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ON THE STABILITY OF CHOLESKY FACTORIZATION
FOR SYMMETRIC QUASIDEFINITE SYSTEMS*

PHILIP E. GILLt, MICHAEL A. SAUNDERS$, AND JOSEPH R. SHINNERLt

Abstract. Sparse linear equations Kd r are considered, where K is a specially structured
symmetric indefinite matrix that arises in numerical optimization and elsewhere. Under certain
conditions, K is quasidefinite. The Cholesky factorization PKPT LDLT is then known to exist
for any permutation P, even though D is indefinite.

Quasidefinite matrices have been used successfully by Vanderbei within barrier methods for linear
and quadratic programming. An advantage is that for a sequence of K’s, P may be chosen once and
for all to optimize the sparsity of L, as in the positive-definite case.

A preliminary stability analysis is developed here. It is observed that a quasidefinite matrix is
closely related to an unsymmetric positive-definite matrix, for which an LDMT factorization exists.
Using the Golub and Van Loan analysis of the latter, conditions are derived under which Cholesky
factorization is stable for quasidefinite systems. Some numerical results confirm the predictions.

Key words, indefinite systems, symmetric quasidefinite (sqd) systems, unsymmetric positive-
definite systems, backward stability, condition number, barrier methods, linear programming
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1. Introduction. We define a matrix K to be symmetric quasidefinite (sqd) if
there exists a permutation matrix//that reorders K to the form

(1.1) HKHT=( H AT)A -G

where H E :tnn and G E ’’ are symmetric and positive definite. Such a K is
indefinite and nonsingular. Vanderbei [Van91], IVan94] has shown that sqd matrices
are strongly factorizable; i.e., for every permutation P there exist a diagonal D and a
unit lower-triangular L such that

(1.2) pKpT= LDLT.
We refer to (1.2) as a Cholesky factorization, while emphasizing that K is indefinite
and D has both positive and negative diagonals. The usual stability analysis therefore
does not apply, and the factorization may be unstable.

An example sqd matrix is

1 -e 1 1 -(1 + e) 1

The Cholesky factors exist for all values of e, and can be computed accurately in finite
precision for any e. The symmetrically permuted system

(1.4) pKpT --e 1 1 --e 1 -1 1 -- 1
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36 P.E. GILL, M. A. SAUNDERS, AND J. R. SHINNERL

has Cholesky factors for any nonzero e, but as noted in IVan91], the factorization
becomes unstable in finite-precision arithmetic as lel - 0.

Strong factorizability is particularly attractive when K is large and sparse and a
direct factorization method is used to solve the linear system of equations

(1.5) Kd r.

As with positive-definite systems, we choose P in (1.2) to reduce fill-in during the
Cholesky factorization. If several similar systems are to be solved, we would like to
use the same "ideal" P for each system, as long as the associated factorizations are
stable. In this paper we examine conditions under which Cholesky factorization may
be used reliably on an sqd matrix K. For the example in (1.3)-(1.4), the analysis
predicts (of course) that lel should not be too small. For certain systems arising
in constrained optimization, it predicts that Cholesky factorization should be stable
until the iterates are in a small neighborhood of the solution.

1.1. Notation. When discussing permutations P, we speak of "sparsity inter-
changes" and "stability interchanges" to indicate the usual criteria for choosing P.
The spectral condition number is a2(K) -= IIKII211K-1112. The following symbols are
used for matrices"

A, G, and H are the block components of an arbitrary sqd matrix K.
B is an arbitrary square nonsingular matrix whose triangular factorization
B LU LDMT exists in exact arithmetic without row or column inter-
changes. (D is diagonal, L and M are unit lower triangular, and DMT= U.
Although such a factorization does not exist for all nonsingular B, when it
does exist, the factors are unique.)
C is a square matrix that is unsymmetric but positive definite.
T and S are the symmetric and skew-symmetric parts of C: T (CwCT)/2,
S (C cT)/2, and C T + S.
LDLT denotes Cholesky factors of a symmetric matrix: L unit triangular, D
diagonal and possibly indefinite.
LBLT denotes factors of a symmetric indefinite matrix: L unit triangular, B
block-diagonal with blocks of order 1 or 2.

