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Abstract. An adaptive rule-based algorithm, SpaselL.oc, is described to solve localization prob-
lems for ad hoc wireless sensor networks. A large problem is solved as a sequence of very small
subproblems, each of which is solved by semidefinite programming relaxation of a geometric opti-
mization model. The subproblems are generated according to a set of sensor/anchor selection rules.
Computational results compared with existing approaches show that the SpaseLoc algorithm scales
well and provides excellent localization accuracy.
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1. Introduction. Ad hoc wireless sensor networks may contain hundreds or
even tens of thousands of inexpensive devices (sensors) that can communicate with
their neighbors within a limited radio range. By relaying information to each other,
they can transmit signals to a command post anywhere within the network. They
have many practical uses in areas such as military applications [15], environment or
industrial control and monitoring [7, 9], wildlife monitoring [24], and security moni-
toring [15]. For example, Southern California Edison’s Nuclear Generating Station in
San Onofre, CA, has deployed wireless mesh networked sensors from Dust Networks,
Inc. to obtain real-time trend data [9]. These data are used to predict which motors
are about to fail, so they could be preemptively rebuilt or replaced during scheduled
maintenance periods. The use of a wireless sensor network saves the station money
and avoids potential machine shutdown. Implementation of a sensor localization al-
gorithm would provide a service that eliminates the need to record every sensor’s
location and its associated ID number in the network.

Wireless sensor networks are potentially important enablers for many other ad-
vanced applications. A huge variety of applications lie ahead. By 2008, there could
be 100 million wireless sensors in use, up from about 200,000 in 2005, according to
the market-research company Harbor Research. The worldwide market for wireless
sensors, it says, will grow from $100 million in 2005 to more than $1 billion by 2009
[18]. This is motivating great effort in academia and industry to explore effective ways
to build sensor networks with feature-rich services [12].

One of the important inputs these services build upon is the exact locations of
all sensors in the network. The need for sensor localization arises because accurate
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locations are known for only some of the sensors (which are called anchors). If the
networks are to achieve their purpose, the locations of the remaining sensors must
be determined. One approach to localizing these sensors with unknown locations is
to use known anchor locations and distance measurements that neighboring sensors
and anchors obtain among themselves. The mathematical problem is to estimate all
sensors’ locations using a sparse data matrix of noisy distance measurements. This
leads to a large, nonconvex, constrained optimization problem. Large networks may
contain many thousands of sensors, whose locations should be determined accurately
and quickly.

1.1. Problem definition. Sensor localization for ad hoc wireless sensor net-
works aims to find the locations of all sensors in the network, given pairwise distance
measurements among some of the sensors and known locations of some of the sensors.
The sensors with known locations are called anchors. From now on, sensor generally
means unlocalized sensor, excluding anchors. A mode is any sensor or anchor.

We use a constrained optimization approach to estimate the sensors’ locations.
The following input, output, and objectives are considered.

Input
Total points: n, the total number of nodes in the network.
Unknown points: s sensors, whose locations x; € R?, 4 = 1,...,s, are to be de-

termined. (We assume the points are on a plane here, but the approach is
extended to three dimensions in Jin’s thesis [14].)

Known points: m anchors, whose locations a; € R%, k=s+1,...,n, are known.
(Note that we put anchors at the end of the total points’ list without loss
of generality, and that n = s + m. Index k is specific for indexing anchors.
Refer to Figure 1.1 for node indexing.)

Known distance measurements: The nonzero elements of a sparse matrix d con-
taining the readings of certain ranging devices for estimating the distance
between two points. d;; is the distance measurement between two sensors x;
and z; (1 < j < s), and dyr, is the distance measurement between some sensor
x; and anchor ai (i < s < k). The distance measurements are constant data
and generally have errors.

Output
Locations: Estimated locations x; for s sensors.
Objectives

Accuracy: Minimal errors in the estimated sensor locations.

Speed: Fast enough for real-time applications (e.g., networks with moving sensors).

Scalability: Suitable for large-scale deployment (with tens of thousands of nodes).

1.2. Notation. The Euclidean distance between two vectors v and w is defined
to be ||v — w||, where || - || always means the 2-norm. Nodes are said to be connected

if the associated measurements d;; or d; exist. The remaining elements of d are zero.
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If a measurement does exist between node ¢ and j but it is zero (i and j are at the
same spot), we do not set c@j to zero: we set it to machine precision € instead to
distinguish from the case of cz'j = 0 when two nodes’ distance is beyond the sensor
device’s measuring range.

1.3. Related research work. Sensor localization in ad hoc wireless networks
has been a booming research area recently. Hightower and Boriello [12] give an ex-
tensive review of the area and available methods. There are many ways to solve the
localization problem [6, 8, 10, 13, 17, 19, 20, 21, 22], with two main ones based on
triangulation and optimization.

Triangulation methods estimate node locations based on distance measurements
between neighboring nodes, and some algorithms use iterative steps to localize all
Sensors.

Early work using optimization techniques is reported by Doherty, El Ghaoui, and
Pister [8]. Ideally the Euclidean distance between neighboring nodes should be fitted
in some near-equality sense to the distance measurements:

(1.1) i — 2l ~ diy and ||z — axll ~ dis.

Doherty, El Ghaoui, and Pister formulate a convex optimization model by treating
the constraints as ||z; — ;|| < d;; and ||z; — ax|| < dix, and by including certain other
convex constraints. This formulation takes advantage of available optimization algo-
rithms, including those for convex optimization. However, the method needs sufficient
anchors to be on the boundary of the localization area for it to work effectively.

Biswas and Ye [2] work with the near-equality constraints (1.1), and more im-
portantly introduced a semidefinite programming (SDP) relaxation method in order
to retain the benefits of convex optimization. They report that their method yields
more accuracy than the approach in [8].

The SDP relaxation approach can solve small problems effectively. The paper
[2] reports a few seconds of laptop execution time for a 50-node localization problem.
However, the number of constraints in the SDP model is O(n?), where n is the number
of nodes in the network. Even a few-hundred-node problem leads to excessive memory
and computation time by available SDP solvers such as DSDP (Benson, Ye, and
Zhang [1]) and SeDuMi (Sturm [23]). These solvers are effective for SDP problems
with dimension and number of constraints up to a few thousand.

Tseng [25] has presented a second-order cone programming (SOCP) relaxation
model that permits solution for problem sizes up to a few thousand using available
SOCP solvers. However, the additional relaxation of the original model usually gen-
erates larger error rates, and the run-times are high. The author reports CPU times
of 330 seconds for 1000 nodes and 3 hours for 2000 nodes using SeDuMi 1.05 [23] and
MATLAB 6.1 on a Linux PC.

Biswas and Ye [3] propose a decomposition scheme to overcome the scalability
issue with SDP solvers. The anchors in the network are first partitioned into many
clusters according to their physical locations, and sensors are assigned to these clus-
ters if they have a direct connection to one of the anchors. Each cluster formulates
a subproblem, and the subproblems are solved independently on each cluster using
the SDP relaxation of [2]. The paper reports results for randomly generated sensor
networks of 4000 sensors partitioned into 100 clusters strictly according to their ge-
ographic locations. Sensors with distance connections to more than one cluster are
included in multiple clusters. The final estimation of their locations is determined
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by the cluster that gives the least estimated errors. An execution time of about
4 minutes on a 1.2GHz Pentium laptop is reported for a problem of this size. Thus,
the decomposition approach makes large-scale sensor network localization possible on
a single processor. The further advantage is that multiple CPUs can be used in a
natural way.

1.4. SpaseLoc. A basic tool that we have developed during this research is
a rule-based iterative algorithm named SpaseLoc (subproblem algorithm for sensor
localization). It is effective for networks involving tens of thousands of sensors and
beyond, using a single CPU.

To solve a large localization problem (defined as the full_problem), SpaseLoc pro-
ceeds iteratively by estimating only a portion of the total sensors’ locations at each
iteration. Some anchors and sensors are chosen according to a set of rules. They
form a sensor localization subproblem that can be treated similarly to the basic SDP
formulation of Biswas and Ye [2]. The solution from the subproblem is fed back to
the full_problem and the algorithm iterates again until all sensors are localized.

Computational results show that SpaseLoc can solve small or large problems with
excellent accuracy and scalability. It is capable of localizing 4000 nodes with great
accuracy in under 20 seconds, and 10000 nodes in under a minute on a 2.4 GHz laptop.

2. The subproblem SDP model. This section reviews the quadratic program-
ming formulation of the sensor localization problem and the SDP relaxation model of
Biswas and Ye [2] that the SpaseLoc subproblem is based on. Error analysis is also
reviewed here as a reference for later sections.

2.1. Euclidean distance model. Consider a network of sensors and anchors
labeled as in Figure 1.1. For any point in the network, there could be three types
of distance measurements. Since we generally do not need the distance information
between two anchor points, we exclude this type of measurement from now on.

