

Algorithm NCL for constrained optimization

Michael Saunders MS&E and ICME, Stanford University

Ding Ma, Ken Judd, and Dominique Orban

4th Bay Area Optimization Meeting Stanford University, May 19, 2018

Algorithm NCL

A general NLP

Abstract

Standard optimization solvers have difficulty if the active-constraint gradients are not independent at a solution. For example, problems of the form

 $\min f(x)$ st $c(x) \ge 0$ (*m* constraints and *n* variables)

may have more than n constraints active at a solution. Such problems arise in the modeling of tax policy (with perhaps millions of constraints and thousands of variables).

Algorithm NCL solves a sequence of about 10 augmented Lagrangian subproblems with constraints $c(x) + r \ge 0$. The extra variables r make the constraints linearly independent, and the subproblem solutions converge to the required solution as r is driven to zero. Assuming second derivatives are available, NCL expands the use of interior methods for large-scale optimization.

Partially supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) Award U01GM102098

Algorithm NCL

A general NLP	LANCELOT	Our problem	XCL	NCL	Tax Policy	AMPL NCL	Results	Future
			Optir	nizatio	n			
ſ	UCO		mir	$\min_{e \in \mathbb{R}^n} \phi$	$\phi(x)$			
L								

- $\phi(x)$ is a smooth nonlinear function
- $\nabla \phi(x)$ known: Quasi-Newton method
- $abla^2 \phi(x)$ known: Newton's method

NCO $\min_{x \in \mathbb{R}^n} \phi(x)$ subject to c(x) = 0

• $c(x) \in \mathbb{R}^m$ is a vector of smooth nonlinear functions

Constrained Optimization

NCO
$$\min_{x \in \mathbb{R}^n} \phi(x)$$

subject to $c(x) = 0$

Penalty function

$$P(x, \rho_k) = \phi(x) + \frac{1}{2}\rho_k ||c(x)||^2$$

• Penalty parameter $\rho_k \to \infty$

Augmented Lagrangian

$$L(x, y_k, \rho_k) = \phi(x) - y_k^T c(x) + \frac{1}{2} \rho_k \|c(x)\|^2$$

• Lagrange multiplier estimate y_k

 ρ_k can remain finite

Algorithm NCL

A general NLP LANCELOT Our problem XCL NCL Tax Policy AMPL NCL Results Future

A general optimization problem

Algorithm NCL

A general optimization problem

NLP $\min_{x \in \mathbb{R}^n} \phi(x)$ subject to c(x) = 0, $\ell \le x \le u$

- c(x) = 0 includes linear constraints Ax = b
- Bounds on the variables x

LANCELOT (1992) solves large-scale optimization problems of this form

• Inequalities $\bar{\ell} \leq c(x) \leq \bar{u}$ are equalities with more variables and bounds:

NLP
$$\begin{array}{l} \underset{x,s}{\text{minimize}} \quad \phi(x) \\ \text{subject to } c(x) - s = 0, \quad \begin{pmatrix} \ell \\ \overline{\ell} \end{pmatrix} \leq \begin{pmatrix} x \\ s \end{pmatrix} \leq \begin{pmatrix} u \\ \overline{u} \end{pmatrix} \end{array}$$

Algorithm NCL

A general NLP

LANCELOT

ICL

ax Policy

MPL NCL

Future

LANCELOT's BCL algorithm for general NLP

Conn, Gould & Toint (1992)

Algorithm NCL

A general NLP LANCELOT Our problem XCL NCL Tax Policy AMPL NCL Results

$$\min \phi(x) \text{ st } c(x) = 0, \ \ell \leq x \leq u$$

BCL subproblems (Bound-Constrained augmented Lagrangian):

BC _k	\min_{x}	$\phi(x) - y_k^T c(x) + \frac{1}{2} \rho_k \ c(x)\ ^2$
	subject to	$\ell \leq x \leq u$

Loop: solve BC_k to get x_k^* decreasing opttol ω_k if $||c(x_k^*)|| \le \eta_k$, $y_{k+1} \leftarrow y_k - \rho_k c(x_k^*)$ decreasing featol η_k else $\rho_{k+1} \leftarrow 10\rho_k$

