
BIT Numerical Mathematics 43: 975–989, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

975

SUBSPACE PRECONDITIONED LSQR FOR

DISCRETE ILL-POSED PROBLEMS∗ �

M. JACOBSEN1, P. C. HANSEN1 and M. A. SAUNDERS2

1Informatics and Mathematical Modelling, Technical University of Denmark, Building 321,
DK-2800 Kgs. Lyngby, Denmark. email: {mj,pch}@imm.dtu.dk

2Department of Management Science and Engineering, Terman Building, Stanford
University, Stanford, CA 94305-4026, USA. email: saunders@stanford.edu

Abstract.
We present a novel implementation of a two-level iterative method for the solution

of discrete linear ill-posed problems. The algorithm is algebraically equivalent to the
two-level Schur complement CG algorithm of Hanke and Vogel, but involves less work
per iteration. We review the algorithm, discuss our implementation, and show promis-
ing results from numerical experiments that give insight into the proper use of the
algorithm.

AMS subject classification (2000): 65F10, 65F22.

Key words: ill-posed problems, regularization, two-level iterative methods, Schur
complement CG method, LSQR.

1 Introduction.

Linear ill-posed problems arise in a variety of applications in science and
engineering, and reliable computational algorithms are available for small- and
medium-scale problems [6, 18]. However, there is a need for iterative algorithms
that can treat large-scale problems, i.e., those with sparse or structured matrices,
or where the action of the linear operator is provided by some computational
scheme.

This work focuses on a large-scale iterative algorithm for computing solutions
to the Tikhonov regularization problem

min
x

‖Kx− y‖2
2 + λ2‖Lx‖2

2,

in which K ∈ R
m×n is a given matrix, L ∈ R

p×n is a matrix that defines a
suitable smoothing norm for the problem, y ∈ R

m is a vector of observed data,
and the regularization parameter λ controls the weight between the residual and

∗ Received October 2002. Revised December 2002. Communicated by Zdeněk Strakoš.
� Partially supported by Danish Natural Science Research Foundation grant 9901581, U.S.

National Science Foundation grant CCR-9988205, and U.S. Office of Naval Research grants
N00014-96-1-0274 and N00014-02-1-0076.

976 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

smoothing norms. We note that both K and L may be available either explicitly
(as sparse or structured matrices) or implicitly through their action on a vector.

We present an efficient implementation of an iterative algorithm developed by
Hanke and Vogel [5], who discussed several ‘two-level methods’ for the solution of
the Tikhonov problem. The algorithm is based on the least squares formulation
of the Tikhonov problem,

xλ = argmin
x

∥∥K̂x− ŷ∥∥
2
,(1.1)

where we introduce the ‘stacked’ matrix and vector

K̂ =
[
K
λL

]
, ŷ =

[
y
0

]
.

The key idea in the work of Hanke and Vogel is a splitting of the solution
space R

n into two subspaces, one of them with a small dimension and with
basis vectors chosen such that this subspace represents approximate regularized
solutions. Similarly to multi-level methods, the residual is projected into a small-
dimensional subspace (the coarse grid) in which the problem is solved with a
direct method, while the component of the solution in the remaining subspace
is computed by an iterative algorithm. Because of this analogy, the methods are
denoted two-level methods. The obvious extension to a multi-level method was
tested but without success [17].

Two of the three methods in [5] are based on the preconditioning idea for the
conjugate gradient (CG) method [2, 8], but we do not treat these precondition-
ing methods here because the third method performs better, in theory and in
practice [5, 9].

The third method in [5] – the only one considered here – is based on the Schur
complement CG algorithm; see Axelsson [1]. When the subspace splitting idea
is combined with the Schur complement CG algorithm, one obtains a method in
which a special Schur complement system is solved iteratively by means of CG.

Our main contribution is to show that this Schur complement system is, in fact,
the normal equations for an underlying least squares problem, and to demon-
strate how this problem can be solved efficiently by means of the LSQR algorithm
[12, 13]. There are two advantages in this approach: the implementation is more
efficient, and the algorithm is numerically more robust because it avoids the use
of the normal equations. (We focus on the use of LSQR because of its superior
stability, and because we want to give all the details of the implementation. Any
similar iterative method for least squares problems could be used, such as CGLS
[8, 12], and the efficiency would be the same.)

