
Mathematical Programming 45 (1989) 437-474 437
North-Holland

A PRACTICAL ANTI-CYCLING P R O C E D U R E FOR
LINEARLY C O N S T R A I N E D O P T I M I Z A T I O N

Ph i l i p E. G I L L

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Walter MURRAY and Michael A. SAUNDERS
Systems Optimization Laboratory, Department of Operations Research, Stanford University, StanJbrd,
CA 94305, USA

Margaret H. WRIGHT
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

A procedure is described for preventing cycling in active-set methods for linearly constrained
optimization, including the simplex method. The key ideas are a limited acceptance ofinfeasibilities
in all variables, and maintenance of a "working" feasibility tolerance that increases over a long
sequence of iterations. The additional work per iteration is nominal, and "stalling" cannot occur
with exact arithmetic. The method appears to be reliable, based on computational results for the
first 53 linear programming problems in the Netlib set.

Key words: Linear programming, simplex method, active-set methods, degeneracy, cycling.

I. Introduction

Degeneracy is often regarded as a discomforting but otherwise tolerable hindrance
to the simplex method, and to other active-set algorithms for solving optimization
problems involving linear constraints. Sequences of non-improving steps are known
to occur (perhaps many times while solving a given problem), but such sequences
are rarely observed to be infinite. The phenomenon of "stalling" is therefore
recognized and accepted, but "cycling" is deemed very unlikely to occur.

In spite of such folklore, cycling remains a theoretical possibility, and a rigorous
anti-cycling procedure can provide welcome peace of mind to users and implemen-
tors alike, particularly if the cost is small. Numerous authors have suggested
anti-cycling techniques of differing flavors. A partial list includes Balinski and
Gomory [1], Benichou et al. [3], Bland [4], Dantzig [6, 7], Dantzig et al. [8], Fletcher
[12] , G r a v e s [22], K l o t z [25] , R o c k a f e l l a r [35] a n d W o l f e [39]. T h e p r a c t i c a l b e n e f i t s

The material contained in this report is based upon research supported by the Air Force Office of
Scientific Research Grant 87-01962; the U.S. Department of Energy Grant DE-FG03-87ER25030;
National Science Foundation Grants CCR-8413211 and ECS-8715153; and the Office of Naval Research
Contract N00014-87-K-0142.

438 P.E. Gill et al. / An anti-cycling procedure

of anti-cycling methods have been discussed recently by Ryan and Osborne [36]

and Falkner [9].

An anti-cycling procedure will be described in this paper that involves little

overhead and has proved to be effective in practice. Two features are crucial:

controlled infeasibility of all variables (including nonbasics) and a "working"

feasibility tolerance that increases slightly and consistently through an extended

sequence of iterations. Sections 2 and 3 review background material about the
simplex method and steplength selection. The new technique is introduced in Section

4, followed by presentation of a simplified version in Section 5. The relationship of

the new approach to Wolfe's [39] method is considered in Section 6, and issues

arising in Phase 1 are treated in Section 7. The use of the procedure in active-set

methods for general linearly constrained problems is addressed in Section 8.

Computational results are given in Section 9, and our conclusions are stated in

Section 10.

2. Background

Most of our discussion will concern application of the s implex m e t h o d [6] to the

standard-form primal linear programming (LP) problem:

minimize CTX
(2.1)

subject to A x = b, l <~ x <~ u,

where x c R" and A is m × n (m ~< n). We first describe an "idealized" version of

the simplex method (with exact arithmetic), and then consider issues that arise in

implementation.

2.1. A typical iteration

In common with many optimization methods, the simplex method can usefully be

interpreted as a sequence of two-part iterations. The current iterate x is assumed to
be feasible, i.e., A x = b and 1 ~ x ~< u. If x is not optimal, a search direction p E R n

is computed that reduces the objective function and remains locally feasible. A

nonnegative scalar steplength a is chosen that specifies the distance to be moved

along p, and the next iterate is defined as

x e- x + ap. (2.2)

At each iteration, the n variables x are explicitly divided into two disjoint sets:
m basic variables xB and n - m nonbasic variables XN. The m columns of A associated

with x8 constitute B, a nonsingular m x m matrix called the basis, and the remaining

n - m columns are designated as N. The columns of B and N may occur anywhere

in A and in any order, but the relation A x = B x B + N x N is valid at every iteration.

The basis B is represented by certain matrix factors, which are updated at most

P.E. Gill et al. / An anti-cycling procedure 439

iterations. These factors are computed from scratch at the first iteration and periodi-
cally thereafter.

The pricing or column-selection strategy chooses a single nonbasic variable (the
pivot column) that can be moved in a feasible direction while reducing the objective
function. This decision is based on reduced costs (Lagrange multipliers) for the

nonbasic variables, which indicate whether a move away from the current value
will reduce the objective function. (The chosen nonbasic variable usually enters the
basis.) All nonbasic variables remain unchanged except the chosen one. To ensure
that the new iterate satisfies A x = Bxu + NxN = b, the components o f p corresponding
to basic variables are assigned so that ,Sip = O.

The steplength ~ is chosen to retain feasibility of the next iterate. This part of a

simplex iteration (selecting the pivot row) is central to the new anti-cycling technique,
and will be discussed in detail in Section 3.

The simplex method can also be described in the more general language of
active-set methods for general linearly constrained optimization (see, e.g., [11, 21]),
which follow the generic iteration model (2.2). In an active-set method, a working

set of constraints (usually including constraints that are currently active) is defined

at each iteration, and constraints are deleted from and added to this set as the
iterations proceed. Constraint deletion is based on signs of Lagrange multiplier
estimates for constraints in the working set, and affects the definition of p; constraint
addition is guided by the need to remain feasible, and specifies a. For the special
case of the simplex method, constraint deletion and addition are equivalent to
selection of the pivot column and row. Since the discussion of this paper concentrates

primarily on the simplex method but applies to general active-set methods as well,
we shall occasionally switch terminology, or describe the same process from these
two viewpoints.

2.2. Representation o f nonbasic variables

For many years, implementations of the simplex method tended to treat the numerical

values of the basic and nonbasic variables in different ways. The basic variables
satisfy the linear system

Bx~ = b - Nx• , (2.3)

and hence their values can be computed from XN and a factorization of B. In
contrast, nonbasic variables are usually assumed to be at one of their bounds. This
property can be achieved by implicitly assigning the exact value of the appropriate
bound to each nonbasic variable (using a status indicator).

Elementary presentations of the simplex method typically include only nonnega-
tivity restrictions, in which case the bounds are zero and infinity (0 ~< x~ <~ ec) and
nonbasic variables are implicitly zero. When general bounds !i and UJ are allowed,
the value of a nonbasic variable is usually defined to be one of the bounds; thus,

xj is either !J or UJ, depending on which bound is marked as "active". A complication
arises with a "free variable' , (corresponding to l~ = -o% UJ = +oe), which may need

440 P.E. Gill et al. / An anti-cycling procedure

to be treated as nonbasic at an intermediate iteration even though it is likely to be
basic at a solution. A nonbasic free variable is usually defined to be zero, thereby

avoiding the need to store any other value. (This approach was used in various
versions of MINOS up to and including MINOS 5.O [27].)

History aside, several practical benefits arise if nonbasic variables are not required

to equal one of their bounds. For example, nonbasic variables can be initialized at
a "safe" value (say, zero) if both specified bounds are inordinately large (e.g.,
li = -108, Ui = 108) • Similar advantages arise when restarting modified problems and
recovering from singular bases. In MINOS 5.1 [28], explicit values are stored for all
variables, and a nonbasic variable is allowed to take any value within its bounds.

Even when freedom is granted to assume values other than their original bounds,
t h e fundamental algorithmic role of nonbasic variables is unaltered: they remain

f ixed at a particular iteration, i.e., the change in nonbasic variables (except one) is
constrained to be exactly zero.

For active-set methods, the analogous concept is to include constraints in the
working set that are not necessarily active at one of their original bounds. This idea
is expressed in the "pseudo-constraints" of Fletcher and Jackson [14], the "artificial
constraints" of Gill and Murray [19], and the "pegged variables" of Nazareth

[29, 30].

2.3. Traditional treatment o f feasibility

The simplex method terminates "normal ly" in three situations: a bounded optimal
solution has been found; no feasible point exists; or the objective function is

unbounded below in the feasible region. A bounded LP solution must satisfy two
criteria: optimality and feasibility. With exact arithmetic, only the optimality test
needs to be applied after an initial feasible point is found, since simplex iterates
are constructed to remain feasible. In practice, however, both criteria must be

interpreted numerically, based on optimality and feasibility tolerances, which are
normally much larger than machine precision. For example, if machine precision
(denoted throughout by e) is 10 -~6, a typical feasibility tolerance 6f is 10 -6.

The optimality tolerance is used in a straightforward fashion to judge whether
the reduced costs for the current set of nonbasic variables are sufficiently positive
or negative. Testing for feasibility is more complicated. When nonbasic variables
implicitly satisfy their bounds as described above, their values need not be checked.
Basic variables, however, are computed using (unavoidably) inexact arithmetic, and
hence may violate their bounds. When B is refactorized in a numerically stable

fashion, standard error analysis implies that A x = b will be satisfied within a tolerance
that involves a multiple of machine precision [37]. After refactorization, the following
feasibility test for the basic variables is applied:

1B - 6re <~ xR <~ u~ + 8re, (2.4)

where 8r> 0 is the feasibility tolerance and e is a vector of ones. I f this test is not
satisfied, Phase 1 of the simplex method is invoked to move any infeasible variables

P.E. Gill et al. / An anti-cycling procedure 441

toward their violated bounds; otherwise, Phase 2 starts (or resumes). A traditional
computed "opt imal" solution therefore satisfies the original bounds lN ~ XN <~ UN
for the nonbasic variables, and the relaxed bounds (2.4) for the basic variables.

A key feature of the new anti-cycling procedure is that nonbasic variables are

allowed to violate their bounds (see Section 4). In practice, few (if any) nonbasic
variables will be infeasible at the final solution.

3. Selection of the steplength

In the simplex method, the value of the steplength a (see (2.2)) is chosen by the
row-selection procedure, which also delivers the index r of a blocking variable that
becomes nonbasic. (We sometimes refer to the index r itself as the blocking variable.)

The usual relationship between a and r is that variable r exactly reaches one of its
bounds at x + c~p. (If a is infinite, the objective function is unbounded below in the
feasible region.) The pivot element in the simplex method is p~, the component of
p corresponding to the blocking variable. A rule of thumb is that "smal l" pivots
lead to ill-conditioned basis matrices.

From an active-set viewpoint, a blocking constraint is chosen to be added to the

working set, and a is usually the step at which the blocking constraint becomes
active. The condition of the working set deteriorates if the blocking constraint is
"a lmost" linearly dependent on constraints already in the working set.

In this section, we discuss various strategies for choosing a and r.

3.1. Computational procedures

Determination of the steplength c~ involves two distinct computational procedures,
which we now state in algorithmic "pseudo-code" , using simplex terminology. These

procedures will be invoked with different arguments throughout the remainder of
the paper.

For each variable that may encounter a bound, the step along p to that bound
must be calculated. This computat ion is summarized in the function step shown
below. The formal parameters are X (the "current point") ; p (the "search direction");
l (a lower bound, which may be -oo); v (an upper bound, which may be + ~) ; and

t, a nonnegative tolerance that defines a "negligible" value of p. The value of step
is defined as follows. I f p is negative and non-negligible, step gives the multiple of
p that "reaches" l when added to X, i.e., X + s t e p x p = I. I f p is positive and
non-negligible, step gives the analogous multiple that reaches u. I f p is negligible,
or if the relevant bound is infinite in magnitude, step is +oo.

function step(x, p, l, v, t);
if p < - t and l > - ~ then step ~ - (l - x) / p

else i f p > t and v < + ~ then step ~ (v - X) /P

else step <-- +co
end if

442 P.E. Gill et al. / An anti-cycling procedure

The p rocedure rat io_test given below per fo rms the " m i n i m u m ratio test". (In
active-set terms, ratio_test calculates the "s tep to the neares t constra int" .) Given an
n-vector x, a search direct ion p, lower and uppe r bound arrays low and up, and a

to lerance t, ratio_test returns a s teplength a~t and the index jr~t o f a blocking variable.
The value o f step is calculated for each variable as specified above. The smal les t

value of step is des ignated as a~,t, and j~t is the index of a cor responding variable.