A general NLP LANCELOT **Our problem** XCL NCL Tax Policy AMPL NCL

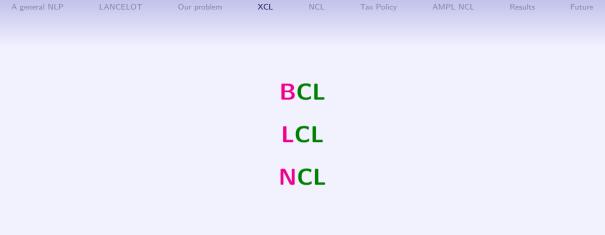
Our optimization problem

 A general NLP
 LANCELOT
 Our problem
 XCL
 NCL
 Tax Policy
 AMPL NCL
 Results
 Future

 Our NLP problem
 NLP
 minimize $\phi(x)$ $\phi(x) \ge 0, \quad \ell \le x \le u$ $e \le 10^{-10}$ $e \le 10^{-10$

- $\phi(x)$ is a smooth nonlinear function
- $c(x) \in \mathbb{R}^m$ is a vector of smooth nonlinear functions
- General bounds
- Many inequalities $c(x) \ge 0$ might not satisfy LICQ at x^*

Example: m = 571,000, n = 150010,000 constraints essentially active: $c_i(x^*) \le 10^{-6}$



Sequence of subproblems minimizing X-constrained (augmented) Lagrangian

BCL LANCELOT Conn, Gould & Toint (1992)

LCLlinearized constraintsRobinson (1972)MINOSMurtagh and S (1982)sLCLKNOSSOSFriedlander (2002)

NCL New form of BCL! Today's talk AMPL loop + IPOPT or KNITRO

A general NLP

Our proble

XCL

NCL T

Tax Policy

AMPL NCL

Futur

Algorithm NCL for general NLP

Algorithm NCL

A general NLP	LANCELOT	Our problem	XCL	NCL	Tax Policy	AMPL NCL	Results	Future
		١	VCL su	bprobl	ems			
	NLP		mize ϕ ect to c		$\ell \leq x \leq u$	I		

A general NLP	LANCELOT	Our problem	XCL	NCL	Tax Policy	AMPL NCL	Results	Future			
	NCL subproblems										

NLP
$$\min_{x} \min_{x} \phi(x)$$

subject to $c(x) = 0$, $\ell \le x \le u$

LANCELOT-type subproblems:

$$\begin{array}{ll} \mathsf{BC}_k & \underset{x}{\text{minimize}} & L(x, y_k, \rho_k) = \phi(x) - y_k^{\mathsf{T}} c(x) + \frac{1}{2} \rho_k \| c(x) \|^2 \\ & \text{subject to} & \ell \leq x \leq u \end{array}$$

A general NLP LANCELOT Our problem XCL NCL Tax Policy AMPL NCL Results Future

NCL subproblems

NLP
$$\min_{x} \det \phi(x)$$

subject to $c(x) = 0$, $\ell \le x \le u$

LANCELOT-type subproblems:

$$\begin{array}{ll} \mathsf{BC}_k & \underset{x}{\text{minimize}} & L(x, y_k, \rho_k) = \phi(x) - y_k^{\mathsf{T}} c(x) + \frac{1}{2} \rho_k \| c(x) \|^2 \\ & \text{subject to} & \ell \leq x \leq u \end{array}$$

Introduce r = -c(x):

NC_k
subject to
$$c(x) + r = 0$$
, $\ell \le x \le u$

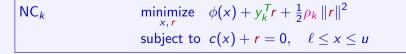
Free vars *r* make the nonlinear constraints independent and feasible

Algorithm NCL

4th Bay Area Optimization Meeting, Stanford, May 19, 2018

Solvers happy!

A general NLP	LANCELOT	Our problem	XCL	NCL	Tax Policy	AMPL NCL	Results	Future
		Ν	ICL su	bproble	ems			
	NLP	mini	mize ϕ	(x)				
		subje	ect to c	(x)=0,	$\ell \leq x \leq \iota$	I		



Free vars *r* make the nonlinear constraints independent and feasible

Solvers happy!

