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Abstract

Standard optimization solvers have difficulty if the active-constraint gradients are
not independent at a solution. For example, problems of the form

min f (x) st c(x) ≥ 0 (m constraints and n variables)

may have more than n constraints active at a solution. Such problems arise in the
modeling of tax policy (with perhaps millions of constraints and thousands of variables).

Algorithm NCL solves a sequence of about 10 augmented Lagrangian subproblems
with constraints c(x) + r ≥ 0. The extra variables r make the constraints linearly
independent, and the subproblem solutions converge to the required solution as r is
driven to zero. Assuming second derivatives are available, NCL expands the use of
interior methods for large-scale optimization.
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Optimization

UCO minimize
x∈Rn

φ(x)

φ(x) is a smooth nonlinear function

∇φ(x) known: Quasi-Newton method

∇2φ(x) known: Newton’s method

NCO minimize
x∈Rn

φ(x)

subject to c(x) = 0

c(x) ∈ Rm is a vector of smooth nonlinear functions
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Constrained Optimization

NCO minimize
x∈Rn

φ(x)

subject to c(x) = 0

Penalty function

P(x , ρk) = φ(x) + 1
2ρk ‖c(x)‖2

Penalty parameter ρk →∞

Augmented Lagrangian

L(x , yk , ρk) = φ(x)− yTk c(x) + 1
2ρk ‖c(x)‖2

Lagrange multiplier estimate yk ρk can remain finite
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A general optimization problem
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A general optimization problem

NLP minimize
x∈Rn

φ(x)

subject to c(x) = 0, ` ≤ x ≤ u

c(x) = 0 includes linear constraints Ax = b

Bounds on the variables x

LANCELOT (1992) solves large-scale optimization problems of this form

Inequalities ¯̀≤ c(x) ≤ ū are equalities with more variables and bounds:

NLP minimize
x , s

φ(x)

subject to c(x)− s = 0,

(
`
¯̀

)
≤
(
x
s

)
≤
(
u
ū

)
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LANCELOT’s BCL algorithm
for general NLP

Conn, Gould & Toint (1992)
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LANCELOT

minφ(x) st c(x) = 0, ` ≤ x ≤ u

BCL subproblems (Bound-Constrained augmented Lagrangian):

BCk minimize
x

φ(x)− yTk c(x) + 1
2ρk ‖c(x)‖2

subject to ` ≤ x ≤ u

Loop: solve BCk to get x∗k decreasing opttol ωk

if ‖c(x∗k )‖ ≤ ηk , yk+1 ← yk − ρkc(x∗k ) decreasing featol ηk
else ρk+1 ← 10ρk
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Our optimization problem
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Our NLP problem

NLP minimize
x∈Rn

φ(x)

subject to c(x) ≥ 0, ` ≤ x ≤ u

φ(x) is a smooth nonlinear function

c(x) ∈ Rm is a vector of smooth nonlinear functions

General bounds

Many inequalities c(x) ≥ 0 might not satisfy LICQ at x∗

Example: m = 571, 000, n = 1500
10,000 constraints essentially active: ci (x

∗) ≤ 10−6
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BCL

LCL

NCL

Sequence of subproblems minimizing
X-constrained (augmented) Lagrangian
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BCL LANCELOT Conn, Gould & Toint (1992)

LCL linearized constraints Robinson (1972)

MINOS Murtagh and S (1982)

sLCL KNOSSOS Friedlander (2002)

NCL New form of BCL! Today’s talk

AMPL loop + IPOPT or KNITRO
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Algorithm NCL
for general NLP
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NCL subproblems

NLP minimize
x

φ(x)

subject to c(x) = 0, ` ≤ x ≤ u

LANCELOT-type subproblems:

BCk minimize
x

L(x , yk , ρk) = φ(x)− yTk c(x) + 1
2ρk ‖c(x)‖2

subject to ` ≤ x ≤ u

Introduce r = −c(x):

