The need for quadruple precision

Carrying somewhat more precision in the arithmetic than twice the precision carried in the data and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies

Default evaluation in Quad is the humane option

— William Kahan (201

Quad datatypes are now available

GCC provides real(16) and float128 in gfortran and C, This is the humane option for producing quad software

We use double-MINOS and quad-MINOS (f77 sparse LP/NL called from f77, f90, or python

Metabolic networks

flux balance analysis

Constraint-based models enable the study of metabolism at genome-scale

- M models: multiscale reconstructions of metabolism
- ME models include protein expression (even more multise
- Stoichiometric matrix **S**, fluxes **v**, growth rate μ Most coefficients are moderate: $S_{ii} = 0, \pm 1, \pm 2$ Some coefficients are large: $S_{ii} = 10,000$
- Similarly for fluxes because of coupling constraints: $\mathbf{v}_i / \mathbf{v}_j \geq \mu / \mathbf{k}_{eff} \Rightarrow \mathbf{v}_i \geq (\mu / \mathbf{k}_{eff}) \mathbf{v}_j$

Models are linear when μ is fixed:

max $c^T v$ st **Sv** = **b** bounds on *v*

Solved by

- openCOBRA toolbox (CPLEX, glpk, Gurobi, Mosek, MINC
- MONGOOSE toolbox (exact simplex solver QSOpt_ex)

Sparse stoichiometric matrix *S*

Recon1

Thermotoga maritima

GlcAerW

- \triangleright Exact simplex as in MONGOOSE can handle nonlinear μ binary search, but is not scalable to ME models
- Quad-precision LP and NLP provide a balance between reliability and speed

Accurate and Efficient Solution of Linear and Nonlinear ME Models

Stanford University and University of California, San Diego

	Linear ME model of <i>E. coli</i>	double-MINOS, quad-MINOS
le	Problem GlcAerWT (Thiele, Fle Step 1: double-MINOS, cold sta	ming, et al. 2012), 68300 \times 7666 art, scaling
2)	No. of iterations62856No. of infeasibilities41No. of degenerate steps33214Max x(scaled)68680Max x626071.0E+09Max Prim inf(scaled)1343826.5E+00Max Primal infeas1298441.0E+04Time for solving problem9707.28	DATEDifferenceDifferenceObjective value-2.4489880182E+04Sum of infeas1.5279397622E+01Percentage52.84Max pi(scaled)Max pi25539Max Dual inf(scaled)70913Max Dual infeas23177Seconds
C++ -P)	Step 2: quad-MINOS, warm stateProblem nameGlcAerWTNo. of iterations5580No. of degenerate steps4072Max x(scaled)59440Max x61436Max Prim inf(scaled)83602Max Primal infeas83602Mar for solving problem395.58	EXIT optimal solution found Objective value -7.0382449681E+05 Percentage 72.97 Max pi (scaled) 40165 8.1E+11 Max pi 25539 2.4E+07 Max Dual inf(scaled) 11436 4.4E-19 Max Dual infeas 24941 8.6E-27 seconds
s (FBA)	Step 3: quad-MINOS, warm stateProblem nameGlcAerWTNo. of iterations4No. of degenerate steps0Max x61436 6.3E+07Max Primal infeas142960 1.3E-19Time for solving problem60.07	EXIT optimal solution found Objective value -7.0382449681E+05 Percentage 0.00 Max pi 25539 2.4E+07 Max Dual infeas 6267 9.4E-22 seconds
cale)	Nonlinear ME model $\mu = \text{growth rate}$ $\max \mu$ $\sup \mu Av + Bv = 0$ $Sv = b$ $Sv = b$ $bounds on v$	A and B overlap $max \mu$ $st \mu Av + w = 0$ $Bv - w = 0$ $Sv = b$ bounds on v, none on V
	Nonlinear ME model tinyME (Yang et al. 2014), 2512	quad-MINOS N 2 × 2828
OS,)	<pre>quadMINOS 5.6 (Nov 2014)</pre>	<pre>hu = mu0 fied. 000000000000000000000000000000000000</pre>
/T <i>i</i> via	3 40T 1.0E+00 8.28869E-01 5.4E-0 4 7 1.0E+00 8.46923E-01 1.2E-0 5 0 1.0E+00 8.46948E-01 4.2E-1 6 0 1.0E+00 8.46948E-01 7.9E-2 EXIT optimal solution found No. of iterations 912 No. of major iterations 6 912 No. of calls to funobj 98 No. of superbasics 0	5 3.6E-05 0 87 1.0E+02 5 2.9E-06 0 96 1.0E+02 0 2.6E-10 0 97 1.0E+02 3 1.2E-20 0 98 1.0E+01 Objective value 8.4694810579E-01 Linear objective 0.000000000E+00 Nonlinear objective 8.4694810579E-01 No. of calls to funcon 98 No. of basic nonlinears 786
	Max x(scaled)125.6E-01Max x10206.1E+01Max Prim inf(scaled)00.0E+00Max Primal infeas00.0E+00Nonlinear constraint violn1.9E-20	Max pi (scaled) 103 8.3E+05 Max pi 103 9.7E+03 Max Dual inf(scaled) 9 2.9E-14 Max Dual infeas 9 1.3E-18