Algorithm NCL

A general NLP	LANCELOT	Our problem	XCL	NCL	Tax Policy	AMPL NCL	Results	Future			
	NCL subproblems for our problem										
	NLP	mini	mize ϕ	(x)							

subject to $c(x) \ge 0$, $\ell \le x \le u$

$$\begin{array}{|c|c|c|c|} \mathsf{NC}_k & \underset{x,r}{\text{minimize}} & \phi(x) + y_k^T r + \frac{1}{2}\rho_k \|r\|^2 \\ & \text{subject to } c(x) + r \ge 0, \quad \ell \le x \le u \end{array}$$

Free vars **r** make the nonlinear constraints independent and feasible

х

Solvers happy!

Algorithm NCL

Subproblems for convex QP

Chris Maes, ICME PhD thesis (2010) QPBLUR

$\begin{aligned} \mathsf{QP}_k & \underset{x,r}{\text{minimize}} \quad \phi(x) + y_k^T r + \frac{1}{2} \rho_k \|r\|^2 \\ \text{subject to} \quad Ax + r = b, \quad \ell \le x \le u \end{aligned}$

Free vars r make the constraints independent and feasible

Solvers happy!

Algorithm NCL

Tax Policy

Optimal Tax Policy

Kenneth Judd and Che-Lin Su 2011

Algorithm NCL

A general NLP LANCELOT Our problem XCL NCL **Tax Policy** AMPL NCL Results Futu

Optimal tax policy

TAX maximize_{c,y}
$$\sum_{i} \lambda_{i} U^{i}(c_{i}, y_{i})$$

subject to $U^{i}(c_{i}, y_{i}) - U^{i}(c_{j}, y_{j}) \ge 0$ for all i, j (*)
 $\lambda^{T}(y - c) \ge 0$
 $c, y \ge 0$

where c_i and y_i are the consumption and income of taxpayer *i*, and λ is a vector of positive weights. The utility functions $U^i(c_i, y_i)$ are each of the form

$$U(c,y) = \frac{(c-\alpha)^{1-1/\gamma}}{1-1/\gamma} - \psi \frac{(y/w)^{1/\eta+1}}{1/\eta+1}$$

where w is the wage rate and α , γ , ψ and η are taxpayer heterogeneities

(*) = incentive-compatibility or self-selection constraints (zillions of them)

Algorithm NCL

Optimal tax policy

More precisely,

$$U^{i,j,k,g,h}(c_{p,q,r,s,t}, y_{p,q,r,s,t}) = \frac{(c_{p,q,r,s,t} - \alpha_k)^{1 - 1/\gamma_h}}{1 - 1/\gamma_h} - \psi_g \frac{(y_{p,q,r,s,t}/w_i)^{1/\eta_j + 1}}{1/\eta_j + 1}$$

where (i, j, k, g, h) and (p, q, r, s, t) run over 5 dimensions:

na	wage types	= 5	21
nb	elasticities of labor supply	= 3	3
nc	basic need types	= 3	3
nd	levels of distaste for work	= 2	2
ne	elasticities of demand for consumption	= 2	2
T =	$\mathit{na} imes \mathit{nb} imes \mathit{nc} imes \mathit{nd} imes \mathit{ne}$	= 180	756
m =	T(T-1) nonlinear constraints	= 32220	570780
<i>n</i> =	2T variables	= 360	1512

AMPL model

TAX	$maximize_{c,y}$	$\sum_i \lambda_i U^i(c_i, y_i)$	
	subject to	$U^i(c_i, y_i) - U^i(c_j, y_j) \geq 0$	for all i, j
		$\lambda^{\mathcal{T}}(y-c) \geq 0$	
		$c, y \geq 0$	

```
Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
    !(i=p and j=q and k=r and g=s and h=t)}:
    (c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])
    - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]
    - (c[p,q,r,s,t] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])
    + psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]
    >= 0;
```

Technology:

sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]*(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;