The other types of distance measurements are the two we need for the localization
model. First is the distance measurement between two sensors (i and j) with unknown
locations; second is the distance measurement between a sensor (i) and an anchor (k)
with known location. Corresponding to these two types of distances, we define sets
N1, N1, Ny, and N> as follows:

e N; includes pairwise sensors (i,j) if ¢ < j and there exists a distance mea-
surement c/Z;j:
N1 = {(4,j) with known c/l\ij and 7 < j}.
e N, includes pairwise sensors (4, j) with unknown measurement c?ij and i < j:
N; = {(i,j) with unknown c/l;j and 7 < j}.
e N includes pairs of sensor i and anchor k if there exists a measurement c/l;k
Ny = {(4, k) with known d;;}.
e N, includes pairs of sensor ¢ and anchor k with unknown measurement c?zk
Ny = {(i, k) with unknown d;;}.
The full set of nodes and pairwise distance measurements form a graph G = {V, E'},
where V ={1,2,...,s,s+1,...,n} and E = N; U N,.

Introduce a;; to be the difference between the measured squared distance (C/i\ij)2
and the squared Euclidean distance ||z; — z;||? from sensor i to sensor j. Also, let
a4 be the difference between the measured squared distance (Jik)2 and the squared
Euclidean distance ||z; —ay||? from sensor i to anchor k. Intuitively, we seek a solution
for which the magnitude of these differences is small.
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Lower bounds 7;; or r;;, are imposed if (i, j) € Ny or if (i, k) € Na. Typically each
ri; or r;, value is the radio range (also known as radius) within which the associated
sensors can detect each other.

Biswas and Ye [2] formulate the sensor localization problem as minimizing the
¢1-norm of the squared-distance errors o;; and a;; subject to mixed equality and
inequality constraints:

minimize Z lai;| + Z |cvik |
Ti,Tj,x5,0k

(1,7)EN1 (i,k)EN>
subject to  [|a; — a]|? — ay; = ((/i\ij)z Y (i,5) € Ny,
s — arl]* — i = (C/Z\zk)Q Y (i, k) € Na,
1) lo =il =3 V(i) e Ny,
i — a||? > V (i, k) € Ny,
ZTi, x] S Rz, aija Qi € R,
i,j:].,...787 k=8+1,...,n.

The above model is a nonconvex constrained optimization problem. As yet there
is no effective solution method. In the following subsections, we review Biswas and
Ye’s [2] relaxation method for solving this problem approximately.

2.2. The Euclidean distance model in matrix form. The distance model
(2.1) is reformulated into (2.2) (refer to Biswas and Ye [2]) by introducing matrix
variables as follows:

minimize Z (oz;"j +oag;) + Z (g, + )
(i.J)EN: (i.k)EN
subject to el Y e — a:; +oa;; = (C/l\ij)2 Vv (i,5) € N,

T
€ Y XT €; + I Y '
(ak) (X I >(ak> — oy, + oy = (diw)® V (i,k) € Na,

(2.2) e Yoey > V (i,j) € N1,
T
) Yy XT ) . —
G D)o venen
Y = XTX,

T
Qs Qs gy 0 >0,

i,j=1,...,s, k=s+1,...,n,

where
o X =(x1 22 ... xs) is a 2 X s matrix to be determined;
® ¢;; is a zero column vector except for 1 in location ¢ and —1 in location j, so
that

||£L'Z — $j||2 = 63;— XTX €ij3
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e ¢; is a zero column vector except for 1 in position 4, so that

-l = (5 ) (6 17 0 (5):

e Y is defined to be X7 X;
e The substitutions o;; = ajj —
|o;j| and || in the normal way.
2.3. The SDP relaxation model. The approach of Biswas and Ye [2] is to
relax the constraint ¥ = X7X to be Y = XTX, for which an equivalent matrix

inequality is (Boyd et al. [5])

and o; = 0‘; — a;, are made to deal with

(Y XT
(2.3) Zr = <X 7 ) > 0.
With the definitions
0 0O 1
AI - 1 O 1 s bI = 1 s
0 1 1 2

where 0 in A; is a zero column vector of dimension s, problem (2.2) is relaxed to a
linear SDP:

minimize Z (oz;-"j +a;) + Z (g +azp)
(4,5) €N (i,k)EN>

subject to diag(AT Z Ap) = by,

T
o o S o
((Z)j> <6J> — o +ag; = (di)® V¥ (i,4) €N,

” ()7 () oo - venen,

ZT‘Q‘ V(Zm?)ENla

)
( o >TZ ( a ) =13V (i,k) €Ny,

P S
Z = 0, Qs gy Qs Qe 20,

i,j=1,....8, k=s+1,...,n,

where the constraint diag(ATZA;) = by ensures that the matrix variable Z’s lower
right corner is a 2 x 2 identity matrix I, so that Z takes the form of Z; in (2.3).

Initially, Biswas and Ye [2, 3] omit the > inequalities involving r;; and r;, and
solve the resulting problem to obtain an initial solution Z7. (The inequality constraints
increase the problem size dramatically, and Z; is likely to satisfy most of them.) They
then adopt an “iterative active-constraint generation technique” in which inequalities
violated by Zj are added to the problem and the resulting SDP is solved to give Zx1
(k =1,2,...). The process usually terminates before all constraints are included.
Further study of this approach is presented in section 4.1.
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2.4. SDP model analysis. Let Z = \X I /) be a feasible solution of the
relaxed SDP (2.4). Assuming the distance measurements are exact (no noise), Biswas
and Ye [2] give conditions under which X and Y solve problem (2.2) exactly as follows:

e 7 is the unique optimal solution of (2.4), including all inequality constraints.

e In (2.4), there are 2n 4+ n(n + 1)/2 exact pairwise distance measurements.
These conditions ensure that ¥ = X7 X. In practice, distance measurements have
noise and we only know that the SDP solution satisfies Y — X7 X > 0. This inequality
can be used for error analysis of the location estimates provided by the relaxation.
For example, trace(Y — XTX) =Y 7, where

(2.5) 7 = Yii — ||7]|* > 0,

is a measure of deviation of the SDP solution from the desired constraint ¥ = X7 X
(ignoring off-diagonal elements). The individual trace 7; can be used to evaluate the
location estimate Z; for sensor i. In particular, we interpret a smaller 7; to mean
higher accuracy in the estimated location x;. Further explanation is given in [2].

3. SpaseLoc: A scalable localization algorithm. When the number of nodes
in (2.4) is large, applying a general SDP solver such as DSDP5.0 [1] or SeDuMi [23]
would not scale well. In this section, we present a sequential subproblem approach
named SpaselLoc to solve the full localization problem iteratively.

3.1. Adaptive subproblem approach. We call the overall sensor localization
problem including all sensors and anchors the full_problem. At each iteration, Spase-
Loc selects from the full_problem a subset of the unlocalized sensors and a subset of
the anchors to form a localization subproblem. We call the selected sensors in the sub-
problem subsensors, and the selected anchors in the subproblem subanchors, These
subsensors and subanchors, together with their known distance measurements and
known anchors’ locations, form a sub-SDP relaxation model to be solved using the
same formulation as in (2.4).

In our adaptive approach, the subsensors and subanchors for each subproblem are
chosen dynamically according to rule sets. (Rather than using predefined data, every
new iteration’s subproblem generation is based on the previous iteration’s results.)
The resulting SDP subproblems are of varying but limited size. Currently they are
solved by Benson, Ye, and Zhang’s SDP solver DSDP5.0 [1].

SpaseLoc is a greedy algorithm in the sense that each subproblem determines the
final estimate of the associated sensor locations.

3.2. The SpaseLoc algorithm. The main steps of SpaselLoc are listed below,

followed by explanations of the steps and definitions of new terms used therein.

A0. Set subproblem_size.

Al. Subproblem creation: Select subsensors and subanchors to be included in the
subproblem.

A2. Formulate SDP relaxation model (2.4) based on the chosen subsensors and
subanchors, together with the known distances among them and the suban-
chors’ known locations.

A3. Call SDP solver to obtain a solution for the subsensors’ locations.

A4. Classify localized subsensors according to their 7; value.

A5. If all sensors in the network become localized or are determined to be outliers,
go to step A6. Otherwise, return to step Al for the next iteration.

A6. Output all sensor locations and report outliers if any. Stop.
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Fic. 3.1. SpaseLoc execution time as a function of subproblem_size: total nodes = 10000,
anchors = 100, radius = 0.0226.

In step A0, subproblem_size specifies a limit on the number of unlocalized sensors
to be included in each subproblem. It can range from 1 to an upper limit value
that is potentially solvable by the SDP solver. In our experiments, the upper limit
is 150. The most effective subproblem_size seems to change with the full_problem
size, the model parameters such as radius, and the SDP solver used. We perform
an approximate linesearch to find subproblem_size that corresponds to the minimum
time because, empirically, the total execution time with all other parameters fixed is
essentially a convex function of subproblem_size.

