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EXPECTED NUMBER OF STEPS OF THE SIMPLEX METHOD
FOR A LINEAR PROGRAM WITH A CONVEXITY CONSTRAINT

by
GEORGE B. DANTZIG

Abstract
When there is a convexity constraint, E\; = 1, each iteration ¢ of the simplex
method provides a value z; for the objective and also a lower bound z; — wy. The
paper studies (1) the expected behavior of (w;/wy), (2) probability of termination
on the t — th iteration, and (3) the expected number of steps, £ ITER, under
assumptions about the class of distributions from which the columns are drawn.
Assuming a random like behavior for covering simplices, it is shown that

1
!

327.&)1: Uoﬁ?. ln

¢ITER < m[log,(0102) + va{l + = log.(6o )} ],

where n = -+ m -1 is the number of non-negative variables, m -1 the number
of equations. 0; and f are parameters for varying the distribution, 0 < 6p < 1,
6y > 1, 82 > 1. Reasonable bounds for 8; are .5 < 0p < 1, 1.5 < 0102 < 4. The
critical parameter is { > 0. Poor performance can be expected if f << 1. A
mild assumption is f = 1.

Foro=1, 6102 =4, and for f =1or f =m/2:

=1 ¢ITER < (1.4 + qa)m + ya(log B)m,
f=m/2 ¢ITER < (1.4 4+ qa)m + 274 log .

It is conjectured that f = m/2 may be typical of practical problems. If so, for
large m and @ < some fixed multiple of m,74 = e, and £ ITER < 4.2m itera-
tions. Tighter bounds for m < 5000,n < 4m are tabulated. For m = 1000,

n < 4000, and f = m/2, ¢(ITER < 1.5m.
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The Approach
Each step of the simplex method with a convexity constraint produces in

the space of the columns a simplex that covers a point b, corresponding to the
right hand side. The process that locates b relative to the simplex, is viewed as
a kind of black box out of which pops the random value of the incoming variable
As. If the point b (as expressed by its barycentric coordinates in the simplex) is
uniformly distributed in the simplex, then p = 1—)\, has the density distribution
mp™1dp, 0 < p < 1 and expected value A, = 1/(m + 1). By assuming this
distribution, we can bypass the difficult (if not intractable) analysis of the number
of edges (steps) along the path of edges in the polyhederal set generated by the
simplex method. I believe m p™'dp leads to a very conservative estimate of the
number of steps but much work remains to show it is a reasonable assumption or
to find another more plausible distribution to take its place.

Instead of viewing linear programs as a single class of problems and then
applying a worst case analysis, I have taken the view that they should be classified
by the characteristics of the distribution from which the columns are drawn. A
special class of distributions with four parameters fp, 01, 03, f is studied. A bound
on the expected number of steps as a function of these parameters is obtained.
Given a linear program, one could use its input data to estimate values for #; and
f and then use the formulae to predict the expected number of steps. Again much
work remains to find a good way to characterize linear programs encountered in
practice and to develop formulae for estimating the number of steps as a function

of their parameters.



The problem is to estimate the number of iterations to solve by the simplex

method the linear program: FIND X; 2> 0, minz

n L] L
YNoPpi=0, Y N=1, D e=z
=1

y=1 J=1

where P; are m-vectors. Because of the convexity constraint a problem with a
general right hand side }J;_; P;A; = b may be reduced to the above by setting
I_-"_,- = P; 4+ b. A general linear program, i.e., one without a convexity constraint:

FIND z; > 0, minz:

n
> Pz =5, 2 ¢z =1z,

can be reduced to the above providing one is willing to impose an upper bound

M on the sum of the variables

n

Zz;+z.‘+1=M.

j=1

This is done by setting z; = M) ;,dividing each equation by M, and then setting
Pj=P;j+b/M as above.

Setting aside the objective function 2 for the moment, the vectors P; may
be thought of as points scattered around the origin in R™ and we are seeking
weights A; > 0 to assign to the points so that their center of gravity is the origin.
See Figure 1. Any m +- 1 points Pj, whose simplex is full dimensional (shaded
area) and covers the origin corresponds to a basic feasible solution. [In a different
geometry namely the space of (Mg, Az, .. .,}.,.)' such a solution corresponds to an
extreme point.] Any other such simplex could qualify as the optimal basic feasible
solution if its corresponding “cost” coefficients ¢;, are sufficiently small relative to

the other ¢;.



