
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 434–459

STABILIZING POLICY IMPROVEMENT FOR LARGE-SCALE
INFINITE-HORIZON DYNAMIC PROGRAMMING∗
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Abstract. Today’s focus on sustainability within industry presents a modeling challenge that
may be dealt with using dynamic programming over an infinite time horizon. However, the curse of
dimensionality often results in a large number of states in these models. These large-scale models
require numerically stable solution methods. The best method for infinite-horizon dynamic pro-
gramming depends on both the optimality concept considered and the nature of transitions in the
system. Previous research uses policy improvement to find strong-present-value optimal policies
within normalized systems. A critical step in policy improvement is the calculation of coefficients
for the Laurent expansion of the present-value for a given policy. Policy improvement uses these
coefficients to search for improvements of that policy. The system of linear equations that yields the
coefficients will often be rank-deficient, so a specialized solution method for large singular systems
is essential. We focus on implementing policy improvement for systems with substochastic classes
(a subset of normalized systems). We present methods for calculating the present-value Laurent
expansion coefficients of a policy with substochastic classes. Classifying the states allows for a de-
composition of the linear system into a number of smaller linear systems. Each smaller linear system
has full rank or is rank-deficient by one. We show how to make repeated use of a rank-revealing LU
factorization to solve the smaller systems. In the rank-deficient case, excellent numerical properties
are obtained with an extension of Veinott’s method [Ann. Math. Statist., 40 (1969), pp. 1635–1660]
for substochastic systems.
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1. Introduction. A current focus of many industries is sustainability—ensuring
that the required resources will never be exhausted. For example, both agriculture
and aquaculture rely on renewable resources for continued profits. One method for
addressing sustainability is by considering the effect of management policies over an
infinite time horizon. Any policy that destroys the stock (even slowly) will be sub-
optimal compared to a policy that maintains (or renews) the resource over time.

Dynamic programming can be used to model systems over an infinite time horizon
and can also incorporate uncertainty in the behavior of the system. However, these
models often require a large state space to represent the system accurately. Thus, any
solution method must be able to deal with the computational challenges presented by
a large state space.

To select an optimal policy, one must differentiate between all the possible poli-
cies that exist for controlling such processes. Most previous research focuses on sub-
stochastic systems (where transitions between states are probabilistic), where the
objective is maximum reward rate, present-value optimality, or strong-present-value

∗Received by the editors March 1, 2006; accepted for publication (in revised form) by L. Vanden-
berghe December 10, 2008; published electronically April 22, 2009.

http://www.siam.org/journals/simax/31-2/65330.html
†Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand

(michael.osullivan@auckland.ac.nz). This author’s research was partially supported by National Sci-
ence Foundation grant CCR-9988205 and Office of Naval Research grant N00014-96-1-0274.

‡Department of Management Science & Engineering, Stanford University, Stanford, CA 94305
(saunders@stanford.edu). This author’s research was partially supported by National Science Foun-
dation grants CCR-9988205 and CCR-0306662, and Office of Naval Research grants N00014-96-1-
0274, N00014-02-1-0076, and N00014-08-1-0191.

434



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE POLICY IMPROVEMENT FOR DYNAMIC PROGRAMMING 435

optimality. Of these three concepts, only strong-present-value optimality considers
short, intermediate, and long-term behavior. (Using the maximum reward rate as an
objective ignores any transient behavior, and present-value optimality discounts away
the importance of long-term behavior.)

Normalized systems don’t require transitions to be substochastic, but rather, the
transition matrix of every stationary policy has spectral radius not exceeding one.
Rothblum [12] notes that Blackwell’s existence theorem for substochastic systems ex-
tends to normalized systems and then generalizes the methods from Miller and Veinott
[8] and Veinott [14, 15] to give a policy improvement method for normalized systems.
This (more general) policy improvement requires the coefficients of an (augmented)
Laurent expansion of the present-value for a policy. The coefficients are the unique
solution of a set of linear equations (identical to those from Veinott [14] except in the
number of arbitrary variables).

Veinott [14, p. 1651] shows how to solve these linear equations efficiently (for sub-
stochastic systems) by identifying recurrent classes, solving within each such (stochas-
tic, irreducible) class by repeated application of Gaussian elimination, and using these
solutions to solve the remainder of the system. Rothblum [12] notes that Veinott’s
method may be extended to normalized systems, but extra work is required to parti-
tion the system into communicating classes and identify which classes are recurrent.
No previous research discusses the numerical properties of the linear equations or the
numerical stability of solution methods (although Veinott [14] recognizes the linear
dependence of the linear equations within recurrent classes).

This paper presents computationally efficient methods for solving the linear equa-
tions for any policy with substochastic classes. Rather than try to solve the equations
as a single large system (with uncertain rank), the methods use the partitioning of the
state space into communicating classes (similar to Veinott [14]). By restricting the
linear system to each class and solving these smaller systems in a specified order, we
reduce the full linear system to a sequence of smaller linear systems that have full rank
or are rank-deficient by one. We give effective methods for solving the smaller linear
systems, using repeated application of a rank-revealing LU factorization (RRLU). In
the rank-deficient case, excellent numerical properties are obtained with an extension
of Veinott’s method [14] for substochastic systems.

The paper is organized as follows. Section 2 introduces the preliminary definitions
and results necessary for policy improvement in systems with substochastic classes.
Once the system has been partitioned into communicating classes, section 3 gives
a method for finding the Laurent expansion coefficients within each (substochastic,
irreducible) class. We also present Veinott’s [14] method for stochastic, irreducible
systems and extend it to systems with system degree d > 1. An example illustrating
both methods is given in section 4. Section 5 discusses the stability and computational
efficiency of the methods, and section 6 presents numerical comparisons. Finally,
section 7 presents a comparison of our methods when used on a real-world stochastic
dynamic programming application.

2. Preliminaries. This section contains a summary of definitions and results
presented in [2, 8, 14, 15, 12].

Consider a general system observed in periods 1, 2, . . . . The system exists in a
finite set S of S states. In each state s ∈ S the system takes one of a finite set As of
actions. Taking action a ∈ As from s ∈ S earns reward r(s, a) and causes a transition
to state t ∈ S, with rate p(t|s, a).
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Each (stationary) policy δ ∈ Δ is a function that assigns a unique action δs ∈ As

to each s ∈ S and induces a single-period S-column reward vector rδ ≡ (r(s, δs)) and
an S × S transition matrix Pδ ≡ (p(t|s, δs)).

2.1. Systems with substochastic classes. Each transition matrix Pδ (corre-
sponding to policy δ) defines a set of communicating classes as follows. A state s
communicates with another state t if there exists some N > 0 such that PN

δst > 0. A
communicating class C is a maximal subset of S such that every pair of states s, t ∈ C
communicate with each other. Each communicating class C may be

transient: limN→∞ PN
δst = 0 (C, 1) for all s ∈ S, t ∈ C, or

recurrent: limN→∞ PN
δst > 0 (C, 1) for some s ∈ S, t ∈ C,

i.e., the long-run probability of being in C is 0 or positive, where the limit is the
Cesàro limit of order 1.

If every class C (under δ) has 0 ≤ p(t|s, a) ≤ 1 and
∑

t∈C p(t|s, a) ≤ 1, s, t ∈ C, a ∈
As, then δ has substochastic classes. The blocks of Pδ corresponding to these classes
lie on the diagonal and have spectral radius not exceeding one, so Pδ has spectral
radius not exceeding one. If every (stationary) policy has substochastic classes, the
system has substochastic classes. Also, since the spectral radius of the transition
matrix for every (stationary) policy does not exceed one, the system is normalized.

System degree. For each policy δ, let the degree of δ be the smallest nonnegative
integer dδ ≡ i such that Qi

δ and Qi+1
δ have the same null space (where Qδ ≡ Pδ − I).

Let the system degree d ≡ max δ∈Δ dδ.

2.2. Strong-present-value optimality. Suppose that rewards carried from
one period to the next earn interest at the rate 100ρ% (ρ > 0), and let β ≡ 1

1+ρ

be the discount factor. The present value V ρ
δ of a policy δ is the (expected) present

value of the rewards that δ earns in each period discounted to the beginning of period
0, i.e., V ρ

δ ≡∑∞
N=1 β

NPN−1
δ rδ. A policy δ is present-value optimal if V ρ

δ ≥ V ρ
γ for all

γ ∈ Δ. Finally, δ is strong-present-value optimal if it is present-value optimal for all
sufficiently small ρ.

Blackwell [2] shows the existence of a stationary strong-present-value optimal
policy for substochastic systems, and this theorem also holds for normalized systems.
Hence, it suffices to restrict attention to stationary policies throughout this paper.

n-optimality. It is computationally challenging to discern directly whether or not
a policy is strong-present-value optimal. However, building a sequence of n-optimal
policies is more efficient and eventually attains strong-present-value optimality (when
n = S). We define the concept of n-optimality in the remainder of this section.

A policy δ is n-present-value optimal if

(2.1) lim
ρ↓0

ρ−n
(
V ρ

δ − V ρ
γ

) ≥ 0 for all γ ∈ Δ.

Evidently,

(2.2) V ρ
δ = βrδ + βPδV

ρ
δ .

Rothblum [12] extends the Laurent expansion of Miller and Veinott [8] (for substochas-
tic systems) to give, for small ρ > 0,

(2.3) V ρ
δ =

∞∑
n=−d

ρnvn
δ .
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By substituting (2.3) into (2.2), multiplying by 1+ρ, and equating coefficients of like
powers of ρ, we see that V n+d ≡ (v−d, . . . , vn+d

)
=
(
v−d

δ , . . . , vn+d
δ

)
satisfies

(2.4) rj
δ +Qδv

j = vj−1, j = −d, . . . , 0, . . . , n+ d,

where Qδ = Pδ − I, r0δ = rδ, r
j
δ = 0, j �= 0, and v−d−1

δ = 0 [8, 12]. Conversely, if the
matrix V n+d ≡ (

V n, vn+1, . . . , vn+d
)

satisfies (2.4), then V n = V n
δ ≡ (

v−d
δ , . . . , vn

δ

)
[14, 12]. Thus, (2.4) uniquely determines the vector V n = V n

δ , but not vn+1, . . . , vn+d.
Writing B � C for two matrices of like dimension means that each row of B −C

is lexicographically nonnegative. From (2.1) and (2.3), a policy δ is n-present-value
optimal if and only if δ is n-optimal, i.e., V n

δ � V n
γ for all γ ∈ Δ.

Denote the set of n-optimal policies by Δn and notice that the n-optimal sets are
nested: Δ ⊇ Δ−d ⊇ Δ−d+1 ⊇ Δ−d+2 ⊇ · · · . Extending [8], [14] shows that there ex-
ists an m ∈ [−1, S] such that Δ ⊇ Δ−1 ⊇ · · · ⊇ Δm = Δm+1 = · · · (for substochastic
systems). Moreover, an S-optimal policy is strong-present-value optimal.

Rothblum [12] shows how to extend the policy improvements from Miller and
Veinott [8] and Veinott [14] (for substochastic systems) to normalized systems, i.e.,
systems where the spectral radius of the transition matrix for every (stationary) pol-
icy does not exceed one. As systems with substochastic classes are normalized, Roth-
blum’s policy improvement can be applied to these systems.

Hereafter, we consider only stationary policies in systems that have substochastic
classes. We present a numerically stable method for finding V n

δ for a given δ ∈ Δ and
−d ≤ n. More generally, the method finds a solution of

(2.5) c j +Qδv
j = vj−1, j = m+ 1, . . . , n+ d

given δ ∈ Δ, vm and c j , j = m + 1, . . . , n + d. Again, only vj , j = m + 1, . . . , n are
uniquely determined.

3. Finding the Laurent coefficients. The communicating class decomposition
of a policy (see section 2.1) induces a dependence partial ordering amongst the classes.
A class C depends on another class D if there is some s ∈ C, t ∈ D, with Pδst > 0. (If
additionally, Pδts > 0, then C and D would be the same communicating class.) If a
class C doesn’t depend on any other class, then C is independent.

Bather [1] and Veinott [14] both use the dependence partial ordering to solve
(2.5) for substochastic systems. In substochastic systems, all recurrent classes are
independent, so one may solve (2.5) for these classes separately. Once the values of
the independent (recurrent) classes are known, i.e., vj

s for s in a recurrent class, these
values may be incorporated into the linear equations (2.5) for classes that depend on
the independent classes, and these linear equations may then be solved separately.
By repeating this process, (2.5) may be solved for the entire system by solving (2.5)
within each class (using any necessary values from other classes).

For systems with substochastic classes, it is not necessarily true that recurrent
classes are independent and vice versa. However, one may still use the dependence
partial ordering to solve (2.5) by solving (2.5) within each class as just described.
Also, even though it may not be clear if a class is transient or recurrent, each class
is substochastic (by definition) and irreducible (because every state within a class
communicates with all other states in the class).

The remainder of this section presents a method for solving the linear system
(2.5) within a single substochastic, irreducible class. Throughout, the notation for
system parameters denotes those same parameters restricted to the class. Thus, S
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refers to the states within the class, Pδ refers to the transition matrix restricted to
the states in the class, and so on.

Each class may be transient or recurrent. In a transient class, limN→∞ PN
δ =

0 (C, 1), so Q−1
δ ≡ (Pδ − I)−1 = − (I + Pδ + P 2

δ + · · · ) is well-defined (Qδ is nonsin-
gular). If the class is recurrent, then it must be stochastic, i.e.,

∑
t∈S p(t|s, δs) = 1

for every s ∈ S. Then the rows of Qδ sum to zero, so Qδ is singular. Since the class
is irreducible, eliminating any (single) state s from the class causes the remainder
to become transient. This is equivalent to removing the row corresponding to the
state-action pair (s, δs) and the column corresponding to s from Pδ. Removing this
row and column from Qδ causes it to become nonsingular. Hence, Qδ has rank S − 1
(it is rank-deficient by one).

