March 1991
TECHNICAL REPORT SOL 91-5
George B. Dantzig

Polyomomially Bounded Algorithm
into a
Converting a Convergence Algorithm

STANFORD, CALIFORNIA 94305-4032
STANFORD UNIVERSITY
DEPARTMENT OF OPERATIONS RESEARCH
SYSTEMS OPTIMIZATION LABORATORY
An approximate solution will be generated with
\[d > \| q - f \| \]
When applied to a perturbed problem \(q = q^\prime \neq 0 \), we will show that in
iterations \(d > \| q \| \), \(q = q^\prime \) will be generated with
\[d > \| q \| \]
In approximations an approximate solution \(q = q^\prime \) will be produced.
Phases I Linear Program with a convexity constraint. We will reproduce this proof that in
Von Neumann in 1948 proposed the first interior algorithm for solving a general
zero coefficient density.

Each iteration consists of \(m + \eta \) multiplications and additions, where \(\eta \) is the non-
exact solution to the unapproximated problem with \(q = q^\prime \). In \(I + \eta \) iterations,
we obtain an approximate solution with right-hand sides \(q, q^\prime \). To observe an
approximate solution in the limit as \(\eta \to 0 \), we assume that all perturbed problems
are feasible for all \(\eta > 0 \). We apply the algorithm
\[I = \tilde{I} \]
of approximate solutions
where \(\tilde{I} \) are m-vectors satisfying
\[I \]

Find: \(\tilde{I} \)

Abstract: We consider the General Phase I Linear Programming problem with a
convexity constraint which can be written after some algebraic manipulation in the
form:

George B. Danzig

By

Polynomially Bounded Algorithm

into a

Converting a Converging Algorithm
Figure 1. The Iterations Converge to \(\bar{a} \) Instead of the Origin 0.

\[
\begin{pmatrix}
1 & \ldots & 1 \\
1 & \ldots & 1 \\
\vdots & \ddots & \vdots \\
1 & \ldots & 1
\end{pmatrix}
\begin{pmatrix}
w_p \\
w_p \\
\vdots \\
w_p
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
\vdots \\
1
\end{pmatrix}
=
\begin{pmatrix}
\bar{a} \\
\bar{a} \\
\vdots \\
\bar{a}
\end{pmatrix}
\]

where \(\bar{a} \triangleq \frac{(1 + w)I}{1 + w} \).

The coordinates of \(q \)'s may be chosen as follows:

- The vertices of the \(1 \) dimensional simplex whose center is the origin and whose vertices are located at distance \(\frac{(1 + w)I}{1 + w} \) from the origin. For example, the vertices of an \(n \) dimensional simplex whose center is the origin and whose vertices lie in the set of feasible \(q \)'s that contain the origin as an interior point. We choose \(q \) to be different points. The vertices of any simplex \(x \) whose \(q \) approach \(1 + w \).

To generate the \(m + 1 \) different finite sequences \((q', x', q)\) whose \(q \) approach \(1 + w \).

\[
I = \begin{pmatrix}
x \\
x \\
\vdots \\
x
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}
\begin{pmatrix}
x \\
x \\
\vdots \\
x
\end{pmatrix}
= q
\]

where \(\bar{a} \) is feasible.
We now describe the detailed steps of von Neumann's algorithm for finding an approximate solution to a particular problem. We denote the detailed steps of von Neumann's algorithm. For finding an approximate solution, we prove that this system has a unique solution x. We will denote the system by $$(I + w)x = x.$$ We will denote the weights by λ, μ. The final step is to generate the feasible solution x to the phase I problem by iteration. The final step is to generate the feasible solution x. The final step is to generate the feasible solution x. We denote the weights by λ, μ. The final step is to generate the feasible solution x to the phase I problem by iteration.

\begin{align}
&\frac{(I + w)x}{\mu} = d, \\ &\frac{\lambda}{\mu}(I + w)x = \frac{\lambda d}{(I + w)\lambda} > 0.
\end{align}

When the sequence (λ, μ) reaches a point, the sequence (λ, μ) converges towards (θ, μ).
\[t > \left(\frac{\varepsilon}{t \sin \theta} \right) + \left(\frac{1-t}{t} \right) \]

Therefore, for $t = 2, \varepsilon, \ldots$, the norm of the hyperplane is 2, it follows that ε and

\[\frac{\varepsilon}{t \sin \theta} \sin \theta + \frac{1-t}{t} \sin \theta = \left(\frac{\|q - f\|}{t \sin \theta} \right) + \left(\frac{1-t}{t} \right) \]

Therefore, noticing $\frac{2}{\pi} \leq \theta = \varepsilon + 1 \theta$ sin $\sin 1 - \frac{1}{t \sin \theta} = \frac{1}{t \sin \theta}$

Then

\[\|q - f\| = \frac{1}{t \sin \theta} \text{ and } \|q - 1-\theta\| = \frac{1}{t \sin \theta} \]