R Space

FIGURE 1.

The simplex method has two phases. Both phases use the same procedure
but on different problems. Phase I's purpose is to find a basic feasible solution to
start Phai%e II. Phase I is set up in such a way that for its problem a starting basic
feasible solution is at hand without any computational effort. The two phases use
the same algorithm. We will therefore, discuss only the effort to solve the Phase
II problem.

The simplex method’s Phase II is initiated by a selection (found in Phase I)
of (m -+ 1) points P;, with two properties: first that

— P.fl PJ’: e an+1
1 1 °vé 1

B
is non-singular and second the solution to

‘Z:P,-‘kg‘=o ’ E‘:’\%=1 ’
]

yields A%, > 0.



The columns of B therefore form a basis in the space of the columns (P;,1)7.

The basic column indices are denoted by

B= {jlljﬁ:-":jm-{-l} '

and the solution Aj, = A}, > 0 for j € B and A; = 0 otherwise, is called a basic
feasible solution. The value of this solution is

m+1 ,

2=2z= Z c,"hg‘ .
§=1
The iterative step consists of replacing a column P;, by F; in such a way that

the two properties above are preserved and there is a decrease in the value of 2.
If the origin is in the interior of the simplex, the decrease is strict. If this happens
on each step, it is easy to see, since there are only a finite number of simplices,
that the process is finite. However, if the origin is on a lower dimensional face
of the simplex and the incoming point P, does not replace a point on this face,
there will be no improvement. In such a case it is necessary to use a perturbation
scheme to get around the “degeneracy” in order to guarantee convergence in a
finite number of steps. In our approach the columns of the linear program are
selected at random from a distribution. For the class of distributions studied,
the probability of the origin lieing on a face of a covering simplex, is sero and
therefore degeneracy need not be considered.

Each step (iteration) computes (II, ¥pn4-1),
IOPj+ fmt1 =65 , KEB

This system is solved using B—! which is updated by (m + 1)? multiplications
and additions. Letting

bj=c¢;—IP; — Xm41 ,
5



the incoming column P, is selected by
8 = argmin d;

Note that
ﬁ,ﬁ 5,' and 5,"=0, J.GB

It is easy to see that for all feasible solutions 2p -+ 8, is a lower bound for 2.
Indeed if §, > 0, then the current solution z; is optimal and the iterative process
stops. To prove zp - §, is a lower bound:

m+41 m-1 m--1
0= 2 6.1'4"?; = E (¢cj,—1P J't_’m+1))‘g‘ = z: ‘h)‘g;—”m+l = 20— fm+1

=1 fm=l =1

n n : n
Z: OYES E(c,'—]IP,' — Em1)Aj = E ejhj — Fm41 = 2 — 2o
=1 j=1 =1

Hence
z—zo=2:6,k52minﬁj=6. 4 Aj 2 0,EN;=1.

Instead of plotting P; € R™, we now plot (Pj, ¢;) € R™1, see Figure 2. The
problem is to find weights A; > 0 so that the center of gravity lies on the line
(0,0,...,2), which we will refer to as the z axis, and such that the z coordinate
is minimum. The hyperplane, called the solution plane, that passes through the

points (P;, ¢;,) associated with the basis B, has for equation
OP 4+ fmy1=2 , Tm+1= 20

where (P, 2) is in the space of all possible columns (Pj,¢;). This plane intersects
the z axis at G with 2 = 2p. The point L = (P,, ¢,) selected for improvement, is
the point (Pj, ¢;) most below this plane.
The lower bound point F' on the 2 axis with 2 = 2o + §, is obtained by
passing a plane parallel to IIP -+ 25 = z through L = (P, ¢,) and finding where it
6



x old B = {1,2,3}

\
(Py,Cq) (Pl:f—‘])/ New B = {1,2,s}
3'73 _ A

Solution plane

TP + z0 i -
{Pzrcz)
(Ps.’ f ) i
” > 2
F 0 S
\iower
bound
FIGURE 2:
Improving & Basic Solution

cuts the z axis. Next find the new solution plane obtained by replacing (P;,, ¢;,)
by L = (P, ¢,) and let it intersect the z axis at K at 2 = 2;. Join L to K and
extend until it hits the old solution plane at H. The lines GH and LF are parallel
because they lie in the same plane and at the same time they are on two parallel

planes. Therefore,

where HK /HL = a/(1 + a) = value of incoming variable z,.