Algorithm NCL

Piecewise-smooth extension

```
Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
          !(i=p and i=g and k=r and g=s and h=t)}:
   (if c[i,j,k,g,h] - alpha[k] >= epsilon then
      (c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])
       - psi[g]*(v[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]
    else
          0.5/gamma[h] *epsilon^{(-1/gamma[h]-1)}(c[i,j,k,g,h] - alpha[k])^2
       _
       + (1+1/gamma[h])*epsilon^(-1/gamma[h])*(c[i,j,k,g,h] - alpha[k])
       + (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])
       - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]
   )
- (if c[p,q,r,s,t] - alpha[k] >= epsilon then
      . . .
   ) >= 0:
```

A general NLP	LAN	ICELOT	Our pro	blem X0	CL NC	L Tax Policy	AN	IPL NCL	Results	F	uture
		9	SNOP	T on pr	oblem	TAX (1st d	lerivs)			
						m = 32220 I					
Major	Minors	Step	nCon	Feasible	Optimal	MeritFunction	n nS	condHz	Penalty		
0	866		1	(3.7E-15)	4.9E-04	4.1745522E+0	2 4	4.1E+08	1.0E+04 .	_ r	t
1	503	2.7E-02	6	(3.6E-15)	6.5E-02	4.1746922E+0	2 24	3.2E+05	1.0E+04 .	_n r	t
2	134	1.0E-01	11	(1.4E-07)	2.7E-05	4.1755749E+0	28	2.6E+09	1.8E+06 .	s	
3	313	9.8E-02	16	(1.4E-07)	8.9E-05	4.1764438E+0	2 43	1.0E+07	1.8E+06	_	
4	153	2.8E-02	21	(5.5E-08)	1.8E-04	4.1767129E+0	2 35	2.2E+04	1.8E+06	_	
5	103	2.2E-02	26	(5.4E-08)	9.5E-04	4.1769616E+0	2 34	6.7E+07	1.8E+06	-	
194	20011	1.0E+00	795	8.6E-01	9.7E-01	2.8330244E+2	1 0	1 95+01	3.5E+13	~	it
										-	
195		1.1E-04	800	8.6E-01	1.0E+00	2.6326936E+2		1.46+02	1.1E+15 .		
195	3314		800	8.6E-01	1.0E+00	2.8661156E+2	_		1.0E+04 .		
195	4439		800	8.6E-01	9.9E-01	2.8661156E+2	2		1.0E+04 .	n r	it
GNUD	IB EXIT	40	torming	atod after	numerica	l difficulties	e				
							6				
SNUP.	TB INFO	41	current	t point ca	mot be 1	шртолед					

IPOPT on problem TAX (2nd derivs)

na, nb, nc, nd, ne = 5, 3, 3, 2, 2 m = 32220 n = 360

This is Ipopt version 3.12.4, running with linear solver mumps.

it	er	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
	0	-4.1745522e+02	2 0.00e+00	2.52e+00	-1.0	0.00e+00) –	0.00e+00	0.00e+00	0
	1	-4.1734473e+0	2 6.18e-03	7.36e+00	-1.0	1.34e+00) –	7.69e-01	2.05e-01f	1
	2	-4.1682694e+0	2 4.93e-03	1.78e+01	-1.0	5.48e+00) –	2.23e-01	1.34e-01f	1
	10	-4.1428766e+0	2 1.22e-03	1.50e+04	-1.0	3.01e-01	0.6	4.75e-01	5.39e-01h	1
1	60	-4.1641067e+0	2 0.00e+00	1.50e-03	3 -3.8	1.25e-01	_	1.00e+00	1.00e+00f	1
4	49r	-4.1630403e+0	2 1.13e-05	2.79e-05	5 -8.1	2.92e-01	. –	1.00e+00	9.77e-01h	1
				(s	caled)			(unscale	ed)	
Du	al	infeasibility	:	1.1130803	85886957	777e+00	1.11	3080358869	95777e+00	
Co	nst	raint violatio	on:	0.000000	0000000	000e+00	0.00	0000000000	00000e+00	
Co	mpl	ementarity	:	1.3412941	119075	164e-08	1.34	1294111907	75164e-08	
Algorithm N	Algorithm NCL 4th Bay Area Optimization Meeting, Stanford, May 19, 2018									