3.1. Rank-revealing LU factors. Given a (substochastic, irreducible) class,
one may deduce if it is transient or recurrent by means of an RRLU factorization of
Qδ. This takes the form

(3.1) T1QδT
T
2 = LU =

(
L̂ 0
lT 1

)(
Û u

0 ε

)
,

where T1 and T2 are permutations that must be chosen to limit the size of the off-
diagonal elements of L and U . If |ε| is suitably large, then Qδ is taken to have full
rank, but if |ε| = O(ε), where ε is the machine precision, Qδ is regarded as singular (in
this case, rank-deficient by one). The remainder of this subsection discusses possible
factorizations that provide T1, T2, L, and U .

Our discussion is centered on LUSOL, a package for computing sparse LU factors
of a square or rectangular sparse matrix [3, 9, 10, 6]. LUSOL produces an L with unit
diagonals and a U that tends to reflect the condition of the original matrix Qδ. As
in several other such packages, T1 and T2 are chosen to maximize sparsity as much as
possible, subject to a stability test at each step of the factorization.

The stability test is a function of two parameters Lmax and Umax (both 1 or more).
At the kth step, the next column of L and row of U must satisfy

|Lik| ≤ Lmax, i > k,

|Ukj | ≤ Umax|Ukk|, j > k.

Adequate stability is usually achieved with threshold partial pivoting (TPP), in which
Lmax = 10 or less, and Umax = ∞ (so that only the subdiagonals of L are controlled).
To improve the rank-revealing properties, both Lmax and Umax must be finite and
closer to 1. Values such as 4, 2, and 1.1 are increasingly likely to reveal rank correctly,
while retaining some freedom to keep L and U sparse.

LUSOL has two RRLU options. Threshold rook pivoting (TRP) uses Lmax =
Umax ≤ 4 (say) and provides a good compromise between stability and efficiency.
Threshold complete pivoting (TCP) additionally requires all elements in the remain-
ing unfactored matrix to be bounded relative to |Ukk| at each stage. This compromises
the sparsity of L and U . To obtain reliable RRLU properties in our experiments, we
have used TRP with Lmax = Umax = 2.0. There is no need to use TCP.

Define the permuted Qδ and the combined permutations from (3.1) as follows:

(3.2) Q ≡ T1QδT
T
2 ≡

(
Q̂ q̂

qT ϕ

)
= LU, T ≡ T1T

T
2 ≡

(
T̂ t̂

tT θ

)
,
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where Q̂ = L̂Û is square and nonsingular and q, q̂, t, t̂, l, u are (S − 1)-vectors.
Regardless of the nature of the class (based on the size of ε), the LU factors may be
used to solve (2.5) because the system is consistent even if Qδ is singular.

Note: The methods presented in the next two sections are essentially those devel-
oped in the first author’s thesis [11], where it was inadvertently assumed that T1 = T2

(and thus T = I). Here we treat T as a general matrix.

3.2. Transient classes. The linear system (2.5) is block triangular:

(3.3)

⎡
⎢⎢⎢⎢⎣
Qδ

−I Qδ

. . . . . .

−I Qδ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
vm+1

vm+2

...
vn+d

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
vm − cm+1

−cm+2

...
−cn+d

⎤
⎥⎥⎥⎥⎦.

If the RRLU factorization shows that Qδ has full rank, the whole system (3.3) is
nonsingular and may be solved by block forward substitution:

(3.4) Qδv
j = vj−1 − c j , j = m+ 1, . . . , n+ d.

3.3. Recurrent classes. Applying the permutations to (3.3) gives

(3.5)

⎡
⎢⎢⎢⎢⎣
Q

−T Q

. . . . . .

−T Q

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
wm+1

wm+2

...
wn+d

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
bm+1

bm+2

...
bn+d

⎤
⎥⎥⎥⎥⎦ ,

where vj = T T
2 w

j (j = m + 1, . . . , n + d ) and also bm+1 = T1(vm − cm+1) and
bj ≡ −T1c

j (j = m + 2, . . . , n + d ). If the rank-revealing LU (RRLU) factorization
shows that Qδ is rank-deficient by one, system (3.5) has additional structure:

(3.6)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̂ q̂

qT ϕ ⊕
−T̂ −t̂
−tT −θ

Q̂ q̂

qT ϕ

. . .
. . .

−T̂ −t̂
−tT −θ

Q̂ q̂

qT ϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵm+1

wm+1
S

ŵm+2

wm+2
S
...

ŵn+d

wn+d
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂m+1

bm+1
S

b̂m+2

bm+2
S
...

b̂n+d

bn+d
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ŵj and b̂j represent the first S − 1 elements of wj and b j, respectively, and ⊕
marks one row and column that reveal a rank-deficiency of one in the full system. The
marked row is redundant as it comes from the first block of (3.5), which is singular
but consistent. Also, since wn+d is not determined uniquely, we may assign wn+d

S ≡ 0
and make the marked column redundant. Removing the marked row and column
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gives the following system, which has full rank and therefore a unique solution:

(3.7)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̂ q̂

−T̂ −t̂
−tT −θ

Q̂ q̂

qT ϕ

. . . . . .

−T̂ −t̂
−tT −θ

Q̂

qT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵm+1

wm+1
S

ŵm+2

wm+2
S
...

ŵn+d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂m+1

b̂m+2

bm+2
S
...

b̂n+d

bn+d
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We now describe two methods for solving system (3.7).

3.4. Block LU method (BLU) for recurrent classes. Rearranging (3.7)
gives the following nonsingular system:

(3.7’)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̂ q̂

−T̂ Q̂ −t̂ q̂

. . .
. . .

. . .
. . .

−T̂ Q̂ −t̂ q̂

−T̂ Q̂ −t̂
− tT qT −θ ϕ

. . . . . . . . . . . .

−tT qT −θ ϕ

−tT qT −θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵm+1

ŵm+2

...
ŵn+d−1

ŵn+d

wm+1
S

wm+2
S
...

wn+d−1
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂m+1

b̂m+2

...
b̂n+d−1

b̂n+d

bm+2
S

...
bn+d−1
S

bn+d
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To derive a solution method, we label the components of (3.7’) as

(3.8)

[
A B

C D

][
ŵ

wS

]
=

[
b̂

bS

]
.

Since Q̂ is nonsingular (and Q̂ = L̂Û has already been found), it is easy to solve a
system Ax = b sequentially. Hence a block LU factorization

[
A B

C D

]
=

[
A

C I

][
I Y

Z

]

solves the full system efficiently. First, solve AY = B and calculate the Schur com-
plement Z = D − CY , then use block forward and backward substitution to solve
(3.7’) and hence (3.6):

(3.9)

[
A

C I

][
x̂

xS

]
=

[
b̂

bS

]
and

[
I Y

Z

][
ŵ

wS

]
=

[
x̂

xS

]
.

The remainder of this section breaks down each step of the process.
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Solving AY = B. Expanding A and B into block-matrix form gives

(3.10)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̂

−T̂ Q̂

. . . . . .