We now project parallel to z axis the points (P;, ¢;) onto the 2 = 0 plane and
denote by L, K, H the points corresponding to L, K,H. The point K projects
into X, the origin, see Figure 3. Note that

7



R Space
o = 2K
KL
_(1_ = g = )\
1+a AT s

FIGURE 3:

Projection onto 2 =0

GK HK _HK _ o
KF~ KL gL
The smaller (—6,) and a, the less the improvement GK because a/(1--a) increases

monotonically with a and

GK GK

pas R a a
(—6,) GK+KF 1+a

14 a(—s')

or GK =

Estimating the error w; after ¢ iterations
On iteration ¢ let 2z; be the value of the ¢ — th basic feasible solution and let

2z — w; be the best lower bound obtained so far. Thus
2 2 minz 2 23— w

Initially for ¢ = 0, we have given 2, and Zp — wo = min ¢;. On iteration ¢, we
generate a 6, = 6,6 = a;. Then

Zi41 — Wepy = max(z — wy, 2+ 6;)
8



becomes the new best lower bound generated so far. Therefore rearranging

Wity = Z44q — Max(2 — wy, 2+ 6%)

=2+ 1 -‘:Gg bs— ma.x(:, —wy, 2+ 6:)
— B o 4 —§t

= 1+a*( 6.)+mln(lﬂg, 5.)

< W¢/(1 -+ al)

To see that the last step holds, note that (1) if (—&%) > wy, then the right
hand side increases as (—6%) decreases towards (wg); or (2) if (—6%) < wy, then
the right hand side is (—¥,)/(1 + @) and it increases as (—é*) increases towards

ws. Thus the maximum is attained at (—§,) = w;. It follows that
Wik < we/(1 4 ag)(1 + a¢q-1) -+ (1 + Gg4x—1)

The basic solution (A, Njs -+ +)Ajmss) 18 8180 the barycentric coordinates of K
in the simplex for iteration r. Let P, correspond to the first coordinate, and let

Aj, = A;p be the value of the incoming variable \,. It has the property that
M =a./(1+a,).
Let
P=1—M=(1+0r)—1a

then
Wy < pWr—1 = (1 — Ag)Wr—1.

If now we assume with equal probability that the incoming column P, cor-
responds to any vertex § in the simplex, then, letting £(z) stand for expected value
z and £(z | y) for expected value of z given y,

=] _ 1 & . m _
£+ ay) 1_5(1_x;)_1—m—_i.1£x;_m, =1,



independent of the distribution of a, in the simplex. Therefore

E(we | wi—y) < [m/(m + 1)]w—y;
E(wy | wi—z) = €lexp(wy/ws—1 | Wi—1)Wi—1 | Wi—3]
< [m/(m+ 1))€[wi—s | we—a] < [m/(m+ 1)Pws—s.

It follows inductively

¢ws < [mf(m+ 1)Jwo = e~/ ™wo.

Assumptiom' About the Class of Distributions of Points (P, c)

We think of (P, ¢;) as a random sample of n points drawn from a continuous
distribution of points (P,¢) in C, a convex set. On iteration ¢ we would like to
estimate the probability of having points Pj below the solution plane IP —z; = 2
or having no points there and hence termination, see Figure 4.

The class of distribution functions from which the columns are drawn, has
been selected to show that the expected number of steps depends rather strongly
on a parameter f which measures the change in the log of the cummulative dis-
tribution function in the neighborhood of L, a point on the under surface of C.
It is best to think of the parameters fy,0;, f/ as independent of the choice of L
although this need not hold precisely. dp can depend on L.

In Figure 4 let the line through (0, 2;) represent the hyperplane IIP +2: = 2z
of iteration ¢. Suppose we move a hyperplane IIP +- d = z starting with some
d = d; just touching C from below at L. We assume F(d — dy) = a;- (d—dy)! is
the cummulative probability distribution of points (P,¢) in C up to some d=d"
For d > d*, no assumptions about F are made. The values of f used for illustra-
tive purposes are f = 1 and f = m/2. For example, if C is a ball inm-1
dimensions, i.e., the interior of a sphere, then the volume of the ball between a
tangent hyperplane through L and a parallel hyperplane cutting the ball a small

10



m+
R 1 Space

Zz axis

x(Pj ,cj)i

FIGURE 4: {(I;,-, ¢;)} is a sample of n points
from a distribution F of points (P,¢) in C

distance d away is proportional to d*+™/2 je. f = m/2 approzimately for a
distribution F' uniform in the ball.

