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A procedure is described for preventing cycling in active-set methods for linearly constrained 
optimization, including the simplex method. The key ideas are a limited acceptance ofinfeasibilities 
in all variables, and maintenance of a "working" feasibility tolerance that increases over a long 
sequence of iterations. The additional work per iteration is nominal, and "stalling" cannot occur 
with exact arithmetic. The method appears to be reliable, based on computational results for the 
first 53 linear programming problems in the Netlib set. 
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I. Introduction 

Degeneracy is often regarded as a discomforting but otherwise tolerable hindrance 
to the simplex method, and to other active-set algorithms for solving optimization 
problems involving linear constraints. Sequences of non-improving steps are known 
to occur (perhaps many times while solving a given problem), but such sequences 
are rarely observed to be infinite. The phenomenon of "stalling" is therefore 
recognized and accepted, but "cycling" is deemed very unlikely to occur. 

In spite of such folklore, cycling remains a theoretical possibility, and a rigorous 
anti-cycling procedure can provide welcome peace of mind to users and implemen- 
tors alike, particularly if the cost is small. Numerous authors have suggested 
anti-cycling techniques of differing flavors. A partial list includes Balinski and 
Gomory [1], Benichou et al. [3], Bland [4], Dantzig [6, 7], Dantzig et al. [8], Fletcher 
[12] ,  G r a v e s  [22],  K l o t z  [25] ,  R o c k a f e l l a r  [35] a n d  W o l f e  [39].  T h e  p r a c t i c a l  b e n e f i t s  
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of anti-cycling methods have been discussed recently by Ryan and Osborne [36] 

and Falkner [9]. 

An anti-cycling procedure will be described in this paper that involves little 

overhead and has proved to be effective in practice. Two features are crucial: 

controlled infeasibility of all variables (including nonbasics) and a "working" 

feasibility tolerance that increases slightly and consistently through an extended 

sequence of  iterations. Sections 2 and 3 review background material about the 
simplex method and steplength selection. The new technique is introduced in Section 

4, followed by presentation of a simplified version in Section 5. The relationship of 

the new approach to Wolfe's [39] method is considered in Section 6, and issues 

arising in Phase 1 are treated in Section 7. The use of the procedure in active-set 

methods for general linearly constrained problems is addressed in Section 8. 

Computational results are given in Section 9, and our conclusions are stated in 

Section 10. 

2. Background 

Most of our discussion will concern application of the s implex  m e t h o d  [6] to the 

standard-form primal linear programming (LP) problem: 

minimize CTX 
(2.1) 

subject to A x  = b, l <~ x <~ u, 

where x c R" and A is m × n (m ~< n). We first describe an "idealized" version of 

the simplex method (with exact arithmetic), and then consider issues that arise in 

implementation. 

2.1. A typical iteration 

In common with many optimization methods, the simplex method can usefully be 

interpreted as a sequence of two-part  iterations. The current iterate x is assumed to 
be feasible, i.e., A x  = b and 1 ~ x ~< u. If  x is not optimal, a search direction p E R n 

is computed that reduces the objective function and remains locally feasible. A 

nonnegative scalar steplength a is chosen that specifies the distance to be moved 

along p, and the next iterate is defined as 

x e- x + ap. (2.2) 

At each iteration, the n variables x are explicitly divided into two disjoint sets: 
m basic variables xB and n - m nonbasic  variables XN. The m columns of  A associated 

with x8 constitute B, a nonsingular m x m matrix called the basis, and the remaining 

n - m columns are designated as N. The columns of B and N may occur anywhere 

in A and in any order, but the relation A x  = B x B +  N x N  is valid at every iteration. 

The basis B is represented by certain matrix factors, which are updated at most 



P.E. Gill et al. / An anti-cycling procedure 439 

iterations. These factors are computed from scratch at the first iteration and periodi- 
cally thereafter. 

The pricing or column-selection strategy chooses a single nonbasic variable (the 
pivot column) that can be moved in a feasible direction while reducing the objective 
function. This decision is based on reduced costs (Lagrange multipliers) for the 

nonbasic variables, which indicate whether a move away from the current value 
will reduce the objective function. (The chosen nonbasic variable usually enters the 
basis.) All nonbasic variables remain unchanged except the chosen one. To ensure 
that the new iterate satisfies A x  = Bxu + NxN = b, the components  o f p  corresponding 
to basic variables are assigned so that ,Sip = O. 

The steplength ~ is chosen to retain feasibility of the next iterate. This part of  a 

simplex iteration (selecting the pivot  row) is central to the new anti-cycling technique, 
and will be discussed in detail in Section 3. 

The simplex method can also be described in the more general language of  
active-set methods for general linearly constrained optimization (see, e.g., [11, 21]), 
which follow the generic iteration model (2.2). In an active-set method, a working 

set of constraints (usually including constraints that are currently active) is defined 

at each iteration, and constraints are deleted from and added to this set as the 
iterations proceed. Constraint deletion is based on signs of  Lagrange multiplier 
estimates for constraints in the working set, and affects the definition of p; constraint 
addition is guided by the need to remain feasible, and specifies a. For the special 
case of  the simplex method,  constraint deletion and addition are equivalent to 
selection of the pivot column and row. Since the discussion of this paper  concentrates 

primarily on the simplex method but applies to general active-set methods as well, 
we shall occasionally switch terminology, or describe the same process from these 
two viewpoints. 

2.2. Representation o f  nonbasic variables 

For many years, implementations of the simplex method tended to treat the numerical 

values of  the basic and nonbasic variables in different ways. The basic variables 
satisfy the linear system 

Bx~ = b - Nx• ,  (2.3) 

and hence their values can be computed from XN and a factorization of B. In 
contrast, nonbasic variables are usually assumed to be at one of their bounds. This 
property can be achieved by implicitly assigning the exact value of the appropriate  
bound to each nonbasic variable (using a status indicator). 

Elementary presentations of  the simplex method typically include only nonnega- 
tivity restrictions, in which case the bounds are zero and infinity (0 ~< x~ <~ ec) and 
nonbasic variables are implicitly zero. When general bounds !i and UJ are allowed, 
the value of a nonbasic variable is usually defined to be one of the bounds;  thus, 

xj is either !J or UJ, depending on which bound is marked as "active".  A complication 
arises with a "free variable' ,  (corresponding to l~ = -o% UJ = +oe), which may need 
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to be treated as nonbasic at an intermediate iteration even though it is likely to be 
basic at a solution. A nonbasic free variable is usually defined to be zero, thereby 

avoiding the need to store any other value. (This approach was used in various 
versions of  MINOS up to and including MINOS 5.O [27].) 

History aside, several practical benefits arise if nonbasic variables are not required 

to equal one of their bounds. For example, nonbasic variables can be initialized at 
a "safe"  value (say, zero) if both specified bounds are inordinately large (e.g., 
li = -108, Ui = 108) • Similar advantages arise when restarting modified problems and 
recovering from singular bases. In MINOS 5.1 [28], explicit values are stored for all 
variables, and a nonbasic variable is allowed to take any value within its bounds. 

Even when freedom is granted to assume values other than their original bounds, 
t h e  fundamental  algorithmic role of  nonbasic variables is unaltered: they remain 

f ixed  at a particular iteration, i.e., the change in nonbasic variables (except one) is 
constrained to be exactly zero. 

For active-set methods, the analogous concept is to include constraints in the 
working set that are not necessarily active at one of their original bounds. This idea 
is expressed in the "pseudo-constraints"  of  Fletcher and Jackson [14], the "artificial 
constraints" of Gill and Murray [19], and the "pegged variables" of Nazareth 

[29, 30]. 

2.3. Traditional treatment o f  feasibility 

The simplex method terminates "normal ly"  in three situations: a bounded optimal 
solution has been found; no feasible point exists; or the objective function is 

unbounded below in the feasible region. A bounded LP solution must satisfy two 
criteria: optimality and feasibility. With exact arithmetic, only the optimality test 
needs to be applied after an initial feasible point is found, since simplex iterates 
are constructed to remain feasible. In practice, however, both criteria must be 

interpreted numerically, based on optimality and feasibility tolerances, which are 
normally much larger than machine precision. For example, if machine precision 
(denoted throughout by e) is 10 -~6, a typical feasibility tolerance 6f is 10 -6. 

The optimality tolerance is used in a straightforward fashion to judge whether 
the reduced costs for the current set of  nonbasic variables are sufficiently positive 
or negative. Testing for feasibility is more complicated. When nonbasic variables 
implicitly satisfy their bounds as described above, their values need not be checked. 
Basic variables, however, are computed using (unavoidably) inexact arithmetic, and 
hence may violate their bounds. When B is refactorized in a numerically stable 

fashion, standard error analysis implies that A x  = b will be satisfied within a tolerance 
that involves a multiple of  machine precision [37]. After refactorization, the following 
feasibility test for the basic variables is applied: 

1B - 6re <~ xR <~ u~ + 8re, (2.4) 

where 8r> 0 is the feasibility tolerance and e is a vector of ones. I f  this test is not 
satisfied, Phase 1 of the simplex method is invoked to move any infeasible variables 
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toward their violated bounds;  otherwise, Phase 2 starts (or resumes). A traditional 
computed "opt imal"  solution therefore satisfies the original bounds lN ~ XN <~ UN 
for the nonbasic variables, and the relaxed bounds (2.4) for the basic variables. 

A key feature of the new anti-cycling procedure is that nonbasic variables are 

allowed to violate their bounds (see Section 4). In practice, few (if any) nonbasic 
variables will be infeasible at the final solution. 

3. Selection of  the steplength 

In the simplex method, the value of the steplength a (see (2.2)) is chosen by the 
row-selection procedure, which also delivers the index r of  a blocking variable that 
becomes nonbasic. (We sometimes refer to the index r itself as the blocking variable.) 

The usual relationship between a and r is that variable r exactly reaches one of  its 
bounds at x + c~p. (If  a is infinite, the objective function is unbounded below in the 
feasible region.) The pivot element in the simplex method is p~, the component  of  
p corresponding to the blocking variable. A rule of  thumb is that "smal l"  pivots 
lead to ill-conditioned basis matrices. 

From an active-set viewpoint, a blocking constraint is chosen to be added to the 

working set, and a is usually the step at which the blocking constraint becomes 
active. The condition of  the working set deteriorates if  the blocking constraint is 
"a lmost"  linearly dependent  on constraints already in the working set. 

In this section, we discuss various strategies for choosing a and r. 

3.1. Computational procedures 

Determination of the steplength c~ involves two distinct computational  procedures,  
which we now state in algorithmic "pseudo-code" ,  using simplex terminology. These 

procedures will be invoked with different arguments throughout the remainder of  
the paper. 