I f jf~ = 0, there is no b locking variable (i.e., no var iable reaches a bound for any
finite posit ive step a long p.) We shall abuse s tandard p rog ramming convent ion

slightly by writing

(O~rat, j ra t) = rat io_test(x, p, low, up, t)

to mean that O/ra t and jrat a r e assigned the values calculated in the procedure .

procedure ratio_test(x, p, low, up, t);
jr~t <-- O; Ogra t <'- ~-00;

for j = 1 until n do

aJ ~- step(x~, pj, lowj , upj, t);
i f o(j < c ~ t then

%~t ~ o(j ; j~,t ~- j

end i f

end for

When the tolerance t is omit ted f rom the pa ramete r s of step or ratio_test, it should
be taken as zero.

3.2. The tex tbook and Harr is ratio tests

I f x satisfies l~< x ~< u, the t ex tbook ratio test defines a and r according to

(a, r) = ratio_test(x, p, 1, u). (3.1)

With this choice, c~ is the largest step that keeps x + a p feasible, and r is the index

of the variable that reaches its bound at a. I f a is finite, the value of xr at the end
o f the i teration is thus lr or ur (depending on the sign o fp r) , and all o ther variables

cont inue to satisfy their bounds .
The t ex tbook ratio is " idea l " in the sense that it guarantees the m a x i m u m reduct ion

in the objective funct ion while retaining feasibil i ty at the next iterate. In practice,
however , numerical difficulties (typically, an i l l -condit ioned basis) result when the

pivot e lement Pr is " too smal l" . Al though one might hope that step(xj, pj, l~, UJ) will
be large when IPjI is small (so that j will not be chosen as the blocking variable) ,
it can be small if x~ happens to be very close to the relevant bound. Unless there
is a tie for the blocking variable, the t ex tbook ratio test offers no mechan i sm for
avoid ing small pivots.

P,E. Gill et al. / An anti-cycling procedure 443

In [24], Harris suggested a technique intended to encourage the selection o f

blocking variables with larger pivots, at the price o f al lowing infeasibilities in the

basic variables. The Harris strategy is a two-pass procedure . The first pass determines

a " re laxed" steplength a l by enlarging the original bounds :

(a l, r l) = ratio_test(x, p, l - 6e, u + 6e), (3.2)

where 6 is a feasibility tolerance. To ensure that a l >i O, x must satisfy the per turbed
bounds l - 6 e < ~ x < ~ u + 6 e . I f l<~x<~u, a step o f a l along p cannot violate any

individual b o u n d by more than 6. Hence, a l is taken as an upper bound on the

allowable step. The second pass chooses the blocking variable f rom among all

variables for which the " tex tbook" step (to the exact bound) does not exceed a l ,

giving a second step a2:

r = arg max {IPjl} for j such that step(x/, pj, lj, uj) <~ c~I, (3.3a)
J

a2 = step(xr, Pr, lr, Ur). (3.3b)

The value o f a is then max{a2, 0}, i.e., a is taken as a2 if a2 is nonnegat ive, and

as zero otherwise. The blocking variable is r in either case.

To see how these tests differ, consider two basic variables x = (0.0009, 1) x subject

to nonnegat ivi ty bounds with p - (- 0 . 1 , - 1 0 0) v and feasibility tolerance 6 = 10 -3.

Using the textbook procedure , we have

step(x1, p~, ll, ul) -= 0.009 and step(x2, P2, 12, u2) -- 0.01. (3.4)

The smaller step corresponds to the first variable, which would be chosen as the

blocking variable.

In contrast, execution of the first pass (3.2) o f the Harris procedure gives

s tep(xl , p l , 11 - 6, ul + 6) = 0.019

and

step(x2, p=, 12- 6, u2+ 6) = 0.01001,

so that a l = 0.01001. In the second pass, bo th values o f step calculated in (3.3a)

are less than a l (see (3.4)). Since IP=I is larger than]P,I, r = 2 and a 2 = 0 . 0 1 . The

result is that a = a2 = 0.01, with variable two becoming nonbas ic and

-0 .1)
Notice that a larger pivot has been chosen by the Harris procedure , but that the

first variable (which remains basic) now violates its lower bound by 0 .0001- -an

amount no greater than 6.

Figure 1 illustrates the contrast between the tex tbook and Harris procedures in

an active-set context. As we move from the point labeled " x " along the horizontal

constraint as indicated by the arrow, four constraints (marked 1-4) intersect the

path; each constraint is shaded on the infeasible side. The path generated by the
textbook ratio test is x - a - b - c - d , and all iterates remain feasible with respect to the

444 P.E. Gill et al. / An anti-cycling procedure

21 3 4

Fig. 1. The textbook and Harris procedures.

original constraints. In contrast, the Harris procedure first finds the closest intersec-

tion of a perturbed constraint (see (3.2)). In the figure, the width of shading indicates

the feasibility tolerance. The darker shading for constraint 2 indicates that its

perturbed intersection with the horizontal line is nearest to x, and cH is the step

from x to the intersection of the outer edge of the darker shading and the horizontal
line. The second pass (3.3) determines that the exact versions of constraints 1, 2

and 3 intersect the horizontal to the left of ~1. The "least oblique" among these is

constraint 3, which means that r2 = 3 and c~2 is the step to the vertex labeled "e".

The path taken by the Harris procedure is thus x-e-d, where constraints I and 2

are slightly violated at the second iterate.

3.3. A consequence o f infeasible basic variables

The Harris test necessarily allows infeasibilities in each basic variable. A less obvious

consequence is that the iterates may fail to satisfy A x = b i f nonbasic variables are

treated in the traditional way. To see why, consider the case when x~ = -0.001, Pl = - 1

and Ii =0. Since step(x~,p~, ll, u~) is negative, the value of c~2 defined by (3.3b)

could also be negative. If c~2 < 0, the Harris procedure sets c~ = 0 but retains the

same blocking variable xr, which then becomes nonbasic. With a traditional

implementation of the simplex method, the value of the newly nonbasic xr would
actually be changed (perhaps implicitly) to move it exactly onto its bound (see

Section 2.2). Assuming that 6 is the current feasibility tolerance, moving xr onto its

bound is equivalent to performing an extra step in which the current iterate x is

replaced by x +/xer, where e~ is the rth coordinate vector and I/x[<~ 6. Such a change

P.E. Gill et al. / An anti-cycling procedure 445

can produce an error of order 6, i.e., much larger than machine precision, in satisfying

A x = b.

In practice, errors of this kind tend to be eliminated each time the basis is
refactorized, since the basic variables are typically recomputed using (2.3) in order
to satisfy A x = b accurately. Provision is made to return to Phase 1 if the recomputed

variables lie outside their bounds by more than 6. On well-behaved problems, few
iterations (if any) are required to regain feasibility, but in runs lasting thousands
of iterations, the risk of a few extra iterations between refactorizations (typically,
every 50 iterations) amounts to a nontrivial overhead. In the worst case, " few" can

be more than the refactorization frequency and an opt imum may not be achieved.
When solving problems with a nonlinear objective function, a perturbation of order
6 in what should theoretically remain the same point may cause failure in the

linesearch because of the resulting discontinuity.
A simple way to avoid this difficulty is to implement a "zero" step literally. With

such an approach, a slightly infeasible blocking variable becomes nonbasic, but its

infeasible value is retained rather than moving onto its bound. The variable is
temporari ly frozen at that value (across basis factorizations if necessary) until the

normal pricing strategy allows it to move. Provision can still be made to revert to
Phase 1 after refactorization; given a stable basis-handling package, however, the

likelihood of losing feasibility is greatly reduced.
An alternative is to allow a negative step whenever c~2 of (3.3b) is negative, giving

the blocking variable a chance to move exactly onto its bound. This approach has
been used in the quadratic programming and linear least-squares codes QVSOL 3.2
and LSSOL 1.0 [20, 18]. However, it is then necessary to perform a ratio test on the
reverse search direction -p , obtaining a possibly different blocking variable that

again may be unable to reach its bound exactly. Since the objective value will move
slightly in the wrong direction, care must be taken to avoid entering an infinite loop.

A further alternative is to include the new anti-cyling technique, which is described
next.

4. The EXPAND procedure

Our anti-cycling strategy is called the E X P A N D procedure (EXPanding-tolerance

ANti-Degeneracy procedure). The descriptor "expanding" is used because a working
feasibility tolerance is maintained that increases slightly at the start of every iteration.

4.1. Mot iva t ion and definition

In conventional LP terminology, the E X P A N D procedure is a row-selection method

that specifies the choice of pivot row in the simplex method. The "max imum pivot"
property of Harris 's row-selection method [24] is retained, and permitting infeasibil-
ity in nonbasic variables removes the difficulty described in Section 3.3 with tradi-
tional implementations of the Harris procedure.

446 P.E. Gill et al. / An anti-cycling procedure

It should be emphasized that infeasibilities in the nonbasic variables are allowed
only to improve numerical stability and reliability, not to achieve a greater reduction

in cVx in an enlarged feasible region. Although the constraints

A x = b and 1 - 6 r e < - x < ~ u + & e (4.1)

can always be satisfied when A x = b is compatible and ar is sufficiently large, it is
desirable to terminate with a solution that is as close as possible to feasibility for
the unperturbed problem (2.1). Since the final B - N partition is unpredictable, we
anticipate that practitioners accustomed to (2.4) will find (4.1) essentially equivalent.

With exact arithmetic, classical cycling cannot occur in an algorithm of the form
(2.2) if cXp < 0 and c~ > 0 at each iteration, since the objective function strictly

decreases. In our procedure, a positive value of ce is ensured by enlarging the bounds
on all variables slightly at every iteration. Let 8 denote the "old" tolerance from
the previous iteration. The "current" tolerance 6 is defined as

~ = g + r , w h e r e 0 < r < g , (4.2)

and hence is strictly larger than g. The result is that any point x satisfying 1 - ge ~< x ~<
u + ge must lie strictly inside the expanded bounds (l - 6 e , u + 6e), and a positive

step may be taken in any direction before encountering a bound.
The E X P A N D procedure is summarized by the following pseudo-code:

procedure EXPAND(x, p, 1, u, t, 6, ~-);
(~1, r l)~ra t io_ t e s t (x ,p , l - B e , u+ae , t); (first pass)

r ~ 0; Pm~ ~- 0;
for j = 1 until n do (second pass)

ai ~ step(xj,pj, lj, uj, t);

i f o(j ~< a 1 and [Pjl > Pm~ then
r+-j; eee~-aa; Pmax<--Ipjl

end if
end for
o%i.~- T/Iprl; (minimum acceptable step)

c~ +- max{ce2, ami,}.

As with ratio_test, we write

(ce, r) = EXPAND(x, p, l, u, t, 3, r)

to mean that ce and r are assigned the values computed during execution of the
procedure.

The E X P A N D procedure contains two passes that define eel, r and ce2 exactly

as in (3.2) and (3.3) of the Harris procedure. Because 6 - 6 = r > 0 and x satisfies
1 - 6e <~ x <~ u + 6e, c~l must satisfy

c~l >~ r/Ip,.,[. (4.3)

Since r corresponds to the largest pivot element among all variables for which the
step to the exact bound does not exceed a l , ~m~, must be positive and cannot exceed
eel.

P.E. Gill et al. / An anti-cycling procedure 447

The crucial difference from the Harris procedure arises from imposition of the

positive lower bound amen on the steplength. Assume that there is only one possible

blocking variable xr, and let A be the step from xr to the corresponding bound:

A = X r - l , or u , -x r . There are three cases.

Case I. If zl >~ r, a 2 is positive and exceeds amin. With both the Harris and

EXPAND procedures, a is taken as a 2 (a "nondegenerate" step) and the blocking

variable reaches its bound exactly.
Case 2. If 0 <~ A < r, x, is feasible, but is closer than r to its bound. The value of

a2 is nonnegative, and the Harris procedure would move x, onto its bound. With

the EXPAND procedure, however, Xr is moved a step of amid, and its bound becomes

violated (by at most r).

Case 3. If A < 0, Xr is infeasible at the beginning of the iteration. The value of

c~2 is negat ive in this case, and the Harris procedure would take a step of zero.

Depending on the treatment of nonbasic variables, Xr would either be moved onto
its bound (see Section 2.2) or left unchanged at its present value. In contrast, the

EXPAND procedure again takes a step of O/min, SO that Xr becomes more infeasible.
Even so, the new value of x~ cannot violate its bound by more than 6, i.e., an

increase of r from the maximum possible infeasibility at the beginning of the

iteration.

A step of am~ (Cases 2 and 3) corresponds to a "degenerate" step in which the
blocking variable moves a total distance of r and violates its bound at the end of
the iteration. Since it is common for blocking variables to become basic at a later

iteration, the total number of nonbasic infeasibilities at any stage is generally less

than the number of degenerate steps so far.
Figure 2 illustrates Cases 1-3 (a normal step and two degenerate steps) for the

EXPAND procedure. We assume that p, < 0, so that x~ is constrained by its lower

bound l,, which is shown as the horizontal axis. The sloping arrows plot the value

of x, + ~pr against a, with three possible starting values for x,. The shaded horizontal
distance is a ~ , in all cases, and the intersection point of the sloping arrow with

the horizontal axis is a2. In the first case, Xr is not "close to" l~, ~2 exceeds ~m~n,

rain t~ 2 ~2

Case 1 Case 2
Fig. 2. Three configurations of the blocking variable.

