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STABILIZING POLICY IMPROVEMENT FOR LARGE-SCALE
INFINITE-HORIZON DYNAMIC PROGRAMMING

MICHAEL J. O’SULLIVAN∗ AND MICHAEL A. SAUNDERS†

Abstract. Today’s focus on sustainability within industry presents a modeling challenge that
may be dealt with using dynamic programming over an infinite time horizon. However, the curse of
dimensionality often results in a large number of states in these models. These large-scale models
require numerically stable solution methods.

The best method for infinite-horizon dynamic programming depends on both the optimality
concept considered and the nature of transitions in the system. Previous research uses policy im-
provement to find strong-present-value optimal policies within normalized systems. A critical step in
policy improvement is the calculation of coefficients for the Laurent expansion of the present-value
for a given policy. Policy improvement uses these coefficients to search for improvements of that
policy. The system of linear equations that yields the coefficients will often be rank-deficient, so a
specialized solution method for large singular systems is essential.

We present methods for calculating the present-value Laurent expansion coefficients of a policy
with substochastic classes. Classifying the states allows for a decomposition of the linear system into
a number of smaller linear systems. Each smaller linear system has full rank or is rank-deficient by
one. We show how to make repeated use of a rank-revealing LU factorization to solve the smaller
systems. In the rank-deficient case, excellent numerical properties are obtained with an extension of
Veinott’s method [13] for substochastic systems.

1. Introduction. A current focus of many industries is sustainability—ensuring
that the resources of the industry will never be exhausted. For example, both agricul-
ture and aquaculture rely on renewable resources for continued profits. One method
for addressing sustainability is by considering the effect of management policies over
an infinite time horizon. Any policy that destroys the stock (even slowly) will be
sub-optimal when compared to a policy that maintains (or renews) the resource over
time.

Dynamic programming (DP) can be used to model systems over an infinite time
horizon and can also incorporate uncertainty in the behavior of the system. However,
these models often require a large state space to represent the system accurately.
Thus, any solution method must be able to deal with the computational challenges
presented by a large state space.

To select an optimal policy, one must differentiate between all the possible poli-
cies that exist for controlling such processes. Most previous research focuses on sub-
stochastic systems (where transitions between states are probabilistic), where the
objective is maximum reward rate, present-value optimality, or strong-present-value
optimality. Of these three concepts, only strong-present-value optimality considers
short, intermediate, and long-term behavior. (Using the maximum reward rate as an
objective ignores any transient behavior, and present-value optimality discounts away
the importance of long-term behavior.)

Normalized systems don’t require transitions to be substochastic, but rather, the
transition matrix of every stationary policy has spectral radius not exceeding one.
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Rothblum [11] notes that Blackwell’s existence theorem for substochastic systems ex-
tends to normalized systems and then generalizes the methods from Miller and Veinott
[7] and Veinott [13, 14] to give a policy improvement method for normalized systems.
This (more general) policy improvement requires the coefficients of an (augmented)
Laurent expansion of the present-value for a policy. The coefficients are the unique
solution of a set of linear equations (identical to those from Veinott [13] except in the
number of arbitrary variables).

Veinott [13, p. 1651] shows how to solve these linear equations efficiently (for sub-
stochastic systems) by identifying recurrent classes, solving within each such (stochas-
tic, irreducible) class by repeated application of Gaussian elimination, and using these
solutions to solve the remainder of the system. Rothblum [11] notes that Veinott’s
method may be extended to normalized systems, but extra work is required to parti-
tion the system into communicating classes and identify which classes are recurrent.
No previous research discusses the numerical properties of the linear equations or the
numerical stability of solution methods (although Veinott [13] recognizes the linear
dependence of the linear equations within recurrent classes).

This paper presents computationally efficient methods for solving the linear equa-
tions for any policy with substochastic classes. Rather than try to solve the equations
as a single large system (with uncertain rank), the methods use the partitioning of the
state space into communicating classes (similar to Veinott [13]). By restricting the
linear system to each class and solving these smaller systems in a specified order, we
reduce the full linear system to a sequence of smaller linear systems that have full rank
or are rank-deficient by one. We give effective methods for solving the smaller linear
systems, using repeated application of a rank-revealing LU factorization (RRLU). In
the rank-deficient case, excellent numerical properties are obtained with an extension
of Veinott’s method [13] for substochastic systems.

The paper is organized as follows. Section 2 introduces the preliminary definitions
and results necessary for policy improvement in systems with substochastic classes.
Once the system has been partitioned into communicating classes, §3 gives a method
for finding the Laurent expansion coefficients within each (substochastic, irreducible)
class. We also present Veinott’s [13] method for stochastic, irreducible systems, and
extend it to systems with system degree d > 1. An example illustrating both methods
is given in §4. Section 5 discusses the stability and computational efficiency of the
methods, and §6 presents numerical comparisons.

2. Preliminaries. Consider a general system observed in periods 1, 2, . . . . The
system exists in a finite set S of S states. In each state s ∈ S the system takes one of
a finite set As of actions. Taking action a ∈ As from s ∈ S earns reward r(s, a) and
causes a transition to state t ∈ S with rate p(t|s, a).

Each (stationary) policy δ ∈ ∆ is a function that assigns a unique action δs ∈ As

to each s ∈ S, and induces a single-period S-column reward vector rδ ≡ (r(s, δs)) and
an S × S transition matrix Pδ ≡ (p(t|s, δs)).