For each variable that may encounter a bound,  the step along p to that bound 
must be calculated. This computat ion is summarized in the function step shown 
below. The formal parameters are X (the "current  point") ;  p (the "search direction"); 
l (a lower bound, which may be -oo);  v (an upper  bound, which may be + ~ ) ;  and 

t, a nonnegative tolerance that defines a "negligible" value of p. The value of step 
is defined as follows. I f  p is negative and non-negligible, step gives the multiple of  
p that "reaches"  l when added to X, i.e., X + s t e p x p  = I. I f  p is positive and 
non-negligible, step gives the analogous multiple that reaches u. I f  p is negligible, 
or if the relevant bound is infinite in magnitude, step is +oo. 

function step(x, p, l, v, t); 
if  p < - t  and l > - ~  then step ~ - ( l - x ) / p  

else i f  p > t and v < + ~  then step ~ (v  - X) /P  

else step <-- +co 
end if 
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The p rocedure  rat io_test  given below per fo rms  the " m i n i m u m  ratio test".  ( In 
active-set terms,  ratio_test calculates the "s tep  to the neares t  constra int" . )  Given an 
n-vector  x, a search direct ion p, lower and  uppe r  bound  arrays low and up, and a 

to lerance  t, ratio_test returns a s teplength a~t  and  the index jr~t o f  a blocking variable.  
The value o f  step is calculated for  each variable  as specified above.  The smal les t  

value of  step is des ignated as a~,t, and j~t  is the index of  a cor responding  variable.  

I f  jf~ = 0, there is no b locking variable (i.e., no var iable  reaches a bound  for any 
finite posit ive step a long p.) We shall abuse  s tandard  p rog ramming  convent ion 

slightly by  writing 

(O~rat, j ra t  ) = rat io_test(x,  p, low, up, t) 

to mean  that  O/ra t and jrat a r e  assigned the values calculated in the procedure .  

procedure ratio_test(x,  p, low, up, t); 
jr~t <-- O; Ogra t <'- ~-00; 

for j = 1 until n do 

aJ ~- step(x~, pj, lowj , upj,  t); 
i f  o(j < c ~  t then 

%~t ~ o(j ; j~,t ~- j 

end i f  

end for 

When the tolerance t is omit ted  f rom the pa ramete r s  of  step or ratio_test,  it should 
be taken as zero. 

3.2. The tex tbook  and  Harr is  ratio tests 

I f  x satisfies l~< x ~< u, the t ex tbook  ratio test defines a and r according to 

(a,  r ) =  ratio_test(x,  p, 1, u). (3.1) 

With this choice,  c~ is the largest  step that  keeps  x + a p  feasible, and r is the index 

of  the variable that  reaches its bound  at a. I f  a is finite, the value of  xr at the end 
o f  the i teration is thus lr or ur (depending  on the sign o fp r ) ,  and all o ther  variables 

cont inue  to satisfy their bounds .  
The  t ex tbook  ratio is " idea l "  in the sense that  it guarantees  the m a x i m u m  reduct ion 

in the objective funct ion while retaining feasibil i ty at the next  iterate. In practice,  
however ,  numerical  difficulties (typically, an i l l -condit ioned basis) result when the 

pivot  e lement  Pr is " too  smal l" .  Al though one might  hope  that  step(xj,  pj, l~, UJ) will 
be large when IPjI is small  (so that  j will not  be chosen as the blocking variable) ,  
it can be small if  x~ happens  to be very close to the relevant  bound.  Unless there 
is a tie for  the blocking variable,  the t ex tbook  ratio test offers no mechan i sm for  
avoid ing  small  pivots. 
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In  [24], Harris suggested a technique intended to encourage the selection o f  

blocking variables with larger pivots, at the price o f  al lowing infeasibilities in the 

basic variables. The Harris strategy is a two-pass procedure .  The first pass determines 

a " re laxed"  steplength a l  by enlarging the original bounds :  

( a l, r l ) = ratio_test(x, p, l -  6e, u + 6e ), (3.2) 

where 6 is a feasibility tolerance.  To ensure that a l  >i O, x must  satisfy the per turbed 
bounds  l - 6 e < ~ x < ~ u + 6 e .  I f  l<~x<~u, a step o f  a l  along p cannot  violate any 

individual b o u n d  by more  than 6. Hence,  a l  is taken as an upper bound  on the 

allowable step. The second pass chooses the blocking variable f rom among  all 

variables for which the " tex tbook"  step (to the exact  bound)  does not  exceed a l ,  

giving a second step a2: 

r = arg max {IPjl} for j such that step(x/, pj, lj, uj) <~ c~I, (3.3a) 
J 

a2  = step(xr, Pr, lr, Ur). (3.3b) 

The value o f  a is then max{a2,  0}, i.e., a is taken as a2  if a2  is nonnegat ive,  and 

as zero otherwise. The blocking variable is r in either case. 

To see how these tests differ, consider two basic variables x = (0.0009, 1) x subject 

to nonnegat ivi ty bounds  with p -  ( - 0 . 1 , - 1 0 0 )  v and feasibility tolerance 6 = 10 -3. 

Using the textbook procedure ,  we have 

step(x1, p~, ll, ul) -= 0.009 and step(x2, P2, 12, u2) -- 0.01. (3.4) 

The smaller step corresponds  to the first variable, which would  be chosen as the 

blocking variable. 

In contrast,  execution of  the first pass (3.2) o f  the Harris procedure  gives 

s tep(xl ,  p l ,  11 - 6, ul + 6) = 0.019 

and 

step(x2, p=, 12- 6, u2+ 6) = 0.01001, 

so that a l  = 0.01001. In  the second pass, bo th  values o f  step calculated in (3.3a) 

are less than a l  (see (3.4)). Since IP=I is larger than ]P,I, r = 2  and a 2 = 0 . 0 1 .  The 

result is that  a = a2  = 0.01, with variable two becoming  nonbas ic  and 

-0 .1  ) 
Notice that  a larger pivot  has been chosen by the Harris procedure ,  but  that  the 

first variable (which remains basic) now violates its lower bound  by 0 .0001- -an  

amount  no greater than 6. 

Figure 1 illustrates the contrast  between the tex tbook and Harris procedures  in 

an active-set context. As we move from the point  labeled " x "  along the horizontal  

constraint  as indicated by the arrow, four  constraints (marked 1-4) intersect the 

path;  each constraint  is shaded on the infeasible side. The path generated by the 
textbook ratio test is x - a - b - c - d ,  and all iterates remain feasible with respect to the 
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21 3 4 

Fig. 1. The textbook and Harris procedures. 

original constraints. In contrast, the Harris procedure first finds the closest intersec- 

tion of a perturbed constraint (see (3.2)). In the figure, the width of shading indicates 

the feasibility tolerance. The darker shading for constraint 2 indicates that its 

perturbed intersection with the horizontal line is nearest to x, and cH is the step 

from x to the intersection of the outer edge of  the darker shading and the horizontal 
line. The second pass (3.3) determines that the exact versions of constraints 1, 2 

and 3 intersect the horizontal to the left of  ~1. The "least oblique" among these is 

constraint 3, which means that r2 = 3 and c~2 is the step to the vertex labeled "e". 

The path taken by the Harris procedure is thus x-e-d,  where constraints I and 2 

are slightly violated at the second iterate. 

3.3. A consequence o f  infeasible basic variables 

The Harris test necessarily allows infeasibilities in each basic variable. A less obvious 

consequence is that the iterates may fail to satisfy A x  = b i f  nonbasic variables are 

treated in the traditional way. To see why, consider the case when x~ = -0.001, Pl = - 1 

and Ii =0.  Since step(x~,p~, ll, u~) is negative, the value of c~2 defined by (3.3b) 

could also be negative. If  c~2 < 0, the Harris procedure sets c~ = 0 but retains the 

same blocking variable xr, which then becomes nonbasic. With a traditional 

implementation of the simplex method, the value of the newly nonbasic xr would 
actually be changed (perhaps implicitly) to move it exactly onto its bound (see 

Section 2.2). Assuming that 6 is the current feasibility tolerance, moving xr onto its 

bound is equivalent to performing an extra step in which the current iterate x is 

replaced by x +/xer, where e~ is the rth coordinate vector and I/x[ <~ 6. Such a change 
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can produce an error of  order 6, i.e., much larger than machine precision, in satisfying 

A x  = b. 

In practice, errors of  this kind tend to be eliminated each time the basis is 
refactorized, since the basic variables are typically recomputed using (2.3) in order 
to satisfy A x  = b accurately. Provision is made to return to Phase 1 if the recomputed 

variables lie outside their bounds by more than 6. On well-behaved problems,  few 
iterations (if any) are required to regain feasibility, but in runs lasting thousands 
of  iterations, the risk of  a few extra iterations between refactorizations (typically, 
every 50 iterations) amounts to a nontrivial overhead. In the worst case, " few"  can 

be more than the refactorization frequency and an opt imum may not be achieved. 
When solving problems with a nonlinear objective function, a perturbation of order 
6 in what should theoretically remain the same point may cause failure in the 

linesearch because of the resulting discontinuity. 
A simple way to avoid this difficulty is to implement  a "zero" step literally. With 

such an approach,  a slightly infeasible blocking variable becomes nonbasic, but its 

infeasible value is retained rather than moving onto its bound. The variable is 
temporari ly frozen at that value (across basis factorizations if necessary) until the 

normal pricing strategy allows it to move. Provision can still be made to revert to 
Phase 1 after refactorization; given a stable basis-handling package, however, the 

likelihood of losing feasibility is greatly reduced. 
An alternative is to allow a negative step whenever c~2 of (3.3b) is negative, giving 

the blocking variable a chance to move exactly onto its bound. This approach has 
been used in the quadratic programming and linear least-squares codes QVSOL 3.2 
and LSSOL 1.0 [20, 18]. However, it is then necessary to perform a ratio test on the 
reverse search direction -p ,  obtaining a possibly different blocking variable that 

again may be unable to reach its bound exactly. Since the objective value will move 
slightly in the wrong direction, care must be taken to avoid entering an infinite loop. 

A further alternative is to include the new anti-cyling technique, which is described 
next. 

4. The EXPAND procedure 

Our anti-cycling strategy is called the E X P A N D  procedure (EXPanding-tolerance 

ANti-Degeneracy procedure). The descriptor "expanding"  is used because a working 
feasibility tolerance is maintained that increases slightly at the start of every iteration. 

4.1. Mot iva t ion  and definition 

In conventional LP terminology, the E X P A N D  procedure is a row-selection method 

that specifies the choice of pivot row in the simplex method. The "max imum pivot" 
property of  Harris 's row-selection method [24] is retained, and permitting infeasibil- 
ity in nonbasic variables removes the difficulty described in Section 3.3 with tradi- 
tional implementations of the Harris procedure.  
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It should be emphasized that infeasibilities in the nonbasic variables are allowed 
only to improve numerical stability and reliability, not to achieve a greater reduction 

in cVx in an enlarged feasible region. Although the constraints 

A x = b  and 1 - 6 r e < - x < ~ u + & e  (4.1) 

can always be satisfied when A x  = b is compatible and ar is sufficiently large, it is 
desirable to terminate with a solution that is as close as possible to feasibility for 
the unperturbed problem (2.1). Since the final B - N  partition is unpredictable, we 
anticipate that practitioners accustomed to (2.4) will find (4.1) essentially equivalent. 