In addition, we discuss various strategies for choosing the basis vectors of the
subspace with small dimension, and we demonstrate by examples how this choice
affects the convergence of the method.

We first summarize the derivation of the Schur CG algorithm from [5] in
Section 2. Next, in Section 3 we show how an equivalent method can be obtained
by means of a certain QR factorization, with the advantage of a simpler algorithm
with fewer operations per iteration. Then in Section 4 we discuss various details

SUBSPACE PRECONDITIONED LSQR 977

on how to select the subspace splitting, and in Section 5 we show numerical tests
on two test problems.

2 Two-level Schur complement CG.

For the presentation of the Hanke–Vogel algorithm it is convenient to introduce
the quantities

A = KTK+ λ2LTL = K̂TK̂, b = KTy = K̂Ty

associated with the normal equations for the least squares problem (1.1). For
ease of presentation we assume in this section that the matrix L has full column
rank; otherwise the algorithm becomes substantially more complicated [15].

The two levels are created by a splitting of the solution space R
n into two sub-

spaces V and W of dimensions k and n− k, respectively. To make the algorithm
practical one should choose k � n. Let the columns of the matrix V ∈ R

n×k

span the subspace V , and let the columns of the matrix W ∈ R
n×(n−k) span the

subspace W . The solution is obtained in the form

xλ = Vv +Ww.(2.1)

The columns ofV are not required to be orthonormal, although this is preferable
in a numerical implementation. As we shall see, the matrix W is not needed in
the algorithm – it is only necessary for its derivation.

Hanke and Vogel choose the two subspaces to be LTL-orthogonal, and the
columns of W to be LTL-orthonormal. Thus,

VTLTLW = 0 and WTLTLW = I.

These properties are not needed for the final algorithm as presented below, but
they are necessary for the omitted details in the derivation of the algorithm.

First we transform the normal equations Axλ = b to the equivalent form

[V W]TA[V W]
[
v
w

]
= [V W]Tb,(2.2)

which expands into the block system[
A11 VTAW

WTAV WTAW

] [
v
w

]
=

[
VTb
WTb

]
,(2.3)

where A11 = VTAV ∈ R
k×k. The algorithm in its final form requires A11, and

otherwise only uses K,L,b and V.
We now apply block Gaussian elimination to (2.3) as in [1] to obtain[

A11 VTAW
0 S

] [
v
w

]
=

[
VTb
s

]

978 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

with

S = WTAW −WTAVA−1
11 V

TAW,

s = WTb−WTAVA−1
11 V

Tb,

where S is the Schur complement of A11 in the matrix (2.3). We see that xλ is
obtained from

Sw = s,(2.4)
A11v = VT(b−AWw),(2.5)
xλ = Vv +Ww.(2.6)

The Schur complement S ∈ R
(n−k)×(n−k) is symmetric positive definite be-

cause A is so [1, Theorem 3.9], and therefore CG comes to mind as a choice
for solving the Schur system (2.4) when n − k is large. The resulting algorithm
(see below) is expressed in terms of the original matrices K and L only. The
multiplication with VA−1

11 V
T can be considered a coarse grid correction step.

The rather lengthy details of this derivation are omitted here, but they are
available in [5] and [9].

Schur complement CG. Computes the Tikhonov regularized solution

xλ = argminx‖K̂x− ŷ‖2. The product LTL must be invertible.

1: x0 = VA−1
11 VTb

2: r0 = b−Ax0

3: y0 = (LTL)−1r0

4: d0 = r0

5: z0 = y0

6: ρ0 = (y0)Tr0

7: i = 0
8: repeat
9: vi = (I −VA−1

11 VTA)zi

10: wi = Avi

11: gi = (LTL)−1wi

12: βi = ρi/(di)Tgi

13: xi+1 = xi + βivi

14: ri+1 = ri − βiwi

15: yi+1 = yi − βigi

16: ρi+1 = (yi+1)
Tri+1

17: γi+1 = ρi+1/ρi

18: di+1 = ri+1 + γi+1di

19: zi+1 = yi+1 + γi+1zi

20: i = i+ 1
21: until ‖ri‖2 > ‖ri−1‖2 or i = iteration limit
22: xλ = xi

Each iteration involves solving one system with A11 (in step 9) and one with
LTL (in step 11). The Cholesky factors of these matrices are the triangular QR

SUBSPACE PRECONDITIONED LSQR 979

factors of K̂V and L, respectively. If L is large and sparse then the solution in
step 11 can also be computed via an iterative method [14].

