A Strictly Improving Linear Programming
Algorithm Based on a Series of Phase I Problems

by
S. A. Leichner, G. B. Dantzig and J. W. Davis

TECHNICAL REPORT SOL 92-2
April 1992

Research and reproduction of this report were partially supported by the National Science Foundation Grants ECS-8906280, DMS-8913089; the Department of Energy Grant DE-FG03-92ER25116; Office of Naval Research Grant N00014-89-J-1659; the Electric Power Research Institute Contracts RP 8010-09 at Stanford University, and by Hewlett Packard Laboratories.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
A Strictly Improving Linear Programming Algorithm Based on a Series of Phase I Problems

S. A. Leichner G. B. Dantzig J. W. Davis
3 April 1992

Abstract

When used on degenerate problems, the simplex method often takes a number of degenerate steps at a particular vertex before moving to the next. In theory (although rarely in practice), the simplex method can actually cycle at such a degenerate point. Instead of trying to modify the simplex method to avoid degenerate steps, we have developed a new linear programming algorithm that is completely impervious to degeneracy.

This new method solves the Phase II problem of finding an optimal solution by solving a series of Phase I feasibility problems. Strict improvement is attained at each iteration in the Phase I algorithm, and the Phase II sequence of feasibility problems has linear convergence in the number of Phase I problems.

When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase II algorithm (using the series of feasibility problems) were over 15% faster than the simplex method; on some problems, it was almost two times faster, and on one problem it was four times faster.

1 Introduction

On highly degenerate problems, the simplex method often "stalls", performing a number of iterations at a degenerate point before producing any improvement in the objective value. Examples have been constructed by Hoffman [8] and Beale [1] to show that it is theoretically possible that the iterative steps can repeat and thus cycle forever, although this phenomenon is quite rare in practice. Instead of trying to make the simplex more efficient by trying to avoid stalls due to degeneracy (or near degeneracy), we develop a new linear programming algorithm that is completely impervious to degeneracy.

This new method is based on the solution of a series of Phase I feasibility problems, where the feasibility problems are solved by a Phase I algorithm.
involving the use of least-squares subproblems in column selection. This least-
squares Phase I algorithm has the property of strict improvement at each iter-
ation, even if every basic solution (in the simplex method sense) is degenerate.
Like the simplex method, the new Phase I algorithm terminates in a finite num-
er of steps, and in practice, this number is often quite low compared to the
simplex method. In addition, the sequence of Phase I problems solved in Phase
II is shown to have linear convergence to the optimal solution.

Section 2 gives an overview and pseudocode for the least-squares Phase I
algorithm. More details on this algorithm can be found in a companion pa-
per [10].

Section 3 extends the algorithm presented in Section 2 to produce a Phase II
algorithm to solve a linear program. This Phase II algorithm solves a series of
augmented feasibility problems, each solved by the least-squares Phase I algo-
algorithm from Section 2. The Phase II algorithm relies heavily on the theorem of
the alternative in order to generate the sequence of Phase I problems. Conver-
gence to the optimal solution is proved, and it is shown that a minor variation of
the algorithm has linear convergence in the number of Phase I problems solved.
Finally, there is a discussion of some practical implementation issues.

Section 4 presents computational results for the algorithms developed in
Section 3. As noted, the Phase II algorithm has good performance, with run
times 15% times faster than LSSOL's implementation of the simplex method [6].
On some problems, the Phase II algorithm was over 2 times faster.

Section 5 summarizes the work presented here and attempts to draw some
conclusions. Suggestions for future work appear at the end of this section.

2 The Least-Squares Phase I Algorithm

2.1 The Problem

The least-squares Phase I algorithm indirectly solves the problem

\[
Ax = b, \quad x \geq 0,
\]

by solving the problem

\[
Bx_B = b, \quad x_B > 0,
\]

where \(x \in \mathbb{R}^n, b \in \mathbb{R}^m, A_j \neq 0 \forall j, A \in \mathbb{R}^{m \times n}\), and \(B\) is a linearly independent
subset of the columns of \(A\). We assume that \(b \neq 0\), or else \(x = 0\) is a trivial
solution. We also assume that \(b\) has been rescaled so that \(\|b\|_2 = 1\), and
similarly the columns of \(A\) have been rescaled so that \(\|A_j\|_2 = 1 \forall j\), where \(A_j\)
denotes the \(j\)th column of the matrix \(A\). Once we have a solution \(x_B\) to (2-2), it
is a trivial matter to construct an \(x\) from \(x_B\) such that \(x\) is a solution to (2-1).
2.2 The Algorithm

The following material is intended to be an overview of the least-squares Phase I algorithm. For more details, see [10].

The main objective of the least-squares Phase I algorithm to be presented here is to build up such a matrix \(B \) from linearly independent columns of \(A \), and to find positive weightings of these columns, \(x_B \), such that \(B \) and \(x_B \) comprise a solution to (2-2). This will in turn give us a solution to (2-1). In the remainder of this discussion, we will refer to this matrix \(B \) as a **basis**. Note that this notion of a basis differs from that of the simplex method, as our basis \(B \) may contain less than \(m \) columns and that these columns may not be sufficient in themselves to span the column space of \(A \).

At the start of an iteration, we are given a basis \(B \), composed of a linearly independent subset of the columns of \(A \), with the property that the least-squares weighting of these columns which yields the closest approximation to the right-hand side \(b \) is a positive weighting. The iterative step tests whether the current approximation is the closest approximation with positive a weighting, and if not, selects an incoming column to augment the basis. This yields a positive combination of the previous approximation and the incoming column which is a strictly better approximation to the right-hand side. There exists, however, a (possibly proper) subset of the columns of the augmented basis such that the least-squares weighting is positive, and also a better approximation to the right-hand side than the positive combination. This subset of the augmented set of basic columns can be used to start the next iteration. We will use the following notation:

- \(B \): a basis made up of linearly independent columns of \(A \).
- \(x_B > 0 \): positive weightings of the columns of \(B \).
- \(v = Bx_B \): a basic weighting and approximation to the right-hand side \(b \).
- \(u = b - v \): the current residual.