−T̂ Q̂

−T̂ Q̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̂

−t̂ q̂

. . . . . .

−t̂ q̂

−t̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The first column of Y solves the block-diagonal system

(3.11)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̂

−T̂ Q̂

. . . . . .

−T̂ Q̂

−T̂ Q̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ym+1

ym+2

...
yn+d−1

yn+d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̂

−t̂
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The first two vectors in the solution satisfy Q̂ym+1 = q̂ and Q̂ym+2 = T̂ ym+1− t̂. But
Qe = 0 gives Q̂e = −q̂, so that ym+1 = −e, and then Q̂ym+2 = −T̂ e− t̂ = −[ T̂ t̂ ]e =
−e. Thus, we may use the factors Q̂ = L̂Û to solve (3.11) as follows:

ym+1 = −e,
Q̂ym+2 = −e,

Q̂yj = T̂ yj−1, j = m+ 3, . . . , n+ d.

The solution of (3.10) is then given by the block-Toeplitz matrix

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ym+1

ym+2 ym+1

... ym+2 . . .

yn+d−1
...

. . . ym+1

yn+d yn+d−1 · · · ym+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Forming Z = D − CY . With αm+j ≡ −tT ym+j + qT ym+j+1, the structure of C
and Y gives

Z =

⎡
⎢⎢⎢⎢⎢⎣

−θ ϕ

−θ . . .
. . . ϕ

−θ

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

αm+1 qT ym+1

αm+2 αm+1
. . .

...
...

. . . qT ym+1

αn+d−1 αn+d−2 · · · αm+1

⎤
⎥⎥⎥⎥⎥⎦.

However, Q̂ym+1 = q̂ implies that qT ym+1 = ϕ (because Qδ is rank-deficient by one).
Hence Z is both triangular and Toeplitz:

(3.12) Z = −

⎡
⎢⎢⎢⎢⎣
θ + αm+1

αm+2 θ + αm+1

...
...

. . .

αn+d−1 αn+d−2 · · · θ + αm+1

⎤
⎥⎥⎥⎥⎦.
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Block forward substitution. The solution of Ax̂ = b̂ in (3.9) is found sequentially
like the first column of Y in (3.11). Then xS = bS − Cx̂ may be calculated directly.

Block backward substitution. If the dimension of Z is large, the solution of ZwS =
xS may be found using special methods for (lower) triangular Toeplitz systems [13].
Otherwise, ordinary forward substitution suffices to find wS , and then ŵ = x̂− Y wS .
Now wm+1, wm+2, . . . , wn+d (and hence vm+1, vm+2, . . . , vn+d) may be determined
from ŵ and wS .

3.5. Veinott’s method for recurrent classes. Veinott [14, p. 1651] gives a
method for solving the singular linear system from a recurrent class in a substochastic
system. In his method, d = 1 and the singular system is

(3.13)

[
Q

−I Q

][
wm+1

wm+2

]
=

[
bm+1

bm+2

]
.

The notation in this section and the next is the same as in section 3.3, where â
represents the first S−1 elements of a vector a and Â represents the leading (S−1)×
(S − 1) submatrix of a matrix A. Veinott also defines Q′ as the first S − 1 columns
of Q and (most importantly) defines

wm+1 =

[
w̃m+1

0

]
+ wm+1

S e, wm+2 =

[
w̃m+2

0

]
+ wm+2

S e.

Substituting into (3.13) and setting wm+2
S = 0 gives

[
Q′

−I −e Q′

]⎡⎢⎣
w̃m+1

wm+1
S

w̃m+2

⎤
⎥⎦ =

[
bm+1

bm+2

]
.

Veinott uses Gaussian elimination to solve Q′w̃m+1 = bm+1 and observes that the
elimination reduces the last row of Q′ to zero so that w̃m+1 is uniquely determined.
He then applies the same elimination steps to

[
−e Q′

] [wm+1
S

w̃m+2

]
= bm+2

and notes that wm+1
S is uniquely determined by the last row.

3.6. Extended Veinott’s method (EVM). We now extend Veinott’s method
in two ways: (1) to solve for systems with d > 1, and (2) to incorporate the improved
stability of an RRLU.

To solve (2.5), we first compute the RRLU factors of Qδ to obtain L, U , and
T as in (3.1)–(3.2). Next, we remove the row and column marked ⊕ in (3.6) to
obtain system (3.7) as before. (This is equivalent to Veinott setting wm+2

S = 0 and
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observing that the last row of Q′ vanishes, but we have chosen the row and column
more carefully.) Next, we substitute

(3.14)

[
ŵj

wj
S

]
=

[
I e

0 1

][
w̃j

wj
S

]

(this is equivalent to Veinott’s variable change) to get

(3.15)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̂ 0
−T̂ −e
−tT −1

Q̂ 0
qT 0

. . . . . .

−T̂ −e
−tT −1

Q̂

qT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w̃m+1

wm+1
S

w̃m+2

wm+2
S
...

w̃n+d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂m+1

b̂m+2

bm+2
S
...

b̂n+d

bn+d
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Defining

T ′ ≡
[
T̂

tT

]
, E ≡

[
0 T ′

]
, F ≡

[
−e Q̂

−1 qT

]
=
[
−e Q′

]
, xj ≡

[
wj−1

S

w̃j

]

gives the block-triangular system

(3.15’)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̂

−T ′ F

−E F

. . . . . .

−E F

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w̃m+1

xm+2

xm+3

...
xn+d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b̂m+1

bm+2

bm+3

...
bn+d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We solve (3.15’) using block forward substitution with an LU factorization of F , which
may be obtained from a sparse Bartels–Golub update of the factors of Q (since F is a
permutation ofQ with a column replaced by e). Once w̃m+1 and xj (j = m+2, . . . , n+
d) have been computed, w̃j (j = m+ 2, . . . , n+ d) and wj

S (j = m+ 1, . . . , n+ d− 1)
may be recovered, and wj (j = m+ 1, . . . , n+ d) is calculated with a single addition.
Now, vj = T T

2 w
j (j = m+ 1, . . . , n+ d).

4. Example. Consider the system defined in Table 4.1 and represented graphi-
cally in Figure 4.1.

Also consider a policy δ in this system, with reward vector rδ and transition
matrix Pδ as follows:

δ =

⎛
⎜⎜⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎠ , rδ =

⎛
⎜⎜⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎟⎟⎠ , Pδ =

⎡
⎢⎢⎢⎢⎣

1
2

1
2 1 0

1 0 0 0
0 0 0 1

2

0 0 1
2 0

⎤
⎥⎥⎥⎥⎦.

The policy is depicted in Figure 4.2, where we can see that the communicating classes
under δ are {1, 2} and {3, 4}. Both classes are substochastic. Also, it is clear from
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Table 4.1

System description.

p(t|s, a), t ∈ S
s ∈ S a ∈ As r(s, a) 1 2 3 4

1 1 1 1
2

1
2

1 0

2 1 0 1 0 0

2 1 1 1 0 0 0

3 1 0 0 0 0 1
2

4 1 1 0 0 1
2

0

2 0 0 0 0 1

1
2

1
2

1
2

1
2

0

0

1

1

1

1

1

1 1

1

1

2

34

Fig. 4.1. Graphical representation of system.

