esults C

Conclusion

A review of sparsity vs stability in LU updates

Michael Saunders

Dept of Management Science and Engineering (MS&E) Systems Optimization Laboratory (SOL) Institute for Computational Mathematics and Engineering (ICME) Stanford University, California

Session: 40 Years of Forrest and Tomlin

INFORMS 2012 Annual Meeting Phoenix AZ, Oct 14–18, 2012

An experiment

Results

Conclusion

Abstract

The Forrest-Tomlin update has stood the test of time within many generations of commercial mathematical programming systems. Its ease of implementation leads to high efficiency and evidently acceptable reliability. We review its relation to Reid's version of the Bartels-Golub update as implemented in LA05, LA15, and LUSOL. In particular, we examine the extent to which FT implementations must "live dangerously" in order to achieve the desired efficiency.

Results

Conclusion

Outline

- 2 The Forrest-Tomlin update
- 3 Sparse Bartels-Golub
- Two tolerances
- 5 A numerical experiment
- 6 Numerical results

Conclusion

rrest-Tomlin

Sparse BG

Two tolerances

An experiment

Results C

Conclusion

The Bartels-Golub update

Michael Saunders

esults

Conclusion

Dense Bartels-Golub

lesults

Conclusion

Dense Bartels-Golub

lesults

Conclusion

Dense Bartels-Golub

Forget the Hessenberg

Forrest-Tomlin

Sparse BG

Two tolerances

An experiment

Results C

Conclusion

The Forrest-Tomlin update

Michael Saunders

Results

Conclusion

Forrest-Tomlin (conceptually)

Few nonzeros to eliminate *U* stored by columns

rest-Tomlin

Sparse BG

Two tolerances

An experiment

Results (

Conclusion

Sparse Bartels-Golub

Michael Saunders

Sparse Bartels-Golub (Reid, Saunders)

Sparse Bartels-Golub (Reid, Saunders)

LA05, LA15, LUSOL *U* stored by rows

lesults

Conclusion

The connection

FT: Eliminate X's with diags as pivots BG: Allow row interchanges

Use a product of
$$\begin{pmatrix} 1 \\ \mu & 1 \end{pmatrix}$$
 and permutations
How big can μ safely be??

Michael Saunders

Sparse BG

Two tolerances

An experiment

Results C

Conclusion

A Tale of Two Tolerances LU factor tol α LU update tol β

Control and/or monitor stability

LU factor tol α

Threshold partial pivoting controls cond(L)

$$B = LU$$
 $L_{ii} = 1$ $|L_{ij}| \le \alpha$

 $\alpha = 10.0 \text{ or } 100.0 \Rightarrow$ usually sparse and stable

LU factor tol α

Threshold partial pivoting controls cond(L)

$$B = LU$$
 $L_{ii} = 1$ $|L_{ij}| \le \alpha$

 $\alpha = 10.0 \text{ or } 100.0 \Rightarrow$ usually sparse and stable

Threshold rook pivoting controls cond(L), cond(U)

$$B = LDU$$
 $L_{ii} = 1$ $|L_{ij}| \le \alpha$
and $U_{ii} = 1$ $|U_{ij}| \le \alpha$

 $1 < \alpha \leq 2.0 \Rightarrow$ rank-revealing (for basis repair)

Michael Saunders

Two tolerances

An experiment

Results

Conclusion

Factor and Update involve triangular matrices

$$M = \begin{pmatrix} 1 \\ 100 & 1 \end{pmatrix}$$
 $\operatorname{cond}(M) = ??$

Two tolerances

Results

Conclusion

Factor and Update involve triangular matrices

$$M = \begin{pmatrix} 1 \\ 100 & 1 \end{pmatrix}$$

$${
m cond}(M)pprox 10^4$$

ts Conclu

Factor and Update involve triangular matrices

Michael Saunders

ults Concl

FT update involves triangular matrices

ults Conclu

Product-form update involves triangular matrices

 $\operatorname{cond}(T) \approx v_{\max}^2 / |v_p|$

$$\bar{B} = B(I + (v - e_p)e_p^T)$$

Use β to control or monitor basis updates

Product-form $\bar{B} = BT$ monitor cond(T)Bartels-Golub $\bar{L} = LM_1M_2...$ control cond(M_j)Forrest-Tomlin $\bar{L} = LR$ monitor cond(R)

esults Co

Conclusion

LU update tol β

Product-form update

$$\bar{B} = BT$$
 $T = I + (v - e_p)e_p^T$ monitor cond(T)

Update if $v_{\max}^2/|v_p| \le \beta$ else refactor How big should β be?? 10⁶?

esults C

Conclusion

LU update tol β

Product-form update

$$\bar{B} = BT$$
 $T = I + (v - e_p)e_p^T$ monitor cond(T)

Update if $v_{\max}^2/|v_p| \le \beta$ else refactor How big should β be?? 10⁶?

LU updates

BG	$\bar{L} = LM_1M_2\ldots$	control $ M_{ij} \leq \beta$
FT	$\bar{L} = LR$	monitor $ R_{ij} \leq \beta$?

For BG we can enforce $\beta = 10$ say For FT how big should β be?? 10^6 ?

rest-Tomlin

Sparse BG

Two tolerances

An experiment

Results

Conclusion

A numerical experiment

Michael Saunders

Simulate FT via BG

- Run MINOS on a numerically challenging LP (e.g. pilot87)
- Set LUSOL's LU update tol $\beta = 10, 10^2, 10^3, 10^4, 10^5, 10^6, \ldots$
- Count number of times something broke

Simulate FT via BG

- Run MINOS on a numerically challenging LP (e.g. pilot87)
- Set LUSOL's LU update tol $\beta = 10, 10^2, 10^3, 10^4, 10^5, 10^6, \ldots$
- Count number of times something broke

Normally Factorization freq = 100 LU factor tol α = 100.0 LU update tol β = 10.0

Conclusion

Simulate FT via BG

- Run MINOS on a numerically challenging LP (e.g. pilot87)
- Set LUSOL's LU update tol $\beta = 10, 10^2, 10^3, 10^4, 10^5, 10^6, \dots$
- Count number of times something broke

Normally Factorization freq = 100 LU factor tol α = 100.0 LU update tol β = 10.0

• How would MINOS measure broke?

Simulate FT via BG

- Run MINOS on a numerically challenging LP (e.g. pilot87)
- Set LUSOL's LU update tol $\beta = 10, 10^2, 10^3, 10^4, 10^5, 10^6, \ldots$
- Count number of times something broke

Normally Factorization freq = 100 LU factor tol α = 100.0 LU update tol β = 10.0

- How would MINOS measure broke?
- Row check failed? Every 60 itns, see if ||Ax b|| is too big Never happened

Simulate FT via BG

- Run MINOS on a numerically challenging LP (e.g. pilot87)
- Set LUSOL's LU update tol $\beta = 10, 10^2, 10^3, 10^4, 10^5, 10^6, \ldots$
- Count number of times something broke

Normally Factorization freq = 100 LU factor tol α = 100.0 LU update tol β = 10.0

- How would MINOS measure broke?
- Row check failed? Every 60 itns, see if ||Ax b|| is too big Never happened
- LU became singular? Every update, check if *U* has small diag Increasingly often

Tests for accepting LU update

$$\bar{L} = L \begin{pmatrix} I \\ r^T & 1 \end{pmatrix} \qquad \bar{U} = \begin{pmatrix} U_1 & u \\ & \delta \end{pmatrix}$$

Tomlin 1975 $rac{r_{\sf max} u_{\sf max}}{|\delta|} \leq 16^7 \qquad (3\cdot 10^8)$ Our experiment

$$r_{\mathsf{max}} \leq eta \quad \mathsf{and} \quad rac{\|u\|_1}{|\delta|} \leq \epsilon^{-2/3} \qquad (3\cdot 10^{10})$$

Tests for accepting LU update

$$\bar{L} = L \begin{pmatrix} I \\ r^{T} & 1 \end{pmatrix} \qquad \bar{U} = \begin{pmatrix} U_{1} & u \\ & \delta \end{pmatrix}$$

Tomlin 1975
$$rac{r_{\max}u_{\max}}{|\delta|} \leq 3\cdot 10^8$$

Our experiment

$$r_{\max} \leq eta \quad \text{and} \quad \frac{\|u\|_1}{|\delta|} \leq \epsilon^{-2/3} \qquad (3 \cdot 10^{10})$$

Roughly equivalent to

$$\frac{r_{\max}u_{\max}}{|\delta|} \le \beta 10^{10} \qquad = 10^{11}, 10^{12}, \dots$$

rest-Tomlin

Sparse BG

Two tolerances

An experiment

Results

Conclusion

Numerical results

Michael Saunders

Conclusion

MINOS simulation of FT updates

LPnetlib problem pilot $\epsilon = 10^{-16}$ Featol = Opttol = 10^{-6} LU update tol $\beta = 10, \ 10^2, \ 10^3, \ \dots$

				singular	average
beta	itns	time	LUfacs	warnings	updates
1e+1	16865	5.06	167	0	100
1e+2	16865	5.02	170	19	99
1e+3	16865	5.24	220	176	77
1e+4	16865	5.73	305	287	55
1e+5	18837	7.05	445	442	42
1e+6	20079	8.28	576	573	35
1e+7	16704	7.21	514	510	32
1e+8	21115	9.31	678	674	31

Conclusion

MINOS simulation of FT updates

MINOS simulation of FT updates

LPnetlib problem pilot87 $\epsilon = 10^{-16}$ Featol = Opttol = 10^{-6} LU update tol $\beta = 10, 10^2, 10^3, ...$

				singular	average
beta	itns	time	LUfacs	warnings	updates
1e+1	20055	14.64	197	0	101
1e+2	19159	13.99	194	30	99
1e+3	20001	15.34	259	202	77
1e+4	20001	17.66	380	360	53
1e+5	21635	22.19	526	511	41
1e+6	21837	24.41	624	617	35
1e+7	23158	27.72	772	770	30
1e+8	36862	48.91	1385	1379	27

MINOS simulation of FT updates

LPnetlib problem mod2pre $\epsilon = 10^{-16}$ Featol = Opttol = 10^{-6} LU update tol $\beta = 10, \ 10^2, \ 10^3, \ ...$

				singular		
beta	itns	time	LUfacs	warnings		
1e+1	500000	705.0	4844	1		
1e+2	500000	704.9	4859	73		
1e+3	500000	698.5	5312	1860		
1e+4	11057*					
1e+5	17256*					
1e+6	500000	793.4	8955	7941	859	infeas
1e+7	99774*					
1e+8	500000	785.6	7528	5661	3000	infeas
*Refactorization gave singular LU Rook pivoting invoked, β reduced to 10.0						

Quad SQOPT simulation of FT updates

LPnetlib problem pilot $\epsilon = 10^{-34}$ Featol = Opttol = 10^{-15} LU update tol $\beta = 10^4$, 10^6 , 10^8 , ...

				singular	average	dual
beta	itns	time	LUfacs	warnings	updates	infeas
1e+4	17251	216.0	173	2	100	E-25
1e+6	17251	215.4	187	70	92	E-27
1e+8	17251	215.1	213	144	81	E-21
1e+10	17251	216.0	252	205	68	E-24
1e+12	17251	220.3	264	219	65	E-27
1e+14	17251	219.8	264	206	65	E-29
1e+16	17251	217.6	229	150	75	E-12
1e+18	17251	216.9	212	111	81	E-19
1e+20	11013*					
1e+22	7864*					
1e+24	4098*	*Refac	singular	r, beta	reduced to	50.0