2.1. Systems with substochastic classes. Each transition matrix Pδ (corre-
sponding to policy δ) defines a set of communicating classes as follows. A state s

communicates with another state t if there exists some N > 0 such that PN
δst > 0. A

communicating class C is a maximal subset of S such that every pair of states s, t ∈ C
communicate with each other. Each communicating class C may be either transient
(the long-run probability of being in C is 0) or recurrent (the long-run probability of
being in C is positive).
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If every class C (under δ) has 0 ≤ p(t|s, a) ≤ 1 and ∑t∈C p(t|s, a) ≤ 1, s, t ∈ C,
a ∈ As, then δ has substochastic classes. Also, since the blocks of Pδ corresponding
to these classes lie on the diagonal and have spectral radius not exceeding one, Pδ

has spectral radius not exceeding one. If every (stationary) policy has substochastic
classes, then the system has substochastic classes. Also, since the spectral radius of
the transition matrix for every (stationary) policy does not exceed one, the system is
normalized.

System Degree. For each policy δ, let the degree of δ be the smallest nonnegative
integer dδ ≡ i such that Qi

δ and Qi+1
δ have the same null space (where Qδ ≡ Pδ − I).

Let the system degree d ≡ max δ∈∆ dδ.

2.2. Strong-present-value optimality. Suppose that rewards carried from
one period to the next earn interest at the rate 100ρ% (ρ > 0) and let β ≡ 1

1+ρ

be the discount factor. The present value V
ρ
δ of a policy δ is the (expected) present

value of the rewards that δ earns in each period discounted to the beginning of period
0, i.e., V ρ

δ ≡
∑∞

N=1 β
NPN−1

δ rδ. A policy δ is present-value optimal if V
ρ
δ ≥ V ρ

γ for all
γ ∈ ∆. Finally, δ is strong-present-value optimal if it is present-value optimal for all
sufficiently small ρ.

Blackwell [2] shows the existence of a stationary strong-present-value optimal
policy for substochastic systems, and this theorem also holds for normalized systems.
It suffices to restrict attention to stationary policies throughout this paper.

n-Optimality. It is computationally challenging to discern directly whether or not
a policy is strong-present-value optimal. However, building a sequence of n-optimal
policies is more efficient and eventually attains strong-present-value optimality (when
n = S).

A policy δ is n-present-value optimal if

lim
ρ↓0

ρ−n
(

V
ρ
δ − V ρ

γ

)

≥ 0 for all γ ∈ ∆. (2.1)

Evidently

V
ρ
δ = βrδ + βPδV

ρ
δ . (2.2)

Rothblum [11] extends the Laurent expansion of Miller and Veinott [7] (for substochas-
tic systems) to give

V
ρ
δ =

∞
∑

n=−d

ρnvnδ (2.3)

in small ρ > 0. By substituting (2.3) into (2.2), multiplying by 1+ρ and equating
coefficients of like powers of ρ, we see that V n+d ≡

(

v−d, . . . , vn+d
)

=
(

v−d
δ , . . . , vn+dδ

)

satisfies

r
j
δ +Qδv

j = vj−1, j = −d, . . . , 0, . . . , n+ d, (2.4)

where Qδ = Pδ − I, r0δ = rδ, r
j
δ = 0, j 6= 0, and v−d−1

δ = 0 [7, 11]. Conversely, if the

matrix V n+d ≡
(

V n, vn+1, . . . , vn+d
)

satisfies (2.4) then V n = V n
δ ≡

(

v−d
δ , . . . , vnδ

)

[13, 11]. Thus, (2.4) uniquely determines the vector V n = V n
δ , but not v

n+1, . . . , vn+d.
Writing B º C for two matrices of like dimension means that each row of B −C

is lexicographically nonnegative. From (2.1) and (2.3), a policy δ is n-present-value
optimal if and only if δ is n-optimal, i.e., V n

δ º V n
γ for all γ ∈ ∆.
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Denote the set of n-optimal policies by ∆n and notice that the n-optimal sets
are nested, i.e., ∆ ⊇ ∆−d ⊇ ∆−d+1 ⊇ ∆−d+2 ⊇ · · · . Extending [7], [13] shows
that there exists an m ∈ [−1, S] such that ∆ ⊇ ∆−1 ⊇ · · · ⊇ ∆m = ∆m+1 = · · ·
(for substochastic systems). Moreover, an S-optimal policy is strong-present-value
optimal.

Rothblum [11] shows how to extend the policy improvements from Miller and
Veinott [7] and Veinott [13] (for substochastic systems) to normalized systems (thus
systems with substochastic classes).

Hereafter we only consider stationary policies in systems that have substochastic
classes. We present a numerically stable method for finding V n

δ for a given δ ∈ ∆ and
−d ≤ n. More generally, the method finds a solution of

c j +Qδv
j = vj−1, j = m+ 1, . . . , n+ d (2.5)

given δ ∈ ∆, vm and c j , j = m + 1, . . . , n + d. Again, only vj , j = m + 1, . . . , n are
uniquely determined.

3. Finding the Laurent coefficients. The communicating class decomposition
of a policy (see §2.1) induces a dependence partial ordering amongst the classes. A
class C depends on another class D if there is some s ∈ C, t ∈ D with Pδst > 0. (If
additionally Pδts > 0 then C and D would be the same communicating class.) If a
class C doesn’t depend on any other class then C is independent.