With exact arithmetic, classical cycling cannot occur in an algorithm of  the form 
(2.2) if cXp < 0  and c~ > 0 at each iteration, since the objective function strictly 

decreases. In our procedure, a positive value of ce is ensured by enlarging the bounds 
on all variables slightly at every iteration. Let 8 denote the "old"  tolerance from 
the previous iteration. The "current"  tolerance 6 is defined as 

~ = g + r ,  w h e r e 0 < r < g ,  (4.2) 

and hence is strictly larger than g. The result is that any point x satisfying 1 - ge ~< x ~< 
u + ge must lie strictly inside the expanded bounds ( l - 6 e ,  u + 6e), and a positive 

step may be taken in any direction before encountering a bound. 
The E X P A N D  procedure is summarized by the following pseudo-code: 

procedure  EXPAND(x,  p, 1, u, t, 6, ~-); 
(~1, r l )~ra t io_ t e s t ( x ,p ,  l - B e ,  u+ae ,  t); (first pass) 

r ~ 0; Pm~ ~- 0; 
for j =  1 until n do (second pass) 

ai ~ step(xj,pj, lj, uj, t); 

i f  o(j ~< a 1 and [ Pjl > Pm~ then 
r+-j; eee~-aa; Pmax<--Ipjl 

end if 
end for 
o%i.~- T/Iprl; (minimum acceptable step) 

c~ +- max{ce2, ami,}. 

As with ratio_test, we write 

(ce, r) = EXPAND(x,  p, l, u, t, 3, r) 

to mean that ce and r are assigned the values computed during execution of the 
procedure. 

The E X P A N D  procedure contains two passes that define eel, r and ce2 exactly 

as in (3.2) and (3.3) of  the Harris procedure. Because 6 -  6 =  r >  0 and x satisfies 
1 - 6e <~ x <~ u + 6e, c~l must satisfy 

c~l >~ r/Ip,.,[. (4.3) 

Since r corresponds to the largest pivot element among all variables for which the 
step to the exact bound does not exceed a l ,  ~m~, must be positive and cannot exceed 
eel. 
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The crucial difference from the Harris procedure arises from imposition of the 

positive lower bound amen on the steplength. Assume that there is only one possible 

blocking variable xr, and let A be the step from xr to the corresponding bound: 

A = X r - l ,  or u , -x r .  There are three cases. 

Case  I. If  zl >~ r, a 2  is positive and exceeds amin. With both the Harris and 

EXPAND procedures, a is taken as a 2  (a "nondegenerate" step) and the blocking 

variable reaches its bound exactly. 
Case  2. If  0 <~ A < r, x, is feasible, but is closer than r to its bound. The value of 

a2  is nonnegative, and the Harris procedure would move x, onto its bound. With 

the EXPAND procedure, however, Xr is moved a step of amid, and its bound becomes 

violated (by at most r). 

Case  3. If  A < 0, Xr is infeasible at the beginning of the iteration. The value of 

c~2 is negat ive  in this case, and the Harris procedure would take a step of zero. 

Depending on the treatment of nonbasic variables, Xr would either be moved onto 
its bound (see Section 2.2) or left unchanged at its present value. In contrast, the 

EXPAND procedure again takes a step of O/min, SO that Xr becomes more  infeasible. 
Even so, the new value of x~ cannot violate its bound by more than 6, i.e., an 

increase of  r from the maximum possible infeasibility at the beginning of the 

iteration. 

A step of  am~ (Cases 2 and 3) corresponds to a "degenerate" step in which the 
blocking variable moves a total distance of r and violates its bound at the end of 
the iteration. Since it is common for blocking variables to become basic at a later 

iteration, the total number of nonbasic infeasibilities at any stage is generally less 

than the number of degenerate steps so far. 
Figure 2 illustrates Cases 1-3 (a normal step and two degenerate steps) for the 

EXPAND procedure. We assume that p, < 0, so that x~ is constrained by its lower 

bound l,, which is shown as the horizontal axis. The sloping arrows plot the value 

of x, + ~pr against a, with three possible starting values for x,. The shaded horizontal 
distance is a ~ ,  in all cases, and the intersection point of  the sloping arrow with 

the horizontal axis is a2. In the first case, Xr is not "close to" l~, ~2 exceeds ~m~n, 

rain t~ 2 ~2 

Case 1 Case 2 
Fig. 2. Three configurations of the blocking variable. 

Case 3 
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the step of c~2 is taken, and Xr moves exactly to its bound. In the middle case, xr 

is feasible, but c~2 is less than c~,,,,1. A step of c~,,,~,1 moves xr to an infeasible value. 
In the third case, xr already violates its lower bound, c~2 is negative, but again a 
step of c~mi,, is taken. Although xr becomes more infeasible, the additional violation 

is limited by ~-. In the second and third cases, the vertical arrow labeled "~-" shows 
the minimum required change in x~. 

4.2. Increasing the feasibility tolerance 

We have just seen that the lower bound c~m~ plays a special role in the EXPAND 

procedure in the "inner" context of  a single simplex iteration. The equally important 
concept of  expansion (increasing the feasibility tolerance) can be understood only 
when the EXPAND procedure is viewed as part of  a sequence of simplex iterations. 

Within this "outer"  context, the procedure is invoked at iteration k to choose the 

steplength c~k and blocking variable rk. The expansion of  the feasible region is 
controlled by a "current" or "working" feasibility tolerance 6k that monotonically 
increases at each iteration. The value of 6k is defined in terms of the preceding 
tolerance 6~_~ using (4.2), and serves as the parameter  ~ of  EXPAND. The following 

pseudo-code illustrates how the kth simplex iteration increases 6k and calls 

EXPAND.  

Compute  the search direction Pk ; 

Bk ~- 6k-1 + T; 
(c~k, rk) = EXPAND(xk,  Pk, 1, u, t, 6k, 7); 

Xk+~ ~ x k  + ~ k P k  ; 

Modify the sets of  basic and nonbasic variables;  

k ~ k + l .  

Since the iterates could in the worst case become more infeasible at every iteration, 
divergence is prevented by placing an upper  bound K on the number of  simplex 
iterations allowed before invoking a resening procedure, to be described in the next 
section. A "master"  feasibility tolerance 6c is defined, with the essential property 
that 6k < 5r for k ~ K. A sequence of at most K consecutive simplex iterations in 
which the value of 6k successively increases will be called an e.rpanding sequence. 

The "best"  choices for ~3f, 30 and K depend on the nature of the problem and 
on the machine precision. Given a "reasonable"  precision e, the following values 
are recommended: 

~ f =  e 3/s is the "master"  feasibility tolerance; 
K = e - 1 / 4  is the maximum number  of simplex iterations allowed before resetting; 

8o = 0.5~c is the feasibility tolerance used to initiate an expanding sequence; 
6K = 0.996r is the maximum feasibility tolerance during an expanding sequence; 

T = ( ~  - 6o) /K is the amount  by which 5k increases at every iteration. 
The philosophy reflected by these choices is to begin each expanding sequence 

with a value of  6o "similar" to ~f, and to increase 6k slowly through a long sequence 
of  iterations. 
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1 1 1 

Fig. 3. An effect of increasing the feasibility tolerance. 

For a machine with 16 decimal digits of  precision (e = 1 0 - 1 6 ) ,  the recommended 
values are 6f= 10 -6 ,  K = 10000 and ~- = 0.49 x 10 -~°. 

A crucial effect of increasing the feasibility tolerance is illustrated in Figure 3. In 
the leftmost figure, the current search direction moves to the right from the point 
labeled "x"  along the horizontal constraint 1. The width of the shading is the current 
feasibility tolerance 8. The value a l  from the first pass of E X P A N D  is the step to 
the point marked "a" ,  which is (in this special case) both the intersection of 
constraints 1 and 3, and the intersection of  constraint 1 with the perturbed version 
of constraint 2. Because constraint 3 is "less oblique", it is chosen as the blocking 
constraint, and the point a is the new iterate. Now consider the next iteration. I f  

the search direction were " u p "  along constraint 3, as shown in the middle figure, 
no further movement  would be possible if the feasibility tolerance remained unaltered, 
since constraint 2 is already violated by 8 at a. However, because the feasibility 
tolerance is increased as shown by the wider shading, a positive step can be taken 

to the point labeled "b" ,  where constraint 2 is violated by 6 + ~- and becomes the 
blocking constraint. (In contrast, if the search direction were "down"  as shown in 
the rightmost figure, tolerance of increased infeasibility with respect to constraint 
2 would not affect the step.) 

4.3. Resetting 

After tolerating potentially increasing infeasibility over a long sequence of iterations, 

we require a "resetting" procedure to restore nonbasic variables to their bounds. 
The main steps are as follows. 

(1) Every nonbasic variable that lies within 6f of a bound is moved exactly onto 
the bound. (This set will include some of the variables that were slightly infeasible 
when they last became nonbasic.) A count is kept of  the number  of "nontrivial" 
adjustments, where "nontrivial" means (say) "greater than e 2/3''. 

(2) I f  the count is positive, the basic variables are recomputed in terms of the 
newly adjusted nonbasic variables, so that Ax  = b will be satisfied to (essentially) 
machine precision. 
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(3) The feasibility tolerance is reinitialized to 3o, and a new expanding sequence 

begins. 
A reset occurs at the end of an expanding sequence, i.e., after K iterations. 

Following the reset, the optimizer resumes in Phase 1 or Phase 2 depending on the 

value of the feasibility tolerance at the first iteration, namely ~l = 60+ r. 
Resetting is also associated with a tentative decision to terminate (i.e., the current 

point is apparently optimal, no feasible point can be found, or the solution appears 
to be unbounded).  In our implementation, the reset procedure may be executed at 
most R times in this situation, where the choice of  R depends on several factors. 
For well-conditioned problems, termination tests are typically satisfied (again) 

immediately after a reset, so that a value of R = 1 leads to little additional work 
and ensures "conventional"  feasibility in the sense that no nonbasic variables lie 

outside their bounds. 
In badly conditioned cases, on the other hand, a very large number  of  iterations 

may be needed to regain feasibility and optimality following a reset. To improve 
the probability of terminating at a "convent ional"  solution, it may be advisable to 
let R = 2, since a second reset normally adjusts fewer nonbasics than the first. 

Finally, it may be appropriate  to skip resetting entirely, i.e., to let R = 0. After k 

iterations of  an expanding sequence, the current iterate is guaranteed to be feasible 
to within ~k (assuming that Phase 1 has terminated). Since 3k < 3f, the current iterate 
satisfies (4.1) and may be considered acceptable as it stands. 