2. Connection with the unsymmetric positive-definite case. We seek con-
ditions on sqd matrices K that allow stable computation of the Cholesky factorization
pKpT= LDLT for every permutation P. There is no loss of generality in assuming
H I in (1.1). With this convention, observe that

(2.1) K= ( HA -GAT) =-KI’

where

A G -I,

where I and Im denote the identity matrices of order n and m. The matrix K is
unsymmetric positive definite; i.e., xTIx > 0 for all nonzero x. The main idea of
this paper is that (2.1) can be used to characterize the stability of algorithms for
symmetric quasidefinite matrices in terms of the stability of Gaussian elimination for
unsymmetric positive-definite matrices.
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SYMMETRIC QUASIDEFINITE SYSTEMS 37

With/= as above, let/ p[pT for some permutation P. The matrix [ is diagonal
with diagonal entries 1 and -1; thus, in any product of the form . A/, A is equal
to A with some of its columns scaled by -1. Now for every permutation P,

(2.3) pKpT= PI[pT= PIpT(p[PT) (PIpT)[.

It follows that

(2.4) PKPT- LDLT if and only if PImPT- LYMT,

where/ D[ and M _= ILl. The matrices D and/ are diagonal, and L and M are
unit lower triangular as required. Relations (2.1) and (2.4) can be construed as an
alternative proof of Vanderbei’s theorem on the strong factorizability of symmetric
quasidefinite matrices. For if K is sqd, then/ and hence PImPT are positive definite;
therefore the LU factorization of PImPT exists (cf. [GV89, p. 140]); hence, by (2.4),
the LDLT factorization of PKPT exists as well.

Since only column signs are involved, it is trivial to show that (2.4) holds in finite
precision. If/ and/ are the computed factors of PKPT, then/,/[, and/I)/T [/T[
are the computed LU factors of PImPT. Hence any conditions that ensure stability
for the factorization PImPT LDMT will also ensure stability for PKPT LDLT.
In particular, it is safe to factor the quasidefinite matrix PKPT without stability
interchanges if and only if it is safe to factor the unsymmetric positive-definite matrix
PImPT without stability interchanges.

3. When stability interchanges are unnecessary. Throughout this section,
we assume that C is an unsymmetric positive-definite matrix. Let T and S be the
symmetric and skew-symmetric parts of C. Then it is safe to factor C without stability
interchanges if

(i) S is not too large compared to T; and
(ii) T is not too ill-conditioned.

This follows from results of Golub and Van Loan [Gv79], [avsg], which we summarize
next.

3.1. Theorems of Golub and Van Loan. Let C LDMT. In the backward
error analysis of Gaussian elimination, it is shown that the computed solution 2 to
the system Cx r is the exact solution of the perturbed system (C + AC)2 r,
where the size of AC is bounded by an expression involving the sizes of the computed
factors of C; say,/,/, and/rT (cf. (3.1) below). Algorithms that produce/,/, and
/T of SUfficiently bounded size are therefore considered stable.

For general C, row or column interchanges are necessary to ensure the existence
of the factors, and to prevent them from having large elements. For positive-definite
C, however, the following theorems can be used with Assumption 3.1 to obtain a
satisfactory bound on the sizes of the computed factors without stability interchanges.

(When applied to vectors or matrices, the symbols I" and < are to be interpreted
componentwise. The symbol u denotes the unit round-off, and all floating-point
calculations are assumed to conform to the "standard model" described in [GV89,
pp. 61-62].)

ASSUMPTION 3.1 (see [GV89, p. 141]). For some scalar 7 of moderate size,

IIItl I11TIII < IIILI IDI IMTIII.

D
ow

nl
oa

de
d 

01
/3

1/
14

 to
 1

71
.6

7.
87

.1
04

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



38 P.E. GILL, M. A. SAUNDERS, AND J. R. SHINNERL

THEOREM 3.1 (see [GV79, p. 88]). Let C E jn be positive definite and set
T (C + cT)/2 and S (C cT)/2. If C LDMT, then

THEOREM 3.2 (see [GV89, p. 136, Eqn: (4:1.3)]). Let B e 1R be a matrix
whose LDMT factorization exists, and let L, D, and ]I be the computed factors.
Let & denote the computed solution to the system Bx b, obtained by the usual
methods of forward and backward substitution (cf. [GV89, p. 97, Algorithm 3.2.3]).
Then (B + AB)& b, with

IABI _< u (31BI + 51ZI IDI ITI) + O(u).

