Experiments with linear and nonlinear optimization using Quad precision

Michael Saunders and Ding Ma
MS\&E and ICME, Stanford University
1st Fletcher-Powell Lecture
26th Biennial Numerical Analysis Conference
University of Strathclyde, Glasgow
June 23-26, 2015
Presented at CME 510, Stanford, Oct 15, 2015

Roger Fletcher FRS and Mike Powell FRS

Roger Fletcher - pioneer

Michael Friedlander's first slides from
IMA Conference on Numerical Analysis and Optimisation, Birmingham, Sep 2014

Nonlinearly constrained optimization

$$
\min f(x) \text { st } c(x)=0
$$

R. Fletcher (1970) Smooth primal penalty function

$$
\min f(x)-c(x)^{T} y(x)+\frac{1}{2} \sigma\|c(x)\|^{2}
$$

Roger Fletcher - pioneer

Michael Friedlander's last slides from

IMA Conference on Numerical Analysis and Optimisation, Birmingham, Sep 2014

$$
\min \frac{1}{2}\|A y-g\|^{2}+\sigma c^{T} y+\frac{1}{2} \delta^{2}\|y\|^{2} \quad \Leftrightarrow \quad\left[\begin{array}{cc}
I & A \tag{SQD}\\
A^{T} & -\delta^{2} I
\end{array}\right]\left[\begin{array}{l}
r \\
y
\end{array}\right]=\left[\begin{array}{c}
g \\
\sigma c
\end{array}\right]
$$

R. Fletcher (1970) A class of methods for nonlinear programming with termination and convergence properties. Integer and Nonlinear Programming (Abadie, ed.)
R. Fletcher and S. A. Lill (1971) A class of methods for nonlinear programming. II.

Computational experience. Nonlinear Programming (Rosen, Mangasarian, and Ritter, eds.)
R. Fletcher (1972) A class of methods for nonlinear programming III: rates of convergence. Numerical Methods for Nonlinear Optimization (Lootsma, ed.)
R. Fletcher (1973) An exact penalty function for nonlinear programming with inequalities. Math. Prog. 5

Mike Powell - individualist

- Powell 1969 penalty function:
$\min f(x)+\frac{1}{2} \sigma\|c(x)-\theta\|^{2}$
- Hestenes 1969 method of multipliers: $\min f(x)-c(x)^{T} y+\sigma\|c(x)\|^{2}$
- Rockafellar 1973 generalization for $c(x) \geq 0$:

$$
\min f(x)+\frac{1}{2} \sigma\|c(x)-\theta\|_{-}^{2}
$$

M. J. D. Powell (1974) Ch I. Introduction to constrained optimization. Numerical Methods for Constrained Optimization (Gill and Murray, eds.)
R. Fletcher (1974) Ch VIII. Methods related to Lagrangian functions.

Same book. This chapter explains the above.

Mike Powell - individualist

Abstract

For challenging numerical problems, William Kahan has said that "default evaluation in Quad is the humane option" for reducing the risk of embarrassment due to rounding errors. Fortunately the gfortran compiler now has a real (16) datatype. This is the humane option for producing Quad-precision software. It has enabled us to build a Quad version of MINOS.

The motivating influence has been increasingly large LP and NLP problems arising in systems biology. Flux balance analysis (FBA) models of metabolic networks generate multiscale problems involving some large data values in the constraints (stoichiometric coefficients of order 10,000) and some very small values in the solution (chemical fluxes of order 10^{-10}). Standard solvers are not sufficiently accurate, and exact simplex solvers are extremely slow. Quad precision offers a reliable and practical compromise even via software. On a range of multiscale LP examples we find that 34-digit Quad floating-point achieves primal and dual infeasibilities of order 10^{-30} when "only" 10^{-15} is requested.

Partially supported by the
National Institute of General Medical Sciences of the National Institutes of Health (NIH)

Award U01GM102098

Coauthor Ding Ma at INFORMS 2014

Coauthor Ding Ma at INFORMS 2014

Unexpected excitement in Zhenjiang, China (13 Dec 2014)

Bart De Moor met President Xi JinPing already (Oct 2009)

Vice-Rector for International Policy at KU Leuven, Belgium

William Kahan, LA/Opt seminar, Thursday Oct 13, 2011

Desperately Needed Remedies for the Undebuggability of Large Floating-Point Computations in Science and Engineering

(1) Motivation
(2) System and Methods
(3) Algorithm and Implementation
(4) Multiscale NLPs
(5) 62 LPnetlib test problems
(6) Philosophy
(7) Conclusions