Note that one iteration also requires two applications of A (i.e., two appli-
cations of K̂ and K̂T each) and an application of both V and VT. Hence one
iteration is at least twice as expensive as one iteration of LSQR or CGLS applied
to the original least squares problem (1.1), and the rate of convergence for the
two-level method must therefore be at least twice that of LSQR and CGLS for
the two-level method to be a better choice.

The stopping criterion is based on the decrease of the residual norm. Since the
residual is given in terms of the original system and not the Schur complement
a ‘breakdown’ occurs when the Schur complement residual reaches the machine
precision. We observed that the breakdown destroys the assumed relationship
between the updated vectors, and the method diverges for the next couple of
iterations until the relationships are reestablished.

3 The subspace preconditioned LSQR algorithm.

It is well known that the LSQR algorithm is algebraically identical to CGLS
and to the CG algorithm on the normal equation system. However, LSQR can
be considered as treating the least squares problem in a more direct way, and in
finite precision LSQR is often capable of achieving more accurate results than
CGLS and in particular CG. Therefore we wish to find the LSQR equivalent of
the Schur complement CG algorithm.

As before we want a solution of the form xλ = Vv+Ww to the least squares
system (1.1). Thus we need to obtain[

v
w

]
= argmin

v,w

∥∥∥∥K̂[V W]
[
v
w

]
− ŷ

∥∥∥∥
2

.

Introducing the QR factorization

K̂V = QR̂ = [Y Z]
[
R
0

]
= YR(3.1)

with Q orthogonal and R upper triangular, we get[
v
w

]
= argmin

v,w

∥∥∥∥QTK̂[V W]
[
v
w

]
−QTŷ

∥∥∥∥∥
2

= argmin
v,w

∥∥∥∥
[
YTK̂V YTK̂W
ZTK̂V ZTK̂W

] [
v
w

]
−

[
YTŷ
ZTŷ

]∥∥∥∥
2

= argmin
v,w

∥∥∥∥
[
R YTK̂W
0 ZTK̂W

] [
v
w

]
−

[
YTŷ
ZTŷ

]∥∥∥∥
2

.

Thus, the Tikhonov solution is found from

w = argmin
w

‖ZTK̂Ww − ZTŷ‖2,(3.2)

Rv = YT(ŷ − K̂Ww),(3.3)
xλ = Vv +Ww.(3.4)

980 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

The partial QR factors of K̂[V W] give [R YTK̂W], which would be the top
part of a full QR factorization. After w is determined, v is found as if one were
continuing back-substitution with the full R factor in the normal way.

The QR factors in (3.1) can be computed conveniently by means of House-
holder transformations. Since the number of columns k in the matrix product
K̂V is small compared to the dimensions of the problem, the k Householder
vectors efficiently represent the orthogonal matrix Q = [Y Z] in product form.
Then products of the form Zu and ZTv are done by actually multiplying with Q
and QT, which in turn uses the stored Householder transformations, requiring
about 4k(m + p) flops per product.

3.1 Equivalence.

We now show that the Schur complement system Sw = s (2.4) is indeed
the normal equations of the least squares system (3.2). First note from the QR
factorization of K̂V that A11 = VTK̂TK̂V = RTR. Hence

S = WT(A−AVA−1
11 V

TA)W

= WTK̂T(I− K̂VA−1
11 V

TK̂T)K̂W

= WTK̂T(I−YR(RTR)−1RTYT)K̂W

= WTK̂T(I−YYT)K̂W

= WTK̂TZZTK̂W,

and

s = WT(I−AVA−1
11 V)b

= WTK̂T(I− K̂VA−1
11 V

TK̂T)ŷ

= WTK̂TZZTŷ,

as required. Hence CG applied to the Schur system (2.4) and LSQR or CGLS
applied to the least squares system (3.2) produce the same results in infinite
precision. In finite precision LSQR usually yields results with slightly higher
precision.

We can also show that systems (2.5) and (3.3) are both equivalent to the least
squares problem minv ‖K̂Vv− (ŷ−K̂Ww)‖2. The Schur complement approach
uses the associated normal equations to solve for v, while our approach uses the
QR factorization (3.1).

