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Abstract

The Forrest-Tomlin update has stood the test of time within many
generations of commercial mathematical programming systems.
Its ease of implementation leads to high efficiency and evidently
acceptable reliability. We review its relation to Reid’s version of the
Bartels-Golub update as implemented in LA05, LA15, and LUSOL.
In particular, we examine the extent to which FT implementations
must “live dangerously” in order to achieve the desired efficiency.
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The Bartels-Golub update
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Dense Bartels-Golub
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Forget the Hessenberg
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The Forrest-Tomlin update
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Forrest-Tomlin (conceptually)
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Few nonzeros to eliminate

U stored by columns
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Sparse Bartels-Golub
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Sparse Bartels-Golub (Reid, Saunders)
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Sparse Bartels-Golub (Reid, Saunders)
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LA05, LA15, LUSOL

U stored by rows
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The connection
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FT: Eliminate X’s with diags as pivots
BG: Allow row interchanges

Use a product of

(
1
µ 1

)
and permutations

How big can µ safely be??
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A Tale of Two Tolerances

LU factor tol α
LU update tol β

Control and/or monitor stability
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LU factor tol α

Threshold partial pivoting controls cond(L)

B = LU Lii = 1 |Lij | ≤ α

α = 10.0 or 100.0⇒ usually sparse and stable

Threshold rook pivoting controls cond(L), cond(U)

B = LDU Lii = 1 |Lij | ≤ α

and Uii = 1 |Uij | ≤ α

1 < α ≤ 2.0⇒ rank-revealing (for basis repair)
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Factor and Update involve triangular matrices

M =

(
1

100 1

)
cond(M) =??
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Factor and Update involve triangular matrices

M =

(
1

100 1

)
cond(M) ≈ 104
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Factor and Update involve triangular matrices

M =

(
1
µ 1

)
cond(M) ≈ µ2

|µ| > 1
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FT update involves triangular matrices

R =


1

1
. . .

1
rp+1 . . . rm 1

 cond(R) ≈ r 2
max
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Product-form update involves triangular matrices

T =


1 v1

1
...
vp
... . . .

vm I

 cond(T ) ≈ v 2
max/|vp|
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LU update tol β

B̄ = B(I + (v − ep)eTp )

Use β to control or monitor basis updates

Product-form B̄ = BT monitor cond(T )
Bartels-Golub L̄ = LM1M2 . . . control cond(Mj)
Forrest-Tomlin L̄ = LR monitor cond(R)
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LU update tol β

Product-form update

B̄ = BT T = I + (v − ep)eTp monitor cond(T )

Update if v 2
max/|vp| ≤ β else refactor

How big should β be?? 106?

LU updates

BG L̄ = LM1M2 . . . control |Mij | ≤ β

FT L̄ = LR monitor |Rij | ≤ β ?

For BG we can enforce β = 10 say
For FT how big should β be?? 106?
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A numerical experiment
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Simulate FT via BG

Run MINOS on a numerically challenging LP (e.g. pilot87)

Set LUSOL’s LU update tol β = 10, 102, 103, 104, 105, 106, . . .

Count number of times something broke

Normally
Factorization freq = 100
LU factor tol α = 100.0
LU update tol β = 10.0

How would MINOS measure broke?

Row check failed? Every 60 itns, see if ‖Ax − b‖ is too big
Never happened

LU became singular? Every update, check if U has small diag
Increasingly often
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Tests for accepting LU update

L̄ = L

(
I
rT 1

)
Ū =

(
U1 u

δ

)
Tomlin 1975

rmaxumax

|δ|
≤ 167 (3 · 108)

Our experiment

rmax ≤ β and
‖u‖1
|δ|
≤ ε−2/3 (3 · 1010)

Roughly equivalent to
rmaxumax

|δ|
≤ β1010 = 1011, 1012, . . .
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Numerical results
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MINOS simulation of FT updates

LPnetlib problem pilot ε = 10−16 Featol = Opttol = 10−6

LU update tol β = 10, 102, 103, . . .

singular average

beta itns time LUfacs warnings updates

1e+1 16865 5.06 167 0 100

1e+2 16865 5.02 170 19 99

1e+3 16865 5.24 220 176 77

1e+4 16865 5.73 305 287 55

1e+5 18837 7.05 445 442 42

1e+6 20079 8.28 576 573 35

1e+7 16704 7.21 514 510 32

1e+8 21115 9.31 678 674 31
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MINOS simulation of FT updates

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120
pilots:    LU update tol = 1e+8    Average 31 updates

LU  number

U
pd

at
es

  b
ef

or
e 

 n
ew

  L
U

Michael Saunders Sparsity vs stability in LU updates 23/31



Bartels-Golub Forrest-Tomlin Sparse BG Two tolerances An experiment Results Conclusion

MINOS simulation of FT updates

LPnetlib problem pilot87 ε = 10−16 Featol = Opttol = 10−6

LU update tol β = 10, 102, 103, . . .

singular average

beta itns time LUfacs warnings updates

1e+1 20055 14.64 197 0 101

1e+2 19159 13.99 194 30 99

1e+3 20001 15.34 259 202 77

1e+4 20001 17.66 380 360 53

1e+5 21635 22.19 526 511 41

1e+6 21837 24.41 624 617 35

1e+7 23158 27.72 772 770 30

1e+8 36862 48.91 1385 1379 27
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MINOS simulation of FT updates

LPnetlib problem mod2pre ε = 10−16 Featol = Opttol = 10−6

LU update tol β = 10, 102, 103, . . .

singular

beta itns time LUfacs warnings

1e+1 500000 705.0 4844 1

1e+2 500000 704.9 4859 73

1e+3 500000 698.5 5312 1860

1e+4 11057*

1e+5 17256*

1e+6 500000 793.4 8955 7941 859 infeas

1e+7 99774*

1e+8 500000 785.6 7528 5661 3000 infeas
∗Refactorization gave singular LU

Rook pivoting invoked, β reduced to 10.0
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Quad SQOPT simulation of FT updates

LPnetlib problem pilot ε = 10−34 Featol = Opttol = 10−15

LU update tol β = 104, 106, 108, . . .

singular average dual

beta itns time LUfacs warnings updates infeas

1e+4 17251 216.0 173 2 100 E-25

1e+6 17251 215.4 187 70 92 E-27

1e+8 17251 215.1 213 144 81 E-21

1e+10 17251 216.0 252 205 68 E-24

1e+12 17251 220.3 264 219 65 E-27

1e+14 17251 219.8 264 206 65 E-29

1e+16 17251 217.6 229 150 75 E-12

1e+18 17251 216.9 212 111 81 E-19

1e+20 11013*

1e+22 7864*

1e+24 4098* *Refac singular, beta reduced to 50.0

Michael Saunders Sparsity vs stability in LU updates 26/31



Bartels-Golub Forrest-Tomlin Sparse BG Two tolerances An experiment Results Conclusion

Conclusion
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Conclusion

Test for accepting an FT update

WHIZARD
rmaxumax

|δ|
≤ 108

CLP, CPLEX, Gurobi,
Xpress, Mozek, . . .

rmaxumax

|δ|
≤ ? or ?

Probably safer rmax ≤ β and
umax

|δ|
≤ 1010

Average updates per LU

β = 104 50
β = 105 40
β = 106 35
β = 107 30
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Picture of symmetrically permuted PTŪP with row spike to be eliminated
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Forrest-Tomlin
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