This justification for choosing R = 0 might also apply in the degeneracy-resolving 
procedure of  Benichou et al. [3, pp. 292-294], in which a perturbation is added to 
the right-hand side vector b. Once the perturbed problem has been solved, the 
perturbation is removed and the dual simplex algorithm is applied (often requiring 

no further iterations). I f  this approach were implemented with a perturbation of 
order ~c (rather than the much larger perturbation suggested in [3]), the solution 
to the perturbed problem could be accepted for all practical purposes. 

4.4. Convergence 

The E X P A N D  procedure ensures a strict decrease in the objective function at each 
iteration within an expanding sequence. Because of resetting after K iterations, 
however, the possible increase in the objective after restoration of feasibility could 
theoretically lead to a classical cycle of period K. Our recommendation that K be 

very large is intended to make the probabili ty of  such a cycle essentially "negligible". 
To emphasize the point, we note that previous implementations of  the simplex 

method have been operating (in effect) with K set to the basis refactorization 
frequency--typical ly less than 100. Failures attributed to cycling have been rare 
(though not completely absent; for example,  see [3, pp. 292-294]), and various 

other implementation details were probably contributing factors. 
To a large extent, the chance of failure to converge due to resetting depends on 

cond(B),  the condition number  of  a typical basis matrix. I f  cond(B) approaches 
l / e ,  then errors in the computed solution can (in the worst case) be so large that 
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any algorithm may be unable to produce a solution that satisfies both feasibility 
and optimality requirements. However, there should be essentially no risk of failure 

with resetting if cond(B) approaches I/6~, assuming that 8f and K have "sensible" 
values. 

Of  course, it is impossible to choose a value of K that guarantees convergence 
in all cases. At the time of writing, some large examples of  a particular class of 
(randomly generated) minimax problems have been found to enter a cycle of length 
10 000 [16]. In one case, increasing K to 1 000 000 allowed an opt imum to be 
reached after 15 000 iterations. Ill-conditioning was evident, but this serves to show 
the existence of pathological but solvable examples. 

4.5. The effect of ignoring small elements of p 

The tolerance t in the parameters of step is intended to provide a simple numerical 
safeguard against pivots that are "too small",  by defining step as infinite when a 
component  o f p  is "negligible" (see Section 3.1). (In MIr<OS, t is defined as e 2/3 for 
linear programs a n d  62/3[[p1[ for nonlinear programs.) I f  t is positive, a variable xj 

for which [Pi[ is "too small" cannot be a blocking variable. Unfortunately, this 
property may conflict with the assumptions that underlie the EXPAND procedure. 

To ensure that the new iterate x + ap does not violate any bound by more than 
6 when ~ =am~,,, it is essential for x to lie at least r away from its bounds 

(l - 8e, u + 6e). I f  alPJ[ > r for any ignored element pj, x~ + ajp i may violate its bound 

by as much as alPil-'r. 
In such cases, a simple precaution would be to test whether any components  of 

x + a p  violate the bounds ( l -Be ,  u+Se) .  Any that do could be moved onto those 
bounds.  Alternatively, a smaller value of t could be chosen, which means that fewer 
elements of p are ignored. However, it is common for many elements of p to be 

very small, and excluding such elements from the ratio test can give significant 
computat ional  savings on large problems. 

Neither form of precaution has been included to date in our implementation. 
Such safeguards could be important if fif and • were substantially different from 
the recommended values. 

5. A simplified procedure 

A preliminary version of  the EXPAND procedure was used in the experiments 
conducted by Lustig [26]. This version was simpler and potentially more efficient 
on nondegenerate problems; we therefore summarize it in the pseudo-code below. 

As before, we assume that the feasibility tolerance has just been increased to 6 = 6 +  ~-. 

procedure SIMEXPAND(x ,  p, l, u, t, 8, ~'); 
(oH, r l ) ~  ratio_test(x, p, I, u, t); (first pass) 

ami.<- ~'/[Pr~]; (minimum acceptable step) 
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if a l  ~>cemin then a ~ - a l ;  r~-rl; 
else (a, r) <- ratio_test(x, p, l -  ~e, u + 6e, t) (second pass) 

end if 

In contrast to EXPAND,  this approach reverses the two passes in the Harris 
procedure,  adding perturbations in the second pass. It has the advantage of terminat- 

ing frequently after the first pass (which is just the classical ratio test applied to the 
original problem data), in which case the blocking variable reaches its bound exactly. 
I f  al  is less than the minimum value C~mi,,, the blocking variable becomes nonbasic 
at an infeasible value ( l r -  6 or Ur + 3). 

A possible disadvantage of S I M E X P A N D  is that the pivot element IPrl is not 
maximized within a set of  candidates. Nevertheless, the final step always satisfies 
a >1 r/Ip~l, which tends to prevent selection of  a small pivot element unless the 
feasible region is unbounded.  Numerical instability seems unlikely if 6r and r have 
the recommended values, and no numerical difficulties were encountered in the 
computat ional  tests. 

6. Relationship to Wolfe's procedure 

Either form of the E X P A N D  procedure may be interpreted as a modification of 
Wolfe's "ad  hoc" anti-cycling procedure [39]. 

6.1. Wolfe's procedure 

We first consider an LP with general lower bounds: 

LP0 minimize cTx 
subject to Ax = b, x > l, 

and we assume that the current iterate is feasible. 

Wolfe's procedure takes effect when the simplex method encounters a degenerate 
feasible vertex, denoted by x0. Once degeneracy has been detected, the basic variables 
are divided into two categories that depend on xo: degenerate variables that are 
currently on a bound; and nondegenerate variables that are strictly feasible with 

respect to their bounds. These categories are used to define the following subsidiary 
linear program: 

LP~ minimize cVx 

subject to Ax = b, xD>l lD-d,  xN>~ IN, 

where d is a positive vector, D denotes the degenerate variables, and N denotes the 
usual nonbasic variables. Let Y denote the set of  n - m indices of  variables in xN 

at xo, and ~ the set of  nw indices of  variables in xD. The value nD is called the 
degree of degeneracy of Xo. 

Problem LP~ is the same as LPo except for the bounds on the basic variables, 

which have been relaxed for degenerate variables and removed for nondegenerate 
variables. Wolfe's procedure was originally described in terms of changes to b rather 
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than ID; see [39, 36]. Throughout this discussion we follow Osborne [34, p. 87] in 
moving bounds away from degenerate variables, rather than vice versa. The concepts 

are essentially the same, except when both upper  and lower bounds are present; 
see Section 6.4. 

Clearly, Xo is a nondegenerate feasible vertex for LPI, since exactly n - m variables 

(xN) are active at their bounds. When the simplex method is applied to LP1, the 
values obtained for x are not directly relevant to LP0, but the bases generated (and 
the associated dual variables) have meaning for both problems. Three situations 
may arise: 

(1) A finite opt imum is obtained for LP1, which shows that xo is an optimal 
(albeit degenerate) solution of LP0. The optimal basis and dual variables for LP~ 
correspond to an optimal basis and multipliers for LP0. 

(2) LP~ is found to be unbounded when a certain nonbasic variable is considered 

for entry into the basis. The same basis and nonbasic variable produce a feasible 
descent direction for LP0, which allows movement  away from the non-optimal point 
xo. (This is the direction o f  recession described by Osborne [34].) Solution of LP0 
can continue from Xo. 

(3) A degenerate vertex x~ for LP~ arises. A crucial feature of  x~ is that its degree 

of degeneracy must be less than no,  since at least one variable originally in XN must 
have moved away from its bound. We may thus define a subsidiary linear program 
LP2 at x~. 

The procedure may be applied recursively whenever a degenerate vertex is encoun- 
tered. Starting with k = 0, problem LPk reaches case l, 2 or 3 in a finite number  of  
iterations (since the objective function for LPk decreases montonically). Case 3 
leads to a new problem LPk+~ but can occur only a finite number of times (since 
the degree of  degeneracy is monotonically decreasing). Eventually, the degeneracy 

at Xo is "resolved" by either verifying optimality or moving away from x0. 
Wolfe's procedure is appealing for at least two reasons: it uses the simplex method 

itself to resolve degeneracy, and it can be implemented with a minimum of  overhead 
(at least for the case l = 0, u = co), as shown by Ryan and Osborne [36]. However,  

it is not without drawbacks. Although a degenerate vertex is unlikely to be encoun- 
tered in LPk for k > 0, particularly if d is defined using random positive numbers,  

it remains necessary (and inconvenient) to cope with the possibility. Furthermore, 
a practical Wolfe-based procedure must define "numerical"  degeneracy and choose 
the precise set of degenerate variables. Selecting the "wrong"  variables for XD may 
lead to inefficiency. For example, suppose that some (even all) of the basic variables 
are not quite on their bounds and hence are not included in xD. Only a very short 
step is likely to be taken after the degeneracy has been "resolved" before the 
procedure must be invoked again. 

6.2. Parameterization o f  the subsidiary linear program 

Given the Wolfe subproblem LP~, consider the effect of  introducing a positive 
parameter  y that multiplies the perturbation d in the bounds on xD, where we 
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assume that lid II ~ 1. The subsidiary problem becomes 

LP~(3`) minimize cTx 

subject to Ax  = b, xo>~ ID-3`d, XN>I IN. 

We now show that the value of 3" does not affect the sequence of bases generated 

in solving LP~(3`). 

Lemma I. Suppose that the simplex method is applied to LP~(3'), starting at xo and 
using the "textbook" ratio test and the starting basis from LP0. With exact arithmetic, 

the sequence of  bases generated is the same for all positive values of  3,. 

Proof. At the first iteration of  the simplex method, the search direction p is indepen- 

dent of  3/. The only variables in the first ratio test are those in @. For j e @, the 
initial value ofx~ is !J and its lower bound in LP~(T) is !i - ydj. The distance of each 
possible blocking variable x~ from its bound is thus ydj. Assuming that a blocking 
variable exists and that a consistent rule is applied for breaking ties, the same 
blocking variable r will be chosen at the first iteration of  LP~(y) for every positive 

3/, and the associated steplength satisfies 

a = w~ = ya*, (6.1) 

where a*  is the step at the first iteration of LPI(1). The first basis change is 
independent of  3/because the distance of  each potential blocking variable from its 
bound in LP~(3') is a factor of  3' times the distance from its bound in LP~(1). 

At the end of  the first iteration, each variable xj, j ~ ~, takes on the value !i + a~,pj. 
We conclude from (6.1) that its distance from the bound /j - 3`dj is 

lj+~pj-(li - 3`dj )  = 3 ` 4  + ~ p j  = 3"(d~+~%). 

The newly basic variable (say xk, k ~ ?() moves a distance a~pk from its bound. 
Thus, even after the first basis change, the distance of every possible blocking 

variable in LPI(3') from its bound is 3' times the distance from its bound in LP~(I). 