In the first step, when no columns are yet in \(B \), we have \(v = 0 \), and the least-squares column-selection subproblem degenerates to finding

\[
\min_j \left(\min_{\beta > 0} \| b - \beta A_j \|_2^2 \right).
\]

This is equivalent to selecting the entering column to be \(A_s \) where

\[
s = \arg\max_{j : b^T A_j > 0} b^T A_j.
\]

If we cannot find an incoming column at this point, we know that the problem is infeasible, and that \(v = Ax \) where \(x = 0 \) is the closest approximation to \(b \) using non-negative weightings of the columns of \(A \). However, if (2-1) is feasible, we know that we can find such an \(A_s \). Thus our first approximation to \(b \) is \(v = (b^T A_s)A_s \), and it is as close to \(b \) as is possible using a positive weighting of a single column of \(A \).
In the general step, the approximation \(v \) is not 0, so we minimize the residual of the following two-variable least-squares subproblem:

\[
\min_{(\alpha, \beta) \geq 0} \| b - \alpha v - \beta A_j \|^2.
\]

That is, the entering column is \(A_s \), where \(A_s \) minimizes the above expression for all \(A_j \notin B \). Thus we are selecting that column \(A_s \) whose nonnegative combination with \(v \) brings us closer to \(b \) than any other \(A_j, j \neq s \). The index \(s \) is determined by the expression

\[
s = \arg\max_{j: A_j^T v > 0} \left(\frac{A_j^T v}{v^T v - (A_j^T v)^2} \right)^{1/2}.
\]

(2-3)

If we cannot find an incoming column at this point, we know that the problem is infeasible, and that \(v = Bx_B \) is the closest approximation to \(b \) using nonnegative weightings of the columns of \(A \). However as before, we know that we can find such an \(A_i \) if (2-1) is feasible. Once we have added \(A_s \) to \(B \), we need find the (possibly proper) subset of the columns of the augmented basis (that we mentioned earlier) so that it can be used to start the next iteration.

Let \(B \) be the basis matrix before adding \(A_s \), and let \(x_B \) correspond to \(B \). Let \(\tilde{B} = (B \ A_s) \) and let \(\tilde{x}_B \) be the updated \(x_B \) corresponding to \(\tilde{B} \). To find \(\tilde{x}_B \), we first need to solve the least-squares problem \(\min \| b - \tilde{B}y \| \), and to set \(c = (x_B^T \ 0)^T \).

Case 1: \(y > 0 \)

Let \(\tilde{x}_B = y \).

Case 2: \(y \geq 0 \)

Remove all columns from \(\tilde{B} \) that correspond to zero elements in \(y \). Let \(\tilde{x}_B \) consist of all the nonzero elements of \(y \).

Case 3: We do not have \(y > 0 \) or \(y \geq 0 \).

In this case, at least one component of \(y \) is negative. We form the convex combination \(c = \lambda c + (1 - \lambda) y \) where

\[
\lambda = \max_{y_i < 0} \frac{-y_i}{c_i - y_i}.
\]

This gives us \(c \geq 0 \). We remove all columns from \(\tilde{B} \) and elements from \(x_B \) that correspond to zero elements in \(c \). Then we go back and solve \(\min \| b - \tilde{B}y \| \) again to get a new \(y \). We repeat this until we find a \(y \geq 0 \).

Thus at each iteration, we choose a column from \(A \) to enter \(B \). Then we solve the least-squares problem \(\min \| b - \tilde{B}y \| \). We find a new \(B \) and \(x_B \) using \(y \) as just described, possibly dropping one or more columns from \(\tilde{B} \). Each new
approximation $\tilde{v} = \tilde{B}x_B$ is strictly closer to b than the previous $v = Bx_B$. We are done as soon as $Bx_B = b$ in some iteration.

The least-squares Phase I algorithm has the following desirable properties:

1. The approximation $v = Bx_B$ is strictly closer to b at each iteration. This means that degeneracy does not cause problems; cycling cannot occur, and the process terminates in a finite number of steps.

2. If (2-1) is infeasible, this will be detected when the current approximation $v = Bx_B$ is closer to b than any other nonnegative weighting of the columns of A.

3. Whenever a new column is chosen from A to enter B, it is linearly independent of the columns currently in B. Thus the solution $\min \| b - B\tilde{y} \|$ is always unique, so numerical difficulties aside, rank deficient least-squares problems are never encountered.

This algorithm is quite similar to a number of existing algorithms, including one to solve the bounded least-squares problem (found in [3]), and another to solve the non-negative least-squares problem (found in [9]). In addition, our algorithm is also closely related to the algorithm developed by Dantzig [4] and by Van de Panne & Whinston [12].

Pseudocode

Notation and Variables:

- A: The original matrix in (2-1).
- b: The original right-hand side in (2-1).
- B: The matrix of currently basic columns.
- x_B: The current positive weightings of the columns of B.
- v: The current approximation Bx_B.
- u: The current residual $b - v$.
- y: The current least-squares solution of $\min \| b - B\tilde{y} \|^2$.
- X: The vector to hold the solution to (2-1).

0. Initialization \{no columns initially in basis\}

 $B := \emptyset$; $x_B := \emptyset$; $u := b$; $v := 0$; $X := 0$;

1. Startup \{find the first column to place in B\}

 If $b^TA_j \leq 0 \ \forall \ j = 1, \ldots, n$ then go to 4. \{the problem is infeasible\}

 $s := \arg\max_{j: b^TA_j > 0} b^TA_j$

 Place A_s in B; let $y = b^TA_s$.

2. Main Loop \{Add columns to B until $u = 0$ or infeasibility discovered.\}

 $x_B := y$; $v := Bx_B$ \{set current approximation\}

 $u := b - v$ \{set current residual\}
If \(u = 0 \) then go to 4. \{solution found\}
If \(u^T A_j \leq 0 \ \forall \ j \) then go to 4. \{infeasibility discovered\}

\[
s = \arg\max_{j : A_j^T u \neq 0} \frac{A_j^T u}{(u^T v - (A_j^T u)^2)^{1/2}}
\]

Place \(A_s \) in \(B \); set \(c = (x_B \ 0)^T \).

3. Least-Squares Loop
Solve \(\| By - b \|^2 \) for \(y \).
If \(y > 0 \) then go to 2. \{new \(B \) and \(x_B \) found\}
If \(y \geq 0 \) then remove all columns from \(B \) and elements from \(x_B \) that correspond to zero components of \(y \).
Go to 2. \{new \(B \) and \(x_B \) found\}

\[
\lambda := \max_{y_i < 0} \left(-y_i / (c_i - y_i) \right)
\]

\[
c := \lambda c + (1 - \lambda)y \quad \{\text{form convex combination of } c \text{ and } y\}
\]

Remove all columns from \(B \) and elements from \(x_B \) and \(c \) that correspond to zero components of \(c \).

Go to 3. \{repeat Least-Squares loop\}

4. Report on feasibility and output the solution found.

A number of variations of the least-squares Phase I algorithm were developed in [10]. These included:

- Free variables were permitted in the problem without requiring the problem to be explicitly converted to the form of (2-1).

- The column selection rule denominator in (2-3) was replaced by "1" to reduce computation.

- A crash basis (made of columns primarily corresponding to slack variables) was used as the initial basis \(B \).