Case 3

448 P.E. Gill et al. / An anti-cycling procedure

the step of c~2 is taken, and Xr moves exactly to its bound. In the middle case, xr

is feasible, but c~2 is less than c~,,,,1. A step of c~,,,~,1 moves xr to an infeasible value.
In the third case, xr already violates its lower bound, c~2 is negative, but again a
step of c~mi,, is taken. Although xr becomes more infeasible, the additional violation

is limited by ~-. In the second and third cases, the vertical arrow labeled "~-" shows
the minimum required change in x~.

4.2. Increasing the feasibility tolerance

We have just seen that the lower bound c~m~ plays a special role in the EXPAND

procedure in the "inner" context of a single simplex iteration. The equally important
concept of expansion (increasing the feasibility tolerance) can be understood only
when the EXPAND procedure is viewed as part of a sequence of simplex iterations.

Within this "outer" context, the procedure is invoked at iteration k to choose the

steplength c~k and blocking variable rk. The expansion of the feasible region is
controlled by a "current" or "working" feasibility tolerance 6k that monotonically
increases at each iteration. The value of 6k is defined in terms of the preceding
tolerance 6~_~ using (4.2), and serves as the parameter ~ of EXPAND. The following

pseudo-code illustrates how the kth simplex iteration increases 6k and calls

EXPAND.

Compute the search direction Pk ;

Bk ~- 6k-1 + T;
(c~k, rk) = EXPAND(xk, Pk, 1, u, t, 6k, 7);

Xk+~ ~ x k + ~ k P k ;

Modify the sets of basic and nonbasic variables;

k ~ k + l .

Since the iterates could in the worst case become more infeasible at every iteration,
divergence is prevented by placing an upper bound K on the number of simplex
iterations allowed before invoking a resening procedure, to be described in the next
section. A "master" feasibility tolerance 6c is defined, with the essential property
that 6k < 5r for k ~ K. A sequence of at most K consecutive simplex iterations in
which the value of 6k successively increases will be called an e.rpanding sequence.

The "best" choices for ~3f, 30 and K depend on the nature of the problem and
on the machine precision. Given a "reasonable" precision e, the following values
are recommended:

~ f = e 3/s is the "master" feasibility tolerance;
K = e - 1 / 4 is the maximum number of simplex iterations allowed before resetting;

8o = 0.5~c is the feasibility tolerance used to initiate an expanding sequence;
6K = 0.996r is the maximum feasibility tolerance during an expanding sequence;

T = (~ - 6o) /K is the amount by which 5k increases at every iteration.
The philosophy reflected by these choices is to begin each expanding sequence

with a value of 6o "similar" to ~f, and to increase 6k slowly through a long sequence
of iterations.

P.E. Gill et al. / An anti-cycling procedure 449

1 1 1

Fig. 3. An effect of increasing the feasibility tolerance.

For a machine with 16 decimal digits of precision (e = 1 0 - 1 6) , the recommended
values are 6f= 10 -6 , K = 10000 and ~- = 0.49 x 10 -~°.

A crucial effect of increasing the feasibility tolerance is illustrated in Figure 3. In
the leftmost figure, the current search direction moves to the right from the point
labeled "x" along the horizontal constraint 1. The width of the shading is the current
feasibility tolerance 8. The value a l from the first pass of E X P A N D is the step to
the point marked "a" , which is (in this special case) both the intersection of
constraints 1 and 3, and the intersection of constraint 1 with the perturbed version
of constraint 2. Because constraint 3 is "less oblique", it is chosen as the blocking
constraint, and the point a is the new iterate. Now consider the next iteration. I f

the search direction were " u p " along constraint 3, as shown in the middle figure,
no further movement would be possible if the feasibility tolerance remained unaltered,
since constraint 2 is already violated by 8 at a. However, because the feasibility
tolerance is increased as shown by the wider shading, a positive step can be taken

to the point labeled "b" , where constraint 2 is violated by 6 + ~- and becomes the
blocking constraint. (In contrast, if the search direction were "down" as shown in
the rightmost figure, tolerance of increased infeasibility with respect to constraint
2 would not affect the step.)

4.3. Resetting

After tolerating potentially increasing infeasibility over a long sequence of iterations,

we require a "resetting" procedure to restore nonbasic variables to their bounds.
The main steps are as follows.

(1) Every nonbasic variable that lies within 6f of a bound is moved exactly onto
the bound. (This set will include some of the variables that were slightly infeasible
when they last became nonbasic.) A count is kept of the number of "nontrivial"
adjustments, where "nontrivial" means (say) "greater than e 2/3''.

(2) I f the count is positive, the basic variables are recomputed in terms of the
newly adjusted nonbasic variables, so that Ax = b will be satisfied to (essentially)
machine precision.

450 P.E. Gill et al. / An anti-cycling procedure

(3) The feasibility tolerance is reinitialized to 3o, and a new expanding sequence

begins.
A reset occurs at the end of an expanding sequence, i.e., after K iterations.

Following the reset, the optimizer resumes in Phase 1 or Phase 2 depending on the

value of the feasibility tolerance at the first iteration, namely ~l = 60+ r.
Resetting is also associated with a tentative decision to terminate (i.e., the current

point is apparently optimal, no feasible point can be found, or the solution appears
to be unbounded). In our implementation, the reset procedure may be executed at
most R times in this situation, where the choice of R depends on several factors.
For well-conditioned problems, termination tests are typically satisfied (again)

immediately after a reset, so that a value of R = 1 leads to little additional work
and ensures "conventional" feasibility in the sense that no nonbasic variables lie

outside their bounds.
In badly conditioned cases, on the other hand, a very large number of iterations

may be needed to regain feasibility and optimality following a reset. To improve
the probability of terminating at a "convent ional" solution, it may be advisable to
let R = 2, since a second reset normally adjusts fewer nonbasics than the first.

Finally, it may be appropriate to skip resetting entirely, i.e., to let R = 0. After k

iterations of an expanding sequence, the current iterate is guaranteed to be feasible
to within ~k (assuming that Phase 1 has terminated). Since 3k < 3f, the current iterate
satisfies (4.1) and may be considered acceptable as it stands.

This justification for choosing R = 0 might also apply in the degeneracy-resolving
procedure of Benichou et al. [3, pp. 292-294], in which a perturbation is added to
the right-hand side vector b. Once the perturbed problem has been solved, the
perturbation is removed and the dual simplex algorithm is applied (often requiring

no further iterations). I f this approach were implemented with a perturbation of
order ~c (rather than the much larger perturbation suggested in [3]), the solution
to the perturbed problem could be accepted for all practical purposes.

4.4. Convergence

The E X P A N D procedure ensures a strict decrease in the objective function at each
iteration within an expanding sequence. Because of resetting after K iterations,
however, the possible increase in the objective after restoration of feasibility could
theoretically lead to a classical cycle of period K. Our recommendation that K be

very large is intended to make the probabili ty of such a cycle essentially "negligible".
To emphasize the point, we note that previous implementations of the simplex

method have been operating (in effect) with K set to the basis refactorization
frequency--typical ly less than 100. Failures attributed to cycling have been rare
(though not completely absent; for example, see [3, pp. 292-294]), and various

other implementation details were probably contributing factors.
To a large extent, the chance of failure to converge due to resetting depends on

cond(B), the condition number of a typical basis matrix. I f cond(B) approaches
l / e , then errors in the computed solution can (in the worst case) be so large that

P.E. Gill et al. / An anti-cycling procedure 451

any algorithm may be unable to produce a solution that satisfies both feasibility
and optimality requirements. However, there should be essentially no risk of failure

with resetting if cond(B) approaches I/6~, assuming that 8f and K have "sensible"
values.

Of course, it is impossible to choose a value of K that guarantees convergence
in all cases. At the time of writing, some large examples of a particular class of
(randomly generated) minimax problems have been found to enter a cycle of length
10 000 [16]. In one case, increasing K to 1 000 000 allowed an opt imum to be
reached after 15 000 iterations. Ill-conditioning was evident, but this serves to show
the existence of pathological but solvable examples.

4.5. The effect of ignoring small elements of p

The tolerance t in the parameters of step is intended to provide a simple numerical
safeguard against pivots that are "too small", by defining step as infinite when a
component o f p is "negligible" (see Section 3.1). (In MIr<OS, t is defined as e 2/3 for
linear programs a n d 62/3[[p1[for nonlinear programs.) I f t is positive, a variable xj

for which [Pi[is "too small" cannot be a blocking variable. Unfortunately, this
property may conflict with the assumptions that underlie the EXPAND procedure.

To ensure that the new iterate x + ap does not violate any bound by more than
6 when ~ =am~,,, it is essential for x to lie at least r away from its bounds

(l - 8e, u + 6e). I f alPJ[> r for any ignored element pj, x~ + ajp i may violate its bound

by as much as alPil-'r.
In such cases, a simple precaution would be to test whether any components of

x + a p violate the bounds (l -Be , u+Se) . Any that do could be moved onto those
bounds. Alternatively, a smaller value of t could be chosen, which means that fewer
elements of p are ignored. However, it is common for many elements of p to be

very small, and excluding such elements from the ratio test can give significant
computat ional savings on large problems.

Neither form of precaution has been included to date in our implementation.
Such safeguards could be important if fif and • were substantially different from
the recommended values.

5. A simplified procedure

A preliminary version of the EXPAND procedure was used in the experiments
conducted by Lustig [26]. This version was simpler and potentially more efficient
on nondegenerate problems; we therefore summarize it in the pseudo-code below.

As before, we assume that the feasibility tolerance has just been increased to 6 = 6 + ~-.

procedure SIMEXPAND(x , p, l, u, t, 8, ~');
(oH, r l) ~ ratio_test(x, p, I, u, t); (first pass)

ami.<- ~'/[Pr~]; (minimum acceptable step)

452 P.E. Gill et aL / An anti-cycling procedure

if a l ~>cemin then a ~ - a l ; r~-rl;
else (a, r) <- ratio_test(x, p, l - ~e, u + 6e, t) (second pass)

end if

In contrast to EXPAND, this approach reverses the two passes in the Harris
procedure, adding perturbations in the second pass. It has the advantage of terminat-

ing frequently after the first pass (which is just the classical ratio test applied to the
original problem data), in which case the blocking variable reaches its bound exactly.
I f al is less than the minimum value C~mi,,, the blocking variable becomes nonbasic
at an infeasible value (l r - 6 or Ur + 3).

A possible disadvantage of S I M E X P A N D is that the pivot element IPrl is not
maximized within a set of candidates. Nevertheless, the final step always satisfies
a >1 r/Ip~l, which tends to prevent selection of a small pivot element unless the
feasible region is unbounded. Numerical instability seems unlikely if 6r and r have
the recommended values, and no numerical difficulties were encountered in the
computat ional tests.

6. Relationship to Wolfe's procedure

Either form of the E X P A N D procedure may be interpreted as a modification of
Wolfe's "ad hoc" anti-cycling procedure [39].

6.1. Wolfe's procedure

We first consider an LP with general lower bounds:

LP0 minimize cTx
subject to Ax = b, x > l,

and we assume that the current iterate is feasible.

Wolfe's procedure takes effect when the simplex method encounters a degenerate
feasible vertex, denoted by x0. Once degeneracy has been detected, the basic variables
are divided into two categories that depend on xo: degenerate variables that are
currently on a bound; and nondegenerate variables that are strictly feasible with

respect to their bounds. These categories are used to define the following subsidiary
linear program:

LP~ minimize cVx

subject to Ax = b, xD>l lD-d, xN>~ IN,

where d is a positive vector, D denotes the degenerate variables, and N denotes the
usual nonbasic variables. Let Y denote the set of n - m indices of variables in xN

at xo, and ~ the set of nw indices of variables in xD. The value nD is called the
degree of degeneracy of Xo.

Problem LP~ is the same as LPo except for the bounds on the basic variables,

which have been relaxed for degenerate variables and removed for nondegenerate
variables. Wolfe's procedure was originally described in terms of changes to b rather

P.E. Gill et al. / An anti-cycling procedure 453

than ID; see [39, 36]. Throughout this discussion we follow Osborne [34, p. 87] in
moving bounds away from degenerate variables, rather than vice versa. The concepts

are essentially the same, except when both upper and lower bounds are present;
see Section 6.4.

