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Minimizing composite functions

minimize
x

f (x) := g(x) + h(x)

I g and h are closed, convex functions
I g is continuously differentiable, and its gradient∇g is Lipschitz

continuous
I h is not necessarily everywhere differentiable, but its proximal

mapping can be evaluated efficiently

Sparse inverse covariance estimation

I x (1), . . . , x (m) ∈ Rn are i.i.d. samples from a Gaussian MRF:
Pr(x ; Θ) ∝ exp(xTΘx/2− log det(Θ))

I We form the sample covariance matrix Σ̂ = 1
m

∑m
i=1 x (i)x (i)T and

seek a sparse maximum likelihood estimate of Θ:
minimize

Θ∈Rn×n
−logdet(Θ) + tr(Σ̂Θ) + λ ‖vec(Θ)‖1

Proximal Newton-type methods

Main idea: use a local quadratic model (in lieu of a simple
quadratic model) to account for the curvature of g:

∆xk := arg min
d

∇g(xk)Td +
1
2

dTHkd
approx. Hessian term

+ h(xk + d).

∆xk can be expressed as
Hk∆xk ∈ − ∇g(xk)

forward/explicit gradient
− ∂h(xk + ∆xk)

backward/implicit subgradient
.

A generic proximal Newton-type method

Algorithm 1 A generic proximal Newton-type method

Require: starting point x0 ∈ dom f
1: repeat
2: Choose an approximation to the Hessian Hk .
3: Solve the subproblem for a search direction:

∆xk ← arg mind∇g(xk)Td + 1
2dTHkd + h(xk + d).

4: Select tk with a backtracking line search.
5: Update: xk+1← xk + tk∆xk .
6: until stopping conditions are satisfied.

Convergence of proximal Newton-type methods

Global convergence:
I smallest eigenvalue of Hk ’s bounded away from zero

Local quadratic convergence (prox-Newton method):
I g is locally strongly convex
I ∇2g is locally Lipschitz continuous

Local superlinear convergence (prox-quasi-Newton methods):
I assumptions for quadratic convergence
I eigenvalues of Hk ’s bounded and Hk ’s satisfy:

lim
k→∞

∥∥(Hk −∇2g(x?)
)

(xk+1 − xk)
∥∥

2

‖xk+1 − xk‖2
= 0.

Inexact proximal Newton-type methods

Main idea: no need to solve the subproblem exactly only need a
good enough search direction.

∆xk ≈ arg min
d

∇g(xk)Td +
1
2

dTHkd + h(xk + d).

I We solve the subproblem approximately with an iterative method,
terminating (sometimes very) early

I number of iterations may increase, but computational expense
per iteration is smaller

I many practical implementations use inexact search directions
Another idea: choose Hk so the subproblem is easy to solve.

Early stopping conditions

Intuition: solve the subproblem almost exactly when
I xk is close to the optimal solution
I Hk−1 captures the curvature of g

Typical stopping condition:
‖∇gk(xk) + Hk∆xk + ∂h(xk + ∆xk)‖

optimality of subproblem solution
≤ ηk ‖Gf(xk)‖

optimality of xk

choose ηk based on how good the quadratic model is:

ηk ∼
‖∇gk−1(xk−1) + Hk−1∆xk−1 −∇g(xk)‖2

‖∇g(xk−1)‖2

Convergence of the inexact prox-Newton method

Local linear convergence (inexact prox-Newton method):
I g is locally strongly convex
I ∇2g is locally Lipschitz continuous
I ηk is smaller than some η̄

Local superlinear convergence (...):
I assumptions for linear convergence
I ηk decays to zero (e.g. under our choice of forcing term)

Sparse inverse covariance estimation

I We have samples x (1), . . . , x (m) ∈ Rn from a Gaussian MRF.
I We form the sample covariance matrix Σ̂ = 1

m

∑m
i=1 x (i)x (i)T and

seek a sparse maximum likelihood estimate of Θ:
minimize

Θ∈Rn×n
−logdet(Θ) + tr(Σ̂Θ) + λ ‖vec(Θ)‖1

Datasets:
I Estrogen: a gene expression dataset consisting of 682 probe

sets collected from 158 patients
I Leukemia: another gene expression dataset consisting of 1255

genes from 72 patients
Q: How do inexact search directions affect convergence?
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Figure : Estrogen dataset

Summary

Proximal Newton-type methods
I converge rapidly near the optimal solution, and can produce a

solution of high accuracy.
I are insensitive to the condition number of the sublevel sets of the

objective.
I are suited to problems where g, ∇g is expensive to evaluate

compared to h, proxh.
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