obtained by the two
Quad solvers on slightly different data. Some example solution values follow:

j 107 201 302
Quad SQOPT vj 2.336815e−06 8.703646e−07 1.454536e−11 Matlab data
Quad MINOS wj 2.336823e−06 8.703632e−07 1.454540e−11 MPS data
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Among all j for which max(vj,wj) > 10−15 (the feasibility tolerance), the largest
relative difference |vj−wj|/max(vj,wj) was less than 10−5 for all but 31 variables.
For 22 of these pairs, either vj or wj was primal or dual degenerate (meaning one
of them was zero and there are alternative solutions with the same objective value).
The remaining nine variables had these values:

j vj wj Relative difference
16383 6.0731e−07 2.0374e−06 0.70
16459 1.7090e−06 2.1778e−06 0.22
16483 2.4675e−06 5.9936e−07 0.76
16730 1.4432e−06 7.8685e−07 0.46
17461 1.7090e−06 2.1778e−06 0.22
17462 2.4675e−06 5.9936e−07 0.76
17478 6.0731e−07 2.0374e−06 0.70
17507 1.4432e−06 7.8685e−07 0.46
17517 8.7036e−07 2.9740e−06 0.71

We see that the vj, wj values are quite small (the same magnitude as the data
perturbation), and for each of the nine pairs there is about one digit of agreement.
In general we could expect thousands of small solution pairs to differ this much, yet
for almost all 17,535 pairs, there are at least five digits of agreement.

These observations about two forms of problem TMA_ME are welcome empir-
ical evidence of the robustness of this particular multiscale model. Quad solvers
can help evaluate the robustness of future (increasingly large) models of metabolic
networks by enabling similar comparison of high-accuracy solutions for slightly
different problems.

Problem GlcAerWT is an ME model from the detailed study by Thiele et al. [36].
Difficulties with solving TMA_ME and GlcAerWT led to the lifting technique of
Sun et al. [35] (and to problem GlcAlift).

After 33,000 iterations on GlcAerWT, Double MINOS began to report singu-
larities every 50–100 iterations following updates to the basis LU factors. After
another 30,000 iterations, MINOS terminated Step 1 with maximum infeasibility
O(104). Step 2 required significant work to achieve a reasonably accurate solution.
Step 3 quickly confirmed the final objective value with high accuracy considering
the O(107) primal and dual solutions norms.

Problem GlcAlift is a reformulated version of GlcAerWT in which some large
matrix entries cmax in (5) have been reduced via the lifting technique [35]. In Step 1,
Double MINOS again reported frequent singularities and required twice as many
iterations as GlcAerWT, but a near-optimal solution was found (allowing for the
primal and dual solution norms of O(107)), and Steps 2–3 were more efficient and
accurate. The objective function for both GlcA models is to maximize variable
v60069. The fact that the Step 1 objective values have no correct digits illustrates
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the challenge these models present and emphasizes the benefits that Quad precision
offers. Theoretically the optimal objectives for GlcAerWt and GlcAlift should agree.
We assume that the limited data precision in the MPS files is responsible for only
three-digit agreement. Fortunately the Tomlab interface used by Thiele et al. [36]
allows full double-precision data [37]. We can do the same for MINOS, as we did
for SQOPT.

5 Discussion

While today’s advanced LP solvers such as CPLEX, Gurobi, Mosek, and Xpress
[3, 5, 13, 23] are effective on a wide range of large and challenging linear opti-
mization models, the study by Thiele et al. [36] emphasizes the need for improved
reliability in solving FBA and ME models in systems biology. Fortunately, reformu-
lation [35] and careful use of the commercial solvers CPLEX and Gurobi permitted
successful analysis in Thiele et al. [36] of the GlcAerWT and GlcAlift models
discussed here, and we encourage this approach for Step 1 of our proposed three-
step procedure (Section 3). The bulk of the work in solving multiscale LP problems
can still be performed there by conventional Double solvers (possibly including
Barrier solvers with simplex “cross-over” to provide a basis).