24/47

A general NLP

LANCELOT on problem TAX (2nd derivs)

na, nb, nc, nd, ne = 5, 3, 3, 2, 2 m = 32220 n = 360

k	rhok	omegak	etak	ОЪј	itns	CGit	TRradius	active
1	1.0e+1	1.0e-1	1.0e-1	-417.455	18	12000	4.1e-01	2831
2	1.0e+1	1.0e-2	1.2e-2	-421.606	39	9000	1.6e-01	2568
3	1.0e+2	1.0e-2	7.9e-2	-421.011	23	11000	2.4e-01	1662
4	1.0e+2	1.0e-4	1.3e-3	-420.188	282	104000	8.6e-02	1444
5	1.0e+3	1.0e-3	6.3e-2	-419.967	134	64000	5.7e-02	1004
6	1.0e+3	1.0e-6	1.3e-4	-419.819	198	156000	3.1e-02	901
7	1.0e+4	1.0e-4	5.0e-2	-419.741	300	308000	3.1e-12	710
8	1.0e+4	1.0e-6	1.3e-5	-419.698	327	623000	5.5e-04	709
9	1.0e+5	1.0e-5	4.0e-2	-419.682	253	724000	4.7e-03	653
10	1.0e+5	1.0e-6	1.3e-6	-419.676	154	1031000	4.2e-11	663
11	1.0e+6	1.0e-6	3.2e-2					

1970 iterations, 8 hours CPU on NEOS

Algorithm NCL

A general NLP LANCELOT Our problem XCL NCL Tax Policy

AMPL NCL

Resul

Future

AMPL implementation of NCL

Algorithm NCL

pTax5Dnclipopt.run

reset; model pTax5Dinitial.run;

reset; model pTax5Dncl.mod; data pTax5Dncl.dat; data; var include p5Dinitial.dat;

model; option solver ipopt; option show_stats 1; option ipopt_options 'dual_inf_tol=1e-6 max_iter=5000';

```
A general NLP
```

AMPL NCL R

Future

pTax5Dnclipopt.run

option opt2 \$ipopt_options ' warm_start_init_point=yes';

```
for {K in 1..kmax}
{
    if K == 2 then {option ipopt_options $opt2 ' mu_init=1e-4'};
    if K == 4 then {option ipopt_options $opt2 ' mu_init=1e-5'};
    if K == 6 then {option ipopt_options $opt2 ' mu_init=1e-6'};
    if K == 8 then {option ipopt_options $opt2 ' mu_init=1e-7'};
    if K ==10 then {option ipopt_options $opt2 ' mu_init=1e-8'};
```

solve;

```
let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:
    !(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);
let rmin := ...
let rnorm := max(abs(rmax), abs(rmin)); # ||r||_inf
if rnorm <= rtol then { printf "Stopping: rnorm is small\n"; break; }</pre>
```

Algorithm NCL

pTax5Dnclipopt.run

$\text{if } \|\boldsymbol{r}_k^*\| \leq \eta_k, \, y_{k+1} \leftarrow y_k + \rho_k \boldsymbol{r}_k^*$

```
if rnorm <= etak then # update dual estimate dk; save new solution
{let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:
      !(i=p and j=q and k=r and g=s and h=t)}
      dk[i,j,k,g,h,p,q,r,s,t] :=
      dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];
let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];
let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];
if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }
let etak := max(etak*etafac, etamin);</pre>
```

Algorithm NCL

}

pTax5Dnclipopt.run

else $\rho_{k+1} \leftarrow 10\rho_k$

```
else # keep previous solution; increase rhok
{ let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];
    let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];
```

```
if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }
let rhok := min(rhok*rhofac, rhomax);
}
```

```
} # end main loop
```

A general NLP

Our proble

XCL

CL

ax Policy

AMPL NCL

Future

Results

Numerical results

Algorithm NCL

L NCL

Results

Future

Interior Methods (IPMs)

FOLKLORE: We don't know how to warm-start IPMs

Results

Interior Methods (IPMs)

FOLKLORE: We don't know how to warm-start IPMs

NCL:

• Sequence of related problems

Algorithm NCL

Results

Future

Interior Methods (IPMs)