From Assumption 3.1 and these theorems, it follows that the computed solution
2 to the positive-definite system Cx r satisfies (C + AC)2 r, with

(3.2) IIACII. _< IIACII _< u (311CI1 + 5" (IITII + IIST-1SII)) + O(u).

Since IITI1 <_ IIcI1:, we have

(3.3) IITII + IIST-1SII. </|1 + IIST-SII}\ IICII..

RESULT 3.1 (see [GV79, p. 92] and [GV89, p. 141]). If C is positive definite, the
factorization C LDMT is stable if w(C) is not too large, where

IIST-SlI.(3.4) w(C) I[CII2

3.2. An alternative indicator. Because it may not always be clear how the
structure of the matrix ST-1S depends on the structure of the original matrix C, we
observe that w(C)

_
0(C), where O(C) is defined next.

RESULT 3.2. If C is positive definite, the factorization C LDMT is stable if
0(C) is not too large, where

(3.5) o(c)-_- IITII 2(T).

When IlSll is not much larger than IITII, and T is not too ill-conditioned, O(C) may
provide an adequate guarantee of numerical stability. The straightforward dependence
of O(C) on T and S makes it easier to estimate than w(C).

In certain contexts, however, 0(C) may be arbitrarily larger than w(C). For
example, suppose C has the form of g in (2.2), with H I, G (1/)I, and
A =/2I. It is easily shown that as/ c, O(C) (9(f)w(C). Thus, a large value of
O(C) should not be automatically interpreted to mean that stability interchanges are
necessary.
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SYMMETRIC QUASIDEFINITE SYSTEMS 39

4. Application to quasidefinite matrices. For our purposes, the role of C
is played by PImPT in 2. Since it is easily shown that w and 0 are invariant under
symmetric permutations of their arguments, we assume C K in (2.2). In this case,

T= G
)=

A

so that

ST-IS (-ATG-1A _AH-1AT

From the Golub and Van Loan analysis, stability of the factorization can be guaran-
teed if w(/) _= IIST-1SII2/IIIII2 is not too large. In terms of K rather than/, we
therefore have the following result for sqd matrices of the form (1.1).

RESULT 4.1. If K is sqd, the factorization pKpT= LDLT is stable for every
permutation P if w(K) is not too large, where

(4.1) w(K) mx{l[ATG-All2’ IIAH-ATll2}

As in (3.4)-(3.5), we have w(K) <_ O(K), where the latter is readily computed in
terms of A, H, H-1, G, and G-1.

RESULT 4.2. If K is sqd, the factorization pKpT= LDLT is stable for every
permutation P if O(K) is not too large, where

(4.2) 0(K) max{ilGllillHII2} max{n2(G),n2(H)}.

For example, suppose IIH]I2 _> Ilall. and ]1(-1112 ]1H-1112. Then

2, ila-lll2,O(K) <_
IIHll2

In general,
(i) IIAII2 must not be too large compared to IIHII and IIGII2; and.
(ii) diag(H, G) must not be too ill-conditioned.

5. The condition number of a quasidefinite system. To assess the accuracy
of computed solutions to Kd r with K sqd as in (2.1), we must consider both the
backward stability of the factorization PKPT- LDLT and the forward sensitivity
of d to perturbations in K. That is, given that our computed solution satisfies the
perturbed system

(5.1) (K + AK) r,

how close is to d, the true solution? The usual sensitivity bound takes the form

(5.2) lid- rill < where IIzKII
Ildll 1 c’ IIKII 2(K).
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40 P.E. GILL, M. A. SAUNDERS, AND J. R. SHINNERL

For general K, the relative perturbation IIAKll/llKII cannot be suitably bounded
without the use of stability interchanges. When K is sqd, however, (3.2) and (3.3)
give a bound on this perturbation that is essentially proportional to 1 + w(C), with
c g

Comb!ning the results of 3-4, we obtain the following in terms of K rather than
/. (Let L and/ be the computed factors of K, and note that t2(/) tc2(K)
2(PKpT).)

