| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nonlinear ME model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>We summarize research and general-purpose software packages that have applications to multiscale modeling in systems biology</li> <li>[5]. They include</li> <li>IusolZ: Sparse-matrix factorizations for rank and nullspace computations [2, 3]</li> <li>PNOPT: An optimization method for composite smooth and nonsmooth functions [7]</li> <li>double-MINOS, guad-MINOS, PDCO: Constrained optimization</li> </ul>                                               | $\mu = \text{growth rate}$ $\max \mu$ $\sup \mu Av + Bv = 0$ $Sv = b \equiv$ bounds on v $\sum k = 0$ $\sum k = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A and B overlap<br>max $\mu$<br>st $\mu Av + w$<br>Bv - w<br>Sv<br>bounds on<br>1386 $\times$ 18755 quart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| routines for linear and nonlinear flux balance analysis (FBA) and general optimization using double- and quadruple-precision [1, 4, 6, 8, 9]                                                                                                                                                                                                                                                                                                                                 | Calling minoss. Warm start with provided<br>Itn 32 linear constraints satis<br>Calling funcon. mu = 0.832815729997476<br>nnCon, nnJac, neJac 2629 16<br>funcon sets 14322 out of 14322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | basis (hs)<br>fied.<br>367249118875820191994<br>126 14322<br>constraint gradients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The need for quadruple precision                                                                                                                                                                                                                                                                                                                                                                                                                                             | funobj sets 1 out of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | objective gradients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Carrying somewhat more precision in the arithmetic<br>than twice the precision carried in the data and available<br>for the result will vastly reduce embarrassment due to<br>roundoff-induced anomalies<br>Default evaluation in quad is the humane option<br>— William Kahan (2012)                                                                                                                                                                                        | Major Millior       Step       Objective       Feasibility         1       32T       0.0E+00       8.32816E-01       4.3E-1         19       40T       1.0E+00       8.32816E-01       2.5E-1         20       40T       1.0E+00       8.32816E-01       2.5E-1         20       40T       1.0E+00       8.32816E-01       2.5E-1         23       40T       1.0E+00       8.55337E-01       3.4E-0         24       40T       1.0E+00       8.55664E-01       2.1E-0         Itn       979        10       nonbasics set       0         25       11       1.0E+00       8.55664E-01       7.0E-1         26       0       1.0E+00       8.55664E-01       9.3E-1         EXIT optimal solution found       9.3E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>a 1.0E+03</li> <li>a 1.0E+03</li> <li>b 1.0E-03</li> <li>c 743</li> <li>c 1.0E-03</li> <li>c 743</li> <lic 743<="" li=""> <li>c 743</li> &lt;</lic></ul> |
| Quad datatypes are now available                                                                                                                                                                                                                                                                                                                                                                                                                                             | No. of iterations979No. of major iterations26Penalty parameter1.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Objective value 8.55<br>Linear objective 0.00<br>Nonlinear objective 8.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>GCC provides real (16) and float128 in gfortran, C, C++<br/>This is the humane option for producing quad software</li> <li>double-MINOS, quad-MINOS called from f77, f90, python</li> <li>C++ PDCO will switch from double to quad at runtime</li> </ul>                                                                                                                                                                                                            | No. of calls to funobj 962<br>No. of superbasics 0<br>Max x (scaled) 12918 4.5E+01<br>Max x 14520 4.5E+01<br>Max Prim inf(scaled) 0 0.0E+00<br>Max Primal infeas 0 0.0E+00<br>Nonlinear constraint violn 1.4E-19<br><b>Optimal control problem</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. of calls to funcon<br>No. of basic nonlinears<br>Max pi (scaled)<br>Max Dual inf(scaled)<br>Max Dual infeas<br>Max Dual infeas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Linear ME model of <i>E. coli</i> double-MINOS, quad-MINOS LP         Problem GlcAerWT (Thiele, Fleming, et al. 2012), 68300 × 76664         Step 1: double-MINOS, cold start, scaling         Problem name       GlcAerWT         EXIT       The problem is infeasible                                                                                                                                                                                                      | min $f(y, z, u) = \frac{1}{2} \sum_{t=1}^{T} \sum_{$ | $z_t^2$<br>0 0.01 $y_t^2 - 0.004z_t - 