FOLKLORE: We don't know how to warm-start IPMs

NCL:

- Sequence of related problems
- Only the objective changes

Results

Future

Interior Methods (IPMs)

FOLKLORE: We don't know how to warm-start IPMs

NCL:

- Sequence of related problems
- Only the objective changes
- Many extra variables r

Future

Interior Methods (IPMs)

FOLKLORE: We don't know how to warm-start IPMs

NCL:

- Sequence of related problems
- Only the objective changes
- Many extra variables r
- r stabilizes iterations, doesn't affect sparsity of factorizations

Futu

Results

Interior Methods (IPMs)

FOLKLORE: We don't know how to warm-start IPMs

NCL:

- Sequence of related problems
- Only the objective changes
- Many extra variables r
- r stabilizes iterations, doesn't affect sparsity of factorizations

Maybe warm starts are practical after all!

Algorithm NCL

IPOPT warm_start_init_point=yes mu_init=1e-4 (1e-5, ..., 1e-8)

Results

NCL/IPOPT on problem TAX

$$na, nb, nc, nd, ne = 5, 3, 3, 2, 2$$
 $m = 32220$ $n = 360$

k	$ ho_k$	η_k	$\ r_k^*\ _{\infty}$	$\phi(x_k^*)$	mu_init	ltns	Time
1	10^{2}	10^{-2}	7.0e-03	-4.2038075e+02	10^{-1}	95	41.1
2	10^{2}	10^{-3}	4.1e-03	-4.2002898e+02	10^{-4}	17	7.2
3	10^{3}	10^{-3}	1.3e-03	-4.1986069e+02	10^{-4}	20	8.1
4	10^{4}	10^{-3}	4.4e-04	-4.1972958e+02	10^{-4}	48	25.0
5	10^{4}	10^{-4}	2.2e-04	-4.1968646e+02	10^{-4}	43	20.5
6	10^{5}	10^{-4}	9.8e-05	-4.1967560e+02	10^{-4}	64	32.9
7	10^{5}	10^{-5}	6.6e-05	-4.1967177e+02	10^{-4}	57	26.8
8	10^{6}	10^{-5}	4.2e-06	-4.1967150e+02	10^{-4}	87	46.2
9	10^{6}	10^{-6}	9.4e-07	-4.1967138e+02	10^{-4}	96	53.6

527 iterations, 5 mins CPU

Results

Future

NCL/IPOPT on problem TAX

$$na, nb, nc, nd, ne = 5, 3, 3, 2, 2$$
 $m = 32220$ $n = 360$

k	$ ho_k$	η_k	$\ r_k^*\ _{\infty}$	$\phi(x_k^*)$	mu_init	ltns	Time
1	10^{2}	10^{-2}	7.0e-03	-4.2038075e+02	10^{-1}	95	40.8
2	10^{2}	10^{-3}	4.1e-03	-4.2002898e+02	10^{-4}	17	7.0
3	10^{3}	10^{-3}	1.3e-03	-4.1986069e+02	10^{-4}	20	8.5
4	10^{4}	10^{-3}	4.4e-04	-4.1972958e+02	10^{-5}	57	32.6
5	10^{4}	10^{-4}	2.2e-04	-4.1968646e+02	10^{-5}	29	14.6
6	10^{5}	10^{-4}	9.8e-05	-4.1967560e+02	10^{-6}	36	18.7
7	10^{5}	10^{-5}	3.9e-05	-4.1967205e+02	10^{-6}	35	19.7
8	10^{6}	10^{-5}	4.2e-06	-4.1967150e+02	10^{-7}	18	7.7
9	10^{6}	10^{-6}	9.4e-07	-4.1967138e+02	10^{-7}	15	6.8

322 iterations, 3 mins CPU

Results

NCL/IPOPT on problem TAX

$$na, nb, nc, nd, ne = 5, 3, 3, 2, 2$$
 $m = 32220$ $n = 360$

Constraints within tol of being active: $c_i(x) \leq tol$

	tol	count	count / n	
	10^{-10}	548	1.5	
	10^{-9}	550	1.5	
	10^{-8}	591	1.6	
	10^{-7}	890	2.5	
\rightarrow	10^{-6}	1104	3.1 ←	About 3 <i>n</i> active constraints
	10^{-5}	1225	3.4	
	10^{-4}	1301	3.6	
	10^{-3}	1655	4.6	
	10^{-2}	3483	9.7	
	10^{-1}	10280	28.6	