The probability that a point (Pj,¢;) lies below IIP 4 2; = z, the solution
plane, will be denoted by Pi\§; < 0). If ; < d’, we assume accordingly

Pr(d; < 0) =a¢- (2 —dy)’, />0, a<d,
F(d'—d)=as-(d' —dy)/,

where the constants (a¢, d¢) depend on II and d°, f are independent of II.

Letting 8o = F(d* — dy),
11



(22— de)f

Pr(5; < 0) = i —g7 Fld —d)
. Bo(2: — di)’
S @ PRl
Bo(2¢ — di)!

& [(8° — min 2 — wy) 4 (2 — dg)}/
< b1 +(d° —minz—w)/(z—d)] ™, #H<Ld.

0o is the proportion of points in C below the plane IIP + d* = z. Its value
depends on II and needs to be known only roughly. To make conservative es-
timates of bounds, we will later on set §o = 1 which has the virtue that it is
independent of II. For a distribution uniform in a sphere, fo = 1/2 which is also
invariant of II.

Referring to Figure 5, we have

29 — wo = mincy, 0o=Pr(IIP5+d'>cj), 0<8h<1.
Let
L ] .

i= d —mln.z 6> 1.

ff maxz—mnz
Let

h = min z — min ¢;.

Let

h
maxz —minz’

fo—1= 622 1.

Like f,0; and @3 are characteristics of the distribution F" in C. Reasonable values

for #; and 6; might be 1.5 < 0y < 2.5,1 < 63 < 2, see Figure 5. High values of &;

give rise to high estimates of expected number of steps. For illustrative purposes
12



Rm+l Space

max z-min z

z= (1/91) (max z-min z),

6, > 1

h= (62-—1) (max z -min z),
6, > 1

e e e —— - ——

= P P.+d* g
BO r(wjd >cj),

05_60<1

FIGURE 5:
0o, 01, 02 are characteristics of the distribution (P, ¢).
The analysis requires a bound on the ratio As/w;.

0o = 1 and @102 = 4 are used later. Note that

h = min z — (20 — wo) > wo — (maxz — min z).

Hence (max 2z — minz) > wp/f; follows from

ba—12

Therefore

wp — (max z — min 2)
(max z — min 2)

d" — minz = (max z — min 2)/8; > wo/810a.

13



It follows for 2; < 2" that,
Pr(6; < 0) < o[l + {—w¢ + wo/ (01 62)}/(2s — de)] 7 .

Estimating A; = (2; — dy)
Our problem now is to find an upper bound estimate for A; = (2;—d;) where
A for the underlying distribution F, is the analogue of —&% for the sample. The

basic relations between successive ¢ are, as developed earlier, except now A¢ in

place of —6%:
a
A1 =47 _I_‘G‘At.
—a .
Wit1 = l_-l-:l:At + min(wy, Ay) .
Now

we > 2t — Zi41 = [64/(1 + 6)] As = Ay,

where )y, the value of the incoming variable ), is the first barycentric coordinate

of K in the simplex if entering column P, is the first vertex. Therefore
At S Wi Xi_l

In estimating the number of steps we set aside those steps in which A < )\;
where A} = /(m + 1) for some 4 < 1 to be chosen later. Steps with Ay < A
may be thought of as an “almost” degenerate pivot. We conservatively estimate

for them a sero improvement even though in fact there is some. Let
B =Pr(\1 < \y).

To estimate § as a function of yu, we assume the location of K in the simplex

is uniform over the simplex. If so the density distribution of p = (1 — Xy) is

mp™1dp. This randomization assumption is consistent with the earlier one in
14



that £ p = £(1 — A1) = m/(m <+ 1) as before. We now have

1
p=Piu <) =] mpmldp=1-a X",

i

1—p=(-N"=0—7"

1
= {(] — —————)(m+1)/pyum/(m+1) - ,—u

U=Grom 7
Thus if T is the estimated number of steps with Ay > A\j = p/(m+1),4 < 1,

then‘
1T =T/(1—p)=¢"T, p<1,

is the estimated number including A\; < )\:. What we will do, accordingly, is
to. bound A; given Ay > )\;. It is to be understood that the subscripts for
A¢ Aity,..., now refer only to those steps with Ay > )\;, skipping over the
steps A\ < A:. The bounds determined for the expected number of iterations
with A\; 2 )\; will later be corrected for the omitted iterations with \; < X; =
,u](m -+ 1) by multiplying by 7 =¢e*.