Motivation

Stoichiometric matrices S

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

	\cdot	\cdot	\cdot	W	\cdot	\cdot	\cdot
H_{2}	\cdot	\cdot	\cdot	-2	\cdot	\cdot	\cdot
O_{2}	\cdot	\cdot	\cdot	-1	\cdot	\cdot	\cdot
$\mathrm{H}_{2} \mathrm{O}$	\cdot	\cdot	\cdot	2	\cdot	\cdot	\cdot

chemicals \times reactions

62000×77000

In Constraint Based Reconstruction and Analysis (COBRA), a biochemical network, which is inherently multiscale, is represented by a stoichiometric matrix S with m rows corresponding to metabolites (chemicals) and n columns representing reactions. Mathematically, S is part of the ODE that governs the time-evolution of concentrations in the network:

$$
\begin{equation*}
\frac{d}{d t} x(t)=\operatorname{Sv}(t) \tag{1}
\end{equation*}
$$

where $x(t) \in \mathbf{R}^{m}$ is a vector of time-dependent concentrations and $v(t) \in \mathbf{R}^{n}$ is a vector of reaction fluxes. With the objective of maximizing growth rate at steady state, the following LP is constructed:

$$
\begin{array}{cl}
\max _{v} & c^{T} v \\
\text { s.t. } & S v=0 \\
& l \leq v \leq u \tag{2c}
\end{array}
$$

where growth is defined as the biosynthetic requirements of experimentally determined biomass composition, and biomass generation is a set of reaction fluxes linked in the appropriate ratios.

ME models (FBA with coupling constraints)

Flux Balance Analysis (FBA) has been used by Ines2012ME for the first integrated stoichiometric multiscale model of metabolism and macromolecular synthesis for Escherichia coli K12 MG1655. The model modifies (2) by adding constraints that couple enzyme synthesis and catalysis reactions to (2b). Coupling constraints of the form
become linear constraints

$$
\begin{equation*}
c_{\min } \leq \frac{v_{i}}{v_{j}} \leq c_{\max } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
c_{\min } v_{j} \leq v_{i}, \quad v_{i} \leq c_{\max } v_{j} \tag{4}
\end{equation*}
$$

for various pairs of fluxes v_{i}, v_{j}. They are linear approximations of nonlinear constraints and make S in (2b) even less well-scaled because of large variations in reaction rates. Quad precision is evidently more appealing in this case.

Coupling constraints

Two fluxes could be related by

$$
\begin{equation*}
0.0001 \leq \frac{v_{1}}{v_{2}} \leq 10000 \tag{5}
\end{equation*}
$$

Lifting approach: due to Yuekai Sun, ICME
We can decompose these constraints into sequences of constraints involving auxiliary variables with reasonable coefficients. If the second inequality in (5) were presented to our implementation as $v_{1} \leq 10000 v_{2}$, we would transform it to two constraints involving an auxiliary variable s_{1} :

$$
\begin{equation*}
v_{1} \leq 100 s_{1}, \quad s_{1} \leq 100 v_{2} . \tag{6}
\end{equation*}
$$

If the first inequality in (5) were presented as $v_{1} \geq 0.0001 v_{2}$, we would leave it alone, but the equivalent inequality $10000 v_{1} \geq v_{2}$ would be transformed to

$$
v_{2} \leq 100 s_{2}, \quad s_{2} \leq 100 v_{1}
$$

The desirability of Quad precision

"Carrying somewhat more precision in the arithmetic than twice the precision carried in the data and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies."
"Default evaluation in Quad is the humane option."

Methods for achieving Quad precision

Hand-code calls to auxiliary functions
Even $q=$ qdotdd (v, w) needs several double functions twosum, split, twoproduct sum2, dot2
to compute double x, y
and hence quad result $\mathrm{q}=$ quad $(\mathrm{x})+$ quad (y)
Double-double datatype (≈ 32 digits)
QD: http://crd-legacy.lbl.gov/~dhbailey/mpdist/
C++ with interfaces to $\mathrm{C}++$ and F 90
DDFUN90: entirely F90
Minor changes to source code
Quad datatype (≈ 34 digits)
Some f90 compilers such as gfortran
Again minor changes to source code
We use this humane approach to quad implementation

System and Methods

quadMINOS

The GNU GCC compilers make Quad available via 128-bit data types. We have therefore been able to make a Quad version of the Fortran 77 linear and nonlinear optimization solver MINOS using the gfortran compiler ${ }^{1}$ with real (8) changed to real(16) everywhere.

Double is implemented in hardware, while Quad is a software library.
Our aim is to explore combined use of the Double and Quad MINOS simplex solvers for the solution of large multiscale linear programs. We seek greater efficiency than is normally possible with exact simplex solvers.

[^0]
quadSNOPT

In the f90 implementations of SQOPT and SNOPT, we select one of the modules

```
snPrecision32.f90
snPrecision64.f90
snPrecision128.f90
```

For example, snPrecision128.f90:

```
module snModulePrecision
    implicit none
    public
    integer(4), parameter :: ip = 8, rp = 16 ! quad precision
end module snModulePrecision
```

Later:

```
module sn501p
    use snModulePrecision, only : ip, rp
    subroutine s5solveLP ( x, y )
    real(rp), intent(inout) :: x(nb), y(nb)
```


MINOS and quadMINOS

The primal simplex solver in MINOS includes

- geometric-mean scaling of the constraint matrix
- the EXPAND anti-degeneracy procedure
- partial pricing (but no steepest-edge pricing, which would generally reduce total iterations and time)
- Basis LU factorizations and updates via LUSOL