Nonlinear ME model

solveME (Yang et al. 2015), **11386** × **18755**

Calling Itn Calling nnCon, funcon	minos 32 funco nnJac, sets sets	ss. Warm : linea: on. mu = , neJac 14322 1	start with r constrain 0.832815 2629 out of out of	provided nts satis 729997476 16 14322 1	basis (H fied. 367249118 126 constrain objective	hs) 88758201 14322 nt gradi e gradi	91994 ents.		
	0000	-		-	0.0] 000 ± 1	graar			
Major m	inor	step	objective	Feasibl	e Optimal	l nsb	ncon	penalty	BSwap
1	32T	0.0E+00	8.32816E-0	01 4.3E-1	3 1.0E+03	3 0	4	1.0E+02	0
19	40T	1.0E+00	8.32816E-()1 2.5E-1	6 1.0E-03	3 0	743	1.0E+02	0
20	40T	1.0E+00	8.32816E-0	01 1.0E-2	1 9.3E-04	4 0	784	1.0E+02	0
23	40T	1.0E+00	8.55337E-()1 3.4E-0	7 5.7E-0	5 0	907	1.0E+02	0
24	40T	1.0E+00	8.55664E-0)1 2.1E-0	8 6.6E-0 ⁻	7 0	948	1.0E+02	0
Itn	979		10 nonbas:	ics set o	n bound,	basics	recomp	uted	
25	11	1.0E+00	8.55664E-0)1 7.0E-1	, 7 1.8E-11	1 0	961	1.0E+02	0
26	0	1.0E+00	8.55664E-0	01 9.3E-1	9 8.0E-29	9 0	962	1.0E+01	0
EXIT	optir	nal solut:	ion found						
No. of	iterat	cions		979	Objective	e value	8	.5566388	920E-01
No. of	major	iteration	ns	26	Linear ob	bjective	0	.0000000	000E+00
Penalty	parar	neter	1.(00000	Nonlinea	r object	ive 8	.5566388	920E-01
No. of	calls	to funob	j	962	No. of ca	alls to	funcon		962
No. of	superk	Dasics		0	No. of ba	asic non	linear	S	7896
Max x		(scaled)	12918 4	.5E+01	Max pi	(sca	led)	9674	3.3E+04
Max x			14520 4	.5E+01	Max pi			4138	3.8E+03
Max Pri	m inf	(scaled)	0 0	.0E+00	Max Dual	inf(sca	led)	1	8.1E-24
Max Pri	mal ir	nfeas	0 0	.0E+00	Max Dual	infeas		6827	1.1E-24

NO.	oi major	iteration	S	26	Line	ear c	bject
Penalty parameter		1	1.00000		Nonlinear obj		
No.	of calls	to funobj		962	No.	of c	alls ⁻
No.	of super	oasics		0	No.	of k	asic :
Max	Х	(scaled)	12918	4.5E+01	Max	pi	(
Max	Х		14520	4.5E+01	Max	pi	
Max	Prim inf	(scaled)	0	0.0E+00	Max	Dual	. inf(
Max	Primal in	nfeas	0	0.0E+00	Max	Dual	infe
Non	linear co	nstraint v	ioln	1.4E-19			

References

- Murtagh and Saunders (1978, 1982) Large-scale linearly constrained optimization, Math. Prog. 14:41–72 A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints, Math. Prog. Study 23:349–352
- ► William Kahan (2011), Desperately needed remedies for the undebuggability of large floating-point computations in science and engineering, http://www.eecs.berkeley.edu/~wkahan/Boulder.pdf
- ► Thiele, Fleming, Que, Bordbar, Diep, and Palsson (2012) Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage, PLOS ONE 7(9), 18 pp
- Chindelevitch, Trigg, Regev, and Berger (2014) An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models, Nat. Commun. 5(4893), 9 pp
- Ma and Saunders (2015) Solving multiscale linear programs using the simplex method in quadruple precision, Springer, to appear
- Yang, Ma, Ebrahim, Lloyd, Saunders, and Palsson (2015) solveME: fast and reliable solution of nonlinear ME models for metabolic engineering, *Metabolic Engineering*, submitted
- stanford.edu/group/SOL/multiscale opencobra.github.io/cobratoolbox

Funding

quad-MINOS NLP

wwwen.uni.lu/lcsb mongoose.csail.mit.edu

