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LNLQ: AN ITERATIVE METHOD FOR LEAST-NORM PROBLEMS1
WITH AN ERROR MINIMIZATION PROPERTY2

RON ESTRIN˚, DOMINIQUE ORBAN: , AND MICHAEL A. SAUNDERS;3

Abstract. We describe LNLQ for solving the least-norm problem min }x} subject to Ax “ b,4
using the Golub-Kahan bidiagonalization of

“

b A
‰

. Craig’s method is known to be equivalent to5
applying the conjugate gradient method to the normal equations of the second kind (AA

T
y “ b,6

x “ A
T
y); LNLQ is equivalent to applying SYMMLQ. If an underestimate of the smallest singular7

value is available, error upper bounds for both x and y are available cheaply at each iteration. LNLQ8
is a companion method to the least-squares solver LSLQ (Estrin, Orban, and Saunders, 2019b),9
which is equivalent to SYMMLQ on the conventional normal equations. We show that the error10
bounds are tight and comparable to the bounds suggested by Arioli (2013) for CRAIG. A sliding11
window technique allows us to tighten the error bound for y at the expense of a few additional12
scalar operations per iteration. We illustrate the tightness of the error bounds on two standard test13
problems and on the computation of an inexact gradient in the context of a penalty method for14
PDE-constrained optimization.15
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1. Introduction. We seek the unique x‹ that solves the least-norm problem18

minimize
xPR

n

1
2}x}

2 subject to Ax “ b,(1)19
20

where } ¨ } denotes the Euclidean norm, A P Rmˆn, and the constraints are assumed21
to be consistent. A unique y‹ solves the problem22

minimize
yPR

m

1
2}y}

2 subject to AATy “ b,(2)23
24

and px‹, y‹q is the least-norm solution of the normal equations of the second kind:25

(3) AATy “ b, x “ ATy ô

„

´I AT

A

 „

x
y



“

„

0
b



.26

We describe an iterative solver LNLQ that includes cheap and reliable upper bounds27
on the sequence of errors }xk ´ x‹} and }yk ´ y‹}.28

Existing iterative methods tailored to the solution of (1) include CRAIG (Craig,29
1955) and LSQR (Paige and Saunders, 1982a,b). LSQR does not provide convenient30
error bounds. CRAIG generates iterates xk that are updated along orthogonal31
directions, so it is possible to devise an upper bound on the error in xk (Arioli, 2013),32
but the iterates yk are not updated along orthogonal directions.33
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CRAIG and LSQR turn out to be formally equivalent to the method of conjugate34
gradients (CG) (Hestenes and Stiefel, 1952) and MINRES (Paige and Saunders, 1975)35

applied to AATy “ b in (3), respectively, but are more reliable when A is ill-conditioned.36
By construction, LNLQ is formally equivalent to SYMMLQ applied to (3). LNLQ37
inherits beneficial properties of SYMMLQ, including orthogonal updates to yk, cheap38
transfers to the CRAIG point, and cheap upper bounds on the error }yk ´ y‹}.39

Motivation. Linear systems of the form (3) occur during evaluation of the40
value and gradient of a certain penalty function for equality-constrained optimization41
(Fletcher, 1973; Estrin, Friedlander, Orban, and Saunders, 2018). Our main motivation42
is to devise reliable termination criteria that allow control of the error in the solution43
of (1), thus allowing us to evaluate inexact gradients cheaply while maintaining global44
convergence properties of the underlying optimization method. Our approach follows45
the philosophy of Estrin, Orban, and Saunders (2019a) and Estrin et al. (2019b) and46
requires an estimate of the smallest singular value of A. Although such an estimate47
may not always be available in practice, good underestimates are often available in48
optimization problems, including PDE-constrained problems—see section 7.49

Arioli (2013) develops an upper bound on the error in xk along the CRAIG50
iterations based on an appropriate Gauss-Radau quadrature (Golub and Meurant,51
1994), and suggests the seemingly simplistic upper bound }yk ´ y‹} ď }xk ´ x‹}{σr,52
where σr is the smallest nonzero singular value of A. Although his bound is often53
effective, we derive improved bounds for CRAIG using LNLQ by introducing a delay54
d as in (Golub and Strakǒs, 1994).55

The remainder of this paper is outlined as follows. Section 2 gives background on56
the Golub and Kahan (1965) process and CRAIG. Sections 3–6 derive LNLQ from57
the Golub and Kahan process, highlight relationships to CRAIG, derive error bounds,58
and discuss regularization and preconditioning. Numerical experiments are given in59
section 7. Extensions to quasi-definite systems are given in section 8, followed by60
concluding remarks in section 9.61

Notation and assumptions. We use Householder notation: A, b, β for matrix,62
vector, scalar, with the exception of c and s denoting scalars that define reflections. All63
vectors are columns, but the slightly abusive notation pξ1, . . . , ξkq is sometimes used64
to enumerate their components in the text. Unless specified otherwise, }A} and }x}65
denote the Euclidean norm of matrix A and vector x. For symmetric positive definite66
M , we define the M -norm of u via }u}2M :“ uTMu. We order the singular values of67

A according to σ1 ě σ2 ě ¨ ¨ ¨ ě σminpm,nq ě 0, and A: denotes the Moore-Penrose68
pseudoinverse of A. We assume that x0 “ 0 and y0 “ 0. If y0 ‰ 0, we can solve the69
shifted system AAT∆y “ b´AATy0 and set y “ y0 `∆y.70

As in Estrin et al. (2019a), in the derivation of some results we rely on orthogonality71
of the columns of the Golub-Kahan matrices Uk, Vk. In practice, the orthogonality is72
lost and the convergence of our method is delayed. Nevertheless, the method as well as73
the error upper bounds derived using the orthogonality assumption remain reliable, as74
observed empirically. Analysis of this phenomenon is beyond the scope of this paper.75

2. Background.76

2.1. The Golub-Kahan process. The Golub and Kahan (1965) process applied77
to A with starting vector b is described as Algorithm 1. In line 1, β1u1 “ b is short78
for “β1 “ }b}; if β1 “ 0 then exit; else u1 “ b{β1”. Similarly for line 2 and the main79
loop. In exact arithmetic, the algorithm terminates with k “ ` ď minpm,nq and either80
α``1 or β``1 “ 0. Paige (1974) explains that if Ax “ b is consistent, the process must81

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



[toc] LNLQ 3

Algorithm 1 Golub-Kahan Bidiagonalization Process
Require: A, b
1: β1u1 “ b
2: α1v1 “ ATu1

3: for k “ 1, 2, . . . do
4: βk`1uk`1 “ Avk ´ αkuk
5: αk`1vk`1 “ ATuk`1 ´ βk`1vk
6: end for

terminate with β``1 “ 0.82
We define Uk :“

“

u1 ¨ ¨ ¨ uk
‰

, Vk :“
“

v1 ¨ ¨ ¨ vk
‰

, and83

(4) Lk :“

»

—

—

—

–

α1

β2 α2

. . . . . .
βk αk

fi

ffi

ffi

ffi

fl

, Bk :“

»

—

—

—

—

—

–

α1

β2 α2

. . . . . .
βk αk

βk`1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

„

Lk
βk`1e

T
k



.84

After k iterations of Algorithm 1, the following hold to machine precision:85

AVk “ Uk`1Bk,(5a)86

ATUk`1 “ VkB
T
k ` αk`1vk`1e

T
k`1 “ Vk`1L

T
k`1,(5b)8788

while the identities UTk Uk “ Ik and V Tk Vk “ Ik hold only in exact arithmetic. The89
next sections assume that these identities do hold, allowing us to derive certain norm90
estimates that seem reliable in practice until high accuracy is achieved in x and y.91

2.2. CRAIG. For problem (1), the method of Craig (1955) was originally derived92
as a form of the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) applied93
to (3). Paige (1974) provided a description based on Algorithm 1:94