NEOS Statistics

NEOS

Free optimization solvers via Argonne National Lab (now Univ of Madison, Wisconsin)

NEOS Solver Statistics for 2 years
Total Jobs 2218537
Solver Submissions

MINOS	774695	filter	8123	PATHNLP	1423	PGAPack	350
MINLP	514475	Couenne	7996	L-BFGS-B	1351	sd	124
KNITRO	276896	BDMLP	6691	ASA	1326	xpress	123
Gurobi	130334	PATH	6298	NLPEC	1281	Cplex	32
SNOPT	48281	bpmpd	6121	RELAX4	1265	DONLP2	3
Ipopt	46305	BLMVM	6005	condor	993	LGO	3
CONOPT	38331	NMTR	5248	SYMPHONY	871		
XpressMP	32688	AlphaECP	5201	sedumi	833		
MINTO	30367	OOQP	5147	icos	808		
Csdp	28662	LANCELOT	5045	DSDP	805		
DICOPT	25524	MUSCOD-II	4973	Glpk	785		
BARON	25138	FilMINT	4523	PSwarm	784		
Cbc	23752	feaspump	3731	sdplr	741		
scip	21529	TRON	2237	Clp	735		
SBB	21466	MILES	1853	penbmi	573		
MOSEK	21192	LRAMBO	1774	bnbs	547		
Bonmin	19144	qSopt_ex	1718	nsips	516		
LOQO	16095	SDPA	1669	FortMP	492		
concorde	9652	sdpt3	1582	ddsip	489		
LINDOGlobal	8459	filterMPEC	1438	pensdp	447		

NEOS Solver	Statistics for 2 years		1	Jan 2012 --
Total Jobs	2218537			
Category	Submissions	Input	Submissions	
nco	1170088	AMPL	1850882	
kestrel	533865	GAMS	274585	
milp	190822	SPARSE_SDPA	31266	
minco	117723	MPS	15319	
lp	81472	TSP	9652	
sdp	35312	Fortran	7811	
go	29246	CPLEX	7396	
cp	23210	C	7375	
co	9676	MOSEL	4998	
bco	9585	MATLAB_BINARY	2364	
uco	5248	LP	1496	
miocp	4973	DIMACS	1148	
lno	4155	ZIMPL	1078	
slp	1160	SDPA	805	
ndo	993	SMPS	671	
sio	516	MATLAB	402	
socp	206	SDPLR	332	

Algorithm and Implementation

3-step procedure

(1) Cold start Double MINOS with scaling and somewhat strict settings, save basis
(2) Warm start Quad MINOS with scaling and tighter Feasibility and Optimality tols, save basis
(3) Warm start Quad MINOS without scaling but tighter LU tols

MINOS runtime options for Steps 1-3

	Default Double	Step1 Double	Step2 Quad	Step3 Quad
Scale option	2	2	2	0
Feasibility tol	$1 \mathrm{e}-6$	$1 \mathrm{e}-7$	$1 \mathrm{e}-15$	$1 \mathrm{e}-15$
Optimality tol	$1 \mathrm{e}-6$	$1 \mathrm{e}-7$	$1 \mathrm{e}-15$	$1 \mathrm{e}-15$
LU Factor tol	100.0	10.0	10.0	5.0
LU Update tol	10.0	10.0	10.0	5.0

Table: Three pilot models from Netlib, eight Mészáros problematic LPs, and three ME biochemical network models. Dimensions of $m \times n$ constraint matrices A and size of the largest optimal primal and dual variables x^{*}, y^{*}.

model	m	n	nnz(A)	$\max \left\|A_{i j}\right\|$	$\left\\|x^{*}\right\\|_{\infty}$	$\left\\|y^{*}\right\\|_{\infty}$
pilot4	411	1000	5145	$3 \mathrm{e}+04$	1e+05	$3 \mathrm{e}+02$
pilot	1442	3652	43220	$2 \mathrm{e}+02$	$4 \mathrm{e}+03$	$2 \mathrm{e}+02$
pilot87	2031	4883	73804	$1 \mathrm{e}+03$	$2 \mathrm{e}+04$	$1 \mathrm{e}+01$
de063155	853	1488	5405	$8 \mathrm{e}+11$	$3 \mathrm{e}+13$	$6 \mathrm{e}+04$
de063157	937	1488	5551	$2 \mathrm{e}+18$	$2 \mathrm{e}+17$	$6 \mathrm{e}+04$
de080285	937	1488	5471	$1 \mathrm{e}+03$	$1 \mathrm{e}+02$	$3 \mathrm{e}+01$
gen1	770	2560	64621	$1 \mathrm{e}+00$	$3 \mathrm{e}+00$	$1 \mathrm{e}+00$
gen2	1122	3264	84095	$1 \mathrm{e}+00$	$3 \mathrm{e}+00$	$1 \mathrm{e}+00$
gen4	1538	4297	110174	$1 \mathrm{e}+00$	$3 \mathrm{e}+00$	$1 \mathrm{e}+00$
130	2702	15380	64790	$1 \mathrm{e}+00$	$1 \mathrm{e}+09$	$4 \mathrm{e}+00$
iprob	3002	3001	12000	$1 \mathrm{e}+04$	$3 \mathrm{e}+02$	$1 \mathrm{e}+00$
TMA_ME	18210	17535	336302	$2 \mathrm{e}+04$	$6 \mathrm{e}+00$	$1 \mathrm{e}+00$
GlcAerWT	68300	76664	926357	$8 \mathrm{e}+05$	$6 \mathrm{e}+07$	$2 \mathrm{e}+07$
GlcAlift	69529	77893	928815	$3 \mathrm{e}+05$	$6 \mathrm{e}+07$	$2 \mathrm{e}+07$

