Experiments with linear and nonlinear optimization using Quad precision

Ding Ma and Michael Saunders Stanford University

INFORMS Annual Meeting, San Francisco, 9–12 Nov 2014 and ICMSEC Beijing, 15 Dec 2014

quadMINOS

Conclusion

Unexpected excitement in Zhenjiang, China (13 Dec 2014)

Multiscale NLP

Conclusion

Abstract

Systems biologists are developing increasingly large models of metabolism and integrated models of metabolism and macromolecular expression. Standard LP solvers do not give sufficiently accurate solutions, and exact simplex solvers are extremely slow. On a range of multiscale examples we find that 34-digit Quad floating-point achieves exceptionally small primal and dual infeasibilities (of order 10^{-30}) when no more than 10^{-17} is requested.

> Partially supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) Award U01GM102098

Multiscale NLP

Pnetlib tests

Conclusions

Coauthor Ding Ma at INFORMS 2014

Conclusion

- 2 System and Methods
- 3 Algorithm and Implementation
- 4 62 LPnetlib test problems

Conclusion

Motivation

quadMINOS

In the Constraint Based Reconstruction and Analysis (COBRA), a biochemical network, which is inherently multiscale, is represented by a stoichiometric matrix S with m rows corresponding to metabolites (chemicals) and n columns representing reactions. Mathematically, S is part of the ordinary differential equation that governs the time-evolution of concentrations in the network:

$$\frac{d}{dt}x(t) = Sv(t),\tag{1}$$

where $x(t) \in \mathbf{R}^m$ is a vector of time-dependent concentrations and $v(t) \in \mathbf{R}^n$ is a vector of reaction fluxes. With the objective of maximizing the growth rate at the steady state, the following LP is constructed:

s.t.
$$Sv = 0,$$
 (2b)

$$l \leq v \leq u,$$
 (2c)

where growth is defined as the biosynthetic requirements of experimentally determined biomass composition, and biomass generation is a set of reaction fluxes linked in the appropriate ratios.

quadMINOS

ME models (FBA with coupling constraints)

Flux Balance Analysis (FBA) has been used by Ines2012ME for the first integrated stoichiometric multiscale model of metabolism and macromolecular synthesis for *Escherichia coli* K12 MG1655. The model modifies (2) by adding constraints that couple enzyme synthesis and catalysis reactions to (2b). Coupling constraints of the form

$$c_{\min} \le \frac{v_i}{v_j} \le c_{\max}$$
 (3)

become linear constraints

$$C_{\min} v_j \leq v_i, \quad v_i \leq C_{\max} v_j$$
 (4)

for various pairs of fluxes v_i , v_j . They are linear approximations of nonlinear constraints and make S in (2b) even less well-scaled because of large variations in reaction rates. Quad precision is evidently more appealing in this case.

quadMINOS

Multiscale NLF

Conclusion

Coupling constraints

For example, two fluxes could be related by

$$0.0001 \le \frac{v_1}{v_2} \le 10000.$$
 (5)

We can decompose these constraints into sequences of constraints involving auxiliary variables with reasonable coefficients. If the second inequality in (5) were presented to our implementation as $v_1 \leq 10000v_2$, we would transform it to two constraints involving an auxiliary variable s_1 :

$$v_1 \leq 100s_1, \qquad s_1 \leq 100v_2.$$
 (6)

If the first inequality in (5) were presented as $v_1 \ge 0.0001v_2$, we would leave it alone, but the equivalent inequality $10000v_1 \ge v_2$ would be transformed to

$$v_2 \leq 100s_2, \qquad s_2 \leq 100v_1.$$

quadMINOS

Motivation	System and Methods	Implementation	Multiscale NLPs	LPnetlib tests	Conclusions

"Carrying somewhat more precision in the arithmetic than twice the precision carried in the data and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies."

"Default evaluation in Quad is the humane option."

— William Kahan

Implementation

Multiscale NLP

netlib tests

Conclusions

System and Methods

quadMINOS

On today's machines, Double is implemented in hardware, while Quad (if available) is typically a software library.

Fortunately, the GCC Fortran compiler now makes Quad available via the real(16) data type. We have therefore been able to make a Quad version of the Fortran 77 linear and nonlinear optimization solver MINOS using the gfortran compiler.

Our aim is to explore combined use of the Double and Quad MINOS simplex solvers for the solution of large multiscale linear programs. We seek greater efficiency than is normally possible with exact simplex solvers.