When tested on the 30 smallest linear programming test problems available from NETLIB [5], the least-squares Phase I algorithm had excellent performance, with run times almost 3.5 times faster than LSSOL's implementation of the simplex method [6]. On some problems, the least-squares Phase I algorithm was over 10 times faster. See [10] for more details.

3 The Phase II Algorithm

3.1 The Problem

The Phase II algorithm addresses the complete linear programming problem. That is,
\[\begin{align*}
\min c^T x \\
\text{s.t. } Ax &= b \\
x &\geq 0,
\end{align*} \tag{3-1} \]

where \(x, c \in \mathbb{R}^n, b \in \mathbb{R}^m \) and \(A \in \mathbb{R}^{m \times n} \). As before, we assume that \(b \) has been rescaled so that \(\| b \| = 1 \), and similarly the columns of \(A \) have been rescaled so that \(\| A_j \| = 1 \ \forall \ j \).

The simplex method solves this problem in two stages, commonly called Phase I and Phase II. In Phase I, a feasible solution is found, and in Phase II, an optimal solution is found, starting from the feasible solution found in Phase I. In contrast, we will develop an algorithm to solve this problem based on solving a sequence of Phase I problems, each solved by the least-squares Phase I algorithm presented in Section 2.

3.2 Theorem of the Alternative

The series of Phase I problems we are going to solve are of the form

\[\begin{align*}
\min c^T x \\
\text{s.t. } Ax &= b \\
x &\geq 0,
\end{align*} \tag{3-2} \]

where \(z^* \) is the optimal objective value of (3-1), and

\[z_0 \leq z_{k+1} \leq z^* \]
\[z_{k+1} > z_k \]

We will discuss the selection of \(z_0 \) later, as well as the formulation of \(z_{k+1} \) from \(z_k \). We will first consider some properties of the augmented primal (3-2). Farkas' Lemma states that either the augmented primal system (3-2) or the system

\[\begin{align*}
\sigma c^T + \pi^T A &\leq 0 \\
\sigma z_k + \pi^T b &> 0 \\
\sigma &\leq 0
\end{align*} \tag{3-3} \]

has a solution.

Theorem 3.1

If we attempt to solve (3-2) using the least-squares Phase I algorithm from Section 2 and find that it is infeasible, then the residual \(u \) is not zero, and \(u \) is a feasible solution to (3-3).

7
Proof: We know from Section 2 that if (3-2) is infeasible, then $u \not= 0$. We will now show that u is a feasible solution to (3-3). Let $u = (u_0, \tilde{u}) = (u_1, \ldots, u_m)$

Part 1: We can rewrite the augmented primal problem as

$$
\begin{pmatrix}
 c^T & 1 \\
 A & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
\end{pmatrix}
=
\begin{pmatrix}
 z_k \\
 b \\
\end{pmatrix}
\geq 0.
$$

When the least-squares Phase I algorithm terminates with infeasibility of the augmented primal, we know that u is orthogonal to all basic columns. That is,

$$
u^T \begin{pmatrix}
 c^T & 1 \\
 A & 0 \\
\end{pmatrix}_i = 0 \quad \forall \, i,
$$

where $i \in BI$ and BI is the index set of basic columns. For all nonbasic columns, we know

$$
u^T \begin{pmatrix}
 c^T & 1 \\
 A & 0 \\
\end{pmatrix}_j \leq 0,
$$

where $j \not\in BI$. Thus

$$
u^T \begin{pmatrix}
 c^T & 1 \\
 A & 0 \\
\end{pmatrix} \leq 0.
$$

This can be rewritten as the system

$$u_0 c^T + \tilde{u}^T A \leq 0$$

$$u_0 \leq 0.$$

Part 2: Next we show

$$u_0 z_k + \tilde{u}^T b > 0. \quad (3-4)$$

We have $u \not= 0$, so we have

$$u^T u = u^T \begin{pmatrix}
 z_k \\
 b \\
\end{pmatrix} > 0.$$

\square

Theorem 3.2

If the augmented primal problem (3-2) is found to be infeasible by the least-squares Phase I algorithm and $u_0 = 0$, then the original primal problem (3-1) is infeasible.

Proof: From Theorem 3.1 we know that $u = (u_0, \tilde{u})$ is a solution to (3-3). If $u_0 = 0$, then \tilde{u} is a solution to the smaller system

$$\tilde{u}^T A \leq 0$$

$$\tilde{u}^T b > 0,$$

which implies (by Farkas' Lemma) that there is no solution to the system (2-1).

\square
3.3 Iterating Towards the Minimum

If we solve the augmented primal problem and find that it is infeasible, then we use the residual \(u = (u_0, \tilde{u}) \) to replace \(z_k \) by \(z_{k+1} \) as follows:

\[
 z_{k+1} = -\frac{\tilde{u}^T b}{u_0}.
\]

(3-5)

Note that when we solve the augmented primal problem (3-2) again using \(z_{k+1} \) instead of \(z_k \), the new residual will still be called \(u \), but will correspond to \(z_{k+1} \).

Theorem 3.3

\[
 z_{k+1} > z_k \quad \forall \ k.
\]

Proof: We assume that we earlier have solved the Phase I problem and (3-1) is feasible. This implies that when we solve (3-2), it is infeasible and \(u_0 < 0 \). Therefore, noting (3-4), we can write

\[
 z_k = \frac{-\tilde{u}^T b}{u_0} = z_{k+1}.
\]

\[\square\]

Theorem 3.4

If (3-1) has a finite optimal objective value \(z^ \), then \(z_{k+1} \leq z^* \quad \forall \ k \).*

Proof: Consider the primal problem and its dual.

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min \ c^T x)</td>
<td>(\max \ \pi^T b)</td>
</tr>
<tr>
<td>s.t. (Ax = b)</td>
<td>s.t. (\pi^T A \leq c^T)</td>
</tr>
<tr>
<td>(x \geq 0)</td>
<td></td>
</tr>
</tbody>
</table>

Note that if \(u_0 = 0 \), then (3-1) is infeasible and we do not form \(z_{k+1} \), so we can assume that \(u_0 < 0 \). We will now show that \(\pi = -\tilde{u}/u_0 \) is feasible in the dual.

\[
 u_0 c^T + \tilde{u}^T A \leq 0 \quad \text{from Theorem 3.1}
\]

\[
 -\frac{\tilde{u}^T A}{u_0} \leq c^T.
\]

Thus \(\pi \) is feasible in the dual, and the objective value of the dual at \(\pi \) is

\[
 -\frac{\tilde{u}^T b}{u_0} = z_{k+1},
\]

and must be less than or equal to \(z^* \). \(\square \)

We have proved that \(z_k < z_{k+1} \leq z^* \quad \forall \ k \). Assuming that we can find a \(z_0 < z^* \), this defines a monotonically increasing sequence bounded above by \(z^* \). This sequence will converge to a unique limit point, and we will prove that this limit point is \(z^* \). In order to prove this, we need the following lemma.
Lemma 3.5
Let \tilde{z} be a real number and let τ be positive. Let f be continuous on the interval $[\tilde{z} - \tau, \tilde{z}]$. If $f(z) > z$ for all $z \in [\tilde{z} - \tau, \tilde{z}]$, then there exists $y \in [\tilde{z} - \tau, \tilde{z}]$, such that $f(z) > z$ for all $z \in [y, \tilde{z}]$.