Table: Itns and runtimes in secs for Step 1 (Double MINOS) and Steps 2-3 (Quad MINOS). Pinf and Dinf $=\log _{10}$ final maximum primal and dual infeasibilities. Problem iprob is infeasible. Bold figures show Pinf and Dinf at the end of Step 3. Pinf/ $\left\|x^{*}\right\|_{\infty}$ and Dinf/ $\left\|y^{*}\right\|_{\infty}$ are all $O\left(10^{-30}\right)$ or smaller, even though only $O\left(10^{-15}\right)$ was requested. This is an unexpectedly favorable empirical finding.

model	Itns	Times	Final objective	Pinf	Dinf
pilot4	1571	0.1	$-2.5811392602 \mathrm{e}+03$	-05	-13
	6	0.0	$-2.5811392589 \mathrm{e}+03$	-39	-31
	0	0.0	$-2.5811392589 \mathrm{e}+03$	-	-30
pilot	16060	5.7	$-5.5739887685 \mathrm{e}+02$	-06	-03
	29	0.7	$-5.5748972928 \mathrm{e}+02$	-	-27
	0	0.2	$-5.5748972928 \mathrm{e}+02$	-	-32
pilot87	19340	15.1	$3.0171038489 \mathrm{e}+02$	-09	-06
	32	2.2	$3.0171034733 \mathrm{e}+02$	-	-33
	0	1.2	$3.0171034733 \mathrm{e}+02$	-	-33

model	Itns	Times	Final objective	Pinf	Dinf
de063155	921	0.0	$1.8968704286 \mathrm{e}+10$	-13	+03
	78	0.1	$9.8830944565 \mathrm{e}+09$	-	-17
	0	0.0	$9.8830944565 \mathrm{e}+09$	-	-24
de063157	488	0.0	$1.4561118445 \mathrm{e}+11$	+20	+18
	476	0.5	$2.1528501109 \mathrm{e}+07$	-27	-12
	0	0.0	$2.1528501109 \mathrm{e}+07$	-	-12
de080285	418	0.0	$1.4495817688 \mathrm{e}+01$	-09	-02
	132	0.1	$1.3924732864 \mathrm{e}+01$	-35	-32
	0	0.0	$1.3924732864 \mathrm{e}+01$	-	-32
gen1	369502	205.3	$-1.6903658594 \mathrm{e}-08$	-06	-12
	246428	9331.3	$1.2935699163 \mathrm{e}-06$	-12	-31
	2394	81.6	$1.2953925804 \mathrm{e}-06$	-45	-30
gen2	44073	60.0	$3.2927907828 \mathrm{e}+00$	-04	-11
	1599	359.9	$3.2927907840 \mathrm{e}+00$	-	-29
gen4	0	10.4	$3.2927907840 \mathrm{e}+00$	-	-32
	45369	212.4	$1.5793970394 \mathrm{e}-07$	-06	-10
	53849	14812.5	$2.8932268196 \mathrm{e}-06$	-12	-30
	37	10.4	$2.8933064888 \mathrm{e}-06$	-54	-30

model	Itns	Times	Final objective	Pinf	Dinf
I30	1229326	876.7	$9.5266141574 \mathrm{e}-01$	-10	-09
	275287	7507.1	$-7.5190273434 \mathrm{e}-26$	-25	-32
	0	0.2	$-4.2586876849 \mathrm{e}-24$	-24	-33
iprob	1087	0.2	$2.6891551285 \mathrm{e}+03$	+02	-11
	0	0.0	$2.6891551285 \mathrm{e}+03$	+02	-31
	0	0.0	$2.6891551285 \mathrm{e}+03$	+02	-28
TMA_ME	12225	37.1	$8.0051076669 \mathrm{e}-07$	-06	-05
	685	61.5	$8.7036315385 \mathrm{e}-07$	-24	-30
	0	6.7	$8.7036315385 \mathrm{e}-07$	-	-31
GlcAerWT	62856	9707.3	$-2.4489880182 \mathrm{e}+04$	+04	-05
	5580	3995.6	$-7.0382449681 \mathrm{e}+05$	-07	-26
	4	60.1	$-7.0382449681 \mathrm{e}+05$	-19	-21
GlcAlift	134693	14552.8	$-5.1613878666 \mathrm{e}+05$	-03	-01
	3258	1067.1	$-7.0434008750 \mathrm{e}+05$	-09	-26
	2	48.1	$-7.0434008750 \mathrm{e}+05$	-20	-22