ASSUMPTION 5.1. For some scalar of moderate size,

IIItl ItTIIIF IIILI ]DI ILTIII.
THEOREM 5.1. If K is symmetric quasidefinite as in (2.1), and if is the com-

puted solution of Kd r,

lid- < uTn c (K)
IIdl

where nK is the dimension of K, cK depends linearly on n, w(K) is defined in (4.1),
and

(5.4) (K) (1 + w(K))2(K).

A similar result holds with w(K) replaced by 0(K) in (4.2). For the example in
(1.3)-(1.4), the condition number is (K) 1/lel, as we might expect.

Under Assumption 5.1, then, arbitrary symmetric permutations of Kd r (such
as those reducing fill-in) can be solved stably without further permutations as long
as (K) is not too large. We therefore interpret (K) to be the condition number of
Cholesky factorization without interchanges, applied to an sqd system. In algorithms
where sequences of sqd systems are solved, techniques that either reduce (K) or delay
its increase will, by postponing the need for stability permutations and hence allowing
the unhampered use of sparsity permutations, decrease the total computation time
for solving Kd r.

Note that the reduction of (K) is sufficient, but not necessary, for ensuring
the accurate solution of Kd r without interchanging rows and columns for stability.
Indeed, Golub and Van Loan [GV79] exhibit a family of unsymmetric positive-definite
systems C for which w(C) increases without bound but whose computed solutions
remain accurate without the use of stability interchanges. Their example suggests
that in special cases it may be possible to refine the above results to obtain a sharper
bound.

6. An application in numerical optimization. The standard linear program-
ming (LP) problem is

minimize cTx
(6.1)

subject to Ax=b, l<_x<_u,

where A E/R"x" (m

_
n). Barrier methods for computing primal and dual solutions

(x, r) generate a series of sparse symmetric systems; for example, see [LMS92]. Most
authors reduce these to the positive-definite form AH-tATA v, for which Cholesky
factorization is often efficient, as long as A contains no dense columns. We discuss
some alternatives.
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SYMMETRIC QUASIDEFINITE SYSTEMS 41

6.1. Regularized LP. In [GMPS91], [GMPS94], we treat the regularized LP
problem

minimize cTx --subject to Ax + Sp b, <_ x <_ u,

where 9’ and 5 are small scalar parameters, typically 10-5. When the optimal (x, r) is
not unique, choosing a positive 9’ and 5 (respectively) aids convergence to a solution
with minimum Ilxll and IIrll. If the constraints Ax b, <_ x <_ u have no solution, a
positive 5 also permits convergence to a meaningful point.

The systems to be solved are

-ATr r A -521

where H0 is diagonal with (Ho)jj >_ O. Choosing 9’ > 0 and 5 > 0 ensures that K is
sqd (though barely!). This was not the original motivation, but in view of Vanderbei’s
work it raises the question: under what conditions is pKpT= LDLT stable for any
permutation P (with D diagonal but indefinite)?

In the notation of 4, we have H H0 + 9’2I and G 52I. It is safe to assume
that IIAII 1 after the LP problem is suitably scaled. As iterations proceed, some
elements of H0 become large and cause IIKII and a2(K) to appear large. We eliminate
this artificial ill-conditioning by symmetrically scaling the large diagonals of K down
to 1. System (6.3) is then equivalent to an sqd system Kd r in which

I1/ 11 1, IIAII 1, IIHII- 1, IIH- II IlCll- lie-ill-
with the 2-norm used throughout. The scaling doe8 not alter AH-AT. Result 4.1
then give8

w(K) max{5-e[lATA[I, IIAH-ATII }
< IIAII2 m x{5-2, IIH- II}
max{5-2, 9’-2}.

Recalling Theorem 5.1, we have the following.
RESULT 6.1. Using pKpT= LDLT, the effective condition number for solving

the sqd system (6.3) with small 9" and
On a typical LP problem, the barrier algorithm generates 20 to 30 K’s that are

increasingly ill-conditioned (even after the large diagonals are scaled to 1). With
reasonable values of 9’ and 5, we can expect pKpT= LDLT to be stable until the
iterates are close to an optimal solution.