Clearly, Xo is a nondegenerate feasible vertex for LPI, since exactly n - m variables

(xN) are active at their bounds. When the simplex method is applied to LP1, the
values obtained for x are not directly relevant to LP0, but the bases generated (and
the associated dual variables) have meaning for both problems. Three situations
may arise:

(1) A finite opt imum is obtained for LP1, which shows that xo is an optimal
(albeit degenerate) solution of LP0. The optimal basis and dual variables for LP~
correspond to an optimal basis and multipliers for LP0.

(2) LP~ is found to be unbounded when a certain nonbasic variable is considered

for entry into the basis. The same basis and nonbasic variable produce a feasible
descent direction for LP0, which allows movement away from the non-optimal point
xo. (This is the direction o f recession described by Osborne [34].) Solution of LP0
can continue from Xo.

(3) A degenerate vertex x~ for LP~ arises. A crucial feature of x~ is that its degree

of degeneracy must be less than no, since at least one variable originally in XN must
have moved away from its bound. We may thus define a subsidiary linear program
LP2 at x~.

The procedure may be applied recursively whenever a degenerate vertex is encoun-
tered. Starting with k = 0, problem LPk reaches case l, 2 or 3 in a finite number of
iterations (since the objective function for LPk decreases montonically). Case 3
leads to a new problem LPk+~ but can occur only a finite number of times (since
the degree of degeneracy is monotonically decreasing). Eventually, the degeneracy

at Xo is "resolved" by either verifying optimality or moving away from x0.
Wolfe's procedure is appealing for at least two reasons: it uses the simplex method

itself to resolve degeneracy, and it can be implemented with a minimum of overhead
(at least for the case l = 0, u = co), as shown by Ryan and Osborne [36]. However,

it is not without drawbacks. Although a degenerate vertex is unlikely to be encoun-
tered in LPk for k > 0, particularly if d is defined using random positive numbers,

it remains necessary (and inconvenient) to cope with the possibility. Furthermore,
a practical Wolfe-based procedure must define "numerical" degeneracy and choose
the precise set of degenerate variables. Selecting the "wrong" variables for XD may
lead to inefficiency. For example, suppose that some (even all) of the basic variables
are not quite on their bounds and hence are not included in xD. Only a very short
step is likely to be taken after the degeneracy has been "resolved" before the
procedure must be invoked again.

6.2. Parameterization o f the subsidiary linear program

Given the Wolfe subproblem LP~, consider the effect of introducing a positive
parameter y that multiplies the perturbation d in the bounds on xD, where we

454 P.E. Gill et al. / An anti-cycling procedure

assume that lid II ~ 1. The subsidiary problem becomes

LP~(3`) minimize cTx

subject to Ax = b, xo>~ ID-3`d, XN>I IN.

We now show that the value of 3" does not affect the sequence of bases generated

in solving LP~(3`).

Lemma I. Suppose that the simplex method is applied to LP~(3'), starting at xo and
using the "textbook" ratio test and the starting basis from LP0. With exact arithmetic,

the sequence of bases generated is the same for all positive values of 3,.

Proof. At the first iteration of the simplex method, the search direction p is indepen-

dent of 3/. The only variables in the first ratio test are those in @. For j e @, the
initial value ofx~ is !J and its lower bound in LP~(T) is !i - ydj. The distance of each
possible blocking variable x~ from its bound is thus ydj. Assuming that a blocking
variable exists and that a consistent rule is applied for breaking ties, the same
blocking variable r will be chosen at the first iteration of LP~(y) for every positive

3/, and the associated steplength satisfies

a = w~ = ya*, (6.1)

where a* is the step at the first iteration of LPI(1). The first basis change is
independent of 3/because the distance of each potential blocking variable from its
bound in LP~(3') is a factor of 3' times the distance from its bound in LP~(1).

At the end of the first iteration, each variable xj, j ~ ~, takes on the value !i + a~,pj.
We conclude from (6.1) that its distance from the bound /j - 3`dj is

lj+~pj-(li - 3`dj) = 3 ` 4 + ~ p j = 3"(d~+~%).

The newly basic variable (say xk, k ~ ?() moves a distance a~pk from its bound.
Thus, even after the first basis change, the distance of every possible blocking

variable in LPI(3') from its bound is 3' times the distance from its bound in LP~(I).

It follows that changes of basis will continue to be independent of 3' as long as
blocking variables exist. []

For our purposes, the result of Lemma 1 is significant because the Wolfe sub-

problems may be posed with an extremely small value of 3', which implies that there
is no need to define and solve LP1. A "modificat ion" of Wolfe's procedure would
simply continue simplex iterations on (conceptually) the original problem LPo, but
with a tiny modification to the bounds on the "degenerate" variables xj, j c ~.

Whenever a degenerate vertex is encountered, another small perturbation with a

different vector d would be introduced to the bounds on a new set of degenerate
variables. Strictly speaking, this approach would eventually solve a perturbed version

of the original problem LP0.

P.E, Gill et al. / An anti-cycling procedure 455

To implement such a modified Wolfe technique, the perturbation vector(s) d need
to be defined. Choosing the elements of d at random (in the range (0, 1], say)
reduces the probability of creating a further degenerate vertex. From the perspective
of preserving well-conditioned bases, however, the "best" choice would be d = e,
the vector of ones (assuming that the problem is well scaled), since the first blocking

variable would correspond to the largest eligible pivot element in the search direction
p. Unfortunately, such a structured choice for d would seem to increase the probabil-
ity of encountering a degenerate vertex. For the original Wolfe procedure, a com-
promise is to choose elements of d randomly from a range such as (0.5, 1] (cf. [9]),

thereby reducing the frequency of recursion beyond LP~ [36]. However, for the
modified procedure, the need to make frequent perturbations is of no consequence
provided the total perturbation remains small.

6.3. Connection with the E X P A N D procedure

The E X P A N D procedure may be interpreted as a further modification of the Wolfe
procedure, with two key differences:

• a small perturbation in the bounds occurs at every iteration regardless of whether

or not the current iterate is degenerate;
• a similar perturbation is made to all the bounds, not just those for variables

that have been declared "degenerate".
The crucial issue in relating EXPAND to Wolfe's method is the effect of the

"extra" perturbations in bounds on nondegenerate basic variables. Since the bounds
on nondegenerate basic variables are removed in Wolfe's formulation, only the

degenerate and nonbasic variables at xk may be blocking in LPk+~. Although the
E X P A N D procedure cannot guarantee the latter property, it nonetheless tends to
hold because only the variables in XD and the nonbasic variables are "close to"

their bounds at or near a degenerate vertex. Except in extreme cases, a nondegenerate
basic variable is unlikely to be chosen as the blocking variable, since its perturbed
bounds remain relatively "far away".

The notion of temporary bounds (Section 2.2) can be utilized so that nonbasic
variables do not need to be adjusted as their bounds are perturbed. Furthermore,

basic variables that subsequently become nonbasic may be set at their original
(rather than perturbed) bounds whenever a significant step is taken, to reduce the
disturbance caused by occasional resets.

6.4. Wolfe's procedure with upper and lower bounds

Consider applying Wolfe's procedure to define LP, at a degenerate vertex for an

original LP containing both upper and lower bounds. Our view is that the essential
ideas in Wolfe's approach are to remove inactive constraints, and to relax (by a

finite amount) constraints that are active but are not in the working set [21]. Using
these guidelines, the subsidiary problem LP~ would be constructed as follows:

456 P.E, Gill et al. / An anti-cycling procedure

(1) Nonbasic variables currently on a bound would have the opposite bound

removed (except for fixed variables, which remain fixed).
(2) Nonbasic variables on neither bound would have both bounds removed.
(3) Degenerate basic variables would have the active bound relaxed. The opposite

bound would be removed (except for degenerate fixed variables, which would have

both bounds relaxed).
(4) Nondegenerate basic variables would have both bounds removed.
A parameterized subproblem LP~(y) can then be defined, Lemma 1 still holds,

and the EXPAND procedure may be interpreted as a modification of Wolfe's

procedure.
An alternative interpretation of a Wolfe procedure for an LP with upper and

lower bounds is that nonbasic variables should retain both their bounds in the
subsidiary linear program LP~. In this case, the sequence of basis changes in LP~(y)

remains invariant only for values of y small enough so that the inactive bounds on
nonbasic variables at x0 do not affect the choice of blocking variable. Because the
EXPAND procedure corresponds to small values of y, the spirit of Wolfe's approach

is maintained in either case.
As mentioned in Section 6.1, the original Wolfe procedure defines LP, by altering

the right-hand side b of the equality constraints, and obtains an initial nondegenerate

solution by moving components xj, j ~ @, away from their bound. This approach
cannot be used with general bounds if there are likely to be fixed basic variables.
Any such variable is doubly degenerate (except perhaps in Phase 1) and cannot be
moved away from both of its bounds without becoming infeasible.

6.5. S u m m a r y

Compared to Wolfe's method, the E X P A N D procedure has the following properties:

• there is no need to decide whether or not degeneracy is present, or to specify
a set of degenerate variables;

• essentially no storage or logical overhead is involved, and upper and lower
bounds can be handled without complication;

• no numerical or logical information need be preserved across basis factoriz-

ations (other than the values of x and the current feasibility tolerance);
• all iterations are "equal" , in the sense that there is exactly one steplength

determination per iteration. (In Wolfe's method, if LPk is found to be degenerate,
the steplength procedure is effectively repeated at the beginning and end of LPk+I.)

An apparent disadvantage is the need to store numerical values for nonbasic
variables that are slightly outside their true bound- - the simplest approach being to
store all ofx . The cost is most obvious on problems involving many variables (n >> m,
as in crew scheduling problems [10, 9]). However, storing all of x is a convenience

for several reasons (Section 2.2) and is essential for implementing the Harris
steplength procedure correctly (Section 3.3). Once this overhead is accepted, the
ability to implement the EXPAND procedure comes at no further cost.

P.E. Gill et al. / An anti-cycling procedure 457

Several pivot-selection methods have recently been implemented and compared
by Falkner [9] on a wide range of aircrew rostering problems involving many
variables (21 000 up to 162 000). The qualitative similarity in performance of Wolfe's
method and the EXPAND procedure provides empirical confirmation of the
relationship described above.

7. Issues arising in Phase 1

Broadly speaking, Phase 1 of the simplex method finds a feasible point for the
original constraints A x = b, l <~ x <~ u, by applying a normal (Phase 2) procedure to
a modified problem. The main points of Phase 1 are summarized in Section 7.1,
followed by a discussion of some finer points concerning the EXPAND procedure.
(See also Wolfe [40], Orchard-Hays [32] and Beale [2].)

7.1. The Phase-1 bounds and objective

The equality constraints A x = b are retained in the Phase-1 LP, but the bounds are
altered so that the current point is feasible. (Infeasibilities with respect to the original
bounds are reflected in the Phase-I objective function.) Let 6 denote a feasibility
tolerance. The Phase-1 bounds r and a are constructed as follows, depending on
the bounds violated by the current point x.

if xj<l~-6 then ~ - o e ; u j ~ u i

else if xj>Uj+6 then ~<- l/; ~Tj ~- +co
else ~ ~-/j,; ~j ~- u 2 end if

Let ~u(x) and ~l(x) be the sets of indices of components of x that are infeasible
with respect to their upper and lower bounds, respectively:

jc~Cu if xj>uj+•, J¢,¢1 i f x i < l j - & (7.1)

The Phase-1 objective function is the sum o f infeasibilities:

sum ofinfeasibi l i t ies= ~ (x ~ - u i - 6) + ~ (l j - 6 - x j) . (7.2)
j ~ , u .jc 'q'l

Omitting constants, we define the Phase-1 objective function as ~Vx, where from
(7.2) we see that 6i = 1 i f j ~ ~,,, -1 i f j c ~1, and 0 otherwise. Since the indices in
t , and 5~1 vary with x, ~ may change at every Phase-1 iteration. The current value
of ~ is used to compute reduced costs and a search direction p such that ~Tp < 0.

Given p, the EXPAND procedure may be applied in Phase 1 to compute a step
~F and blocking variable rv:

(aF, rF) = EXPAND(x, p, ~, ~, t, a, ~-), (7.3)

where l" and ~ are the Phase-1 bounds. The step aF is the largest positive step that
retains feasibility with respect to bounds that are already satisfied. The value of c~ is
a~ or a special step ~, (see Section 7.3), subject to safeguards discussed below.
Phase 1 is essentially the same as Phase 2 except that ~, I" and ~ are redefined every
iteration, and two possible steps are computed rather than one.

458 P.E. Gill et al. / An anti-cycling procedure

Since p always satisfies yVp < 0, the sum of infeasibilities must (locally) strictly

decrease as the step along p increases from zero. When the step becomes large
enough so that the index sets 5~,, or 5t~ change, (also changes, and the sum of
infeasibilities may decrease at a lower rate or could even start to increase. However,

the number of infeasibilities (i.e., the sum of the numbers of indices in 5~ and o¢~)
will be smaller. Assuming that a positive step is taken at each iteration, we thus see
that Phase 1 must converge to a feasible point (if one exists).