The primal simplex solver in MINOS includes

- geometric-mean scaling of the constraint matrix
- the EXPAND anti-degeneracy procedure
- partial pricing (but no steepest-edge pricing, which would generally reduce total iterations and time)
- Basis LU factorizations and updates via LUSOL

/lultiscale NLF

Pnetlib tests

Conclusions

NEOS

Free optimization solvers via Argonne National Lab (now Univ of Madison, Wisconsin)

quadMINOS

INFORMS SFO Nov 2014 and ICMSEC Beijing 15 Dec 2014

14/38

lotiv	ation	System and Met	hods	Implementation	Multisca	le NLPs	LPnetlib tests	Conclusions
	NEOS Solver	Statistics	s for 2 years	1 J	an 2012 1	Jan 2014		
	Total Jobs	2218537						
	Solver Sub	missions						
	MINOS	774695	filter	8123	PATHNLP	1423	PGAPack	350
	MINLP	514475	Couenne	7996	L-BFGS-B	1351	sd	124
	KNITRO	276896	BDMLP	6691	ASA	1326	xpress	123
	Gurobi	130334	PATH	6298	NLPEC	1281	Cplex	32
	SNOPT	48281	bpmpd	6121	RELAX4	1265	DONLP2	3
	Ipopt	46305	BLMVM	6005	condor	993	LGO	3
	CONOPT	38331	NMTR	5248	SYMPHONY	871		
	XpressMP	32688	AlphaECP	5201	sedumi	833		
	MINTO	30367	OOQP	5147	icos	808		
	csdp	28662	LANCELOT	5045	DSDP	805		
	DICOPT	25524	MUSCOD-II	4973	Glpk	785		
	BARON	25138	FilMINT	4523	PSwarm	784		
	Cbc	23752	feaspump	3731	sdplr	741		
	scip	21529	TRON	2237	Clp	735		
	SBB	21466	MILES	1853	penbmi	573		
	MOSEK	21192	LRAMBO	1774	bnbs	547		
	Bonmin	19144	qsopt_ex	1718	nsips	516		
	LOQO	16095	SDPA	1669	FortMP	492		
	concorde	9652	sdpt3	1582	ddsip	489		
	LINDOGlobal	8459	filterMPEC	1438	pensdp	447		

quadMINOS

Conclusion

NEOS Solver Statist	ics for 2 years	1 Jan 20	012 1 Jan 2014
Total Jobs 2218537			
Category Submission	ns	Input Submi	ssions
nco 117008	8	AMPL 18	350882
kestrel 53386	5	GAMS 2	274585
milp 19082	2	SPARSE_SDPA	31266
minco 11772	3	MPS	15319
lp 8147	2	TSP	9652
sdp 3531	2	Fortran	7811
go 2924	6	CPLEX	7396
ср 2321	0	С	7375
со 967	6	MOSEL	4998
bco 958	5	MATLAB_BINARY	2364
uco 524	8	LP	1496
miocp 497	3	DIMACS	1148
lno 415	5	ZIMPL	1078
slp 116	0	SDPA	805
ndo 99	3	SMPS	671
sio 51	6	MATLAB	402
socp 20	6	SDPLR	332

Implementation

Multiscale NLP

Pnetlib tests

Conclusions

Algorithm and Implementation

quadMINOS

Motivation	System and Methods	Implementation	Multiscale NLPs	LPnetlib tests	Conclusions

3-step procedure

- Cold start Double MINOS with scaling and somewhat strict settings, save basis
- Warm start Quad MINOS with scaling and tighter Feasibility and Optimality tols, save basis
- **③** Warm start Quad MINOS without scaling but tighter LU tols

Multiscale NLF

Conclusion

MINOS runtime options for Steps 1-3

	Default	Step1	Step2	Step3
	Double	Double	Quad	Quad
Scale option	2	2	2	0
Feasibility tol	1e-6	1e-7	1e-15	1e-15
Optimality tol	1e-6	1e-7	1e-15	1e-15
LU Factor tol	100.0	10.0	10.0	5.0
LU Update tol	10.0	10.0	10.0	5.0
Expand frequency	10000	100000	100000	100000

Table : Three pilot models from Netlib, eight Mészáros *problematic* LPs, and three ME biochemical network models. Dimensions of $m \times n$ constraint matrices A and size of the largest optimal primal and dual variables x^* , y^* .