Future

Results

NCL/IPOPT bigger example

na, nb, nc, nd, ne = 21, 3, 3, 2, 2 m = 570780 n = 1512

k	ρ_k	η_k	$\ r_k^*\ _{\infty}$	$\phi(x_k^*)$	mu_init	ltns	Time
1	10 ²	10^{-2}	5.1e-03	-1.7656816e+03	10^{-1}	825	7763
2	10^{2}	10^{-3}	2.4e-03	-1.7648480e+03	10^{-4}	66	473
3	10 ³	10^{-3}	1.3e-03	-1.7644006e+03	10^{-4}	106	771
4	10^{4}	10^{-3}	3.8e-04	-1.7639491e+03	10^{-5}	132	1347
5	10^4	10^{-4}	3.2e-04	-1.7637742e+03	10^{-5}	229	2451
6	10^{5}	10^{-4}	8.6e-05	-1.7636804e+03	10^{-6}	104	1097
7	10^{5}	10^{-5}	4.9e-05	-1.7636469e+03	10^{-6}	143	1633
8	10^{6}	10^{-5}	1.5e-05	-1.7636252e+03	10^{-7}	71	786
9	10^{7}	10^{-5}	2.8e-06	-1.7636196e+03	10^{-7}	67	726
10	10^{7}	10^{-6}	5.1e-07	-1.7636187e+03	10^{-8}	18	171

1761 iterations, 5 hours CPU

Results

NCL/IPOPT bigger example

na, nb, nc, nd, ne = 21, 3, 3, 2, 2 m = 570780 n = 1512

Constraints within tol of being active: $c_i(x) \leq tol$

	tol	count	count/n	
	10^{-10}	3888	2.6	
	10^{-9}	3941	2.6	
	10^{-8}	4430	2.9	
	10^{-7}	7158	4.7	
\rightarrow	10^{-6}	10074	6.6 ←	pprox 6.6 <i>n</i> active constraints
	10^{-5}	11451	7.6	
	10^{-4}	13109	8.7	
	10^{-3}	23099	15.3	
	10^{-2}	66361	43.9	
	10^{-1}	202664	134.0	

Warm-start options for Nonlinear Interior Methods

IPOPT	warm_start_init_point=yes			
	mu_init=1e-4	(1e-5,	,	1e-8)

KNITRO	algorithm=1	Thanks, Richard Waltz!
	bar_directinterval=0	
	bar_initpt=2	
	bar_murule=1	
	bar_initmu=1e-4	(1e-5,, 1e-8)
	bar_slackboundpush=1e-4	(1e-5,, 1e-8)

A general NLP LANCELOT Our problem XCL NCL Tax Policy AMPL NCL Results Future Comparison of IPOPT, KNITRO, NCL (2nd derivs) na = increasing nb = 3 nc = 3 nd = 2 ne = 2

	na = increasing $nb = 3$ $nc = 3$ $nd = 2$ $ne = 2$									
			IPC	IPOPT KNITRO		NCL/	IPOPT	NCL/I	KNITRO	
na	т	п	itns	time	itns	time	itns	time	itns	time
5	32220	360	449	217	168	53	322	146	2320	8.0mins
9	104652	648	> 98*	> 360*	928	825	655	1023	9697	1.9hrs
11	156420	792	> 87*	$\infty!$	2769	4117	727	1679	26397	7.0hrs
17	373933	1224			2598	11447	1021	6347		
21	570780	1512					1761	17218	45039	1.9 days

Warm starts

*duals diverge MUMPS needs more mem !Loop Cold starts

Results

NCL/KNITRO with Warm Starts

na = increasing $nb = 3$ $nc = 3$ $nd = 2$ $ne = 2$										
			IPC)PT	KNI	TRO	NCL/	IPOPT	NCL/K	NITRO
na	т	п	itns	time	itns	time	itns	time	itns	time
5	32220	360	449	217	168	53	322	146	339	63
9	104652	648	> 98*	> 360*	928	825	655	1023	307	239
11	156420	792	> 87*	$\infty!$	2769	4117	727	1679	383	420
17	373933	1224			2598	11447	1021	6347	486	1200
21	570780	1512					1761	17218	712	2880