NCk minimize
x , r

φ(x) + yTk r + 1
2ρk ‖r‖

2

subject to c(x) + r = 0, ` ≤ x ≤ u

Free vars r make the nonlinear constraints independent and feasible Solvers happy!
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NCL subproblems for our problem

NLP minimize
x

φ(x)

subject to c(x) ≥ 0, ` ≤ x ≤ u

NCk minimize
x , r

φ(x) + yTk r + 1
2ρk ‖r‖

2

subject to c(x) + r ≥ 0, ` ≤ x ≤ u

Free vars r make the nonlinear constraints independent and feasible Solvers happy!
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Subproblems for convex QP

QP minimize
x

φ(x)

subject to Ax = b, ` ≤ x ≤ u

Chris Maes, ICME PhD thesis (2010) QPBLUR

QPk minimize
x , r

φ(x) + yTk r + 1
2ρk ‖r‖

2

subject to Ax + r = b, ` ≤ x ≤ u

Free vars r make the constraints independent and feasible Solvers happy!
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Optimal Tax Policy

Kenneth Judd and Che-Lin Su 2011
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Optimal tax policy

TAX maximizec, y
∑

i λiU
i (ci , yi )

subject to U i (ci , yi )− U i (cj , yj) ≥ 0 for all i , j (∗)
λT (y − c) ≥ 0

c, y ≥ 0

where ci and yi are the consumption and income of taxpayer i , and λ is a vector of
positive weights. The utility functions U i (ci , yi ) are each of the form

U(c , y) =
(c − α)1−1/γ

1− 1/γ
− ψ (y/w)1/η+1

1/η + 1

where w is the wage rate and α, γ, ψ and η are taxpayer heterogeneities

(∗) = incentive-compatibility or self-selection constraints (zillions of them)
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Optimal tax policy
More precisely,

U i ,j ,k,g ,h(cp,q,r ,s,t , yp,q,r ,s,t) =
(cp,q,r ,s,t − αk)1−1/γh

1− 1/γh
− ψg

(yp,q,r ,s,t/wi )
1/ηj+1

1/ηj + 1

where (i , j , k , g , h) and (p, q, r , s, t) run over 5 dimensions:

na wage types = 5 21
nb elasticities of labor supply = 3 3
nc basic need types = 3 3
nd levels of distaste for work = 2 2
ne elasticities of demand for consumption = 2 2

T = na× nb × nc × nd × ne = 180 756
m = T (T − 1) nonlinear constraints = 32220 570780
n = 2T variables = 360 1512
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AMPL model

TAX maximizec, y
∑

i λiU
i (ci , yi )

subject to U i (ci , yi )− U i (cj , yj) ≥ 0 for all i , j
λT (y − c) ≥ 0

c, y ≥ 0

Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)}:

(c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

- (c[p,q,r,s,t] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

+ psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]

>= 0;

Technology:

sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]*(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;
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Piecewise-smooth extension

Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)}:

(if c[i,j,k,g,h] - alpha[k] >= epsilon then

(c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

else

- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])^2

+ (1+1/gamma[h])*epsilon^(-1/gamma[h] )*(c[i,j,k,g,h] - alpha[k])

+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

)

- (if c[p,q,r,s,t] - alpha[k] >= epsilon then

...