Therefore for some ¢,,

Ar=(1—¢r)wr/)*1 ’ 0<¢.<1, MZM-
Hence .
Wrg1 = —A\ + mln(w,, A;)
= —(1 — ¢;)w, + min(w,, A,) < ¢,w,
< Gre—1- Prwy
and
Ay < (1L —$r)br—18r—z - $rwif\;, r>t, 0<¢,<1.

15



We will now show that a high value for Ay, i.e., ¢¢ close to 0 implies a low

upper bound for A;y ;. Indeed this is clear by noting:

Aits < (1 — Pepa)Pita Pip101we/ A
Aipa < (1 — fupa)Pit1 Ot we/Ay
Apyr < (1 — Gepa)de we/\]

A < (1 — ge)we/Xy -
Accordingly our approach is to estimate a bound for A;/w; by averaging
A./w, over some k — t + 1 iterations which will be denoted by Ax/wy:

Ay 1 k_A_I

w k—t+l=w’

We shall refer to A; as the smoothed As. For example for k = 2,

+ ‘—"]Wt+1 ’ We > Wit

< z[—(1 — ¢s41) b2+ '—(1 — ¢ (we/A\Dwery, 0L ¢:<1
Wit-1

<l
2 Wity

e 1 L
(we/Mwig1 = Ewt/ M

Note that the bound on the smoothed A1 over two iterations is about half

that for a single iteration. Over k — ¢ + 1 iterations we have

K
A < —_-_—lt-_'l_—l' 2 11— 40)br—s - dlwi/ADur, Wr 2 Wiy

The values of ¢, are not known, so we choose 0 < ¢, < 1 50 as to maximize

the right hand side. The terms with indices r = k and r = k — 1 only involve

éx and @x—y which for fixed ¢s—3, ..., ¢+ are maximized by setting ¢ = 0 and
16



#k—1 = 1. The second term dropping, only the first and third involve ¢4—z and
is maximized by setting #x—z = 1. Continuing in this manner, we obtain ¢, =1

forr=k—1,...,t and

-
k—t+1

— 1 s
Ay < —(w/ A Jwy =
Wy

Wy
(k—t4 1"

Since we are free to choose ¥ — ¢ 4 1, the number of A, to average, we can
choose k — ¢ = m, yielding

Bipm < wiflm+1)N]=w/p, p=(m+1));.

We will use &; < g~ 'wi—, as the bound for the smoothed &y = (2 — dy)
providing ¢ > m. For t < m, &y/w; is defined as the average value of A,/w, for
0 < 7 < m yielding &; < p~ wy(wo/wm). Returning to Pr(6; < 0), we now

have for z; < d°,
Pr(8; < 0) < o[t + pwis {—wi + wo/(0202)}] 7, t2>2m
< Oo[1 + po; (W /wol{—wy + wo/ (016}, t < m.
Let ¢ = £, be the first ¢ such that z; < d'. To estimate &o, refer to Figure 5.

Note that z; < d° if ws < d° — min 2. It is sufficient if

wy < wo/(04162)

because
wo/(0162) = (20 — min z - h)/(6162)

< (max z — min z + h)/(6162)
= (maxz — minz)/é;

= d’ — min 2.
17



Therefore we need to estimate a ¢ = {p such that
wy, < wo/(0103).

Earlier we showed w; < wo[m/(m—+1)]* = woe—*/™. Therefore we overestimate

such a ¢p by setting

£ wy, < woe™ /™ = wo/(6,63),
to = mlog(0162), 0 2>1,

which henceforth will be defined as the value of i.

Probability of Termination
Given n points (P;, ¢;) in C of which m <1 lie on hyperplane IIP + 2; = 2,
the probability that none of the remaining # = n — (m +- 1) lie below the hyper-

plane, i.e., the probability of termination on iteration ¢, given non-termination

prior to ¢, denoted Pr(term), satisfies
Pr (term) = £[1 — Pr(6; < 0)]™ > p4, i=n—m—1

where (1) for 0 < t < 2y, we set p; = 0 and, (2) for ¢ > 2o,
pi = {1 — b0 [1 + p{—we/Wi—mm + wo/ (We—m0182)})~}*, t2>m
pe = {1 — Oo[1 + p{—wm/wo + wm/(w:8:182)}]~7}", t<m.

We now solve for wo/wi—pm if t > m (or wm/wy if t < m) in terms of p = py:

1 Wo 1 1/f 1/mi/f we
8183 wt—m p[ 0 /( p ) ]+ wf—m, <
1 W Loy oymit gy Y

18



The value of ¢ given p will be estimated by trying to find a £ > p:

L2 =%le%.”/a—p‘f")‘”—11+e—"’*—, t>m,

0]82 Wt —m Wf—m
IR PSR TSV IORRY YY) N Wm
te = Lo g —n e em, <.

Recalling é(wg/wy) < e~ (—¥/™ for z > y, we have
€11/ (s—m/w0)] > 1/£(we—m/wo) 2 e~V

also £(wi/wi—m) < ¢~1. We proceed in a similar manner for the ¢ < m case.

Either case yields

1 1
—_t=m)fm & Z g/ pey  QU/mIS —1
it < S0/ —p MM — 1) e

Whence substituting efo/™ = ,6,,

elt—tal/m < (9111 )(1 — pV/MMS — (1 — peYeu?, t>t,p<1.

We overestimate ¢, the number of iterations to obtain a probability of termination
> p on iteration ¢, by setting LHS = RHS above. Letting s =t —ipand s = 3,

corresponding to p = py, we have solving for s,
8p = m log{63/7 /(1 — p'/™M! — (1 — pe™ ")} + m logles™), p<1.
The smallest allowed value of s, is 8, = 0 and this occurs when p = p;, — namely
P, = (1 — 6o)™.

In other words a probability of termination p > (1 — )™ on some iteration to-+ s
(where 8 used here is not to be confused with incoming variable P,),is attained on

the average for ¢t < o - 78p.
19



Therefore iteration ¢ = T, corresponding to a probability of termination
p 2 (1—6p)™
Tp = to+ 78p = m log(0:62) + 78p
For p > .8", more significant places can be obtained using a very close approxima-
tion
(1 —p*/™) = —logll — (1 — p"/™)] = —(1/R) log p, 8<p/m<.
Thus for p > (1 — 6)® and p > .87,
8p = m log(e s™*) + m log[{—0o7/ log p}*/7 — (1 — pe™Y)].

Suppose m = 1000, =n—m—1=1000,f =1 or f = m/2, §p = .5,
0102 = 4. How many iterations ¢ = T o; must be performed before the probability
of nontermination on iteration ¢, with A\; > .14/(m + 1), is less than 1 — p; =
.99? This means termination is likely within another 1/p; = 100 additional itera-
tions. Noting g = .14,7 = e = 1.14, substitution in the above formulas, gives
P > (1 —6p)™ and .8™ so it is okay to use the approximation for 8,o; which gives
To1 =(144+T7T9m =101mif f =1 or Toy = (1.39 4 .01Ty)m = 1.59m

iterations if f = m/2.

The inverse function, obtained by solving for p = p; in terms of s, = s,
Pr(term) > p; = {1 —fo[l + pe~H—1+e/™)]~/}", s=t—1t,20,

will be needed later.

Expeeted Number of Ierations
If p; is the true probability of termination on step ¢,§, = 1 — P, and @; =
Qo * @1 "+ Gy, then the expected number of iterations, by definition, is
§ITER =0-Py+1-Qp Py +2-QoBa+ +* + Q1P+

=Go+ToG1 + FodsTa + -+ Q¢+ <+
20



Since p; < p;, the expected iterations beyond ¢ — 1 is less than

Q)1 + g1+ Q4+19e+2 + G- 1Ge42Te48+ 7))

where gt = 1—psand Q¢ =qo-q1* *** - qs. Because p; < pg41 < - -+, the above

is less than

QW+ g+ g2+ ) =Q)/p(¥), Q) < 1.