A more intricate Phase-1 steplength procedure can be designed to minimize the
piece-wise linear function ~T(x+ c~p), where { is regarded as a function of c~; for

example, see [23, 15]. However, we adopt the simpler approach, which seems to be
effective in practice. Both approaches have the desirable property that many

infeasibilities can be removed in one iteration.

7.2. Benefits of increasing the feasibility tolerance

We have observed previously that increasing the feasibility tolerance at every
iteration ensures that a positive step can be taken. Further, the feasibility tolerance
actually affects the sum of infeasibilities. I f the number of infeasibilities does not
decrease during a particular iteration, the sum of infeasibilities at the start of the
next iteration must be reduced simply because the value of 5 has increased by r

(see (7.2)). Thus for two separate reasons, the sum and /o r the number ofinfeasibilities
must decrease after each Phase-1 iteration.

Several complex issues involving finite-precision computation arise in any "prac-
tical" anti-cycling method. For example, Fletcher's method for resolving degeneracy

is designed to display favorable properties in the presence of rounding error; see
[12, 13]. From this perspective, the value of ~- in E X P A N D can be viewed as a
means of coping with certain numerical difficulties. Although r is typically very

small, it is intended to be significantly larger than machine precision e, and preferably
larger than the tolerance t that defines " ignored" components of p (Sections 3.1
and 4.5). Increasing 6 and ~- thus helps mask the rounding error that is inevitably
present when x is updated to x + c~p, and guarantees that the number of infeasible

variables (as measured by the increased tolerance) will stay the same or decrease.
We believe that many "infinite loop" failures of simplex implementations are
attributable to an inadvertent oscillation in the number of infeasibilities when ~ is

redefined each Phase-1 iteration with a fixed feasibility tolerance. An example is
described by Ogryczak [31]. Similar examples were encountered with MINOS prior
to the present implementation.

After K iterations are executed in Phase 1, the feasibility tolerance is reduced to

6o for the next expanding sequence. An apparent disadvantage is that the number
of infeasibilities may increase by some arbitrary number (say q), and the sum could
increase by as much as q (~ K - ~0). However, this fluctuation is normally incon-
sequential even if q is nearly as large as m, primarily because many infeasibilities

tend to be removed in a single Phase-1 iteration. Similar comments apply when the
resetting procedure is invoked at an apparently optimal solution.

P.E. Gill et al. / An anti-cycling procedure 459

7.3. The special Phase-1 step

The Phased objective (7.2) is constructed so that at least some of the infeasible

variables move towards the feasible region. The "alternative" Phase-1 step aj is

based on finding the positive step at which these variables first become feasible. Let

denote the (necessarily non-empty) set of indices with the following properties:

= { j l j e # ~ and pj<O or j ¢ # 1 and pj > 0}.

The function step_feas for which pseudo-code is given below is a Phase-1 analogue

of the function step of Section 3.1. For indices in 5 ~, step_feas gives the (positive)

multiple of p that reaches the nearer bound.

function s tep_feas (x , p, l, v, t);
if p > t then step_feas ~-(1-X)/p

else if p < - t then step_feas 4- (u - X) / P
else step_feas ~- -oo

end if

When the tolerance t is omitted from the parameters of step_leas, it should be taken

as zero.

The special step a I corresponds to the value of step_feas(x~, p,, I , u,) for some

index s ¢ #, and we now consider how to choose s. Let ~ma× denote the maximum

value of step_leas:

c~ = max step_feas(xj, pj, lj, uj),
j<.9

which must be positive because # is non-empty. If any infeasible variables become

feasible as the step increases, ~rnax gives the step at which the largest number become
feasible with respect to their nearer bound. Note, however, that a step of t~ma x c a n

cause some of the variables to violate a bound that they previously satisfied.

An obvious strategy is to define a~ = ~max and a = min{a~, aF}. By requiring a to
be less than c~F, we guarantee that variables remain feasible with respect to currently

satisfied bounds. The upper bound of c~ is imposed to ensure that a finite step is

taken when aF is infinite (which may occur when some components of l or u are

infinite).

A difficulty with letting a~ = OTm~× is that no account is taken of the size of the

pivot element. Following the philosophy of Harris (Section 3.2), the following

two-pass procedure may be used to encourage selection of larger pivot elements
when a choice exists. Placing perturbations on the bounds when calling step_leas

in the first pass makes ~1 smaller than the maximum step that causes the variable

to become feasible. The second pass then considers all unperturbed values of

step_leas that are at least as large as dl, and chooses s to correspond to the maximal

pivot element among them.

~1 =maxj~ , step_feas(xj,pj, l j -~, u~+8, t); (first pass)

S 4- 0 , Pmax <-- 0;

for j e # do (second pass)

460 P.E. Gill et al. / An anti-cycling procedure

c~j ~ step_feas(xj, Pi, !i, Ui, t);
if c~j~> ~1 and]pil>Pmax then

s , - : ; P ax'-IPjl
end if

end for

The above procedure was used in Lustig's experiments [26] and in all preceding
versions of MINOS. It appears to have performed reliably for many years.

An undesirable feature is that the chosen pivot IP~I could still be as small as the
tolerance t. The safer two-pass strategy given below has therefore been adopted.
The first pass finds the largest relevant pivot element ~5, and the second pass finds
the largest value of step_leas for which the pivot element is "reasonably close" to
q5 for some constant w, where 0 < w <~ 1.

& ~ m a x j ~ IPj]; (first pass)
c~1 ~- 0;
for j ~ # do (second pass)

c~ ~ step_feas(xj, pj, !J, uj, t);
if c~j> a, and [pj[> og~b then s~ j ; ~,*-~9 end if

end for

Computation of a~ does not depend critically on the feasibility tolerance, and is
hence compatible with the EXPAND procedure.

Experience suggests that the step ce~ should be taken whenever possible (in
preference to aF), so that x, reaches a bound and is removed from the basis. We
therefore define the Phase-1 step as

O~=/O~J, ~l ~O¢1,
reeF, otherwise.

The value of al comes from the first pass of the Harris procedure that computes
av, and is therefore larger than ceF.

On the 53 test problems of Section 9, the values o9 = 0.1 and w = 0.01 lead to more
Phase-1 iterations than the unsafeguarded w =0. We have accordingly chosen
o9 = 0.001.

8. Nonlinear programs with linear constraints

We now consider the problem of minimizing a smooth function F(x) subject to
linear constraints. This category includes quadratic programs (QP) and more general
linearly constrained (LC) optimization problems.

It has been observed by Osborne [34] that Wolfe's anti-cyling procedure general-
izes to certain LC algorithms, including the reduced-gradient method of Wolfe [38].
The EXPAND procedure can similarly be generalized to active-set methods for QP
and LC problems (Fletcher [l l] ; Gill, Murray and Wright [21]), and has been

P.E. Gill et al. / An anti-cycling procedure 46l

implemented in the 1988 versions of QPSOL and LSSOL. The following preliminary
strategy has been developed for the reduced-gradient algorithm in M1NOS.

8.1. A normal iteration

In an active-set framework, the EXPAND procedure may be applied directly to a

general linearly constrained problem. Each iteration has the generic form (2.2):
x ~ x + ap, where p is a search direction such that V F(x)Tp < 0 and a is a nonnegative
steplength. After p is computed, a positive step and blocking index are computed.
The step is traditionally called the "step to the nearest constraint", and will be

denoted by abJk. Any value of a in the interval (0, OLblk] will produce a new iterate
that is acceptably feasible.

With a linear program, the objective function is monotonically decreasing along
p, and a is limited only by considerations of feasibility. With a nonlinear objective
function, however, a is based on two considerations: maintaining feasibility and

achieving the classical "sufficient decrease" in F (see [33]). The latter is often based
on approximate minimization of F as a ranges over the interval (0, OCblk]. With the
E X P A N D procedure,

ablk = max{a~in, a2},

where a2 is the exact step to the blocking constraint.

If a sufficiently large step can be taken, the objective function is strictly reduced
and there is no danger of cycling. If a = Ogblk, the blocking constraint is added to
the working set.

8.2. Avoiding the linesearch

In practice, it may be inefficient or unwise to attempt a linesearch when abl k is very
small (for example, if the active constraints are almost linearly dependent). Even

if the maximum step ab~k is taken, the improvement in objective value may be slight.
More seriously, the "noise level" in F over the permitted interval (0, ablk] may be
so great that an improved point cannot be conclusively identified, and the linesearch
will "fail".

To avoid these situations, we use the step a2 (which may be negative) to the
blocking constraint. I f a2 > 0, a linesearch is always performed. If a2 <~ 0, the active

constraints are "nearly" linearly dependent, and a zero step is usually taken by
skipping the linesearch and adding the blocking constraint to the working set. The
only exception to the latter policy occurs when adding the blocking constraint would
create a vertex of the feasible region, since this circumstance combined with a zero

step could lead to cycling. I f a2<~ 0 and adding the blocking constraint to the
working set would create a vertex, a linesearch is performed over the interval (0, OLblk].

I f the linesearch ever fails to find an improved point, an effort is made to determine

whether the failure was caused by too small a search interval. I f a2 < amin, a step
to the blocking constraint is forced (a = a2) and the working set is updated.
Otherwise, we assume that a better search direction is required. The working set is

462 P.E. Gill et aL / An anti-cycling procedure

left unaltered and various recovery procedures are invoked, such as switching to
central-difference gradient approximations, resetting the reduced Hessian approxi-
mation, deleting a constraint from the working set, and refactorizing the working set.

Because many methods for problems with nonlinear constraints are based on

solving a sequence of linearly constrained subproblems (e.g., SQP methods and
MINOS), the EXPAND procedure may be applied within the subproblems.

9. Computational results

This section contains computational results for three steplength procedures. The

following names are used:
SPI: The " textbook" ratio test of Section 3.2.
SP2: The simplified E X P A N D procedure of Section 5.
SP3: The maximum-pivot EXPAND procedure of Section 4, which includes

Harris-type tie-breaking.
All three procedures have been implemented in MINOS 5.3 (June 1989); SP3 has

also been implemented in GAMS/MINOS [4].
One aim is to provide a systematic study of the effect of maximizing the pivot

element within a steplength procedure- - the Harris approach to tie-breaking. Folk-
lore has it that "stability is improved and the number of simplex iterations is often
reduced", but such a statement is not especially meaningful without a precise
definition of the procedures being compared. Here we have defined the procedures
in appropriate detail. In particular, it is meaningful to compare the simplified and
standard EXPAND procedures because in both cases the surrounding simplex
algorithm retains the correct numerical values of blocking variables when they

become nonbasic.
The results below were obtained using the simplex method of MINOS 5.3 on the

first 53 linear programs in the Nedib collection [17]. The problems are ordered
according to the number of nonzero elements as in [26]. The main run-time options

specified were

PRINT LEVEL 0
CRASH OPTION 1

CRASH TOLERANCE 0.1
SCALE OPTION 2
PARTIAL PRICE 10
LU FACTOR TOLERANCE 100.0
FACTOR FREQUENCY 100

EXPAND FREQUENCY 10000
FEASIBILITY TOLERANCE 1.0 E - 6

which are the default options for linear problems in MINOS 5.3. The last two options
define K = 10 000 and Br = 10 _6 for the E X P A N D procedures. The limit on calls to
the resetting procedure after apparent termination was set to R = 2 (Section 4.3).

P.E. Gill et al. / An anti-cycling procedure 463

The CRASH parameters above cause MINOS to choose an approximately triangular

basis from the columns of A. In most cases the chosen scaling option has the effect

of making [1~*11 = O(1), where ~* is the scaled optimal solution. (Exceptions were

problems GRow7, GROW15 and GROW22, for which I1~*11--o(107), llx*[[= o(106) .)
Selection of this scaling option helps to justify the choice of 6f= 10 -6 as a feasibility

tolerance.
All numerical tests were run as batch jobs on a DeC VAX station II with the

VAX/WaS version 4.5 operating system. The compiler was VAX FORXRAY version 4.6

with default options, including code optimization and D_floating arithmetic (relative
precision e ~- 2.8 × 10 17). The memory available kept paging to a minimum.

Tables 1, 2 and 3 give results using SP1, SP2 and SP3 respectively. The "objective

function" values indicate that the final objective was accurate to four or more digits

(except for two problems that terminated early). The meaning of "degenerate steps"

depends on the method, as discussed below. Solution times are given in CPU
seconds, and do not include time for data input or solution output.

9.1. The textbook ratio test

SP1 was safeguarded by choosing the tolerance t that defines "negligible" com-

ponents of p as e 2/3 (see Sections 3.1 and 4.5). Since rounding error can cause the

steplength to be negative, a further precaution was to set a = O if ratio_test gave
o~ ~ 10 -16. (The count of "degenerate steps" in Table 1 gives the number of times

a was set to zero in this fashion.) Following conventional practice, blocking variables

were set exactly on their bounds when they became nonbasic.