Proof: This is an elementary consequence of continuity, and the fact that $f(z) > z$ for all $z \in [\tilde{z} - \tau, \tilde{z}]$.

Theorem 3.6
The sequence of iterates $\{z_k\}$ produced by (3.5) converges to z^*.

Proof (by contradiction):
We know $\{z_k\}$ converges to a limit point \tilde{z} where $z_0 < \tilde{z} \leq z^*$. Assume $\tilde{z} < z^*$. Let $f(z)$ describe the function which finds z_{k+1} from z_k as shown in (3.5). Given this notation, we know that since $\tilde{z} < z^*$, the augmented primal problem (3.2) is infeasible and thus $f(\tilde{z}) > \tilde{z}$ by Theorem 3.3. Now we need to show that $f(z)$ is continuous near \tilde{z}.

We know that $f(\tilde{z})$ is a function of the residual vector u, so we will first examine the behavior of u as \tilde{z} is perturbed by $\epsilon > 0$. Consider the augmented primal (3.2). This can be rewritten as

$$\begin{align*}
\tilde{A} \tilde{x} &= \tilde{b} \\
\tilde{x} &\succeq 0,
\end{align*}$$

where

$$\tilde{A} = \begin{pmatrix} c^T & 1 \\ A & 0 \end{pmatrix}; \quad \tilde{x} = \begin{pmatrix} x \\ y \end{pmatrix}; \quad \tilde{b} = \begin{pmatrix} \tilde{x} \\ b \end{pmatrix}.$$

When the Phase 1 algorithm terminates with infeasibility on (3.2), we have $\tilde{A} = (\tilde{B} \tilde{N})$, where \tilde{B} is made up of the basic columns and \tilde{N} is made up of the nonbasic columns. The current solution, \tilde{x}, is found by solving the normal equations $\tilde{x} = (\tilde{B}^T \tilde{B})^{-1} \tilde{B}^T \tilde{b}$. We know we can form this expression, since the columns of \tilde{B} are linearly independent. If \tilde{b} is perturbed, the Phase 1 solution \tilde{x} must be adjusted, and one of two cases can occur.

Case 1: The perturbation does not cause a new column to enter \tilde{B}.

Letting

$$\tilde{b}(\epsilon) = \begin{pmatrix} \tilde{x} - \epsilon \\ b \end{pmatrix},$$

we have

$$\tilde{x}(\epsilon) = (\tilde{B}^T \tilde{B})^{-1} \tilde{B}^T \begin{pmatrix} \tilde{x} - \epsilon \\ b \end{pmatrix},$$

in which case \tilde{x} is clearly a continuous function of ϵ. Moreover, $u(\epsilon) = \tilde{b}(\epsilon) - \tilde{x}(\epsilon)$ is also a continuous function of ϵ. Therefore, $f(\tilde{x})$ is also a continuous function of ϵ in the range $[\tilde{x} - \epsilon, \tilde{x}]$, provided that (3.1) is feasible. (If (3.1) is infeasible, we could encounter $u_0 = 0$, and thus have no need to form z_{k+1}.)
Case 2: The perturbation causes a new column to enter \tilde{B}.

Call the entering column \tilde{N}_s. Thus

$$\tilde{x}(\epsilon) = \left(\begin{array}{c} \tilde{B} \\ \tilde{N}_s \end{array} \right)^T \left(\begin{array}{c} \tilde{B} \\ \tilde{N}_s \end{array} \right)^{-1} \left(\begin{array}{c} \tilde{z} - \epsilon \\ b \end{array} \right).$$

We know that at $\epsilon = 0$,

$$\tilde{x}(\epsilon) = \tilde{x}(0) = \left(\begin{array}{c} \tilde{z} \\ 0 \end{array} \right),$$

where \tilde{z} is as defined in Case 1. We also know that for small enough ϵ, no columns will be dropped from \tilde{B} because we have \tilde{z} strictly greater than 0. Therefore, for small enough $\epsilon > 0$, \tilde{z} is a continuous function of ϵ. Thus u is a continuous function of ϵ, and $f(\tilde{z})$ is a continuous function of ϵ in $[\tilde{z} - \epsilon, \tilde{z}]$ (again provided that (3-1) is feasible).

Thus in both cases, for some $\epsilon > 0$, $f(z)$ is continuous in $[\tilde{z} - \epsilon, \tilde{z}]$. From Theorem 3.3, we have $f(z) > z \forall z \in [\tilde{z} - \epsilon, \tilde{z}]$ because $\tilde{z} < z^*$. Then from Lemma 3.5, $\exists y \in [\tilde{z} - \epsilon, \tilde{z})$ such that $f(z) > z \forall z \in [y, \tilde{z}]$. Hence $\tilde{z} < z^*$ cannot be the limit point of the sequence $\{z_k\}$. This contradiction completes the proof.

\[\square\]

3.4 The Phase II Algorithm

The following algorithm solves (3-1) using a series of Phase I subproblems.

Step 1:

Solve the augmented primal (3-2) using the least-squares Phase I algorithm presented in Section 2. We will assume that z_0 is less than or equal to the optimal value z^*. (We will discuss how to select z_0 in the next section.) If we find a feasible solution, we are done. Otherwise, the augmented system is infeasible and we go to Step 2.

Step 2:

Let $u = (u_0, \tilde{u})$ be the residual vector from the infeasible augmented system as found by the Phase I algorithm in Step 1. If $u_0 = 0$, then the primal (3-1) is infeasible (by Theorem 3.2). If $u_0 \neq 0$, then find z_{k+1} using (3-5). Go back to Step 1 and solve the augmented primal problem again, replacing z_k with z_{k+1}. We know that $z_{k+1} > z_k$, and that the sequence of iterates converges to z^*, so we will iterate towards the optimal solution.

