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LEAST SQUARES ESTIMATION OF DISCRETE
LINEAR DYNAMIC SYSTEMS USING
ORTHOGONAL TRANSFORMATIONS*

C. C. PAIGE? AND M. A. SAUNDERS

Abstract. Kalman [9] introduced a method for estimating the state of a discrete linear dynamic
system subject to noise. His method is fast but has poor numerical properties. Duncan and Horn [3]
showed that the same problem can be formulated as a weighted linear least squares problem. Here we
present a method which uses orthogonal transformations to solve the Duncan and Horn formulation
by taking advantage of the special structure of the problem. This approach gives advantages in
numerical accuracy over other related methods in the literature, and is similar in the number of
computations required. It also gives a straightforward presentation of the material for those unfamiliar
with the area.

1. Introduction. Kalman filtering [9] is a tool used by engineers and others to
estimate the behavior of certain linear dynamic systems when both the system,
and the measurements made on the system, are subject to zero mean random
noise of known covariance, and the initial state of the system comes from a
distribution with known mean and covariance. The theory and the algorithms for
computing the required estimates were originally developed in an elegant manner
using conditional probability theory to obtain the linear estimates that minimized
the expected values of the 2-norms of the errors. An excellent introduction to this
approach is given by Rhodes [12]. This approach is somewhat involved, and
requires some study for a reader not initially familiar with the basic probability
theory used. The relation between such minimum variance estimators and weigh-
ted least squares solutions led Duncan and Horn [3] to approach the problem in
the discrete case from the viewpoint of regression analysis; they showed how the
Kalman estimates x k) could be found by solving a sequence of weighted linear
least squares problems

min I[F(k)x (k- y(k[12, k 1, 2,...,
(k)

where F(k) is a known matrix of coefficients, y(k) includes the known measure-
meats, and II" denotes the 2-norm. The problems can be solved in a recursive
manner since F(k +1) is just F(k) with additional rows and columns added.

One purpose of this paper is to suggest a method for solving the Duncan and
Horn formulation of the problem on a computer. A reliable approach is to
compute an orthogonal decomposition of F

* Received by the editors June 16, 1975, and in revised formApril 5, 1976.

" School of Computer Science, McGill University, Montreal, Canada. This work was supported
by National Research Council of Canada Grant A8652.

$ Applied Mathematics Division, Department of Scientific and Industrial Research, Wellington,
New Zealand.

180

D
ow

nl
oa

de
d 

12
/2

9/
13

 to
 1

71
.6

7.
87

.1
04

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LEAST SQUARES ESTIMATION 181

where R is upper triangular. WhenF is not sparse, Q would usually be the product
of Householder transformations [2]. This basic approach is used here, but because
of the special form of F, the computation is performed more economically using
both Householder transformations and Givens rotation matrices (see, for exam-
ple, [11]). This approach brings out the recursive nature of the solution process
very clearly, and leads to straightforward derivations of factors of the inverses of
the estimator covariances.

The method, which is described in 4, has advantages in numerical stability
over other published methods for computing the same results. This will be more
understandable after the model and method have been presented, so a discussion
of some of the methods that are already available, along with a comparison with
the present work, will be left until 9. An operation count is given in 8.

Another purpose of this paper is to emphasize the importance of Duncan and
Horn’s large matrix formulation of the linear dynamic estimation problem. This
approach shows the essential nature and simplicity of the problem and as the
authors say in [3], it "opens the way for further developments in recursive
estimation which are more tractable in the regression approach". A derivation of
this formulation will be presented in 2 and 3 as a teaching tool.

It is shown in 5 and 6 how the techniques given in 4 can be used to
compute the factors of the inverses of as many covariance matrices as are wanted,
and 7 shows how the method can be adjusted to handle some extensions of the
model.

The introduction to the linear dynamic model in 2 is given in somewhat
expanded form to make this paper readable for workers who have some familiar-
ity with techniques of matrix computations, but who are not familiar with this
particular problem. Again in the interests of clarity, the computations involving
Givens rotations are presented as ordinary rotations. If the size of the problem is
such as to justify the overhead involved in using fast, stable, two-multiplication
rotations, then descriptions of these can be found in the literature [5], [7], [11].