) >= 0;
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SNOPT on problem TAX (1st derivs)

na, nb, nc, nd , ne = 5, 3, 3, 2, 2 m = 32220 n = 360

Major Minors Step nCon Feasible Optimal MeritFunction nS condHz Penalty

0 866 1 (3.7E-15) 4.9E-04 4.1745522E+02 4 4.1E+08 1.0E+04 _ r t

1 503 2.7E-02 6 (3.6E-15) 6.5E-02 4.1746922E+02 24 3.2E+05 1.0E+04 _n r t

2 134 1.0E-01 11 (1.4E-07) 2.7E-05 4.1755749E+02 8 2.6E+09 1.8E+06 _s

3 313 9.8E-02 16 (1.4E-07) 8.9E-05 4.1764438E+02 43 1.0E+07 1.8E+06 _

4 153 2.8E-02 21 (5.5E-08) 1.8E-04 4.1767129E+02 35 2.2E+04 1.8E+06 _

5 103 2.2E-02 26 (5.4E-08) 9.5E-04 4.1769616E+02 34 6.7E+07 1.8E+06 _

194 30811 1.0E+00 795 8.6E-01 9.7E-01 2.8330244E+21 2 1.8E+01 3.5E+13 _n it

195 1819 1.1E-04 800 8.6E-01 1.0E+00 2.6326936E+22 3 1.4E+02 1.1E+15 _n R it

195 3314 800 8.6E-01 1.0E+00 2.8661156E+22 1.0E+04 _n r it

195 4439 800 8.6E-01 9.9E-01 2.8661156E+22 1.0E+04 _n r it

SNOPTB EXIT 40 -- terminated after numerical difficulties

SNOPTB INFO 41 -- current point cannot be improved
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IPOPT on problem TAX (2nd derivs)

na, nb, nc, nd , ne = 5, 3, 3, 2, 2 m = 32220 n = 360

This is Ipopt version 3.12.4, running with linear solver mumps.

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 -4.1745522e+02 0.00e+00 2.52e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 -4.1734473e+02 6.18e-03 7.36e+00 -1.0 1.34e+00 - 7.69e-01 2.05e-01f 1

2 -4.1682694e+02 4.93e-03 1.78e+01 -1.0 5.48e+00 - 2.23e-01 1.34e-01f 1

10 -4.1428766e+02 1.22e-03 1.50e+04 -1.0 3.01e-01 0.6 4.75e-01 5.39e-01h 1

160 -4.1641067e+02 0.00e+00 1.50e-03 -3.8 1.25e-01 - 1.00e+00 1.00e+00f 1

449r-4.1630403e+02 1.13e-05 2.79e-05 -8.1 2.92e-01 - 1.00e+00 9.77e-01h 1

(scaled) (unscaled)

Dual infeasibility......: 1.1130803588695777e+00 1.1130803588695777e+00

Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00

Complementarity.........: 1.3412941119075164e-08 1.3412941119075164e-08
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LANCELOT on problem TAX (2nd derivs)

na, nb, nc, nd , ne = 5, 3, 3, 2, 2 m = 32220 n = 360

k rhok omegak etak Obj itns CGit TRradius active

1 1.0e+1 1.0e-1 1.0e-1 -417.455 18 12000 4.1e-01 2831

2 1.0e+1 1.0e-2 1.2e-2 -421.606 39 9000 1.6e-01 2568

3 1.0e+2 1.0e-2 7.9e-2 -421.011 23 11000 2.4e-01 1662

4 1.0e+2 1.0e-4 1.3e-3 -420.188 282 104000 8.6e-02 1444

5 1.0e+3 1.0e-3 6.3e-2 -419.967 134 64000 5.7e-02 1004

6 1.0e+3 1.0e-6 1.3e-4 -419.819 198 156000 3.1e-02 901

7 1.0e+4 1.0e-4 5.0e-2 -419.741 300 308000 3.1e-12 710

8 1.0e+4 1.0e-6 1.3e-5 -419.698 327 623000 5.5e-04 709

9 1.0e+5 1.0e-5 4.0e-2 -419.682 253 724000 4.7e-03 653

10 1.0e+5 1.0e-6 1.3e-6 -419.676 154 1031000 4.2e-11 663

11 1.0e+6 1.0e-6 3.2e-2 ...