Our aim has been to demonstrate that the Step 2 and 3 warm starts with
Quad solvers will be acceptably efficient, and that the accuracy achieved exceeds
requirements by a very safe margin. The “humane” approach of Kahan [16]—use
of Quad LP solvers—is certainly more efficient than applying exact simplex solvers,
even though the latter have proved their value in several applications [1, 2, 18, 20].

An intriguing question remains concerning the bold figures in Table 3. The primal
and dual solutions obtained with Quad precision are substantially more accurate
than the 10−15 requested. The same has been true for all of the classic set of
Netlib problems [28] that we have run. Kahan [16] explains that “perturbations get
amplified by singularities near the data.” He describes a “pejorative surface” of data
points where singularity exists, and expects loss of accuracy as data approaches
the surface. The volume surrounding the pejorative surface is the danger zone,
but: “Arithmetic precision is usually extravagant enough if it is somewhat more
than twice as [great] as the data’s and the desired result’s. Often that shrunken
volume contains no data.” We can surmise that Kahan has anticipated our observed
situation, wherein LP problems defined with double-precision data appear unlikely
to be too ill-conditioned for a Quad solver.

We believe that quadruple-precision solutions are now practical for multiscale LP
applications such as FBA and FVA models in systems biology [12, 30, 31, 36], and
that they justify increased confidence as systems biologists build ever-larger models
to explore new hypotheses about metabolism and macromolecular synthesis. Our
three-step procedure of Section 3 allows combined use of Double and Quad solvers
and should lead to solutions of exceptional accuracy in other areas of computational
science involving multiscale optimization problems. For example, Dattorro [4] has
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derived an approach to analog filter design that requires a Quad LP or nonlinear
solver to deal with a wide range of frequencies (which must be raised to the fourth
power). We look forward to implementing this approach, as well as treating the
nonlinear constraints (7) directly to take advantage of the nonlinear algorithms in
Quad MINOS.

Funding

This work was supported by the National Institute of General Medical Sciences of
the National Institutes of Health [award U01GM102098]. The content is solely the
responsibility of the authors and does not necessarily represent the official views of
the funding agencies.

Acknowledgements We thank Ronan Fleming, Philip Gill, Ed Klotz, Joshua Lerman, Edward
O’Brien, Yuekai Sun, Ines Thiele, and Elizabeth Wong for much help during the course of this
work and for valuable comments on the manuscript. Joshua Lerman at UC San Diego provided
the model named TMA_ME here (originally model_final_build_unscaled.mat) and advised us of
the final objective values obtained by SoPlex and QSopt_exact. Ines Thiele at the University of
Luxembourg provided the GlcAerWT model and insight into the ME coupling constraints. Yuekai
Sun at Stanford University created the reformulated version named GlcAlift here. Ed Klotz of IBM
in Carson City NV provided MPS files for the Mészáros problematic LPs and lengthy discussions
of their properties. A referee also provided valuable feedback.

References

1. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear programming
problems. Oper. Res. Lett. 35, 693–699 (2007)

2. Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear programming problems. Oper.
Res. Lett. 35, 693–699 (2007)

3. CPLEX: IBM ILOG CPLEX optimizer. http://www.ibm.com/software/commerce/
optimization/cplex-optimizer/ (2014)

4. Dattorro, J.: Private Communication. Stanford University, Stanford (2014)
5. FICO Xpress Optimization Suite: http://www.fico.com/en/products/fico-xpress-optimization-

suite/ (2015)
6. Fletcher, R.: On Wolfe’s method for resolving degeneracy in linearly constrained optimization.

SIAM J. Optim. 24(3), 1122–1137 (2014)
7. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear programming. Math.