More important, however, is that the QR approach leads to a simpler iteration
scheme and thus a simpler implementation. In particular, in each iteration we
only need one multiplication with K̂ and K̂T (while the Schur complement
CG algorithm needs two multiplications). Moreover, there is no linear equation
system involving LTL, and there is no requirement on the rank of L (as long as
K̂ has full rank).

SUBSPACE PRECONDITIONED LSQR 981

3.2 Solving for Ww and v.

Defining p = Ww, we first show how to proceed in cases where W is not
available. Substituting into (3.2)–(3.4) gives the equations

p = argmin
p

‖ZTK̂p− ZTŷ‖2,(3.5)

Rv = YT(ŷ − K̂p),(3.6)
xλ = Vv + p,(3.7)

in which the main computation is solving for p. The resulting algorithm is
displayed below, where for completeness all details of the LSQR iterations are
included. The Lanczos vectors are denoted by ūi and v̄i, and the w̄i, are work
vectors.

Observe that ZTK̂V = ZTYR = 0, and therefore by construction, the matrix
ZTK̂ has a nontrivial null space spanned by the columns of V. For this reason
LSQR will eventually diverge as a result of finite precision effects, cf. [12, §6.2].
Our experiments agree with those in [12], leading to a stopping criterion based
on the approximation φ̄α|c| ≈ ‖K̂TZr‖2 < τ , where r = ZT(ŷ − K̂p) is the
residual for the least squares problem (3.2), and τ is a tolerance of order 10−12,
for example. This stopping criterion ends the iterations just before divergence
sets in.

3.3 Solving for w and v.

The difficulties with the rank deficiency in ZTK̂ can be avoided by returning to
(3.2)–(3.4) and working with the slightly smaller vector w and matrix ZTK̂W.
The following lines must be changed:

4: α1v̄1 = WTK̂TZū1

6: w0 = 0

11: βi+1 = ūi+1Z
TK̂Wv̄i − αiūi

12: αi+1 = v̄i+1WTK̂TZūi+1 − βi+1v̄i

20: wi = wi−1 + (φi/ρi)w̄i

24: Solve Rv = YT(ŷ − K̂Wwi−1) for v

25: xλ = Vv +Wwi−1

This approach is practical only if operations with W and WT can be done
quickly.

4 The subspace splitting.

The optimal subspace V consists of the principal k right singular vectors in
the SVD of K if L = I, or generalized right singular vectors in the GSVD of
(K,L) if L �= I. This choice diagonalizes the submatrix A11 and minimizes the
condition number of S, which indicates faster convergence of the algorithms.
However, the optimal subspace created from the SVD or GSVD is usually not
available, and we are forced to choose a less optimal subspace. The hope is that

982 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

Subspace preconditioned LSQR. Computes the Tikhonov regularized solution

xλ = argminx‖K̂x− ŷ‖2. There is no restriction on the rank of L.

1: Compute QR factorization K̂V = [Y Z]

[
R
0

]
2: d = ZTŷ

3: β1ū1 = d % So that ‖ū1‖2 = 1

4: α1v̄1 = K̂TZū1 % So that ‖v̄1‖2 = 1

5: w1 = v̄1

6: p0 = 0

7: φ̄1 = β1

8: ρ̄1 = α1

9: i = 0

10: repeat

11: βi+1ūi+1 = ZTK̂v̄i − αiūi % So that ‖ūi+1‖2 = 1

12: αi+1v̄i+1 = K̂TZūi+1 − βi+1v̄i % So that ‖v̄i+1‖2 = 1

13: ρi = (ρ̄2
i + β2

i+1)
1/2

14: ci = ρ̄i/ρi

15: si = βi+1/ρi

16: θi+1 = siαi+1

17: ρ̄i+1 = −ciαi+1

18: φi = ciφ̄i

19: φ̄i+1 = siφ̄i

20: pi = pi−1 + (φi/ρi)wi

21: wi+1 = v̄i+1 − (θi+1/ρi)wi

22: i← i+ 1

23: until φ̄iαi|ci−1| < τ

24: Solve Rv = YT(ŷ − K̂pi−1) for v

25: xλ = Vv + pi−1

a subspace ‘close to’ the optimal (G)SVD-based subspace is good enough. We
know that in most applications the right singular vectors of an ill-posed problem
have increasingly more sign changes as the corresponding (generalized) singular
values decrease, i.e., they become more oscillatory – a feature we should try to
emulate.

In the previous sections the subspace operations were described by means of
matrix multiplications with V and VT. However, if we select a specific subspace
V then the multiplications can often be done more cheaply by means of ‘fast
transforms.’ Two examples come to mind.

• The wavelet transform; in this paper we use the Daubechies wavelets [3].

• The Fourier transform and variations thereof; to avoid complex results we
restrict ourself to the use of the cosine transform denoted DCT-2 in [16].

SUBSPACE PRECONDITIONED LSQR 983

Figure 4.1. The first four basis vectors for DCT-2 (left) and wavelets (right).

Both transforms have the desired property that the basis vectors have higher
frequency as the column index grows. This is obviously true for the cosine
transform, which is spanned by the vectors

Vi,j =
(

n

2

)−1/2

cos
(

(i + 1/2)(j − 1)
π

2

)
, divided by

√
2 if j = 1.(4.1)

The Daubechie wavelets, on the other hand, have a local nature and oscillate only
in their domain of support. The wavelet basis is composed of several subspaces
of increasing detail,

R
n = V0

k⊕
j=1

Wj , k = log2 n.

Because all vectors spanning Wj must be included to describe all details at
the given level, the subspace dimension k should preferably be a power of 2.
Figure 4.1 shows the first four basis vectors of the two fast transforms.

The use of these fast transforms will benefit the Schur complement CG algo-
rithm because V is used twice in each iteration. In the preconditioned LSQR
algorithm, V only appears in the initialization and finalization stages. For com-
parison we also created preconditioning subspaces from

• The SVD; the optimal subspace is created from the principal k right singular
vectors of K.

• regutm; the Regularization Tools package [7] includes a test problem gener-
ator regutm that produces random singular vectors with j − 1 sign changes
(where j is the column index).

5 Numerical results.

The numerical tests were performed using matlab [10] with double precision
IEEE arithmetic. The wavelet routines are from the wavelet package by Nielsen
[11], and the discrete cosine transform is from Matlab’s Signal Processing
Toolbox. The test problem heat is from Regularization Tools [7] and was se-
lected because an unpreconditioned CG method shows slow convergence for this
problem.

984 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

We also test the algorithms on an inverse geomagnetic problem originating
from geoscience [4], where the goal is to compute the distribution of magnetic
dipole moment from remote measurements. The relationship is described by a
Fredholm integral equation of the first kind∫

Ω

K(x, y, z, x′, y′, z′)f(x, y, z) dx dy dz = g(x′, y′, z′),

where the kernel K is given by

K(x, y, z, x′, y′, z′) =
3(z − z′)

r5
− 1

r3

with r = ((x − x′)2 + (y − y′)2 + (z − z′)2)1/2.
The solution to the discretized problem consists of samples of f on a 3-D grid

with n = N3 points. The right-hand side consists of data measured at P layers,
each layer consisting of N2 data points and thus leading to a total of m = PN2

data. The problem used here has parameters N = 12 and P = 13 leading to a
matrix K of dimensions 1872 × 1728.

This formulation of the problem gives us the option to create a smaller un-
derdetermined problem with P = 1, i.e., only one layer of data points, leading
to a matrix of dimensions 144 × 1728. We use the right singular vectors of this
matrix to create a preconditioning subspace for the overdetermined system.

More extensive numerical experiments with the Schur complement CG algo-
rithm are available in [9].

5.1 Condition numbers.

Even though the condition number does not tell the entire truth about the
convergence of CG and LSQR, it still carries information on what to expect.
Furthermore it is independent of the right-hand side and we are able to draw
conclusions on a more general level. The actual convergence depends on the
distribution of all the singular values, i.e., not only the extreme singular values,
as well as the actual right-hand side.

Figure 5.1 shows the condition number of the Schur complement S for the
heat problem, as a function of the dimension k of the preconditioning subspace.
The condition number using the wavelet basis decreases each time a detail level
is ‘completed,’ while the other subspace types lead to smoother decay of the
condition number. The basis derived from the SVD gives the smallest condition
number, as expected.

5.2 Precision of subspace precondition LSQR vs. Schur CG.

It is known that LSQR often achieves higher precision than symmetric CG on
the normal equations, even though the two methods are algebraically equivalent.
Figure 5.2 shows the convergence histories and, as expected, we see that LSQR
converges a bit faster than Schur CG. We emphasize that the LSQR algorithm
is much faster, as the cost per iteration is about half that of Schur CG.