3.5 Discussion

In this section we will consider the questions of

- Transitions between augmented primal problems
- Primal unboundedness
- Finding $z_0 < z^*$

11
- Convergence

Transitions
After performing Step 1 of the algorithm, we have a least-squares solution to the problem

$$\min \left\| \begin{pmatrix} z_k \\ b \end{pmatrix} - \begin{pmatrix} c^T & 1 \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \right\|.$$ (3-6)

However, once we replace \(z_k \) with \(z_{k+1} \), we no longer have a least-squares solution to the augmented primal system. In fact, we may need to alter the current basis in order to get a new least-squares solution.

It seems reasonable to assume that the current basis (associated with \(z_k \)) will be fairly similar to the final basis (associated with \(z_{k+1} \)). Therefore, we solve the least-squares problem (3-6), replacing \(z_k \) by \(z_{k+1} \). If any components of the solution are negative, we form a convex combination with the previous least-squares solution (which we know is positive). This is just like the usual method for dropping columns.

We keep forming convex combinations and dropping columns until we have a (possibly proper) subset of the columns of the basis associated with \(z_k \), only now we have a least-squares solution, and the weightings are all positive. As the bases are expected to be fairly similar, this should not be too many steps. (In practice, this is indeed the case.) Once we have the new least-squares solution and the (possibly reduced) basis, we look for an incoming column and perform the least-squares Phase I algorithm as usual.

Primal Unboundedness and Finding \(z_0 \)
One way to find a \(z_0 \leq z^* \) is to solve the dual feasibility problem. That is, find a solution to the system \(A^T \pi \leq c \) using the least-squares Phase I algorithm variation allowing free variables. If a feasible solution is found, we can set \(z_0 \) to the objective value at this solution (\(z_0 = \pi^T b \leq z^* \)). If no solution is found, we can conclude that the primal problem is unbounded. At first sight, dualizing the problem in this manner appears to necessitate the solution of a problem much larger than the primal problem because \(n > m \). This turns out not to be the case if we take advantage of the fact that \(n - m \) (or more) of the columns will be unit vectors associated with the slack dual variables.

Another approach to finding an appropriate \(z_0 \) might be to set \(z_0 \) to an arbitrarily large negative number, such as \(-10^{10}\). Machine precision (in our case) is \(10^{-19} \), so that this is still many orders of magnitude away from severe numerical problems. It is also likely that our problem will not have an optimal objective value below \(-10^{10}\) (provided it is not unbounded). If, when we solve the augmented primal problem, we discover that \(z_0 = -10^{10} \) is indeed feasible, we can still go and attempt to solve the dual feasibility problem in order to find
an appropriate $z_0 \leq z^*$, (or give up, declaring that there may have been some mistake in the formulation of the original problem).

Convergence

It is possible that the sequence $\{x_k\}$ could have a slow rate of convergence, especially near z^*. The following is a scheme guaranteed to have at least linear convergence, as it is based on bisection.

First solve the primal feasibility problem, that is, find a solution to (2.1). This gives us a feasible z; call it z_f. Next, solve the dual feasibility problem, that is, find a solution to $A^T\pi \leq c$. This gives us a z_0. Note that (3.2) will be infeasible as long as $z_0 \neq z^*$. In any case, we know that $z_0 \leq z^* \leq z_f$.

Now solve the augmented primal problem using z_0, and find z_1 using the formula (3-5). If

$$z_1 \geq \frac{z_0 + z_f}{2},$$

then use the usual z_1 as found using (3-5) in the next augmented primal system to solve. Otherwise, use

$$z_1 = \frac{z_0 + z_f}{2}. \quad (3-7)$$

If we use the usual z_1, we need no further discussion. However, if we use z_1 as found using (3-7), we have two cases to consider.

Case 1: We find that z_1 causes the augmented primal to be infeasible.

In this case, we know

$$z_1 = \frac{z_0 + z_f}{2} \leq z^* \leq z_f,$$

and we can therefore find the next z_{k+1} using (3-5). Note that we have eliminated

$$\left(z_0, \frac{z_0 + z_f}{2} \right)$$

from the interval which could contain z^*.

Case 2 We find that z_1 is feasible in the augmented primal.

In this case, we know

$$z_0 \leq z^* \leq z_1 = \frac{z_0 + z_f}{2}.$$

We redefine z_f to be $\frac{1}{2}(z_0 + z_f)$, and go back to find a z_1 from z_0 using (3-5) as before. This time, we have eliminated

$$\left(\frac{z_0 + z_f}{2}, z_f \right)$$
from the candidate interval for \(z^* \). Note that in the general step, we will be finding \(z_{k+1} \) from \(z_k \), and that we will know \(z_k \leq z^* \leq z_f \).

Using the process described above, we can eliminate at least half of the remaining interval at each step. Thus we have at least linear convergence in the number of Phase I problems solved.

In practice, we really do not want to find a feasible solution for both the primal and dual systems (in order to find \(z_0 \) and \(z_f \)) as described above, as this would be extremely expensive. Therefore, in our implementation of the Phase II algorithm, we do not find an initial feasible solution to either system. We start with \(z_0 = -10^{10} \) as discussed earlier, and only find a solution to \(A^T \pi \leq c \) if this first \(z_0 \) proves to be feasible in the augmented primal problem.

In our first implementation of the Phase II algorithm, we did actually initialize \(z_f \) by finding a primal feasible solution. However, it was observed that the binary search was very rarely invoked—that is, \(z_{k+1} \) usually eliminated well over half of the remaining interval, and convergence was excellent. Thus we removed the initialization of \(z_f \) (and consequently one Phase I problem). However, we found that numerical problems occasionally produced a \(z_{k+1} < z_k \), especially when \(z_k \) was close to \(z^* \). To solve this problem, we set \(z_{k+1} = z_k + |z_{k+1} - z_k| \), which tended to produce a feasible augmented primal. If so, \(z_f \) was set to \(z_{k+1} \), and the binary search described earlier was used. If not, a new \(z_{k+1} \) was found in the usual manner, and the above scheme was repeated. This modified binary search scheme only guarantees linear convergence once a valid \(z_f \) is known. However, in practice it ran faster than did the original binary search method, as the Phase I problem required to initialize \(z_f \) was eliminated. This was the scheme used to produce the results in Section 4. It should be noted that for most of the test problems, this modified binary search was not actually invoked, as the situation where \(z_{k+1} < z_k \) was relatively rare.

4 Computational Results

All computational results have been obtained using the 30 smallest linear programming test problems available from NETLIB [5]. These test problems were converted to the form of (2-1), with the addition that free variables were allowed (although nonpositive variables were not). This produced a set of equivalent problems with modified dimensions; see Table 4-1 for the original and modified dimensions. For bitmaps of the nonzero patterns of many of the original problems, see [11].