Lemma: Expected number of iterations, {ITER < tp -+ q[sp + (1/p)] where
~ = ek is the adjustment so as to include iterations having Ay < A\; = p/(m 1)
and 0 < u < 1. Therefore for any p, (1 —8)* < p < 1,

§ITER < mlog(f182) -+ v mlog(es™?)
+ ym{log[{fo/(1 — p*/ M) — (1 — pe~ ) + 1/pm} .
A weaker bound can be obtained by dropping the (1 — ge™?) term:
For any p > (1 — 6p)%, |
- 1 1

¢ITER < m log(0105) + vm{log(es™") + Flogfo— Flog(1 —p'/") +1/pm)} .

At this point we derive some asymptotic results. Assume % fixed as m — co.
Set p = (1 — 8)" and note 1/(pm) — 0. We have, using the stronger upper

bound above
EITER < m log(f103) for m—o00 and 7w fixed, @102 >1.

For example {ITER < 1.4m when §;0; = 4. Assume instead m — oo and

% — 00, then for any fixed p and 7 sufficiently large: (1 — 8p)* < p. Again

1/(pm) — 0. We can fix p arbitrarily small providing % large enough — hence
21



log(1 — p*/®) = —log® + log(—logp) = —log® -+ b where b can be fixed

arbitrarily large. Therefore,

¢ITER < m log(610a) -+ ym{logles™") + }log bo+ }mﬁ - }b}

where 1 < y<e, m — 00, n— 00 and b > 0 fixed (arbitrarily large).

Our objective, however, is not to get asymptotic bounds, but bounds for
¢ITER. Note any p > (1 — o)™ can be chosen. Choose p = e~*. Since 7 < e,
the term 1/(pm) can be dropped with an error in the bound for { ITER < 2.7 <
10 iterations, actually less since earlier we set Q(t) = 1. Note also —logm =
log(1 — e—1/7). The condition p > (1 — 8p)™ becomes G > 1. Therefore

¢ITER < m log(6:02) + 7 m{logles™") + } log 8 + } log 7}

= mllog(0162) + E], 8102 > 1, 67 > 1.

As 3 final step we determine y and 4 = e* so that the bound for E is as
small as possible. Note that E is of the form e#(A — log ) where A > 1,4 < 1.
Setting dE/du = 0, we obtain

A= (14 plogu)u?, A21,u<1l,

E=c¢ut, Ta=E[/A=e"/(1+ plogu).

Particular values of A, 7,4 as a function of the parameter u are tabulated below.
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log b ek A TA

0.0 1.00 2.72 1.00 2.72
-0.5 61 1.83 1.14 2.65
-1.0 37 1.44 1.72 2.28
-1.5 22 1.25 2.98 1.88
-2.0 J4 1.14 5.37 1.57
-2.5 .082 1.08 9.68 1.37
-3.0 050 1.05 19.09 1.23
-3.5 030 1.03 29.62 1.15
-4.0 018 1.02 50.60 1.10
-4.5 010 101 85.52 1.06
-5.0 0067 1.01 143.41 1.04

00 .0000 1.00 00 1.00

Therefore, finally,
(ITER < mlog(0103) +7amA , 0163 > 1

where
1 1
/ !

Reasonable values for 6; are .5 < 8p < 1, 1.5 < #1602 < 4. For comi)arison =1

and f = m/2 will be used. Assuming 8p = 1,010; = 4:

A=1+4 ~=logly+ =logmn, fom 2 1.

to =m log(0102) =139m, A=1+4(1/f)logn
=1 A=1+logn

f= ?: A=1+4(2/m)log®.
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A bound for the expected number of iterations can be computed directly from

the formula
EITER < to + WGt + GtoGto+1 + ** + WoGto+1°7791) » G =1—ps,

where the series is truncated at ¢ = T such that @r/pr < 1 where @r = qo* - * g7
The truncation error is less than 4 = e#, 0 < p < 1. These bounds on the
expected number of iterations have been computed and are given in the tables
that follows for various m and n and for f = 1 and f = m/2 for comparison.
The values of 8; used are fp = 1,010 = 4. See Table 1 for f = 1 and Table 2
for f = m/2.
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FORMULAE USED TO COMPUTE TABLES

0<8<1, 0,821, f>0.

To compute 4 and 74:
A =1+ (1/f)log,(0o7), P=n—m—1, 6fi>1.

Find 4 < 1:
A=(1+ plog,u)/n

na=e"[(Ap)
Crude Bound = tg + 74 Am + e#T1... where to = mlog,(0:03).