The notation E(.) will denote expected value, and superscript T will denote
transpose, otherwise capital italic letters will denote matrices, with the symmric
capitals V, W, etc., reserved for symmetric nonnegative definite matrices. Lower
case italic will denote column vectors, except for the indices i, ], k, m, n, p, s, t.

2. Description of the model. Here we will be concerned with dynamic
systems, so we will consider a system which is evolving in time. It is assumed that
the part of the system we are interested in can be characterized at any given time
by a vector of variables, the state vector; for example, these variables could be
pressure, temperature, etc. The discrete Kalman filter is applicable to linear
systems where at time k the system’s n dimensional state vector Xk is given, for
k=2,3,..., by

(1) Xk Fk- Xk- -’l- Bktlk d- V k"
Here uk is a known p dimensional vector which might be chosen to control the
system in some desired way, F_ and Bk are known matrices, and v, is a noise
vector which comes from a distribution with zero mean,

(2) E(v) 0,D
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182 C. C. PAIGE AND M. A. SAUNDERS

and covariance Vk,

(3) E v v

where V is a known symmetric nonnegative definite matrix.
It is also assumed that x l, the initial state of the system, is a random vector

from a distribution with known mean XllO, the estimate of x at time zero, and
covariance V,

(4) E(x,) X,lo, E(v’ T)v V v x x lo.

Note that this can be written as the equation

(5) Xlo X V

where v is a zero mean noise vector with known covariance V1.
The problem arises because the state vector Xk is not directly measurable;

instead the m dimensional vector of observations y , is available where it is known
that for k 1, 2,- .,
(6) y, C’kXk + W’k
with C, a known matrix and w, a noise vector such that

(7) E W ’k) O, E W ’kW ’k7") Wk,

where Wk is a known nonnegative definite matrix.
Given all the information in (1)-(7) with the observations y available up to

time k, we might want to find an estimate of Xk which is best in some sense. This is
called filtering in the engineering literature (e.g. [12]). We might also want a best
estimate of Xk+j; for ] > 0 this is prediction, while for < 0 it is smoothing.

3. Weighted linear least squares iormulation oi the problem. Here all the
information on the system and measurements up to time k will be given equal
weight, and combined together to form one large equation. This can be regarded
as one large overdetermined linear system with zero mean unit covariance noise,
which can then be solved using linear least squares techniques.

From now on we will assume that the V and W are all positive definite so
that we can transform equations (1), (5) and (6) into equations with zero mean
noise vectors having unit covariance matrices, as a result we will be able to assume
that all equations are equally important. In (3), (4), and (7) let

be the Cholesky decompositions of the inverses of the covariance matrices. If
these inverses are available then there is no difficulty. If a covariance matrix V is
known, but not its inverse, then the reverse Cholesky decomposition RR T V, R
upper triangular, can be found (see, for example, [11, p. 125]). It then follows that
L R-T is the required Cholesky factor in (8). The reverse decomposition of V
has been chosen here as it leads to computational savings later when the method
exhibited in (25) is used to triangularize the matrix in (24).D
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LEAST SQUARES ESTIMATION 183

The factor L1 in (8) can be applied to (5) to give
Td, L 1TXll0 LxI-L, v, LTlx!

(9)
E(Vl) O, E(VlV) LV1L1 I.