SUBSPACE PRECONDITIONED LSQR 985

Figure 5.1. Condition number of the Schur complement S as a function of subspace dimension
k. The test problem is heat with m = n = 1024, L = I and λ = 10−4.

Figure 5.2. Schur complement CG and subspace preconditioned LSQR applied to heat with
m = n = 512, L = I and λ = 10−4. The preconditioning subspace is a DCT-2 subspace of
dimension k = 20.

5.3 Convergence with different subspace types.

Figure 5.3 shows convergence histories for the heat problem with fixed sub-
space dimensions 32. We see that the SVD-based preconditioner is fastest, fol-
lowed by a DCT-2 based subspace. Compared to the unpreconditioned LSQR,
convergence is very fast for this problem.

Turning to the geomagnetic problem we obtain the convergence history shown
in Figure 5.4. Without the preconditioner convergence is almost nonexistent,

986 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

Figure 5.3. Relative error with respect to the regularized solution (not the true solution) as a
function of iterations for three different subspace types with k = 32. The test problem is heat
with m = n = 1024, L = I and λ = 10−5.

Figure 5.4. Subspace preconditioned LSQR on the geomagnetic problem. The matrix K is
1872 × 1728, i.e., 123 solution points and 13 layers of 122 measurements. The SVD-based
preconditioning subspace consists of the right singular vectors from the SVD of a smaller
144 × 1728 single-layer problem. The regularization parameter is λ = 10−2, and L = I.

while LSQR with subspace preconditioning does converge. The DCT-2 subspace
works nicely even though it does not take the structure of the problem into
account. We also tried the SVD-based subspace from the small version of the
problem, which yields even faster convergence.

5.4 Preconditioned LSQR on the unregularized problem.

Some iterative methods in their unpreconditioned version exhibit ‘semi-conver-
gence’ on unregularized ill-posed problems; i.e., during the initial iterations the
solution approaches a regularized solution but at some point starts to converge

SUBSPACE PRECONDITIONED LSQR 987

Figure 5.5. Plain and preconditioned LSQR applied to the unregularized problem heat with
m = n = 512, L = 0, noise level ‖e‖2 = 10−4‖y‖2, and a DCT-2 subspace of dimension
k = 20. Both methods exhibit ‘semi-convergence.’

towards the unwanted least squares solution, cf. §6 in [6]. This implies that early
termination of the CG iterations is sometimes a regularization method in itself.
CG and hence LSQR in their unpreconditioned versions are known to posses
this semi-convergence property. Figure 5.5 illustrates that this is also the case
for the preconditioned version of LSQR. Note that the smallest error of the pre-
conditioned method is slightly larger than that of the plain (unpreconditioned)
version, but it is reached in fewer iterations.

5.5 Timings.

In the previous sections we only took the iteration numbers into account
when evaluating the algorithms. However, the time per iteration is also vital.
In addition, the initialization phase, i.e., the creation and factorization of K̂V,
should be taken into account.

If the subspace transformations are implemented with matrix multiplications
we see that the initialization phase costs at least k multiplications with K̂ to
construct K̂V. This corresponds to k/2 iterations with a standard LSQR or
CGLS. Using more efficient subspace transformations like the DCT reduces this
startup penalty and is to be recommended. However, if K̂ is sparse the matrix
multiplication approach could be the best choice. Furthermore the initialization
phase includes a QR factorization of K̂V.

In situations where the same system is to be solved several times one can save
and reuse the factorized K̂V, thus eliminating the initialization step.

Table 5.1 shows timings for LSQR without preconditioning, Schur complement
CG and subspace preconditioned LSQR, broken into three phases. The problem
size was selected so that everything was contained in memory. In the Schur

988 M. JACOBSEN, P. C. HANSEN, AND M. A. SAUNDERS

Table 5.1. Timings on the heat problem with m = n = 1024, L = I,
λ = 10−5 and a DCT-2 basis of dimension k = 8. The iteration numbers are
selected to give a relative error of 10−3 in the solution. All operations are
dense, and the LSQR implementation is from Regularization Tools [7]

LSQR Schur CG Schur CG Precond.

with g(i) without g(i) LSQR

Initialization (sec) ≈ 0 3 3 3

No. iterations 378 33 33 33

Iteration time (sec) 74 29 13 6

Finalization (sec) 0 0 0 ≈ 0

Total time (sec) 74 32 16 9

complement CG algorithm one can skip step 11 and the variable g(i) when
L = I, which saves substantial time in our matlab implementation.