Although it would be reasonably easy to break (near) ties in favor of large IPil,
we chose not to tamper further with the classical procedure; methodical tie-breaking

is the province of the Harris and EXPAND procedures.
In the test runs, small pivots slipped through the e 2/3 sieve several times on each

of the problems GROW7, GROWl5, GROW22, SCSD1, SCSDS, FFFFFS00, P1LOTJA and

eILOXS. In general, small pivots are detected as near-singularities when the LU

factors of the basis are updated. Refactorization is invoked and some variable xa is

replaced by an appropriate slack variable. Since Xi retains its value when rejected

from the basis, iterations continue without apparent interruption.

Two failures were encountered: problem scsDs terminated as "unbounded", and
eILOXS terminated after not changing the sum of infeasibilities for 1000 iterations.
Small pivots were encountered frequently during these runs, causing the basis to

be ill-conditioned for many groups of iterations. Empirically, ill-conditioning can

only aggravate stalling (particularly for a method that has no guarantee of ter-

minating).

9.2. The simplified E X P A N D procedure

For SP2, the value of "degenerate steps" in Table 2 means the number of times

464 P.E. Gill et al. / An anti-cycling procedure

Table 1

Results with textbook ratio test

Problem Objective Total Degen. Percent Solve time
(Netlib) function itns. steps degen. VAX II secs.

AFIRO -4.6475314285714 E +02 9 5 55.6 0,53
ADLITTLE 2.2549496316238 E +05 117 13 11.1 5,94
SC205 -5.2202061211707 E +01 163 48 29.5 17,48
SCAGR7 2.3313897523795 E +06 98 11 11.2 7,46
SHARE2B -4.1573224074142 E +02 137 37 27.0 9.42
RECIPE -2.6661600000000 E +02 27 3 11.1 1.66
VTPBASE 1.2983146246136 E +05 136 99 72.8 11.89
SHARE1B 7.6589318579186 E +04 197 9 4.6 16.65
BORE3D 1.3730803942085 E +03 160 102 63.8 20.73
SCORPION 1.8781248227381 E +03 172 66 38.4 30.51
CAPRI 2.6900129137682 E +03 246 42 17.1 31.19
SCAGR25 -1.4753433060769 E +07 338 55 16.3 78.92
SCTAP1 1.4122500000000 E +03 346 175 50.6 44.71
BRANDY 1.5185098964881 E +03 472 61 12.9 79.77
ISRAEL 8.9664482186305 E +05 255 3 1.2 31.89
ETAMACRO 7.5571521755573 E +02 687 189 27.5 139.20
SCFXM 1 1.8416759028349 E +04 442 116 26.2 75.53
GROW7 -4.7787811814712 E +07 683 593 86.8 201.83
BANDM -1.5862801845012 E +02 475 59 12.4 98.46
E226 -1.8751929066371 E +01 523 167 31.9 73.51
STANDATA 1.2576995000000 E +03 72 44 61.1 12.22
SCSD1 8.6666666743334 E +00 1394 1339 96.0 115.03
GFRDPNC 6.9022359995488 E +06 630 335 53.2 157.03
BEACONFD 3.3592485807200 E +04 91 17 18,7 9.85
STAIR -2.5126695119296 E +02 628 181 28.8 247.13
SCRS8 9.0429998618888 E +02 788 457 58.0 188.69
SEBA 1,5711600000000 E +04 365 55 15. J 76.42
SHELL 1.2088253460000 E +09 300 73 24.3 70.90
PILOT4 -2.5811392588836 E +03 1651 190 11.5 614.92
SCFXM2 3.6660261564999 E +04 767 186 24.2 238.26
SCSD6 5.0500000078267 E ~-01 1940 1165 60.0 269.30
GROW15 -1.0687094129358 E +08 1204 1073 89./ 1053.40
SHIP04S 1.7987147004454 E +06 162 35 21.6 33.52
FFFFF800 5.5567956521288 E +05 1234 618 50.1 356.99
GANGES -1.0958589354318 E +05 791 200 25.3 361.58
SCFXM3 5.4901254549751 E +04 1088 251 23.1 492.69
SCTAP2 1.7248071428571 E +03 883 619 70.1 345.21
GROW22 -1.6083433648256 E +08 1579 1387 87.8 2578.05
SHIP04L 1.7933245379704 E +06 297 73 24.6 63.71
PILOTWE -2.7200967172270 E +06 5145 961 18.7 2565.39
SIERRA 1.5394362183632 E +07 796 400 50.2 355.81
SHIP08S 1.9200982105346 E +06 236 55 23.3 90.86
SCTAP3 1.4240000000000 E +03 1503 1221 81.2 787.19
SHIP12S 1.4892361344061 E +06 436 117 26.8 231.64
25FV47 5.5018467790995 E +03 7701 889 11.5 4691.38
SCSD8 1.5676484965792 E +03 2930 1411 48.2 unbounded
NESM 1.4076057772814 E +07 3315 5 0.2 1236.99
CZPROB 2.1851966988566 E +06 1724 130 7.5 755.26
PILOTJA -6.1131349867462 E +03 6935 930 13.4 4640.94
SHIP08L 1.9090552113891 E +06 497 86 17.3 213.63
SHIP12L 1.4701879193293 E +06 961 295 30.7 520.68
80BAU3B 9.8722799393135 E +05 11137 2291 20.6 9999.93
PILOTS -4.1351068600000 E +02 1226 1225 99.9 stalled

P.E. Gill et al. / An anti-cycling procedure 465

Table 2

Results with simplified EXPAND procedure

Problem Objective Total Degen. Percent Solve time
(Netlib) function itns. steps degen. VAX II secs.

AF1RO -4.6475314285714 E +02 9 5 55.6 0.55
ADLITTLE 2.2549496316238 E +05 119 8 6.7 6.31
SC205 -5.2202061211707 E +01 152 33 21,7 18.70
SCAGR7 -2.3313897523795 E +06 98 8 8.2 7.65
SHARE2B -4.1573224074142 E +02 133 27 20,3 10.25
RECIPE -~2.6661600000000 E +02 27 3 11,1 1.77
VTPBASE 1.2983146246136 E +05 227 98 43.2 22.26
SHARE1B --7.6589318579185 E +04 244 13 5.3 22.23
BORE3D 1.3730803942085 E +03 164 68 41.5 22.70
SCORPION 1.8781248227381 E +03 175 60 34.3 32.97
CAPRI 2.6900129137682 E +03 233 31 13.3 29.03
SCAGR25 -1.4753433060769 E +07 334 24 7.2 77.63
SCTAP1 1.4122500000000 E +03 374 115 30.8 49.73
BRANDY 1.5185098964881 E +03 387 28 7.2 66.45
ISRAEL -8.9664482186305 E +05 224 4 1.8 26.73
ETAMACRO --7.5571521647657 E +02 600 136 22.7 120.27
SCFXMI 1.8416759028349 E +04 337 52 15.4 56.94
GROW7 -4.7787811814712 E +07 213 74 34.7 43.15
BANDM --1.5862801845006 E +02 413 27 6.5 89.97
E226 -1.8751929066371 E +01 467 67 14.4 69.67
STAN DATA 1.2576995000000 E +03 46 18 39.1 9.39
SCSD1 8.6666666743334 E +00 337 274 81.3 31.50
GFRDPNC 6.9022359995488 E +06 658 259 39.4 169.52
BEACONFD 3.3592485807200 E +04 91 14 15.4 10.07
STAIR --2.5126695119296 E +02 491 66 13.4 203.52
SCRS8 9.0429998618888 E +02 768 251 32.7 201.48
SEBA 1.5711600000000 E +04 350 42 12.0 73.81
SHELL 1.2088253460000 E +09 301 51 16.9 72.39
PILOT4 -2.5811392614137 E +03 1484 138 9.3 560.01
SCFXM2 3.6660261564999 E +04 711 122 17.2 223.78
SCSD6 5.0500000078262 E +01 1162 616 53.0 162.44
GROWl5 -1.0687094129358 E +08 443 131 29.6 160.84
SHIP04S 1.7987147004454 E +06 163 26 16.0 34.74
FFFFF800 5.5567957127313 E +05 953 224 23.5 272.83
GANGES -1.0958591516963 E +05 780 228 29.2 370.06
SCFXM3 5.4901254549751 E +04 1020 157 15.4 460.32
SCTAP2 1.7248071428571 E +03 1109 544 49.0 457.63
GROW22 -1.6083433648256 E +08 664 206 31.0 338.82
SHIP04L 1.7933245379704 E +06 288 45 15.6 63.62
PILOTWE -2.7201041578556 E +06 5357 536 10.0 2673.63
SIERRA 1.5394362183632 E +07 685 206 30.1 316.62
SHIP08S 1,9200982105346 E +06 258 52 20.2 97.75
SCTAP3 1,4240000000000 E +03 1379 765 55.5 740.52
SHIP12S 1.4892361344061 E +06 467 77 16.5 252.70
25FV47 5.5018467791002 E +03 6682 426 6.4 4074.34
SCSD8 9.0499999992546 E +02 4012 1692 42.2 1401.92
NESM 1.4076055975501 E +07 3231 1 0.0 1214.64
CZPROB 2.1851966988566 E +06 1661 41 2.5 734.23
PILOTJA -6.1131353307246 E +03 7515 540 7.2 5069,55
SHIP08L 1.9090552113891 E +06 494 61 12.4 213,92
SHIP12L 1.4701879193293 E +06 958 190 19.8 553.11
80BAU3B 9.8722733242195 E +05 11866 1819 15.3 10917.99
PILOTS -5.5740422249779 E +02 14953 1848 12.4 35210.24

466 P.E. Gill et al. / An anti-cycling procedure

that two passes were required to determine a blocking variable. No singularities
were encountered during the tests, and all problems terminated successfully.

On 80BAU3B and PILOTS, the resetting procedure was invoked after K = 10 000
iterations, with 1152 and 393 nonbasic variables respectively being moved onto their
bounds. Feasibility was restored 11 and 1 iterations later.

With 6r as small a s 10 -6, resets do not disturb x greatly if the basis is reasonably

well-conditioned. After resetting at an apparent optimum, most problems were
immediately confirmed as optimal.

Five problems did require further iterations. On PILOT4, SCFXM3, PILOTJA, 80BAU3B
and PILOTS, 36, 203, 69, 78 and 61 nonbasic variables (respectively) were moved
onto their bound, and 4, 1, 3, 15 and 25 additional iterations were performed. A

second reset moved 0, 1, 1, 9 and 0 nonbasics, and the middle three problems then
required 0, 0 and 4 final iterations.

9.3. The E X P A N D procedure

For SP3, "degenerate steps" in Table 3 means the number of times that c~ was

forced to take the value c~,~, rather than c~2, i.e., the number of times a blocking
variable was made nonbasic at an infeasible value, rather than reaching its bound
exactly.

On S0BAU3B and PILOTS, the reset after 10000 iterations moved 1291 and 318
nonbasics respectively, and feasibility was restored 3 and 7 iterations later.

Only two problems continued after resetting at an apparent optimum. On P1LOTJA
and PILOTS, 91 and 33 nonbasics (respectively) were moved onto their bound, and
74 and 69 additional iterations were performed. A second reset moved 5 and 1
nonbasics, and no further iterations were required.

9.4. Comments on the results

Figures 4-8 summarize the highlights of Tables 1-3. Figure 4 shows the ratios of
solution times for SP1 and SP3, Figure 5 gives a sorted version of the same
information, and Figure 6 gives the ratios of iteration counts. (Problems scsD8 and
PILOTS have been omitted because of the failure of SP1 to reach an optimal solution.)
In all figures, the ratios are plotted on a log scale.

It is clear from Figures 4 and 6 that the outliers are the same with either measure,
but the time comparison tends to be more dramatic. Figure 5 reveals that for
two-thirds of the solved problems (35 of 51), the solution times for SP1 and SP3
vary by less than 15%. The three greatest improvements in speed for SP3 (by factors
of more than 5) occurred on the CROW problems. Much of the difference was due
to additional refactorizations for SP1, following detection of singularity.

Figure 7 shows the ratio of solution times for SP2 and SP3, again on a log scale,
and Figure 8 gives a sorted version of the same data. Not surprisingly, the perform-

ance of SP2 and SP3 is much closer than that of SP1 and SP3. Figure 8 reveals that
SP2 was more than 15% faster on 5 problems, whereas SP3 was more than 15%

P.E. Gill et al. / An anti-cycling procedure 467

Table 3

Results with EXPAND procedure

Problem Objective Total Degen. Percent Solve time
(Netlib) function itns. steps degen. VAX I1 secs.

