Proximal Newton-type methods for minimizing composite function Jason Lee, Yuekai Sun, Michael Saunders

Minimizing composite functions

minimize f(x) := g(x) + h(x)

- ▶ g and h are closed, convex functions
- \mathbf{P} is continuously differentiable, and its gradient ∇g is Lipschitz continuous
- h is not necessarily everywhere differentiable, but its proximal mapping can be evaluated efficiently

Sparse inverse covariance estimation

- ▶ $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)} \in \mathbf{R}^n$ are *i.i.d.* samples from a Gaussian MRF: $\Pr(x; \Theta) \propto \exp(x^T \Theta x/2 - \log \det(\Theta))$
- We form the sample covariance matrix $\hat{\boldsymbol{\Sigma}} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{X}^{(i)} \boldsymbol{X}^{(i)T}$ and seek a sparse maximum likelihood estimate of $\overline{\Theta}$:

 $\underset{\Theta \in \mathbb{R}^{n \times n}}{\text{minimize}} - \text{logdet}(\Theta) + \text{tr}(\hat{\Sigma}\Theta) + \lambda \|\text{vec}(\Theta)\|_{1}$

Proximal Newton-type methods

Main idea: use a local quadratic model (in lieu of a simple quadratic model) to account for the curvature of g:

 $\Delta x_k := \underset{d}{\operatorname{arg\,min}} \nabla g(x_k)^T d + \frac{1}{2} d^T H_k d + h(x_k + d).$

approx. Hessian term

 Δx_k can be expressed as

 $H_k \Delta x_k \in - \nabla g(x_k)$ forward/explicit gradient

 $\partial h(x_k + \Delta x_k)$. backward/implicit subgradient

A generic proximal Newton-type method

Algorithm 1 A generic proximal Newton-type method

Require: starting point $x_0 \in \text{dom } f$

1: repeat

Choose an approximation to the Hessian H_k . 2:

Solve the subproblem for a search direction: 3:

- $\Delta x_k \leftarrow \arg\min_d \nabla g(x_k)^T d + \frac{1}{2} d^T H_k d + h(x_k + d).$ Select t_k with a backtracking line search. 4:
- Update: $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \mathbf{t}_k \Delta \mathbf{x}_k$. 5:
- 6: **until** stopping conditions are satisfied.

Institute for Computational and Mathematical Engineering, Stanford University

Convergence of proximal Newton-type methods

Global convergence:

- \blacktriangleright smallest eigenvalue of H_k 's bounded away from zero
- Local quadratic convergence (prox-Newton method):
- ► **g** is locally strongly convex
- $\nabla^2 g$ is locally Lipschitz continuous
- Local superlinear convergence (prox-quasi-Newton methods): assumptions for quadratic convergence
- eigenvalues of H_k 's bounded and H_k 's satisfy:

lim	$\ (\boldsymbol{H_k} - \boldsymbol{h_k})\ $	$\nabla^2 g(x^\star))$	(\mathbf{x}_k)
$k{ ightarrow}\infty$		$\ \mathbf{X}_{k+1}\ $ —	

Inexact proximal Newton-type methods

Main idea: no need to solve the subproblem exactly only need a good enough search direction.

 $\Delta x_k \approx \arg \min \nabla g(x_k)^T d + \frac{1}{2} d^T$

- We solve the subproblem approximately with an iterative method, terminating (sometimes very) early
- number of iterations may increase, but computational expense per iteration is smaller
- many practical implementations use inexact search directions Another idea: choose H_k so the subproblem is easy to solve.

Early stopping conditions

Intuition: solve the subproblem almost exactly when

- \mathbf{x}_{k} is close to the optimal solution
- H_{k-1} captures the curvature of g

Typical stopping condition:

 $\|\nabla g_k(\mathbf{x}_k) + H_k \Delta \mathbf{x}_k + \partial h(\mathbf{x}_k + \Delta \mathbf{x}_k)\| \leq \eta_k \|G_f(\mathbf{x}_k)\|$ optimality of subproblem solution choose η_k based on how good the quadratic model is: $\eta_k \sim rac{\|
abla g_{k-1}(x_{k-1}) + H_{k-1}\Delta x_{k-1} -
abla g(x_k)\|_2}{\|
abla g(x_{k-1})\|_2}$

- $\| x_k \|_2 = 0$

$$H_k d + h(x_k + d).$$

optimality of $\mathbf{x}_{\mathbf{k}}$

Convergence of the inexact prox-Newton method

Local linear convergence (inexact prox-Newton method):