Let S be the set of feasible q defined as $S = \{q_1, q_2, \ldots \}$, where q_1 is the origin in the set of feasible q. By construction, all points located at a distance of less than all points q_1 then all points $q_2 < \theta$, contrary to our assumption that all points lie inside the convex hull of the feasible q's, contrary to our assumption that all points $q_2 < \theta$. For this reason, we would like to place the one side of the hyperplane through q_1, contrary to our assumption that all points $q_2 < \theta$. In order to determine the rate of convergence, note that, because of the following:

\[\frac{\|1-\theta - q\|}{\|1-\theta - q\|} \frac{\|1-\theta - q\|}{\|1-\theta - q\|} = \cos \theta \cos \cos \theta \cos \cos \theta = \frac{1}{t \sin \theta} \]

Where t is the unit n-vector with 1 in component n and θ are computed by

\[(2 \theta \cos + 2 \theta \cos)/(2 \theta \cos + 1 - r \theta \cos + 2 \theta \cos) = r \cos \]

\[(2 \theta \cos + 2 \theta \cos)/(2 \theta \cos + 1 - r \theta \cos + 2 \theta \cos) = r \cos \]

Is proportional to $\cos \theta$ and $\cos \theta$, respectively. It is clear that H is a weighted convex combination of q and f with weights W. From the result of Proposition 3.1, it follows that H will be labeled ABC, The next approximation point $q_1 - f$. The triangles H are the same as the same H and f. This can be carried out in $m + n$. The only non-zero vector with 1 is $q - f$. Then H is preprocessed.

\[\|q - f\| = \sqrt{\|q - f\|^2} \]

\[\text{ARCMAX} = s \]

For instance, Figure 2, f is selected as that f makes the shortest angle with direction $q_1 - f$.
0 = \hat{h}_1^w (1 + w q) = \hat{h}_1 (i + 1 + w q)/\mu = \hat{h}_1 (1 + w q)/\mu > \|w q - \bar{w}\| \quad \text{and} \quad \hat{h}_1 (1 + w q)/\mu > \|1 + w q - 1 + w q\|

where \(\bar{w}\) is the coordinate of the hyperplane that separates the \(m + 1\) fold symmetric of the equilateral simplex. It is sufficient to demonstrate that the hyperplane defined by \(\bar{q}\) from any point lying in any of the other \(d\)-balls centered at \(q\) and \(\alpha\) are of opposite signs.

Fact 1. Each hyperplane is said to separate \(q\) from \(\bar{q}\), if \(\alpha q - \alpha \bar{q}\) and \(\alpha > 0\).

Let the equation of any hyperplane through the origin be the form \(\alpha q = \hat{h}_1 q\), represent a general solution \(x_1, x_2, \ldots, x_n\) of system (3). The equation of any hyperplane through the origin is \(\alpha q = \hat{h}_1 q\), and the condition that there are no solutions \(x_1, x_2, \ldots, x_n\) of the form \(q = \hat{h}_1 q\), the system of linear equations (1 + w q) and \(\hat{h}_1 q = \hat{h}_1 q\) cannot be solved. Then the number of iterations to show is that the solution \(x_1, x_2, \ldots, x_n\) can be solved, that this number of iterations is unique, and that \(x_1, x_2, \ldots, x_n\) are of opposite signs.

Existence of Separating Hyperplanes

We conclude that \(\frac{\beta}{\xi} > 1\). We have

Summing the above, canceling terms common to both sides of the sum, recalling

\[\varepsilon - (\frac{\xi}{\beta}) > (\frac{\xi}{\beta}) + \varepsilon (\frac{\xi}{\beta})\]

\[\vdots \]

\[\varepsilon (1 - r) > (\frac{\xi}{\beta}) + \varepsilon (1 - r)\]

\[\varepsilon (\frac{\xi}{\beta}) > (\frac{\xi}{\beta}) + \varepsilon (1 - r)\]

Dividing (8) through by \(\frac{\xi}{\beta}\) for \(r = 2, 3, \ldots\), for \(r = \xi\),

the idea is that \(\frac{\xi}{\beta}\) can be altered in less that \(\frac{\xi}{\beta}\) iterations (instead of less than \(\frac{\xi}{\beta}\) iterations).
the origin strictly in its interior. From the remaining vertices \(\not\in \mathcal{L} \) by a hyperplane \(\mathcal{L} = \{0\} \) for each \(i \), then \(\mathcal{L} \) contains \(i \), if \(\not\in \mathcal{L} \). If \(\not\in \mathcal{L} \) is any simplex containing the origin whose vertices are separated.

Fact 3. If \(\mathcal{L} \) is a feasible solution to (13.1), then \(\lambda < 0 \) for all \(\lambda \).

Proof: Since the simplex associated with \(\mathcal{L} \) contains the origin, we know there exist vertices \(\mathcal{L} \) of an \(m \)-dimensional simplex that contains the origin and an interior point.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda \). In this case \(\not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.

Separating Hyperplane Theorem: Given (1) there are any \(r \) vectors \(\mathcal{L} \) that \(\not\in \mathcal{L} \). For all \(\lambda \not\in \mathcal{L} \) are the \(\lambda < 0 \) for all \(\lambda < 0 \) of an \(m \)-dimensional simplex. Vertices of an \(m \)-dimensional simplex that contains the origin.
Fact 3 follows from Fact 2 by setting \(\hat{b}_i = \hat{b}_i \) for all \(i \).