AFIRO -4.6475314285714 E +02 9 5 55.6 0.53
ADLITTLE 2.2549496316238 E +05 121 12 9.9 6.49
SC205 -5.2202061211707 E +01 141 39 27.7 17.79
SCAGR7 -2.3313897523795 E +06 98 10 10.2 7.99
SHARE2B -4.1573224074142 E +02 173 36 20.8 12.85
RECIPE -2.6661600000000 E +02 27 3 11.1 1.86
VTPBASE 1.2983146246136 E +05 152 50 32.9 15.02
SHAREIB -7,6589318579186 E +04 266 2 0.8 24.57
BORE3D 1.3730803942085 E +03 144 51 35.4 19.72
SCORPION 1.8781248227381 E +03 178 59 33.2 33.58
CAPRI 2.6900129137682 E +03 271 41 15.1 35.98
SCAGR25 - 1.4753433060769 E +07 338 27 8.0 79.36
SCTAP1 1.4122500000000 E +03 264 97 36.7 35.45
BRANDY 1.5185098964881 E +03 369 39 10.6 64.56
ISRAEL -8.9664482186305 E +05 251 3 1.2 32.97
ETAMACRO -7.5571521832862 E +02 567 173 30.5 114.08
SCFXM1 1.8416759028349 E +04 375 63 16.8 63.72
GROW7 -4.7787811814712 E +07 184 54 29.4 34.97
BANDM -1.5862801845012 E +02 457 41 9.0 95.75
E226 - 1.8751929066371 E +01 545 92 16,9 78.29
STANDATA 1,2576995000000 E +03 65 36 55.4 12.40
SCSD1 8.6666666743334 E +00 303 169 55,8 27.83
GFRDPNC 6.9022359995488 E +06 672 304 45.2 179.91
BEACONFD 3.3592485807200 E +04 91 14 15.4 10.56
STAIR -2.5126695119296 E +02 577 70 12.1 249.99
SCRS8 9.0429998618888 E +02 743 215 28.9 193.33
SEBA 1.5711600000000 E +04 351 39 11.1 78.79
SHELL 1.2088253460000 E +09 299 58 19.4 70.09
PILOT4 -2.5811392640909 E +03 1543 149 9.7 595.87
SC FX M2 3.6660261564999 E +04 670 109 16.3 210.92
SCSD6 5.0500000078262 E +01 1306 597 45.7 180.95
GROW15 -1.0687094129358 E +08 425 95 22.4 164.54
SHIP04S 1.7987147004454 E +06 163 26 16.0 33.57
FFFFF800 5.5567959102689 E +05 796 242 30.4 229.97
GANGES -1.0958636378469 E +05 757 187 24.7 364.23
SCFXM3 5,4901254549751 E +04 1008 164 16.3 462.68
SCTAP2 1.7248071428571 E +03 761 389 51.1 308,59
GROW22 -1.6083433648256 E +08 634 148 23.3 339,95
SHIP04L 1.7933245379704 E +06 291 38 13.1 63,87
PILOTWE -2.7201044816159 E +06 5458 527 9.7 2784.98
SIERRA 1.5394362183632 E +07 648 236 36.4 295.85
SHIP08S 1.9200982105346 E +06 254 51 20.1 97.42
SCTAP3 1.4240000000000 E +03 904 506 56.0 481.26
SHIP12S 1.4892361344061 E +06 437 95 21.7 231.42
25FV47 5.5018458882868 E +03 6446 652 10.1 4005.84
SCSD8 9.0499999992546 E +02 3138 1285 41.0 1136.22
NESM 1.4076057079146 E +07 3228 40 1.2 1252.46
CZPROB 2.1851966988566 E +06 1694 102 6.0 749.33
PILOTJA -6.1131581690180 E +03 6487 643 9.9 4506.88
SHIP08L 1.9090552113891 E +06 474 59 12.4 202.78
SHIP12L 1,4701879193293 E +06 959 256 26.7 563.78
80BAU3B 9.8722740952342 E +05 10166 1845 18.2 9184,18
PILOTS -5.5740380065647 E +02 13723 1459 10.6 32200.90

468 P.E. Gill et aL / An anti-cycling procedure

A F I R O
A D L I T T L E

S C 2 0 5

S C A G R 7

S H A R E 2 B

R E C I P E

V T P B A S E

S H A R E 1 B

B O R E 3 D

S C O R P I O N

C A P R I

S C A G R 2 5

S C T A P 1

B R A N D Y

I S R A E L

E T A M A C R O

S C F X M 1
G R O W 7

B A N D M
E 2 2 6

S T A N D A T A

S C S D 1

G F R D P N C

B E A C O N F D

S T A I R

S C R S 8

S E B A

S H E L L

P I L O T 4

S C F X M 2

S C S D 6

G R O W l 5

S H I P 0 4 S

F F F F F 8 0 0

G A N G E S

S C F X M 3

S C T A P 2

G R O W 2 2

S H I P 0 4 L

P I L O T W E

S I E R R A

S H I P 0 8 S

S C T A P 3

S H I P 1 2 S

2 5 F V 4 7

N E S M

C Z P R O B

P I L O T J A

S H I P 0 8 L

S H I P 1 2 L

8 0 B A U 3 B

. • 1.00

. 0 .92

. o . g 8

. 0 .g3

. 0 .73

. 0 .89

. 0 .79

. 0 .68

. • 1 .05

. 0,91

. 0 .87

. 0 .99

. 1 .26

. 1.24

. 0 . 9 7

. • 1.22

. 1..19

. 5 .77

. 1..03

. 0 . g 4

. O.99

. 4.13

. 0 . 8 7

. 0 .g3

. 0 . 9 9

. 0 .98

. 0 . 9 7

. • 1.01

. 1..03

. 1..13

. 1,,49

. 6.40

. 1.00

. .1..55

. 0 .99

. • 1..06

. • 1..12

. ~.56

.1..00

. 0 .92

. .1..20

. O.93

. 1..64

. & O 0

. • 1..17

. 0 .99

. • 1-.01
. 1..03

i i i i i . i i . . O.g:~ '°s
.1..og

I I I
0.5 1 2 4

Fig. 4. Compar ison of solution times for SP1 and SP3.

faster on 8 problems. (The iteration ratios were qualitatively very similar to the time

ratios, and hence are not shown.)
It is interesting to compare the percentage of degenerate iterations for the three

strategies. The percentage of degenerate steps with SP1 was more than 15% higher
than with SP3 for nearly four-fifths of the problems (with the striking exception of
NESM, which had only a tiny percentage of degenerate steps in all cases), and more
than twice as large for 9 problems. In contrast, SP2 led to a reduction of 15% or

F,E. Gill et aL / An anti-cycling procedure 469

S H A R E 1 B
S H A R E 2 B
V ' I P B A S E

C A P R I
G F R D P N C

R E C I P E
S C O R P I O N

A D U F I L E
P I L O T W E

S H I P 1 2 L
B E A C O N F D

S C A G R 7
S H I P 0 8 S

E 2 2 6
I S R A E L

S E B A
8 C 2 0 5

S C R S 8
G A N G E S

N E S M
S C A G R 2 5

S T A I R
S T A N D A T A

A F I R O
S H I P O 4 L
S H I P 0 4 S
S H I P 1 2 S
C Z P R O B

S H E L L
B A N D M
P I L O T 4

P I L O T J A
B O R E 3 D
S H I P O 8 L
S C F X M 3

8 0 B A U 3 B
S C T A P 2
S C F X M 2

2 5 F V 4 7
S C F X M 1
S I E R R A

E T A M A C R O
B R A N D Y
S C T A P 1

S C S D 6
F F F F F 8 0 0

S C T A P 3
S C S D 1

G R O W 7
G R O W 1 5
G R O W 2 2

. 0 . 6 8

. 0 ,73
. 0 . 7 9

. 0 . 8 7

. 0 .91

. 0 . 9 2

. 0 . 9 2
. 0 . 9 2

. 0 . 9 3
. 0 . 9 3
. 0 . 9 3
. 0 . 9 4
. 0 . 9 7

. 0 . 9 7

. 0 . 9 8
. 0 . 9 8

. 0 . 9 9

. : 0 . 9 9

. 0 . 9 9

. 0 , 9 9

. 0 , 9 9
. & O 0

. 1 . . 0 0

. 4,00

.1..00
. :1.01

. ' 1 1 , 0 1

. 1..03
. 4 . 0 3
. 1..03

. • 1.,05

. • 1 .05
. • 1 ,06

. :1.09

. :1-..12

. 1 . , : 1 3

. 4 1 . 4 7

. • 1,.:19
. ,~ . . .20

. :1.,22
. :1.,24
. -1..26
. 1 .49
. £ 5 5
. • 1,.64
. 4 . 1 3

. 5 . 77

. 6 , 4 0
. ~ . 58

(I I
0.5 1 2 4

Fig. 5. Sorted comparison of solution times for SP1 and SP3.

more in the percentage of degenerate steps for 10 of the problems, and to an increase

of more than 15% for 12 of the problems.

9.5. O t h e r p a r a m e t e r v a l u e s

The 53 test problems have been solved many times, with and without scaling and

partial pricing. One of the ma in parameters of interest is the feasibility tolerance.

We have exper imented with the values 6 = 10 -4, 10 -5, 10 -6 and 10 -7 (Harris recom-

m e n d e d 6 = 5 x 10 -4 on a mach ine with e ~ 10-8), bu t the sensitivity of the s implex

470 P.E. Gill et al. / An anti-cycling procedure

A F I R O
ADL I ' I -FLE

S C 2 0 5
S C A G R 7

S H A R E 2 B
R E C I P E

V T P B A S E
S H A R E I B

B O R E 3 D
S C O R P I O N

C A P R I
S C A G R 2 5

S C T A P 1
B R A N D Y

I S R A E L
E T A M A C R O

S C F X M 1
G R O W 7
B A N D M

E 2 2 6
S T A N D A T A

S C S D 1
G F R D P N C

B E A C O N F D
S T A I R

S C R S 8
S E B A

S H E L L
P I L O T 4

S C F X M 2
S C S D 6

G R O W l 5
S H I P 0 4 S

F F F F F 8 0 0
G A N G E S
S C F X M 3
S C T A P 2

G R O W 2 2
S H I P 0 4 L

P I L O T W E
S I E R R A

S H I P 0 8 S
S C T A P 3

S H I P 1 2 S
2 5 F V 4 7

N E S M
C Z P R O B
P I L O T J A
S H I P 0 8 L
S H I P 1 2 L

8 0 B A U 3 B

. 1.,00

. 0 . 9 7

. .1.:16

. • 1 .00

. 0 . 7 9

. 1..00
. 0 . 8 9
. 0.74

•1.Jl I
' 0 . 9 7
. 0 .91

. 1 , 0 0
. .1,31

. , 1 , . 28

. & 0 2

. ,1.21
. . I .18
. 3,71
. 1..04
. 0 .96
. :1..:11
. 4 .60
. 0 . 9 4
. I . .00
. :1.09
. 1 , 0 6
. :I..04
. • 1,.00

. 1 , . 0 7

. 1..14

. 1 .49
. 2 .83
. 0 .99
. • 1..55
.1.04
.1,.08

. 1 .16

. 2 . 49

. -1,02

. 0 . 9 4

. 1,23

. 0 . 9 3
. 1.,66
. • 1..00
. .1-..19
. 1..03
. -1..02
. ,1..07
. 1.,05
. -1,.00
. • 1 . . I0

I I I
1 2 4

Fig. 6. Comparison of iteration counts for SP1 and SP3.

method to minor algorithmic changes seems to have masked any useful trend.
Significant improvements were certainly observed on some of the problems with

= 10 -4. The risk is a greater disturbance after resetting on problems that are

somewhat ill-conditioned (notably PILOTJA and PILOTS).
As a further test, the "expand" feature of SP3 was disabled by specifying K =

99 999 999, ~-= 0. The resulting method retains afixed feasibility tolerance, and most
closely resembles the Harris tie-breaking procedure. No failures occurred on four

P.E. Gill et aL / An anti-cycling procedure 471

A F I R O

A D U T T L E

S C 2 0 5

S C A G R 7

S H A R E 2 B

R E C I P E

V T P B A S E

S H A R E 1 B

B O R E 3 D

S C O R P I O N

C A P R I

S C A G R 2 5

S C T A P 1
B R A N D Y

I S R A E L
E T A M A C R O

S C F X M 1

G R O W 7

B A N D M

E226

S T A N D A T A

S C S D 1

G F R D P N C

B E A C O N F D

S T A I R

S C R S 8

S E B A

S H E L L

P I L O T 4
S C F X M 2

S C S D 6

G R O W 15

S H I P 0 4 S

F F F F F 8 0 0

G A N G E S

S C F X M 3

S C T A P 2

G R O W 2 2

S H I P 0 4 L
P I L O T W E

S I E R R A

S H I P 0 8 S

S C T A P 3

S H I P 1 2 S

2 5 F V 4 7

S C S D 8

N E S M

C Z P R O B

P I L O T J A

S H I P 0 8 L

. .1..04

. 0 .97

. :1.05

. 0 .96

. 0 . 8 0

. 0 ,95

. 1.48

. 0.90

. : 1 . . 1 5

. 0.98

. O.81

,. 0 .98

, • . 1..40

. • 1..03

. O.81

. • 1..05

. 0 .89

. • 1..23

. 0 ,94

. 0 .89

. 0 .76

. 1 .~3

. 0 .94

. 0 .95

. 0 .81

. 1 .04

. 0 .94

. 1 .03

. 0 .94

. 1 .06

. 0 .90

. 0.98

. • 1,.03

. 1 .19

. 1 .02
. 0 . 9 9

. 1..48

. $.00

. :1.00

. 0 . 9 6

. $,07

. 1..00

. :1..54

. :1..09

. :1.02

. 3 .23

. 0 .97

. 0 . 9 8

. • 1..12

. 1 .05

S H I P 1 2 L . 0 .98

8 0 B A U 3 B . $.19

P I L O T S . :1..09

i I i i
0.8 1 1.2 1.4

Fig . 7. C o m p a r i s o n o f s o l u t i o n t i m e s fo r SP2 a n d SP3.