The test environment consisted of the following hardware and software:

<table>
<thead>
<tr>
<th>Computer:</th>
<th>HP 9000/835</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32M main memory</td>
</tr>
<tr>
<td>Operating System:</td>
<td>HP-UX 7.0</td>
</tr>
<tr>
<td>Language:</td>
<td>HP FORTRAN, 64-bit real numbers</td>
</tr>
<tr>
<td>Problem (Name)</td>
<td>Original</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Rows</td>
</tr>
<tr>
<td>1(AFIRO)</td>
<td>28</td>
</tr>
<tr>
<td>2(SC50A)</td>
<td>51</td>
</tr>
<tr>
<td>3(SC50B)</td>
<td>51</td>
</tr>
<tr>
<td>4(ADLITTLE)</td>
<td>57</td>
</tr>
<tr>
<td>5(BLEND)</td>
<td>75</td>
</tr>
<tr>
<td>6(SHARE2B)</td>
<td>97</td>
</tr>
<tr>
<td>7(SC105)</td>
<td>106</td>
</tr>
<tr>
<td>8(STOCFOR1)</td>
<td>118</td>
</tr>
<tr>
<td>9(RECIPE)</td>
<td>92</td>
</tr>
<tr>
<td>10(SCAGR7)</td>
<td>130</td>
</tr>
<tr>
<td>11(BOEING9)</td>
<td>167</td>
</tr>
<tr>
<td>12(ISRAEL)</td>
<td>175</td>
</tr>
<tr>
<td>13(SHARE1B)</td>
<td>118</td>
</tr>
<tr>
<td>14(VTP.BASE)</td>
<td>199</td>
</tr>
<tr>
<td>15(SC205)</td>
<td>206</td>
</tr>
<tr>
<td>16(GROW7)</td>
<td>141</td>
</tr>
<tr>
<td>17(BEACONFD)</td>
<td>174</td>
</tr>
<tr>
<td>18(BRANDY)</td>
<td>221</td>
</tr>
<tr>
<td>19(SCSD1)</td>
<td>78</td>
</tr>
<tr>
<td>20(E226)</td>
<td>224</td>
</tr>
<tr>
<td>21(FORPLAN)</td>
<td>162</td>
</tr>
<tr>
<td>22(BORE3D)</td>
<td>234</td>
</tr>
<tr>
<td>23(AGG)</td>
<td>489</td>
</tr>
<tr>
<td>24(CAPRI)</td>
<td>272</td>
</tr>
<tr>
<td>25(SCORPTION)</td>
<td>389</td>
</tr>
<tr>
<td>26(BANDM)</td>
<td>306</td>
</tr>
<tr>
<td>27(SCTAP1)</td>
<td>301</td>
</tr>
<tr>
<td>28(SCFXM1)</td>
<td>331</td>
</tr>
<tr>
<td>29(STAIR)</td>
<td>357</td>
</tr>
<tr>
<td>30(SCSD6)</td>
<td>148</td>
</tr>
</tbody>
</table>

Table 4-1: Size of Test Problems

The run times reported here include only computation time, as the amount of main memory used virtually eliminated swapping, and I/O time was negligible.

4.1 Finding an Optimal Solution

We now consider the computational results produced by the Phase II algorithm developed in Section 3, along with variations analogous to those discussed in Section 2. See Section 3.4 for pseudo code of the Phase II algorithm. Again, we only consider those variations in which free variables are allowed. In addition, all variations considered contain the refinement to implement the modified binary search scheme as described in Section 3.5. We thus consider the following four Phase II algorithms:
P2F: The least-squares Phase II algorithm, in which free variables have not been explicitly converted to pairs of nonnegative variables.

P2D1F: The same as P2F, with the exception that the denominator of the column selection rule is replaced by "1".

CBP2F: The same as P2F, using a crash basis as described in Section 2.

CBP2D1F: The same as P2D1F, using a crash basis as described in Section 2.

For the purpose of comparison and evaluation, we define two types of iterations in these Phase II algorithms. A major iteration is defined to be whenever a new z_{k+1} is calculated, and the augmented primal (3-2) is altered. A minor iteration represents an iteration of the least-squares Phase I algorithm (see [10] for an exact definition).

Note that it is the augmented primal (3-2) that is normalized to have columns of length 1, as all of the least-squares Phase I algorithms assume that this has been done. Since the first element of the right-hand side changes each time z_k is updated (and consequently changes its norm), it was decided to normalize the right-hand side only once, assuming for the sake of normalization that $z_k = 0$. This assumption allows us to normalize the augmented primal problem only once per Phase II problem, instead of once per major iteration.

All of the Phase II methods were implemented using dense matrix methods, and QR factorization was used to solve the embedded least-squares subproblems. The factorization was updated using Givens rotations as columns were added and dropped. See for example [7] for details on using the QR factorization to solve least-squares problems, and for details on Givens rotations (also known as plane rotations). Transitions between major iterations were handled as discussed in Section 3.5.

Finally, z_0 was set to an "arbitrarily" large negative number (in our implementation, $z_0 = -10^{10}$). Machine precision in our case is 10^{-19}, which is several orders of magnitude away from severe numerical difficulties. If, when we solve the first augmented primal problem, we discover that $z_0 = -10^{10}$ is indeed feasible, then we can go and solve the dual feasibility problem $A^T \pi \leq c$ in order to find an appropriate $z_0 \leq z^*$ where z^* is the optimal objective value. Notice that this method assumes no prior information about z^*. As it happened, it was never necessary to solve the dual feasibility problem for the problems in our test suite, as $z_0 = -10^{10}$ was always less than z^*. We also found (through experimentation) that as long as $z_0 \leq z^*$, the Phase II algorithms are fairly insensitive to the choice of z_0.