Lktk “ β1e1, xCk :“ Vktk “ xCk´1 ` τkvk,(6)9596

where tk :“ pτ1, . . . , τkq and the components of tk can be found recursively from97

τ1 “ β1{α1, τj “ ´βjτj´1{αj (j ě 2). If we suppose tk “ LTk ȳ
C
k for some vector ȳCk98

that exists but need not be computed, we see that99

(7) xCk “ VkL
T
k ȳ

C
k “ ATUkȳ

C
k “ ATyCk ,100

where yCk :“ Ukȳ
C
k provides approximations to y. If we define Dk “

“

d1 ¨ ¨ ¨ dk
‰

101

from LkD
T
k “ UTk , we may compute the vectors dj recursively from d1 “ u1{α1,102

dj “ uj ´ βjdj´1{αj pj ě 2q and then update103

yCk “ DkL
T
k ȳ

C
k “ Dktk “ yCk´1 ` τkdk.104

To see the equivalence with CG on (3), note that relations (5) yield105

AATUk “ AVkL
T
k “ Uk`1BkL

T
k “ Uk`1Hk,(8)106

Hk :“ BkL
T
k “

„

LkL
T
k

αkβk`1e
T
k



,(9)107
108
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which we recognize as the result of k iterations of the Lanczos (1950) process applied109

to AAT with starting vector b, where110

(10) Tk :“ LkL
T
k “

»

—

—

—

–

ᾱ1 β̄2

β̄2 ᾱ2

. . .
. . .

. . . β̄k
β̄k ᾱk

fi

ffi

ffi

ffi

fl

111

is the Cholesky factorization of the Lanczos tridiagonal Tk, with ᾱ1 :“ α2
1 and112

ᾱj :“ α2
j ` β2

j , β̄j :“ αjβj`1 for j ě 2. Note that Tkȳ
C
k “ LkL

T
k ȳ

C
k “ Lktk “ β1e1.113

CG defines yCk “ Ukȳ
C
k , and so we have the same iterates as CRAIG:114

xCk “ ATyCk “ ATUkȳ
C
k “ VkL

T
k ȳ

C
k “ Vktk “ xCk´1 ` τkvk.115

While Dk is not orthogonal, note that xCk in (6) is updated along orthogonal116

directions and }xCk }
2
“

řk
j“1 τ

2
j , i.e., }x

C
k } is monotonically increasing and }x‹ ´ x

C
k }117

is monotonically decreasing. Arioli (2013) exploits these facts to compute upper and118

lower bounds on the error }x‹ ´ x
C
k } and an upper bound on }y‹ ´ y

C
k }.119

Although it is not apparent in the above derivation, the equivalence with CG ap-120
plied to (3) shows that }yCk } is monotonically increasing and }y‹´y

C
k } is monotonically121

decreasing (Hestenes and Stiefel, 1952, Theorem 6:3).122

Unfortunately, the fact that yCk is not updated along orthogonal directions makes123
it more difficult to monitor }y‹ ´ y

C
k } and to develop upper and lower bounds. Arioli124

(2013) suggests the upper bound }y‹ ´ y
C
k } ď }x‹ ´ x

C
k }{σn when A has full row rank.125

LNLQ provides an alternative upper bound on }y‹ ´ y
C
k } that may be tighter.126

The residual for CRAIG is127

(11) rCk :“ b´AxCk “ β1u1 ´AVktk “ Uk`1pβ1e1 ´Bktkq “ ´βk`1τkuk`1.128

Other results may be found scattered in the literature. For completeness, we gather129
them here and provide proofs.130

Proposition 1. Let x‹ be the solution of (1) and y‹ the associated Lagrange
multiplier with minimum norm, i.e., the minimum-norm solution of (3). The kth
CRAIG iterates xCk and yCk solve

minimize
x

}x´ x‹} subject to x P RangepVkq,(12)

minimize
y

}y ´ y‹}AAT subject to y P RangepUkq(13)

respectively. In addition, xCk and yCk solve

minimize
x

}x} subject to x P RangepVkq, b´Ax K RangepUkq,(14)

minimize
y

}y}
AA

T subject to y P RangepUkq, b´AA
Ty K RangepUkq.(15)

When A is row-rank-deficient, the pAAT q-norm should be interpreted as a norm
when restricted to RangepAq.

Proof. Assume temporarily that A has full row rank, so that AAT is symmetric131
positive definite. Then there exists a unique y‹ such that x‹ “ ATy‹ and132

}xCk ´ x‹} “ }A
T
pyCk ´ y‹q} “ }y

C
k ´ y‹}AAT .133
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In words, the Euclidean norm of the error in xk is the energy norm of the error in yk.134
Theorem 6:1 of Hestenes and Stiefel (1952) ensures that yCk is chosen to minimize the135

energy norm of the error over all y P RangepUkq, i.e., y
C
k solves (13).136

To y P RangepUkq, there corresponds x “ ATy P RangepATUkq “ RangepVkL
T
k q “137

RangepVkq by (5) because Lk is nonsingular. Consequently, CRAIG generates xCk as a138
solution of (12).139

When A is rank-deficient, our assumption that Ax “ b is consistent ensures that140
AATy “ b is also consistent because if there exists a subpace of solutions x, it is141
possible to pick the one that solves (3), and therefore b P RangepAAT q. Kammerer and142
Nashed (1972) show that in the consistent singular case, CG converges to the solution143
y‹ of (2). Let r ă minpm,nq be such that σr ą 0 and σr`1 “ ¨ ¨ ¨ “ σminpm,nq “ 0.144

Then rankpAq “ r “ dim RangepAq and the smallest nonzero eigenvalue of AAT is σ2
r .145

The Rayleigh-Ritz theorem states that146

σ2
r “ min t}ATw}2 | w P RangepAq, }w} “ 1u.147

By (5), each uk P RangepAq, and (8) and (10) imply that UTk AA
TUk “ Tk in exact148

arithmetic. Thus for any t P Rk such that }t} “ 1, we have }Ukt} “ 1 and149

tTUTk AA
TUkt “ tTTkt ě σ2

r ,150

so that the Tk are uniformly positive definite and CG iterations occur as if CG were151
applied to the positive-definite reduced system PTr AA

TPrỹ “ PTr b, where Pr is the152
mˆ r matrix of orthogonal eigenvectors of AAT corresponding to nonzero eigenvalues.153
Thus in the rank-deficient case, yCk also solves (13) except that the energy “norm” is154

only a norm when restricted to RangepAq, and xCk also solves (12).155

To establish (14), note that (6) and (11) imply xCk is primal feasible for (14). Dual156

feasibility requires there exist vectors x̄, ȳ and z̄ such that x “ z̄ `ATUkȳ, V
T
k z̄ “ 0157

and x “ Vkx̄. The first two conditions are equivalent to V Tk x “ 0 ` V Tk A
TUkȳ “158

BTk U
T
k`1Ukȳ “ LTk ȳ. Because x “ Vkx̄, this amounts to x̄ “ LTk ȳ. Thus dual feasibility159

is satisfied with x̄ :“ x̄Ck , ȳ :“ ȳCk and z̄ :“ 0. The proof of (15) is similar.160

3. LNLQ. We define LNLQ as equivalent in exact arithmetic to SYMMLQ (Paige161
and Saunders, 1975) applied to (3). Whereas SYMMLQ is based on the Lanczos (1950)162

process, LNLQ is based on Algorithm 1. Again we seek an approximation yLk “ Ukȳ
L
k .163

The kth iteration of SYMMLQ applied to (3) computes ȳLk as the solution of164

(16) minimize
ȳ

1
2}ȳ}

2 subject to HT
k´1ȳ “ β1e1,165

where HT
k´1 is the top pk ´ 1q ˆ k submatrix of Tk (10).166

3.1. An LQ factorization. In SYMMLQ, the computation of ȳLk follows from167
the LQ factorization of HT

k´1, which can be derived implicitly via the LQ factorization168

of Tk “ LkL
T
k . As Lk is already lower triangular, we only need the factorization169

(17) LTk “ ĎMkQk, ĎMk :“

»

—

—

—

–

ε1

η2 ε2

. . . . . .
ηk ε̄k

fi

ffi

ffi

ffi

fl

“

„

Mk´1

ηke
T
k´1 ε̄k



,170
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where QTk “ Q1,2Q2,3 . . . Qk´1,k is orthogonal and defined as a product of reflections,171
where Qj´1,j is the identity except for elements at the intersection of rows and columns172
j ´ 1 and j. Initially, ε̄1 “ α1 and Q1 “ I. Subsequent factorization steps may be173
represented as174

„

j ´ 2 j ´ 1 j

j ´ 1 ηj´1 ε̄j´1 βj
j αj

 »

–

j ´ 2 j ´ 1 j

1
cj sj
sj ´cj

fi

fl

“

„

j ´ 2 j ´ 1 j

ηj´1 εj´1

ηj ε̄j



,175

where the border indices indicate row and column numbers, with the understanding176
that ηj´1 is absent when j “ 2. For j ě 2, Qj´1,j is defined by177

εj´1 “

b

ε̄2
j´1 ` β

2
j , cj “ ε̄j´1{εj´1, sj “ βj{εj´1,178

and the application of Qj´1,j results in179

(18) ηj “ αjsj , ε̄j “ ´αjcj .180

We may write HT
k´1 “

“

Lk´1L
T
k´1 αk´1βkek´1

‰

“ Lk´1

“

LTk´1 βkek´1

‰

. From (17),181

LTk “

„

LTk´1 βkek´1

αk



“

„

Mk´1

ηke
T
k´1 ε̄k



Qk ñ
“

LTk´1 βkek´1

‰

“
“

Mk´1 0
‰

Qk.182

Finally, we obtain the LQ factorization183

(19) HT
k´1 “

“

Lk´1Mk´1 0
‰

Qk.184

3.2. Definition and update of the LNLQ and CRAIG iterates. In order185
to solve HT

k´1ȳ
L
k “ β1e1 using (19), we already have Lk´1tk´1 “ β1e1, with the186

next iteration giving τk “ ´βkτk´1{αk. Next, we consider Mk´1zk´1 “ tk´1 and187
find the components of zk´1 “ pζ1, . . . , ζk´1q recursively as ζ1 “ τ1{ε1, ζj “ pτj ´188
ηjζj´1q{εj pj ě 2q. This time, the next iteration yields ζ̄k “ pτk ´ ηkζk´1q{ε̄k and189
ζk “ ζ̄kε̄k{εk “ ck`1ζ̄k. Thus,190

(20) ȳLk “ QTk

„

zk´1

0



and ȳCk “ QTk

„

zk´1

ζ̄k



“ QTk z̄k191

solve (16) and Tkȳ
C
k “ β1e1 respectively, matching the definition of the CRAIG iterate.192

By construction, yLk “ Ukȳ
L
k and yCk “ Ukȳ

C
k . We define the orthogonal matrix193

ĎWk “ UkQ
T
k “

“

w1 ¨ ¨ ¨ wk´1 w̄k
‰

“
“

Wk´1 w̄k
‰

, w̄1 :“ u1,194

so that (20) with zk´1 and z̄k :“ pzk´1, ζ̄kq yields the orthogonal updates195

yLk “ ĎWk

„

zk´1

0



“Wk´1zk´1 “ yLk´1 ` ζk´1wk´1,(21)196

yCk “ ĎWkz̄k “Wk´1zk´1 ` ζ̄kw̄k “ yLk ` ζ̄kw̄k.(22)197198

Because ĎWk is orthogonal, we have199

(23) }yLk }
2
“ }zk´1}

2
“

k´1
ÿ

j“1

ζ2
j and }yCk }

2
“ }yLk }

2
` ζ̄2

k .200
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Thus }yCk } ě }yLk }, }y
L
k } is monotonically increasing, }y‹ ´ yLk } is monotonically201

decreasing, and }y‹´y
L
k } ě }y‹´y

C
k }, consistent with (Estrin et al., 2019a, Theorem 6).202

Contrary to the update of yCk in CRAIG, yLk is updated along orthogonal directions203
and yCk is found as an orthogonal update of yLk . The latter follows from the transfer204
procedure of SYMMLQ to the CG point described by Paige and Saunders (1975).205

At the next iteration,206

“

wk w̄k`1

‰

“
“

w̄k uk`1

‰

«

k k ` 1

ck`1 sk`1

sk`1 ´ck`1

ff

207

ñ wk “ ck`1w̄k ` sk`1uk`1,208

w̄k`1 “ sk`1w̄k ´ ck`1uk`1.209210

3.3. Residual estimates. We define the residual211

rk :“ b´Axk “ b´AATUkȳk “ Uk`1pβ1e1 ´Hkȳkq212

using line 1 of Algorithm 1 and (8), where ȳk is either ȳLk or ȳCk . Then for k ą 1,213

Tkȳ
L
k “ LkL

T
k ȳ

L
k “ LkĎMkQkQ

T
k

„

zk´1

0



214

“

„

Lk´1

βke
T
k´1 αk

 „

Mk´1

ηke
T
k´1 ε̄k

 „

zk´1

0



215

“

„

Lk´1

βke
T
k´1 αk

 „

tk´1

ηkζk´1



“

„

β1e1

βkτk´1 ` αkηkζk´1



,216
217

where we use (17), the definition of tk´1 and zk´1, and (20). Also, the identity218
Qkek “ skek´1 ´ ckek yields219

eTk ȳ
L
k “ eTkQ

T
k

„

zk´1

0



“ skζk´1.220

These combine with (9) to give221

rLk “ Uk`1

ˆ„

β1e1

0



´

„

LkL
T
k

β̄k`1e
T
k



ȳLk

˙

“ ´ Uk`1

»

–

0
βkτk´1 ` αkηkζk´1

β̄k`1skζk´1

fi

fl222

“ ´ pβkτk´1 ` αkηkζk´1quk ´ β̄k`1skζk´1uk`1.(24)223224

By orthogonality, the residual norm is cheaply computable as225

}rLk }
2
“ pβkτk´1 ` αkηkζk´1q

2
` pβ̄k`1skζk´1q

2
.226

Similarly,227

rCk “ Uk`1

ˆ„

β1e1

0



´

„

Tk
β̄k`1e

T
k



ȳCk

˙

“ ´ Uk`1

„

0

β̄k`1e
T
k



QTk z̄k228

“ ´ β̄k`1Uk`1

„

0

ske
T
k´1 ´ cke

T
k

 „

zk´1

ζ̄k



229

“ ´β̄k`1pskζk´1 ´ ck ζ̄kquk`1,(25)230231
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where we use Tkȳ
C
k “ β1e1 (by definition) and (20). Orthogonality of the uj yields232

orthogonality of the CRAIG residuals, a property of CG (Hestenes and Stiefel, 1952,233
Theorem 5:1). The CRAIG residual norm is simply234

}rCk } “ β̄k`1 |skζk´1 ´ ck ζ̄k|.235

In the next section, alternative expressions of }rLk } and }r
C
k } emerge.236

3.4. Updating x “ ATy. The definition yk “ Ukȳk and (5) yield xk “ ATyk “237

ATUkȳk “ VkL
T
k ȳk. The LQ and CRAIG iterates may then be updated as238

xLk “ VkL
T
k ȳ

L
k “ VkL

T
kQk

„

zk´1

0



239

“ VkĎMk

„

zk´1

0



“ Vk

„

Mk´1

ηke
T
k´1 ε̄k

 „

zk´1

0



240

“ Vk´1Mk´1zk´1 ` ηkζk´1vk241

“ Vk´1tk´1 ` ηkζk´1vk,(26)242243

and similarly,244

(27) xCk “ Vk

„

Mk´1

ηke
T
k´1 ε̄k

 „

zk´1

ζ̄k



“ xLk ` ε̄k ζ̄kvk.245

Because Vk is orthogonal, we have246

(28) }xLk }
2
“

k´1
ÿ

j“1

τ2
j ` pηkζk´1q

2 and }xCk }
2
“

k´1
ÿ

j“1

τ2
j ` pηkζk´1 ` ε̄k ζ̄kq

2.247

Both xLk and xCk may be found conveniently if we maintain the delayed iterate248
x̃k´1 :“ τ1v1 ` ¨ ¨ ¨ ` τk´1vk´1 “ x̃k´2 ` τk´1vk´1, for then we have the orthogonal249
updates250

(29) xLk “ x̃k´1 ` ηkζk´1vk and xCk “ x̃k´1 ` pηkζk´1 ` ε̄k ζ̄kqvk.251

Proposition 2. We have ε̄1ζ̄1 “ τ1 and for k ą 1, ηkζk´1` ε̄k ζ̄k “ τk. This
gives the same expressions as for standard CRAIG:

xCk “
k
ÿ

j“1

τkvk and rCk “ ´βk`1τkuk`1.