Multiscale NLPs

Systems biology FBA problems with variable μ (Palsson Lab, UC San Diego, 2014)

Analog filter design for a personalized hearing aid (Jon Dattorro, Stanford, 2014)

ME models with nonlinear constraints

As coupling constraints are often functions of the organism's growth rate μ, Lerman et al. (UCSD) consider growth-rate optimization nonlinearly with the single μ as the objective instead of via a linear biomass objective function. Nonlinear constraints of the form
represented as

$$
\begin{equation*}
\frac{v_{i}}{v_{j}} \leq \mu \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
v_{i} \leq \mu v_{j} \tag{8}
\end{equation*}
$$

are added to (2b), where v_{i}, v_{j}, μ are all variables. Constraints (8) are linear if μ is fixed at a specific value μ_{k}. Lerman et al. employ a binary search to find the largest $\mu_{k} \in\left[\mu_{\text {min }}, \mu_{\text {max }}\right]$ that keeps the associated LP feasible. Thus, the procedure requires reliable solution of a sequence of related LPs.

tinyME

Nonlinear FBA formulation, Laurence Yang, UCSD, Dec 2014

$$
\begin{aligned}
& \max \mu \quad \max \mu \\
& \text { st } \mu A x+B x=0 \\
& S x \quad=b \quad \equiv \\
& \text { bounds on } x \\
& \text { st } \mu A x+w=0 \\
& B x-w=0 \\
& S x=b \\
& \text { bounds on } x \text {, no bounds on } w
\end{aligned}
$$

- Tiny example: $\approx 2500 \times 3000$
- $\mu=x_{1}$ and the first columns of A, B are empty
- Constraints are linear if μ is fixed 25 LP subproblems would give 8 digits
suggests binary search on sequence of LPs (really need quad Simplex)
- Instead, apply quad MINOS LCL method = Linearly Constrained Lagrangian 6 NLP subproblems (with linearized constraints) give 20 digits

Quadratic convergence of major iterations (Robinson 1972)

EXIT -- optimal solution found

Problem name	tinyME		
No. of iterations	912	Objective value 8.	94810579E-01
No. of major iterations	6	Linear objective 0.	0000000E+00
Penalty parameter	1.000000	Nonlinear objective 8	94810579E-01
No. of calls to funobj	98	No. of calls to funcon	98
No. of superbasics	0	No. of basic nonlinears	786
No. of degenerate steps	0	Percentage	0.00
Max x (scaled) 12	$5.6 \mathrm{E}-01$	Max pi (scaled)	103 8.3E+05
Max x 1020	6.1E+01	Max pi	103 9.7E+03
Max Prim inf(scaled)	0.0E+00	Max Dual inf(scaled)	$92.9 \mathrm{E}-14$
Max Primal infeas	0.0E+00	Max Dual infeas	9 1.3E-18
Nonlinear constraint violn	$1.9 \mathrm{E}-20$		
funcon called with nstate $=2$			
Final value of $\mathrm{mu}=0.84694810578563166175146802332321527$			
Time for solving problem		13.50 seconds	

ME 2.0

Large FBA and FVA problems, Laurence Yang, UCSD, Sep 2015

FBA model iJL1678: $\quad 71,000 \times 80,000$ LP
Quad MINOS cold start:
FVA problems:
~ 3 hours
\min and max individual variables v_{j}

		Double CPLEX		Quad MINOS	
Reaction	Protein	$v_{\min }$	$v_{\max }$	$v_{\text {min }}$	$v_{\text {max }}$
translation_b0169	RpsB	30.715011	30.712581	30.719225	30.719225
translation_b0025	RibF	0.212807	0.211712	0.210161	0.210161
translation_b0071	LeuD	0.303304	0.765585	0.303634	0.303634
translation_b0072	LeuC	0.303304	0.681146	0.303634	0.303634

Analog filter design

Hearing aid design, Jon Dattorro, Stanford

Frequencies $\omega=2 \pi[30,45, \ldots, 12000,16000]$
Data $\quad g=[1,1.3, \ldots, 44.7,79.4]$ (filter magnitudes)
Variables $\quad U, V, u, v \geq 0$

$$
\begin{array}{ll}
U_{i}(u) \equiv 1+u_{1} \omega_{i}^{2}+u_{2} \omega_{i}^{4}+\cdots+u_{\eta} \omega_{i}^{2 \eta} & \eta=2,3, \ldots, 8 \\
V_{i}(v) \equiv 1+v_{1} \omega_{i}^{2}+v_{2} \omega_{i}^{4}+\cdots+v_{\eta} \omega_{i}^{2 \eta} &
\end{array}
$$

Find u, v so that $\frac{V_{i}}{U_{i}} \approx g_{i}^{2} \Rightarrow g_{i}^{2} \frac{U_{i}}{V_{i}} \approx 1$