1
2

1
2

1
2

1
2

0

1

1

1

1

1

1

2

34

Fig. 4.2. Graphical representation of δ.

Figure 4.1 that any policy in this system has substochastic classes, i.e., the system
has substochastic classes.

The degree of δ is 1, but the system degree is 2 (because a policy using action
2 instead of action 1 in state 4 has degree 2). Using dδ instead of d in (2.4) may
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decrease the computation required to find the Laurent coefficients for δ, but the
amount of computation required to find dδ is significant (and only slightly less than
that required to find d). Therefore, it is computationally more efficient to calculate
the system degree d at the start of policy improvement and use d in (2.4) throughout.

Finding v−2
δ requires the solution of (2.4) for this system:

⎡
⎢⎢⎢⎢⎣
− 1

2
1
2

1 0

1 −1 0 0

0 0 −1 1
2

0 0 1
2

−1

⎤
⎥⎥⎥⎥⎦v−2

δ = 0,

⎡
⎢⎢⎢⎢⎣
− 1

2
1
2

1 0

1 −1 0 0

0 0 −1 1
2

0 0 1
2

−1

⎤
⎥⎥⎥⎥⎦v−1 = v−2

δ ,

and ⎛
⎜⎜⎜⎜⎝

1

1

0

1

⎞
⎟⎟⎟⎟⎠ +

⎡
⎢⎢⎢⎢⎣
− 1

2
1
2

1 0

1 −1 0 0

0 0 −1 1
2

0 0 1
2

−1

⎤
⎥⎥⎥⎥⎦v0 = v−1.

Solving first for the independent class {3, 4}, we have

Qδ =

[
−1 1

2
1
2 −1

]
=

[
1 0
− 1

2 1

][
−1 1

2

0 − 3
4

]
≡ LU

within the class. The LU factors are nonsingular, indicating a transient class. There-
fore, finding v−2

δ within {3, 4} requires the solution of (3.3):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
2

1
2 −1

−I −1 1
2

1
2 −1

−I −1 1
2

1
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v−2
δ3

v−2
δ4

v−1
3

v−1
4

v0
3

v0
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−rδ3 = 0
−rδ4 = −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and solving sequentially using the LU factors gives(
v−2

δ3

v−2
δ4

)
=

(
0
0

)
,

(
v−1
3

v−1
4

)
=

(
0
0

)
,

(
v0
3

v0
4

)
=

(
2
3
4
3

)
.

The next class {1, 2} depends on {3, 4}, whose values are known. Hence, v−2
δ may

be calculated within {1, 2}. Restricting Qδ to {1, 2} gives

Qδ =

[
− 1

2
1
2

1 −1

]
.

The rows of Qδ are interchanged (for a marginal improvement in stability), giving the
LU factorization

T1QδT2 = LU, T1 =

[
0 1
1 0

]
, T2 = I, L =

[
1
− 1

2 1

]
, U =

[
1 −1

0

]
.
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The singularity of U indicates a recurrent class. Calculating v−2
δ for {1, 2} therefore

requires the solution of (3.6):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
− 1

2
1
2

−1 1 −1
−1 − 1

2
1
2

−1 1 −1
−1 − 1

2
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w−2
δ1

w−2
δ2

w−1
1

w−1
2

w0
1

w0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−rδ2 = −1
−v0

3 − rδ1 = − 5
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for which Q̂ = 1, qT = − 1
2 , q̂ = −1, and ϕ = 1

2 . Eliminating the redundant row
and arbitrary variable w0

2 gives a slightly smaller nonsingular system corresponding
to (3.7).

4.1. BLU. Rearranging as in (3.7’) gives⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1 −1

1 −1

−1 − 1
2

1
2

−1 − 1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

w−2
δ1

w−1
1

w0
1

w−2
δ2

w−1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

−rδ2 = −1
0

−v0
3 − rδ1 = − 5

3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Now A, B, C, and D are known. Solving AY = B requires the solution of⎡
⎢⎣
1

1
1

⎤
⎥⎦
⎛
⎜⎝
y−2
1

y−1
1

y0
1

⎞
⎟⎠ =

⎛
⎜⎝
−1
−1
0

⎞
⎟⎠

by sequential use of the nonsingular LU factors L̂ = 1, Û = 1. Thus

y−2
1 = y−1

1 = −1, y0
1 = 0, and Y =

⎡
⎢⎣
−1
−1 −1

−1

⎤
⎥⎦,

and then

Z =

[
1
2

]
−
[
−1 − 1

2

−1 − 1
2

]⎡⎢⎣
−1
−1 −1

−1

⎤
⎥⎦ = −

[
3
2

1 3
2

]
.

Block forward substitution solves⎡
⎢⎣
1

1
1

⎤
⎥⎦
⎛
⎜⎝
x−2

1

x−1
1

x0
1

⎞
⎟⎠ =

⎛
⎜⎝

0
0
−1

⎞
⎟⎠ ⇒ x−2

1 = x−1
1 = 0, x0

1 = −1.

Then,

(
x−2

2

x−1
2

)
=

(
0
− 5

3

)
−
[
−1 − 1

2

−1 − 1
2

]⎛⎜⎝
x−2

1 = 0
x−1

1 = 0
x0

1 = −1

⎞
⎟⎠ =

(
0

− 13
6

)
.
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Finally, block backward substitution first solves

−
[

3
2

1 3
2

](
w−2

δ2

w−1
2

)
=

(
x−2

2 = 0
x−1

2 = − 13
6

)
⇒

(
w−2

δ2

w−1
2

)
=

(
0
13
9

)

and then calculates⎛
⎜⎝
w−2

δ1

w−1
1

w0
1

⎞
⎟⎠ =

⎛
⎜⎝
x−2

1 = 0
x−1

1 = 0
x0

1 = −1

⎞
⎟⎠ −

⎡
⎢⎣
−1
−1 −1

−1

⎤
⎥⎦
(
w−2

δ2 = 0
w−1

2 = 13
9

)
=

⎛
⎜⎝

0
13
9
4
9

⎞
⎟⎠.

Since T2 = I, the v and w variables are the same.

4.2. EVM. Here we obtain v−2
δ1 , v

−1
1 , v0

1 within the class {1, 2} following Veinott’s
approach. The system to be solved is (3.6):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
− 1

2
1
2

−1 1 −1
−1 − 1

2
1
2

−1 1 −1
−1 − 1

2
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w−2
δ1

w−2
δ2

w−1
1

w−1
2

w0
1

w0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−rδ2 = −1
−v0

3 − rδ1 = − 5
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for which the quantities in (3.15)–(3.15’) are

Q̂ = 1, Q′ =

[
1
− 1

2

]
, T ′ =

[
0
1

]
, E =

[
0 0
0 1

]
, F =

[
−1 1
−1 − 1

2

]
.

Setting w0
2 = 0 gives the system

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−1 1

−1 −1 − 1
2

−1 1
−1 −1 − 1

2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

w̃−2
δ1

w−2
δ2

w̃−1
1

w−1
2

w̃0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
−1
− 5

3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Recall L̂ = 1, Û = 1, and the LU factors of F are

L̃ =

[
1
1 1

]
, Ũ =

[
−1 1

− 3
2

]
.

Solving L̂Û w̃−2
1 = 0 gives w̃−2

1 = 0, and solving⎡
⎢⎢⎢⎢⎣
−1 1
−1 − 1

2

−1 1
−1 −1 − 1

2

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
w−2

δ2

w̃−1
1

w−1
2

w̃0
1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0 + w̃−2

1 = 0
−1
− 5

3

⎞
⎟⎟⎟⎟⎠
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sequentially using L̃ and Ũ gives w−2
2 = w̃−1

1 = 0, w−1
2 = 13

9 , and w̃0
1 = 4

9 . Performing
the appropriate additions gives w−2

δ1 = w−2
δ2 = 0, w−1

1 = w−1
2 = 13

9 , w0
1 = 4

9 , and
w0

2 = 0. Again, T2 = I means the v and w variables are the same.
Therefore, irrespective of which method is used for the recurrent class {1, 2},

v−2
δ =

⎛
⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎠, v−1 =

⎛
⎜⎜⎜⎜⎝

13
9
13
9

0
0

⎞
⎟⎟⎟⎟⎠, v0 =

⎛
⎜⎜⎜⎜⎝

4
9

0
2
3
4
3

⎞
⎟⎟⎟⎟⎠

solves (2.4) for the example system, and the Laurent coefficients v−2
δ of the policy δ

have been found.

5. Numerical stability. For transient classes, the natural approach is to solve
the block-triangular system (3.3) by block forward substitution, using the nonsingular
Qδ repeatedly as in (3.4). If Qδ is ill-conditioned, any errors in solving with Qδ will
grow exponentially. One may reduce the effect by using a small interval, namely,
n+ d−m. This may be achieved by implementing policy improvement as suggested
by Veinott [14]. By finding m-optimal policies for m = −d, . . . , n sequentially, Veinott
maintains Vm−1

δ throughout and simply searches for m, . . . , (m + d)-improvements
(again in order). Finding an (m+ d)-improvement requires Vm+d

δ , so the interval for
(2.5) is at most m+ 2d− (m− 1) = 2d+ 1. Therefore, the smaller the degree of the
system, the more reliable calculations become.

Note: If Qδ is ill-conditioned, but not singular, (3.3) is intrinsically ill-conditioned,
and the computed vj will have error regardless of the numerical method used. Keeping
d small is advisable until the policy improvement leads to a better conditioned Qδ.

The RRLU factorization of Qδ is essential for numerical computation. If a class
is recurrent but the LU fails to identify the singularity, the factors of Qδ will be
extremely ill-conditioned, and computational errors will become prominent in the
block forward substitution for solving (3.3).

If singularity is identified, the BLU method works with the factorization (3.7’)–
(3.8), which is stable as long as A is not almost singular and the elements of either
B or C (or both) are not much larger than the biggest element of A. Denote these
requirements by Property P1. It is not clear when Property P1 will hold, but it can
be tested a priori.

The Schur complement Z (3.12) is lower triangular with constant diagonal ele-
ments θ + αm+1. The condition of Z will be reasonable if that diagonal value is not
significantly smaller in magnitude than the off-diagonal elements αm+2, . . . , αn+d−1.
Denote this state by Property P2.

If P1 and P2 both hold, we have a stable method solving a well-behaved problem.
If P1 holds, the condition of Z reflects the condition of the original problem. In
practice with block factorizations of this kind, a single iteration of iterative refinement
[5] is likely to give acceptable accuracy in most cases (without the use of higher
precision). If the refinement procedure declares failure, interval reduction would be
necessary.

For the extended Veinott method, there is more assurance of stability because
the triangular transformations (3.14) are well-conditioned and the block-triangular
system (3.15) ≡ (3.15′) accurately reflects the condition of system (3.7). This becomes
evident in the following numerical results.
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6. Numerical experiments. The BLU method and the EVM involve similar
amounts of computation, but may differ in their numerical accuracy.

To obtain a valid statistical comparison of the methods, we performed some ex-
periments using Matlab 7.5.0.342 (R2007b) [7] with machine precision ε ≈ 2×10−16.
We generated 100 random sparse linear systems (3.3) with Qδ of order 100 and den-
sity ≈ 20%, c0 nonzero, and the remaining cj = 0. Fifty of the Qδ were irreducible
transient classes and 50 irreducible recurrent classes. Thus, half the systems (3.3) had
Qδ nonsingular, and the other half contained one singularity as in (3.6).

We implemented each method, BLU and EVM, with three different factorizations:
TPP LUSOL with threshold partial pivoting;
TRP LUSOL with threshold rook pivoting;
MLU Matlab’s sparse LU factorization: [L,U,P,Q] = lu(A,thresh).

A further method FULL used Matlab’s \ (backslash) operator to solve the entire
system (3.3) without any extra guidance. This is equivalent to MLU on the full
system. MLU uses a TPP strategy. The threshold parameters for LUSOL and MLU
were set to keep |Lij | ≤ 2.0, a fairly strict bound that favors stability over sparsity.1

To estimate rank, LUSOL counts the number of diagonals that are small in absolute
terms or relative to their own column:

|Ujj | ≤ ε2/3 max(1, ‖Uj‖∞)

and regards them as singularities. We applied the same test to Matlab’s LU factors.
We computed the Laurent coefficients in the test classes using each of the meth-

ods {BLU, EVM, FULL}, and for methods {BLU, EVM}, we used all three LU
factorizations {TPP, TRP, MLU}. For each class i = 1, 2, . . . , 100, we performed an
experiment using method M and factorization F as follows:

Experiment. We randomly permuted the states in class i 100
times (this corresponds to a symmetric permutation of the linear
system but does not change the Laurent coefficient values). For each
of the 100 permutations, we used method M and (if appropriate)
factorization F to calculate the residual norms for (2.5): ‖c j +Qδv

j−
vj−1‖∞, j = −1, 0, . . . , 6, which should be zero for all eight j. For
each vj , we set the residual metric ρM,F

i,j to be the largest residual
value for vj over the 100 permutations. Thus, the residual metric
is an estimate of the the poorest performance of method M with
factorization F when finding coefficient vj for class i.

During our experiments we encountered floating-point overflow when using FULL:
An obvious failure by this method. We also consider a residual of O(1) or higher to
be a failure by a method/factorization because it means there are no correct digits in
the computed vj .

6.1. Comparison of residuals. From the residual metric values, we make the
following observations.

1Actually, Matlab’s [L,U,P,Q] = lu(A,thresh) might not bound all elements of L. If A can be
permuted so that the first group of rows is strictly upper triangular and the first group of remaining
columns is strictly lower triangular, the latter columns may become part of L regardless of the size
of their subdiagonals. This does not affect MLU’s stability for solving square nonsingular systems
such as we have here (because only permutations are involved), but it affects other applications that
require L to be well-conditioned.
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Fig. 6.1. Largest residual norms.

• For transient classes, the average residual metrics for FULL

ρFULL
j ≡ 1

100

100∑
i=1

ρFULL
i,j

were similar in magnitude to the average residual metrics for BLU and EVM
with the LUSOL factorizations, namely, ρBLU, TPP

j , ρBLU, TRP
j , ρEVM, TPP

j ,
ρEVM, TRP

j , respectively (see Figure 6.1 top).
• For recurrent classes, FULL generated floating-point overflow on 39 of the 50

examples. This is to be expected because the Matlab LU is not intended
for singular systems. Even when the residual metrics could be calculated
without overflow, their magnitude grew by a factor of O(1016) for each j,
from O(10−15) when j = −1 to O(10110) when j = 6. Thus (in general)
FULL fails for recurrent classes except when j = −1.

• For transient classes, methods BLU and EVM perform similarly. Figure 6.1
(top) shows ρM,F

j for M = {BLU, EVM}, F = {TPP, TRP, MLU}, and
j = −1, 0, . . . , 6. For j = −1, all residual metrics are numerically insignificant
(actually less than machine precision and so not shown). For j = 0, the
residual metrics are O(10−15) with TPP or TRP, but O(1) with MLU. For
j = 1 to 6, the residual metrics increase at a moderate rate from their value
for j = 0. Thus, for transient classes with methods BLU and EVM, the
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residual metrics are numerically insignificant when TPP or TRP are used,
but MLU fails for j ≥ 0.

• For recurrent classes, methods BLU and EVM differ significantly. Figure 6.1
(bottom) shows insignificant average residual metrics for j = −1 for both
methods. However,

– For BLU with TPP and TRP, the residual metrics increase steadily as j
increases, reaching O(10−2) when j = 6 and thus becoming numerically
significant. The effect is slightly more pronounced with TPP (more on
this later).

– For EVM with TPP and TRP, the residual metrics remain at O(10−14).
Any increase with j is very small, so a large number of coefficients could
be calculated simultaneously before numerical error becomes a concern.
Thus, EVM shows a definite advantage.

– For MLU, the residual metrics for j ≥ 0 are O(10−1), so that MLU is
bordering on failure for those j.

6.2. Pairwise comparisons. To identify differences in the methods and factor-
izations more accurately, we computed the average pairwise differences of the residual
metrics for each j:

ψ
M,F,M′,F′

j ≡ 1
100

100∑
i=1

(
ρM,F

i,j − ρM
′,F′

i,j

)
.

Statistical analysis of these average differences led to the following observations.

Comparison of methods.
• For transient classes, there is no statistical evidence of a difference between

BLU and EVM for any of the coefficients, regardless of the factorization used.
• For recurrent classes, the only statistical evidence of a difference between

BLU and EVM appears for TPP and TRP. There is evidence that

ψ
BLU, TPP, EVM, TPP

j � 0 and ψ
BLU, TRP, EVM, TRP

j � 0, j = 0, 1, . . . , 6.

The difference is initially small but grows with j: see Figure 6.2. The trend
indicates that numerical errors grow faster with BLU, and thus BLU will fail
before EVM (i.e., at lower j). Note that the difference grows somewhat slower
for TRP; thus BLU will stay “competitive” with EVM for longer with TRP.
However, as the differences are positive and increasing, EVM is outperforming
BLU in terms of average residual metrics, and the residual metrics deteriorate
faster for BLU.

Comparison of factorizations.
• For transient classes, with both BLU and EVM there is statistical evidence

of different factorizations giving different residual metrics: see Figure 6.3.
For both methods, the difference TPP − TRP exists only for v0 and v1 and
is O(10−15) so is numerically insignificant. In contrast, and again for both
BLU and EVM, the difference between MLU and the LUSOL factorizations
TPP and TRP starts at O(1) for vj , j = 0 and increases steadily with j.
This demonstrates that MLU will fail even when the LUSOL factorizations
succeed and that the MLU residual metrics deteriorate faster than those for
the LUSOL factorizations.
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BLU and EVM on transient classes.

• For recurrent classes, with both BLU and EVM there is evidence again of
difference among the factorizations: see Figure 6.4.

– When BLU is used, ψ
BLU, TPP, BLU, TRP

j > 0 and exceeds
√
ε for j ≥ 3,

so that TRP outperforms TPP for j ≥ 3, i.e., produces lower residu-
als. Also, the average difference is growing, so the TPP residual met-
rics are deteriorating at a greater rate. Further, the difference between
the Matlab and LUSOL factorizations is numerically significant for all
coefficients except v−1, with the LUSOL factorizations clearly outper-
forming those of Matlab. However, note that the difference between
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Fig. 6.4. Comparing factorizations using the difference in residuals; confidence intervals for
BLU and EVM on recurrent classes.

TPP and TRP approaches the difference between the MLU and LUSOL
factorizations. This indicates that the gap between the residual metrics
with TPP and TRP (with BLU) is soon greater than the gap between
the residual metrics with MLU and TRP. This is difficult to reconcile
with the difference between MLU and TPP continuing to grow.

A look at the raw data shows some interesting cases that have caused
this apparent anomaly. There is one matrix where TPP continues to
perform well, O(10−11) for j = 6, while both TRP and MLU deteriorate
as usual. This causes the average difference of residual metrics between
MLU and TPP to continue growing (as it “washes out” the difference of
the other matrices). Conversely, there are several matrices where TRP
gives residual metrics of O(10−14), while TPP and MLU deteriorate as
usual. This keeps the average difference between MLU and TRP growing
and also causes the difference between TPP and TRP to grow (faster,
as there are several matrices). More research is needed into the reason
for the unusual performance of LUSOL on these matrices.

– When EVM is used, ψ
EVM, TPP, EVM, TRP

j > 0 is statistically significant
only for j = 0, 1, 2 and is not numerically significant. Also, the difference
between the Matlab and LUSOL factorizations is numerically signifi-
cant and increasing (although less than that for BLU) for all coefficients
except v−1, so again the LUSOL factorizations clearly outperform the
Matlab factorizations.

6.3. Rank and computation time. From our experiments, it is unclear if
TRP is required to identify the rank of a class correctly, or if TPP is sufficient. As the
threshold parameter 2.0 is quite low (favoring stability over sparsity), all factorizations
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seem to have determined the rank of Qδ correctly. If we increase the threshold (thus
sacrificing numerical stability to preserve sparsity), all threshold strategies become less
able to determine the rank of a class. To preserve efficiency and reliability, experience
in the context of sparse constrained optimization [4] suggests the use of TRP with
1.1 ≤ threshold ≤ 2.0.

Finally, we compare the computation time for all approaches. We timed the
computation of all coefficients for each of the 100 linear systems (ignoring permutation
time, as permuting the system did not alter computation times). For the transient
classes with both the BLU and EVM methods, the time for all factorizations was
approximately 0.01 seconds. There was no statistical evidence of any difference among
the factorizations with either of the methods. However, for the recurrent classes, there
was statistical evidence of difference between BLU and EVM with each factorization.
With BLU, the computation time was approximately 0.025 seconds; with EVM, it
was approximately 0.01 seconds. FULL required approximately 1.21 seconds for the
transient classes and 1.23 seconds for the recurrent classes.