Proof. The identity for k “ 1 follows from the definitions of ε̄1, ζ̄1, and τ1. By252
definition of ζ̄k, we have ε̄k ζ̄k “ τk ´ ηkζk´1, i.e., ηkζk´1 ` ε̄k ζ̄k “ τk. The expressions253

for xCk and rCk follow from (29) and from (25), the definition of β̄k`1, and (18).254

Proposition 2 shows that xCk is updated along orthogonal directions, so that }xCk }255

is monotonically increasing and }x‹ ´ x
C
k } is monotonically decreasing, as stated by256

Paige (1974). Finally, (26) and Proposition 2 give xLk “ xCk´1 ` ηkζk´1vk.257
Proposition 2 allows us to write τk ´ ηkζk´1 “ ε̄k ζ̄k. Because βkτk´1 “ ´αkτk,258

the LQ residual may be rewritten259

rLk “ αkpτk ´ ηkζk´1quk ´ β̄k`1skζk´1uk`1260

“ αk ε̄k ζ̄kuk ´ αkβk`1skζk´1uk`1,261262
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and correspondingly, }rLk }
2
“ α2

kppε̄k ζ̄kq
2
`pβk`1skζk´1q

2
q.We are now able to establish263

a result that parallels Proposition 1.264

Proposition 3. Let x‹ and y‹ be as in (1)–(3). The kth LNLQ iterates yLk
and xLk solve

minimize
y

}y ´ y‹} subject to y P RangepAATUk´1q,(30)

minimize
x

}x´ x‹}pAAT
q
: subject to x P RangepVk´1q,(31)

respectively. In addition, yLk and xLk solve

minimize
y

}y} subject to y P RangepUkq, b´AA
Ty K RangepUk´1q,(32)

minimize
x

}x}
pAA

T
q
: subject to x P RangepVkq, b´Ax K RangepUk´1q.(33)

Proof. By definition, ȳLk solves (16). Hence there must exist t̄ such that ȳLk “265

Hk´1t̄ and HT
k´1ȳ

L
k “ β1e1. By definition of Hk´1 and (5), we have yLk “ Ukȳ

L
k “266

UkBk´1L
T
k´1t̄ “ AVk´1L

T
k´1t̄ “ AATUk´1t̄.267

The above implies that yLk is primal feasible for (30). Dual feasibility requires that268

UTk´1AA
T
py ´ y‹q “ 0, which is equivalent to UTk´1r

L
k “ 0 because AATy‹ “ b. The269

expression (24) confirms dual feasibility.270

With yLk P RangepAq, we have yLk “ pA
:
q
TxLk and then (31) follows from (30).271

Using (24), we see that yLk is primal feasible for (32). Dual feasibility requires that272

yLk “ p ` AATUk´1q and UTk p “ 0 for certain vectors p and q, but those conditions273

are satisfied for p :“ 0 and q :“ t̄. Since yLk “ pA
:
q
TxLk , we obtain (33) from (32).274

Note the subtle difference between the constraints of (14) and (33).275

Corollary 1. For each k, }xCk ´ x‹} ď }x
L
k ´ x‹}.

Proof. If we compare (12) with (31), we see that }xCk ´ x‹} ď }x
L
k ´ x‹} because276

RangepVk´1q Ă RangepVkq.277

3.5. Complete algorithm. Algorithm 2 summarizes LNLQ. Note that if only278
the x part of the solution is desired, there is no need to initialize and update the279
vectors wk, w̄k, y

L
k and yCk unless one wants to retrieve x as ATy at the end of the280

procedure. Similarly, if only the y part of the solution is desired, there is no need281
to initialize and update the vectors xLk and xCk . The update for xCk`1 in line 18 of282

Algorithm 2 can be used even if the user wishes to dispense with updating xLk .283

4. Regularization. The regularized least-norm problem is284

(34) minimize
xPR

n
, sPR

m

1
2 p}x}

2
` }s}2q subject to Ax` λs “ b,285

which is compatible for any λ ‰ 0. Saunders (1995, Result 7) states that applying286
Algorithm 1 to Â :“

“

A λI
‰

with initial vector b preserves Uk. We find corresponding287
pVk and lower bidiagonal L̂k by comparing the identities288

(35)
„

AT

λI



Uk “

„

Vk
Uk

 „

LTk
λI



and
„

AT

λI



Uk “ pVkL̂
T
k ,289
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Algorithm 2 LNLQ

1: β1u1 “ b, α1v1 “ ATu1 begin Golub-Kahan process
2: ε̄1 “ α1, τ1 “ β1{α1, ζ̄1 “ τ1{ε̄1 begin LQ factorization
3: w1 “ 0, w̄1 “ u1

4: yL1 “ 0, yC1 “ ζ̄1w̄1

5: xL1 “ 0, xC1 “ τ1v1

6: for k “ 1, 2, . . . do
7: βk`1uk`1 “ Avk ´ αkuk continue Golub-Kahan process
8: αk`1vk`1 “ ATuk`1 ´ βk`1vk
9: εk “ pε̄

2
k ` β

2
k`1q

1
2 continue LQ factorization

10: ck`1 “ ε̄k{εk, sk`1 “ βk`1{εk
11: ηk`1 “ αk`1sk`1, ε̄k`1 “ ´αk`1ck`1

12: ζk “ ck`1ζ̄k, ζ̄k`1 “ pτk`1 ´ ηk`1ζkq{ε̄k`1 prepare to update y
13: wk “ ck`1w̄k ` sk`1uk`1, w̄k`1 “ sk`1w̄k ´ ck`1uk`1

14: yLk`1 “ yLk ` ζkwk update y
15: yCk`1 “ yLk`1 ` ζ̄k`1w̄k`1

16: xLk`1 “ xCk ` ηk`1ζkvk`1 update x
17: τk`1 “ ´βk`1τk{αk`1

18: xCk`1 “ xCk ` τk`1vk`1

19: end for

the first of which results from (5) and the second from Algorithm 1 applied to Â. At290
iteration k, we apply reflections Q̂k designed to zero out the λI block, resulting in291

„

Vk
Uk

 „

LTk
λI



“

„

Vk
Uk



Q̂Tk Q̂k

„

LTk
λI



“

”

pVk Ŷk

ı

„

L̂Tk
0



“ pVkL̂
T
k .292

Saunders (1995) uses Q̂k to describe CRAIG with regularization under the name293
extended CRAIG. If we initialize λ1 :“ λ, the first few reflections are illustrated in294
Figure 1, where shaded elements are those participating in the current reflection and295
grayed out elements have not yet been used. Two reflections per iteration are necessary,296
and the situation at iteration k may be described as297