It follows that changes of  basis will continue to be independent of  3' as long as 
blocking variables exist. [] 

For our purposes, the result of  Lemma 1 is significant because the Wolfe sub- 

problems may be posed with an extremely small value of 3', which implies that there 
is no need to define and solve LP1. A "modificat ion" of Wolfe's procedure would 
simply continue simplex iterations on (conceptually) the original problem LPo, but 
with a tiny modification to the bounds on the "degenerate"  variables xj, j c ~. 

Whenever a degenerate vertex is encountered, another small perturbation with a 

different vector d would be introduced to the bounds on a new set of  degenerate 
variables. Strictly speaking, this approach would eventually solve a perturbed version 

of the original problem LP0. 
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To implement such a modified Wolfe technique, the perturbation vector(s) d need 
to be defined. Choosing the elements of d at random (in the range (0, 1], say) 
reduces the probability of  creating a further degenerate vertex. From the perspective 
of  preserving well-conditioned bases, however, the "best"  choice would be d = e, 
the vector of  ones (assuming that the problem is well scaled), since the first blocking 

variable would correspond to the largest eligible pivot element in the search direction 
p. Unfortunately, such a structured choice for d would seem to increase the probabil-  
ity of  encountering a degenerate vertex. For the original Wolfe procedure, a com- 
promise is to choose elements of  d randomly from a range such as (0.5, 1] (cf. [9]), 

thereby reducing the frequency of recursion beyond LP~ [36]. However,  for the 
modified procedure, the need to make frequent perturbations is of  no consequence 
provided the total perturbation remains small. 

6.3. Connection with the E X P A N D  procedure 

The E X P A N D  procedure may be interpreted as a further modification of the Wolfe 
procedure, with two key differences: 

• a small perturbation in the bounds occurs at every iteration regardless of whether 

or not the current iterate is degenerate; 
• a similar perturbation is made to all the bounds,  not just those for variables 

that have been declared "degenerate".  
The crucial issue in relating EXPAND to Wolfe's method is the effect of the 

"extra"  perturbations in bounds on nondegenerate basic variables. Since the bounds 
on nondegenerate basic variables are removed in Wolfe's formulation, only the 

degenerate and nonbasic variables at xk may be blocking in LPk+~. Although the 
E X P A N D  procedure cannot guarantee the latter property,  it nonetheless tends to 
hold because only the variables in XD and the nonbasic variables are "close to" 

their bounds at or near a degenerate vertex. Except in extreme cases, a nondegenerate 
basic variable is unlikely to be chosen as the blocking variable, since its perturbed 
bounds remain relatively "far  away". 

The notion of temporary bounds (Section 2.2) can be utilized so that nonbasic 
variables do not need to be adjusted as their bounds are perturbed. Furthermore,  

basic variables that subsequently become nonbasic may be set at their original 
(rather than perturbed) bounds whenever a significant step is taken, to reduce the 
disturbance caused by occasional resets. 

6.4. Wolfe's procedure with upper and lower bounds 

Consider applying Wolfe's procedure to define LP, at a degenerate vertex for an 

original LP containing both upper  and lower bounds.  Our view is that the essential 
ideas in Wolfe's approach are to remove inactive constraints, and to relax (by a 

finite amount)  constraints that are active but are not in the working set [21]. Using 
these guidelines, the subsidiary problem LP~ would be constructed as follows: 
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(1) Nonbasic variables currently on a bound would have the opposite bound 

removed (except for fixed variables, which remain fixed). 
(2) Nonbasic variables on neither bound would have both bounds removed. 
(3) Degenerate basic variables would have the active bound relaxed. The opposite 

bound would be removed (except for degenerate fixed variables, which would have 

both bounds relaxed). 
(4) Nondegenerate basic variables would have both bounds removed. 
A parameterized subproblem LP~(y) can then be defined, Lemma 1 still holds, 

and the EXPAND procedure may be interpreted as a modification of Wolfe's 

procedure. 
An alternative interpretation of a Wolfe procedure for an LP with upper  and 

lower bounds is that nonbasic variables should retain both their bounds in the 
subsidiary linear program LP~. In this case, the sequence of basis changes in LP~(y) 

remains invariant only for values of  y small enough so that the inactive bounds on 
nonbasic variables at x0 do not affect the choice of  blocking variable. Because the 
EXPAND procedure corresponds to small values of  y, the spirit of Wolfe's approach 

is maintained in either case. 
As mentioned in Section 6.1, the original Wolfe procedure defines LP, by altering 

the right-hand side b of  the equality constraints, and obtains an initial nondegenerate 

solution by moving components xj, j ~ @, away from their bound. This approach 
cannot be used with general bounds if there are likely to be fixed basic variables. 
Any such variable is doubly degenerate (except perhaps in Phase 1) and cannot be 
moved away from both of its bounds without becoming infeasible. 

6.5. S u m m a r y  

Compared  to Wolfe's method, the E X P A N D  procedure has the following properties: 

• there is no need to decide whether or not degeneracy is present, or to specify 
a set of degenerate variables; 

• essentially no storage or logical overhead is involved, and upper  and lower 
bounds can be handled without complication; 

• no numerical or logical information need be preserved across basis factoriz- 

ations (other than the values of  x and the current feasibility tolerance); 
• all iterations are "equal" ,  in the sense that there is exactly one steplength 

determination per iteration. (In Wolfe's method,  if LPk is found to be degenerate, 
the steplength procedure is effectively repeated at the beginning and end of LPk+I.) 

An apparent  disadvantage is the need to store numerical values for nonbasic 
variables that are slightly outside their true bound- - the  simplest approach being to 
store all ofx .  The cost is most obvious on problems involving many variables (n >> m, 
as in crew scheduling problems [10, 9]). However, storing all of x is a convenience 

for several reasons (Section 2.2) and is essential for implementing the Harris 
steplength procedure correctly (Section 3.3). Once this overhead is accepted, the 
ability to implement the EXPAND procedure comes at no further cost. 
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Several pivot-selection methods have recently been implemented and compared 
by Falkner [9] on a wide range of aircrew rostering problems involving many 
variables (21 000 up to 162 000). The qualitative similarity in performance of Wolfe's 
method and the EXPAND procedure provides empirical confirmation of  the 
relationship described above. 

7. Issues arising in Phase 1 

Broadly speaking, Phase 1 of the simplex method finds a feasible point for the 
original constraints A x  = b, l <~ x <~ u, by applying a normal (Phase 2) procedure to 
a modified problem. The main points of Phase 1 are summarized in Section 7.1, 
followed by a discussion of some finer points concerning the EXPAND procedure. 
(See also Wolfe [40], Orchard-Hays [32] and Beale [2].) 

7.1. The Phase-1 bounds and objective 

The equality constraints A x  = b are retained in the Phase-1 LP, but the bounds are 
altered so that the current point is feasible. (Infeasibilities with respect to the original 
bounds are reflected in the Phase-I objective function.) Let 6 denote a feasibility 
tolerance. The Phase-1 bounds r and a are constructed as follows, depending on 
the bounds violated by the current point x. 

if xj<l~-6 then ~ - o e ;  u j ~ u i  

else if xj>Uj+6 then ~<- l/; ~Tj ~- +co 
else ~ ~-/j,; ~j ~- u 2 end if 

Let ~u(x) and ~l(x) be the sets of indices of components of x that are infeasible 
with respect to their upper and lower bounds, respectively: 

jc~Cu if xj>uj+•, J¢,¢1 i f x i < l j - &  (7.1) 

The Phase-1 objective function is the sum o f  infeasibilities: 

sum ofinfeasibi l i t ies= ~ ( x ~ - u i - 6 ) +  ~ ( l j - 6 - x j ) .  (7.2) 
j ~ , u  .jc 'q'l 

Omitting constants, we define the Phase-1 objective function as ~Vx, where from 
(7.2) we see that 6i = 1 i f j ~  ~,,, -1  i f j c  ~1, and 0 otherwise. Since the indices in 
t ,  and 5~1 vary with x, ~ may change at every Phase-1 iteration. The current value 
of ~ is used to compute reduced costs and a search direction p such that ~Tp < 0. 

Given p, the EXPAND procedure may be applied in Phase 1 to compute a step 
~F and blocking variable rv: 

(aF, rF) = EXPAND(x,  p, ~, ~, t, a, ~-), (7.3) 

where l" and ~ are the Phase-1 bounds. The step aF is the largest positive step that 
retains feasibility with respect to bounds that are already satisfied. The value of c~ is 
a~ or a special step ~, (see Section 7.3), subject to safeguards discussed below. 
Phase 1 is essentially the same as Phase 2 except that ~, I" and ~ are redefined every 
iteration, and two possible steps are computed rather than one. 
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Since p always satisfies yVp < 0, the sum of infeasibilities must (locally) strictly 

decrease as the step along p increases from zero. When the step becomes large 
enough so that the index sets 5~,, or 5t~ change, ( also changes, and the sum of 
infeasibilities may decrease at a lower rate or could even start to increase. However, 

the number of infeasibilities (i.e., the sum of the numbers of  indices in 5~ and o¢~) 
will be smaller. Assuming that a positive step is taken at each iteration, we thus see 
that Phase 1 must converge to a feasible point (if one exists). 

A more intricate Phase-1 steplength procedure can be designed to minimize the 
piece-wise linear function ~T(x+ c~p), where { is regarded as a function of c~; for 

example, see [23, 15]. However, we adopt the simpler approach,  which seems to be 
effective in practice. Both approaches have the desirable property that many 

infeasibilities can be removed in one iteration. 

7.2. Benefits of increasing the feasibility tolerance 

We have observed previously that increasing the feasibility tolerance at every 
iteration ensures that a positive step can be taken. Further, the feasibility tolerance 
actually affects the sum of  infeasibilities. I f  the number  of  infeasibilities does not 
decrease during a particular iteration, the sum of infeasibilities at the start of the 
next iteration must be reduced simply because the value of  5 has increased by r 

(see (7.2)). Thus for two separate reasons, the sum and /o r  the number ofinfeasibilities 
must decrease after each Phase-1 iteration. 

Several complex issues involving finite-precision computation arise in any "prac-  
tical" anti-cycling method. For example, Fletcher's method for resolving degeneracy 

is designed to display favorable properties in the presence of rounding error; see 
[12, 13]. From this perspective, the value of ~- in E X P A N D  can be viewed as a 
means of  coping with certain numerical difficulties. Although r is typically very 

small, it is intended to be significantly larger than machine precision e, and preferably 
larger than the tolerance t that defines " ignored" components  of p (Sections 3.1 
and 4.5). Increasing 6 and ~- thus helps mask the rounding error that is inevitably 
present when x is updated to x + c~p, and guarantees that the number of  infeasible 

variables (as measured by the increased tolerance) will stay the same or decrease. 
We believe that many "infinite loop" failures of simplex implementations are 
attributable to an inadvertent oscillation in the number  of  infeasibilities when ~ is 

redefined each Phase-1 iteration with a fixed feasibility tolerance. An example is 
described by Ogryczak [31]. Similar examples were encountered with MINOS prior 
to the present implementation. 