0.2y_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No. of iterations62856Objective value-2.4489880182E+04No. of infeasibilities41Sum of infeas1.5279397622E+01No. of degenerate steps33214Percentage52.84                                                                                                                                                                                                                                                                                                                       | $-1 \leq y_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $y_0 = 0, y_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Max x       (scaled)       68680       4.4E+06       Max pi       54979       1.4E+02         Max x       62607       1.0E+09       Max pi       25539       3.0E+02         Max Prim inf(scaled)       134382       6.5E+00       Max Dual inf(scaled)       70913       1.2E-05         Max Primal infeas       129844       1.0E+04       Max Dual infeas       23177       2.0E-05         Time for solving problem       9707.28       seconds       3177       2.0E-05 | Opt tol Majors Mino<br>double 1e-06 13 57<br>quad 1e-15 31 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2 	 0.2 	 2_0 = 10$<br>rs Superbasics Obj<br>3 	 18 	 118<br>2 	 113 	 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Problem nameGlcAerWTEXIT optimal solution foundNo. of iterations5580Objective value-7.0382449681E+05No. of degenerate steps4072Percentage72.97Max x(scaled)594403.7E+00Max pi(scaled)Max x614366.3E+07Max pi255392.4E+07Max Prim inf(scaled)836023.8E-16Max Dual inf(scaled)114364.4E-19Max Primal infeas836021.7E-07Max Dual infeas249418.6E-27                                                                                                                             | quad-MINOS gives an u<br>(many variables exactly zer<br>Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inexpectedly "clean"<br>o, including control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Time for solving problem 3995.58 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step 3: quad-MINOS, warm start, no scalingProblem nameGlcAerWTEXIT optimal solution foundNo. of iterations4Objective value-7.0382449681E+05No. of degenerate steps0Percentage0.00Max x614366.3E+07Max pi255392.4E+07Max Primal infeas1429601.3E-19Max Dual infeas62679.4E-22                                                                                                                                                                                                 | NIH U01GM102098<br>DOE ER65524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nonlinear ME model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | va                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>We summarize research and general-purpose software packages hat have applications to multiscale modeling in systems biology</li> <li>5]. They include</li> <li>IusolZ: Sparse-matrix factorizations for rank and nullspace computations [2, 3]</li> <li>PNOPT: An optimization method for composite smooth and nonsmooth functions [7]</li> </ul>                                                                                                                    | $\mu = \text{growth rate}$ $\max \mu$ $\operatorname{st} \mu A v + B v = 0$ $S v = b \equiv$ $bounds on v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A and B overlap<br>$max \mu$<br>$st \mu Av + w$<br>Bv - w<br>Sv<br>bounds or                                                                                      |
| double-MINOS, quad-MINOS, PDCO: Constrained optimization<br>routines for linear and nonlinear flux balance analysis (FBA) and<br>general optimization using double- and quadruple-precision<br>[1, 4, 6, 8, 9]                                                                                                                                                                                                                                                                | Calling minoss. Warm start with provided<br>Itn 32 linear constraints satisf<br>Calling funcon. mu = 0.8328157299974763<br>nnCon, nnJac, neJac 2629 161<br>funcon sets 14322 out of 14322 c                                                                                                                                                                                                                                                                                                                                                                                      | 386 × 18755 qua<br>basis (hs)<br>ied.<br>67249118875820191994<br>26 14322<br>onstraint gradients.                                                                 |
| The need for quadruple precision                                                                                                                                                                                                                                                                                                                                                                                                                                              | funobj sets 1 out of 1 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ojective gradients.                                                                                                                                               |