Warm starts Warm starts

Future

Related work

- C. M. Maes, A Regularized Active-Set Method for Sparse Convex Quadratic Programming. PhD thesis, ICME, Stanford University, 2010.
- M. P. Friedlander and D. Orban, A primal-dual regularized interior-point method for convex quadratic programs. Math. Prog. Comp., 4(1):71–107, 2012.
- S. Arreckx and D. Orban, A regularized factorization-free method for equality-constrained optimization, Technical Report GERAD G-2016-65, GERAD, Montréal, QC, Canada, 2016, doi:10.13140/RG.2.2.20368.00007.
- P. E. Gill, V. Kungurtsev, and D. P. Robinson, A stabilized SQP method: global convergence, IMA J. Numer. Anal., 37 (2017), 407–443.
- P. E. Gill, V. Kungurtsev, and D. P. Robinson, A stabilized SQP method: superlinear convergence, Math. Program., Ser. A, 163 (2017), 369–410.
- O. Hinder and Y. Ye, A one-phase IPM for nonconvex optimization, Oliver's MS&E PhD thesis (2018).

Algorithm NCL

Our proble

XCL

CL .

Fax Policy

AMPL NCL

Future

A future possibility AMPL + IPM + 2nd derivatives

Algorithm NCL

KNOSSOS via AMPL + IPM?

Stablized LCL (Friedlander and S, 2005) is equivalent to a BCL method:

ELC _k	\min_{x}	$L(x, y_k, \rho_k) + \sigma_k \ \bar{c}_k(x)\ _1$
	subject to	$\ell \leq x \leq u$

• $\bar{c}_k(x) =$ linear approximation to c(x) at x_k

(MINOS has very big σ_k)

Algorithm NCL

KNOSSOS via AMPL + IPM?

Stablized LCL (Friedlander and S, 2005) is equivalent to a BCL method:

ELC _k	\min_{x}	$L(x, y_k, \rho_k) + \sigma_k \ \bar{c}_k(x)\ _1$
	subject to	$\ell \leq x \leq u$

• $\bar{c}_k(x) =$ linear approximation to c(x) at x_k

(MINOS has very big σ_k)

ELC_k''	$\underset{x, v, w}{minimize}$	$M_k(x, v, w) + \sigma_k e^T(v + w)$	
	subject to	$ar{c}_k(x) + v - w = 0, \ell \leq x \leq u,$	$v,w\geq 0$

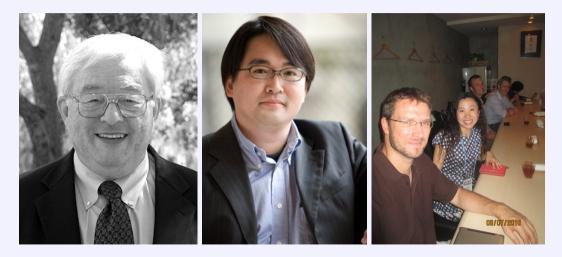
M_k = modified augmented Lagrangian d_k(x, v, w) = c(x) - c̄_k(x) - v + w
 IPOPT, KNITRO, ... won't mind the extra elastic variables v, w

- LANCELOT: Andy Conn, Nick Gould, Philippe Toint
- AMPL 20180115: Bob Fourer, Dave Gay
- IPOPT 3.12.4: Andreas Wächter, Carl Laird
- KNITRO 10.3.0: Richard Waltz, Jorge Nocedal, Todd Plantenga, Richard Byrd
- Coauthors: Ken Judd, Che-Lin Su, Ding Ma, Dominique Orban
- Yuja Wang, YouTube

A general NLP XCL AMPL NCL

Future

Coauthors Ken, Che-Lin, Dominique, Ding



AMPL NCL

Results

Future

YouTube companion Yuja Wang

Algorithm NCL