Bather [1] and Veinott [13] both use the dependence partial ordering to solve
(2.5) for substochastic systems. In substochastic systems, all recurrent classes are
independent, so one may solve (2.5) for these classes separately. Once the values of
the independent (recurrent) classes are known, i.e., vjs for s in a recurrent class, these
values may be incorporated into the linear equations (2.5) for classes that depend on
the independent classes, and these linear equations may then be solved separately.
By repeating this process, (2.5) may be solved for the entire system by solving (2.5)
within each class (using any necessary values from other classes).

For systems with substochastic classes, it is not necessarily true that recurrent
classes are independent and vice versa. However, one may still use the dependence
partial ordering to solve (2.5) by solving (2.5) within each class as just described.
Also, even though it may not be clear if a class is transient or recurrent, each class
is substochastic (by definition) and irreducible (because every state within a class
communicates with all other states in the class).

The remainder of this section presents a method for solving the linear system
(2.5) within a single substochastic, irreducible class. Throughout, the notation for
system parameters denotes those same parameters restricted to the class. Thus, S
refers to the states within the class, Pδ refers to the transition matrix restricted to
the states in the class, and so on.

Each class may be transient or recurrent. In a transient class, limN→∞ PN
δ = 0,

so Q−1
δ ≡ (Pδ − I)

−1
= −

(

I + Pδ + P 2δ + · · ·
)

is well-defined (Qδ is nonsingular). If
the class is recurrent, then it must be stochastic, i.e.,

∑

t∈S p(t|s, δs) = 1 for every
s ∈ S. Then the rows of Qδ sum to zero, so Qδ is singular. Since the class is
irreducible, eliminating any (single) state s from the class causes the remainder to
become transient. This is equivalent to removing the row corresponding to the state-
action pair (s, δs) and the column corresponding to s from Pδ. Removing this row
and column from Qδ causes it to become nonsingular. Hence, Qδ has rank S − 1 (it
is rank-deficient by one).
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3.1. Rank-revealing LU factors. Given a (substochastic, irreducible) class,
one may deduce if it is transient or recurrent by means of a rank-revealing LU (RRLU)
factorization of Qδ. This takes the form

T1QδT
T
2 = LU =

(

L̂ 0

lT 1

)(

Û u

0 ε

)

, (3.1)

where T1 and T2 are permutations that must be chosen to limit the size of the off-
diagonal elements of L and U . If |ε| is suitably large then Qδ is taken to have full
rank, but if |ε| = O(ε) where ε is the machine precision, Qδ is regarded as singular
(in this case, rank-deficient by one).

Our discussion is centered on LUSOL, a package for computing sparse LU factors
of a square or rectangular sparse matrix [4, 9, 10]. LUSOL produces an L with unit
diagonals and a U that tends to reflect the condition of the original matrix Qδ. As
in several other such packages, T1 and T2 are chosen to maximize sparsity as much as
possible, subject to a stability test at each step of the factorization.

The stability test is a function of two parameters Lmax and Umax (both 1 or more).
At the kth step, the next column of L and row of U must satisfy

|Lik| ≤ Lmax, i > k,

|Ukj | ≤ Umax|Ukk|, j > k.

Adequate stability is usually achieved with threshold partial pivoting (TPP), in which
Lmax = 10 or less, and Umax =∞ (so that only the subdiagonals of L are controlled).
To improve the rank-revealing properties, both Lmax and Umax must be finite and
closer to 1. Values such as 4, 2, and 1.1 are increasingly likely to reveal rank correctly,
while retaining some freedom to keep L and U sparse.

LUSOL has two RRLU options. Threshold rook pivoting (TRP) uses Lmax =
Umax ≤ 4 (say) and provides a good compromise between stability and efficiency.
Threshold complete pivoting (TCP) additionally requires all elements in the remain-
ing unfactored matrix to be bounded relative to |Ukk| at each stage. To obtain reliable
RRLU properties in our experiments, we have used TCP with Lmax = Umax = 2.0.

Define the permuted Qδ and the combined permutations from (3.1) as follows:

Q ≡ T1QδT
T
2 ≡

(

Q̂ q̂

qT ϕ

)

= LU, T ≡ T1T
T
2 ≡

(

T̂ t̂

tT θ

)

, (3.2)

where Q̂ = L̂Û is an (S − 1) × (S − 1) nonsingular matrix, and q, q̂, t, t̂, l, u are
(S − 1)-vectors. Regardless of the nature of the class (based on the size of ε), the
LU factors may be used to solve (2.5) because the system is consistent even if Qδ is
singular.

Note: The methods presented in the next two sections are essentially those devel-
oped in the first author’s thesis [8], where it was inadvertently assumed that T1 = T2
(and thus T = I). Here we treat T as a general matrix.

3.2. Transient classes. The linear system (2.5) is block triangular:














Qδ

−I Qδ

. . .
. . .

−I Qδ





























vm+1

vm+2

...

vn+d















=















vm − cm+1

−cm+2

...

−cn+d















. (3.3)
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If the rank-revealing LU (RRLU) factorization shows that Qδ has full rank, the whole
system (3.3) is nonsingular and may be solved by block forward substitution:

Qδv
j = vj−1 − c j , j = m+ 1, . . . , n+ d. (3.4)

3.3. Recurrent classes. Applying the permutations to (3.3) gives















Q

−T Q

. . .
. . .