«

k 2k 2k̀ 1

k αk λk

k̀ 1 βk`1 λ

ff«

k 2k

ĉk ŝk

ŝk ´ĉk

ff«

2k 2k̀ 1

c̃k s̃k

s̃k ´c̃k

ff

“

«

k 2k 2k̀ 1

α̂k 0

β̂k`1 λ̂k`1 λ

ff«

2k 2k̀ 1

c̃k s̃k

s̃k ´c̃k

ff

298

“

«

k 2k 2k̀ 1

α̂k 0

β̂k`1 0 λk`1

ff

.299
300

The first reflection is defined by α̂k :“

b

α2
k ` λ

2
k, ĉk :“ αk{α̂k, ŝk :“ λk{α̂k, and301

results in β̂k`1 “ ĉkβk`1 and λ̂k`1 “ ŝkβk`1. The second reflection defines λk`1 :“302
b

λ̂2
k`1 ` λ

2, c̃k :“ λ̂k`1{λk`1, s̃k :“ λ{λk`1, and does not create a new nonzero.303

Commit 82ae2b0 by Dominique Orban on 2017-10-27 19:12:49 -0400



[toc] LNLQ 11

»

—

—

–

α1 λ1

β2 α2 λ
β3 α3 λ

β4 α4 λ

fi

ffi

ffi

fl

Ñ

»

—

—

–

α̂1 0

β̂2 α2 λ̂2 λ
β3 α3 λ

β4 α4 λ

fi

ffi

ffi

fl

Ñ

»

—

—

–

α̂1 0

β̂2 α2 0 λ2

β3 α3 λ
β4 α4 λ

fi

ffi

ffi

fl

Ñ

»

—

—

–

α̂1 0

β̂2 α̂2 0 0

β̂3 α3 λ̂3 λ
β4 α4 λ

fi

ffi

ffi

fl

Ñ

»

—

—

–

α̂1 0

β̂2 α̂2 0 0

β̂3 α3 0 λ3

β4 α4 λ

fi

ffi

ffi

fl

Ñ

»

—

—

–

α̂1 0

β̂2 α̂2 0 0

β̂3 α̂3 0 0

β̂4 α4 λ̂4 λ

fi

ffi

ffi

fl

Fig. 1. Illustration of a few steps of the factorization in the presence of regularization.

Only the first reflection contributes to the kth column of pVk:304

(36)
„

k 2k

vk 0
0 uk

 „

k 2k

ĉk ŝk
ŝk ´ĉk



“

„

k 2k

ĉkvk ŝkvk
ŝkuk ´ĉkuk



.305

Iteration k of LNLQ with regularization solves (16), but HT
k´1 is then the top306

pk ´ 1q ˆ k submatrix of307

“

Lk λI
‰

„

LTk
λI



“ LkL
T
k ` λ

2I “ Tk ` λ
2I.308

In (17), we compute the LQ factorization of L̂Tk instead of LTk , but the details are309

identical, as are the updates of yLk in (21) and yCk in (22). Because Uk is unchanged310
by regularization, the residual expressions (24) and (25) remain valid. Subsequently,311

„

xLk
sLk



“

„

AT

λI



Ukȳk “ pVkL̂
T
k ȳk,312

but we are only interested in the top half, xLk . Let the top nˆ k submatrix of pVk be313

xWk :“
“

pw1 ¨ ¨ ¨ pwk
‰

“
“

I 0
‰

pVk “
“

Vk 0
‰

Q̂Tk .314

We conclude from (36) that pwj “ ĉjvj for j “ 1, . . . , k. The update (27) remains valid315
with vk replaced by pwk.316

5. Error upper bounds.317

5.1. Upper bound on }y‹´yL
k }. By orthogonality, }y‹´y

L
k }

2
“ }y‹}

2
´}yLk }

2.318

If A has full row rank, y‹ “ pAA
T
q
´1
b and }y‹}

2
“ bT pAAT q

´2
b. If we define319

fpAAT q :“
m
ÿ

i“1

fpσ2
i qqiq

T
i320
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for any given f : p0, 8q Ñ R, where qi is the ith left singular vector of A, then321

}y‹}
2
“ bT fpAAT qb with fpξq :“ ξ´2. More generally, as y‹ is the minimum-norm322

solution of (3), it may be expressed as323

y‹ “
m
ÿ

i“r

fpσ2
i q pq

T
i bq qi,324

where σr is the smallest nonzero singular value of A, which amounts to redefining325
fpξq :“ 0 at ξ “ 0. Because b “ β1u1, we may write326

}y‹}
2
“ β2

1

m
ÿ

i“1

fpσ2
i qµ

2
i , µi :“ qTi u1, i “ 1, . . . ,m.327

We obtain an upper bound on }y‹} by viewing the sum as a Riemann-Stieltjes integral328
for a well chosen Stieltjes measure and approximating the integral via a Gauss-Radau329
quadrature. We refer to Golub and Meurant (2010) for background.330

The fixed Gauss-Radau quadrature node is set to a prescribed σest P p0, σrq. We331
follow Estrin et al. (2019b) and modify Lk rather than Tk. Let332

(37) rLk :“

„

Lk´1 0

βke
T
k´1 ωk



,333

which differs from Lk in its pk, kqth element only, and334

rTk :“ rLkrL
T
k “

„

Tk´1 β̄k´1ek´1

β̄k´1e
T
k´1 β2

k ` ω
2
k



335

(with β̄k´1 defined in (10)), which differs from Tk in its pk, kqth element only. The336
Poincaré separation theorem ensures that the singular values of Lk lie in pσr, σ1q. The337
Cauchy interlace theorem for singular values ensures that it is possible to select ωk so338
that the smallest singular value of (37) is σest.339

The next result derives from (Golub and Meurant, 1994, Theorems 3.2 and 3.4).340

Theorem 1 (Estrin et al., 2019b, Theorem 4). Let f : r0, 8q Ñ R be such
that f p2j`1q

pξq ă 0 for all ξ P pσ2
r , σ

2
1q and all j ě 0. Fix σest P p0, σrq. Let Lk

be the bidiagonal generated after k steps of Algorithm 1, and ωk ą 0 be chosen so
that the smallest singular value of (37) is σest. Then,

bT fpAAT qb ď β2
1e
T
1 fprLkrL

T
k qe1.

The procedure for identifying ωk is identical to that of Estrin et al. (2019b) and341

yields ωk “
b

σ2
est ´ σestβkθ2k´2, where θ2k´2 is an element of a related eigenvector.342

Application of Theorem 1 to fpξq :“ ξ´2 with the convention that fp0q :“ 0343
provides an upper bound on }y‹}

2.344

Corollary 2. Fix σest P p0, σrq. Let Lk be the bidiagonal generated after k
steps of Algorithm 1, and ωk ą 0 be chosen so that the smallest singular value
of (37) is σest. Then

}y‹}
2
ď β2

1e
T
1 p

rLkrL
T
k q
´2
e1.