For example, when full_problem size is 10000 with 100 anchors, radius 0.0226, and
no noise, subproblem_size 7 seems to give the best execution time with the DSDP5.0
solver (refer to Figure 3.1). The search time for subproblem_size is not included as
part of the SpaseLoc execution time.

Step A1 involves choosing a subset of unlocalized sensors (no more than subprob-
lem_size) and an associated subset of nodes with known locations. The latter can
include a subset of the original anchors and/or a subset of sensors already localized
by a previous subproblem (we define them as acting anchors). The rules for choosing
subsensors and subanchors in this iteration are discussed in sections 3.4-3.5.

In step A4, the error in sensor i’s location is estimated by its individual trace 7;
as discussed in section 2.4. Subsensors whose 7; value is within a given tolerance 7
are labeled as localized and treated as acting anchors for the next iteration, whereas
subsensors whose localization error is higher than the tolerance are also labeled as
localized but are not used as acting anchors in later iterations. These new acting
anchors are labeled with different acting levels as explained in section 3.4. The value
of 7 has an impact on the localization accuracy. Bigger values allow more localized
sensors to be acting anchors, but with possibly greater transitive errors. Smaller
values may increase the estimation accuracy for some of the sensors, but could lead to
fewer connections to anchors for some unlocalized sensors. A rule of thumb is to use
a small 7 for networks with high anchor density to achieve potentially more accuracy,
and a bigger 7 for networks with low anchor density to avoid lacking connections to
anchors. In order to avoid the side effect of a bigger 7 eliminating too many potential
acting anchors, at some later iteration we utilize all localized sensors as acting anchors
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(including those whose 7; value is bigger than the given tolerance 7). This change
only starts when the remaining unlocalized sensors are connected to fewer than three
anchors. It makes sure that we use acting anchors with higher accuracy first, but if
no such acting anchors are available, we use localized points whose locations might
be less accurate. In most cases, this is better than using no reference points at all.

In step A5, an unlocalized sensor is called an outlier when it does not have any
distance information for the algorithm to decide its location. If a sensor has no
connection to any anchor, it is classified as an outlier. In addition, if a connected
cluster of sensors has no connection to any anchors, then all sensors in the cluster will
be outliers.

The next sections explain the subproblem creation procedure used by step Al.
Section 3.3 lists steps S1-S8 of the creation procedure itself. Section 3.4 presents rules
RS1-RS4 for subsensor selection in step S5. Section 3.5 presents rules RA1-RA3 for
subanchor selection in step S7. Section 3.6 illustrates the method for independent
subanchor selection used in rules RA2-RA3. Sections 3.7-3.8 discuss the routines
used in step S8 to localize sensors that have fewer than 3 connected anchors.

3.3. Subproblem creation procedure. As explained, subproblem_size is a
predetermined parameter that represents the maximum number of unlocalized sen-
sors that can be selected as subsensors in a subproblem. When there are more than
subproblem_size unlocalized sensors, we have a choice to make among them.

The subproblem creation procedure makes sure that the choice of subsensors is
based first on the number of connected anchors they have, and second on the type
of connected anchors such as original anchors and different levels of acting anchors
as defined in section 3.4, and that the choice of subanchors is based on a set of rules
(section 3.5). The main steps are listed below, followed by explanations of the steps
and definitions of new terms used.

S1. Specify MazAnchorReq.

S2. Initialize AnchorReq = MaxAnchorReq.

S3. Loop through unlocalized sensors, finding all that are connected to at least
AnchorReq anchors. If AnchorReq > 3, determine if there are 3 independent
subanchors; if not, go to the next sensor.! Enter each found sensor into a
candidate subsensor list, and enter its connected anchors into a corresponding
candidate subanchor list. Each sensor in the candidate subsensor list has its
own candidate subanchor list (so there are as many candidate subanchor lists
as the number of sensors in the candidate subsensor list). Let sub_s_candidate
be the length of the candidate subsensor list.

S4. If 0 < sub_s_candidate < subproblem_size, the candidate subsensor list be-
comes the chosen subsensors list. Go to step S7.

S5. If sub_s_candidate > subproblem_size, the choice of subsensors is further based
on subsensor selection rules RS1-RS4 described in section 3.4. After ex-
actly subproblem_size subsensors are selected from the candidate list accord-
ing these rules, go to step S7.

S6. Now sub_s_candidate = 0. Reduce AnchorReq by 1.

If AnchorReq > 0, go to step S3 for another round of subproblem creation.

Otherwise, AnchorReq = 0 and sub_s_candidate = 0 indicates that there are
still unlocalized sensors left that are not connected to any localized node. We
classify them as outliers and exit this procedure to continue at step A6 of

1See section 3.6 for dependency definition and independent anchor selection.
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section 3.2.

S7. Now that we have a subsensor list and the candidate subanchor lists, choose
subanchors using selection rules RA1-RA3 presented in section 3.5.

S8. The subsensors and subanchors are selected and the subproblem creation
routine finishes here.
If AnchorReq > 3, go to step A2 in section 3.2.
If AnchorReq = 2, apply the procedure in section 3.7 and go to step Ab5.
If AnchorReq = 1, apply the procedure in section 3.8 and go to step Ab.

In step S1, MazAnchorReq determines the initial (maximum) value of AnchorReq.
It is useful for scalability when connectivity is dense. A smaller MazAnchorReq would
generally cause fewer subanchors to be included in the subproblem, thus reducing the
number of distance constraints in each SDP subproblem and hence reducing execution
time for each iteration. For instance, under ideal conditions (where there is no noise),
even if a sensor has 10 distance measurements to 10 anchors, we don’t need to include
all 10 anchors because we can use 3 to localize that sensor accurately.

In the presence of noise, a bigger MarAnchorReq should reduce the average esti-
mation error. For example, if there is a large distance measurement error from one
particular anchor, since MazAnchorReq anchors are all taken into consideration for
deciding the sensor’s actual location, the large error would be averaged out. Another
consideration for setting MazAnchorReq is the trade-off between estimation accu-
racy and execution speed. If we are in a static environment and would like to have
localization as accurate as possible under noise conditions, we might choose a large
MazAnchorReq. However, in a real-time environment involving moving sensors, where
speed might take priority, we would consider a smaller MaxAnchorReq.

In step S2, AnchorReq is a dynamic parameter that may decrease in later steps.

In step S4, the subproblem may contain fewer than subproblem_size subsensors,
which is perfectly acceptable. The alternative is to reduce AnchorReq by 1 and
find more subsensor candidates that have fewer distance connections. However, this
approach might reduce the accuracy of the algorithm, because we do want to localize
the subsensors as accurately as possible as the iteration progresses, and the newly
localized subsensors could be further used as acting anchors for the next iteration.

In step S6, AnchorReq is iteratively reduced by 1 from MazAnchorReq to 0 even-
tually. This approach allows sensors with at least AnchorReq connections to anchors
to be localized before sensors with fewer connections to anchors.

As we know, under no-noise conditions, a sensor’s location can be uniquely deter-
mined by connections to at least 3 independent anchors. If a sensor has connections
to only 2 anchors, there are two possible locations; and if there is only 1 connection
to an anchor, the sensor can be anywhere on a circle. In step S8, we use heuristic
subroutines described in sections 3.7-3.8 to include the sensor’s anchors’ connected
neighboring nodes in the subproblem in order to improve the estimation accuracy.

3.4. Subsensor selection. In step S5, when the number of sensors in the can-
didate subsensor list is bigger than subproblem_size, the choice of subsensors is further
based on the types of anchors each sensor is connected to.

First, we introduce the concept of sensor priority. We assign a priority to each
sensor in the candidate subsensor list. A sensor with a smaller priority value is
selected to be localized before one with a bigger priority value. A sensor’s priority is
based on the types of anchors the sensor is directly connected to. Next, in order to
define different types of anchors, we introduce the concept of anchor acting levels. All
anchors including acting anchors are assigned certain acting levels. Original anchors
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TABLE 3.1
An example: priority list when MaxAnchorReq = 3.

) Priority Level 1 Level 3 Level 5 Level 7 Level 9 Resulting
value anchor | anchor | anchor | anchor | anchor anchor level
1 >3 any 3
2 =2 >1 any 5
3 =1 >2 any 7
3 =2 = >1 any 7
4 =1 =1 >1 any 9
4 =2 = =0 >1 any 9
5 =1 =1 =0 >1 any 11
5 =2 = =0 =0 >1 any 11
e =0 total > 3 (11, bigN)
bigN total = 2 bigN
bigN+1 total =1 bigN+1

are always set to acting level 1. Every acting anchor is set to an acting level after it
has been localized as a sensor. Essentially, acting anchors are set with acting levels
depending on the levels of the anchors that localized them.

