Accurate and Efficient Solution of Linear and Nonlinear ME Models

The need for quadruple precision

Carrying somewhat more precision in the arithmetic than twice the precision carried in the data and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies
Default evaluation in Quad is the humane option

- William Kahan (2012)

Quad datatypes are now available

GCC provides real (16) and float128 in gfortran and C, C++ This is the humane option for producing quad software

We use double-MINOS and quad-MINOS (f77 sparse LP/NLP) called from f77, f90, or python

Metabolic networks

flux balance analysis (FBA)
Constraint-based models enable the study of metabolism at genome-scale

- M models: multiscale reconstructions of metabolism
- ME models include protein expression (even more multiscale)
- Stoichiometric matrix S, fluxes v, growth rate μ

Most coefficients are moderate: $S_{i j}=0, \pm 1, \pm 2$
Some coefficients are large: $\quad S_{i j}=10,000$

- Similarly for fluxes because of coupling constraints:

$$
v_{i} / v_{j} \geq \mu / k_{\text {eff }} \quad \Rightarrow \quad v_{i} \geq\left(\mu / k_{\text {eff }}\right) v_{j}
$$

Models are linear when $\boldsymbol{\mu}$ is fixed

$$
\begin{aligned}
& \max \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{v} \\
& \text { st } \boldsymbol{S} \boldsymbol{v}=\boldsymbol{b} \\
& \quad \text { bounds on } \boldsymbol{v}
\end{aligned}
$$

Solved by

- openCOBRA toolbox (CPLEX, glpk, Gurobi, Mosek, MINOS, ...)
- MONGOOSE toolbox (exact simplex solver QSOpt_ex)

- Exact simplex as in MONGOOSE can handle nonlinear $\boldsymbol{\mu}$ via binary search, but is not scalable to ME models
- Quad-precision LP and NLP provide a balance between reliability and speed

Linear ME model of E. coli double-MINOS, quad-MINOS LP
Problem GlcAerWT (Thiele, Fleming, et al. 2012), 68300×76664 Step 1: double-MINOS, cold start, scaling

Step 2: quad-MINOS, warm start, scaling

Step 3: quad-MINOS, warm start, no scaling

tinyME (Yang et al. 2014), 2512×2828

Nonlinear ME model
solveME (Yang et al. 2015), 11386×18755

References

- Murtagh and Saunders $(1978,1982)$

Large-scale linearly constrained optimization, Math. Prog. 14:41-72 A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints, Math. Prog. Study 23:349-352

- William Kahan (2011), Desperately needed remedies for the undebuggability of large floating-point computations in science and engineering,
http://www.eecs.berkeley.edu/~wkahan/Boulder.pdI
http://www.eecs.berkeley.edu/~wkahan/Boulder.pdf
- Thiele, Fleming, Que, Bordbar, Diep, and Palsson (2012) Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage, PLOS ONE 7(9), 18 pp
- Chindelevitch, Trigg, Regev, and Berger (2014) An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models, Nat. Commun. 5(4893), 9 pp
- Ma and Saunders (2015)

Solving multiscale linear programs using the simplex method in quadruple precision, Springer, to appear

- Yang, Ma, Ebrahim, Lloyd, Saunders, and Palsson (2015) solveME: fast and reliable solution of nonlinear ME models for metabolic engineering, Metabolic Engineering, submitted
- stanford.edu/group/SOL/multiscale
opencobra.github.io/cobratoolbox mongoose.csail.mit.edu

Funding

NIH U01GM102098 DOE ER65524