After K iterations are executed in Phase 1, the feasibility tolerance is reduced to 

6o for the next expanding sequence. An apparent  disadvantage is that the number  
of infeasibilities may increase by some arbitrary number (say q), and the sum could 
increase by as much as q ( ~ K -  ~0). However, this fluctuation is normally incon- 
sequential even if q is nearly as large as m, primarily because many infeasibilities 

tend to be removed in a single Phase-1 iteration. Similar comments apply when the 
resetting procedure is invoked at an apparently optimal solution. 
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7.3. The special Phase-1 step 

The Phased objective (7.2) is constructed so that at least some of the infeasible 

variables move towards the feasible region. The "alternative" Phase-1 step aj is 

based on finding the positive step at which these variables first become feasible. Let 

# denote the (necessarily non-empty) set of indices with the following properties: 

# = { j l j e # ~  and pj<O or j ¢ # 1  and pj > 0}. 

The function step_feas for which pseudo-code is given below is a Phase-1 analogue 

of the function step of Section 3.1. For indices in 5 ~, step_feas gives the (positive) 

multiple of p that reaches the nearer bound. 

function s tep_feas (x ,  p, l, v, t); 
if p > t then step_feas ~-(1-X)/p 

else if p < - t  then step_feas 4- (u - X ) / P  
else step_feas ~- -oo 

end if 

When the tolerance t is omitted from the parameters of step_leas, it should be taken 

as zero. 

The special step a I corresponds to the value of step_feas(x~, p,, I ,  u,) for some 

index s ¢ #, and we now consider how to choose s. Let ~ma× denote the maximum 

value of step_leas: 

c~ .... = max step_feas(xj, pj, lj, uj), 
j<.9 

which must be positive because # is non-empty. If  any infeasible variables become 

feasible as the step increases, ~rnax gives the step at which the largest number become 
feasible with respect to their nearer bound. Note, however, that a step of t~ma x c a n  

cause some of the variables to violate a bound that they previously satisfied. 

An obvious strategy is to define a~ = ~max and a = min{a~, aF}. By requiring a to 
be less than c~F, we guarantee that variables remain feasible with respect to currently 

satisfied bounds. The upper bound of c~ is imposed to ensure that a finite step is 

taken when aF is infinite (which may occur when some components of l or u are 

infinite). 

A difficulty with letting a~ = OTm~× is that no account is taken of the size of the 

pivot element. Following the philosophy of Harris (Section 3.2), the following 

two-pass procedure may be used to encourage selection of larger pivot elements 
when a choice exists. Placing perturbations on the bounds when calling step_leas 

in the first pass makes ~1 smaller than the maximum step that causes the variable 

to become feasible. The second pass then considers all unperturbed values of  

step_leas that are at least as large as dl, and chooses s to correspond to the maximal 

pivot element among them. 

~1 =maxj~ ,  step_feas(xj,pj, l j -~,  u~+8, t); (first pass) 

S 4- 0 ,  Pmax <-- 0;  

for j e  # do (second pass) 
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c~j ~ step_feas(xj, Pi, !i, Ui, t); 
if c~j~> ~1 and ]pil>Pmax then 

s , - : ;  P ax'-IPjl 
end if 

end for 

The above procedure was used in Lustig's experiments [26] and in all preceding 
versions of  MINOS. It appears to have performed reliably for many years. 

An undesirable feature is that the chosen pivot IP~I could still be as small as the 
tolerance t. The safer two-pass strategy given below has therefore been adopted. 
The first pass finds the largest relevant pivot element ~5, and the second pass finds 
the largest value of step_leas for which the pivot element is "reasonably close" to 
q5 for some constant w, where 0 < w <~ 1. 

& ~ m a x j ~  IPj]; (first pass) 
c~1 ~- 0; 
for j ~ # do (second pass) 

c~ ~ step_feas(xj, pj, !J, uj, t); 
if c~j> a,  and [pj[> og~b then s~ j ;  ~,*-~9 end if 

end for 

Computation of a~ does not depend critically on the feasibility tolerance, and is 
hence compatible with the EXPAND procedure. 

Experience suggests that the step ce~ should be taken whenever possible (in 
preference to aF), so that x, reaches a bound and is removed from the basis. We 
therefore define the Phase-1 step as 

O~=/O~J, ~l ~O¢1, 
reeF, otherwise. 

The value of al comes from the first pass of the Harris procedure that computes 
av, and is therefore larger than ceF. 

On the 53 test problems of Section 9, the values o9 = 0.1 and w = 0.01 lead to more 
Phase-1 iterations than the unsafeguarded w =0.  We have accordingly chosen 
o9 = 0.001. 

8. Nonlinear programs with linear constraints 

We now consider the problem of minimizing a smooth function F(x) subject to 
linear constraints. This category includes quadratic programs (QP) and more general 
linearly constrained (LC) optimization problems. 

It has been observed by Osborne [34] that Wolfe's anti-cyling procedure general- 
izes to certain LC algorithms, including the reduced-gradient method of Wolfe [38]. 
The EXPAND procedure can similarly be generalized to active-set methods for QP 
and LC problems (Fletcher [ l l ] ;  Gill, Murray and Wright [21]), and has been 
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implemented in the 1988 versions of  QPSOL and LSSOL. The following preliminary 
strategy has been developed for the reduced-gradient algorithm in M1NOS. 

8.1. A normal iteration 

In an active-set framework, the EXPAND procedure may be applied directly to a 

general linearly constrained problem. Each iteration has the generic form (2.2): 
x ~ x + ap, where p is a search direction such that V F(x )Tp  < 0 and a is a nonnegative 
steplength. After p is computed,  a positive step and blocking index are computed.  
The step is traditionally called the "step to the nearest constraint", and will be 

denoted by abJk. Any value of a in the interval (0, OLblk] will produce a new iterate 
that is acceptably feasible. 

With a linear program, the objective function is monotonically decreasing along 
p, and a is limited only by considerations of  feasibility. With a nonlinear objective 
function, however, a is based on two considerations: maintaining feasibility and 

achieving the classical "sufficient decrease" in F (see [33]). The latter is often based 
on approximate minimization of F as a ranges over the interval (0, OCblk]. With the 
E X P A N D  procedure, 

ablk = max{a~in, a2}, 

where a2 is the exact step to the blocking constraint. 

If  a sufficiently large step can be taken, the objective function is strictly reduced 
and there is no danger of cycling. If  a = Ogblk, the blocking constraint is added to 
the working set. 

8.2. Avoiding the linesearch 

In practice, it may be inefficient or unwise to attempt a linesearch when abl k is very 
small (for example, if the active constraints are almost linearly dependent).  Even 

if the maximum step ab~k is taken, the improvement  in objective value may be slight. 
More seriously, the "noise level" in F over the permitted interval (0, ablk] may be 
so great that an improved point cannot be conclusively identified, and the linesearch 
will "fail".  

To avoid these situations, we use the step a2 (which may be negative) to the 
blocking constraint. I f  a2 > 0, a linesearch is always performed. If  a2 <~ 0, the active 

constraints are "nearly" linearly dependent,  and a zero step is usually taken by 
skipping the linesearch and adding the blocking constraint to the working set. The 
only exception to the latter policy occurs when adding the blocking constraint would 
create a vertex of the feasible region, since this circumstance combined with a zero 

step could lead to cycling. I f  a2<~ 0 and adding the blocking constraint to the 
working set would create a vertex, a linesearch is performed over the interval (0, OLblk]. 

I f  the linesearch ever fails to find an improved point, an effort is made to determine 

whether the failure was caused by too small a search interval. I f  a2 < amin, a step 
to the blocking constraint is forced (a  = a2)  and the working set is updated.  
Otherwise, we assume that a better search direction is required. The working set is 
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left unaltered and various recovery procedures are invoked, such as switching to 
central-difference gradient approximations,  resetting the reduced Hessian approxi- 
mation, deleting a constraint from the working set, and refactorizing the working set. 

Because many methods for problems with nonlinear constraints are based on 

solving a sequence of  linearly constrained subproblems (e.g., SQP methods and 
MINOS), the EXPAND procedure may be applied within the subproblems. 

9. Computational results 

This section contains computational  results for three steplength procedures. The 

following names are used: 
SPI: The " textbook" ratio test of  Section 3.2. 
SP2: The simplified E X P A N D  procedure of  Section 5. 
SP3: The maximum-pivot  EXPAND procedure of  Section 4, which includes 

Harris-type tie-breaking. 
All three procedures have been implemented in MINOS 5.3 (June 1989); SP3 has 

also been implemented in GAMS/MINOS [4]. 
One aim is to provide a systematic study of the effect of  maximizing the pivot 

element within a steplength procedure- - the  Harris approach to tie-breaking. Folk- 
lore has it that "stability is improved and the number  of  simplex iterations is often 
reduced",  but such a statement is not especially meaningful without a precise 
definition of the procedures being compared.  Here we have defined the procedures 
in appropriate detail. In particular, it is meaningful to compare the simplified and 
standard EXPAND procedures because in both cases the surrounding simplex 
algorithm retains the correct numerical values of  blocking variables when they 

become nonbasic. 
The results below were obtained using the simplex method of MINOS 5.3 on the 

first 53 linear programs in the Nedib collection [17]. The problems are ordered 
according to the number  of  nonzero elements as in [26]. The main run-time options 

specified were 

PRINT LEVEL 0 
CRASH OPTION 1 

CRASH TOLERANCE 0.1 
SCALE OPTION 2 
PARTIAL PRICE 10 
LU FACTOR TOLERANCE 100.0 
FACTOR FREQUENCY 100 

EXPAND FREQUENCY 10000 
FEASIBILITY TOLERANCE 1.0 E - 6  

which are the default options for linear problems in MINOS 5.3. The last two options 
define K = 10 000 and Br = 10 _6 for the E X P A N D  procedures. The limit on calls to 
the resetting procedure after apparent  termination was set to R = 2 (Section 4.3). 
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The CRASH parameters above cause MINOS to choose an approximately triangular 

basis from the columns of A. In most cases the chosen scaling option has the effect 

of making [1~*11 = O(1), where ~* is the scaled optimal solution. (Exceptions were 

problems GRow7, GROW15 and GROW22, for which I1~*11--o(107), llx*[[ = o(106) . )  
Selection of this scaling option helps to justify the choice of 6f= 10 -6 as  a feasibility 

tolerance. 
All numerical tests were run as batch jobs on a DeC VAX station II with the 

VAX/WaS version 4.5 operating system. The compiler was VAX FORXRAY version 4.6 

with default options, including code optimization and D_floating arithmetic (relative 
precision e ~- 2.8 × 10 17). The memory available kept paging to a minimum. 