- ► **g** is locally strongly convex
- $\nabla^2 g$ is locally Lipschitz continuous
- $\mathbf{v}_{\mathbf{k}}$ is smaller than some $\bar{\eta}$

Local superlinear convergence (...):

- assumptions for linear convergence

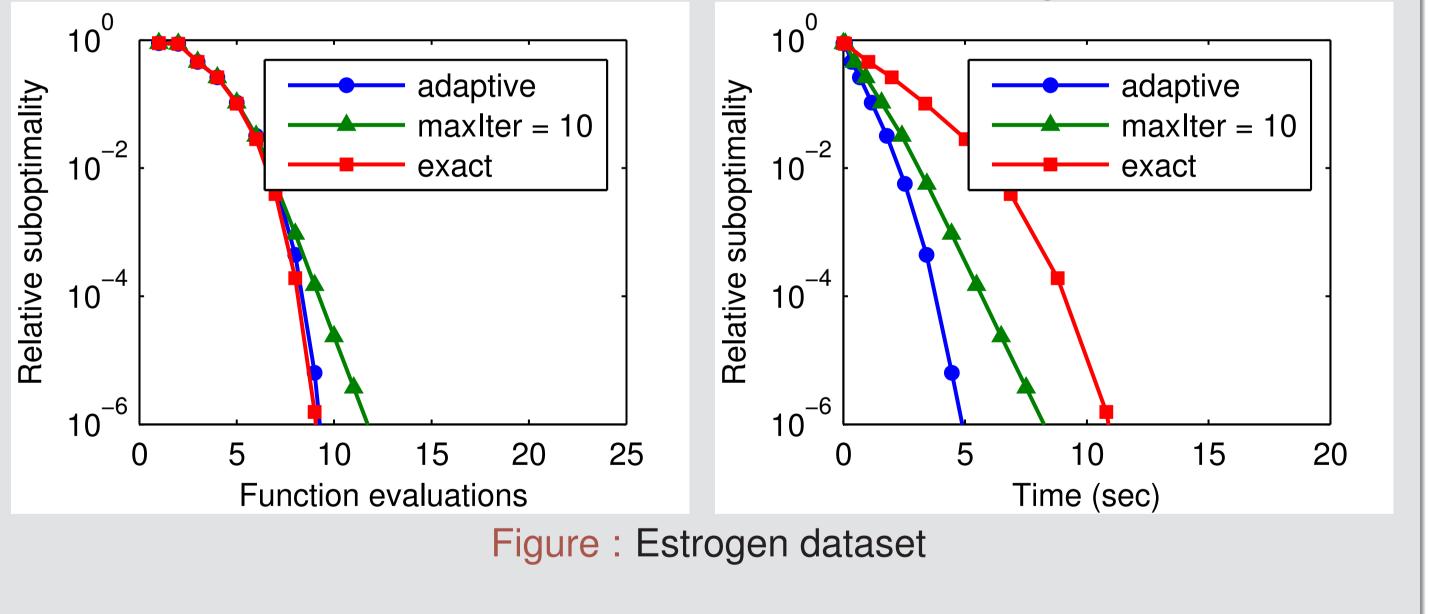
Sparse inverse covariance estimation

- seek a sparse maximum likelihood estimate of Θ :

Datasets:

- sets collected from 158 patients
- genes from 72 patients

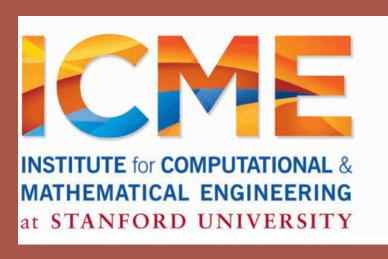
Q: How do inexact search directions affect convergence?



Summary

Proximal Newton-type methods

- solution of high accuracy.
- objective.
- compared to **h**, **prox**_h.



 η_k decays to zero (*e.g.* under our choice of forcing term)

▶ We have samples $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)} \in \mathbf{R}^n$ from a Gaussian MRF. • We form the sample covariance matrix $\hat{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{(i)} \mathbf{x}^{(i)T}$ and $\underset{\Theta \in \mathbb{R}^{n \times n}}{\text{minimize}} - \text{logdet}(\Theta) + \text{tr}(\hat{\Sigma}\Theta) + \lambda \|\text{vec}(\Theta)\|_{1}$

Estrogen: a gene expression dataset consisting of 682 probe

Leukemia: another gene expression dataset consisting of 1255

converge rapidly near the optimal solution, and can produce a

are insensitive to the condition number of the sublevel sets of the

 \blacktriangleright are suited to problems where g, ∇g is expensive to evaluate

{jdl17,yuekai,saunders}@stanford.edu