model	m	п	nnz(A)	$\max A_{ij} $	$\ x^*\ _{\infty}$	$\left\ y^*\right\ _{\infty}$
pilot4	411	1000	5145	3e+04	1e+05	3e+02
pilot	1442	3652	43220	2e+02	4e+03	2e+02
pilot87	2031	4883	73804	1e+03	2e+04	1e+01
de063155	853	1488	5405	8e+11	3e+13	6e+04
de063157	937	1488	5551	2e+18	2e+17	6e+04
de080285	937	1488	5471	1e+03	1e+02	3e+01
gen1	770	2560	64621	1e+00	3e+00	1e+00
gen2	1122	3264	84095	1e+00	3e+00	1e+00
gen4	1538	4297	110174	1e+00	3e+00	1e+00
130	2702	15380	64790	1e+00	1e+09	4e+00
iprob	3002	3001	12000	1e+04	3e+02	1e+00
TMA_ME	18210	17535	336302	2e+04	6e+00	1e+00
GlcAerWT	68300	76664	926357	8e+05	6e+07	2e+07
GlcAlift	69529	77893	928815	3e+05	6e+07	2e+07

Table : Itns and runtimes in secs for Step 1 (Double MINOS) and Steps 2–3 (Quad MINOS). Pinf and Dinf = \log_{10} final maximum primal and dual infeasibilities. Problem iprob is infeasible. Bold figures show Pinf and Dinf at the end of Step 3. Pinf = -99 means Pinf = 0. Pinf/ $||x^*||_{\infty}$ and Dinf/ $||y^*||_{\infty}$ are all $O(10^{-30})$ or smaller, even though only $O(10^{-15})$ was requested. This is an unexpectedly favorable empirical finding.

model	ltns	Times	Final objective	Pinf	Dinf
pilot4	1571	0.1	-2.5811392602e+03	-05	-13
	6	0.0	-2.5811392589e+03	-39	-31
	0	0.0	-2.5811392589e+03	-99	-30
pilot	16060	5.7	-5.5739887685e+02	-06	-03
	29	0.7	-5.5748972928e+02	-99	-27
	0	0.2	-5.5748972928e+02	-99	-32
pilot87	19340	15.1	3.0171038489e+02	-09	-06
	32	2.2	3.0171034733e+02	-99	-33
	0	1.2	3.0171034733e+02	-99	-33

LPnetlib test

Conclusion

	-				
model	ltns	Times	Final objective	Pinf	Dinf
de063155	921	0.0	1.8968704286e+10	-13	+03
	78	0.1	9.8830944565e+09	-99	-17
	0	0.0	9.8830944565e+09	-99	-24
de063157	488	0.0	1.4561118445e+11	+20	+18
	476	0.5	2.1528501109e+07	-27	-12
	0	0.0	2.1528501109e+07	-99	-12
de080285	418	0.0	1.4495817688e+01	-09	-02
	132	0.1	1.3924732864e+01	-35	-32
	0	0.0	1.3924732864e+01	-99	-32
gen1	369502	205.3	-1.6903658594e-08	-06	$^{-12}$
	246428	9331.3	1.2935699163e-06	-12	-31
	2394	81.6	1.2953925804e-06	-45	-30
gen2	44073	60.0	3.2927907828e+00	-04	-11
	1599	359.9	3.2927907840e+00	-99	-29
	0	10.4	3.2927907840e+00	-99	-32
gen4	45369	212.4	1.5793970394e-07	-06	-10
	53849	14812.5	2.8932268196e-06	-12	-30
	37	10.4	2.8933064888e-06	-54	-30

model	ltns	Times	Final objective	Pinf	Dinf
130	1229326	876.7	9.5266141574e-01	-10	-09
	275287	7507.1	-7.5190273434e-26	-25	-32
	0	0.2	-4.2586876849e-24	-24	-33
iprob	1087	0.2	2.6891551285e+03	+02	-11
	0	0.0	2.6891551285e+03	+02	-31
	0	0.0	2.6891551285e+03	+02	-28
TMA_ME	12225	37.1	8.0051076669e-07	-06	-05
	685	61.5	8.7036315385e-07	-24	-30
	0	6.7	8.7036315385e-07	-99	-31
GlcAerWT	62856	9707.3	-2.4489880182e+04	+04	-05
	5580	3995.6	-7.0382449681e+05	-07	-26
	4	60.1	-7.0382449681e+05	-19	-21
GlcAlift	134693	14552.8	-5.1613878666e+05	-03	-01
	3258	1067.1	-7.0434008750e+05	-09	-26
	2	48.1	-7.0434008750e+05	-20	-22