−T Q





























wm+1

wm+2

...

wn+d















=















bm+1

bm+2

...

bn+d















, (3.5)

where vj = TT
2 w

j (j = m + 1, . . . , n + d ) and also bm+1 = T1(v
m − cm+1) and

bj ≡ −T1cj (j = m + 2, . . . , n + d ). If the RRLU factorization shows that Qδ is
rank-deficient by one, system (3.5) has additional structure:































Q̂ q̂

qT ϕ ⊕

−T̂ −t̂

−tT −θ

Q̂ q̂

qT ϕ

. . .
. . .

−T̂ −t̂

−tT −θ

Q̂ q̂

qT ϕ





























































ŵm+1

wm+1
S

ŵm+2

wm+2
S

...

ŵn+d

wn+d
S































=































b̂m+1

bm+1
S

b̂m+2

bm+2
S

...

b̂n+d

bn+d
S































, (3.6)

where ŵj and b̂j represent the first S − 1 elements of wj and b j respectively, and ⊕
marks one row and column that reveal a rank-deficiency of one in the full system. The
marked row is redundant as it comes from the first block of (3.5), which is singular
but consistent. Also, since wn+d is not determined uniquely, we may assign wn+d

S ≡ 0
and make the marked column redundant. Removing the marked row and column
gives the following system, which has full rank and therefore a unique solution:

























Q̂ q̂

−T̂ −t̂

−tT −θ

Q̂ q̂

qT ϕ

. . .
. . .

−T̂ −t̂

−tT −θ

Q̂

qT

















































ŵm+1

wm+1
S

ŵm+2

wm+2
S

...

ŵn+d

























=

























b̂m+1

b̂m+2

bm+2
S

...

b̂n+d

bn+d
S

























. (3.7)

We now describe two methods for solving system (3.7).
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3.4. Block LU method (BLU) for recurrent classes. Rearranging (3.7)
gives the following nonsingular system:













































Q̂ q̂

−T̂ Q̂ −t̂ q̂

. . .
. . .

. . .
. . .

−T̂ Q̂ −t̂ q̂

−T̂ Q̂ −t̂

− tT qT −θ ϕ

. . .
. . .

. . .
. . .

−tT qT −θ ϕ

−tT qT −θ

























































































ŵm+1

ŵm+2

...

ŵn+d−1

ŵn+d

wm+1
S

wm+2
S

...

wn+d−1
S













































=













































b̂m+1

b̂m+2

...

b̂n+d−1

b̂n+d

bm+2
S

...

bn+d−1
S

bn+d
S













































. (3.7’)

To derive a solution method, we label the components of (3.7’) as
[

A B

C D

][

ŵ

wS

]

=

[

b̂

bS

]

. (3.8)

Since Q̂ is nonsingular (and Q̂ = L̂Û has already been found) it is easy to solve a
system Ax = b sequentially. Hence a block LU factorization

[

A B

C D

]

=

[

A

C I

][

I Y

Z

]

solves the full system efficiently. First, solve AY = B and calculate the Schur com-
plement Z = D − CY , then use block forward and backward substitution to solve
(3.7’) and hence (3.6):

[

A

C I

][

x̂

xS

]

=

[

b̂

bS

]

and

[

I Y

Z

][

ŵ

wS

]

=

[

x̂

xS

]

. (3.9)

The remainder of this section breaks down each step of the process.
Solving AY = B. Expanding A and B into block-matrix form gives





















Q̂

−T̂ Q̂

. . .
. . .

−T̂ Q̂

−T̂ Q̂





















Y =























q̂

−t̂ q̂

−t̂
. . .

. . . q̂

−t̂























. (3.10)

The first column of Y solves the block-diagonal system




















Q̂

−T̂ Q̂

. . .
. . .

−T̂ Q̂

−T̂ Q̂









































ym+1

ym+2

...

yn+d−1

yn+d





















=





















q̂

−t̂

...

0

0





















. (3.11)
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The first two vectors in the solution satisfy Q̂ym+1 = q̂ and Q̂ym+2 = T̂ ym+1− t̂. But
Qe = 0 gives Q̂e = −q̂, so that ym+1 = −e, and then Q̂ym+2 = −T̂ e− t̂ = −[ T̂ t̂ ]e =
−e. Thus, we may use the factors Q̂ = L̂Û to solve (3.11) as follows:

ym+1 = −e,
Q̂ym+2 = −e,

Q̂yj = T̂ yj−1, j = m+ 3, . . . , n+ d.

The solution of (3.10) is then given by the block-Toeplitz matrix

Y =























ym+1

ym+2 ym+1

... ym+2
. . .

yn+d−1
...

. . . ym+1

yn+d yn+d−1
· · · ym+2























.

Forming Z = D − CY . With αm+j ≡ −tT ym+j + qT ym+j+1, the structure of C
and Y gives

Z =

















−θ ϕ

−θ
. . .

. . . ϕ

−θ

















−

















αm+1 qT ym+1

αm+2 αm+1

. . .

...
...

. . . qT ym+1

αn+d−1 αn+d−2 · · · αm+1

















,

However, Q̂ym+1 = q̂ implies that qT ym+1 = ϕ (because Qδ is rank-deficient by one).
Hence Z is both triangular and Toeplitz:

Z = −















θ + αm+1

αm+2 θ + αm+1

...
...