6.2. Numerical experiments. To confirm this prediction, we applied our bar-
rier code PDQ1 [GMPS91] to some of the more difficult problems in the Netlib collec-
tion [Gay85]. Table 6.1 defines some terms and Table 6.2 lists the problem statistics.
We requested 6 digits of accuracy in x and r on a DEC Alpha 3000/400 workstation
with about 16 digits of precision. For regularization we set 9’ 5 in the range 10-3 to
10-5 (Larger values perturb the problem noticeably, while smaller values leave little
room for the LDLT factorization to be stable.)

In PDQ1 Version 1.0, the indefinite solver MA27 [DR82], [DR83] is used to factorize
either K itself, or certain reduced matrices KB (obtained by pivoting on diagonals of
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42 P.E. GILL, M. A. SAUNDERS, AND J. R. SHINNERL

TABLE 6.1
Definitions associated with the barrier code PDQ1 for solving linear programs.

K
KB
nz(K)
PDQ1
MA27
LDLT
LBLT
Htol
factol
ndense
residual
restol

Full KKT system as in (6.3)
Reduced KKT system after pivoting on part of H
Number of nonzeros in K
Code for solving sparse LP and QP problems [GMPS91], [GMPS94]
Code for solving sparse symmetric Kd-- r [DR82], [DR83]
Sparse factors of permuted K or KB with D diagonal
Sparse factors of permuted K or KB with B block-diagonal
PDQI’s stability tolerance for pivots on H (default 10-6)
MA27’s stability tolerance "u" (default 0.01)
Nonzeros in a "dense" column of A (default 10)
IIr- gll/llr]l where is the computed d
Tolerance for invoking iterative refinement (default 10-5)

TABLE 6.2
LP test problems: Approximate dimensions of the constraint matrix A, the full KKT matrix

K, and a typical reduced KKT matrix KB.

grow22 450 950 6000
25fv47 800 1900 11000
pilotja 900 2000 15000

m n nz(.A) Size of K Typical Ks
1400 900
2700 1100
2900 1300

H that are larger than Htol and have fewer than ndense entries in the corresponding
column of A).

The Analyze phase of MA27 typically predicts very sparse LDLT factors, but to
retain stability on indefinite systems, the Factor phase forms LBLT factors if neces-
sary. These factors grow increasingly dense as the iterations proceed (more so than
the combined Analyze/Factor approach used by Fourer and Mehrotra [FM93]).

Stability is measured by testing residuals after the factors of K are used to solve
Kd r. If residual > restol, one step of iterative refinement is performed to correct .
(The effects of refinement with an unstable factorization are analyzed in [ADDS9].) If
residual still exceeds restol, the factors are considered unreliable and factol is increased
in stages towards 1. In the experiments cited here, once the LDLT factors were
abandoned, the remaining LBLT solves were performed reliably with factol 0.01.

6.3. Factorizing K. We first caused the full K to be used every iteration
(Htol-- 102). With the default stability tolerance (factol- 0.01), MA27 computed
LBLT factors at all iterations except the first few. Iterative refinement was seldom
needed, but the factors were two to four times as dense as Analyze predicted. On
problem grow22, nz(LBLT) increased steadily from 20000 to 80000 over 18 iterations,
giving a relatively long runtime.

With factol 0.001 (a little more dangerous), the LBLTsolves were again reliable,
and the factors somewhat more sparse. The values of /and 5 had little effect on the
sparsity of the factors.