Similarly if we write
T(lO) F,_A=--L,G_,,

then (1) may be rewritten as

(11) dk [Fk-l, L kT] [xk-1]Xk J+Vk, k=2,3,’",

with vk representing a zero mean, unit covariance noise vector.
With the same approach the observation equation (6) becomes

(12) Yk =--f--,Y’k "W [,W’k= k 1 2,...Lk CkXk + CkXk + Wk.

where wk is zero mean, unit covariance noise.
Equations (9), (11), and (12) combine to give the formulation of the problem

suggested by Duncan and Horn [3]

(13)

Yl
d2
Y2
d3

C1
F

L"
G

Equation (13) can be written more briefly as

(14) y(k) F(k)x(k)+

192W1

Wk

though in the future we will usually drop the superscripts. We see that if for # ]

(15) E(viv) O, E(wiw3 O, E(viw3 E(viw) O,

then/.)(k) is a zero mean, unit covariance noise vector. Equation (15) will hold if
and only if it holds with v and w replaced by v’ and w’ respectively. From now on
we assume (15) holds; this is the assumption originally made by Kalman [9], but its
purpose and use is perhaps more easily understandable in the present formula-
tion. Clearly the present approach could be modified to handle correlated noise.

The least squares solution to (14) is

(16) --- arg min IlFx yllz,
X

that is, is the argument that minimizes the sum of squared residuals.D
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184 C. C. PAIGE AND M. A. SAUNDERS

Rosenbrock [13] has observed that Kalman filtering is an extension of the
work of Gauss. By putting the problem in the form of (13) and (14), Duncan and
Horn have shown that it has exactly the same form as the problem that Gauss
posed and solved.

4. Numerical solution of the least squares problem. In order to find the
solution to (16) we use an orthogonal matrix Q such that

(17) OTF [O] FR-]
O’]F= [0J

where R is upper triangular. Since the 2-norm is unaffected by orthogonal
transformations,

(18) 2 arg min jR] [O’y] []2
0
x- OiyJll’

from which it follows that satisfies

(19) R2=Oy.
Here R will certainly be nonsingular if the Lj are nonsingular in (13).

This least squares solution for general Fwas suggested by Golub [6]. Lawson
and Hanson [11] treated the case when F has band form. Gentleman [5] showed
how fast, numerically stable variants of the Givens rotation matrices without
square roots could be used to gain speed in special cases like the present one. Here
advantage will be taken of these techniques, and the special form of F, to obtain a
fast recursive set of operations for its reduction to block upper bidiagonal form. It
will be shown that (19) becomes

(20)

R1 R1,2
R. R2,3

Rk-l,k

Rk

bk-l

b-k _1
where xjlk means the weighted linear least squares estimate of xj, the state vector
at time ], given y’,... y, the observations up to time k. Thus Xjlk j
1,. , k- 1 are smoothed values, Xklk is a filtered value, while Xk/lk would be a
predicted value. The filtered value, and as many smoothed values as are needed,
can be found directly from (20) by back substitution.

The last block of the matrix R in (20) is Rk rather than Rk, since it is the only
one of these blocks that will be altered when the decomposition is updated to
account for the introduction of new rows and columns corresponding to new
observations like (6), or new system equations like (1).

The matrix F in (13) and (14)can be transformed to the matrix R in (17) and
(20) in a sequence of 2k- 1 steps. First we set

(21) / =-L’;D
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LEAST SQUARES ESTIMATION 185

then in steps 2j 1 and2j we develop an orthogonal matrix Oj which transforms

(22) C 0 to O’
L+ 2lj+

so that when the zero rows are permuted to the bottom of the right hand matrix, it
becomes upper triangular.

In step 2j- 1 an orthogonal matrix Oj is chosen to zero out C as follows"

(23)

where Rj is upper triangular and the. orthogonal matrix Oi is the product of n
Householder matrices chosen to take advantage of Ri being upper triangular.
Thus for 1, 2, , n, the ith elementary matrix will combine row of Ri with
the altered C. matrix to eliminate its th column. The complete step will take
approximately mn 2 multiplications. Equation (20) shows the complete system
when a s.tep of this form has just been completed. Next, in step 2j, the orthogonal
matrix O is chosen to zero out

(24)
+

o

where full advantage of the structure can be taken by using a series of rotations as
follows. For n, n 1, , 1 the ith row of F/can be set to zero an element at a
time by using the sth row of the altered Ri to eliminate the sth element of the th
row of the altered F.; this must be done in the order s 1, 2,. , n. The start of
this step can be indicated schematically in the case of n 3 by