To evaluate the bound in Corollary 2, we modify the LQ factorization (17) to345

rLTk “

„

LTk´1 βkek´1

0 ωk



“

„

Mk´1

rηke
T
k´1 rεk

 „

Qk´1

1



“ ĂMkQk,346
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where rηk “ ωksk and rεk “ ´ωkck. Define rtk and rzk from347

(38) rLkrtk “ β1e1 and ĂMkrzk “ rtk.348

The updated factorization and the definition of f yield349

}y‹}
2
ď β2

1}p
rLkĂMkQkq

´1
e1}

2
“ β2

1}
ĂM´1
k

rL´1
k e1}

2
“ }ĂM´1

k
rtk}

2
“ }rzk}

2.350

Comparing with the definition of tk and zk in subsection 3.2 reveals that rtk “ ptk´1, rτkq351

and rzk “ pzk´1, rζkq, with rτk “ ´βkτk´1{ωk and rζk “ prτk ´ rηkζk´1q{rεk. Combining352
with (23) yields the bound353

(39) }y‹ ´ y
L
k }

2
“ }y‹}

2
´ }zk´1}

2
ď }zk´1}

2
` rζ2

k ´ }zk´1}
2
“ rζ2

k .354

5.2. Upper bound on }y‹ ´ yC
k }. Estrin et al. (2019a, Theorem 6) establishes355

that }y‹´ y
C
k } ď }y‹´ y

L
k }, so that the bound from the previous section applies. With356

ζ̄k defined in subsection 3.2, Estrin et al. (2019a) derive the improved bound357

(40) }y‹ ´ y
C
k }

2
ď rζ2

k ´ ζ̄
2
k .358

They provide further refinement of this bound by using the sliding window approach359
of Golub and Strakǒs (1994). For a chosen delay d, Opdq scalars can be stored at each360

iteration, and for Opdq additional work, a quantity θpdqk ě 0 can be computed so that361

(41) }y‹ ´ y
C
k }

2
ď rζ2

k ´ ζ̄
2
k ´ 2θ

pdq
k .362

The definitions of ck, sk, ζk, and ζ̄k match those of Estrin et al. (2019a).363

5.3. Upper bound on }x‹ ´ xC
k }. Assume temporarily that A has full row364

rank. By orthogonality in (26), }x‹ ´ x
C
k }

2
“ }x‹}

2
´ }xCk }

2. We may then use365

}x‹}
2
“ }ATy‹}

2
“ }y‹}

2

AA
T “ }b}

2

pAA
T
q
´1 .366

Applying Theorem 1 to fpξq :“ ξ´1 with fp0q :“ 0 provides an upper bound on }x‹}
2367

in the vein of Golub and Meurant (1994, Theorems 3.2 and 3.4).368

Corollary 3. Fix σest P p0, σrq. Let Lk be the bidiagonal generated after k
steps of Algorithm 1, and ωk ą 0 be chosen so that the smallest singular value
of (37) is σest. Then

}x‹}
2
ď β2

1e
T
1 p

rLkrL
T
k q
´1
e1.

We use (38) to evaluate the bound of Corollary 3 as369

β2
1e
T
1 p

rLkrL
T
k q
´1
e1 “ }β1

rL´1
k e1}

2
“ }rtk}

2,370

which leads to the bound371

(42) }x‹ ´ x
C
k }

2
ď }rtk}

2
´ }tk}

2
“ rτ2

k ´ τ
2
k .372

This coincides with the bound of Arioli (2013), who derived it using the Cholesky373
factorization of Tk.374

Note that Arioli (2013, Equation p4.4q) proposes the error bound375

(43) }y‹ ´ y
C
k } “ }L

´1
n px‹ ´ x

C
k q} ď σminpLkq

´1
}x‹ ´ x

C
k } ď σ´1

r }x‹ ´ x
C
k }.376

It may be possible to improve on (43) by maintaining a running estimate of σminpLkq,377
such as the estimate minpε1, . . . , εk´1, ε̄kq discussed by Stewart (1999).378
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5.4. Upper bound on }x‹ ´ xL
k }. Using xLk “ xCk´1 ` ηkζk´1vk, we have379

}x‹ ´ x
L
k }

2
“

›

›

›

›

Vn

ˆ

tn ´

„

tk´1

ηkζk´1

0

˙
›

›

›

›

2

“ }x‹ ´ x
C
k }

2
` pτk ´ ηkζk´1q

2.380

Thus, using the error bound in (42) we obtain381

(44) }x‹ ´ x
L
k }

2
ď rτ2

k ´ τ
2
k ` pτk ´ ηkζk´1q

2.382

5.5. Choice of σest. We briefly discuss choosing σest and its effect on the error383
upper bounds. When A is symmetric positive definite, numerical experiments in Estrin384
et al. (2019a, §8.4) show the effect of σest on the error bound quality; similar trends385
are observed for LNLQ and CRAIG, so we do not repeat such experiments here.386

Estrin et al. (2019a, §6) also discuss aspects of obtaining an eigenvalue estimate387
(in this case, a singular value estimate). Being able to obtain σest is often application-388
dependent and good estimates may not be available in general; in such cases, many389
Gauss-Radau-based estimation procedures (such as the one here) may not be applicable.390
In some cases, σest is readily available, e.g., if the problem is regularized, or via a391
preconditioning approach (see subsection 7.2).392

Meurant and Tichý (2018) provide a Gauss-Radau-based error estimation proce-393
dure for CG that at every iteration uses a cheap estimate of the smallest Ritz value as394
the eigenvalue estimate. The advantage is that lower bounds on the spectrum of A395
do not need to be known a priori, but because the smallest Ritz value is not a lower396
bound, the resulting estimates are not guaranteed to be upper bounds. However, the397
resulting bounds are shown to be effective in practice. A future avenue of work is to398
adapt this approach to our error estimation procedure to avoid requiring a readily399
available singular value underestimate.400

6. Preconditioning. As with other Golub-Kahan-based methods, convergence401
depends on the distribution of tσipAqu. Therefore we consider an equivalent system402

N´
1
2AATN´

1
2N

1
2 y “ N´

1
2 b, where N´

1
2A has clustered singular values.403

For the unregularized problem (3), to run preconditioned LNLQ efficiently we404
replace Algorithm 1 by the generalized Golub-Kahan process (Arioli, 2013, Algorithm405

3.1). We seek a preconditioner N ą 0 such that N « AAT, and require no changes406
to the algorithm except in how we generate vectors uk and vk. This is equivalent to407
applying a block-diagonal preconditioner to the saddle-point system408

„

I

N´1

 „

´I AT

A 0

 „

x
y



“

„

I

N´1

 „

0
b



.409

For a regularized system with λ ‰ 0, we need to solve a 2ˆ2 quasi-definite system410

(45)
„

´I AT

A λ2I

 „

x
y



“

„

0
b



.411

We cannot directly precondition with generalized Golub-Kahan as before, because412
properties analogous to (35) do not hold for N ‰ I. Instead we must precondition the413
equivalent 3ˆ3 block system414

»

–

I
I

N´1

fi

fl

»

–

´I AT

´I λI
A λI

fi

fl

»

–

x
s
y

fi

fl “

»

–

I
I

N´1

fi

fl

»

–

0
0
b

fi

fl ,415

where N « AAT ` λ2I is a symmetric positive definite preconditioner. In effect, we416
must run preconditioned LNLQ directly on Â “

“

A λI
‰

.417
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Fig. 2. Error in xk (top left) and yk (top right) along the LNLQ and CRAIG iterations for
Meszaros/scagr7-2c. The solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the
remaining lines show the various error bounds. The bottom left plot shows the improved bounds (41)
and bounds from Arioli (2013) for the error in yk for CRAIG with d “ 5 and 10. The bottom right
plot shows the same bounds divided by the true error.

7. Implementation and numerical experiments. We implemented LNLQ in418
Matlab1, including the relevant error bounds. The exact solution for each experiment419
is computed using Matlab’s backslash operator on the augmented system (3). Mentions420
of CRAIG below refer to transferring from the LNLQ point to the CRAIG point.421

7.1. UFL problems. Matrix Meszaros/scagr7-2c from the UFL collection (Davis422
and Hu, 2011) has size 2447ˆ 3479. We set b “ e{

?
m, the normalized vector of ones.423

For LNLQ and CRAIG we record the error in xk and yk at each iteration using the424
exact solution, and the error bounds discussed above using σest “ p1´ 10´10

qσminpAq,425
where σminpAq was provided by the UFL collection. The same σest is used to evaluate426
the bound (43). Figure 2 records the results.427

We see that the LNLQ error bounds are tight, even though the error in xk is not428
monotonic. In accordance with Proposition 1, the CRAIG error in xk is lower than429
the LNLQ error. The same for the error in yk. The CRAIG error in xk is tight until430
the Gauss-Radau quadrature becomes inaccurate—a phenomenon also observed by431
Meurant and Tichý (2014); Meurant and Tichý (2018).432