. . .

αn+d−1 αn+d−2 · · · θ + αm+1















. (3.12)

Block forward substitution. The solution of Ax̂ = b̂ in (3.9) is found sequentially
like the first column of Y in (3.11). Then xS = bS − Cx̂ may be calculated directly.

Block backward substitution. If the dimension of Z is large, the solution of ZwS =
xS may be found using special methods for (lower) triangular Toeplitz systems [12].
Otherwise, ordinary forward substitution suffices to find wS , and then ŵ = x̂− Y wS .
Now wm+1, wm+2, . . . , wn+d (and hence vm+1, vm+2, . . . , vn+d) may be determined
from ŵ and wS .

3.5. Veinott’s method for recurrent classes. Veinott [13, p. 1651] gives a
method for solving the singular linear system from a recurrent class in a substochastic
system. In his method, d = 1 and the singular system is

[

Q

−I Q

][

wm+1

wm+2

]

=

[

bm+1

bm+2

]

. (3.13)
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The notation in this section and the next is the same as in §3.3, where â represents
the first S − 1 elements of a vector a, and Â represents the leading (S − 1)× (S − 1)
submatrix of a matrix A. Veinott also defines Q′ as the first S − 1 columns of Q and
(most importantly) defines

wm+1 =

[

w̃m+1

0

]

+ wm+1
S e, wm+2 =

[

w̃m+2

0

]

+ wm+2
S e.

Substituting into (3.13) and setting wm+2
S = 0 gives

[

Q′

−I −e Q′

]









w̃m+1

wm+1
S

w̃m+2









=

[

bm+1

bm+2

]

.

Veinott uses Gaussian elimination to solve Q′w̃m+1 = bm+1 and observes that the
elimination reduces the last row of Q′ to zero, so that w̃m+1 is uniquely determined.
He then applies the same elimination steps to

[

−e Q′
]

[

wm+1
S

w̃m+2

]

= bm+2

and notes that wm+1
S is uniquely determined by the last row.

3.6. Extended Veinott’s method (EVM). We now extend Veinott’s method
in two ways: (1) to solve for systems with d > 1, and (2) to incorporate the improved
stability of a RRLU.

To solve (2.5), we first compute the RRLU factors of Qδ to obtain L, U , and
T as in (3.1)–(3.2). Next, we remove the row and column marked ⊕ in (3.6) to
obtain system (3.7) as before. (This is equivalent to Veinott setting wm+2

S = 0 and
observing that the last row of Q′ vanishes, but we have chosen the row and column
more carefully.) Next, we substitute

[

ŵj

w
j
S

]

=

[

I e

0 1

][

w̃j

w
j
S

]

(3.14)

(this is equivalent to Veinott’s variable change) to get

























Q̂

−T̂ −e

−tT −1

Q̂ 0

qT 0

. . .
. . .

−T̂ −e

−tT −1

Q̂

qT

















































w̃m+1

wm+1
S

w̃m+2

wm+2
S

...

w̃n+d

























=

























b̂m+1

b̂m+2

bm+2
S

...

b̂n+d

bn+d
S

























. (3.15)

Defining

T ′
≡

[

T̂

tT

]

, E ≡
[

0 T ′
]

, F ≡

[

−e Q̂

−1 qT

]

=
[

−e Q′
]

, xj ≡

[

w
j−1
S

w̃j

]
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gives the block-triangular system





















Q̂

−T ′ F

−E F

. . .
. . .

−E F









































w̃m+1

xm+2

xm+3

...

xn+d





















=





















b̂m+1

bm+2

bm+3

...

bn+d





















. (3.15’)

We solve (3.15’) using block forward substitution with an LU factorization of F , which
may be obtained from a sparse Bartels-Golub update of the factors of Q (since F is a
permutation of Q with a column replaced by e). Once w̃m+1 and xj (j = m+2, . . . , n+
d) have been computed, w̃j (j = m+ 2, . . . , n+ d) and w

j
S (j = m+ 1, . . . , n+ d− 1)

may be recovered and wj (j = m+ 1, . . . , n+ d) is calculated with a single addition.
Now, vj = TT

2 w
j (j = m+ 1, . . . , n+ d).

4. Example. Consider the system defined in Table 4.1 and represented graphi-
cally in Figure 4.1.

Also consider a policy δ in this system with reward vector rδ and transition matrix
Pδ as follows:

δ =













1

1

1

1













, rδ =













1

1

0

1













, Pδ =













1
2

1
2

1 0

1 0 0 0

0 0 0 1
2

0 0 1
2

0













.

The policy is depicted in Figure 4.2, where we can see that the communicating classes
under δ are {1, 2} and {3, 4}. Both classes are substochastic. Also, it is clear from
Figure 4.1 that any policy in this system has substochastic classes, i.e., the system
has substochastic classes.

The degree of δ is 1, but the system degree is 2 (because a policy using action
2 instead of action 1 in state 4 has degree 2). Using dδ instead of d in (2.4) may
decrease the computation required to find the Laurent coefficients for δ, but the
amount of computation required to find dδ is significant (and only slightly less than
that required to find d). Therefore, it is computationally more efficient to calculate
the system degree d at the start of policy improvement and use d in (2.4) throughout.