Continuing with the proof of the separating hyperplanes theorem, define \(B \) and \(U_{m+1} \) by

\[
\begin{bmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\vdots \\
\hat{b}_{m+1}
\end{bmatrix} =
\begin{bmatrix}
0 \\
1 \\
1 \\
\vdots \\
1
\end{bmatrix}.
\]

Since \(T \) is the vertices of an \(m \)-dimensional simplex by assumption, it means that \(B \) is non-singular and that \(B \cdot U_{m+1} \) can be solved for \(\lambda \) and, when solved, \(\lambda \geq 0 \). From Fact 3 it follows that \(\hat{b}_i > 0 \). We view \(B \) as a feasible non-degenerate basis and consider \(\hat{b} \) as an incoming non-basic column. We assert it will replace \(\bar{b} \) in the basis because, on the contrary, if it replaced some column \(k \neq 1 \) in the basis, it would imply after the replacement that both \(\hat{\lambda}_k \) and \(\hat{\lambda}_1 \) are \(\hat{\lambda} > 0 \). We replace \(\hat{b} \) in the basis by \(\hat{b} \), etc., we arrive at the conclusion that \(T \) is the vertices of a simplex containing the origin. It then follows from Fact 3 that this simplex contains the origin as a strictly interior point.

This completes the proof that the \((m+1) \) sequences converge to \(m+1 \) points \(\bar{b} \) in less than \(4(m+1)^3 \lambda^2 \) iterations. By applying the weights \(\hat{\lambda} \geq 0 \) to the corresponding \(\bar{b} \), we generate the exact solution \(x \) to the Phase 1 linear program.

One final remark: Just because an algorithm is polynomial does not necessarily make it practical. The von Neumann algorithm has a poor convergence rate. Like the simplex method each of its iterations requires about \(m \cdot \delta \) iterations, where \(\delta \) is the density of non-zero coefficients. When applied to \((m+1) \) perturbed problems as we do in this paper, we obtain an upper bound of \(4(m+1)^3 \lambda^2 \) iterations where \(0 < \lambda < 1 \). The moral of this tale is that, like gunners, we may do better by first bracketing the target and then applying a final correction.
Linear Programming: Polynomial Algorithm: Phase I

The abstract contains: Each iteration consists of \(m(n + 3g) \) multiplications and additions where \(g \) is the non-zero coefficients. Every iteration requires an exact solution to the linear programming problem with \(g = 0 \) in \(f \). If \(f \) is positive, we apply this algorithm to \(m + 1 \) perturbed problems with right hand sides \(q_i = \epsilon \) where \(\epsilon > 0 \). We choose a feasible solution to the phase 1 problem. We assume that all perturbed solutions to the linear programming problems converge when \(j \) is large enough. A sequence \(\epsilon_i \) is applied to various solutions \(x_i \). If \(\epsilon_i \) is small, the solution is feasible. From Newton's Center of Gravity Algorithm we have:

\[
\begin{align*}
\text{Find } x > 0. \\
\epsilon_i = f \sum x_i \\
q_i = f \sum \frac{1}{u_i} \\
\end{align*}
\]

We consider the general phase I linear programming problem with a constraint constraint which can be written after some algebraic manipulation in the form:

We consider the general phase I linear programming problem with a constraint constraint which can

SOL 91-5

Arlington, VA 22217

6. AUTHOR(S)

George D. Bunting

7. SPONSORING ORGANIZATION

Office of Naval Research - Department of the Navy

8. SPONSORING ORGANIZATION MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval University, 94905-4022

9. SPONSORING MONITORING AGENCY REPORT NUMBER

Department of Operations Research - SOL

10. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ONR - N0014-89-J-1599

11. TITLE AND SUBTITLE

Converting a Converging Algorithm into a Polynomially Bounded Algorithm

12. DISTRIBUTION, AVAILABILITY, AND SECURITY STATEMENT

UL

UNLIMITED

13. ABSTRACT (Maximum 200 Words)

A polynomially bounded algorithm for linear programming is presented. The algorithm is based on Newton's Center of Gravity Algorithm. Each iteration consists of \(m(n + 3g) \) multiplications and additions, where \(g \) is the non-zero coefficients. Every iteration requires an exact solution to the linear programming problem with \(g = 0 \) in \(f \). If \(f \) is positive, we apply this algorithm to \(m + 1 \) perturbed problems with right hand sides \(q_i = \epsilon \) where \(\epsilon > 0 \). We choose a feasible solution to the phase 1 problem. We assume that all perturbed solutions to the linear programming problems converge when \(j \) is large enough. A sequence \(\epsilon_i \) is applied to various solutions \(x_i \). If \(\epsilon_i \) is small, the solution is feasible. From Newton's Center of Gravity Algorithm we have:

\[
\begin{align*}
\text{Find } x > 0. \\
\epsilon_i = f \sum x_i \\
q_i = f \sum \frac{1}{u_i} \\
\end{align*}
\]

We consider the general phase I linear programming problem with a constraint constraint which can be written after some algebraic manipulation in the form: