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LNLQ: AN ITERATIVE METHOD FOR LEAST-NORM PROBLEMS
WITH AN ERROR MINIMIZATION PROPERTY

RON ESTRIN* DOMINIQUE ORBANT7 AND MICHAEL A. SAUNDERS?

Abstract. We describe LNLQ for solving the least-norm problem min |z| subject to Az = b,
using the Golub-Kahan bidiagonalization of [b A]. Craig’s method is known to be equivalent to

applying the conjugate gradient method to the normal equations of the second kind (AATy = b,

T = ATy); LNLQ is equivalent to applying SYMMLQ. If an underestimate of the smallest singular
value is available, error upper bounds for both x and y are available cheaply at each iteration. LNLQ
is a companion method to the least-squares solver LSLQ (Estrin, Orban, and Saunders, 2019b),
which is equivalent to SYMMLQ on the conventional normal equations. We show that the error
bounds are tight and comparable to the bounds suggested by Arioli (2013) for CRAIG. A sliding
window technique allows us to tighten the error bound for y at the expense of a few additional
scalar operations per iteration. We illustrate the tightness of the error bounds on two standard test
problems and on the computation of an inexact gradient in the context of a penalty method for
PDE-constrained optimization.

Key words. Linear least-norm problem, error minimization, SYMMLQ, CG, CRAIG.
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1. Introduction. We seek the unique x, that solves the least-norm problem

(1) minimize %\|m\|2 subject to Ax = b,
zeR

where | - | denotes the Euclidean norm, A € R™”", and the constraints are assumed
to be consistent. A unique y, solves the problem

(2) min%Rnge L]y|? subject to AATy = b,
ye

and (z,,y,) is the least-norm solution of the normal equations of the second kind:

D e |

We describe an iterative solver LNLQ that includes cheap and reliable upper bounds
on the sequence of errors |z, — x,| and ||y — y.|-

Existing iterative methods tailored to the solution of (1) include CRAIG (Craig,
1955) and LSQR (Paige and Saunders, 1982a,b). LSQR does not provide convenient
error bounds. CRAIG generates iterates z;, that are updated along orthogonal
directions, so it is possible to devise an upper bound on the error in z;, (Arioli, 2013),
but the iterates y;, are not updated along orthogonal directions.
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2 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

CRAIG and LSQR turn out to be formally equivalent to the method of conjugate
gradients (CG) (Hestenes and Stiefel, 1952) and MINRES (Paige and Saunders, 1975)
applied to AATy = b in (3), respectively, but are more reliable when A is ill-conditioned.
By construction, LNLQ is formally equivalent to SYMMLQ applied to (3). LNLQ
inherits beneficial properties of SYMMLQ), including orthogonal updates to y;, cheap
transfers to the CRAIG point, and cheap upper bounds on the error ||y, — v, |-

Motivation. Linear systems of the form (3) occur during evaluation of the
value and gradient of a certain penalty function for equality-constrained optimization
(Fletcher, 1973; Estrin, Friedlander, Orban, and Saunders, 2018). Our main motivation
is to devise reliable termination criteria that allow control of the error in the solution
of (1), thus allowing us to evaluate inexact gradients cheaply while maintaining global
convergence properties of the underlying optimization method. Our approach follows
the philosophy of Estrin, Orban, and Saunders (2019a) and Estrin et al. (2019b) and
requires an estimate of the smallest singular value of A. Although such an estimate
may not always be available in practice, good underestimates are often available in
optimization problems, including PDE-constrained problems—see section 7.

Arioli (2013) develops an upper bound on the error in z; along the CRAIG
iterations based on an appropriate Gauss-Radau quadrature (Golub and Meurant,
1994), and suggests the seemingly simplistic upper bound |ly;, — v.| < ||z — z.||/oy,
where o, is the smallest nonzero singular value of A. Although his bound is often
effective, we derive improved bounds for CRAIG using LNLQ by introducing a delay
d as in (Golub and Strakos, 1994).

The remainder of this paper is outlined as follows. Section 2 gives background on
the Golub and Kahan (1965) process and CRAIG. Sections 3-6 derive LNLQ from
the Golub and Kahan process, highlight relationships to CRAIG, derive error bounds,
and discuss regularization and preconditioning. Numerical experiments are given in
section 7. Extensions to quasi-definite systems are given in section 8, followed by
concluding remarks in section 9.

Notation and assumptions. We use Householder notation: A, b, § for matrix,
vector, scalar, with the exception of ¢ and s denoting scalars that define reflections. All
vectors are columns, but the slightly abusive notation (£, ...,&,) is sometimes used
to enumerate their components in the text. Unless specified otherwise, |A| and |z|
denote the Euclidean norm of matrix A and vector x. For symmetric positive definite
M, we define the M-norm of u via ||u|3; := u"Mu. We order the singular values of
A according to oy = 05 = +++ = Opin(m,n) = 0, and A" denotes the Moore-Penrose
pseudoinverse of A. We assume that xy = 0 and y, = 0. If y, # 0, we can solve the
shifted system AATAy =b— AATyO and set y = yg + Ay.

Asin Estrin et al. (2019a), in the derivation of some results we rely on orthogonality
of the columns of the Golub-Kahan matrices Uy, V. In practice, the orthogonality is
lost and the convergence of our method is delayed. Nevertheless, the method as well as
the error upper bounds derived using the orthogonality assumption remain reliable, as
observed empirically. Analysis of this phenomenon is beyond the scope of this paper.

2. Background.

2.1. The Golub-Kahan process. The Golub and Kahan (1965) process applied
to A with starting vector b is described as Algorithm 1. In line 1, 8yu; = b is short
for “B; = ||b; if B; = 0 then exit; else u; = b/B;”. Similarly for line 2 and the main
loop. In exact arithmetic, the algorithm terminates with & = ¢ < min(m,n) and either
ayyq or By = 0. Paige (1974) explains that if Az = b is consistent, the process must
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Algorithm 1 Golub-Kahan Bidiagonalization Process
Require: A, b

: ﬂlul =b

Qv = ATul

:for k=1,2,...do

Bry1urs1 = Av, — oy,

T
Qp1Vpp1 = AUy — Brp1vi
end for

I

terminate with 8,,; = 0.

We define U, := [u1 uk],Vk = [U1 Uk]aand
aq
aq
o
By s P 2 Ly,
(4) Ly = . . , By = = 3 T|-
. . k+1€k
B o33
Br g B
k+1

After k iterations of Algorithm 1, the following hold to machine precision:

(5a) AV = Uy 1By,

(5b) ATUk+1 = Vvk.B]Z1 + O[k+11)k+1€£+1 = Vk+1L£+1,

while the identities U, g U, = I}, and VkTVk = I;, hold only in exact arithmetic. The

next sections assume that these identities do hold, allowing us to derive certain norm
estimates that seem reliable in practice until high accuracy is achieved in x and y.

2.2. CRAIG. For problem (1), the method of Craig (1955) was originally derived
as a form of the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) applied
to (3). Paige (1974) provided a description based on Algorithm 1:

c c

(6) Lyt = Bren, wy = Vil = X1 + Ty,
where ¢, := (7q,...,7) and the components of t;, can be found recursively from
T = Bi/ay, Tj = —B;7_1/a; (§ = 2). If we suppose t), = Lfg,? for some vector y,?
that exists but need not be computed, we see that

C T-C Tyrr -C T C
(7) zp =ViLpyy = AUy = Ay,
where y,? = Uky,f provides approximations to y. If we define D), = [d1 dk]

from L,D} = U!, we may compute the vectors d; recursively from dy = uy/ay,
j = ’lLJ — 5\7(1]71/0[] (] = 2) and then update

c T C c
Y = DipLiyi = Dyt = yp—1 + 7idy,.

To see the equivalence with CG on (3), note that relations (5) yield

(8) AATU, = AV Ly = Uy BeLy, = Uy i1 Hy,
L,L}
(9) Hy, :=BkLT:[ g kT],
Byt
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4 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]

which we recognize as the result of k iterations of the Lanczos (1950) process applied
to AAT with starting vector b, where

& B
(10) T, =L, LT = | @
' S B
Br
is the Cholesky factorization of the Lanczos tridiagonal T, with a; := a% and

a; = a? + B?, Bj = ;1 for j = 2. Note that Tkgjg = Lkag,f = Lit, = Bie;.
CG defines y,? = ngkc, and so we have the same iterates as CRAIG:

c T C Ty _C T _C c
g = Ay = AULYE = Vil U = Viti, = 2521 + vy

While D;, is not orthogonal, note that xkc in (6) is updated along orthogonal

di . C 2 k 2 . cy - . . . C
irections and [y || = X35_, 7;, L.e., |z | is monotonically increasing and |z, — i |
is monotonically decreasing. Arioli (2013) exploits these facts to compute upper and
] c c

ower bounds on the error |z, — z} | and an upper bound on |y, — vy |

Although it is not apparent in the above derivation, the equivalence with CG ap-
plied to (3) shows that ||y | is monotonically increasing and ||y, — y5 | is monotonically
decreasing (Hestenes and Stiefel, 1952, Theorem 6:3).

Unfortunately, the fact that yg is not updated along orthogonal directions makes
it more difficult to monitor ||y, — y5 | and to develop upper and lower bounds. Arioli
(2013) suggests the upper bound ||y, — y5 | < |z, — 2§ | /o, when A has full row rank.
LNLQ provides an alternative upper bound on |y, — y,?H that may be tighter.

The residual for CRAIG is
(11) ry =b— Azf = Byuy — AVity, = Ugt1(Brer — Bity) = —Bri1 Telg41-

Other results may be found scattered in the literature. For completeness, we gather
them here and provide proofs.

PROPOSITION 1. Let x, be the solution of (1) and y, the associated Lagrange
multiplier with minimum norm, i.e., the minimum-norm solution of (3). The kth
CRAIG iterates :cg and ka solve

(12) minimize || — z,| subject to x € Range(V},),
xr

(13) minimize ||y — y,|| , ,~ subject to y € Range(U},)
y

respectively. In addition, xkc and y,? solve
(14)  minimize |z| subject to x € Range(V},), b — Az L Range(Uy,),

r subject to y € Range(Uy), b — AA™y L Range(Uy).

15 minimize
(15)  minimize [y],,

When A is row-rank-deficient, the (AA™ )-norm should be interpreted as a norm
when restricted to Range(A).

Proof. Assume temporarily that A has full row rank, so that AA” is symmetric
positive definite. Then there exists a unique y, such that x, = ATy,k and

C T, C C
Iz — =l = Ay — vl = luk — Yl g4
Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



134
135
136
137
138
139
140
141
142
143
144
145
146

= = =
(SRS, B I
S U A W N

wt
~

166

167
168
169

[Toc| LNLQ 5

In words, the Euclidean norm of the error in z;, is the energy norm of the error in y,.
Theorem 6:1 of Hestenes and Stiefel (1952) ensures that ka is chosen to minimize the
energy norm of the error over all y € Range(U},), i.e., ys solves (13).

To y € Range(Uy), there corresponds # = A"y € Range(A"U,) = Range(V, L} ) =
Range(V},) by (5) because Ly, is nonsingular. Consequently, CRAIG generates :cf as a
solution of (12).

When A is rank-deficient, our assumption that Ax = b is consistent ensures that
AATy = b is also consistent because if there exists a subpace of solutions =z, it is
possible to pick the one that solves (3), and therefore b € Range(AA”). Kammerer and
Nashed (1972) show that in the consistent singular case, CG converges to the solution
Y. of (2). Let r < min(m,n) be such that o, > 0 and 0,1 = -++ = Opinm,n) = 0

Then rank(A4) = r = dim Range(A) and the smallest nonzero eigenvalue of AA” is o72.

The Rayleigh-Ritz theorem states that
o2 = min {|A"w|* | w € Range(4), |w| = 1}.

By (5), each u;, € Range(A), and (8) and (10) imply that U AA™U, = T}, in exact
arithmetic. Thus for any ¢ € R* such that [¢| = 1, we have |Uyt| = 1 and

Ul AATU gt =TTt = o2,

so that the T} are uniformly positive definite and CG iterations occur as if CG were
applied to the positive-definite reduced system P! AAP,j = PTb, where P, is the
m % r matrix of orthogonal eigenvectors of AAT corresponding to nonzero eigenvalues.
Thus in the rank-deficient case, y,? also solves (13) except that the energy “norm” is
only a norm when restricted to Range(A), and z§ also solves (12).

To establish (14), note that (6) and (11) imply z§ is primal feasible for (14). Dual
feasibility requires there exist vectors Z, § and z such that x = z + AU %Y, VkTE =0
and x = V,Z. The first two conditions are equivalent to Vka =0+ VkTATngJ =
B,ZUE+1ng = L}fg. Because x = V&, this amounts to z = ngj. Thus dual feasibility
is satisfied with & := jrkc, g = g,? and z := 0. The proof of (15) is similar. d

3. LNLQ. We define LNLQ as equivalent in exact arithmetic to SYMMLQ (Paige
and Saunders, 1975) applied to (3). Whereas SYMMLAQ is based on the Lanczos (1950)

process, LNLQ is based on Algorithm 1. Again we seek an approximation y;f = ng,f.
The kth iteration of SYMMLQ applied to (3) computes ;U;f as the solution of

(16) minimize L|g)?  subject to H{_17 = Byey,

where H{_, is the top (k — 1) x k submatrix of T}, (10).

3.1. An LQ factorization. In SYMMLQ, the computation of gj,f follows from
the LQ factorization of H, ,CT_I, which can be derived implicitly via the LQ factorization

of T}, = LkLz. As L, is already lower triangular, we only need the factorization

_ _ Ny € M
an L =MQ. M= | —[ kot ]
.. .. Ng€r—1 €k

M Ek
Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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6 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

where Qg =Q12Q23...Qk_1, is orthogonal and defined as a product of reflections,
where QQ;_; ; is the identity except for elements at the intersection of rows and columns
j— 1 and j. Initially, &, = a; and @Q; = I. Subsequent factorization steps may be
represented as

j—2 j—1 J ji—2 J—-1 J j—2 j—1 J
i-1 [77;‘1 €j—1 @] 1 [ﬁjl €j—1 ]
= )
J a; ¢ 8j 7; €j
Sj _Cj

where the border indices indicate row and column numbers, with the understanding
that n;_, is absent when j = 2. For j > 2, Q;_, ; is defined by

_2 2 —
g1 =\ +B, ¢ =& 1/ej 1, s;j=DB5/gj-1,

and the application of Q;_, ; results in

(18) n; = Q;sj, £ = —ayc;.
We may write Hy_y = [Ly_1Li_y  oj_1Byer—1] = Li—1 [Li—y  Brej_1] . From (17),
e o s - R 17 SN P B A VR [
Finally, we obtain the LQ factorization

(19) Hi oy = [Ly My 0] Q.

3.2. Definition and update of the LNLQ and CRAIG iterates. In order
to solve H,?_lg,’;“ = Bie; using (19), we already have L,_ t,_; = fB1e;, with the
next iteration giving 7, = —fB,7,_1/a;. Next, we consider M;_12,_; = t;,_; and

find the components of 2,y = ((y,..., (1) recursively as (; = 7y/eq, (; = (7, —

n;¢i-1)/€; (j = 2). This time, the next iteration yields ¢, = (7, — 174(r—1)/2) and
Cr = Ckék/Ex = 1k Thus,

(20) o = Qi [Z’“Ol] and i = Qf {z’gkl} = Qi

solve (16) and Tys = B, e, respectively, matching the definition of the CRAIG iterate.
By construction, y,? = ngj,l;‘ and yg = ngf. We define the orthogonal matrix

We =UQk = [w1 -+ wpy W] =[Wiy @], @ =1,

so that (20) with z,_; and 2, := (zj,_1, (z) yields the orthogonal updates
— |z,
(21) K =W, [ ko 1] = Wi12e-1 = Yr-1 + Geo1w1,

C _ 7= s L 5 -
(22) Ur = Wiz = Wi12p 1 + Gy, = Yy, + Wy
Because W, is orthogonal, we have
k-1
L2 2 2 2 Ly2 | 72
(23) luil? = lzeal® = D, ¢ and [y I? = Jui® + G-

Jj=1
Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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201 Thus |yf | = |ygl, |y is monotonically increasing, |y, — yi| is monotonically
202 decreasing, and |y, —yr | = |y, —ys |, consistent with (Estrin et al., 2019a, Theorem 6).
203 Contrary to the update of yg in CRAIG, y,g is updated along orthogonal directions
204 and yg is found as an orthogonal update of y5. The latter follows from the transfer
205 procedure of SYMMLQ to the CG point described by Paige and Saunders (1975).
206 At the next iteration,

k k+1

- - - Ck+1 Sk+1
207 [U’k wk+1] = [wk Uk+1]

Sk+1 T Ck+41
208 = W = Cpp1 Wi + Sk Uk,
399 Wiyl = Spy1Wg — Cpr1Ugy1-
211 3.3. Residual estimates. We define the residual
o1 o _ Trr = _ =
212 T =b—Ary =b— AA Uy, = U1 (Brer — Hy0y)

213 using line 1 of Algorithm 1 and (8), where g, is either g,f or g,f. Then for k > 1,

_ _ — 2
214 Tkyzf = LkLzyllg = LkMkaQg [ ko 1]
915 _ [ Ly_y ] [Mk—l ] [%1]
215 = T T —
Brek—1 | |Mk€k—1 Ek 0
216 _ [ Lk;Fl ] [ th—1 ] _ [ Brer ]
917 Brer—1 k| | MCr—1 BrTh—1 + eMieCr—1 |’

218  where we use (17), the definition of ¢,_; and z,_;, and (20). Also, the identity
219 Qe = Sp€ip_1 — Cpep yields

T-_L T AT | Zk—1
220 ek = e, Qk [ 0 = 5,Ck—1-

221 These combine with (9) to give

. L prex Lka _L 0
222 e = Ugq1 0 | |Gl Ui | = = Upgr | BeTr—1 + amiCro1
k+1Tk Brr15xCh—1
333 (24) = — (BeTh—1 + MeCre1)Uk — Brs156Ch—1Up41-
225 By orthogonality, the residual norm is cheaply computable as
> 2
226 IrE 1P = Bemiet + armiCom1)® + BrrasiCe—t) -
227 Similarly,
, c Brel Ty |.c 0 T
2 =0, — |5 = —U, z
() e
2 0 Zk1:|
229 = — U k-
Pryrlin [Ske;{—l - ckef] [ Ck
330 (25) = —Br41(5kCe—1 — ) Up11,

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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8 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

where we use Tyis = Bie; (by definition) and (20). Orthogonality of the u; yields
orthogonality of the CRAIG residuals, a property of CG (Hestenes and Stiefel, 1952,
Theorem 5:1). The CRAIG residual norm is simply

cn = _
Ik | = Brs1 IskCr—1 — exCl-
In the next section, alternative expressions of |rf|| and |rf || emerge.

3.4. Updating « = ATy. The definition y;, = U, 7, and (5) yield z), = A%y, =
AU, = Vi L 5. The LQ and CRAIG iterates may then be updated as

_ Zlo—
wy = ViLi gk = Vil Qs [ g 1]

_ ar | RE=1| _ My Rk—1
SR b I

= Vi M1 251 + 11 g

(26) = Vioilp—1 + MeCr—1Vg,
and similarly,
M, _ 2 _
C _ k—1 E-1| _ L _
(27) zy = Vi [ﬂkefq Ek] [ G, ] Ty + ECL V-

Because V), is orthogonal, we have
k—1 k—1
L2 2 2 2 2 - 72
(28) |z% " = Z 75 + (MCr—1)” and oy |” = Z 75 4+ (Mot + ExCi)"-
j=1 j=1

Both xﬁ and xkc may be found conveniently if we maintain the delayed iterate
Tp_1 =701+ + Tp_1Vp—1 = Tp_o + T_1V,_1, for then we have the orthogonal
updates

L - c - _ s
(29) Ty = Tpq + MpCevr and  wp = Tpoq + (MkCeo1 + ExCr) vy

PROPOSITION 2. We have &,(; = 7, and for k > 1, nC_1 + &3¢, = T This
gives the same expressions as for standard CRAIG:

k
c d +C =
T = TV and T = — B Ty

=1
Proof. The identity for k = 1 follows from the definitions of &, ¢y, and 7. By

definition of ¢, we have &,(, = 7, — 7Cr_1, i.€., NxCr_1 + ExCx = Tx. The expressions
for 2§ and r§ follow from (29) and from (25), the definition of 3, and (18). O

Proposition 2 shows that z% is updated along orthogonal directions, so that |z ||
is monotonically increasing and |z, — xj; | is monotonically decreasing, as stated by
Paige (1974). Finally, (26) and Proposition 2 give 2 =_£Ckc_1 + N1 Vg

Proposition 2 allows us to write 7, — 9.(,_1 = €,(. Because B,7,_1 = —;, Ty,
the LQ residual may be rewritten

I _
% = (T — MeCh—1)Uk — Brr156Ch—1Uk11
= €LCKUL — O Brg18kCh—1Ukt15
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and correspondingly, |t |> = of ((€1.Cx)*+(Brr15:Ce_1)>). We are now able to establish
a result that parallels Proposition 1.

PROPOSITION 3. Let x, and y, be as in (1)~(3). The kth LNLQ iterates yi
and xﬁ solve

(30) miniymize ly — y,| subject to y € Range(AA™U,_,),

(31) minimize |z — x*H(AAT)T subject to x € Range(V},_;),

respectively. In addition, y,f and xé solve
(32) miniymize ly|| subject to y € Range(Uy), b — AA™y | Range(U,,_,),

(33) miniwmize HxH(AAT)T subject to z € Range(V},), b — Az L Range(Uy_1).

Proof. By definition, y,f solves (16). Hence there must exist ¢ such that g,f =
H,_,t and H{_ 5+ = Bye,. By definition of H;_, and (5), we have yr = Uyjp =
UpBy_1Li_t = AV, Li_t = AATU, T

The above implies that y,f is primal feasible for (30). Dual feasibility requires that
Ug_lAAT(y —vy,) = 0, which is equivalent to UkT_lr;f = 0 because AATy, = b. The
expression (24) confirms dual feasibility.

With 57 € Range(A), we have yf = (A" 27 and then (31) follows from (30).

Using (24), we see that yj is primal feasible for (32). Dual feasibility requires that
y;g =p+ AATUk_lq and U,?p = 0 for certain vectors p and ¢, but those conditions
are satisfied for p := 0 and ¢ := . Since yf = (AN zF, we obtain (33) from (32). O

Note the subtle difference between the constraints of (14) and (33).
COROLLARY 1. For each k, 2§ — z,| < |lzF — z,].

Proof. If we compare (12) with (31), we see that 2§, — z,| < ||lzr — z,| because
Range(V}_;) < Range(V},).

3.5. Complete algorithm. Algorithm 2 summarizes LNLQ. Note that if only
the x part of the solution is desired, there is no need to initialize and update the
vectors wy, Wy, y,f and y,? unless one wants to retrieve = as ATy at the end of the
procedure. Similarly, if only the y part of the solution is desired, there is no need
to initialize and update the vectors xé and a:g The update for a:kcﬂ in line 18 of
Algorithm 2 can be used even if the user wishes to dispense with updating xﬁ

4. Regularization. The regularized least-norm problem is

(34) minimize %(H$H2 +|s|*) subject to Az + s = b,

xzeR", se

which is compatible for any A # 0. Saunders (1995, Result 7) states that applying
Algorithm 1 to A := [A Al ] with initial vector b preserves U,,. We find corresponding

\A/k and lower bidiagonal ﬁk by comparing the identities

AT (v Lt AT, s
(35) |:)\I:| Uk = |: Uk:| |:>\I and Vi Uk: = Vk:Lkv
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Algorithm 2 LNLQ

1: Biu; =b, aqv; = ATul begin Golub-Kahan process
2: & =qq, 7 = P/aq, G =T1/8 begin LQ factorization
3: wyp = 0, ﬂ)l = Uq

L c -
4y =0,y =Gu;
L C

5 27 =0, xy =10
6: for k=1,2,...do
7 Bry1upy1 = Av, — aguy, continue Golub-Kahan process

. '
8: Apy1Vrs1 = A Uy — Bry1vk

1 , . L
9: ep = (Er + Bis1)? continue LQ factorization
10: Chi1 = Ek/Eks Skr1 = Brr1/Ek
11 Me+1 = Qp415k+1> Ek+1 = —0p11Ck+1
12: Ct = Chs1Ck Char = (Thgp1 — Mos1Ch)/Enr1 prepare to update y
13: Wy = Cpyp1 Wk + Spy1Uk41, Wil = Spp1Wg — Crp1U1
L L
14: Y1 = Yk + Cpwy, update y
L P

15:  Ypyr = Yk + Q1 Wk 11
16: x£+1 =g + Mey1CpVka1 update x
17: Thy1 = —Br1Th/Vt1

. c _ C
18: Tht1 = T + Tp41Vk41
19: end for

the first of which results from (S)A and the second from Algorithm 1 applied to A. At
iteration k, we apply reflections @}, designed to zero out the AI block, resulting in

T ror i B
[Vk Uk:| [i’}] — [Vk Uk:| Q1 Qs [i’}] = [Vk Yk] [Lok] _ il

Saunders (1995) uses Qj to describe CRAIG with regularization under the name
extended CRAIG. If we initialize \; := A, the first few reflections are illustrated in
Figure 1, where shaded elements are those participating in the current reflection and
grayed out elements have not yet been used. Two reflections per iteration are necessary,
and the situation at iteration k may be described as

k 2k 2k+1 k 2k 2k 2k+1 k 2k 2k+1 2k 2k+1
e [ an A & allea &l [ a0 & By
e | Bra A LSk =G ]Sk —G Bert M1 A | [ B —é
k 2k 2k+1
a0
Ber1 0 Aigs

The first reflection is defined by &, := 1/a; + A\, & = /by, 8 = A\i/d&;, and
results in Bk+1 = ¢ fr41 and 5‘k+1 = 5. 8k+1- The second reflection defines A\, ; :=

/\iﬂ + A%, G = Akt1/ Mkt Sk = MApy1, and does not create a new nonzero.
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a M a 0
ﬁQ Oy )\ N 62 [6%) )\2 )\
Bs g A Bs Qs A
| By A | 3, ay A
& 0 1 [ 2! 0 1
| B 0 Ay | B 0 0
Bs s A B3 s Az A
i By ay A | By ay A
[ dl O ] [ dl O ]
N 52 d2 0 0 N ﬁg 0142 0 0
Bs ag 0 Az B3 aj 0 0
L Ba s A L Ba oy Ay A

Fic. 1. Lllustration of a few steps of the factorization in the presence of regularization.

304 Only the first reflection contributes to the kth column of ‘A/,C:

k 2k k 2k k 2k
305 (36) [U’“ 0 ] [?k k ] = [ KUk KUk ]
0 U, Sk —Cp, SiUp —Cr Uy
306 Iteration k of LNLQ with regularization solves (16), but HkT_l is then the top
307 (k—1) x k submatrix of
308 (Lo M [EE] = Lol 22r =7+ 220
, \ kL k

309 In (17), we compute the LQ factorization of if instead of Lf, but the details are
310 identical, as are the updates of 5 in (21) and y5 in (22). Because Uy, is unchanged
311 by regularization, the residual expressions (24) and (25) remain valid. Subsequently,

L T
x A _ E N
[sg] = [)\I] Uy = VkLgyka

)
—
[\

313  but we are only interested in the top half, x,% Let the top n x k submatrix of ‘A/k be
314 Wk} = [’&}1 s ’l/ﬁk] = [I 0] Vk = [Vk 0] QAZ

315 We conclude from (36) that @; = ¢;v; for j = 1,..., k. The update (27) remains valid
316 with v replaced by wy,.
317 5. Error upper bounds.

318 5.1. Upper bound on |y, — y,?” By orthogonality, ||y, gZIISHZ = ”Z/*||2 - ||yl£||2
319 If A has full row rank, y, = (AAT) b and |y,|? = b* (AAT) "b. If we define

320 f(AAT) = i floh g
i=1

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



325
326

327

328
329

331
332

333

334

336
337
338
339
340

346

12 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

for any given f : (0, o) — R, where g; is the ith left singular vector of A, then
ly.? = b7 F(AAT)b with f(€) := € 2. More generally, as y, is the minimum-norm
solution of (3), it may be expressed as

m

e =, F(0)) (@ b) @i,

=7

where o, is the smallest nonzero singular value of A, which amounts to redefining
f(&) :=0at £ =0. Because b = S;u;, we may write

m
2 2 2y, 2 T ;
|y :/BlZf(Ui)/f"iv pi =g ug, 0 =1,...,m.
i=1

We obtain an upper bound on ||y, | by viewing the sum as a Riemann-Stieltjes integral
for a well chosen Stieltjes measure and approximating the integral via a Gauss-Radau
quadrature. We refer to Golub and Meurant (2010) for background.

The fixed Gauss-Radau quadrature node is set to a prescribed o € (0, 0,.). We
follow Estrin et al. (2019b) and modify L, rather than T),. Let

5 Ly 0O ]
37 Ly = ,
( ) b [ﬁke;‘cp—l Wi,

which differs from Ly, in its (k, k)th element only, and

~ o~ T, Br_1€5—
T, =L LT= B k—1 k—1%k—1
F Rk [Bk—lez—l Bi + wi

(with Bj,_; defined in (10)), which differs from T}, in its (k, k)th element only. The
Poincaré separation theorem ensures that the singular values of L;, lie in (o,., 01). The
Cauchy interlace theorem for singular values ensures that it is possible to select wy, so
that the smallest singular value of (37) is 0qg.

The next result derives from (Golub and Meurant, 1994, Theorems 3.2 and 3.4).

THEOREM 1 (Estrin et al., 2019b, Theorem 4). Let f : [0, o0) — R be such
that f(2j+1)(§) <0 for allé € (02, 03) and all j > 0. Fiz 0,4 € (0, 0,). Let Ly
be the bidiagonal generated after k steps of Algorithm 1, and w;, > 0 be chosen so
that the smallest singular value of (37) is 0.4. Then,

b"F(AAT)b < Biet f(LyLy)er.
The procedure for identifying w;, is identical to that of Estrin et al. (2019b) and

yields w;, = \/ aeQSt — Opst D052, Where O, is an element of a related eigenvector.
Application of Theorem 1 to f(£) := & * with the convention that f(0) := 0
provides an upper bound on |y, [*.

COROLLARY 2. Fiz 0.4 € (0, 0,). Let L), be the bidiagonal generated after k

steps of Algorithm 1, and wy, > 0 be chosen so that the smallest singular value
of (37) is 0,5 Then

v =g =2
ly.l* < Brel (LiLi) e
To evaluate the bound in Corollary 2, we modify the LQ factorization (17) to
T
7 _ | Li—r Brep—r| _ | Me—a Qi1 _ 7
o ][ [ -

Wi Me€r—1
Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400
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where 7, = wys), and &, = —wyc;. Define £, and Z;, from
(38) zk%}c = ,6161 and ]szk = ,{k
The updated factorization and the definition of f yield
2 201/F TF -1 2 2 TF—1F—1_ 2 1T 2 12
Iyl < BUI(LMQy) ex]” = Brl My, Ly "eq|” = [ My "ty |" = [ 2"

Comparing with the definition of ¢, and z, in subsection 3.2 reveals that £, = (t,_1, 7%)
and 2, = (21, (), With 7, = =871 /wy, and ¢ = (T — NkCr—1)/Ex- Combining
with (23) yields the bound

L 2 o
(39) Y. — Yi ||2 = Hy*HQ - HZkAHQ S szleQ + Gk — H%AHQ = G-

5.2. Upper bound on |y, — y§ |. Estrin et al. (2019a, Theorem 6) establishes
that ||y, — v |l < lyw —y£ |, so that the bound from the previous section applies. With
(), defined in subsection 3.2, Estrin et al. (2019a) derive the improved bound

C 2 >
(40) lys — vk 1* < G = G

They provide further refinement of this bound by using the sliding window approach
of Golub and Strakos (1994). For a chosen delay d, O(d) scalars can be stored at each

iteration, and for O(d) additional work, a quantity 0,(:{) > 0 can be computed so that
= d

(41) lys = v 1” < G — G — 26,7

The definitions of ¢, s, (j, and ¢, match those of Estrin et al. (2019a).

5.3. Upper bound on |z, — z5|. Assume temporarily that A has full row
rank. By orthogonality in (26), |z, — 2% || = |=,|* — |25 |*>. We may then use

2 T 2 2 2
|z ]™ = 1Ay " = gy 47 = 101 4 47y

Applying Theorem 1 to f(€) := &' with f(0) := 0 provides an upper bound on |z,
in the vein of Golub and Meurant (1994, Theorems 3.2 and 3.4).

COROLLARY 3. Fiz o, € (0, 0,.). Let Ly, be the bidiagonal generated after k

steps of Algorithm 1, and wy, > 0 be chosen so that the smallest singular value
of (37) is 0sr- Then

T,5% 7T\ 1
|z < Biet (LyLy) e
We use (38) to evaluate the bound of Corollary 3 as
~ o~ —1 ~_ ~
Bret (LpLi) er = [B1Ly er|* = &,
which leads to the bound
C ing ~
(42) lo. — i I° < 1E)® — Il = 7 — 72

This coincides with the bound of Arioli (2013), who derived it using the Cholesky
factorization of Tj,.
Note that Arioli (2013, Equation (4.4)) proposes the error bound

c -1 c -1 c -1 c
43) g =yl = |Ln (20 — @) < orin (L) ™ 2w — 2| < 07 [l — 2.

It may be possible to improve on (43) by maintaining a running estimate of o, (Ly,),
such as the estimate min(ey,...,e,_1,&;) discussed by Stewart (1999).
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5.4. Upper bound on |z, — x5 |. Using 25 = 2% 1 + 74Ce_10s, we have

tp_1
Vn <tn - [Uk(k—1 :|>
0

Thus, using the error bound in (42) we obtain

2
o2 2
= |z, — g |7+ (76 — 1)

L2
2, — oF| —'

L o
(44) |z, — = H2 ST —Ti+ (T — nkafl)?

5.5. Choice of o.4. We briefly discuss choosing 0. and its effect on the error
upper bounds. When A is symmetric positive definite, numerical experiments in Estrin
et al. (2019a, §8.4) show the effect of 0.5 on the error bound quality; similar trends
are observed for LNLQ and CRAIG, so we do not repeat such experiments here.

Estrin et al. (2019a, §6) also discuss aspects of obtaining an eigenvalue estimate
(in this case, a singular value estimate). Being able to obtain o is often application-
dependent and good estimates may not be available in general; in such cases, many
Gauss-Radau-based estimation procedures (such as the one here) may not be applicable.
In some cases, o is readily available, e.g., if the problem is regularized, or via a
preconditioning approach (see subsection 7.2).

Meurant and Tichy (2018) provide a Gauss-Radau-based error estimation proce-
dure for CG that at every iteration uses a cheap estimate of the smallest Ritz value as
the eigenvalue estimate. The advantage is that lower bounds on the spectrum of A
do not need to be known a priori, but because the smallest Ritz value is not a lower
bound, the resulting estimates are not guaranteed to be upper bounds. However, the
resulting bounds are shown to be effective in practice. A future avenue of work is to
adapt this approach to our error estimation procedure to avoid requiring a readily
available singular value underestimate.

6. Preconditioning. As with other Golub-Kahan-based methods, convergence
depends on the distribution of {c;(A)}. Therefore we consider an equivalent system
N_%AATN_%N%y = N_%b, where N2 A has clustered singular values.

For the unregularized problem (3), to run preconditioned LNLQ efficiently we
replace Algorithm 1 by the generalized Golub-Kahan process (Arioli, 2013, Algorithm
3.1). We seek a preconditioner N > 0 such that N ~ AAT, and require no changes
to the algorithm except in how we generate vectors u;, and v;. This is equivalent to
applying a block-diagonal preconditioner to the saddle-point system

SR I [ ]

For a regularized system with A # 0, we need to solve a 2x2 quasi-definite system

<45> IR

We cannot directly precondition with generalized Golub-Kahan as before, because
properties analogous to (35) do not hold for NV # I. Instead we must precondition the
equivalent 3x3 block system

I —J AT [z I 0
I —I M| |s]= I 0],
N[ A A y Nt |b

where N ~ AAT + N’ is a symmetric positive definite preconditioner. In effect, we
must run preconditioned LNLQ directly on A = [A Al ]
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\.\.
e ——
0 i .
10 100} N e,
a
™
10°° 1
105}
S LNLQ Upper Bound in'y
20 [ LNLQ Upper Bound in x “':2 True LNLQ Erroriny .
107" [~ True LNLQ Error in x v - -CRAIG Upper Bound in y
— =CRAIG Upper Bound in x L 10710 | == CRAIG Arioli Bound in y
True CRAIG Error in x True CRAIG Erroriny
0 20 40 60 80 100 120 0 20 40 60 80 100 120
. . . . . 105 , , - —
------ CRAIG Upper Bound in y, d=0
- =CRAIG Upper Bound in y, d=5
104 —CRAIG Upper Bound in 'y, d=10
] CRAIG Arioli Bound in'y
> 103
O x
. < 102
----- CRAIG Upper Bound in y, d=0 o
- =CRAIG Upper Bound in y, d=5
—CRAIG Upper Bound in 'y, d=10 10t} R
10710 | == CRAIG Arioli Bound in y 1
True CRAIG Erroriny 0 .
) f \ . . 10 . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Fic. 2. Error in z;, (top left) and y;, (top right) along the LNLQ and CRAIG iterations for
Meszaros/scagr7-2c. The solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the
remaining lines show the various error bounds. The bottom left plot shows the improved bounds (41)
and bounds from Arioli (2013) for the error in y, for CRAIG with d =5 and 10. The bottom right
plot shows the same bounds divided by the true error.

7. Implementation and numerical experiments. We implemented LNLQ in
Matlabl, including the relevant error bounds. The exact solution for each experiment
is computed using Matlab’s backslash operator on the augmented system (3). Mentions
of CRAIG below refer to transferring from the LNLQ point to the CRAIG point.

7.1. UFL problems. Matrix Meszaros/scagr7-2c from the UFL collection (Davis
and Hu, 2011) has size 2447 x 3479. We set b = e/y/m, the normalized vector of ones.
For LNLQ and CRAIG we record the error in x;, and y;, at each iteration using the
exact solution, and the error bounds discussed above using oo, = (1 —107") oin (A4),
where o,,;, (A) was provided by the UFL collection. The same o is used to evaluate
the bound (43). Figure 2 records the results.

We see that the LNLQ error bounds are tight, even though the error in z;, is not
monotonic. In accordance with Proposition 1, the CRAIG error in z, is lower than
the LNLQ error. The same for the error in y;. The CRAIG error in z;, is tight until
the Gauss-Radau quadrature becomes inaccurate—a phenomenon also observed by
Meurant and Tichy (2014); Meurant and Tichy (2018).

Regarding the CRAIG error in y;,, we see that the error bounds from (40) and (43)
are close to each other, with (43) being slightly tighter. We observed that the simpler
bound (43) nearly overlaps with the bound (40) on other problems. However, (41)
provides the ability to tighten (40), and even small delays such as d = 5 or 10 can

! Available from github.com/restrin/LinearSystemSolvers
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10°
I
a
- T
(I
100 L 1 ‘..: i
b
T\
=i,
-5 ‘."
107 [+ LNLQ Upper Bound in y l h
..... LNLQ Upper Bound in x True LNLQ Erroriny . fossr,
True LNLQ Error in x . — -CRAIG Upper Bound iny ]|
1010 |- -CRAIG Upper Bound in x == o CRAIG Arioli Bound in'y
True CRAIG Error in x 1071% F- True CRAIG Errorin'y 1
0 50 100 150 200 250 0 50 100 150 200 250
10° . . . . . 106 - T

----- CRAIG Upper Bound in )} d=0
CRAIG Upper Bound in 'y, d=10

—— CRAIG Upper Bound in y, d=20
CRAIG Arioli Bound in 'y

107+ i
----- CRAIG Upper Bound iny, d=0
CRAIG Upper Bound in 'y, d=10
—— CRAIG Upper Bound in 'y, d=20
CRAIG Arioli Bound in'y
-10 | .
10 True CRAIG Erroriny

0 50 100 150 200 250 0 50 100 150 200 250

Fia. 3. Error in x;, (top left) and y;, (top right) along the LNLQ and CRAIG iterations
for LPnetlib/lp kb2. The solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the
remaining lines show the various error bounds. The bottom left plot shows the improved bounds (41)
and bounds from Arioli (2013) for the error in y;, for CRAIG with d = 5 and 10. The bottom right
plot shows the same bounds divided by the true error.

improve the bound significantly until the Gauss-Radau quadrature becomes inaccurate.
Thus, the sliding window approach can be useful when an accurate estimate of
Omin(A) is available and early termination is relevant, for example when only a crude
approximation of z, and y, is required.

In Figure 3 we repeat the experiment with UFL problem LPnetlib/lp kb2, which
has size 43 x 68. Because LNLQ and CRAIG take more than 250 iterations, it is clear
that global orthogonality is violated, yet the upper bounds remain faithful. Hence, it
may be possible to derive these bounds by assuming only local orthogonality in the
Golub-Kahan process. This is a direction for future research.

7.2. Fletcher’s penalty function. We now apply LNLQ to least-norm problems
arising from using Fletcher’s exact penalty function (Fletcher, 1973; Estrin et al., 2018)
to solve PDE-constrained control problems. We consider the problem

minimize J Ju —uy|?de + %af 2> dzx
u,z Q o)
(46) subject to V- (zVu) = —sin(wz;) sin(wzy) in €,
u=0 on 09,
where w = 7 — %, Q=[-1, 1]2, and o = 10* is a small regularization parameter.
Here, u might represent the temperature distribution on a square metal plate, u, is
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. . . S - . . .
S i S
— \;- ...... .
100+
i 10°]
W e LNLQ Upper Bound iny
20 LNLQ Upper Bound in x \ True LNLQ Error iny
10 | ==True LNLQ Error in x o — -CRAIG Upper Bound in y
- =CRAIG Upper Bound in x o 10710 (== CRAIG Arioli Bound in'y
True CRAIG Errorinx ‘ = True CRAIG Erroriny ‘ ‘
0 100 200 300 0 100 200 300

----- CRAIG Upper Bound in y, d=0
— CRAIG Upper Bound in 'y, d=20
104 == CRAIG Arioli Bound in y

------ CRAIG Upper Bound iny, d=0
—CRAIG Upper Bound in 'y, d=20
10710 |- CRAIG Avrioli Bound in y

True CRAIG Erroriny

0 100 200 300 0 100 200 300

Fic. 4. Error in xy, (top left) and y,, (top right) along the LNLQ and CRAIG iterations. The
solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the remaining lines show the
various error bounds. The bottom left plot shows the improved bounds (41) and bounds from Arioli
(2013) for the error in y; for CRAIG with d = 20. The bottom right plot shows the same bounds
divided by the true error.

the observed temperature, and we aim to determine the diffusion coefficients z so that
u matches the observations in a least-squares sense. We discretize (46) using finite
elements with triangular cells, and obtain the equality-constrained problem

minimize f(@) subject to c(@) = 0.

2 2
Let p be the number of cells along one dimension, so that € R and z € R+
2
are the discretizations of u and z, 4 := (u, 2), and c(u) € R? . We use p = 31 in the
experiments below. Let A(u) := [A, A,] be the Jacobian of c(a).
For a given penalty parameter o > 0, Fletcher’s exact penalty approach is to

minimize ¢, (@) := (@) — c(@)" y, (@)
where y, (i) € arg min 3 HVf(ﬁ) - A(ﬂ)TyH2 +oc(a)"y.
y

In order to evaluate ¢, (@) and V¢, (@), we must solve systems of the form (3). For
these experiments, we use b = —c(u) and A = A(@). Note that by controlling the error
in the solution of (3), we control the inexactness in the computation of the penalty
function value and gradient. In our experiments, we evaluate b and A at @ = e, the
vector of ones. We first apply LNLQ and CRAIG without preconditioning. The results
are summarized in Figure 4.
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100 %, ] 100 M,
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10 S 1 N \‘.,."‘. ] 10 -5 L N \'..,...‘
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AN W,
N, \".
~ -.,....". B ~
10710 | SN - ] 10710 ... LNLQ Upper Bound iny S~ N
----- LNLQ Upper Bound in x NN True LNLQ Erroriny N
True LNLQ Error in x SN - -CRAIG Upper Bound in y SN
10715 |~ -CRAIG Upper Bound in x A < A 10715 | CRAIG Arioli Bound in y S
True CRAIG Error in x N True CRAIG Erroriny
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102
— 10°
>
O x
>
x
Y10 -2
----- CRAIG Upper Bound iny, d=0
CRAIG Arioli Bound in'y
104 . . .
0 5 10 15

Fic. 5. Error in x;, (left) and y; (right) along the LNLQ and CRAIG iterations. The solid
blue (yellow) line is the exact error for LNLQ (CRAIG), and the remaining lines show the various
error bounds. The bottom plot shows the same bounds for CRAIG for the error in y;, but divided by
the true error.

We observe trends like those in the previous section. The LNLQ bounds are quite
accurate because of our good estimate of the smallest singular value, even though the
LNLQ error in z;, is not monotonic. The CRAIG error bound for z;, is tight until
the Gauss-Radau quadrature becomes inaccurate, which results in a looser bound.
The latter impacts the CRAIG error bound for ¥, in the form of the plateau after
iteration 250. The error bound (43) is slightly tighter than (40), while if we use (41)
with d = 20, we achieve a tighter bound until the plateau occurs.

We now use the preconditioner N = AUAZ, which corresponds to two solves of
Poisson’s equation with fixed diffusion coefficients. Because o, ((A,4,) TAAT) =
Omin(I + (A, AT A, A7) > 1, we choose oo = 1. Recall that the y-error is now
measured in the N-energy norm. The results appear in Figure 5.

We see that the preconditioner is effective, and that o, = 1 is an accurate
approximation as the LNLQ error bounds are extremely tight. The CRAIG error
bounds are tight as well, although the error “bounds" for y; go below the true error in
the last few iterations, which is expected and observed in Estrin et al. (2019a).

8. Extension to symmetric quasi-definite systems. Given symmetric and
positive definite M and N whose inverses can be applied efficiently, LNLQ generalizes
to the solution of the symmetric quasi-definite system (Vanderbei, 1995)

- SHE S IR
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which represents the optimality conditions of both problems

(48) minimize %HQBH?\/[ + %HyH?\; subject to Ax — Ny = b,
@,y
(49) minimize 1Az — b”?\,—l + %Hﬁf‘ﬁw

The only changes required are to substitute Algorithm 1 for the generalized Golub-
Kahan process (Orban and Arioli, 2017, Algorithm 4.2) and to set the regularization
parameter A\ := 1. This requires one system solve with M and one system solve with
N per iteration.

Applying LSLQ (Estrin et al., 2019b) to (49) is implicitly equivalent to applying
SYMMLQ to the normal equations

(50) (ATNT'A+ M)z = ATN" b,

while applying LNLQ to (48) is equivalent to applying SYMMLQ to the normal
equations of the second kind:

(51) (AM'AT + N)y = ¢, Mz = ATy,

where we changed the sign of y to avoid distracting minus signs.
In lieu of (5), the generalized Golub-Kahan process can be summarized as
(52a) AVy, = MUy, By,
T T T T
(52b) A" Upy1 = NVi By, + appiNvg € = NV Ly,

where now U,?MUk =T and VkTNVk = [ in exact arithmetic. Pasting (52) together
yields

M AT W, M Vi, I Li N 0 T
A —N Uk o N Uk Lk —1 ﬁk+1Nuk+1 2k

M AT Vk N M Vk 1 B;{ + Oék+1M’Uk+1 eT
A —N Upin| N Ui | | By —I 0 2kl

These relations correspond to a Lanczos process applied to (47) with preconditioner
blkdiag(M, N). The small symmetric quasi-definite matrix on the right-hand side of
the preceding identities is a symmetric permutation of the Lanczos tridiagonal, which
is found by restoring the order in which the Lanczos vectors (v, 0) and (0, uy,) are
generated:

1 oy

a; —1 By
Topr = S =[ T2kT ﬂkﬂezk]-
T o Br+1€2k 1
ap =1 B,
Br+1 1

Saunders (1995) and Orban and Arioli (2017) show that the CG iterates are well-
defined for (47) even though K is indefinite. In a similar vein, Orban and Arioli
(2017) establish that applying MINRES to (47) with the block-diagonal preconditioner
produces alternating preconditioned LSMR and LSQR iterations, where LSMR is
applied to (50) and LSQR is applied to (51).

It turns out that SYMMLQ applied directly to (47) with this preconditioner
satisfies the following property: even iterations are CG iterations, while odd iterations
take a zero step and make no progress. Thus every other iteration is wasted. The
generalized iterative methods of Orban and Arioli (2017), LSLQ or LNLQ should be
used instead. The property is formalized in the following result.

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



20 R. ESTRIN, D. ORBAN, AND M. A. SAUNDERS [Toc]|

THEOREM 2. Let x,?Q and mgG be the iterates gemerated at iteration k of

SYMMLQ and CG applied to (47), and z¥ be the iterate defined in (7). Then
LQ _ CG

fork>=1, mglgl =To = Top = ar:kc
528 Proof. For brevity, we use the notation from (Estrin et al., 2019a, §2.1) to describe
529 the Lanczos process and how to construct the CG and SYMMLQ iterates. By (52),
530 T, and the L factor of the LQ factorization of T, have the form

1t
to —1 tg gl N
. 2 V2
o T, = ts 17 L, = | ¢ % 7
531 L = B tk 5 k= . . . 5
k—1 . -
tp (—1) €r—1 Ok—1 Yr—1
tet

532 where each t; is a scalar. For k > 2, the LQ factorization is accomplished using
533 reflections defined by

Ye-1 T o s Ye-1 O
534 o, (—DF? [82 _’c“k] = % T |-
0 triq €r+1 Okt1
ar writh & N V= t
535 with 4, =1, 09 = ty, ¢ = z:i, and s, = T’il
k
536 We show that ¢; = 0 for all j by showing that ¥, = (701) for k > 2, because in
537 that case
< _ Yi— 1t
538 5k = 5ka — (—1)k 1Sk = (tka_l)’yk L -1 k=l Tk
V-1 V-1
t _ _
539 =+ ((—l)k L (—1)F 1) =0.
540 V-1
2 2 - N t5
541 For k = 2 we have 75 = 1+1t5 and ¢y = ,Yl—z, sozhlat Vo = 0989+ Cy = ,y—iJr%z =1y = %
542 Proceeding by induction, assume c¢;,_; = % Then
‘ - = k—1 k=1 2
543 Ve = Opsk — (=1)" e = i <_tkck715kck —(=1) Ck)
k-1 k-1 2
544 --2 ((-1) bsio + (1) ck)
- I D 2| _ (="
54t = —SgC + C = .
516 ° (Ck e k) *

547  For all k, since d;, = 0 and xéQ = Wy _12,_1 with W;_; having orthonormal columns,

548 and since (zj_q); = (; is defined by Ly_;2,_1 = |blle;, we have ¢, = 0 for k even.
549 Therefore :vng = xé,?_l Furthermore, since ¢, = ¢, and kaG = méQ + (g, for
550 some w;, L Wy, we have (5, = 0 and mng = xng The identity xng = xkc follows
551 from (Saunders, 1995, Result 11). 0
552 We illustrate Theorem 2 using a small numerical example. We randomly generate
553 A and b with m = 50, n = 30, M = I, and N = I and run SYMMLQ directly on
554 (47). We compute z, via Matlab’s backslash operator, and compute |z, — z,| at each
555 iteration to produce Figure 6. The resulting convergence plot resembles a staircase
556 because every odd iteration produces a zero step.
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Fic. 6. Error |z, — x| generated by SYMMLQ applied to (47). Note that every odd iteration
makes no progress, resulting in a convergence plot resembling a step function.

9. Discussion. LNLQ fills a gap in the family of iterative methods for (3) based
on the Golub and Kahan (1965) process. While CRAIG is equivalent to CG applied
to ATAy = b (3), LNLQ is equivalent to SYMMLQ but is numerically more stable
when A is ill-conditioned. The third possibility, MINRES (Paige and Saunders, 1975)
applied to (3), is equivalent to LSQR (Paige and Saunders, 1982a,b) because both
minimize the residual norm ||b — Az,|, where z;, € K}, is implicitly defined as A”yj.

As in the companion method LSLQ (Estrin et al., 2019b), an appropriate Gauss-
Radau quadrature yields an upper bound on Hy,f — 4, |, and transition to the CRAIG
point provides an upper bound on Hyg —v,||. However, it is xkc that is updated along
orthogonal directions, and not 5. Thus the upper bound on |z} — z, |, which we
developed for completeness, is deduced from that on ||z — #,|. In our numerical
experiments, both error bounds are remarkably tight, but |zr — x, | may lag behind
ng — .| by several orders of magnitude and is not monotonic. Although the bound
on Hyg — vy, | suggested by Arioli (2013) is tighter than might have been anticipated,
the sliding window strategy allows us to tighten it further at the expense of a few
extra scalar operations per iteration.

All error upper bounds mentioned above depend on an appropriate Gauss-Radau
quadrature, which has been observed to become numerically inaccurate below a certain
error level (Meurant and Tichy, 2014; Meurant and Tichy, 2018). This inaccuracy
causes the loosening of the bounds observed in section 7. Should a more accurate

computation of quadratic forms like |y, |* = b" (AAT) ?b become available, all error
upper bounds would improve, including those from the sliding window approach.

USYMLQ), based on the orthogonal tridiagonalization process of Saunders, Simon,
and Yip (1988), coincides with SYMMLQ when applied to consistent symmetric
systems. For (3) it also coincides with LNLQ, but it would be wasteful to apply
USYMLQ directly to (3).

Fong and Saunders (2012, Table 5.1) summarize the monotonicity of various
quantities related to LSQR and LSMR iterations. Table 1 is similar but focuses on
CRAIG and LNLQ.
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TABLE 1
Comparison of CRAIG and LNLQ properties on min Hx\|2 subject to Az = b.

CRAIG LNLQ
[EZN /" (14) and (P, 1974) non-monotonic
|z, — x| \ (12) and (P, 1974) non-monotonic, = CRAIG (Corollary 1)
el ' (23) and (HS, 1952) 7 (23) and (PS, 1975), < CRAIG (EOS, 2019)
lye —wel N\ (23) and (HS, 1952) . (23) and (PS, 1975), > CRAIG (EOS, 2019)
|r. — gl  not-monotonic not-monotonic
[l not-monotonic not-monotonic

/" monotonically increasing \\ monotonically decreasing

EOS (Estrin et al., 2019a), HS (Hestenes and Stiefel, 1952),

P (Paige, 1974), PS (Paige and Saunders, 1975)
References.

M. Arioli. Generalized Golub-Kahan bidiagonalization and stopping criteria. STAM J.
Matriz Anal. Appl., 34(2):571-592, 2013. DOI: 10.1137/120866543.

J. E. Craig. The N-step iteration procedures. J. Math. and Physics, 34(1):64-73, 1955.
T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans.
Math. Software, 38(1):1:1-1:25, December 2011. DOI: 10.1145/2049662.2049663.
R. Estrin, M. P. Friedlander, D. Orban, and M. A. Saunders. Implementing a smooth
exact penalty function for nonlinear optimization. Cahier du GERAD G-2018-XX,

GERAD, 2018. In preparation.

R. Estrin, D. Orban, and M. A. Saunders. FEuclidean-norm error bounds for
CG via SYMMLQ. SIAM J. Matriz Anal. Appl., 40(1):235-253, 2019a. DOI:
10.1137/16M1094816.

R. Estrin, D. Orban, and M. A. Saunders. LSLQ: An iterative method for linear
least-squares with an error minimization property. SIAM J. Matrixz Anal. Appl., 40
(1):254-275, 2019b. DOL: 10.1137/17M1113552.

R. Fletcher. A class of methods for nonlinear programming: III. Rates of convergence.
In F. A. Lootsma, editor, Numerical Methods for Nonlinear Optimization. Academic
Press, New York, 1973.

D. C.-L. Fong and M. A. Saunders. CG versus MINRES: An empirical comparison.
SQU Journal for Science, 17(1):44-62, 2012.

G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. STAM J. Numer. Anal., 2(2):205-224, 1965. DOI: 10.1137/0702016.

G. H. Golub and G. Meurant. Matrices, moments and quadrature. In Numerical
analysis 1993 (Dundee, 1993), volume 303 of Pitman Res. Notes Math. Ser., pages
105-156. Longman Sci. Tech., Harlow, 1994.

G. H. Golub and G. Meurant. Matrices, Moments and Quadrature with Applications.
Princeton Series in Applied Mathematics. Princeton University Press, Princeton,
NJ, 2010. ISBN 978-0-691-14341-5.

G. H. Golub and Z. Strakos. Estimates in quadratic formulas. Numer. Algor., 8(2-4):
241-268, 1994. DOI: 10.1007/BF02142693.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Standards, 49(6):409-436, 1952.

W. J. Kammerer and M. Z. Nashed. On the convergence of the conjugate gradient
method for singular linear operator equations. SIAM J. Numer. Anal., 9(1):165-181,
1972. DOI: 10.1137/0709016.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400


http://dx.doi.org/10.1137/120866543
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1137/16M1094816
http://dx.doi.org/10.1137/17M1113552
http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.1007/BF02142693
http://dx.doi.org/10.1137/0709016

[Toc| LNLQ 23

differential and integral operators. J. Res. Nat. Bur. Standards, 45:225-280, 1950.

G. Meurant and P. Tichy. A new algorithm for computing quadrature-based bounds
in conjugate gradients, 2014. URL http://www.cs.cas.cz/tichy /download /present/
2014Spa.pdf.

G. Meurant and P. Tichy. Approximating the extreme ritz values and upper bounds
for the A-norm of the error in CG. Numerical Algorithms, pages 1-32, 2018.

D. Orban and M. Arioli. Iterative Solution of Symmetric Quasi-Definite Linear Systems,
volume 3 of Spotlights. STAM, Philadelphia, 2017. DOI: 10.1137/1.9781611974737.
URL http://bookstore.siam.org/sl03.

C. C. Paige. Bidiagonalization of matrices and solution of linear equations. STAM J.
Numer. Anal., 11(1):197-209, 1974. DOI: 10.1137,/0711019.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12(4):617-629, 1975. DOI: 10.1137/0712047.
C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Software, 8(1):43-71, 1982a. DOI:

10.1145/355984.355989.

C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations and
least-squares problems. ACM Trans. Math. Software, 8(2):195-209, 1982b. DOI:
10.1145/355993.356000.

M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT
Numerical Mathematics, 35:588-604, 1995. DOI: 10.1007/BF01739829.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods
for unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927-940, 1988.
DOLI: 10.1137/0725052.

G. W. Stewart. The QLP approximation to the singular value decomposition. SIAM
J. Sci. Comput., 20(4):1336-1348, 1999. DOI: 10.1137/S1064827597319519.

R. J. Vanderbei. Symmetric quasi-definite matrices. SIAM J. Optim., 5(1):100-113,
1995. DOI: 10.1137,/0805005.

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400


http://www.cs.cas.cz/tichy/download/present/2014Spa.pdf
http://www.cs.cas.cz/tichy/download/present/2014Spa.pdf
http://www.cs.cas.cz/tichy/download/present/2014Spa.pdf
http://dx.doi.org/10.1137/1.9781611974737
http://bookstore.siam.org/sl03
http://dx.doi.org/10.1137/0711019
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1145/355993.356000
http://dx.doi.org/10.1007/BF01739829
http://dx.doi.org/10.1137/0725052
http://dx.doi.org/10.1137/S1064827597319519
http://dx.doi.org/10.1137/0805005

	Introduction
	Background
	The Golub-Kahan process
	CRAIG

	LNLQ
	An LQ factorization
	Definition and update of the LNLQ and CRAIG iterates
	Residual estimates
	Updating x = A'y
	Complete algorithm

	Regularization
	Error upper bounds
	Upper bound on y* - yL
	Upper bound on y* - yC
	Upper bound on x* - xC
	Upper bound on x* - xLk
	Choice of sigmaest

	Preconditioning
	Implementation and numerical experiments
	UFL problems
	Fletcher's penalty function

	Extension to symmetric quasi-definite systems
	Discussion