Finding v−2δ requires the solution of (2.4) for this system:













−
1
2

1
2

1 0

1 −1 0 0

0 0 −1 1
2

0 0 1
2

−1













v−2δ = 0,













−
1
2

1
2

1 0

1 −1 0 0

0 0 −1 1
2

0 0 1
2

−1













v−1 = v−2δ ,

and













1

1

0

1













+













−
1
2

1
2

1 0

1 −1 0 0

0 0 −1 1
2

0 0 1
2

−1













v0 = v−1.



STABILIZING POLICY IMPROVEMENT FOR DYNAMIC PROGRAMMING 11

Table 4.1

System description

p(t|s, a), t ∈ S

s ∈ S a ∈ As r(s, a) 1 2 3 4

1 1 1 1
2

1
2

1 0

2 1 0 1 0 0

2 1 1 1 0 0 0

3 1 0 0 0 0 1
2

4 1 1 0 0 1
2

0

2 0 0 0 0 1

PSfrag replacements
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1
2

1
2

1
2

0

0

1

1

1

1

1

1 1

1

1

2

34

Fig. 4.1. Graphical representation of system
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34

Fig. 4.2. Graphical representation of δ
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Solving first for the independent class {3, 4}, we have

Qδ =

[

−1 1
2

1
2

−1

]

=

[

1 0

−
1
2

1

][

1 1
2

0 −
3
4

]

≡ LU

within the class. The LU factors are nonsingular, indicating a transient class. There-
fore, finding v−2δ within {3, 4} requires the solution of (3.3):























−1 1
2

1
2

−1

−I
−1 1

2

1
2

−1

−I
−1 1

2

1
2

−1













































v−2
δ3

v−2
δ4

v−1
3

v−1
4

v0
3

v0
4























=























0

0

0

0

−rδ3 = 0

−rδ4 = −1























,

and solving sequentially using the LU factors gives

(

v−2
δ3

v−2
δ4

)

=

(

0

0

)

,

(

v−1
3

v−1
4

)

=

(

0

0

)

,

(

v0
3

v0
4

)

=

(

2
3

4
3

)

.

The next class {1, 2} depends on {3, 4}, whose values are known. Hence, v−2δ may
be calculated within {1, 2}. Restricting Qδ to {1, 2} gives

Qδ =

[

−
1
2

1
2

1 −1

]

.

The rows of Qδ are interchanged (for a marginal improvement in stability), giving the
LU factorization

T1QδT2 = LU, T1 =

[

0 1

1 0

]

, T2 = I, L =

[

1

−
1
2

1

]

, U =

[

1 −1

0

]

.

The singularity of U indicates a recurrent class. Calculating v−2δ for {1, 2} therefore
requires the solution of (3.6):























1 −1

−
1
2

1
2

−1 1 −1

−1 −
1
2

1
2

−1 1 −1

−1 −
1
2

1
2













































w−2
δ1

w−2
δ2

w−1
1

w−1
2

w0
1

w0
2























=























0

0

0

0

−rδ2 = −1

−v0
3 − rδ1 = −

5
3























,

for which Q̂ = 1, qT = − 1
2
, q̂ = −1, and ϕ = 1

2
. Eliminating the redundant row

and arbitrary variable w02 gives a slightly smaller nonsingular system corresponding
to (3.7).
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4.1. Block LU method (BLU). Rearranging as in (3.7’) gives



















1 −1

1 −1 −1

1 −1

−1 −
1
2

1
2

−1 −
1
2





































w−2
δ1

w−1
1

w0
1

w−2
δ2

w−1
2



















=



















0

0

−rδ2 = −1

0

−v0
3 − rδ1 = −

5
3



















.

Now A, B, C and D are known. Solving AY = B requires the solution of








1

1

1

















y−2
1

y−1
1

y0
1









=









−1

−1

0









by sequential use of the nonsingular LU factors L̂ = 1, Û = 1. Thus

y−21 = y−11 = −1, y01 = 0, and Y =









−1

−1 −1

−1









,

and then

Z =

[

1
2

]

−

[

−1 −
1
2

−1 −
1
2

]









−1

−1 −1

−1









= −
[

3
2

1 3
2

]

.

Block forward substitution solves








1

1

1

















x−2
1

x−1
1

x0
1









=









0

0

−1









⇒ x−2
1 = x−1

1 = 0, x0
1 = −1.

Then,

(

x−2
2

x−1
2

)

=

(

0

−
5
3

)

−

[

−1 −
1
2

−1 −
1
2

]









x−2
1 = 0

x−1
1 = 0

x0
1 = −1









=

(

0

−
13
6

)

.

Finally, block backward substitution first solves

−

[

3
2

1 3
2

](

w−2
δ2

w−1
2

)

=

(

x−2
2 = 0

x−1
2 = − 13

6

)

⇒
(

w−2
δ2

w−1
2

)

=

(

0

13
9

)

and then calculates








w−2
δ1

w−1
1

w0
1









=









x−2
1 = 0

x−1
1 = 0

x0
1 = −1









−









−1

−1 −1

−1









(

w−2
δ2 = 0

w−1
2 = 13

9

)

=









0

13
9

4
9









.