The priority rules for selecting subsensors from a candidate subsensor list are as
follows:

RS1. When AnchorReq > 3 and a sensor has at least 3 connected anchors that are
independent, the sensor’s priority depends on the 3 connected anchors that
have the lowest acting levels among all its connected anchors. The sensor’s
priority value is defined as the summation of these 3 connected anchors’ acting
levels.

RS2. If the sensor has 3 connected anchors that are dependent, it is ranked with
the same priority as when the sensor is connected to only 2 anchors.

RS3. Sensors with 2 anchor connections are ranked with equal priority, independent
of the acting levels of the 2 connected anchors. (This can be easily expanded
to be more granular according to the connected anchors’ acting levels.) Sen-
sors in this category are assigned lower priority than any sensors that have
at least 3 independent anchor connections.

RS4. Sensors with 1 anchor connection are ranked with equal priority, indepen-
dent of the acting level of the connected anchor. (Again, this can be more
granular according to the connected anchor’s acting level.) Sensors in this
category are assigned lower priority than any sensors that have at least 2
anchor connections.

Table 3.1 illustrates the priority list for an example where MaxAnchorReq = 3 and
the sensor’s priority is determined by the 3 anchors that have the lowest acting levels
among all the sensor’s connected anchors. We can certainly add more granularity by
further classifying the acting levels of the sensor’s fourth or fifth connected anchors
(if any). Although more categorization of the priorities should increase localization
accuracy under most noise conditions, more computational effort is required to handle
more levels of priorities.

Each item in the table represents the number of anchors with different acting lev-
els that are needed at each priority. The last column represents the resulting acting
anchors’ acting levels for subsequent iterations. For example, if a sensor has at least
three independent connections to anchors, and if 3 of the anchors are original anchors
(acting level 1), this sensor belongs to priority 1 as listed in row 1 of the table. Also,
when this sensor is localized, it becomes acting anchor level 3 (the summation of the
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anchor levels of the three anchors that localized it). Similarly, if a sensor has at least
three independent connections to anchors, and if 2 of the anchors are original anchors
(acting level 1) and at least 1 of the connected anchors is at acting level 3, then this
sensor belongs to priority 2 as listed in row 2 of the table. Also, when this sensor is
localized, it becomes acting anchor level 5. The sensors that connect to two anchors
belong to the second to last priority, and sensors that connect to only one anchor
belong to the last priority. We use a big enough number bigN in the implementa-
tion to ensure that sensors connected to fewer than 3 anchors are given the lowest
priority.

3.5. Subanchor selection. In step S7, for each unlocalized subsensor in the
subsensor list, only AnchorReq of the connected anchors are allowed to be included
in the subproblem. We use the following rules to select subanchors from a candidate
subanchor list that contains more than AnchorReq anchors.

RA1. Original anchors are selected first, followed by acting anchors with lower
acting level.

RA2. The subanchors chosen should be linearly independent.

RA3. Among independent anchors in the candidate subanchor list, we use distance
scale-factors to encourage selection of the closest subanchors.

Rules RA2 and RA3 are implemented as in section 3.6. Rule RA3 is based on the
assumption that under noise conditions, we trust the shorter distance measurements
more than the longer ones.

3.6. Independent subanchors selection. Suppose sensor i is connected to
K (K > 3) anchors at locations a;; with corresponding distance measurements d;,
(k=1,...,K). Define the matrices

| O | , L
A< >, Dy = diag(1/y/1+ ||aix|?), D2 = diag(1/diz).

—Q;1 — ;2 e —Q; K

We select an independent subset by a QR factorization with column interchanges
[11]: B = AD1Dy, BP = QR, where @ is orthogonal, R is upper-trapezoidal, and
P is a permutation chosen to maximize the next diagonal of R at each stage of
the factorization. (D; normalizes the columns of A, and Dy biases them in favor
of anchors that are closer to sensor i.) If the 3rd diagonal of R is larger than a
predefined threshold (10~% is used in our simulation), then the first 3 columns of AP
are regarded as independent, and the associated anchors are chosen. Otherwise, all
subsets of 3 among the K anchors are regarded as dependent. (In MATLAB, R and
P are obtained by a command of the form [Q,R,P] = qr(B).)

3.7. Geometric subroutine (two connected anchors). This section illus-
trates the heuristic techniques used in step S8 of section 3.3 to localize sensors con-
nected to only two anchors.

When a sensor’s connected anchors are also connected to other anchors, this
subroutine may improve the accuracy of the sensor’s localization, as illustrated by an
example in Figure 3.2.

In this example, assume s; and s, are sensors with unknown locations, and
as(1,3), as(1,2), as5(2,2), as(4, 1), az(5,1) are anchors with known locations in brack-
ets. Assume that the sensors’ radio range is V2, and we are also given two distance
measurements dis = 1 and dy4 = /2 for sensor s; and one measurement do; = 1 for
sensor Ss.
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Fi1G. 3.2. Sensors with connections to at most two anchors.
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F1G. 3.3. (a) Sensor with two anchors’ circles intersecting. (b) Sensor with two anchors, a2’s
circle in as’s. (c) Sensor with two anchors’ circles disjoint.

Given two distances dys and dy4 to two anchors a3(1,3) and a4(1,2), we know
that s; should be at either (0,3) or (2,3). If we only use s1, as(1,3), a4(1,2) in an
SDP subproblem, then SDP relaxation will give a solution near the middle of the two
possible points, which would be very close to point (1,3). If there is any anchor (as)
that is near s;’s connected anchors (a3 and a4) with any of the two possible sensor
points within their radio range (point (2,3) is within as’s range), that point (2, 3)
must not be the real location of sq, or else s; would be connected to this anchor (as)
as well. Thus we can infer that s; must be at the other point (0, 3).

Inspired by the above observation, when a sensor has at most 2 connected anchors,
we include these anchors’ connected anchors in the subproblem (we call them the
connected anchors’ neighboring anchors) together with the sensor and its directly
connected anchors. By including the neighboring anchors, we might hope that the
inequality constraints in the SDP relaxation model (2.4) would push the estimation
towards the right point. However, because of the relaxation, enforcing inequalities
in (2.4) is not equivalent to enforcing them in the distance model (2.2). The added
inequality constraints only push the original solution near (1,3) a tiny bit towards
s1’s real location (0, 3), and the solution essentially stays at around (1,3).

Given the ineffectiveness of the SDP relaxation approach under this condition, we
propose instead a geometric approach as illustrated in Figure 3.3. Assume s1(x5, )
has measurements 312 to anchor as(ags, azy) and C/Z\lg to anchor az(ass, asy). We also
assume dis < di3 (we can always swap the two indexes otherwise). Let a; (I =4, ... k)
be ay and/or as’s neighboring anchors with radio range r1; (I =4,...,k), and let da3
be the known (exact) Euclidean distance between as and as.

° IfA two circles centered at ag g\nd a3 with radii 6/1\12 and C/l\lg intersect each other
(d12 + d13 > dos and di3 — d12 < da3) as in Figure 3.3(a):
— Two possible locations of s; are given by solutions x* and z** of the
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equations
2 _ 72 2 _ 2
|z — az||” = dps, |z — as||” = di.

— Sensor s;1’s location is selected from z* and z**, whichever is further
away from any neighboring anchor. Thus, for [ = 4 to k,
if |z* —al|* < r?, then z =z** and stop
else if |[z** — q||* < r?, then z=2z* and stop.
Otherwise, z = (* + ™) /2 and stop.
e Under noise conditions, the as circle may be inside the ag circle (312 + 313 >
d23 and C/l\13 — (2\12 > dgg) as in Figure 33(b)
— The solutions z* and z** of the following equations give two possible
points for s; on the as circle:

(T — a2z)2 + (wy — a2y)2 = C?1227

(a2e — azz)(wy — azy) = (azy — azy) (T2 — a2z),

where x is on the line through as and as represented by the second
equation.

—If ||lz* — as|| < ||#** — as||, then z = z**; otherwise x = z*. This
guarantees that the point further from a3 is chosen. Note that we base
the sensor’s estimation on the closest anchor (as here since di3 > dy2),
assuming that a shorter measurement is generally more accurate than
longer ones, given similar anchor properties. R

The same approach applies when the ag circle is inside the as circle (di2 —
diz > da3).

e Under noise conditions, the az and a3 circles may again have no intersection
(d12 + d13 < da3) as in Figure 3.3(c).

— The solutions z* and z** of the following equations give two possible
points for s; on the circle for the anchor with smaller radius. Let us
assume dqo < dq3:

(l'ac - a2x)2 + (.T,y - a2y)2 = d122a

(a2z — aze)(Ty — azy) = (azy — asy) (T2 — azq),

where x is on the line through as and agz represented by the second
equation.