Implementation

Multiscale NLPs

netlib tests

Conclusions

Multiscale NLPs

Systems biology FBA problems with variable μ

Analog filter design for a personalized hearing aid (Jon Dattorro, Stanford)

quadMINOS

ME models with nonlinear constraints

As coupling constraints are often functions of the organism's growth rate μ , Lerman et al. (UCSD) consider growth-rate optimization nonlinearly with the single μ as the objective instead of via a linear biomass objective function. Nonlinear constraints of the form

$$\frac{v_i}{v_j} \le \mu \tag{7}$$

represented as

$$\mathbf{v}_i \leq \mu \mathbf{v}_j \tag{8}$$

are added to (2b), where v_i, v_j, μ are all variables. Constraints (8) are linear if μ is fixed at a specific value μ_k . Lerman et al. employ a binary search to find the largest $\mu_k \in [\mu_{\min}, \mu_{\max}]$ that keeps the associated LP feasible. Thus, the procedure requires reliable solution of a sequence of related LPs.

Conclusions

Analog filter design

(Hearing aid design, Jon Dattorro, Stanford, 2014)

Frequencies $\omega = 2\pi [30, 45, ..., 12000, 16000]$ Variables $U_i, V_i, u_i, v_i \ge 0$ Datag = [1, 1.3, ..., 44.7, 79.4] (filter magnitudes)

 $egin{aligned} U_i(u) &\equiv 1+u_1\omega_i^2+u_2\omega_i^4\ V_i(v) &\equiv 1+v_1\omega_i^2+v_2\omega_i^4 \end{aligned}$

We want
$$\frac{V_i}{U_i} \approx g_i^2 \Rightarrow g_i^2 \frac{U_i}{V_i} \approx 1$$

quadMINOS

Analog filter design

NLP1minimize
$$\beta \ge 1, U, V, u, v \ge 0$$
 β subject to $\frac{1}{\beta} \le g_i^2 \frac{U_i}{V_i} \le \beta$, $\omega_i \in \Omega$

where

$$egin{aligned} U_i(u) &\equiv 1+u_1\omega_i^2+u_2\omega_i^4\ V_i(v) &\equiv 1+v_1\omega_i^2+v_2\omega_i^4 \end{aligned}$$

19 frequencies ω_i (Hz):

 $\omega = 2\pi \begin{bmatrix} 30 & 45 & 60 & 90 & 125 & 187 & 250 & 375 & 500 & 750 & \dots \\ 1000 & 1500 & 2000 & 3000 & 4000 & 6000 & 8000 & 12000 & 16000 \end{bmatrix}^{\mathrm{T}}$

19 filter magnitudes:

Conclusion

Analog filter design

NLP2	$\begin{array}{c} \underset{\beta \ge 1, \ U, V, u, v \ge 0}{\text{minimize}} \beta \end{array}$	
	subject to $\beta V_i - \gamma_i U_i \ge 0$, $\omega_i \in \Omega$	
	$eta oldsymbol{U}_i - \gamma_i^{-1} oldsymbol{V}_i \geq {f 0}$	
	$U_i \ -\omega_i^2 u_1 - \omega_i^4 u_2 = 1$	
	$V_i \ - \omega_i^2 v_1 \ - \omega_i^4 v_2 = 1$	

$$\begin{split} & \omega = 2\pi \begin{bmatrix} 30 & 45 & 60 & 90 & 125 & 187 & 250 & 375 & 500 & 750 & \dots \\ & & & 1000 & 1500 & 2000 & 3000 & 4000 & 6000 & 8000 & 12000 & 16000 \end{bmatrix}^{\mathrm{T}} \\ & g = \begin{bmatrix} 1. & 1.2589 & 2.2387 & 2.5119 & 2.8184 & 5.0119 & 5.0119 & 7.9433 & 10. & 6.3096 & \dots \\ & & & 6.3096 & 4.4668 & 6.3096 & 10. & 7.9433 & 14.125 & 25.119 & 44.668 & 79.433 \end{bmatrix}^{\mathrm{T}} \\ & \gamma_i \equiv g_i^2 \qquad \qquad \beta, \ U_i, \ V_i \text{ appear nonlinearly} \end{split}$$

Conclusions

Analog filter design results

With $\beta\equiv\beta_0=5.0$ fixed, the problem is effectively an LP.