1970 iterations, 8 hours CPU on NEOS
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AMPL implementation of NCL
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pTax5Dnclipopt.run

reset; model pTax5Dinitial.run;

reset; model pTax5Dncl.mod;

data pTax5Dncl.dat;

data; var include p5Dinitial.dat;

model; option solver ipopt;

option show_stats 1;

option ipopt_options ’dual_inf_tol=1e-6 max_iter=5000’;
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pTax5Dnclipopt.run

option opt2 $ipopt_options ’ warm_start_init_point=yes’;

for {K in 1..kmax}

{ if K == 2 then {option ipopt_options $opt2 ’ mu_init=1e-4’};

if K == 4 then {option ipopt_options $opt2 ’ mu_init=1e-5’};

if K == 6 then {option ipopt_options $opt2 ’ mu_init=1e-6’};

if K == 8 then {option ipopt_options $opt2 ’ mu_init=1e-7’};

if K ==10 then {option ipopt_options $opt2 ’ mu_init=1e-8’};

solve;

let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

let rmin := ...

let rnorm := max(abs(rmax), abs(rmin)); # ||r||_inf

if rnorm <= rtol then { printf "Stopping: rnorm is small\n"; break; }
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pTax5Dnclipopt.run

if ‖r∗k ‖ ≤ ηk , yk+1 ← yk + ρk r
∗
k

if rnorm <= etak then # update dual estimate dk; save new solution

{let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)}

dk[i,j,k,g,h,p,q,r,s,t] :=

dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];

let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];

let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];

if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }

let etak := max(etak*etafac, etamin);

}
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pTax5Dnclipopt.run

else ρk+1 ← 10ρk

else # keep previous solution; increase rhok

{ let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];

if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }

let rhok := min(rhok*rhofac, rhomax);

}

} # end main loop
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Numerical results
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Interior Methods (IPMs)

FOLKLORE: We don’t know how to warm-start IPMs

NCL:

Sequence of related problems

Only the objective changes

Many extra variables r

r stabilizes iterations, doesn’t affect sparsity of factorizations

Maybe warm starts are practical after all!
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Warm-start options for Nonlinear Interior Methods

IPOPT warm start init point=yes

mu init=1e-4 (1e-5, ..., 1e-8)
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NCL/IPOPT on problem TAX

na, nb, nc, nd , ne = 5, 3, 3, 2, 2 m = 32220 n = 360

k ρk ηk ‖r∗k ‖∞ φ(x∗k ) mu init Itns Time

1 102 10−2 7.0e-03 -4.2038075e+02 10−1 95 41.1
2 102 10−3 4.1e-03 -4.2002898e+02 10−4 17 7.2
3 103 10−3 1.3e-03 -4.1986069e+02 10−4 20 8.1
4 104 10−3 4.4e-04 -4.1972958e+02 10−4 48 25.0
5 104 10−4 2.2e-04 -4.1968646e+02 10−4 43 20.5
6 105 10−4 9.8e-05 -4.1967560e+02 10−4 64 32.9
7 105 10−5 6.6e-05 -4.1967177e+02 10−4 57 26.8
8 106 10−5 4.2e-06 -4.1967150e+02 10−4 87 46.2
9 106 10−6 9.4e-07 -4.1967138e+02 10−4 96 53.6

527 iterations, 5 mins CPU
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NCL/IPOPT on problem TAX

na, nb, nc, nd , ne = 5, 3, 3, 2, 2 m = 32220 n = 360

k ρk ηk ‖r∗k ‖∞ φ(x∗k ) mu init Itns Time

1 102 10−2 7.0e-03 -4.2038075e+02 10−1 95 40.8
2 102 10−3 4.1e-03 -4.2002898e+02 10−4 17 7.0
3 103 10−3 1.3e-03 -4.1986069e+02 10−4 20 8.5
4 104 10−3 4.4e-04 -4.1972958e+02 10−5 57 32.6
5 104 10−4 2.2e-04 -4.1968646e+02 10−5 29 14.6
6 105 10−4 9.8e-05 -4.1967560e+02 10−6 36 18.7
7 105 10−5 3.9e-05 -4.1967205e+02 10−6 35 19.7
8 106 10−5 4.2e-06 -4.1967150e+02 10−7 18 7.7
9 106 10−6 9.4e-07 -4.1967138e+02 10−7 15 6.8