We then allowed MA27 to compute LDLT factors as long as possible (factol
10-2). Table 6.3 shows the number of iterations for which the Cholesky solves were
reliable, for various values of 7 and 5. Times are in cpu seconds. With the larger
regularizations, most Cholesky factorizations were stable and efficient. On problem
grow22, nz(LDLT) was 20000. With regularizations 10-5, 10-4, 10-3, refinement
was first requested at iterations 15, 16, 17, and first failed at iterations 16, 17, 17.
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SYMMETRIC QUASIDEFINITE SYSTEMS 43

TABLE 6.3
Performance of PDQ1 with various regularizations (% 5), factorizing full KKT systems. The

column labeled LDLT shows how many iterations were performed reliably with (indefinite) Cholesky
factors of K. The remaining iterations used LBLT factors, which become increasingly dense.

grow22

pilotja

/, 5 factol Analyze LDLT LBLT time

10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20
10-5
10-5
10-4
10-3

0.01
10-2o
10-20
10-2o

10-5 0.01
10-5 10-2o
10-4 10-20
10-3 10-2o

1 0 18 13.4
1 15 3 6.7
1 16 2 5.6
1 16 2 5.5

1 0 23 23.0
1 5 18 24.2
1 17 6 20.4
1 21 2 16.8

1 0 27 37.3
1 5 22 38.6
1 18 9 33.5
1 23 3 26.6

For the last two or three iterations, nz(LBLT) jumped to 80000.
In general, iterative refinement saved several Cholesky factorizations before a

switch was made to LBL. The larger the regularization, the later the need for
refinement (and the later the switch to LBLT). The best performance was obtained
with the largest regularization, 10-3.

Some sensitivity was noted regarding the test for refinement. Earlier experience
with PDQ1 on the first 70 Netlib problems suggested using restol 10-4, but the
present experiments with Cholesky factors revealed an occasional increase in total
iterations, indicating some unnoticed instability. With restol 10-5, the results
here err on the side of "fewer iterations at the expense of earlier refinement, and
hence possible earlier switch to LBLT factors." Perhaps the tests in [ADD89] would
increase the number of iterations for which Cholesky factors could be safely used.

6.4. Reduced KKT systems. We next followed the original PDQ1 strategy of
pivoting on most of the diagonals of H (Htol 10-6, ndense 10). Partitioning
H diag(HN, Hs), A (N B) and pivoting on HN gives a reduced matrix of the
form

B -NHvlNT- 52I

The aim is to help the Factor phase of MA27, since Ks is smaller and "less indefinite"
than K. A penalty is that a new Analyze is needed whenever the makeup of Ks
changes.

Note that Result 6.1 still applies, since we still have a Cholesky factorization of
the full K, permuted by a different P. Table 6.4 therefore shows qualitatively similar
results. The best performance was obtained with 5 10-3 as before, because
Analyze was needed only once, and most iterations survived with LDLT factors.

6.5. Fully reduced systems. Table 6.5 gives results when K was fully reduced
to -(AH-IAT+ 52I) via Htol 10-2, factol 0.0, ndense 100. We write this
matrix as AH-AT for short. It is the one used in most barrier implementations,
such as OB1 [LMS92]. A single Analyze is sufficient for the Cholesky factorizations.

D
ow

nl
oa

de
d 

01
/3

1/
14

 to
 1

71
.6

7.
87

.1
04

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



44 P.E. GILL, M. A. SAUNDERS, AND J. R. SHINNERL

TABLE 6.4
Performance of PDQ1 with various regularizations, factorizing reduced KKT systems KB. Htol

is 10-2 initially, but is increased to 10-6 after Cholesky factors become unstable. A new Analyze is
then needed each time the size ofKB changes. Best results are obtained with maximum regularization
(, 10-3) because the size of KB depends only on ndense; a single Analyze suJfices.

grow22 10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20

25fv47 10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20

pilotja 10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20

factol Analyze LDLT LBLT time

11 0 18 19.6
5 14 4 11.2
4 15 3 8.6
1 18 1 5.7

14 0 23 18.9
4 20 3 15.3
3 21 2 14.2
1 21 2 12.5

15 0 27 38.0
15 5 22 38.7
3 25 2 25.7
1 25 1 20.9

TABLE 6.5
Performance of PDQ1, factorizing AH-1AT. This is often the most effective method, but

AH-IAT must be formed eJ:ficiently. Not applicable if A contains dense columns.

, i Analyze LDLT time

grow22 10-3 1 17 5.5
25fv47 10-3 1 23 12.4
pilotja 10-3 1 27 29.6

Regularization is essential, given the way "free variables" are handled. (If xj has
infinite bounds, (Ho)jj 0. Problem pilotja has 88 free variables.) We used - 5
10-3 to match the best results in the other tables.