— If |z* — a3]| > ||z** — asg]|, then z = z**; otherwise x = z*. This
guarantees that the point closer to as (in between as and ag) is chosen.

3.8. Geometric subroutine (one connected anchor). Similar inefficiency
occurs in the SDP solution when a sensor connects to only one anchor. The SDP
solver under this condition gives a solution for the sensor to be in the same location as
the sensor’s connected anchor. In reality, the sensor could be anywhere on the circle.
The SDP gives an average point, at the center of the circle, and that is where the
connected anchor is. Even if the anchor’s neighboring anchor is included in the SDP
subproblem, the inequality constraints are not active most of the time because the
SDP solution may not provide optimal solutions all the time.

We propose a heuristic for estimating a sensor’s location with only one connect-
ing anchor. The idea is to use one neighboring anchor’s radio range information to
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F1G. 3.4. (a) Sensor with one anchor connection a and one neighboring anchor b. (b) Sensor
with one anchor connection a and two neighboring anchors b, c.

eliminate the portion of the circle that the sensor would not be on, and then cal-
culate the middle of the other portion of the circle to be the sensor’s location. For
the example in Figure 3.2, because we know the distance between sy and a7 is 1, we
know that s, could be anywhere on the circle surrounding a; with radius 1. Knowing
a7’s neighboring anchor node ag is not connected to so, we know that s would not
be in the area surrounding ag with radius /2. Thus, ss could be anywhere around
the half circle including points (5,2), (6,1), (5,0). The heuristic chooses the middle
point between the two circles’ intersection points (5,2) and (5,0), which happens to
be (6,1) in this example. The heuristic gives better accuracy for the sensor’s location
than the SDP solution under most conditions. The procedure follows.
e Assume s has one distance measurement d to anchor a, and b is the closest
connected neighboring anchor to a with radio range r (refer to Figure 3.4(a)).
We assume a = (ag, ay), b = (by,by), v = (z4,xy).
e The solutions z* and z** of the following equations give two possible points
s on the circle:

(T2 — aw)2 + (zy — ay)2 =d?

(az = bz)(Ty — ay) = (ay — by) (T — az),

)

where x is on the line through a and b represented by the second equation.
o If ||x* — b|| < r, then x = z**; otherwise x = z*. This guarantees that the
point further from b is chosen.

The above heuristic provides a simple way of estimating a sensor’s location when
the sensor connects to only one anchor. A more complicated approach can be adopted
when the connected anchor has more than one neighboring anchor, which can increase
the accuracy of the sensor’s location. We call it an arc elimination heuristic. The idea
is to loop through each of the neighboring anchors and find the portion of the circle
that the sensor won’t be on, and eliminate that arc as a possible location of the
sensor. Eventually, when one or more plausible arcs remain, we choose the middle of
the largest arc to be the sensor’s location. For example, assume we add one more
neighboring anchor ¢ to sensor s’s anchor a from the previous example in Figure
3.4(a). The new scenario is shown in Figure 3.4(b). First, we find the intersections
(points 1 and 2) of two circles: one at a with radius c/i\, the other at b with radius r.
We know that the 1-2 portion of the arc closer to point b won’t be the location of
s. Second, we find the intersections (points 3 and 4) of two circles: one at a with
radius c?, the other at ¢ with radius r. We know that the arc 3—4 closer to point ¢
won’t be the location of s. Thus we deduce that s must be somewhere on the arc 1-4
further away from b or ¢. The estimation of s is given in the middle of the arc 1-4. As
we see, this method should provide more accuracy than the one-neighboring-anchor
approach.
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3.9. Subproblem optimality. For the case of one sensor connected to three
independent anchors, Biswas and Ye [2] prove when there is no noise that the SDP
relaxation (2.4) gives an optimal solution to (2.2). The proof depends on the fact that
there are three independent equations and only three variables.

In SpaseLoc, the subproblems are constructed from sensors that have three in-
dependent anchors (or acting anchors) where possible. If each of these subsensors
(say total s) were included in separate subproblems together with their connected
3 independent anchors, the proof in [2] shows that they would be localized exactly
by the SDP approach. If these s subsensors and their connected anchors are treated
together in a single subproblem, the larger SDP relaxation contains sets of the same
three equations that would arise in the separate SDP relaxations. The equations
form a block-diagonal system in the larger SDP. There are 3s independent equations
and the same number of variables containing only x; and y;;, ¢ = 1,...,s. The d;
equation in (2.4) reduces under no noise conditions to y;; = 2% x; for all relevant pairs
(i,k). The constraint Y — X7 X = 0 then guarantees y;; = 21, for all j = 1,...,s.
Hence, the SDP solution for the SpaseLoc subproblem is also rank 2 and gives an
exact locations for all subsensors.

4. Computational results. This section explains the simulation method and
the setup for experimenting with the SpaseLoc algorithm, then presents results for
various parameter settings.

For the simulation, a total number of nodes n (including s sensors and m anchors)
is specified in the range 4 to 10000. The locations of these nodes are assigned with
a uniform random distribution on a square region of size r X r where r = 1, or put
on the grid-points of a regular topology such as a square or an equilateral triangle on
the same region. The m anchors are randomly chosen from the given n nodes. We
assume all sensors have the same radio range (radius) for any given test case. Various
radio ranges were tested in the simulation.

Euclidean distances d;; = ||z; — «;|| are calculated among all sensor pairs (i, j)

for i < j. We then use d;; to simulate measured distances, where d;; is d;; times
a random error simulated by noise_factor € [0,1]. For a given radius C [0,1] it is
defined as follows: R
o If d;; < radius, then d;; = d;;(1+rn=noise_factor), where rn is normally dis-
tributed with mean zero and variance one. (Any numbers generated outside
(=1,1) are regenerated.)
In practical networks, depending on the technologies that are being used to
obtain the distance measurements, there may be many factors that contribute
to the noise level. For example, one way to obtain the distance measurement
is to use the received radio signal strength between two sensors. The signal
strength could be affected by media or obstacles in between the two sensors.
In this study, noise_factor is a normally distributed random variable with
mean zero and variance one. This model could be replaced by any other
noise model in practice.
o If d;; > radius, then d;; = 0, and the bound r;; = 1.001 * radius is used in
the SDP model.
In the simulation, we define the average estimation error to be L 37 | ||#;— ||, where
Z; is from the SDP solution and z; is the ith node’s true location. In a practical setting,
we wouldn’t know the node’s true location x;. Instead, we would use the node’s trace
7; (2.5) to gauge the estimation error.
To convey the distribution of estimation errors and trace, we also give the 95%
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quartile.

Factors such as noise level, radio range, and anchor densities can directly impact
localization accuracy. The sensors’ estimated locations are derived directly from the
given distance measurements. If the noise level in these measurements is high, the
estimation accuracy cannot be high. We also need sufficiently large radio range to
achieve accurate localization, because too small a range could cause many sensors to
have low connectivity or even be unreachable. Finally, more anchors in the network
should help with the estimation accuracy because there are more reference points.

In the following subsections, we present simulation results (most results averaged
over 10 runs) to show the accuracy and scalability of the SpaseLoc algorithm. We
observe the impact of various radio ranges, anchor densities, and noise levels on the
accuracy and performance of the algorithm. Computations were performed on a
laptop computer with 2.4 GHz CPU and 1GB system memory, using MATLAB 6.5
[16] for SpaseLoc and a Mex interface to DSDP5.0 (Benson, Ye, and Zhang [1]) for
the SDP solutions.

4.1. Effect of inequality constraints in SDP relaxation model. As we
discussed in section 3.7, because of the Y = XT X constraint relaxation, enforcing the

r-zj and 72, inequality constraints in (2.4) is not equivalent to enforcing them in the

1,
distance model (2.2). In order to observe the effectiveness of including these inequality
constraints, we conduct simulations with the following three strategies, according to
the number of times we check for violated inequality constraints and then include
them to obtain a new solution.

10. This corresponds to solving the SDP problem with equality constraints only.
(No inequality constraints are ever added.) The final solution is optimal for
problem (2.4) without the inequality constraints involving r?j and rfk.

I1. This corresponds to solving the SDP problem with all equalities (and no in-
equalities) first, and then adding violated inequality constraints and resolving
it at most once.

12. This corresponds to solving the SDP problem with all equalities (and no in-
equalities) first, and then adding violated inequality constraints and resolving
one or more times until all inequalities are satisfied. The final solution is an
optimal solution to problem (2.4).

Our experimental results show that the added inequality constraints do not always
provide better localization accuracy, but can greatly increase the execution time. In
this section, we illustrate the inequality constraints’ impact through two simulation
examples: one with no noise but low connectivity; the other with full connectivity
but with noise.

In our first example, we run simulation results on a network of 100 randomly
uniform-distributed sensors with radius 0.2275 and 10 randomly selected anchors.
One of the sensors happens to be connected to only two other nodes. The sensors are
localized with the full SDP and with SpaseLoc, using each of the 10, I1, 12 strategies
in turn. In addition, we examine each case with or without our geometric routines
for SpaseLoc. The results are shown in Figure 4.1 and Table 4.1.