We see that the time for the initialization phase is equal for the two imple-
mentations of the two-level methods – essentially they both require the creation
of K̂V and a factorization of this matrix. The finalization stages are negligible.

In the iteration phase we see the strength of the new implementation; a pre-
conditioned LSQR iteration is between two to four times faster than a Schur CG
iteration, depending on the matrix L and the implementation of step 11. Both
implementations require 33 iterations to achieve the desired accuracy, while plain
LSQR requires 378 iterations.

Note that for preconditioned LSQR, the algorithm of Section 3.2 was used
throughout. The same graphs would be obtained with the Section 3.3 modifica-
tions, but the operations with W would increase the timings slightly.

6 Conclusion.

Least squares problems may be preconditioned on the left by any orthogonal
matrix, and on the right by any nonsingular matrix. Here we are using QT and
[V W] respectively to decouple the problem into two parts: (3.2) and (3.3). We
have shown that the resulting preconditioned LSQR method is equivalent to
Schur complement CG. Both methods are adapted to avoid operations with W,
but the implementation is simpler for subspace preconditioned LSQR and the
work per iteration is halved.

The subspace V must be chosen wisely for the preconditioning to give fast
convergence. The DCT-2 subspace produced good results, while the wavelet
subspace turned out to be weaker for the problems we considered. We have illus-
trated that in some cases a good subspace can be derived from a simpler problem.
Because the initialization phase can be expensive in terms of operations, the
subspace dimension should be chosen small.

We also observed that the Schur complement CG and subspace preconditioned
LSQR algorithms both exhibit semi-convergence on unregularized problems.
Thus, regularization can be achieved by early termination of the iterations.

SUBSPACE PRECONDITIONED LSQR 989

Acknowledgements.

We are grateful to the referees for finding some important corrections. We also
acknowledge the SIAM annual meeting (San Diego, 2001) and the IMM Sparse
Matrix Computations summer school (Danish Technical University, 2001) for
helping this collaboration evolve.

REFERENCES

1. O. Axelsson, Iterative Solution Methods, Cambridge Univ. Press, 1994.
2. R. Barret, M. Berry, T. F. Chan, J. Demmel, J. Danato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

3. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
4. M. Fedi, P. Hansen, and V. Paoletti, SVD and GSVD analysis of depth resolution in

potential field inversion, Geophysics (submitted).
5. M. Hanke and C. R. Vogel, Two-level preconditioners for regularized inverse problems I:

Theory, Numer. Math., 83 (1999), pp. 385–402.
6. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of

Linear Inversion, SIAM, Philadelphia, 1998.
7. P. C. Hansen, Regularization tools version 3.0 for Matlab 5.2, Numer. Algorithms, 20

(1999), pp. 195–196.
8. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. Res. Nat. Bur. Stand., 49 (1952), pp. 409–436.
9. M. Jacobsen, Two-grid iterative methods for ill-posed problems, Master’s thesis, Technical

University of Denmark, 2800 Kgs. Lyngby, Denmark, September 2000.
10. The MathWorks, Inc., Matlab Manual, Natick, MA, 6th ed., 2000.
11. O. M. Nielsen, Wavelets in scientific computing, PhD thesis, Technical University of

Denmark, 2800 Kgs. Lyngby, Denmark, July 1998.
12. C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and

sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.
13. C. C. Paige and M. A. Saunders, LSQR: Sparse linear equations and least squares

problems, ACM Trans. Math. Software, 8 (1982), pp. 195–209.
14. K. L. Riley, Two-level preconditioners for regularized ill-posed problems, PhD thesis,

Montana State University, Bozeman, 1999.
15. K. L. Riley and C. R. Vogel, Two-level preconditioners for ill-conditioned linear systems

with semidefinite regularization, J. Comp. Appl. Math. (submitted).
16. G. Strang, The discrete cosine transform, SIAM Rev., 41 (1999), pp. 135–147.
17. C. R. Vogel, Negative results for multilevel preconditioners in image deblurring, in

M. Nielsen, P. Johansen, O. F. Olsen and J. Weickert (eds.), Scale-Space Theories in
Computer Vision, Springer, 1999, pp. 489–494.

18. C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.