Somewhat surprisingly, AH-1AT was not a clear winner. Since A had no dense
columns in these examples, the Cholesky factors of AH-1ATwere more sparse than the
LDLT or LBLT factors in Tables 6.3 and 6.4, yet the factorization times were slightly
greater. A possible explanation is that the off-diagonals of AH-1AT are formed as a
long list of entries from the sparse rank-one matrices (1/Hjj)aja, which MA27 must
accumulate before commencing the factorization. (The same accumulation is used for
partially reduced KKT systems, but to a lesser degree.)

6.6. Use of MA47. We have recently implemented PDQ1 Version 2.0, in which
MA27 is replaced by the new indefinite solver MA47 [DGR91], [DR94]. Following
[FM93], we have also experimented with looser pivot tolerances in both codes to
improve the sparsity of the numerical factors. In particular, we have initialized factol
at 10-s (increasing it by a factor of 10 whenever refinement fails), and we have run a
larger set of test problems.

With MA27, we do obtain significantly improved performance, though iterative
refinement and tolerance increases are frequently needed as before. In some cases,
factol reaches 0.01 or even 0.1.

With MA47, we have found unexpectedly that refinement is almost never needed.
Reduced KKT systems again give the best performance (Htol 10-s), and milder
regularization seems adequate (7 5 10-4) The first 53 Netlib problems solved to
8 digits of accuracy with a total of only three refinements, two of which caused Htol
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and factol to be raised to 10-7. With tolerances of this nature, most factorizations
are simply LDLT with the Analyze ordering. Any LDLT or LBLT factorizations with
revised orderings are almost equally sparse. The ability to do the reordering provides
stability at negligible cost.

It appears that two features are contributing to MA47’s performance: new sta-
bility tests [DGR91], and the default strategy of amalgamating tree nodes to reduce
indirect addressing. (By themselves, MA27 with amalgamation and MA47 without
amalgamation were not equally successful.) We hope to give fuller results elsewhere.

7. Conclusions. Diverse techniques have been combined here to obtain some
new theoretical and practical results. In the context of barrier methods for linear
programming, full KKT matrices K are known to have advantages over AH-1AT
in the presence of dense columns and free variables. In [GMPS91] we attempted
to improve the performance of MA27’s LBLT factorizations on severely indefinite
systems, but with limited success. Regularization was included there for "numerical
analysis" reasons, ensuring uniqueness and boundedness of solutions.

Around the same time, Vanderbei introduced quasidefinite systems and exploited
the efficiency of LDLT factors on KKT-like matrices. Recognizing that regularized
KKT systems are quasidefinite, and that a closely related system is positive definite,
we were led to the results of Golub and Van Loan on LU factorization without in-
terchanges. From these, we established an effective condition number (K) (5.4) for
Cholesky factorization of sqd systems. Result 6.1 justifies LDLT factorization of sqd
matrices K for the special case of barrier methods for linear programming.

Note that our analysis does not explain the remarkable success that Vanderbei has
had with his LDLT factors of sqd systems. In particular, Vanderbei does not resort to
regularization. Instead, some innovative problem formulation and partitioning gives
a multilevel ordering scheme in which certain diagonal pivots are deferred (notably
zeros). An sqd principal submatrix is chosen and factored as LDLT. The Schur
complement then has an sqd principal submatrix, and so on. We hope that a direct
analysis will eventuate.

Meanwhile, the numerical results obtained here suggest the following approach to
systems Kd r of the form (6.3): Choose the regularizing parameters -, 5 reasonably
large (e.g., 10-3 or 10-4) and pivot on all entries of H for which the column of A is
not too dense. A single Analyze will then suffice, and LDLT factorization should be
efficient and reliable until a good estimate of the solution is reached.

For higher accuracy, we must not forget that implementations based on AH-IAT
are surprisingly reliable and efficient on most reM-world problems [Lus94]. Otherwise,
Vanderbei’s indefinite Cholesky approach is an answer to dense columns and free
variables, as are the LBLT factors in [FM93], [GMPS91], with MA47 now providing
a very welcome boost.
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