Figure 4.1 shows there is a sensor connected to only 2 anchors. For full SDP
shown in (a), no violated inequalities are ever found, so full SDP with 10, I1, or
12 has only one SDP call and always generates the same results. For SpaselLoc in
(b) with I0 and no geometric routine, SDP is called 47 times (with no subsequent
check for violated constraints). It produces the similar estimation accuracy as the
full SDP approach but with much improved performance. In (c), SpaseLoc with I1 or
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Fi1G. 4.1. Inequality impact on accuracy: 100 nodes, 10 anchors, no noise, radius 0.2275.

TABLE 4.1
Inequality impact on accuracy and speed: 100 nodes, 10 anchors, no noise, radius 0.2275.

Methods Error 95% Error | Time | SDP’s
Full SDP with I0 or I1 or 12 1.7877e-3 | 1.7483e-10 | 11.97 1
Spasel.oc with 10 and no geometric routines 1.7890e-3 1.1684e-7 0.38 47
SpaseLoc with I1 or I2 and no geometric routines | 1.7134e-3 1.1684e-7 0.42 48
SpaseLoc with 10 and geometric routines 1.4679e-7 1.1523e-7 0.35 46

12 produces the same results, which means violated inequalities are found only once.
Comparing (b) and (c), we see that including violated inequalities does improve the
estimation accuracy a little. Best of all in (d), SpaseLoc with I0 and our geometric
routines localizes all sensors with virtually no error.

Table 4.1 shows that adding violated inequalities increases execution time slightly
for SpaseLoc.

In our second example, in order to observe the effectiveness of the inequality
constraints under noise conditions, we run simulations for a network of 100 nodes
whose true locations are at the vertices of an equilateral triangle grid. Ten anchors
are placed at the middle grid-point of each row, and the radius is 0.25. A noise_factor
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FiG. 4.2. Inequality impact on accuracy: 100 nodes, 10 anchors, noise_factor 0.1, radius 0.25.

TABLE 4.2
Inequality impact on accuracy and speed: 100 nodes, 10 anchors, noise_factor 0.1, radius 0.25.

Methods Error Time SDP’s
Full SDP with 10 0.1268 13.87 1
Full SDP with I1 0.1292 34.20 2
Full SDP with 12 0.1403 | 134.50 4
SpaseLoc with 10 0.0231 0.45 54
SpaseLoc with I1 or 12 | 0.0203 0.51 56

of 0.1 is applied to the distance measurements. The sensors are localized with either
full SDP or SpaseLoc using 10, I1, 12 in turn without geometric routines. (Although
we do not activate the geometric routines in this experiment, they are not a factor
here because the localization error is not caused by low connectivity but by the noisy
measurements.) The results are shown in Figure 4.2 and Table 4.2. Figure 4.2(b) and
(d) correspond to strategy I1 or I2 for full SDP and SpaseLoc.

As we can see, adding violated inequalities for full SDP not only increases the
execution times dramatically, but also increases the localization error. For SpaseLoc,
adding violated inequalities improves the estimation accuracy slightly. Note that I1
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and 12 produce the same results for SpaselLoc.

In summary, the first experiment shows that when the errors are caused by low
connectivity, SpaseLoc with geometric routines and no inequality constraints (I0) out-
performs SpaseLoc with inequalities (I1 or 12) and all of the full SDP options. Given
this observation, from now on we only use SpaselLoc with geometric routines, which
means the geometric routines are used instead of SDP to localize sensors connected
to less than 3 anchors.

The second experiment indicates that under noise conditions, although adding
violated inequalities does not seem to improve the estimation accuracy for full SDP,
it does improve accuracy for Spasel.oc.

In the subsequent sections, we continue to examine the inequality constraints’
effects on accuracy and speed.

4.2. Accuracy and speed comparison: Full SDP versus SpaseLoc. For
very small networks, the SDP approach is both accurate and efficient. (This is vital
to SpaseLoc, as many small subproblems must be solved using SDP.) However, the
performance of the full SDP approach deteriorates rapidly with network size.

Table 4.3 shows the localization results using full SDP (a) and using SpaseLoc
(b) for a range of examples with various numbers of nodes whose true locations in
the network are at the vertices of an equilateral triangle grid. Anchors are placed at
the middle grid-point of each row. A noise_factor of 0.1 is applied to the distance
measurements.

Let us first look at the impact of 10, I1, and 12 on estimation accuracy. Table 4.3
(a) shows that for full SDP, 8 errors with I1 are bigger than with I2, and 5 errors
with I2 are bigger than with I1. Comparing 10 with 12, we see that for each strategy,
9 errors in 10 are bigger than the errors for the other strategy. It appears that full
SDP with added inequalities does not always improve the estimation accuracy. For
SpaseLoc, I1 and I2 generate almost equivalent estimation accuracy; 10 has 8 errors
that are bigger than with I1, while I1 has 5 errors bigger than with 10. Therefore, the
added inequalities provide only marginal accuracy improvement for SpaseLoc.

Now let us compare full SDP with SpaseLoc. Figures 4.3-4.4 plot results for
full SDP with I0 and SpaseLoc with I0 for two of these examples: 9 and 49 nodes,
including 3 and 7 anchors placed at the grid-point in the middle of each row. As
we can see from these two figures and Table 4.3, for localizing 4 and 9 nodes, full
SDP and SpaseLoc show comparable performance. Beyond that size, the contrast
grows rapidly. For localizing 49 nodes, SpaselLoc is 10 times faster than the full SDP
method, with more than four times the accuracy. For 400 nodes, SpaseLoc with
strategies 10, I1, and I2 is, respectively, 800, 2500, and 8500 times faster than full
SDP with the same strategies, while achieving 10 times greater accuracy. Thus, the
full SDP model becomes less effective as problem size increases. In fact, for problem
sizes above 49 nodes, the average estimation error using full SDP becomes so large
that the computed solution is of little value.

It may seem nonintuitive that SpaseLoc’s greedy approach could produce smaller
errors than the full SDP method. However, all of the SDP problems and subproblems
of the form (2.4) are relazations of Euclidean models of the form (2.2). As we discussed
in section 3.9, SpaseLoc always tries to create a subproblem whose subsensors have
three independent anchor connections, so that the SDP solution is exact. The same
conclusion cannot be drawn under noise conditions, but experimentally the relaxations
under noise conditions appear to be tighter in SpaseLoc’s subproblems than in the
single large SDP.
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TABLE 4.3
Accuracy and speed comparison between full SDP and SpaseLoc.

(a) Full SDP

Number | Radio Error Time (sec) SDP calls
of nodes | range 0 [ ] I2 10 | Il ] 2[I0 ]I JI2
4 2.24 0.0317 | 0.0317 | 0.0317 0.01 0.01 0.01 1 1 1
9 1.12 0.1267 | 0.1203 | 0.1203 0.02 0.05 0.05 1 2 2
16 0.75 0.0837 | 0.0703 | 0.0680 0.10 0.21 0.35 1 2 3
25 0.56 0.0938 | 0.1170 | 0.1170 0.37 0.80 1.26 1 2 3
36 0.45 0.0719 | 0.0618 | 0.0561 0.81 1.88 3.02 1 2 3
49 0.40 0.1190 | 0.1190 | 0.1190 2.10 5.33 5.33 1 2 2
64 0.40 0.1218 | 0.0919 | 0.0954 3.43 9.21 21.60 1 2 4
81 0.40 0.1380 | 0.0894 | 0.0885 7.26 19.66 59.05 1 2 5
100 0.25 0.1268 | 0.1292 | 0.1403 13.87 34.20 140.26 1 2 4
121 0.40 0.1157 | 0.1088 | 0.1091 23.24 81.62 182.74 1 2 3
144 0.21 0.1480 | 0.1899 | 0.1891 37.76 168.43 584.23 1 2 4
169 0.40 0.1283 | 0.1141 | 0.1217 71.87 278.72 692.12 1 2 4
196 0.18 0.1404 | 0.1275 | 0.1286 151.52 461.97 | 1081.35 1 2 4
225 0.40 0.1568 | 0.1589 | 0.1571 232.31 752.75 2408.67 1 2 5
256 0.15 0.1429 | 0.1375 | 0.1370 356.86 | 1089.52 | 3260.33 1 2 5
324 0.14 0.1685 | 0.1685 | 0.1685 962.66 | 2620.20 2620.20 1 2 2
361 0.13 0.1734 | 0.1842 | 0.1833 1391.04 | 5051.05 | 15281.26 1 2 4
400 0.12 0.1819 | 0.1970 | 0.1968 1662.22 | 5950.34 |20321.60 1 2 4
(b) SpaseLoc