Regarding the CRAIG error in yk, we see that the error bounds from (40) and (43)433
are close to each other, with (43) being slightly tighter. We observed that the simpler434
bound (43) nearly overlaps with the bound (40) on other problems. However, (41)435
provides the ability to tighten (40), and even small delays such as d “ 5 or 10 can436

1Available from github.com/restrin/LinearSystemSolvers
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Fig. 3. Error in xk (top left) and yk (top right) along the LNLQ and CRAIG iterations
for LPnetlib/lp_kb2. The solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the
remaining lines show the various error bounds. The bottom left plot shows the improved bounds (41)
and bounds from Arioli (2013) for the error in yk for CRAIG with d “ 5 and 10. The bottom right
plot shows the same bounds divided by the true error.

improve the bound significantly until the Gauss-Radau quadrature becomes inaccurate.437
Thus, the sliding window approach can be useful when an accurate estimate of438
σminpAq is available and early termination is relevant, for example when only a crude439
approximation of x‹ and y‹ is required.440

In Figure 3 we repeat the experiment with UFL problem LPnetlib/lp_kb2, which441
has size 43ˆ 68. Because LNLQ and CRAIG take more than 250 iterations, it is clear442
that global orthogonality is violated, yet the upper bounds remain faithful. Hence, it443
may be possible to derive these bounds by assuming only local orthogonality in the444
Golub-Kahan process. This is a direction for future research.445

7.2. Fletcher’s penalty function. We now apply LNLQ to least-norm problems446
arising from using Fletcher’s exact penalty function (Fletcher, 1973; Estrin et al., 2018)447
to solve PDE-constrained control problems. We consider the problem448

(46)

minimize
u, z

1
2

ż

Ω

}u´ ud}
2 dx` 1

2α

ż

Ω

z2 dx

subject to ∇ ¨ pz∇uq “ ´ sinpωx1q sinpωx2q in Ω,

u “ 0 on BΩ,

449

where ω “ π ´ 1
8 , Ω “ r´1, 1s2, and α “ 10´4 is a small regularization parameter.450

Here, u might represent the temperature distribution on a square metal plate, ud is451
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Fig. 4. Error in xk (top left) and yk (top right) along the LNLQ and CRAIG iterations. The
solid blue (yellow) line is the exact error for LNLQ (CRAIG), and the remaining lines show the
various error bounds. The bottom left plot shows the improved bounds (41) and bounds from Arioli
(2013) for the error in yk for CRAIG with d “ 20. The bottom right plot shows the same bounds
divided by the true error.

the observed temperature, and we aim to determine the diffusion coefficients z so that452
u matches the observations in a least-squares sense. We discretize (46) using finite453
elements with triangular cells, and obtain the equality-constrained problem454

minimize
ū

fpūq subject to cpūq “ 0.455

Let p be the number of cells along one dimension, so that u P Rp
2

and z P Rpp`2q
2

456

are the discretizations of u and z, ū :“ pu, zq, and cpūq P Rp
2

. We use p “ 31 in the457
experiments below. Let Apūq :“

“

Au Az
‰

be the Jacobian of cpūq.458
For a given penalty parameter σ ą 0, Fletcher’s exact penalty approach is to459

minimize
ū

φσpūq :“ fpūq ´ cpūqT yσpūq460

where yσpūq P arg min
y

1
2

›

›

›
∇fpūq ´ApūqT y

›

›

›

2

` σcpūqT y.461
462

In order to evaluate φσpūq and ∇φσpūq, we must solve systems of the form (3). For463
these experiments, we use b “ ´cpūq and A “ Apūq. Note that by controlling the error464
in the solution of (3), we control the inexactness in the computation of the penalty465
function value and gradient. In our experiments, we evaluate b and A at ū “ e, the466
vector of ones. We first apply LNLQ and CRAIG without preconditioning. The results467
are summarized in Figure 4.468
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Fig. 5. Error in xk (left) and yk (right) along the LNLQ and CRAIG iterations. The solid
blue (yellow) line is the exact error for LNLQ (CRAIG), and the remaining lines show the various
error bounds. The bottom plot shows the same bounds for CRAIG for the error in yk, but divided by
the true error.

We observe trends like those in the previous section. The LNLQ bounds are quite469
accurate because of our good estimate of the smallest singular value, even though the470
LNLQ error in xk is not monotonic. The CRAIG error bound for xk is tight until471
the Gauss-Radau quadrature becomes inaccurate, which results in a looser bound.472
The latter impacts the CRAIG error bound for yk in the form of the plateau after473
iteration 250. The error bound (43) is slightly tighter than (40), while if we use (41)474
with d “ 20, we achieve a tighter bound until the plateau occurs.475

We now use the preconditioner N “ AuA
T
u , which corresponds to two solves of476

Poisson’s equation with fixed diffusion coefficients. Because σminppAuAuq
´1AAT q “477

σminpI ` pAuA
T
u q
´1AzA

T
z q ě 1, we choose σest “ 1. Recall that the y-error is now478

measured in the N -energy norm. The results appear in Figure 5.479
We see that the preconditioner is effective, and that σest “ 1 is an accurate480

approximation as the LNLQ error bounds are extremely tight. The CRAIG error481
bounds are tight as well, although the error “bounds" for yk go below the true error in482
the last few iterations, which is expected and observed in Estrin et al. (2019a).483

8. Extension to symmetric quasi-definite systems. Given symmetric and484
positive definite M and N whose inverses can be applied efficiently, LNLQ generalizes485
to the solution of the symmetric quasi-definite system (Vanderbei, 1995)486

(47) K
„

x
y



:“

„

M AT

A ´N

 „

x
y



“

„

0
b



,487
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which represents the optimality conditions of both problems488

minimize
x, y

1
2}x}

2
M ` 1

2}y}
2
N subject to Ax´Ny “ b,(48)489

minimize
x

1
2}Ax´ b}

2

N
´1 ` 1

2}x}
2
M .(49)490

491

The only changes required are to substitute Algorithm 1 for the generalized Golub-492
Kahan process (Orban and Arioli, 2017, Algorithm 4.2) and to set the regularization493
parameter λ :“ 1. This requires one system solve with M and one system solve with494
N per iteration.495

Applying LSLQ (Estrin et al., 2019b) to (49) is implicitly equivalent to applying496
SYMMLQ to the normal equations497

(50) pATN´1A`Mqx “ ATN´1b,498

while applying LNLQ to (48) is equivalent to applying SYMMLQ to the normal499
equations of the second kind:500

(51) pAM´1AT `Nqy “ c, Mx “ AT y,501

where we changed the sign of y to avoid distracting minus signs.502
In lieu of (5), the generalized Golub-Kahan process can be summarized as503

AVk “MUk`1Bk,(52a)504

ATUk`1 “ NVkB
T
k ` αk`1Nvk`1e

T
k`1 “ NVk`1L

T
k`1,(52b)505506

where now UTk MUk “ I and V Tk NVk “ I in exact arithmetic. Pasting (52) together507
yields508

„

M AT

A ´N

 „

Vk
Uk



“

„

M
N

 „

Vk
Uk

 „

I LTk
Lk ´I



`

„

0
βk`1Nuk`1



eT2k,509

„

M AT

A ´N

 „

Vk
Uk`1



“

„

M
N

 „

Vk
Uk`1

 „

I BTk
Bk ´I



`

„

αk`1Mvk`1

0



eT2k`1.510
511

These relations correspond to a Lanczos process applied to (47) with preconditioner512
blkdiagpM, Nq. The small symmetric quasi-definite matrix on the right-hand side of513
the preceding identities is a symmetric permutation of the Lanczos tridiagonal, which514
is found by restoring the order in which the Lanczos vectors pvk, 0q and p0, ukq are515
generated:516

T2k`1 “

»

—

—

—

–

1 α1

α1 ´1 β2

β2 1 . . .
. . . . . . αk

αk ´1 βk`1

βk`1 1

fi

ffi

ffi

ffi

fl

“

„

T2k βk`1e2k

βk`1e
T
2k 1



.517

Saunders (1995) and Orban and Arioli (2017) show that the CG iterates are well-518
defined for (47) even though K is indefinite. In a similar vein, Orban and Arioli519
(2017) establish that applying MINRES to (47) with the block-diagonal preconditioner520
produces alternating preconditioned LSMR and LSQR iterations, where LSMR is521
applied to (50) and LSQR is applied to (51).522

It turns out that SYMMLQ applied directly to (47) with this preconditioner523
satisfies the following property: even iterations are CG iterations, while odd iterations524
take a zero step and make no progress. Thus every other iteration is wasted. The525
generalized iterative methods of Orban and Arioli (2017), LSLQ or LNLQ should be526
used instead. The property is formalized in the following result.527
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Theorem 2. Let xLQk and xCGk be the iterates generated at iteration k of
SYMMLQ and CG applied to (47), and xCk be the iterate defined in (7). Then
for k ě 1, xLQ2k´1 “ xLQ2k “ xCG2k “ xCk .