Since T2 = I, the v and w variables are the same.
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4.2. Extended Veinott method (EVM). Here we obtain v−2δ1 , v
−1
1 , v01 within

the class {1, 2} following Veinott’s approach. The system to be solved is (3.6):






















1 −1

−
1
2

1
2

−1 1 −1

−1 −
1
2

1
2

−1 1 −1

−1 −
1
2

1
2













































w−2
δ1

w−2
δ2

w−1
1

w−1
2

w0
1

w0
2























=























0

0

0

0

−rδ2 = −1

−v0
3 − rδ1 = −

5
3























,

for which the quantities in (3.15)–(3.15’) are

Q̂ = 1, Q′ =

[

1

−
1
2

]

, T ′ =

[

0

1

]

, E =

[

0 0

0 1

]

, F =

[

−1 1

−1 −
1
2

]

.

Setting w02 = 0 gives the system



















1

−1 1

−1 −1 −
1
2

−1 1

−1 −1 −
1
2





































w̃−2
δ1

w−2
δ2

w̃−1
1

w−1
2

w̃0
1



















=



















0

0

0

−1

−
5
3



















.

Recall L̂ = 1, Û = 1, and the LU factors of F are

L̃ =

[

1

1 1

]

, Ũ =

[

−1 1

−
3
2

]

.

Solving L̂Û w̃−2
1 = 0 gives w̃−2

1 = 0, and solving













−1 1

−1 −
1
2

−1 1

−1 −1 −
1
2

























w−2
δ2

w̃−1
1

w−1
2

w̃0
1













=













0

0 + w̃−2
1 = 0

−1

−
5
3













sequentially using L̃ and Ũ gives w−2
2 = w̃−1

1 = 0, w−1
2 = 13

9
, and w̃01 =

4
9
. Performing

the appropriate additions gives w−2
δ1 = w−2

δ2 = 0, w
−1
1 = w−1

2 = 13
9
, w01 =

4
9
, and

w02 = 0. Again, T2 = I means the v and w variables are the same.
Therefore, irrespective of which method is used for the recurrent class {1, 2},

v−2δ =













0

0

0

0













, v−1 =













13
9

13
9

0

0













, v0 =













4
9

0

2
3

4
3













solves (2.4) for the example system, and the Laurent coefficients v−2δ of the policy δ

have been found.
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5. Numerical stability. For transient classes, the natural approach is to solve
the block-triangular system (3.3) by block forward substitution, using the nonsingular
Qδ repeatedly as in (3.4). If Qδ is ill-conditioned, any errors in solving with Qδ will
grow exponentially. One may reduce the effect by using a small interval, namely
n+ d−m. This may be achieved by implementing policy improvement as suggested
by Veinott [13]. By finding m-optimal policies for m = −d, . . . , n sequentially, Veinott
maintains V m−1

δ throughout and simply searches for m, . . . , (m + d)-improvements

(again in order). Finding an (m+ d)-improvement requires V m+d
δ , so the interval for

(2.5) is at most m+ 2d− (m− 1) = 2d+ 1. Therefore, the smaller the degree of the
system, the more reliable calculations become.

Note: If Qδ is ill-conditioned but not singular, (3.3) is intrinsically ill-conditioned
and the computed vj will have error regardless of the numerical method used. Keeping
d small is advisable until the policy improvement leads to a better conditioned Qδ.

The RRLU factorization of Qδ is essential for numerical computation. If a class is
recurrent but the LU fails to identify the singularity, the factors ofQδ will be extremely
ill-conditioned and computational errors will become prominent in the block forward
substitution for solving (3.3).

If singularity is identified, the Block LU method works with the factorization
(3.7’)–(3.8), which is stable as long as A is not almost singular and the elements of
either B or C (or both) are not much larger than the biggest element of A. Denote
these requirements by Property P1. It is not clear when Property P1 will hold, but
it can be tested a priori.

The Schur complement Z (3.12) is lower triangular with constant diagonal ele-
ments θ + αm+1. The condition of Z will be reasonable if that diagonal value is not
significantly smaller in magnitude than the off-diagonal elements αm+2, . . . , αn+d−1.
Denote this state by Property P2.

If P1 and P2 both hold, we have a stable method solving a well-behaved problem.
If P1 holds, the condition of Z reflects the condition of the original problem. In
practice with block factorizations of this kind, a single iteration of iterative refinement
[5] is likely to give acceptable accuracy in most cases (without the use of higher
precision). If the refinement procedure declares failure, interval reduction would be
necessary.

For the extended Veinott method there is more assurance of stability, because
the triangular transformations (3.14) are well-conditioned and the block-triangular
system (3.15) ≡ (3.15′) accurately reflects the condition of system (3.7). This becomes
evident in the following numerical results.

6. Numerical experiments. The Block LU method (BLU) and the extended
Veinott method (EVM) involve similar amounts of computation, but may differ in
their numerical accuracy.

To compare the methods, we performed some experiments using Matlab 7.0.4
[6] with machine precision ε ≈ 2 × 10−16. We generated 100 sparse linear systems
(order 100, density approximately 20%), 50 corresponding to transient classes and 50
correpsonding to recurrent classes. Hence, half the systems are of the form (3.3) and
the other half contain one singularity as in (3.6). We also implemented each method
with three different LU factorizations:

1. Matlab’s sparse LU factorization: [L,U,P,Q] = lu(A,thresh).
2. LUSOL with threshold partial pivoting (TPP).
3. LUSOL with threshold complete pivoting (TCP).