| Carrying somewhat more precision in the arithmetic<br>than twice the precision carried in the data and available<br>for the result will vastly reduce embarrassment due to<br>roundoff-induced anomalies<br>Default evaluation in quad is the humane option<br>— William Kahan (2012)                                                                                                                                                                                         | 1       32T       0.0E+00       8.32816E-01       4.3E-13         19       40T       1.0E+00       8.32816E-01       2.5E-16         20       40T       1.0E+00       8.32816E-01       1.0E-21         23       40T       1.0E+00       8.55337E-01       3.4E-07         24       40T       1.0E+00       8.55664E-01       2.1E-08         Itn       979       10       nonbasics set on         25       11       1.0E+00       8.55664E-01       7.0E-17         26       0       1.0E+00       8.55664E-01       9.3E-19         EXIT optimal solution found       9.3E-19 | 1.0E+03 0 4 1.<br>1.0E-03 0 743 1.<br>9.3E-04 0 784 1.<br>5.7E-05 0 907 1.<br>6.6E-07 0 948 1.<br>bound, basics recompute<br>1.8E-11 0 961 1.<br>8.0E-29 0 962 1. |
| Quad datatypes are now available                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. of iterations 979 O<br>No. of major iterations 26 L<br>Penalty parameter 1 000000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ojective value 8.55<br>inear objective 0.00                                                                                                                       |
| <ul> <li>GCC provides real (16) and float128 in gfortran, C, C++<br/>This is the humane option for producing quad software</li> <li>double-MINOS, quad-MINOS called from f77, f90, python</li> <li>C++ PDCO will switch from double to quad at runtime</li> </ul>                                                                                                                                                                                                             | No. of superbasics 0 N<br>Max x (scaled) 12918 4.5E+01 M<br>Max x 14520 4.5E+01 M<br>Max Prim inf(scaled) 0 0.0E+00 M<br>Max Primal infeas 0 0.0E+00 M<br>Nonlinear constraint violn 1.4E-19                                                                                                                                                                                                                                                                                                                                                                                     | <pre>b. of calls to function<br/>b. of basic nonlinears<br/>ax pi (scaled)<br/>ax Dual inf(scaled)<br/>ax Dual infeas</pre>                                       |
| Linear ME model of <i>E. coli</i> double-MINOS, quad-MINOS LP<br>Problem GlcAerWT (Thiele, Fleming, et al. 2012), 68300 × 76664<br>Step 1: double-MINOS, cold start, scaling<br>Problem name GlcAerWT EXIT the problem is infeasible<br>No. of iterations 62856 Objective value -2.4489880182E+04<br>No. of infeasibilities 41 Sum of infeas 1.5279397622E+01<br>No. of degenerate steps 33214 Percentage 52.84<br>Max x (scaled) 68680 4.4E+06 Max pi (scaled) 54979 1.4E+02 | $\min f(y, z, u) = \frac{1}{2} \sum_{t=0}^{T} y_{t+1} = y_t - z_{t+1} = z_t + 0$ $-1 \le y_t - 1 \le y_t \le 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $z_t^2$<br>$0.01y_t^2 - 0.004z_t - 0.2y_t$<br>$y_0 = 0, y_1$<br>$0.2 \qquad z_0 = 10$                                                                             |
| Max x62607 1.0E+09Max pi25539 3.0E+02Max Prim inf(scaled)134382 6.5E+00Max Dual inf(scaled)70913 1.2E-05Max Primal infeas129844 1.0E+04Max Dual infeas23177 2.0E-05Time for solving problem9707.28 seconds9707.28 seconds                                                                                                                                                                                                                                                     | Opt tol Majors Minors<br>double 1e-06 13 576<br>quad 1e-15 31 1282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Superbasics Obj<br>18 118<br>113 118                                                                                                                              |
| Problem nameGlcAerWTEXIT optimal solution foundNo. of iterations5580Objective value-7.0382449681E+05No. of degenerate steps4072Percentage72.97Max x(scaled)594403.7E+00Max pi(scaled)Max x614366.3E+07Max pi255392.4E+07                                                                                                                                                                                                                                                      | quad-MINOS gives an ur<br>(many variables exactly zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nexpectedly "clean"<br>, including control v                                                                                                                      |
| Max Prim inf(scaled)83602 3.8E-16Max Dual inf(scaled)11436 4.4E-19Max Primal infeas83602 1.7E-07Max Dual infeas24941 8.6E-27Time for solving problem3995.58 seconds24941 8.6E-27                                                                                                                                                                                                                                                                                              | Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                   |
| Step 3: quad-MINOS, warm start, no scalingProblem nameGlcAerWTEXIT optimal solution foundNo. of iterations4Objective value-7.0382449681E+05No. of degenerate steps0Percentage0.00Max x614366.3E+07Max pi255392.4E+07Max Primal infeas1429601.3E-19Max Dual infeas62679.4E-22                                                                                                                                                                                                  | NIH U01GM102098<br>DOE ER65524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEALTA                                                                                                                                                            |

| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nonlinear ME model va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>We summarize research and general-purpose software packages that have applications to multiscale modeling in systems biology</li> <li>[5]. They include</li> <li>IusolZ: Sparse-matrix factorizations for rank and nullspace computations [2, 3]</li> <li>PNOPT: An optimization method for composite smooth and ponsmooth functions [7]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mu =$ growth rate $A$ and $B$ overlap $\max \mu$<br>st $\mu Av + Bv = 0$<br>$Sv = b$ $\max \mu$<br>st $\mu Av + w$<br>$Bv - w$<br>$Sv$ $bounds on v$ $\equiv$ $\sum v$<br>bounds on v $\sum v$<br>bounds on v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>double-MINOS, quad-MINOS, PDCO: Constrained optimization routines for linear and nonlinear flux balance analysis (FBA) and general optimization using double- and quadruple-precision [1, 4, 6, 8, 9]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calling minoss. Warm start with provided basis (hs)<br>Itn 32 linear constraints satisfied.<br>Calling funcon. mu = 0.832815729997476367249118875820191994<br>nnCon, nnJac, neJac 2629 16126 14322<br>funcon sets 14322 out of 14322 constraint gradients.<br>funobi sets 1 out of 1 objective gradients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Carrying somewhat more precision in the arithmetic<br>than twice the precision carried in the data and available<br>for the result will vastly reduce embarrassment due to<br>roundoff-induced anomalies<br>Default evaluation in quad is the humane option<br>— William Kahan (2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major minor step       objective Feasible Optimal       nsb       ncon pe         1       32T 0.0E+00       8.32816E-01       4.3E-13       1.0E+03       0       4       1.         19       40T 1.0E+00       8.32816E-01       2.5E-16       1.0E-03       0       743       1.         20       40T 1.0E+00       8.32816E-01       2.5E-16       1.0E-03       0       743       1.         20       40T 1.0E+00       8.32816E-01       1.0E-21       9.3E-04       0       784       1.         23       40T 1.0E+00       8.55337E-01       3.4E-07       5.7E-05       0       907       1.         24       40T 1.0E+00       8.55664E-01       2.1E-08       6.6E-07       0       948       1.         Itn       979       10       nonbasics set on bound, basics recompute       25       11       1.0E+00       8.55664E-01       7.0E-17       1.8E-11       0       961       1.         26       0       1.0E+00       8.55664E-01       9.3E-19       8.0E-29       0       962       1.         EXIT optimal solution found       6ution found       6ution found       6ution found       6ution found       6ution found |
| <ul> <li>Quad datatypes are now available</li> <li>GCC provides real (16) and float128 in gfortran, C, C++<br/>This is the humane option for producing quad software</li> <li>double-MINOS, quad-MINOS called from f77, f90, python</li> <li>C++ PDCO will switch from double to quad at runtime</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. of iterations979Objective value8.55No. of major iterations26Linear objective0.00Penalty parameter1.000000Nonlinear objective8.55No. of calls to funobj962No. of calls to funconNo. of basic nonlinearsNo. of superbasics0No. of basic nonlinearsNo. of basic nonlinearsMax x(scaled)129184.5E+01Max pi(scaled)Max x145204.5E+01Max piMax piMax piMax Prim inf(scaled)00.0E+00Max Dual inf(scaled)Max Dual infeasNonlinear constraint violn1.4E-19Max Dual infeasMax prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Linear ME model of <i>E. coli</i> double-MINOS, quad-MINOS LP<br>Problem GlcAerWT (Thiele, Fleming, et al. 2012), 68300 × 76664<br>Step 1: double-MINOS, cold start, scaling<br>Problem name GlcAerWT EXIT the problem is infeasible<br>No. of infeasibilities 41 Sum of infeas 1.5279397622E+01<br>No. of degenerate steps 33214 Percentage 52.84<br>Max x (scaled) 68680 4.4E+06 Max pi (scaled) 54979 1.4E+02<br>Max x (scaled) 68680 4.4E+06 Max pi (scaled) 54979 1.4E+02<br>Max x (scaled) 134382 6.5E+00 Max pi (scaled) 70913 1.2E+05<br>Time for solving problem 9707.28 seconds<br>Step 2: quad-MINOS, warm start, scaling<br>No. of iterations 5580 Objective value -7.0382449681E+05<br>No. of iterations 5580 Objective value -7.0382449681E+05<br>No. of degenerate steps 4072 Percentage 72.97 | $\min f(y, z, u) = \frac{1}{2} \sum_{t=0}^{T} z_t^2$ $y_{t+1} = y_t - 0.01 y_t^2 - 0.004 z_t - z_{t+1} = z_t + 0.2 y_t$ $-1 \le y_t \qquad y_0 = 0, y_t$ $-0.2 \le u_t \le 0.2 \qquad z_0 = 10$ Opt tol Majors Minors Superbasics Ob<br>double 1e-06 13 576 18 118<br>quad 1e-15 31 1282 113 118<br>quad-MINOS gives an unexpectedly "clean"<br>(many variables exactly zero, including control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max x(scaled)594403.7E+00Max pi(scaled)401658.1E+11Max x614366.3E+07Max pi255392.4E+07Max Prim inf(scaled)836023.8E-16Max Dual inf(scaled)114364.4E-19Max Primal infeas836021.7E-07Max Dual infeas249418.6E-27Time for solving problem3995.58seconds249418.6E-27Step 3: quad-MINOS, warm start, no scalingProblem nameGlcAerWTEXIT optimal solution foundNo. of iterations4Objective value-7.0382449681E+05No. of degenerate steps0Percentage0.00Max x614366.3E+07Max pi255392.4E+07Max Primal infeas1429601.3E-19Max Dual infeas62679.4E-22                                                                                                                                                                                                                                                                  | Funding         NIH U01GM102098         DOE ER65524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# General-purpose Software for Systems Biology Ron Estrin, Ronan Fleming, Nick Henderson, San Kim, Ding Ma, Yuekai Sun, Ines Thiele, Laurence Yang,

Bernhard Palsson, and Michael Saunders

Stanford University, University of Luxembourg, and UC San Diego