Number | Radio Error Time (sec) SDP calls
of nodes| range 10 n ] 1 10 | 1] 12 0] 1| 12
4 2.24 0.0317 | 0.0317 | 0.0317 0.02 0.02 0.02 1 1 1
9 1.12 0.0513 | 0.0513 | 0.0513 0.04 0.04 0.04 6 6 6
16 0.75 0.0615 | 0.0559 | 0.0559 0.06 0.19 0.09 8 9 9
25 0.56 0.0597 | 0.0608 | 0.0608 0.13 0.13 0.13 12 13 13
36 0.45 0.0364 | 0.0294 | 0.0294 0.17 0.20 0.20 20 23 23
49 0.40 0.0252 | 0.0252 | 0.0252 0.21 0.21 0.21 26 26 26
64 0.40 0.0272 | 0.0273 | 0.0273 0.30 0.34 0.34 38 42 42
81 0.40 0.0286 | 0.0295 | 0.0295 0.37 0.41 0.41 49 53 53
100 0.25 0.0232 | 0.0203 | 0.0203 0.46 0.49 0.49 54 56 56
121 0.40 0.0238 | 0.0227 | 0.0227 0.57 0.61 0.61 74 7 "
144 0.21 0.0230 | 0.0237 | 0.0237 0.69 0.70 0.70 84 89 89
169 0.40 0.0200 | 0.0190 | 0.0190 0.80 0.84 0.84 100 | 106 | 106
196 0.18 0.0177 | 0.0177 | 0.0177 0.98 1.08 1.08 84 90 90
225 0.40 0.0226 | 0.0207 | 0.0208 1.07 1.41 1.47 94 | 109 | 110
256 0.15 0.0208 | 0.0235 | 0.0249 1.21 1.44 1.50 118 | 131 | 132
324 0.14 0.0179 | 0.0178 | 0.0178 1.64 1.70 1.70 157 | 158 | 158
361 0.13 0.0218 | 0.0217 | 0.0217 1.89 2.01 2.01 177 | 181 | 181
400 0.12 0.0176 | 0.0175 | 0.0175 2.02 2.37 2.37 184 | 201 | 201

In the following sections, we run more simulations only with SpaseLoc.

4.3. Scalability. Table 4.4 shows simulation results for 49 to 10000 randomly
uniform-distributed sensors being localized using SpaseLoc with strategies 10, I1, and

12. The node numbers 49, 100, 225, . ..

are squares k2, and the radius is the minimum

value that permits localization on a regular k x k grid. The number of anchors changes
with the number of sensors and is chosen to be k. Noise is not included in this
simulation. When the items under I1, I2 are empty, it means that they are equal to
the values under I0 in the same row.
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TABLE 4.4
SpaseLoc scalability. Strategies I1 and I2 generate same results.

Nodes| An_ | Ra. |Sub- Error 95% Error Time SDP’s
chors| dius | size 10 11,12 10,I1,12 10 11,12 | 10 [I1,12
49 7 10.3412| 3 [4.5840e-8 3.4449e-8 | 0.18 18
100 10 [0.2275| 3 |1.4679e-7 1.1523e-7| 0.35 46
225 15 |0.1462| 3 |4.4940e-7 3.1248e-7| 0.82 112
529 23 |0.0931| 3 [2.1662e-6 8.9873e-7| 2.02 278
1089| 33 |0.0620| 3 |[1.1969e-4 7.1510e-5| 4.48 587
2025| 45 |0.0451| 4 [1.4917e-4|1.4115e-4| 9.6639e-5| 8.85| 9.28|1006|1007
3969| 63 [0.0334| 4 |1.2399e-4 7.2414e-5|18.79 1867
5041 71 [0.0319| 6 1.5172e-4 1.1918e-4|27.19 2210
6084| 78 [0.0290| 6 |1.7126e-4 1.1475e-4|33.66 2742
7056| 84 |0.0269| 7 |5.2369e-5 4.0388e-5 | 40.59 3117
8100 90 [0.0251 7 12.7376e-4|2.7353e-4| 1.7071e-4|47.87|49.71|3564 | 3566
9025| 95 [0.0238| 7 |2.1141e-4|2.1977e-4| 1.6039e-4 |54.41|56.03|3957 | 3958
10000 | 100 [0.0226| 7 |2.0269e-4 1.5836e-4 [ 59.33 4452

We find that strategies I1 and I2 produce the same results, and 10 gives essen-
tially the same. This is because the inaccuracy of the estimation is caused purely by
low connectivity, not by noisy distance measurements. Empirically we see that the
program scales well: almost linearly in the number of nodes in the network. Indeed,
the computational complexity of the SpaseLoc algorithm is of order n, the number of
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sensors in the network, even though the full SDP approach has much greater com-
plexity, as we now show.

We know that in the full SDP model (2.4), the number of constraints is O(n?), and
in each iteration of its interior-point algorithm the SDP solver needs to solve a sparse
linear system of equations whose dimension is the number of constraints. Figure 4.5
plots the CPU time for strategy 10 from Table 4.3(a) as well as three curves of the
form time = apn? for p = 2,3,4, where a, is determined by a least-squares fit. It
appears that the SDP complexity with strategy 10 lies somewhere between O(n?) and
O(n%).

In SpaseLoc, we partition the full problem into p subproblems of size g or less,
where p X ¢ = n. We generally set g to be much smaller than n, ranging from 2 to
around 10 in most of our simulations. If ¢ represents the execution time taken by the
full SDP method for a 10-node network, in the worst case the computation time for
SpaseLoc is t x O(p). Thus, SpaseLoc is really linear in p in theory. Since we can
assume ¢ to be a parameter ranging from 2 to 10, with worst case 2, we know that
O(p) = O(n/q) < O(n/2) = O(n). Now we can see that SpaseLoc’s computation time
is O(n).

In the remaining subsections we choose the middle network size from Table 4.4
(nodes = 3969) to observe the effect of varying radio range, number of anchors, and
noise.

4.4. Radio range impact. With a fixed total number of randomly uniform-
distributed nodes (3969, of which 63 are anchors), Table 4.5 shows the direct impact
of radius in the range 0.0304 to 0.0334 on accuracy and performance.

Strategies I1 and 12 produce essentially the same results, and with slightly better
accuracy than I0 for 8 of the 16 radius values, while I0 produces slightly better
accuracy than I1 or 12 in 4 cases. However, I1 and 12 take more time than I0 because
they need more SDP calls.
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TABLE 4.5
Radio range impact: nodes = 3969, anchors = 63, no noise, sub_size = 5.

rad- Error 95% Error Time SDP’s

ius 10 I1 12 10 I1 12 10 I1 12 10 I1 12
0.0304 | 2.444e-3 |2.359¢e-3 | 2.359e-3 | 4.035e-4 | 5.75Te-4 | 5.757e-4 | 18.03 | 18.60 | 18.60 | 1743 | 1688 | 1689
0.0306|1.122e-3|1.123e-3|1.123e-3 | 5.638e-4|5.644e-4 | 5.644e-4 | 18.13|18.70 | 18.70| 1747|1749 | 1749
0.0308|2.460e-3 | 1.412e-3 | 1.412e-3 | 7.952e-4 | 6.039¢-4 | 6.039¢e-4 | 18.64 | 19.39 | 19.51 | 1879 | 1895 | 1896
0.0310|1.087e-3|1.083e-3 | 1.083e-3 | 4.424e-4 | 4.397e-4|4.397e-4|18.39|19.05|19.05| 1809 | 1814 | 1814
0.0312(2.480e-3 |2.481e-3 | 2.481e-3 | 3.142e-4 | 3.146e-4 | 3.146e-4 | 18.30|18.93 | 18.93 | 1715|1717 | 1717
0.0314 | 5.464e-4 | 5.337e-4|5.337e-4 | 2.612e-4 | 2.612e-4|2.612e-4 | 18.90 | 19.53 | 19.53 | 1897 | 1900 | 1900
0.0316 | 4.828e-4 | 4.827e-4|4.827e-4 | 2.645e-4|2.645e-4 | 2.645e-4 (18.95(19.54 [19.54| 1916 | 1917 | 1917
0.0318|3.018e-4 |3.013e-4 | 3.013e-4 | 1.955e-4 | 1.955e-4 | 1.955e-4 | 19.06 | 19.65 | 19.65 | 1911 | 1913 | 1913
0.0320|4.214e-4 | 4.214e-4|4.214e-4|1.781e-4|1.781e-4|1.781e-4{18.91(19.49[19.49| 1847 | 1848 | 1848
0.0322(2.842e-4 | 2.842e-4 | 2.842e-4 | 1.702e-4 | 1.702e-4 | 1.702e-4 | 18.89|19.45 | 19.45| 1894 | 1895 | 1895
0.0324|5.213e-4 | 5.495e-4 | 5.495e-4 | 2.968e-4 | 3.020e-4 | 3.020e-4 | 18.91 [ 19.58 | 19.71 | 1859 | 1865 | 1866
0.0326|4.091e-4 [ 4.033e-4|4.033e-4 | 2.323e-4|2.315e-4|2.315e-4 [{18.96|19.51 [ 19.51 | 1890 | 1893 | 1893
0.0328|2.299e-4 | 2.289e-4|2.289¢e-4 | 1.363e-4| 1.363e-4 | 1.363e-4 | 18.87(19.46 | 19.46 | 1921 [ 1922 | 1922
0.0330(2.057e-4 |2.160e-4 | 2.161e-4 | 9.435e-5 | 9.450e-5 | 9.450e-5 | 18.8319.52 | 19.64 | 1873 | 1875 | 1876
0.0332(6.192e-4 |6.439e-4 | 6.439e-4 | 3.557e-4 | 3.55Te-4 | 3.557e-4|19.37|20.04 | 20.04 | 1849 | 1853 | 1853
0.0334|1.240e-4 | 1.240e-4|1.240e-4 | 7.241e-5|7.241e-5|7.241e-5[18.79 | 18.79 | 18.79 | 1867 | 1867 | 1867

TABLE 4.6
Number of anchors impact: nodes = 3969, radius = 0.0334, no noise, sub_size = 5.