Tables 1, 2 and 3 give results using SP1, SP2 and SP3 respectively. The "objective 

function" values indicate that the final objective was accurate to four or more digits 

(except for two problems that terminated early). The meaning of "degenerate steps" 

depends on the method, as discussed below. Solution times are given in CPU 
seconds, and do not include time for data input or solution output. 

9.1. The textbook ratio test 

SP1 was safeguarded by choosing the tolerance t that defines "negligible" com- 

ponents of p as e 2/3 (see Sections 3.1 and 4.5). Since rounding error can cause the 

steplength to be negative, a further precaution was to set a = O if ratio_test gave 
o~ ~ 10 -16. (The count of "degenerate steps" in Table 1 gives the number of times 

a was set to zero in this fashion.) Following conventional practice, blocking variables 

were set exactly on their bounds when they became nonbasic. 

Although it would be reasonably easy to break (near) ties in favor of large IPil, 
we chose not to tamper further with the classical procedure; methodical tie-breaking 

is the province of  the Harris and EXPAND procedures. 
In the test runs, small pivots slipped through the e 2/3 sieve several times on each 

of the problems GROW7, GROWl5, GROW22, SCSD1, SCSDS, FFFFFS00, P1LOTJA and 

eILOXS. In general, small pivots are detected as near-singularities when the LU 

factors of the basis are updated. Refactorization is invoked and some variable xa is 

replaced by an appropriate slack variable. Since Xi retains its value when rejected 

from the basis, iterations continue without apparent interruption. 

Two failures were encountered: problem scsDs terminated as "unbounded",  and 
eILOXS terminated after not changing the sum of infeasibilities for 1000 iterations. 
Small pivots were encountered frequently during these runs, causing the basis to 

be ill-conditioned for many groups of iterations. Empirically, ill-conditioning can 

only aggravate stalling (particularly for a method that has no guarantee of ter- 

minating). 

9.2. The simplified E X P A N D  procedure 

For SP2, the value of "degenerate steps" in Table 2 means the number of times 
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Table 1 

Results with textbook ratio test 

Problem Objective Total Degen. Percent Solve time 
(Netlib) function itns. steps degen. VAX II secs. 

AFIRO -4.6475314285714 E +02 9 5 55.6 0,53 
ADLITTLE 2.2549496316238 E +05 117 13 11.1 5,94 
SC205 -5.2202061211707 E +01 163 48 29.5 17,48 
SCAGR7 2.3313897523795 E +06 98 11 11.2 7,46 
SHARE2B -4.1573224074142 E +02 137 37 27.0 9.42 
RECIPE -2.6661600000000 E +02 27 3 11.1 1.66 
VTPBASE 1.2983146246136 E +05 136 99 72.8 11.89 
SHARE1B 7.6589318579186 E +04 197 9 4.6 16.65 
BORE3D 1.3730803942085 E +03 160 102 63.8 20.73 
SCORPION 1.8781248227381 E +03 172 66 38.4 30.51 
CAPRI 2.6900129137682 E +03 246 42 17.1 31.19 
SCAGR25 -1.4753433060769 E +07 338 55 16.3 78.92 
SCTAP1 1.4122500000000 E +03 346 175 50.6 44.71 
BRANDY 1.5185098964881 E +03 472 61 12.9 79.77 
ISRAEL 8.9664482186305 E +05 255 3 1.2 31.89 
ETAMACRO 7.5571521755573 E +02 687 189 27.5 139.20 
SCFXM 1 1.8416759028349 E +04 442 116 26.2 75.53 
GROW7 -4.7787811814712 E +07 683 593 86.8 201.83 
BANDM -1.5862801845012 E +02 475 59 12.4 98.46 
E226 -1.8751929066371 E +01 523 167 31.9 73.51 
STANDATA 1.2576995000000 E +03 72 44 61.1 12.22 
SCSD1 8.6666666743334 E +00 1394 1339 96.0 115.03 
GFRDPNC 6.9022359995488 E +06 630 335 53.2 157.03 
BEACONFD 3.3592485807200 E +04 91 17 18,7 9.85 
STAIR -2.5126695119296 E +02 628 181 28.8 247.13 
SCRS8 9.0429998618888 E +02 788 457 58.0 188.69 
SEBA 1,5711600000000 E +04 365 55 15. J 76.42 
SHELL 1.2088253460000 E +09 300 73 24.3 70.90 
PILOT4 -2.5811392588836 E +03 1651 190 11.5 614.92 
SCFXM2 3.6660261564999 E +04 767 186 24.2 238.26 
SCSD6 5.0500000078267 E ~-01 1940 1165 60.0 269.30 
GROW15 -1.0687094129358 E +08 1204 1073 89./ 1053.40 
SHIP04S 1.7987147004454 E +06 162 35 21.6 33.52 
FFFFF800 5.5567956521288 E +05 1234 618 50.1 356.99 
GANGES -1.0958589354318 E +05 791 200 25.3 361.58 
SCFXM3 5.4901254549751 E +04 1088 251 23.1 492.69 
SCTAP2 1.7248071428571 E +03 883 619 70.1 345.21 
GROW22 -1.6083433648256 E +08 1579 1387 87.8 2578.05 
SHIP04L 1.7933245379704 E +06 297 73 24.6 63.71 
PILOTWE -2.7200967172270 E +06 5145 961 18.7 2565.39 
SIERRA 1.5394362183632 E +07 796 400 50.2 355.81 
SHIP08S 1.9200982105346 E +06 236 55 23.3 90.86 
SCTAP3 1.4240000000000 E +03 1503 1221 81.2 787.19 
SHIP12S 1.4892361344061 E +06 436 117 26.8 231.64 
25FV47 5.5018467790995 E +03 7701 889 11.5 4691.38 
SCSD8 1.5676484965792 E +03 2930 1411 48.2 unbounded 
NESM 1.4076057772814 E +07 3315 5 0.2 1236.99 
CZPROB 2.1851966988566 E +06 1724 130 7.5 755.26 
PILOTJA -6.1131349867462 E +03 6935 930 13.4 4640.94 
SHIP08L 1.9090552113891 E +06 497 86 17.3 213.63 
SHIP12L 1.4701879193293 E +06 961 295 30.7 520.68 
80BAU3B 9.8722799393135 E +05 11137 2291 20.6 9999.93 
PILOTS -4.1351068600000 E +02 1226 1225 99.9 stalled 
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Table 2 

Results with simplified EXPAND procedure 

Problem Objective Total Degen. Percent Solve time 
(Netlib) function itns. steps degen. VAX II secs. 

AF1RO -4.6475314285714 E +02 9 5 55.6 0.55 
ADLITTLE 2.2549496316238 E +05 119 8 6.7 6.31 
SC205 -5.2202061211707 E +01 152 33 21,7 18.70 
SCAGR7 -2.3313897523795 E +06 98 8 8.2 7.65 
SHARE2B -4.1573224074142 E +02 133 27 20,3 10.25 
RECIPE -~2.6661600000000 E +02 27 3 11,1 1.77 
VTPBASE 1.2983146246136 E +05 227 98 43.2 22.26 
SHARE1B --7.6589318579185 E +04 244 13 5.3 22.23 
BORE3D 1.3730803942085 E +03 164 68 41.5 22.70 
SCORPION 1.8781248227381 E +03 175 60 34.3 32.97 
CAPRI 2.6900129137682 E +03 233 31 13.3 29.03 
SCAGR25 -1.4753433060769 E +07 334 24 7.2 77.63 
SCTAP1 1.4122500000000 E +03 374 115 30.8 49.73 
BRANDY 1.5185098964881 E +03 387 28 7.2 66.45 
ISRAEL -8.9664482186305 E +05 224 4 1.8 26.73 
ETAMACRO --7.5571521647657 E +02 600 136 22.7 120.27 
SCFXMI 1.8416759028349 E +04 337 52 15.4 56.94 
GROW7 -4.7787811814712 E +07 213 74 34.7 43.15 
BANDM --1.5862801845006 E +02 413 27 6.5 89.97 
E226 -1.8751929066371 E +01 467 67 14.4 69.67 
STAN DATA 1.2576995000000 E +03 46 18 39.1 9.39 
SCSD1 8.6666666743334 E +00 337 274 81.3 31.50 
GFRDPNC 6.9022359995488 E +06 658 259 39.4 169.52 
BEACONFD 3.3592485807200 E +04 91 14 15.4 10.07 
STAIR --2.5126695119296 E +02 491 66 13.4 203.52 
SCRS8 9.0429998618888 E +02 768 251 32.7 201.48 
SEBA 1.5711600000000 E +04 350 42 12.0 73.81 
SHELL 1.2088253460000 E +09 301 51 16.9 72.39 
PILOT4 -2.5811392614137 E +03 1484 138 9.3 560.01 
SCFXM2 3.6660261564999 E +04 711 122 17.2 223.78 
SCSD6 5.0500000078262 E +01 1162 616 53.0 162.44 
GROWl5  -1.0687094129358 E +08 443 131 29.6 160.84 
SHIP04S 1.7987147004454 E +06 163 26 16.0 34.74 
FFFFF800 5.5567957127313 E +05 953 224 23.5 272.83 
GANGES -1.0958591516963 E +05 780 228 29.2 370.06 
SCFXM3 5.4901254549751 E +04 1020 157 15.4 460.32 
SCTAP2 1.7248071428571 E +03 1109 544 49.0 457.63 
GROW22 -1.6083433648256 E +08 664 206 31.0 338.82 
SHIP04L 1.7933245379704 E +06 288 45 15.6 63.62 
PILOTWE -2.7201041578556 E +06 5357 536 10.0 2673.63 
SIERRA 1.5394362183632 E +07 685 206 30.1 316.62 
SHIP08S 1,9200982105346 E +06 258 52 20.2 97.75 
SCTAP3 1,4240000000000 E +03 1379 765 55.5 740.52 
SHIP12S 1.4892361344061 E +06 467 77 16.5 252.70 
25FV47 5.5018467791002 E +03 6682 426 6.4 4074.34 
SCSD8 9.0499999992546 E +02 4012 1692 42.2 1401.92 
NESM 1.4076055975501 E +07 3231 1 0.0 1214.64 
CZPROB 2.1851966988566 E +06 1661 41 2.5 734.23 
PILOTJA -6.1131353307246 E +03 7515 540 7.2 5069,55 
SHIP08L 1.9090552113891 E +06 494 61 12.4 213,92 
SHIP12L 1.4701879193293 E +06 958 190 19.8 553.11 
80BAU3B 9.8722733242195 E +05 11866 1819 15.3 10917.99 
PILOTS -5.5740422249779 E +02 14953 1848 12.4 35210.24 
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that two passes were required to determine a blocking variable. No singularities 
were encountered during the tests, and all problems terminated successfully. 