(25)

x x
X X

X

X

where () indicates this element is set to zero in the sth rotation by combining it
with the element at the other end of the arrow, and -]indicates this originally zero
element has been made nonzero in the tth rotation. Other orders of elimination
are possible, but this appears to be the quickest, taking about 4n 3 multiplications
using ordinary rotations. If n is large enough to justify the overhead involved in
using stable two-multiplication rotations [5], [7], this can be reduced to 2n 3. More
will be said on this in 8.D
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186 C. C. PAIGE AND M. A. SAUNDERS

The equivalent transformations of the vector y in (13) and (14) will be
denoted by setting

(26) /1--=da,

LY,_i (r r, r
Ld+ b.+

Combining these vectors with the matrices in (22), and combining both (23) and
(24) gives the computation for the jth time step.

(28) ojr b o o r,:,

0
(29)

and it is clear that/j+! and/j+l are ready to be adjoined to C+ and y+l etc. for
step 2] + 1 and later ones.

At the end of the 2k 1 steps the vectors r. in (28) make up the residual of the
transformed least squares problem, that is, Ofy in (18). These r and the
corresponding zero rows of the matrix need only be deleted from the resulting set
of equations to produce (20),

We see from (28) that in steps 2/"- 1 and 2, which correspond to the th time
step, the only information needed from all the previous steps is/ and .. This
recursive nature makes the process computationally quite economical. The sparse
nature of the matrix in (20) also indicates the economy of storage, since no zero
blocks need be stored; in fact if we only want Xk-rlk,’’’, Xkl then R, Rj,+I,

!,,.., k-r-1, can be discarded. Equations (13), (17), and (20) are clear
ways of describing the problem and its solution, but it has to be emphasized that
such large matrices are not handled during the computation; instead everything is
obtained step by step from the start, the important computational transformation
being that described by equation (28). Note also that the matrices 0, ( and Oj
are never formed in full or stored. With the dimensions of the problem as stated in
(1) and (6), step 2j- 1 requires onlv about n (n + m) storage locations, or less if
advantage is taken of the form of Rj, or if C is brought in a row at a time. With
careful programming the operations described by (24) could be carried out in
about 2n z locations for step 2/’. Thus the only storage that is absolutely necessary
during the computation is essentially that required to store the matrices and
vectors being dealt with in any particular step.

5. Covariances of the estimators. The estimate 2 of x in (14), which is given
by (19), has an error given by

(30) .mx-,=x-R-1Q’y=x-R-1Q((Fx+v)=-R-1Qv
which is a random vector with a mean of zero and covariance matrix

(31) E(T) R -1(T(1))T)OIR-T (R rR)-’ H.D
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LEAST SQUARES ESTIMATION 187

Thus R is the Cholesky factor of H-. In particular we will be interested in
the covariance of Xklk. This is just the bottom right hand corner block of H, which
from (31) and the form of R in (20) is just/I/T; thus

(32) /kl =/2/
SO that/ is the Cholesky factor of H{I,.

Once we have obtained estimates in (13) up to time k via (20), we can add on
the next system equation (11)

dk+l FkXk +L+iXk+l -}"l)k+l.

This can be combined with (20) in step 2k, as shown in (24), and the new system
solved again. However as this has just added n nonsingular equations in the n
unknowns Xk /1, it is the equivalent of using (1) {o predict

(33) Xk+llk FkXklk d-Bk+lUk+l,

and the previous X]lk will be unchanged. The new matrix corresponding to (20) will
have gk/1 in its bottom right hand corner, and by the same argument as given for

Hklk and/k, we see that Rk+ is jUSt the Cholesky factor of -1Hk+lk, the inverse of
the covariance of the predicted vector Xk +llk- That is

T )-1(34) Hk+llk =--E[(Xk+I--Xk+llk)(Xk+I--Xk+llk)r]=(Ik+IRk+I
To obtain any of the remaining covariance matrices we could reduce R to

block lower bidiagonal form using orthogonal transformations from the left, in a
sequence of k- 1 steps commencing at the bottom right hand corner of R. Thus
after k steps

T TPi Pi+l P-

(35)

Ri-l,i
Ri Ri,i+

Ri+l
Rk_l,k
Rk

k,k-1 k

where indicates this block is in its final form,/i means this block will be altered
in eliminating the block above it, and the remainder have not yet been touched.

From (31)/-/lk is the ith n n block on the diagonal of

(36) (R TR)-I [R(i)TR(i)]-I R(i)-IR(i)-TD
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188 C. C. PAIGE AND M. A. SAUNDERS

and we see from (35) that rows (i- 1)n + 1 to in of R (i)-1 are

[O,’’’,O,R ,0,’’’,0]

and as a result

(37) /-/ k --]i
We see then that factors Rj of the inverses of as many error.covariance matrices as
are wanted may be comlSuted simply by carrying out the bidiagonalization in (35)
as far as we want, to produce in sequence/k -=, and i, ] k- 1, k- 2, ....

Probably the best way of computing each step of this block bidiagonalization
of R is to use the reverse of the method (25) that was used for computing (24); in
this way full account is taken of sparsity, and the resulting Ri are upper triangular
in (37), so these will be the Cholesky factors of the covariance matrix inverses. The
next step in (35) can be described as

(i-2) P-I [i-1
(38) Pf_l P--I 0 i ki,i--1 i

In(k-i)

where, for 1, 2,.-., n, the tth column of Ri_l, is set to zero by a series of
rotations of the tth row of i with the sth row of the altered Ri_l,i, s
n,n- 1,. ., 1. The start of this can be described as

(39)

X X X

X X

X

( X

where the same notation is used as was used in (25). Again using two-

multiplication rotations this takes 2n3 multiplications.
This method is consistent with the present approach of computing factors of

inverses of covariance matrices directly, and its accuracy is an attractive feature.
However it is not clear how the results could be updated from step to step, and so if
several of these covariance matrices are wanted regularly, this would be expen-
sive. Another approach is to define the kn x n matrix N having the unit matrix in
rows (i- 1)n + 1 to in, and zero elsewhere. Then

T
Hilk NT, (R TR)-Ni s.T, si RilkRilk

where R TS N, and the Cholesky factor Rilk of/-//Ik could be found by using
orthogonal rotations to triangularize Si. A little thought shows such factors can
easily be updated when new information arrives This appears to be a fast and
workable method, the only possible inaccuracies arising in the solution of equa-
tions for Si, if these are ill-conditioned. However this method gives us factors of
the covariance matrices, in contrast tothe rest of the paper which deals withD
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LEAST SQUARES ESTIMATION 189

factors of inverses of covariance matrices. For reasons of space and consistency we
will not pursue it further.

6. Further predicted values and their covariances. If any further values of the
state vector need be predicted on the basis of the measurements up to and
including time k, then these follow directly from (1)

(40) Xk +j]k F’k +j-lXk +j- llk q- Bk+jUk +j,

for/" 2, 3, . These can be thought of as the best estimates for the model

(41)

F k

Fkl L+I

Fk+j-, L+

x k -i.) k

Xk+ l)k ++

Xk+j Vk +j

which is the continuation of (14) if no further measurements are available. Here
the zero mean random noise vector has unit covariance, and so the upper
triangular Cholesky factor of the inverse of the covariance matrix of the error

k/ Xk/- Xk/lk is just the bottom right hand corner matrix obtained when the
upper triangularization of Fk in (17) is continued to the new matrix in (41). This
can be done using j steps of the same form as was used for (24).

7. An extension of the model. Although in equations (1) and (6) the state at
time k + 1 and the observation at time k are given in terms of the state at time k
only, the model can be more general than this, as is shown for example by Hannan
[8]. One possibility is that Xk/l can depend linearly on Xk, Xk-1,’’’, Xk-s and Yk
can depend linearly on Xk, Xk-1, ", Xk-t. The present formulation and computa-
tional solution can easily be extended to such cases; for example with s t 1, the
.equivalent of (13) for k 3 might be

dl
Yl
d2
Y2
d3

_Y3_i

F1,1 L2
C2,1 C2,2
F2,1 F2,2

C3,2

+
!W2

W3

Here the first three blocks of rows would be transformed to upper triangular form
just as in (22); then this complete upper triangle would be used to eliminate C2,1
and C2,2 as in (23), and the resulting upper triangle used to eliminate F2,1 and F2,2
and transform Lr as in (24). The lower part of the resulting upper triangle would
then be used to eliminate C3,2 and C3,3, and so on.

8. Operation count. A simple generalization of the transformations
described by (24), (25) and (38), (39) can be used very effectively in otherD
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190 C. C. PAIGE AND M. A. SAUNDERS

computations in estimation, as well as in optimal control calculations. The
generalization of (24) can be simply described as

(42) O
\G R2 0 /2 ]

where O is orthogonal and R and R are n x n upper triangular matrices, but now
R2 and R2 are rn x rn upper triangular. It is worthwhile considering this slightly
more general case in order to compare the use of rotations, as described in 4,
with reduction by Householder transformations.

Using Householder transformations fills up the block R2 in the first step, and
requires mn(2rn + n) multiplications to produce upper triangular R 1, leaving R2
full. It then takes another 2rn 3/3 multiplications to make/2 upper triangular, a
total of

(43) rnn(2m + n) + 2m3/3

multiplications for the complete Householder reduction. Standard rotations
require 4 multiplications each, while it is possible to compute stable two-or
three-multiplication rotations [5], [7] with some added overhead. If we use
k-multiplication rotations, then the complete reduction can be carried out in

(44) kmn(rn + n)/2

multiplications. These results show that four-multiplication rotations are faster
than Householder transformations when m > 1.23n, but in any case never take
more than twice as long. In the present case with m n the comparison is 1 in3/3
against 4n 3, so Householder transformations have a (negligible) 8% advantage.
An advantage of the technique described in 4 is that it requires no extra storage,
since only one nonzero element is generated as each zero is produced. In contrast,
Householder transformations immediately introduce m2/2 nonzero elements
that later have to be made zero. For this reason we recommend using rotations at
all times: ordinary rotations are satisfactory if there is no time problem, while
stable two multiplication rotations can be used if the dimensions of the problem
are large enough to warrant them, and these are superior to Householder
transformations for any ratio of m and n.

For the complete operation count here, we assume that two multiplication
rotations have been used for (24), taking 2n 3 multiplications. Now if we assume
V[ and W are supplied in (8), then computing the Cholesky decompositions
and forming T ~TL F_ in (10) and L C in (12) takes n3/6+ in3/6 + n3/2 + nm2/2
multiplications. Computing (23) takes mn 2 multiplications, to give a total for one
time step of

(45) 8n 3/3 + m3/6 + mn2 + nm2/2.
This provides the Cholesky factors of the inverses of//t and I-//1.. The time
required to compute the right hand side in (20) and solve for the estimates xjlk is
small in comparison to the other computations.D
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9. Comparison with other algorithms. In order to compare algorithms it will
be useful to discuss briefly some of the important developments since Kalman’s
original approach. A more complete discussion is given in [10]. The major
computation in Kalman’s method was to update the covariance matrix HI_ in
order to produce HI and H/al as follows,

tTI CtkT ]-1HI HI_I HI_C [CHI_I + W C’HI_I,
(46)

H+11 F’H W’ + V
where we have used the notation in (1), (3), (6), and (7). Matrices which are
represented by symmetric capitals here are nonnegative definite in theory, but in
computations this property was often lost. Later workers avoided loss of definite-
ness by updating square roots of matrices (where S is said to be a square root of the
nonnegative definite matrix H if H SS7"). This also avoided inaccuracies caused
by squaring, since it was possible to compute and use CS, the square root of
CHC, rather than CHC itself. This approach led to algorithms described as
covariance square rootfilters. If covariance matrices are given in (3) and (7) for the
noise, and in (4) for the initial estimate, and if covariance matrices of the estimates
are desired as output, then covariance square root filtering appears to be the
correct approach.

The inverse of a covariance matrix is called an information matrix. It is
possible to update information matrices for this problem, but the same arguments
on definiteness and accuracy of square roots apply here too, and so it is numeri-
cally superior to consider information square root filters. The present method
requires only factors of information matrices in (8), and gives factors of informa-
tion matrices in 5, so it is clearly an information square root filter.

One of the best available approaches for this estimation problem was given
by Dyer and McReynolds [4], and this has also been called an information square
root filter. They considered zero mean unit covariance noise as in (11) and (12),
and sought to minimize

k k

(47) J(k)=llz (x -xl o)ll2/ 11  112/ IIw tl2
j=2 j=l

subject to the constraints (11) and (12), in order to estimate x. An implementa-
tion which is as numerically stable as this particular approach allows has been
described by Hanson and Dyer 14], and is in use as a navigational tool at the Jet
Propulsion Laboratory in Pasadena, California.

Although (47) is a least squares formulation of the problem, Dyer and
McReynolds apparently did not consider it in the form of the large sparse matrix
problem in (13), and perhaps for this reason they required the orthogonal
transformation [4, (26)]

-T(Fk) Lk+ Rk (F’k)- 0 gk+

where we have used the terminology of (1), (3), (8), and (32) to (34). The
equivalent transformation here is given by (24). The difficulty is that (48) requires
the equivalent of the computation of the inverse of F, and so cannot be carriedD
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out when F, is singular, and leads to numerical inaccuracies in general unless F, is
well-conditioned. Problems with poorly conditioned F, are not at all rare. Such
difficulties do not occur in the present algorithm using the computation in (24), nor
in well designed covariance square root filters, and so this appears to be a serious
drawback of the Dyer and McReynolds information square root filter and its
implementation in [ 14].

In one sense the Dyer and McReynolds method is partway between a
covariance square root filter and an information square root filter such as the one
here, for although Dyer and McReynolds produce factors of information mat-
rices, and require the information matrix of the measurement noise in (6), they
require the covariance matrix of the system noise in (1). This suggests the
possibility of a complete range of filters extending from the all covariance square
root filter to the all information square root filter as outlined here.

An operation count of the Dyer and McReynolds method as described in [4]
shows that it takes about

(49) m3/6+m2n/2+mn2+ 16n3/3

multiplications for the problem described here if the covariance matrix of the
system noise and the information matrix of the measurement noise are given. This
is 8n3/3 more multiplications than in (45), which if m n means it takes about
60% more multiplications than the method given here. There are other variants of
the Dyer and McReynolds approach described in [1] and [10] which give
computation counts more comparable with (45) but they also suffer from requir-
ing the inverse of F,.

10. Comments. If some observations are noise free the corresponding
covariance matrices will be singular. In such cases the method given here will not
work (although it can easily be extended to allow for covariance matrices that are
singular). Similarly Kalman’s original method and other covariance updating
methods have difficulties with singular or ill-conditioned information matrices.
Thus the different basic methods have complementary applications.

The fact that information filters, such as the one given here, can work in the
absence of certain information, that is with singular information matrices, is an
important advantage for some cases. Lack of information can cause leading
subrnatrices of R in (20) to be singular; this can be detected in the present
algorithm, and in such cases no estimates would be computed. But as more
information comes in, nonsingularity of the later submatrices would allow esti-
mates to be computed.

Again we emphasize that the way of formulating the problem suggested by
Duncan and Horn is a natural and easily understandable approach and leads
directly to good computational techniques. The well known fact that this weighted
least squares result gives the best linear unbiased estimate for the case of
nonsingular, bounded, noise covariance matrices, ties the result to Kalman’s work
without having to show the equivalence algebraically. The speed of the algorithm
given here, together with its good numerical properties, makes it an attractive one
when compared with other published algorithms..D
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