The Phase II algorithms are compared with LSSOL, an established package. LSSOL is written in Fortran 77 using dense matrix techniques, and solves a class of linearly constrained quadratic programming problems. See [6] for a more detailed description of LSSOL. In order to compare our Phase I algorithm to LSSOL, we use the "LP" option. This causes LSSOL to find an optimal
<table>
<thead>
<tr>
<th>Problem (Name)</th>
<th>P2F</th>
<th>P2D1F</th>
<th>CBP2F</th>
<th>CBP2D1F</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(AFRO)</td>
<td>26:04</td>
<td>26:04</td>
<td>30:04</td>
<td>30:04</td>
<td>8</td>
</tr>
<tr>
<td>2(SC50A)</td>
<td>73:03</td>
<td>73:03</td>
<td>80:03</td>
<td>84:03</td>
<td>4</td>
</tr>
<tr>
<td>3(SC50B)</td>
<td>83:03</td>
<td>83:03</td>
<td>81:03</td>
<td>81:03</td>
<td>1</td>
</tr>
<tr>
<td>4(ADLITTLE)</td>
<td>257:05</td>
<td>279:05</td>
<td>227:06</td>
<td>273:31</td>
<td>121</td>
</tr>
<tr>
<td>5(BLEND)</td>
<td>218:04</td>
<td>220:04</td>
<td>222:04</td>
<td>224:04</td>
<td>86</td>
</tr>
<tr>
<td>6(SHARE2B)</td>
<td>409:07</td>
<td>451:07</td>
<td>423:07</td>
<td>464:07</td>
<td>110</td>
</tr>
<tr>
<td>7(SC105)</td>
<td>171:04</td>
<td>165:04</td>
<td>190:04</td>
<td>186:04</td>
<td>10</td>
</tr>
<tr>
<td>8(STOCCFOR1)</td>
<td>236:03</td>
<td>297:03</td>
<td>236:03</td>
<td>297:03</td>
<td>91</td>
</tr>
<tr>
<td>9(RECIPE)</td>
<td>315:05</td>
<td>308:05</td>
<td>360:05</td>
<td>358:05</td>
<td>65</td>
</tr>
<tr>
<td>10(SCAGR7)</td>
<td>516:06</td>
<td>691:06</td>
<td>490:06</td>
<td>711:28</td>
<td>84</td>
</tr>
<tr>
<td>11(BOEING2)</td>
<td>585:07</td>
<td>590:07</td>
<td>574:07</td>
<td>575:07</td>
<td>257</td>
</tr>
<tr>
<td>12(ISRAEL)</td>
<td>731:06</td>
<td>739:06</td>
<td>715:06</td>
<td>719:06</td>
<td>559</td>
</tr>
<tr>
<td>13(SHARE1B)</td>
<td>325:04</td>
<td>344:04</td>
<td>342:04</td>
<td>355:04</td>
<td>306</td>
</tr>
<tr>
<td>14(VTP.BASE)</td>
<td>2260:13</td>
<td>2224:14</td>
<td>812:13</td>
<td>1239:22</td>
<td>1122</td>
</tr>
<tr>
<td>15(SC205)</td>
<td>332:04</td>
<td>332:04</td>
<td>374:04</td>
<td>374:04</td>
<td>9</td>
</tr>
<tr>
<td>16(GROW7)</td>
<td>905:06</td>
<td>911:06</td>
<td>893:06</td>
<td>892:06</td>
<td>332</td>
</tr>
<tr>
<td>17(BEACONFD)</td>
<td>205:07</td>
<td>209:07</td>
<td>171:07</td>
<td>175:07</td>
<td>100</td>
</tr>
<tr>
<td>18(BRANDY)</td>
<td>1002:07</td>
<td>1000:07</td>
<td>976:07</td>
<td>976:08</td>
<td>352</td>
</tr>
<tr>
<td>19(SCSD1)</td>
<td>165:06</td>
<td>192:06</td>
<td>165:06</td>
<td>192:06</td>
<td>67</td>
</tr>
<tr>
<td>20(E226)</td>
<td>1148:05</td>
<td>1094:05</td>
<td>1182:05</td>
<td>1137:05</td>
<td>735</td>
</tr>
<tr>
<td>21(FORPLAN)</td>
<td>764:08</td>
<td>771:08</td>
<td>732:08</td>
<td>736:08</td>
<td>583</td>
</tr>
<tr>
<td>22(BOREAD)</td>
<td>569:08</td>
<td>601:08</td>
<td>579:08</td>
<td>611:08</td>
<td>188</td>
</tr>
<tr>
<td>23(AGG)</td>
<td>1446:11</td>
<td>1407:11</td>
<td>1740:11</td>
<td>1791:12</td>
<td>231</td>
</tr>
<tr>
<td>24(CAPRI)</td>
<td>892:09</td>
<td>891:09</td>
<td>936:09</td>
<td>930:09</td>
<td>566</td>
</tr>
<tr>
<td>25(SCORPION)</td>
<td>857:08</td>
<td>1018:09</td>
<td>826:08</td>
<td>998:08</td>
<td>57</td>
</tr>
<tr>
<td>26(BANDM)</td>
<td>1258:05</td>
<td>1275:05</td>
<td>1334:05</td>
<td>1316:05</td>
<td>627</td>
</tr>
<tr>
<td>27(SCRAP1)</td>
<td>1169:10</td>
<td>1210:10</td>
<td>1034:10</td>
<td>1119:10</td>
<td>560</td>
</tr>
<tr>
<td>28(SCFXM1)</td>
<td>1490:06</td>
<td>1405:07</td>
<td>1502:06</td>
<td>1422:06</td>
<td>511</td>
</tr>
<tr>
<td>29(STAIR)</td>
<td>679:08</td>
<td>679:08</td>
<td>722:08</td>
<td>722:08</td>
<td>257</td>
</tr>
<tr>
<td>30(SCSD6)</td>
<td>603:07</td>
<td>721:07</td>
<td>600:07</td>
<td>721:07</td>
<td>112</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19637</td>
<td>20206</td>
<td>18551</td>
<td>19708</td>
<td>8111</td>
</tr>
</tbody>
</table>

Table 4-2: Phase II Algorithm and LSSOL:LP Iteration Counts

The solution to the problem submitted, using its implementation of the simplex method, LSSOL (LP option) will be denoted by LP in the following result tables, and by LSSOL:LP in the text.

Table 4-2 displays the iteration counts of the four Phase II algorithms and LSSOL:LP. As both major and minor iterations of the Phase II algorithms are of interest, their iteration counts are written as "minor: major" in this table. Notice that LSSOL:LP did not successfully solve problems SCSD1 and SCSD6, stalling at 67 and 112 iterations respectively, after performing 50 iterations with no change in the solution. Although the Phase II algorithm rarely needed more than 10 major iterations on any given problem, they all used over twice as many iterations as did LSSOL:LP.