Matlab’s LU also uses TPP. The threshold parameters were set to keep |Lij | ≤ 2.0,
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a fairly strict bound that favors stability over sparsity but allows a little freedom.
To estimate rank, LUSOL counts the number of diagonals that are small in absolute
terms or relative to their own column:

|Ujj | ≤ ε2/3max(1, ‖Uj‖∞),

and regards them as singularities. We applied the same test toMatlab’s LU factors.
We solved for the Laurent coefficients in the test classes with both BLU and EVM

using each of the factorizations. For each class we performed 100 experiments. We
randomly permuted the states in the class (this corresonds to a symmetric permuta-
tion of the rows and columns of the linear system, but does not change the Laurent
coefficent values) and calculated vj , j = −1, 0, . . . , 6 from the resulting linear system.
We then calculated the eight residual norms for (2.5): ρj ≡ ‖c j + Qδv

j − vj−1‖∞,
j = −1, 0, . . . , 6, which should be 0 for all j. We observed the largest residual norms
for each method and factorization over the 100 experiments, obtaining the following
results:

• For transient classes, the residual norms for the calculated vj increase with
j, but reach only O(10−13) (when j = 6) for all combinations of method and
factorization, so are numerically insignificant.

• For recurrent classes, the residual norms resulting from BLU increase with j

from O(10−16) to O(1) (varying slightly with the factorization used), implying
significant numerical error with all factorizations.

• In contrast, the EVM residual norms stabilize at O(10−14) as j increases
for all factorizations, so are numerically insignificant. Figure 6.1 shows the
behaviour of the residual norms for the recurrent classes.
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To identify differences in the methods and factorizations more accurately, we
analyzed pairwise differences of the residual norms: ρ∗j − ρ∗∗j for each j, where the
superscripts refer to two different methods or factorizations. Statistical analysis of
these pairwise differences in residuals (for each of the 100 systems) led to the following
observations.

Comparison of methods.

• For transient classes, there is no statistical evidence of a difference between
BLU and EVM for any of the coefficients, regardless of the factorization used.
• For recurrent classes, the first evidence of difference between BLU and EVM
appears in the calculation of v0. There is evidence that ρBLU

j − ρEVM

j À 0
for most j. The difference is initially insignificant, but grows with j: see
Figure 6.2. Note that the difference grows slowest for TCP, followed by TPP
and then Matlab.
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Comparison of factorizations.

• For transient classes, there is statistical evidence of different factorizations
giving different residual norms, for both BLU and EVM. However, the differ-
ence is O(10−13), so is numerically insignificant.

• For recurrent classes with BLU, there is evidence of difference among the three
factorizations: see Figure 6.3. ρTPP

j − ρTCP

j , ρMatlab

j − ρTCP

j , and ρMatlab

j − ρTPP

j

exceed
√
ε for j ≥ 3, so that TCP outperforms TPP, which outperforms

Matlab.
• For recurrent classes with EVM, ρTPP

j −ρTCP

j , ρMatlab

j −ρTCP

j , and ρMatlab

j −ρTPP

j

are O(10−14) for all j, and thus numerically insignificant.
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From our experiments, it is unclear if TCP is required to identify the rank of a
class correctly, or if TPP (or TRP) are sufficient. As the threshold value 2.0 is quite
low (favoring stability over sparsity), all factorizations seem to have determined the
rank of Qδ correctly. If we increase the threshold (thus sacrificing numerical stability
to preserve sparsity), all threshold strategies become less able to determine the rank
of a class. To preserve efficiency and reliability, experience in the context of sparse
constrained optimization [3] suggests the use of TRP with 1.1 ≤ threshold ≤ 2.0.

7. Contributions. Veinott [13] originally used the recurrent class decomposi-
tion with repeated Gaussian elimination to solve for the Laurent expansion coefficients
of a substochastic system. (For singular systems he removes the last column from the
system and notes that Gaussian elimination results in the last row of the system
vanishing, leaving a nonsingular upper triangular matrix.)

Here we present BLU, a new method for computing the Laurent coefficients of
a system with substochastic classes (although the entire system may not be sub-
stochastic). This method follows Veinott and Bather by using the dependence partial
ordering to decompose the problem into a sequence of computations on irreducible,
substochastic systems. With the help of a RRLU for each of these systems, BLU iden-
tifies transient and recurrent classes. Also, the coefficients for the transient classes
are found sequentially with the LU factors. For recurrent classes, BLU uses the LU
factors and a block LU decomposition to find the coefficients in a way that has proved
stable for some systems but not all.

In search of greater reliability, we revisit Veinott’s method for calculating the
Laurent coefficients for a substochastic system. We extend his idea of repeated use
of Gaussian elimination to solve for systems with substochastic classes. We also im-
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plement the Gaussian elimination using sparse LU factorization with various types
of threshold pivoting to provide stability. For recurrent classes, we follow Veinott’s
method (which removes the last column of the singular matrix), but only after ap-
plying any permutations from the LU factorization; see (3.15). The resulting method
(EVM) has proved to be extremely reliable.

Note that a stable LU factorization could be applied to the entire system (3.3), but
this direct approach would become increasingly inefficient with the system dimension.
Some sort of block factorization (with repeated use of factors of small matrices) is
certain to be more effective. The BLU method is one such approach, but for maximum
reliability and the same efficiency it is clear that the EVM approach should be used.
By incorporating EVM into policy improvement, we should be able to deal successfully
with the large models that arise in the sustainable management of resources.
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of substochastic systems and for encouraging the development of reliable solution
methods. We also thank Cameron G. Walker for his input into the statistical analysis
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