Analog filter design

NLP1 | $\operatorname{minimize}_{\beta \geq 1, U, v \geq 0, u, v} \beta$ |
| :--- |
| subject to |$\frac{1}{\beta} \leq g_{i}^{2} \frac{U_{i}}{V_{i}} \leq \beta, \quad \omega_{i} \in \Omega$

where

$$
\begin{aligned}
& U_{i}(u) \equiv 1+u_{1} \omega_{i}^{2}+u_{2} \omega_{i}^{4}+\cdots \\
& V_{i}(v) \equiv 1+v_{1} \omega_{i}^{2}+v_{2} \omega_{i}^{4}+\cdots
\end{aligned}
$$

19 frequencies $\omega_{i}(\mathrm{~Hz})$:

$$
\begin{aligned}
\omega= & 2 \pi\left[\begin{array}{llllllllllll}
30 & 45 & 60 & 90 & 125 & 187 & 250 & 375 & 500 & 750 & \ldots & \\
& 1000 & 1500 & 2000 & 3000 & 4000 & 6000 & 8000 & 12000 & 16000
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

19 filter magnitudes:

$$
g=\left[\begin{array}{lllllllllll}
1 . & 1.2589 & 2.2387 & 2.5119 & 2.8184 & 5.0119 & 5.0119 & 7.9433 & 10 . & 6.3096
\end{array} \cdots\right.
$$

Analog filter design

$\operatorname{minimize}$ $\beta \geq 1, U, V \geq 0, u, v$ subject to	β
	$\beta V_{i}-\gamma_{i} U_{i} \geq 0, \quad \omega_{i} \in \Omega$
	$\beta U_{i}-\gamma_{i}^{-1} V_{i} \geq 0$
	$U_{i}-\omega_{i}^{2} u_{1}-\omega_{i}^{4} u_{2}=1$
	$V_{i}-\omega_{i}^{2} v_{1}-\omega_{i}^{4} v_{2}=1$

$\gamma_{i} \equiv g_{i}^{2}, \quad \beta, U_{i}, V_{i}$ appear nonlinearly
$\beta \equiv \beta_{0}$ fixed $\quad \Rightarrow$ the problem is an LP
\Rightarrow can do binary search with LP solver (CVX, Gurobi)

Proof for bisection of a quasiconcave monotonic function:
p210 Dattorro 2015,
Convex Optimization \dagger Euclidean Distance Geometry 2 ϵ, Meboo http://stanford.edu/group/SOL/Books/0976401304.pdf

Filter design, $\eta=2$
With $\beta \equiv \beta_{0}=5.0$ fixed, the problem is an LP
The LP and NLP2 solve as follows:

	major itns	minor itns	f / g evaluations	Pinf	Dinf
LP	3	9	7	-	-23
NLP2	13	33	79	-	
$\beta=2.7837077182$,	$u_{1}=1.333433 \times 10^{-6}$,	$u_{2}=0.0$			
		$v_{1}=4.853544 \times 10^{-5}$,	$v_{2}=2.942739 \times 10^{-13}$		

Improvement if the frequencies ω_{i} are measured in kHz instead of Hz :

	major itns	minor itns	f / g evaluations	Pinf	Dinf
LP	2	8	5		
NLP2	12	19	39	-	-31

$$
\beta=2.7837077182, \quad \begin{array}{ll}
u_{1}=1.333433 \times 10^{-0}, & u_{2}=0.0 \\
v_{1}=4.853544 \times 10^{+1}, & v_{2}=2.942739 \times 10^{-1}
\end{array}
$$

Filter design, $\eta=2: 8$

η	β_{0}	β^{*}	Pinf	Dinf
2	5.0	4.2368	-30	-32
3	5.0	2.5154	-32	-33
4	3.0	1.4227	-30	-34
5	1.4	1.3637	-23	-35
6	1.37	1.2625	-25	-34
7	1.2	1.1053	-07	-29
8	1.1	1.0809	-29	-34

Figure: $\eta=8$
Blue dots = given data
Red circles $=$ fit by CVX/gurobi
Black curve $=$ fit by quadMINOS

Filter design, $\eta=8$ (more quadratic convergence)

With $\beta \equiv \beta_{0}=1.1$ fixed, the problem is an LP

	Scale	major itns	minor itns	f / g evaluations	Pinf	Dinf
LP	Yes		44		-42	-01
NLP2	Yes	9	86	186	-03	-35
NLP2	No	6	12	41	-18	-16

NLP2 with scaling:

Major minor	step	objective	Feasible	Optimal	nsb	ncon	penalty	BSwap	
1	$0 T$	$0.0 \mathrm{E}+00$	$1.10000 \mathrm{E}+00$	$1.1 \mathrm{E}-42$	$1.0 \mathrm{E}-01$	0	4	$1.0 \mathrm{E}+02$	0
2	6	$8.1 \mathrm{E}-01$	$1.06179 \mathrm{E}+00$	$2.7 \mathrm{E}-16$	$1.3 \mathrm{E}+02$	0	12	$1.0 \mathrm{E}+02$	0
3	41 T	$8.2 \mathrm{E}-03$	$1.12705 \mathrm{E}+00$	$1.8 \mathrm{E}-17$	$4.6 \mathrm{E}+02$	2	96	$1.0 \mathrm{E}+02$	0
4	14	$1.0 \mathrm{E}+00$	$1.09696 \mathrm{E}+00$	$6.5 \mathrm{E}-51$	$2.4 \mathrm{E}+02$	1	127	$1.0 \mathrm{E}+02$	2
5	24	$1.0 \mathrm{E}+00$	$1.08217 \mathrm{E}+00$	$2.4 \mathrm{E}-18$	$1.2 \mathrm{E}+01$	1	173	$1.0 \mathrm{E}+02$	1
6	1	$1.0 \mathrm{E}+00$	$1.08079 \mathrm{E}+00$	$9.3 \mathrm{E}-19$	$1.2 \mathrm{E}-06$	0	183	$1.0 \mathrm{E}+02$	1
7	0	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$1.4 \mathrm{E}-22$	$3.4 \mathrm{E}-08$	0	184	$1.0 \mathrm{E}+01$	0
8	0	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$4.0 \mathrm{E}-30$	$2.4 \mathrm{E}-15$	0	185	$1.0 \mathrm{E}+00$	0
9	0	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$4.0 \mathrm{E}-30$	$3.1 \mathrm{E}-36$	0	186	$1.0 \mathrm{E}-01$	0

EXIT -- optimal solution found

Filter design, $\eta=8$
With $\beta \equiv \beta_{0}=1.1$ fixed, the problem is an LP

	Scale	major itns	minor itns	f / g evaluations	Pinf	Dinf
LP	Yes		44		-42	-01
NLP2	Yes	9	86	186	-03	-35
NLP2	No	6	12	41	-18	-16

NLP2 with no scaling:

Major minor	step	objective	Feasible Optimal	nsb	ncon	penalty	BSwap		
1	0 O	$0.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$3.7 \mathrm{E}-20$	$8.2 \mathrm{E}-19$	0	3	$1.0 \mathrm{E}-02$	0
2	6	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$1.6 \mathrm{E}-34$	$4.9 \mathrm{E}-17$	4	27	$1.0 \mathrm{E}-02$	0
3	2	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$1.6 \mathrm{E}-34$	$7.0 \mathrm{E}-18$	3	31	$1.0 \mathrm{E}-03$	3
4	2	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$1.6 \mathrm{E}-34$	$9.3 \mathrm{E}-17$	2	35	$1.0 \mathrm{E}-04$	1
5	1	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$1.6 \mathrm{E}-34$	$9.3 \mathrm{E}-17$	2	38	$1.0 \mathrm{E}-05$	1
6	1	$1.0 \mathrm{E}+00$	$1.08089 \mathrm{E}+00$	$1.6 \mathrm{E}-34$	$9.3 \mathrm{E}-17$	2	41	$1.0 \mathrm{E}-06$	1

EXIT -- the current point cannot be improved upon

LPnetlib test problems

Unexpectedly high accuracy in Double and Quad

62 classic LP problems (ordered by file size)

```
afiro
stocfor1
adlittle
scagr7
sc205
share2b
recipe
vtpbase
share1b
bore3d
scorpion
capri
brandy
scagr25
sctap1
israel
scfxm1
```

ship04s
pilotja
seba
grow15
fffff800
scfxm3
ship041
ganges
sctap2
grow22
ship08s
stocfor2
pilotwe
ship12s
$25 f v 47$
sierra
czprob

ship04s	pilotja
seba	ship081
grow15	nesm
fffff800	ship12l
scfxm3	cycle
ship041	greenbea
ganges	greenbeb
sctap2	80bau3b
grow22	d2q06c
ship08s	woodw
stocfor2	d6cube
pilotwe	pilot
ship12s	wood1p
25fv47	pilot87
sierra	
czprob	

ship081
nesm
ship121
cycle
greenbea
greenbeb
80bau3b
d2q06c
woodw
d6cube
pilot
wood1p
pilot87

LP experiment

MINOS double precision	real (8)	$\epsilon=2.2 \mathrm{e}-16$
Feasibility tol $=1 \mathrm{e}-8$		
Optimality tol $=1 \mathrm{e}-8$		
Compare with MINOS quad precision	real (16)	$\epsilon=1.9 \mathrm{e}-35$
Feasibility tol $=1 \mathrm{e}-15$		
Optimality tol $=1 \mathrm{e}-15$		
In both cases:		
- Cold start with scaling and other defaults		
- Warm start, no scaling, LU rook pivoting		
- Plot $\log _{10}$ of Pinf and Dinf/(1+		

Max primal and dual infeasibilities:

Double precision, cold start, scaling

```
Scale option 2
Feasibility tol 1e-8
Optimality tol 1e-8
LU Partial Pivoting
LU Factor tol 100.0
LU Update tol 10.0
```

$$
\epsilon=2.2 \mathrm{e}-16
$$

Max primal and dual infeasibilities:
Double precision, warm start, no scaling

Scale option 0	
Feasibility tol	$1 \mathrm{e}-8$
Optimality tol	$1 \mathrm{e}-8$
LU Rook Pivoting	
LU Factor tol	1.9
LU Update tol	1.9

$$
\epsilon=2.2 \mathrm{e}-16
$$

Max primal and dual infeasibilities:
Quad precision, cold start, scaling
Scale option 2
Feasibility tol $1 \mathrm{e}-15$
Optimality tol $1 \mathrm{e}-15$