Probability of termination on iteration ¢t > pg with Ay > p/(m -+ 1):
p: =0, 05ty

pe = {1—Op[1 + pe~(—1+ /™))~ 7)¥, t=to+8>1

G =1—py; Q¢ = Gto " Geot1"" "Gt

Bound = #p + e#(Q¢, + Qip+1 + -+ -+ Q¢). .. terminate when Q¢ < p:.
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m-+1=
number of
equations

= 2

= 5
m= 10
m= 20
m= 50
m = 100
m= 200
m = 500
m = 1000
m = 2000
m = 5000

n=29m n=25m n=3m n=35m n=4m

4.8
5.4
6.3
7.0
74
8.6
9.3
10.1
10.8
11.4
12.3

TABLE 1: f =1

BOUND ON EXPECTED NUMBER OF ITERATIONS
AS A MULTIPLE OF THE NUMBER OF EQUATIONS —1
parameter values f =1, p =1, 8,02 =4

n = Number of Variables

5.1
6.2
6.9
7.6
8.4
9.1
9.7
10.6
11.2
11.9
12.8
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5.7
6.7
73
8.0
8.8
9.4
10.0
10.9
11.6
12.2
13.1

6.2
7.0
7.6
8.2
9.1
9.7
10.3
11.1
11.8
12.5
13.1

6.4
7.3
7.9
8.5
9.3
9.9
10.5
11.4
12.0
12.7
13.3

Crude
Bound/m
n=4m

8.2
8.4
9.0
9.6
10.6
11.3
12.1
13.1
13.9
14.7
15.6



m-+1=
number of
equations
m= 2
m = 5
m= 10
m= 20
m= 50
m = 100
m= 200
m = 500
m = 1000
m = 2000
m = 5000

n=2m n=25m n=3m n=35m n=4m

48
4.0
3.5
3.0
2.3
2.0
1.7
1.6
1.5
14
1.4

TABLE 2: f = m/2

BOUND ON EXPECTED NUMBER OF ITERATIONS
AS A MULTIPLE OF THE NUMBER OF EQUATIONS —1
parameter values f = m/2, fp =1, 0103 =4

n = Number of Variables

5.1
4.5
3.8
3.2
2.4
2.0
1.8
1.7
1.5
14
14

5.7
4.8
4.0
3.3
2.5
2.1
1.8
1.6
1.5

14
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1.4

6.2
5.1
4.2
3.4
2.5
2.1
1.8
16
1.5
14
1.4

6.4
5.2
43
3.5
2.6
2.1
1.8
1.6
15
1.4
1.4

Crude
Bound/m
n—=—4m

8.2
6.5
5.6
5.1
4.6
4.4
4.3
4.2
4.2
4.1
4.1
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EXPECTED NUMBER OF STEPS OF THE SIMPLEX METHOD
FOR A LINEAR PROGRAM WITH A CONVEXITY CONSTRAINT-

by
GEORGE B. DANTZIG

Abstract
When there is a convexity constraint, B\ ; = 1, each iteration ¢ of the simplex
method provides a value 2; for the objective and also a lower bound z; — ;. The
paper studies (1) the expected behavior of (ws/wo), (2) probability of termination
on the t — th iteration, and (3) the expected number of steps, { ITER, under
assumptions about the class of distributions from which the columns are drawn.
Assuming a random like behavior for covering simplices, it is shown that

¢ ITER < mllog,(6:02) + 14{1 + }log,(ao M,

e2qa>1, n2=21,

where n = Ti+m-}-1 is the number of non-negative variables, m -1 the number
of equations. 8; and j are parameters for varying the distribution, 0 <6< 1,
6, > 1, 62 > 1. Reasonable bounds for 0; are .5 < 8p < 1,1.5 < 0102 < 4. The
critical parameter is f > 0. Poor performance can be expected if f << 1. A
mild assumption is f = 1.

For 8p=1, 010 =4, and for f =10r f =m/2:

f=1 ~ EITER < (14 + 1a)m + 7alog P)m,

f &= mf2: EITER < (1.4 + qA)m - 274 log 7.

It is conjectured that f = m/2 may be typical of practical problems. If so, for
large m and %@ < some fixed multiple of m, 74 = ¢, and {ITER < 4.2m itera-
tions. Tighter bounds for m < 5000,n < 4m are tabulated. For m = 1000,
n < 4000, and f = m/2, {ITER < 1.5m. '
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