Anchors Error 95% Error Time SDP’s
10 11,12 10 11,12 10 11,12 | 10 [I1,I2
40 1.052e-3 | 1.052e-3 | 8.408e-4 | 8.409e-4 | 19.30 | 19.88 | 1906 | 1908
50 1.109e-3 | 1.128e-3 | 7.748e-4 | 7.745e-4 | 19.38 | 20.15 | 1861 | 1865
100 8.782e-4 | 7.280e-4 | 5.337e-4 | 5.115e-4 | 19.16 | 19.96 | 1870 | 1872
150 2.716e-4 | 2.717e-4 | 1.025e-4 | 1.025e-4 | 18.86 | 19.60 | 1806 | 1808
200 4.889e-5 | 4.872e-5 | 1.473e-5 | 1.473e-5 | 18.77 | 19.52 | 1795 | 1796
250 1.716e-5 | 1.699e-5 | 7.760e-6 | 7.760e-6 | 18.55 | 19.32 | 1748 | 1749
300 1.538e-5 | 1.521e-5 | 4.408e-6 | 4.408e-6 | 18.20 | 18.99 | 1750 | 1751
350 7.533e-6 | 7.365e-6 | 2.858e-6 | 2.858e-6 | 18.13 | 18.93 | 1684 | 1685
400 6.383e-6 | 6.215e-6 | 1.841e-6 | 1.841e-6 | 18.16 | 18.96 | 1560 | 1591

As we see, increasing radius leads to increased accuracy and only slightly more
computational time. The simulation could assist sensor network designers in select-
ing a radio range to achieve a desired estimation accuracy with little concern about
algorithm speed.

4.5. Number of anchors impact. With constant radius (0.0334) and the same
randomly distributed nodes (3969), Table 4.6 shows the impact of the number of
anchors, ranging from 1% to 10% of the total number of points. (Noise is not included.)

Strategies I1 and I2 produce identical results. Comparing 10 with I1 or 12, we
see that added inequalities slightly improve the average error consistently, although
the 95% error remains essentially the same. Increasing the number of anchors in
the network improves the estimation accuracy in general, with no obvious impact on
algorithm speed. However, we don’t see accuracy improvement when the number of
anchors reaches more than 10% of the total points. This analysis is beneficial for
designers to avoid the cost of deploying unnecessary anchors.

4.6. Noise impact. With constant radius (0.0334) and the same randomly dis-
tributed nodes (3969), Table 4.7 shows the impact of noise conditions on accuracy
and performance.

We see that strategies I1 and 12 do not provide consistent improvement over 10 for
both average and 95% error, yet they always increase execution time. Also, more noise
in the network has a direct impact on estimation accuracy. Simulations of this kind
may help designers determine the measurement noise level that will give an acceptable
estimation error.
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TABLE 4.7
Noise_factor impact: nodes = 3969, anchors = 400, radius = 0.0334, sub_size = 5.

Noise Error 95% Error Time SDP’s
factor 10 11 12 10 11 12 10 11 12 10 11 12
0.01 [ 9.60e-4 | 9.59e-4 | 9.59e-4 | 1.90e-6 | 3.16e-4 | 3.16e-4 | 20.38 | 21.18 | 21.20 | 1622 | 1623 | 1623
0.05 | 3.15e-3 | 8.33e-3 | 8.33e-3 | 3.16e-4 | 3.57e-3 | 3.5Te-3 | 21.56 | 21.75 | 21.86 | 1479 | 1253 | 1256
0.10 | 6.87e-3 | 7.36e-3 | 1.03e-2 | 1.91e-3 | 5.17e-3 | 6.95e-3 | 21.46 | 24.73 | 22.94 | 1447 | 1592 | 1230
0.20 | 1.55e-2 | 1.57e-2 | 1.65e-2 | 4.95e-3 | 1.16e-2 | 1.25e-2 | 21.55 | 25.67 | 25.83 | 1208 | 1433 | 1390
0.30 | 1.51e-2 | 1.48e-2 | 1.46e-2 | 1.17e-2 | 1.27e-2 | 1.24e-2 | 21.09 | 29.76 | 31.78 | 1411 | 1829 | 1844
0.40 | 1.98e-2 | 1.79e-2 | 1.79e-2 | 1.32e-2 | 1.57e-2 | 1.5Te-2 | 21.30 | 32.05 | 35.15 | 1523 | 1985 | 2073
0.50 | 3.05e-2 | 2.35e-2 | 2.28e-2 | 2.86e-2 | 2.16e-2 | 2.08e-2 | 22.07 | 35.27 | 39.26 | 1608 | 2157 | 2252

5. Summary and extensions. We have shown that SpaseLoc achieves the aims
of accuracy, speed, and scalability with a single processor on very large networks. It
takes full advantage of the recent SDP approach of Biswas and Ye [2]. The latter has
computational complexity O(nP), where n is the network size and p is between 3 and
4, but we use it on multiple tiny subproblems to obtain an algorithm with essentially
linear complexity. On a 2.4GHz laptop with 1GB memory, SpaseLoc maintains effi-
ciency and provides accurate location estimation for networks with 10000 sensors and
beyond.
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F1c. 5.1. Accuracy and performance comparison.

Figure 5.1 compares localization results for our SpaseLoc algorithm and the full
SDP approach [2] for various sized networks. The left-hand figure shows a comparison
in terms of estimation accuracy for localizing various sizes of networks when sensors
are placed at the vertices of an equilateral triangle grid with 0.1 noise_factor added to
distance measurements (data is taken from Table 4.3). It shows clearly that SpaseLoc
provides much improved localization accuracy.

The right-hand graph summarizes results in terms of execution time on various
network sizes. Data for the full SDP method is taken from Table 4.3, and data for
SpaselLoc is taken from Table 4.4. The figure confirms near-linear complexity for
SpaseLoc.

5.1. More general problems. In Jin [14], SpaseLoc is used as a building block
for more general localization algorithms. A dynamic version can estimate moving
sensors’ locations in real time, and a three-dimensional version extends its utility
further. For clustered and distributed environments, it is shown how to use SpaseLoc
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in parallel (on multiple large subproblems) to obtain essentially linear complexity on
clustered networks of unlimited size. Finally, a preprocessor for SpaseLoc has been
developed in [14] to localize sensors in anchorless networks.

5.2. A bootstrap procedure. SpaselLoc works effectively when Step Al (sub-
problem creation) finds subsensors connected to at least 3 anchors. A difficult situa-
tion arises if there are more than 3 anchors in the network but no subsensor is directly
connected to 3 anchors. A network with anchors placed at the borders of the region
is such an example. SpaseLoc’s subproblems will involve sensors connected to only 2
or 1 anchors, leading to a less accurate final solution.

When there is sufficient connection information for sensors to be indirectly con-
nected to at least 3 anchors through other sensors, the full SDP approach can find a
solution. We are developing a procedure to choose a subproblem in the above situa-
tion. It will include the anchors, certain subsensors, and the sensors on each shortest
path from a subsensor to an anchor.

5.3. Alternative subproblem solvers. At present, most of the SpaseLoc sub-
problems are solved by the SDP approach of Biswas and Ye [2]. This is an approxima-
tion method that may produce large errors with noisy data. A recent development by
Biswas et al. [4] adds regularization terms to the SDP problem and uses a gradient-
descent method to refine the SDP solution. Significant accuracy improvement is
reported. An advantage of SpaselLoc is that it can solve each subproblem by any
method that is effective on small networks. Our next step is to experiment with such
approaches, including that of [4] and various triangulation-based methods.
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