Looking at the run times in Table 4-3, we see that iteration count is not a good indicator of the performance of the Phase II algorithms. All of the Phase II
<table>
<thead>
<tr>
<th>Problem Name</th>
<th>P2F</th>
<th>P2DF</th>
<th>CBP2F</th>
<th>CBP2DF</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(AFIRIO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2(SC50A)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3(SC50B)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4(ADLITTLE)</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5(BLEND)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>6(SHARE2B)</td>
<td>22</td>
<td>25</td>
<td>23</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>7(SC105)</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>8(STOFCOR1)</td>
<td>18</td>
<td>24</td>
<td>18</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>9(RECIPE)</td>
<td>74</td>
<td>71</td>
<td>88</td>
<td>86</td>
<td>71</td>
</tr>
<tr>
<td>10(SCAGRT7)</td>
<td>49</td>
<td>62</td>
<td>46</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td>11(BOEING2)</td>
<td>195</td>
<td>186</td>
<td>155</td>
<td>190</td>
<td>265</td>
</tr>
<tr>
<td>12(ISRAEL)</td>
<td>142</td>
<td>141</td>
<td>143</td>
<td>142</td>
<td>335</td>
</tr>
<tr>
<td>13(SHARE1B)</td>
<td>31</td>
<td>32</td>
<td>34</td>
<td>35</td>
<td>89</td>
</tr>
<tr>
<td>14(VTP.BASE)</td>
<td>1262</td>
<td>1243</td>
<td>440</td>
<td>699</td>
<td>2147</td>
</tr>
<tr>
<td>15(SC205)</td>
<td>84</td>
<td>84</td>
<td>97</td>
<td>96</td>
<td>41</td>
</tr>
<tr>
<td>16(GROW7)</td>
<td>900</td>
<td>917</td>
<td>1019</td>
<td>973</td>
<td>1140</td>
</tr>
<tr>
<td>17(BEACONFD2)</td>
<td>35</td>
<td>36</td>
<td>32</td>
<td>32</td>
<td>62</td>
</tr>
<tr>
<td>18(BRANDY)</td>
<td>199</td>
<td>205</td>
<td>203</td>
<td>210</td>
<td>237</td>
</tr>
<tr>
<td>19(SCSD1)</td>
<td>34</td>
<td>37</td>
<td>35</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>20(E226)</td>
<td>253</td>
<td>359</td>
<td>407</td>
<td>386</td>
<td>584</td>
</tr>
<tr>
<td>21(FORPLAN)</td>
<td>203</td>
<td>204</td>
<td>196</td>
<td>191</td>
<td>489</td>
</tr>
<tr>
<td>22(BORE3D)</td>
<td>161</td>
<td>173</td>
<td>173</td>
<td>180</td>
<td>203</td>
</tr>
<tr>
<td>23(AGG)</td>
<td>1942</td>
<td>1914</td>
<td>2318</td>
<td>2263</td>
<td>1163</td>
</tr>
<tr>
<td>24(CAPFRI)</td>
<td>910</td>
<td>931</td>
<td>1002</td>
<td>995</td>
<td>1730</td>
</tr>
<tr>
<td>25(SCORPION)</td>
<td>641</td>
<td>732</td>
<td>651</td>
<td>720</td>
<td>328</td>
</tr>
<tr>
<td>26(BANDM)</td>
<td>704</td>
<td>703</td>
<td>760</td>
<td>728</td>
<td>911</td>
</tr>
<tr>
<td>27(SCTAP1)</td>
<td>739</td>
<td>771</td>
<td>667</td>
<td>724</td>
<td>880</td>
</tr>
<tr>
<td>28(SCFXM1)</td>
<td>1026</td>
<td>952</td>
<td>1061</td>
<td>975</td>
<td>876</td>
</tr>
<tr>
<td>29(STAIR)</td>
<td>809</td>
<td>783</td>
<td>851</td>
<td>848</td>
<td>1048</td>
</tr>
<tr>
<td>30(SCSD6)</td>
<td>388</td>
<td>447</td>
<td>383</td>
<td>447</td>
<td>68</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10852</td>
<td>11073</td>
<td>10879</td>
<td>11110</td>
<td>12784</td>
</tr>
</tbody>
</table>

Table 4-3: Phase II Algorithm and LSSOL:LP Run Times

algorithms performed better (by total time) than did LSSOL:LP, with the best, P2F, running 15% faster. In contrast to the least-squares Phase I algorithm results, however, the Phase II algorithm did not always perform better than did LSSOL; there were a number of problems in which LSSOL:LP was faster.

Finally we consider the issue of accuracy. The Phase II algorithms have some difficulties with accuracy, just as do the least-squares Phase I algorithms as described in [10]. Although most of the optimal objective values found by the Phase II algorithms are quite close to the true values, there are some notable exceptions. The most inaccurate values tended to be found on problems suspected of ill-conditioning, such as FORPLAN and VTP.BASE. It is possible that these difficulties with accuracy could be alleviated by using some sort of iterative refinement (see [2]), but this variation was not implemented.
5 Summary and Conclusions

Section 2 presented a Phase I algorithm using least-squares subproblems. Section 3 used the algorithm from Section 2 to produce a Phase II algorithm based on solving a sequence of augmented feasibility problems, each solved by the least-squares Phase I algorithm. Convergence to the optimal solution was proved, and with a minor alteration of the algorithm, convergence was shown to be linear in the number of augmented feasibility problems solved. Computational results for this Phase II algorithm were generally good, but not as spectacular as for the least-squares Phase I algorithm. The variations of the Phase II algorithm implemented required many more iterations than did LSSOL's implementation of the simplex method. However, run times were better, with the best Phase II algorithm variation requiring 85% of the total run time of LSSOL:LP.

Future Work

As stated in [10], although the results presented here are promising, the Phase II algorithm must be fine-tuned in order to be commercially competitive, just as the simplex method has been since its discovery. In particular, the problem of instability in unstable problems must be addressed, perhaps with the inclusion of iterative refinement of the solutions to the embedded least-squares subproblems. In addition, these algorithms should be implemented using sparse matrix methods to see how they compare to sparse matrix implementations of the simplex method.

References

Title and Subtitle

A Strictly Improving Linear Programming Algorithm Based on a Series of Phase I Problems

Author(s)

S. A. Leichner, G. B. Dantzig and J. W. David

Performing Organization Name(s) and Address(es)

Department of Operations Research - SOL
Stanford University
Stanford, CA 94305-4022

Sponsoring/Monitoring Agency Name(s) and Address(es)

Office of Naval Research - Department of the Navy
300 N. Quincy Street
Arlington, VA 22217

Office of Energy Research
U.S. Department of Energy
Washington, DC 20585

Distribution/Availability Statement

UNLIMITED

Abstract

When used on degenerate problems, the simplex method often takes a number of degenerate steps at a particular vertex before moving to the next. In theory (although rarely in practice), the simplex method can actually cycle at such a degenerate point. Instead of trying to modify the simplex method to avoid degenerate steps, we have developed a new linear programming algorithm that is completely impervious to degeneracy.

This new method solves the Phase II problem of finding an optimal solution by solving a series of Phase I feasibility problems. Strict improvement is attained at each iteration in the Phase I algorithm, and the Phase II sequence of feasibility problems has linear convergence in the number of Phase I problems.

When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase II algorithm (using the series of feasibility problems) were over 15% faster, and on one problem it was four times faster.

Subject Terms

Linear Programming; least squares; strict improvement.