Program. 57, 341–374 (1992)
8. GCC libquadmath: The GCC Quad-precision math library application programming interface

(API). http://gcc.gnu.org/onlinedocs/libquadmath/ (2014)
9. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Maintaining LU factors of a general

sparse matrix. Linear Algebra Appl. 88/89, 239–270 (1987)
10. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A practical anti-cycling procedure for

linear and nonlinear programming. Math. Program. 45, 437–474 (1989)
11. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained

optimization. SIAM Rev. 47(1), 99–131 (2005). SIGEST article

dingma@stanford.edu



Solving Multiscale Linear Programs Using the Simplex Method in Quadruple Precision 235

12. Gudmundsson, S., Thiele, I.: Computationally efficient flux variability analysis. BMC Bioinf.
11(489), 3 pp. (2010)

13. Gurobi: Gurobi optimization system for linear and integer programming. http://www.gurobi.
com (2014)

14. Hall, J.A.J., McKinnon, K.I.M.: The simplest examples where the simplex method cycles and
conditions where EXPAND fails to prevent cycling. Math. Progam. Ser. B 100, 133–150 (2004)

15. IEEE standard for floating-point arithmetic: IEEE Std 754-2008. IEEE Computer Society
(2008)

16. Kahan, W.: Desperately needed remedies for the undebuggability of large floating-point
computations in science and engineering. In: IFIP/SIAM/NIST Working Conference on
Uncertainty Quantification in Scientific Computing, Boulder (2011). http://www.eecs.berkeley.
edu/~wkahan/Boulder.pdf

17. Klotz, E.: Private Communication. IBM, Carson City (2014)
18. Koch, T.: The final NETLIB-LP results. Oper. Res. Lett. 32, 138–142 (2004)
19. Lerman, J.A.: Private Communication. University of California, San Diego (2012)
20. Lerman, J.A., Hyduke, D.R., Latif, H., Portnoy, V.A., Lewis, N.E., Orth, J.D., Schrimpe-

Rutledge, A.C., Smith, R.D., Adkins, J.N., Zengler, K., Palsson, B.Ø.: In silico method for
modelling metabolism and gene product expression at genome scale. Nat. Commun. 3(929),
10 pp. (2012)

21. LUSOL: Sparse LU factorization package. http://web.stanford.edu/group/SOL/software/lusol
(2013)

22. Mészáros, C.: A collection of challenging LP problems. http://www.sztaki.hu/~meszaros/
public_ftp/lptestset/problematic (2004)

23. MOSEK: MOSEK Optimization Software. http://www.mosek.com/ (2014)
24. MPS: Input format for LP data. http://lpsolve.sourceforge.net/5.5/mps-format.htm (1960)
25. MPS files: Data files in MPS format for models in Table 2. http://web.stanford.edu/group/SOL/

multiscale/models.html (2014)
26. Murtagh, B.A., Saunders, M.A.: Large-scale linearly constrained optimization. Math. Program.

14, 41–72 (1978)
27. Murtagh, B.A., Saunders, M.A.: A projected Lagrangian algorithm and its implementation for

sparse nonlinear constraints. Math. Program. Stud. 16, 84–117 (1982)
28. Netlib: Netlib collection of LP problems in MPS format. http://www.netlib.org/lp/data (1988)
29. O’Brien, E.J., Lerman, J.A., Chang, R.L., Hyduke, D.R., Palsson, B.Ø.: Genome-scale models

of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst.
Biol. 9(693), 13 pp. (2013)

30. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3),
245–248 (2010)

31. Palsson, B.Ø.: Systems Biology: Properties of Reconstructed Networks. Cambridge University
Press, New York (2006)

32. QSopt_ex: Qsopt_ex: a simplex solver for computing exact rational solutions to LP problems.
http://www.math.uwaterloo.ca/~bico/qsopt/index.html (2008)

33. Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.C.,
Bordbar, A., Lewis, N.E., Rahmanian, S., et al.: Quantitative prediction of cellular metabolism
with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6(9), 1290–1307 (2011)

34. SoPlex: Soplex: The sequential object-oriented simplex solver. http://soplex.zib.de (1996)
35. Sun, Y., Fleming, R.M.T., Thiele, I., Saunders, M.A.: Robust flux balance analysis of multiscale

biochemical reaction networks. BMC Bioinf. 14, 240 (2013)
36. Thiele, I., Fleming, R.M.T., Que, R., Bordbar, A., Diep, D., Palsson, B.Ø.: Multiscale modeling

of metabolism and macromolecular synthesis in E. coli and its application to the evolution of
codon usage. PLoS One 7(9), 18 pp. (2012)

37. TOMLAB: Optimization environment for MATLAB. http://tomopt.com (2014)

dingma@stanford.edu