Proof. For brevity, we use the notation from (Estrin et al., 2019a, §2.1) to describe528
the Lanczos process and how to construct the CG and SYMMLQ iterates. By (52),529

T k and the L factor of the LQ factorization of TTk´1 have the form530

T k “

»

—

—

—

–

1 t2
t2 ´1 t3

t3 1 . . .
. . . . . . tk

tk p´1q
k´1

tk`1

fi

ffi

ffi

ffi

fl

, Lk “

»

—

–

γ1
δ2 γ2
ε3 δ3 γ3

. . . . . . . . .
εk´1 δk´1 γk´1

fi

ffi

fl

,531

where each ti is a scalar. For k ě 2, the LQ factorization is accomplished using532
reflections defined by533

»

–

γ̄k´1 tk
δ̄k p´1qk´1

0 tk`1

fi

fl

„

ck sk
sk ´ck



“

»

–

γk´1 0
δk γ̄k
εk`1 δ̄k`1

fi

fl ,534

with γ̄1 “ 1, δ̄2 “ t2, ck “
γ̄k´1

γk´1
, and sk “

tk
γk´1

.535

We show that δj “ 0 for all j by showing that γ̄k “
p´1q

k

ck
for k ě 2, because in536

that case537

δk “ δ̄kck ´ p´1qk´1sk “ ptkck´1q
γ̄k´1

γk´1

´ p´1qk´1 tk
γk´1

538

“
tk
γk´1

´

p´1qk´1
´ p´1qk´1

¯

“ 0.539
540

For k “ 2 we have γ2
2 “ 1` t22 and c2 “ 1

γ2
, so that γ̄2 “ δ̄2s2`c2 “

t
2
2

γ2
` 1
γ2
“ γ2 “

1
c2
.541

Proceeding by induction, assume ck´1 “
p´1q

k´1

γ̄k´1
. Then542

γ̄k “ δ̄ksk ´ p´1qk´1ck “
1
ck

´

´tkck´1skck ´ p´1qk´1c2k

¯

543

“ ´ 1
ck

´

p´1qk´1 tk
γ̄k´1

skck ` p´1qk´1c2k

¯

544

“
p´1q

k

ck

ˆ

sk
ck
skck ` c

2
k

˙

“
p´1q

k

ck
.545

546

For all k, since δk “ 0 and xLQk “Wk´1zk´1 with Wk´1 having orthonormal columns,547
and since pzk´1qj “ ζj is defined by Lk´1zk´1 “ }b}e1, we have ζk “ 0 for k even.548

Therefore xLQ2k “ xLQ2k´1. Furthermore, since ζk “ ck ζ̄k and xCGk “ xLQk ` ζ̄kw̄k for549

some w̄k K Wk, we have ζ2k “ 0 and xCG2k “ xLQ2k . The identity xCG2k “ xCk follows550
from (Saunders, 1995, Result 11).551

We illustrate Theorem 2 using a small numerical example. We randomly generate552
A and b with m “ 50, n “ 30, M “ I, and N “ I and run SYMMLQ directly on553
(47). We compute x‹ via Matlab’s backslash operator, and compute }xk ´ x‹} at each554
iteration to produce Figure 6. The resulting convergence plot resembles a staircase555
because every odd iteration produces a zero step.556
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Fig. 6. Error }xk ´ x‹} generated by SYMMLQ applied to (47). Note that every odd iteration
makes no progress, resulting in a convergence plot resembling a step function.

9. Discussion. LNLQ fills a gap in the family of iterative methods for (3) based557
on the Golub and Kahan (1965) process. While CRAIG is equivalent to CG applied558

to ATAy “ b (3), LNLQ is equivalent to SYMMLQ but is numerically more stable559
when A is ill-conditioned. The third possibility, MINRES (Paige and Saunders, 1975)560
applied to (3), is equivalent to LSQR (Paige and Saunders, 1982a,b) because both561

minimize the residual norm }b´Axk}, where xk P Kk is implicitly defined as ATyk.562
As in the companion method LSLQ (Estrin et al., 2019b), an appropriate Gauss-563

Radau quadrature yields an upper bound on }yLk ´ y‹}, and transition to the CRAIG564

point provides an upper bound on }yCk ´ y‹}. However, it is x
C
k that is updated along565

orthogonal directions, and not xLk . Thus the upper bound on }xLk ´ x‹}, which we566

developed for completeness, is deduced from that on }xCk ´ x‹}. In our numerical567

experiments, both error bounds are remarkably tight, but }xLk ´ x‹} may lag behind568

}xCk ´ x‹} by several orders of magnitude and is not monotonic. Although the bound569

on }yCk ´ y‹} suggested by Arioli (2013) is tighter than might have been anticipated,570
the sliding window strategy allows us to tighten it further at the expense of a few571
extra scalar operations per iteration.572

All error upper bounds mentioned above depend on an appropriate Gauss-Radau573
quadrature, which has been observed to become numerically inaccurate below a certain574
error level (Meurant and Tichý, 2014; Meurant and Tichý, 2018). This inaccuracy575
causes the loosening of the bounds observed in section 7. Should a more accurate576

computation of quadratic forms like }y‹}
2
“ bT pAAT q

´2
b become available, all error577

upper bounds would improve, including those from the sliding window approach.578
USYMLQ, based on the orthogonal tridiagonalization process of Saunders, Simon,579

and Yip (1988), coincides with SYMMLQ when applied to consistent symmetric580
systems. For (3) it also coincides with LNLQ, but it would be wasteful to apply581
USYMLQ directly to (3).582

Fong and Saunders (2012, Table 5.1) summarize the monotonicity of various583
quantities related to LSQR and LSMR iterations. Table 1 is similar but focuses on584
CRAIG and LNLQ.585

Acknowledgements. We are grateful to Drew Kouri for the Matlab implementa-586
tion of the PDE-constrained optimization problems used in the numerical experiments,587
and to the referees for their invaluable advice.588
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Table 1
Comparison of CRAIG and LNLQ properties on min }x}

2 subject to Ax “ b.

CRAIG LNLQ

}xk} Õ (14) and (P, 1974) non-monotonic
}x‹ ´ xk} Œ (12) and (P, 1974) non-monotonic, ě CRAIG (Corollary 1)
}yk} Õ (23) and (HS, 1952) Õ (23) and (PS, 1975), ď CRAIG (EOS, 2019)
}y‹ ´ yk} Œ (23) and (HS, 1952) Œ (23) and (PS, 1975), ě CRAIG (EOS, 2019)
}r‹ ´ rk} not-monotonic not-monotonic
}rk} not-monotonic not-monotonic

Õ monotonically increasing Œ monotonically decreasing
EOS (Estrin et al., 2019a), HS (Hestenes and Stiefel, 1952),

P (Paige, 1974), PS (Paige and Saunders, 1975)
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