7. Experiments with a real-world application. The numerical experiments
from section 6 indicate that the EVM with either of the LUSOL factorizations (TPP
or TRP) should ensure a numerically stable calculation of the Laurent coefficients for
both transient and recurrent classes in general. However, the transition matrices for
these classes were generated randomly; they did not come from a practical application
that uses dynamic programming (DP). In this section we consider the performance of
our methods on a real-world large-scale infinite-horizon DP problem.

Dr. R. Grinold (Barclays Global Investments, San Francisco) provided a large,
sparse, substochastic DP problem from a portfolio management application. We used
our policy improvement software to find a −1-optimal policy (the classical maximum-
average-reward criterion). During policy improvement, many policies are considered,
and each policy δ has a set of classes with corresponding submatrices of rδ and Qδ.
We saved the submatrices of rδ and Qδ encountered during policy improvement and
used this data as a testbed for further numerical experiments.

To check that our initial findings were valid, we again calculated the eight residual
norms for (2.5) over the testbed: ρj ≡ ‖c j +Qδv

j − vj−1‖∞, j = −1, 0, . . . , 6, which
should be zero for all j.

Figure 7.1 shows the residuals for all the methods and factorizations. The pattern
for all combinations is the same: O(10−20) residuals for vj , j = −1 and increasing
as j increases to 6. The residuals also increase (although to a lesser extent) as the
dimensions of Qδ increase. The residuals for the LUSOL factorizations increase at the
slowest rate, sometimes reaching O(1) and hence failure when j = 6. The residuals
for the Matlab factorization MLU typically reach O(1020) and in many cases, MLU
fails for j ≥ 0. One class showed extreme deterioration, reaching O(1097) for j = 6.

For these real-world classes, FULL produces the best residuals and does not pro-
duce any exceptional errors (in contrast to the results from the previous numerical
experiments). We also note that the residuals for large systems tend to be smaller
with EVM than with BLU. These results confirm our previous conclusion that EVM
with either TPP or TRP is the preferred approach.

Next, we compared the classes and coefficients where factorizations failed. In
general, MLU fails much earlier than either of the LUSOL factorizations (indicated
by the high residuals). The LUSOL factorizations usually fail at the same coefficient,
although for some of the large systems, the LUSOL factorizations with BLU fail before
the same factorization with EVM.
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For both the BLU and EVM methods, we performed a pairwise comparison of the
TPP, TRP, and MLU factorizations, but we removed the classes where factorizations
failed, in order to judge the performance of successful factorizations. Figure 7.2
shows the differences on a log scale (one for positive differences and one for negative
differences). The plots show that the LUSOL factorizations are generally superior to
MLU, and the difference grows as j increases. There are some classes where MLU
outperforms TPP and TRP, but the numerical advantage is small: O(10−10). The
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plots also show that there are many classes where TPP outperforms TRP but in a
majority of cases, the numerical advantage is small: O(10−10). However, there are a
limited number of classes where TPP outperforms TRP and the numerical advantage
is increasing. These cases correspond to the raw data anomalies encountered in section
6. For these systems, the residuals produced by TPP are not only better than those
from TRP but they deteriorate at a slower rate. More research is needed to determine
why TPP outperforms TRP on these systems.

We also consider a pairwise comparison of the BLU and EVM methods using TPP,
TRP, and MLU. Figure 7.3 shows the differences in residual norms on a log scale (one
plot for positive values and one for negative values). The plots indicate that EVM
generally produces smaller residuals that deteriorate more slowly. However, with
MLU, there are several systems where the BLU residuals are better than those from
EVM and deteriorate more slowly. This is also true for the LUSOL factorizations,
although there are fewer cases where BLU performs better.

Finally, Figure 7.4 illustrates the computation time required for each of the so-
lution approaches. It is clear that FULL takes much longer than the specialized
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Fig. 7.4. Computation time for real-world classes.

methods. As the size of the class grows, EVM becomes the preferred method with
any of the factorizations.

Summarizing the results from our experiments on real-world classes:
1. The results for FULL contradict the results from the other experiments.

FULL never failed to calculate a coefficient and did not overflow. The Bar-
clays problem gives systems with a diagonal band of 5 nonzeros, which could
lead to exponential growth in the LU factors if the threshold parameter were
not sufficiently low, yet the difficulties encountered with FULL in the random-
data experiments did not surface. However, the computation time for FULL
is prohibitive for larger systems.

2. In general, EVM with TRP is the preferred method. However, there are some
anomalous cases where TPP outperforms TRP (with both BLU and EVM)
and where BLU outperforms EVM (even when using TRP). These anomalies
need to be examined in future research.

8. Contributions. Veinott [14] originally used the recurrent class decomposi-
tion with repeated Gaussian elimination to solve for the Laurent expansion coefficients
of a substochastic system. For singular systems, he removes the last column from the
system and notes that Gaussian elimination generates an empty last row, leaving a
nonsingular upper triangular matrix.

Here we have presented BLU, a new method for computing the Laurent coeffi-
cients of a system with substochastic classes (although the entire system may not be
substochastic). The method follows Veinott and Bather by using dependence partial
ordering to decompose the problem into a sequence of computations on irreducible,
substochastic systems. With the help of an RRLU factorization for each of these
systems, BLU identifies transient and recurrent classes. Also, the coefficients for the
transient classes are found sequentially with the LU factors. For recurrent classes,
BLU uses the LU factors and a block LU decomposition to find the coefficients in a
way that has proved stable for some systems but not all.
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In search of greater reliability, we revisited Veinott’s method for calculating the
Laurent coefficients for a substochastic system. We extended his idea of repeated use
of Gaussian elimination to solve systems with substochastic classes. We also imple-
mented the Gaussian elimination using sparse LU factorization with various types
of threshold pivoting to provide stability. For recurrent classes, we follow Veinott’s
method (which removes the last column of the singular matrix), but only after ap-
plying any permutations from the LU factorization; see (3.15). The resulting method
(EVM) has proved to be extremely reliable.

Applying a stable LU factorization to the entire system (3.3), FULL, produces
poor residuals for randomized systems, sometimes resulting in numerical overflow.
In contrast, FULL produces good residuals on sample systems from a real-world
example. However, the computation time for FULL is too great for it to be considered
a viable option for large stochastic DP problems. Some sort of block factorization
(with repeated use of factors of small matrices) is certain to be more effective.

The BLU method is one such approach, but for maximum reliability and the same
efficiency, it is clear that EVM should be used.

LUSOL’s TRP (rook pivoting) factorization increases the chance of detecting
singular systems correctly if used with a threshold parameter sufficiently close to 1. We
conclude that by incorporating EVM into policy improvement and employing sparse
LU factors that favor stability over sparsity, we should be able to deal successfully
with the large models that arise in the sustainable management of resources.
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