With scaling, the "LP" and then NLP2 solve as follows:

	major itns	minor itns	f/g evaluatior	ns Pinf	Dinf
LP	3	9	7		
NLP2	13	33	79	0.0	$5 imes 10^{-23}$
$\beta = 2.$	$\beta = 2.7837077182,$				$2739 imes 10^{-13}$

Improvement if the frequencies ω_i are measured in kHz instead of Hz:

	major itns	minor itns	f/g evaluatio	ns Pinf	Dinf
LP	2	8	5		
NLP2	12	19	39	0.0	$5 imes 10^{-31}$
$\beta = 2.$	7837077182,		$egin{array}{l} 433 imes 10^{-0} \ 544 imes 10^{+1} \ , \end{array}$		$2739 imes 10^{-1}$

Conclusions

LPnetlib test problems

Unexpectedly high accuracy in Double and Quad

quadMINOS

Conclusion

62 classic LP problems (ordered by file size)

afiro stocfor1 adlittle scagr7 sc205 share2b recipe vtpbase share1b bore3d scorpion capri brandy scagr25 sctap1 israel

scfxm1 bandm e226 grow7 etamacro agg scsd1 standata beaconfd gfrdpnc stair scrs8 shell scfxm2 pilot4 scsd6

ship04s seba grow15 fffff800 scfxm3 ship041 ganges sctap2 grow22 ship08s stocfor2 pilotwe ship12s 25fv47sierra czprob

pilotja ship081 nesm ship121 cvcle greenbea greenbeb 80bau3b d2q06c woodw d6cube pilot wood1p pilot87

Motivation						

Multiscale NLP

LP exper	riment
----------	--------

```
MINOS double precision
```

```
Feasibility tol = 1e-8
Optimality tol = 1e-8
```

real(8)

 $\epsilon = 2.2 \mathrm{e-16}$

- Cold start with scaling and other defaults
- Warm start, no scaling, LU rook pivoting
- Plot max primal and dual infeasibilities

$$\log_{10} \frac{\mathsf{Pinf}}{\|x^*\|_{\infty}} \quad \log_{10} \frac{\mathsf{Dinf}}{\|y^*\|_{\infty}}$$

```
Compare with MINOS quad precision real(16) \epsilon = 1.9e-35
Feasibility tol = 1e-17
Optimality tol = 1e-17
```


quadMINOS

quadMINOS

34/38

Implementation

Multiscale NLP

netlib tests

Conclusions

Conclusions

quadMINOS

Multiscale NLPs

Conclusions

Just as double-precision floating-point hardware revolutionized scientific computing in the 1960s, the advent of quad-precision data types (even in software) brings us to a new era of greatly improved reliability in optimization solvers.

- Michael Saunders

Reference

Ding Ma and Michael Saunders (2014). Solving multiscale linear programs using the simplex method in quadruple precision. http://stanford.edu/group/SOL/multiscale/papers/quadLP3.pdf

Multiscale NLPs

Conclusions

Just as double-precision floating-point hardware revolutionized scientific computing in the 1960s, the advent of quad-precision data types (even in software) brings us to a new era of greatly improved reliability in optimization solvers.

- Michael Saunders

Reference

Ding Ma and Michael Saunders (2014). Solving multiscale linear programs using the simplex method in quadruple precision. http://stanford.edu/group/SOL/multiscale/papers/quadLP3.pdf

Special thanks

- George Dantzig, born 100 years ago (8 Nov 1914)
- William Kahan, IEEE floating-point standard, including Quad
- Ronan Fleming, Ines Thiele (Luxembourg)
- Bernhard Palsson, Josh Lerman, Teddy O'Brien, Laurence Yang (UCSD)
- Ed Klotz (IBM CPLEX), Yuekai Sun, Jon Dattorro (Stanford)
- Ya-xiang Yuan (ICMSEC Beijing)

Is quadMINOS available?	Yes, free to academics
• Can quadMINOS be called from Matlab of	or Tomlab? No, Matlab uses an old GCC
Is quadMINOS available in GAMS?	Soon Yes
• How about AMPL?	No, but should be feasible
Is there a quadSNOPT?	Yes, in f90 snopt9 we can change 1 line
• Can CPLEX / Gurobi / Mosek / help?	Yes, they can provide Presolve and Warm start, especially from GAMS
• Will Quad hardware eventually be standar	rd? We hope so