I
1.6

runs with and without scaling and partial pricing, and the iteration counts were
much the same as when the feasibility tolerance is increased. These results confirm
that the probability of failure with the Harris procedure is indeed low when blocking
variables are made nonbasic at their correct value. However, once the latter safeguard
is implemented, the assurance gained by increasing the feasibility tolerance comes
at essentially no cost.

4 7 2 P.E. Gill et al. / A n anti-cycling procedure

S T A N D A T A
S H A R E 2 B

C A P R I
I S R A E L

S T A I R
E 2 2 6

S C F X M 1
S C S D 6

S H A R E 1 B

B A N D M
G F R D P N C

P I L O T 4

S E B A
B E A C O N F D

R E C I P E
P / L O T W E

S C A G R 7
A D L I T T L E

N E S M
C Z P R O B
G R O W 1 5

S C A G R 2 5

S C O R P I O N
S H I P 1 2 L
S C F X M 3

G R O W 2 2

S H I P 0 4 L
S H I P 0 8 S

2 5 F V 4 7

G A N G E S

B R A N D Y
S H E L L

S H I P 0 4 S
A F I R O

S C R S 8
E T A M A C R O

. 0 . 7 6

. 0 . 8 0

. 0 •82

. 0 . 81

. 0 . 8 1
. 0 . 8 9

. 0 . 8 9

. 0 • 9 0

. 0 . 9 0

. 0 . 9 4

. 0 . 9 4
. 0 . 9 4
. 0 , 9 4

. 0 . 9 5

. 0 . 9 5

. 0 . 9 6

. 0 . 9 6
. 0 . 9 7

. 0 . 9 7

. 0 • 9 8

. 0 . 9 8

. 0 . 9 8

. 0 . 9 8

. 0 • 9 8

. 0 . 9 9

. 1 . 00

. 1 •00

. 1 . 0 0

. 1 , 0 2

. 1 . 0 2

. 1..03

. 1 . 03

. 1 . 0 3
• . 1 . 0 4

. 1..04
. 1 .05

S C 2 0 5 . 1 , 05
S H I P 0 8 L . 1•.05
S C F X M 2 ' , . 1 . 06
S I E R R A

P I L O T S
S H I P 1 2 S

P I L O T J A

S C S D 1

B O R E 3 D
8 0 B A U 3 B

F F F F F B 0 0
G R O W 7

S C S D 8
S C T A P 1

S C T A P 2
V T P B A S E

S C T A P 3

' , . •1.07

. 1 . 0 9
. 1 , 0 9

. 1 . 1 2

. 1..13

. • 1 A 9

. • 1..23

! . 1 . 2 3
'. 1 .40

. • 1 , 4 8

. 1 , 4 8

. • 1 . . 5 4

I I I [I
0 .8 1 1.2 1.4 1 .6

F i g . 8, S o r t e d c o m p a r i s o n o f s o l u t i o n t i m e s f o r S P 2 a n d S P 3 .

1 0 . C o n c l u s i o n s

The EXPAND procedure was developed in response to sporadic failures that
occurred during Lustig's experiments with M2NOS 5,2 on the 53 test problems used
here [26]. No failures have occurred on these problems with the implementation

described here.
Perhaps the main advance has been in the treatment of the infeasible blocking

P.E. Gill et al. / An anti-cycling procedure 473

var iab les genera ted by a Har r i s - type rat io test. Re ta in ing numer ica l values when

such var iables become nonbas i c means that A x = b can be satisfied to mach ine

p rec i s ion th roughou t , and al lows full advan tage to be t aken o f sat isfying b o u n d s

loose ly in the m a n n e r p i o n e e r e d by Harr is . An i m p o r t a n t benefi t is tha t there is

v i r tua l ly no revers ion to Phase 1 after r e f a c t o r i z a t i o n - - a c o m m o n occur rence pre-

v ious ly on i l l - cond i t ioned prob lems .

The p recau t ion o f e x p a n d i n g the feas ibi l i ty to le rance at every i te ra t ion p rov ides

a d d e d theore t ica l p ro tec t ion agains t cycl ing (given the consequen t s imi lar i ty to

Wol fe ' s an t i -degene racy p rocedure) , as well as a d d e d prac t ica l assurance in the

p resence of round ing error.

Acknowledgments

The au thors wou ld l ike to express their app rec i a t i on to Irvin Lust ig for his energet ic

expe r imen t a t i on dur ing the summer of 1987. The p resen t research, and the mechan-

isms for mak ing n u m e r o u s ba tch runs on mul t ip le test p rob lems , are a d i rec t result .

We are grateful to D a v i d G a y for mak ing the test p r o b l e m s ava i lab le t h rough netlib.

We t h a n k the referees and especia l ly Rober t Foure r , whose comment s were remark-

ab ly de ta i l ed and percept ive . Final ly , we thank Jon Bentley for he lpfu l suggest ions

concern ing g raph ica l p resen ta t ion of results , and for the use of his " d o t char t "

package to p r o d u c e F igures 4-8.

References

[1] M.L. Balinski and R.E. Gomory, "A mutual primal-dual simplex method," in: R.L. Graves and
P. Wolfe, eds., Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963).

[2] E.M.L. Beale, "Advanced algorithmic features for general mathematical programming systems,"
in: J. Abadie, ed., Integer and Nonlinear Programming (North-Holland, Amsterdam, 1970) pp. 119-
137.

[3] M. Benichou, J.M. Gauthier, G. Hentges and G. Ribi~re, "The efficient solution of large-scale linear
programming problems--some algorithmic techniques and computational results," Mathematical
Programming 13 (1977) 280-322.

[4] R.G. Bland," New finite pivoting rules for the simplex method," Mathematics of Operations Research
2 (1977) 103-107.

[5] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User's Guide (The Scientific Press, Redwood
City, CA, 1988).

[6] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, N J, 1963).
[7] G.B. Dantzig, "Making progress during a stall in the simplex algorithm," Report SOL 88-5,

Department of Operations Research, Stanford University (Stanford, CA, 1988).
[8] G.B. Dantzig, A. Orden and P. Wolfe, "The generalized simplex method for minimizing a linear

form under linear inequality constraints," Pacific Journal of Mathematics 5 (1955) 183-195.
[9] J.C. Falkner, "Bus crew scheduling and the set partitioning model," Ph.D. thesis, Department of

Theoretical and Applied Mechanics, University of Auckland (Auckland, New Zealand, 1988).
[10] J.C. Falkner and D.M. Ryan, "Aspects of bus crew scheduling using a set partitioning model,"

Fourth International Workshop on Computer-Aided Scheduling of Public Transport (Hamburg,
1987).

[11] R. Fletcher, Practical Methods of Optimization: Vol. 2: Constrained Optimization (Wiley, Chichester
and New York, 1981).

474 P.E. Gill et al. / An anti-cTcling procedure

[12] R. Fletcher, "Degeneracy in the presence of round-off errors," Technical Report NA/89, Department
of Mathematical Sciences, University of Dundee (Dundee, 1985).

[13] R. Fletcher, "Recent developments in linear and quadratic programming," in: A. Iserles and M.J.D.
Powell, eds., The State of the Art in Numerical Analysis (Oxford University Press, Oxford and New
York, 1987) pp. 213-243.

[14] R. Fletcher and M.P. Jackson, "'Minimization of a quadratic function of many variables subject
only to upper and lower bounds," Journal of the Institute of Mathematics" and its Applications 14
(1974) 159-174.

[15] R. Fourer, "A simplex algorithm for piecewise-linear programming 1: derivation and proof,"
Mathematical Programming 33 (1985) 204-233.

[16] R. Fourer and D.M. Gay, private communication (1989).
[17] D.M. Gay, "'Electronic mail distribution of linear programming test problems," Mathematical

Programming Society COAL Newsletter 13 (1985) 10-12.
[18] P.E. Gill, S.J. Hammarling, W. Murray, M.A. Saunders and M.H. Wright, "User's Guide for LSSOL

(Version 1.0): a Fortran package for constrained linear least-squares and convex quadratic program-
ming," Report SOL 86-1, Department of Operations Research, Stanford Univesity (Stanford, CA,
1986).

[19] P.E. Gill and W. Murray, "Numerically stable methods for quadratic programming," Mathematical
Programming 14 (1978) 349-372.

[20] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "User's Guide for SOL/QPSOL (revised),"
Report SOL 84-6, Department of Operations Research, Stanford University (Stanford, CA, 1984).

[21] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, London and New
York, 1981).

[22] G.W. Graves, "A complete constructive algorithm for the general mixed linear programming
problem," Naval Research Logistics Quarterly 12 (1965) 1-34.

[23] H.J. Greenberg, "Pivot selection tactics," in: H.J. Greenberg, ed., Design and Implementation of
Optimization Software (Sijthoff and Noordhoff, Alphen aan den Rijn, 1978) pp. 143-174.

[24] P.M.]. Harris, "Pivot selection methods of the Devex LP code," Mathematical Programming 5
(1973) 1-28. [Reprinted in Mathematical Programming Study 4 (1975) 30-57.]

[25] E.S. Klotz, Dynamic pricing criteria in linear programming, Ph.D. thesis, Department of Operations
Research, Stanford University (Stanford, CA, 1988).

[26] I.J. Lustig, "An analysis of an available set of linear programming test problems," Report SOL
87-11, Department of Operations Research, Stanford University (Stanford, CA, 1987). [See also
Computers and Operations Research 16 (1989) 173-184.]

[27] B.A. Murtagh and M.A. Saunders, "MINOS 5.0 User's Guide," Report SOL 83-20, Department of
Operations Research, Stanford University (Stanford, CA, 1983).

[28] B.A. Murtagh and M.A. Saunders, "MINOS 5.1 User's Guide," Report SOL 83-20R, Department
of Operations Research, Stanford University (Stanford, CA, 1987).

[29] J.L. Nazareth, "Implementation aids for the optimization algorithms that solve sequences of linear
programs," ACM Transactions on Mathematical Software 12 (1986) 307-323.

[30] J.L. Nazareth, Computer Solution of Linear Programs (Oxford University Press, New York and
Oxford, 1987).

[31] W. Ogryczak, "On practical stopping rules for the simplex method," Mathematical Programming
Study 31 (1987) 167-174.

[32] W. Orchard-Hays, Advanced Linear-Programming Computing Techniques (McGraw-Hill, New York,
1968).

[33] J.M. Ortega and W.C. Rheinboldt, lterative Solution of Nonlinear Equations in Several Variables
(Academic Press, London and New York, 1970).

[34] M.R. Osborne, Finite Algorithms in Optimization and Data Analysis" (Wiley, New York, 1985).
[35] R.T. Rockafellar, Network Flows and Monotropic Optimization (Wiley, New York, 1984).
[36] D.M. Ryan and M.R. Osborne, "On the solution of highly degenerate linear programs," Mathemati-

cal Programming 41 (1988) 385-392.
[37] J.H. Wilkinson, The Algebraic Eigenvalue Problem (The Clarendon Press, Oxford, 1965).
[38] P. Wolfe, "The reduced-gradient method," unpublished manuscript, the RAND Corporation (1962).
[39] P. Wolfe, "A technique for resolving degeneracy in linear programming," SIAM Journal of Applied

Mathematics 11 (1963) 205-211.
[40] P. Wolfe, "The composite simplex algorithm," S I A M Review 7 (1965) 42-54.