rest-Tomlin

Sparse BG

Two tolerances

An experiment

Results

Conclusion

Conclusion

Michael Saunders

Its Conclusion

Conclusion

Test for accepting an FT upo	date
WHIZARD	$rac{r_{max}u_{max}}{ \delta } \leq 10^8$
CLP, CPLEX, Gurobi, Xpress, Mozek,	$rac{r_{\max}u_{\max}}{ \delta } \leq ?$ or ?
Probably safer	$r_{max} \leq oldsymbol{eta}$ and $rac{u_{max}}{ \delta } \leq 10^{10}$

Average up	lates per LU
------------	--------------

$eta=10^4$	50
$eta=10^5$	40
$eta=10^6$	35
$\beta = 10^7$	30

• R. H. Bartels (1971). A stabilization of the simplex method, *Numerische Mathematik* 16, 414–434.

Eliminated subdiag of dense Hessenberg $H = \bar{U}P$

• R. H. Bartels (1971). A stabilization of the simplex method, Numerische Mathematik 16, 414–434.

Eliminated subdiag of dense Hessenberg $H = \bar{U}P$

• J. J. H. Forrest and J. A. Tomlin (1972). Updating triangular factors of the basis to maintain sparsity in the product form simplex method, *Mathematical Programming* 2, 263–278.

Eliminated pth row of sparse H (not subdiag)

• R. H. Bartels (1971). A stabilization of the simplex method, Numerische Mathematik 16, 414–434.

Eliminated subdiag of dense Hessenberg $H = \bar{U}P$

- J. J. H. Forrest and J. A. Tomlin (1972). Updating triangular factors of the basis to maintain sparsity in the product form simplex method, *Mathematical Programming* 2, 263–278.
 Eliminated *pth* row of sparse *H* (not subdiag)
- J. A. Tomlin (1975). An accuracy test for updating triangular factors, *Math. Prog. Study* 4, 142–145.

Test for an unstable update

• R. H. Bartels (1971). A stabilization of the simplex method, *Numerische Mathematik* 16, 414–434.

Eliminated subdiag of dense Hessenberg $H = \bar{U}P$

- J. J. H. Forrest and J. A. Tomlin (1972). Updating triangular factors of the basis to maintain sparsity in the product form simplex method, *Mathematical Programming* 2, 263–278.
 Eliminated *pth* row of sparse *H* (not subdiag)
- J. A. Tomlin (1975). An accuracy test for updating triangular factors, *Math. Prog. Study* 4, 142–145.

Test for an unstable update

• M. A. Saunders (1976). The complexity of LU updating, in Anderssen and Brent (eds.), *The Complexity of Computational Problem Solving*, 214–230.

Picture of symmetrically permuted $P^T \overline{U} P$ with row spike to be eliminated

Conclusion

References (contd)

• J. K. Reid (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases, *Mathematical Programming* 24, 55–69.

 \boldsymbol{U} stored by rows to facilitate BG update

References (contd)

 J. K. Reid (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases, Mathematical Programming 24, 55–69.
 U stored by rows to facilitate BG update

• P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright (1987). Maintaining LU factors of a general sparse matrix, *Linear Algebra and its Applics.* 88/89, 239–270.

Rectangular LU, more general updates, cond(L) controlled throughout

ults Conclusion

References (contd)

- J. K. Reid (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases, Mathematical Programming 24, 55–69.
 U stored by rows to facilitate BG update
- P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright (1987). Maintaining LU factors of a general sparse matrix, *Linear Algebra and its Applics.* 88/89, 239–270. Rectangular LU, more general updates, cond(*L*) controlled throughout
- P. E. Gill, W. Murray, and M. A. Saunders (2005). SNOPT: An SQP algorithm for large-scale constrained optimization, *SIAM Review* 47:1, 99–131.

LU with Threshold Rook Pivoting, same general updates

lesults

Conclusion

Forrest-Tomlin