On 80BAU3B and PILOTS, the resetting procedure was invoked after K = 10 000 
iterations, with 1152 and 393 nonbasic variables respectively being moved onto their 
bounds. Feasibility was restored 11 and 1 iterations later. 

With 6r as small a s  10 -6, resets do not disturb x greatly if the basis is reasonably 

well-conditioned. After resetting at an apparent  optimum, most problems were 
immediately confirmed as optimal. 

Five problems did require further iterations. On PILOT4, SCFXM3, PILOTJA, 80BAU3B 
and PILOTS, 36, 203, 69, 78 and 61 nonbasic variables (respectively) were moved 
onto their bound, and 4, 1, 3, 15 and 25 additional iterations were performed. A 

second reset moved 0, 1, 1, 9 and 0 nonbasics, and the middle three problems then 
required 0, 0 and 4 final iterations. 

9.3. The E X P A N D  procedure 

For SP3, "degenerate steps" in Table 3 means the number  of  times that c~ was 

forced to take the value c~,~, rather than c~2, i.e., the number  of  times a blocking 
variable was made nonbasic at an infeasible value, rather than reaching its bound 
exactly. 

On S0BAU3B and PILOTS, the reset after 10000 iterations moved 1291 and 318 
nonbasics respectively, and feasibility was restored 3 and 7 iterations later. 

Only two problems continued after resetting at an apparent  optimum. On P1LOTJA 
and PILOTS, 91 and 33 nonbasics (respectively) were moved onto their bound, and 
74 and 69 additional iterations were performed. A second reset moved 5 and 1 
nonbasics, and no further iterations were required. 

9.4. Comments on the results 

Figures 4-8 summarize the highlights of  Tables 1-3. Figure 4 shows the ratios of  
solution times for SP1 and SP3, Figure 5 gives a sorted version of the same 
information, and Figure 6 gives the ratios of  iteration counts. (Problems scsD8 and 
PILOTS have been omitted because of the failure of  SP1 to reach an optimal solution.) 
In all figures, the ratios are plotted on a log scale. 

It is clear from Figures 4 and 6 that the outliers are the same with either measure, 
but the time comparison tends to be more dramatic. Figure 5 reveals that for 
two-thirds of  the solved problems (35 of  51), the solution times for SP1 and SP3 
vary by less than 15%. The three greatest improvements in speed for SP3 (by factors 
of  more than 5) occurred on the CROW problems. Much of the difference was due 
to additional refactorizations for SP1, following detection of singularity. 

Figure 7 shows the ratio of  solution times for SP2 and SP3, again on a log scale, 
and Figure 8 gives a sorted version of the same data. Not surprisingly, the perform- 

ance of SP2 and SP3 is much closer than that of  SP1 and SP3. Figure 8 reveals that 
SP2 was more than 15% faster on 5 problems, whereas SP3 was more than 15% 
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Table 3 

Results with EXPAND procedure 

Problem Objective Total Degen. Percent Solve time 
(Netlib) function itns. steps degen. VAX I1 secs. 

AFIRO -4.6475314285714 E +02 9 5 55.6 0.53 
ADLITTLE 2.2549496316238 E +05 121 12 9.9 6.49 
SC205 -5.2202061211707 E +01 141 39 27.7 17.79 
SCAGR7 -2.3313897523795 E +06 98 10 10.2 7.99 
SHARE2B -4.1573224074142 E +02 173 36 20.8 12.85 
RECIPE -2.6661600000000 E +02 27 3 11.1 1.86 
VTPBASE 1.2983146246136 E +05 152 50 32.9 15.02 
SHAREIB -7,6589318579186 E +04 266 2 0.8 24.57 
BORE3D 1.3730803942085 E +03 144 51 35.4 19.72 
SCORPION 1.8781248227381 E +03 178 59 33.2 33.58 
CAPRI 2.6900129137682 E +03 271 41 15.1 35.98 
SCAGR25 - 1.4753433060769 E +07 338 27 8.0 79.36 
SCTAP1 1.4122500000000 E +03 264 97 36.7 35.45 
BRANDY 1.5185098964881 E +03 369 39 10.6 64.56 
ISRAEL -8.9664482186305 E +05 251 3 1.2 32.97 
ETAMACRO -7.5571521832862 E +02 567 173 30.5 114.08 
SCFXM1 1.8416759028349 E +04 375 63 16.8 63.72 
GROW7 -4.7787811814712 E +07 184 54 29.4 34.97 
BANDM -1.5862801845012 E +02 457 41 9.0 95.75 
E226 - 1.8751929066371 E +01 545 92 16,9 78.29 
STANDATA 1,2576995000000 E +03 65 36 55.4 12.40 
SCSD1 8.6666666743334 E +00 303 169 55,8 27.83 
GFRDPNC 6.9022359995488 E +06 672 304 45.2 179.91 
BEACONFD 3.3592485807200 E +04 91 14 15.4 10.56 
STAIR -2.5126695119296 E +02 577 70 12.1 249.99 
SCRS8 9.0429998618888 E +02 743 215 28.9 193.33 
SEBA 1.5711600000000 E +04 351 39 11.1 78.79 
SHELL 1.2088253460000 E +09 299 58 19.4 70.09 
PILOT4 -2.5811392640909 E +03 1543 149 9.7 595.87 
SC FX M2 3.6660261564999 E +04 670 109 16.3 210.92 
SCSD6 5.0500000078262 E +01 1306 597 45.7 180.95 
GROW15 -1.0687094129358 E +08 425 95 22.4 164.54 
SHIP04S 1.7987147004454 E +06 163 26 16.0 33.57 
FFFFF800 5.5567959102689 E +05 796 242 30.4 229.97 
GANGES -1.0958636378469 E +05 757 187 24.7 364.23 
SCFXM3 5,4901254549751 E +04 1008 164 16.3 462.68 
SCTAP2 1.7248071428571 E +03 761 389 51.1 308,59 
GROW22 -1.6083433648256 E +08 634 148 23.3 339,95 
SHIP04L 1.7933245379704 E +06 291 38 13.1 63,87 
PILOTWE -2.7201044816159 E +06 5458 527 9.7 2784.98 
SIERRA 1.5394362183632 E +07 648 236 36.4 295.85 
SHIP08S 1.9200982105346 E +06 254 51 20.1 97.42 
SCTAP3 1.4240000000000 E +03 904 506 56.0 481.26 
SHIP12S 1.4892361344061 E +06 437 95 21.7 231.42 
25FV47 5.5018458882868 E +03 6446 652 10.1 4005.84 
SCSD8 9.0499999992546 E +02 3138 1285 41.0 1136.22 
NESM 1.4076057079146 E +07 3228 40 1.2 1252.46 
CZPROB 2.1851966988566 E +06 1694 102 6.0 749.33 
PILOTJA -6.1131581690180 E +03 6487 643 9.9 4506.88 
SHIP08L 1.9090552113891 E +06 474 59 12.4 202.78 
SHIP12L 1,4701879193293 E +06 959 256 26.7 563.78 
80BAU3B 9.8722740952342 E +05 10166 1845 18.2 9184,18 
PILOTS -5.5740380065647 E +02 13723 1459 10.6 32200.90 
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Fig. 4. Compar ison of  solution times for SP1 and SP3. 

faster on 8 problems. (The iteration ratios were qualitatively very similar to the time 

ratios, and hence are not shown.) 
It is interesting to compare the percentage of degenerate iterations for the three 

strategies. The percentage of degenerate steps with SP1 was more than 15% higher 
than with SP3 for nearly four-fifths of  the problems (with the striking exception of 
NESM, which had only a tiny percentage of degenerate steps in all cases), and more 
than twice as large for 9 problems. In contrast, SP2 led to a reduction of 15% or 
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Fig. 5. Sorted comparison of solution times for SP1 and SP3. 

more in the percentage of degenerate  steps for 10 of the problems,  and  to an increase 

of more than  15% for 12 of the problems.  

9.5. O t h e r  p a r a m e t e r  v a l u e s  

The 53 test problems have been  solved many  times, with and  without  scaling and  

partial  pricing. One of the ma in  parameters  of interest  is the feasibility tolerance.  

We have exper imented with the values 6 = 10 -4, 10 -5, 10 -6 and  10 -7 (Harris  recom- 

m e n d e d  6 = 5 x 10 -4 on  a mach ine  with e ~ 10-8), bu t  the sensitivity of the s implex 
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Fig. 6. Comparison of iteration counts for SP1 and SP3. 

method to minor algorithmic changes seems to have masked any useful trend. 
Significant improvements were certainly observed on some of the problems with 

= 10 -4. The risk is a greater disturbance after resetting on problems that are 

somewhat  ill-conditioned (notably PILOTJA and PILOTS). 
As a further test, the "expand"  feature of  SP3 was disabled by specifying K = 

99 999 999, ~-= 0. The resulting method retains afixed feasibility tolerance, and most 
closely resembles the Harris tie-breaking procedure. No failures occurred on four 
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Fig .  7. C o m p a r i s o n  o f  s o l u t i o n  t i m e s  fo r  SP2  a n d  SP3.  

I 
1.6 

runs with and without scaling and partial pricing, and the iteration counts were 
much the same as when the feasibility tolerance is increased. These results confirm 
that the probability of  failure with the Harris procedure is indeed low when blocking 
variables are made nonbasic at their correct value. However,  once the latter safeguard 
is implemented,  the assurance gained by increasing the feasibility tolerance comes 
at essentially no cost. 
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1 0 .  C o n c l u s i o n s  

The EXPAND procedure was developed in response to sporadic failures that 
occurred during Lustig's experiments with M2NOS 5,2 on the 53 test problems used 
here [26]. No failures have occurred on these problems with the implementation 

described here. 
Perhaps the main advance has been in the treatment of  the infeasible blocking 
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var iab les  genera ted  by a Har r i s - type  rat io  test. Re ta in ing  numer ica l  values  when  

such var iables  become  nonbas i c  means  that  A x  = b can be satisfied to mach ine  

p rec i s ion  th roughou t ,  and  al lows full advan tage  to be t aken  o f  sat isfying b o u n d s  

loose ly  in the m a n n e r  p i o n e e r e d  by  Harr is .  An  i m p o r t a n t  benefi t  is tha t  there  is 

v i r tua l ly  no revers ion to Phase  1 after r e f a c t o r i z a t i o n - - a  c o m m o n  occur rence  pre-  

v ious ly  on i l l - cond i t ioned  prob lems .  

The  p recau t ion  o f  e x p a n d i n g  the feas ibi l i ty  to le rance  at every i te ra t ion  p rov ides  

a d d e d  theore t ica l  p ro tec t ion  agains t  cycl ing (given the consequen t  s imi lar i ty  to 

Wol fe ' s  an t i -degene racy  p rocedure ) ,  as well as a d d e d  prac t ica l  assurance  in the  

p resence  of  round ing  error.  
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