LU Partial Pivoting
LU Factor tol 100.0
LU Update tol

$$
\epsilon=1.9 \mathrm{e}-35
$$

Max primal and dual infeasibilities:
Quad precision, warm start, no scaling

Philosophy

Philosophy

- Humor is mankind's greatest blessing.
- Mark Twain

Philosophy

- Humor is mankind's greatest blessing. - Mark Twain
- There are three rules for writing a great English novel. Unfortunately noone knows what they are.
- Somerset Maugham (?)

Philosophy

- Humor is mankind's greatest blessing.
- There are three rules for writing a great English novel. Unfortunately noone knows what they are.
- which
, which that

We will cover some variations which may be useful.
We will cover some variations, which may be useful.
We will cover some variations that may be useful.

Philosophy

- Humor is mankind's greatest blessing.
- There are three rules for writing a great English novel. Unfortunately noone knows what they are.
- which
, which
that

We will cover some variations which may be useful.
We will cover some variations, which may be useful.
We will cover some variations that may be useful.

- If the glove won't fit, you must acquit.

Philosophy

- Humor is mankind's greatest blessing.
- There are three rules for writing a great English novel. Unfortunately noone knows what they are.
- which
, which
that

We will cover some variations which may be useful.
We will cover some variations, which may be useful.
We will cover some variations that may be useful.

- If the glove won't fit, you must acquit.
- If the comma's omitted, the which is wicked.

Philosophy

Thanks for the quick reply.
Thanks for your quick reply.
Peter, thanks for your quick reply.

Philosophy

Thanks for the quick reply.
Thanks for your quick reply.

Peter, thanks for your quick reply.

Oct 15
Thurs, Oct 15

Philosophy

- The purpose of our lives is to be happy.
- Dalai Lama

Philosophy

- The purpose of our lives is to be happy.
- Dalai Lama
- Can humour (not satire) be the antidote to extremism? It would be great to think so.

Philosophy

- The purpose of our lives is to be happy.
- Dalai Lama
- Can humour (not satire) be the antidote to extremism? It would be great to think so.
- You have to think anyway, so why not think big?

Philosophy

- The purpose of our lives is to be happy.
- Dalai Lama
- Can humour (not satire) be the antidote to extremism?

It would be great to think so.

- You have to think anyway, so why not think big?
- Donald Trump
- Metabolic networks will keep getting bigger (genome-scale up to whole human).

Philosophy

- The purpose of our lives is to be happy.
- Dalai Lama
- Can humour (not satire) be the antidote to extremism? It would be great to think so.
- You have to think anyway, so why not think big?
- Donald Trump
- Metabolic networks will keep getting bigger (genome-scale up to whole human).
- Urge chip-makers to implement hardware quad precision.

Conclusions

Conclusions

Just as double-precision floating-point hardware revolutionized scientific computing in the 1960s, the advent of quad-precision data types (even in software) brings us to a new era of greatly improved reliability in optimization solvers.

Reference

Ding Ma and Michael Saunders (2014). Solving multiscale linear programs using the simplex method in quadruple precision. http://stanford.edu/group/SOL/multiscale/papers/quadLP3.pdf

Conclusions

Just as double-precision floating-point hardware revolutionized scientific computing in the 1960s, the advent of quad-precision data types (even in software) brings us to a new era of greatly improved reliability in optimization solvers.

Reference

Ding Ma and Michael Saunders (2014). Solving multiscale linear programs using the simplex method in quadruple precision. http://stanford.edu/group/SOL/multiscale/papers/quadLP3.pdf

Special thanks

- George Dantzig, born 100 years ago (8 Nov 1914)
- William Kahan, IEEE floating-point standard, including Quad
- William Kahan, Boulder.pdf (2011)
- GNU gfortran
- Ronan Fleming, Ines Thiele (Luxembourg)
- Bernhard Palsson, Josh Lerman, Teddy O'Brien, Laurence Yang (UCSD)
- Ed Klotz (IBM CPLEX), Yuekai Sun, Jon Dattorro (Stanford)
- Alison Ramage, lain Duff

FAQ

- Is quadMINOS available?

Yes, in the openCOBRA toolbox http://opencobra.github.io/cobratoolbox/

- Can quadMINOS be called from Matlab or Tomlab? Yes via system call (not Mex)
- Is quadMINOS available in GAMS?

Soon Yes

- How about AMPL?

No, but should be feasible

- Is there a quadSNOPT? Yes, in f90 SNOPT9 we can change 1 line
- Can CPLEX / Gurobi / Mosek / ...help? Yes, they can provide Presolve and Warm start, especially from GAMS
- Will Quad hardware eventually be standard?

We hope so

[^0]: ${ }^{1}$ GNU Fortran (GCC) 4.6.2 20111019 on Mac OS X