322 iterations, 3 mins CPU
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NCL/IPOPT on problem TAX

na, nb, nc, nd , ne = 5, 3, 3, 2, 2 m = 32220 n = 360

Constraints within tol of being active: ci (x) ≤ tol

tol count count/n

10−10 548 1.5
10−9 550 1.5
10−8 591 1.6
10−7 890 2.5

→ 10−6 1104 3.1 ← About 3n active constraints
10−5 1225 3.4
10−4 1301 3.6
10−3 1655 4.6
10−2 3483 9.7
10−1 10280 28.6
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NCL/IPOPT bigger example

na, nb, nc, nd , ne = 21, 3, 3, 2, 2 m = 570780 n = 1512

k ρk ηk ‖r∗k ‖∞ φ(x∗k ) mu init Itns Time

1 102 10−2 5.1e-03 -1.7656816e+03 10−1 825 7763
2 102 10−3 2.4e-03 -1.7648480e+03 10−4 66 473
3 103 10−3 1.3e-03 -1.7644006e+03 10−4 106 771
4 104 10−3 3.8e-04 -1.7639491e+03 10−5 132 1347
5 104 10−4 3.2e-04 -1.7637742e+03 10−5 229 2451
6 105 10−4 8.6e-05 -1.7636804e+03 10−6 104 1097
7 105 10−5 4.9e-05 -1.7636469e+03 10−6 143 1633
8 106 10−5 1.5e-05 -1.7636252e+03 10−7 71 786
9 107 10−5 2.8e-06 -1.7636196e+03 10−7 67 726
10 107 10−6 5.1e-07 -1.7636187e+03 10−8 18 171

1761 iterations, 5 hours CPU
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NCL/IPOPT bigger example

na, nb, nc, nd , ne = 21, 3, 3, 2, 2 m = 570780 n = 1512

Constraints within tol of being active: ci (x) ≤ tol

tol count count/n

10−10 3888 2.6
10−9 3941 2.6
10−8 4430 2.9
10−7 7158 4.7

→ 10−6 10074 6.6 ← ≈ 6.6n active constraints
10−5 11451 7.6
10−4 13109 8.7
10−3 23099 15.3
10−2 66361 43.9
10−1 202664 134.0
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Warm-start options for Nonlinear Interior Methods

IPOPT warm start init point=yes

mu init=1e-4 (1e-5, ..., 1e-8)

KNITRO algorithm=1 Thanks, Richard Waltz!

bar directinterval=0

bar initpt=2

bar murule=1

bar initmu=1e-4 (1e-5, ..., 1e-8)

bar slackboundpush=1e-4 (1e-5, ..., 1e-8)

Algorithm NCL 4th Bay Area Optimization Meeting, Stanford, May 19, 2018 39/47



A general NLP LANCELOT Our problem XCL NCL Tax Policy AMPL NCL Results Future

Comparison of IPOPT, KNITRO, NCL (2nd derivs)

na = increasing nb = 3 nc = 3 nd = 2 ne = 2
IPOPT KNITRO NCL/IPOPT

na m n itns time itns time itns time

5 32220 360 449 217 168 53 322 146
9 104652 648 > 98* > 360* 928 825 655 1023

11 156420 792 > 87* ∞! 2769 4117 727 1679
17 373933 1224 2598 11447 1021 6347
21 570780 1512 1761 17218

NCL/KNITRO

itns time

2320 8.0mins
9697 1.9hrs

26397 7.0hrs

45039 1.9 days

*duals diverge Warm starts Cold starts
MUMPS needs more mem

!Loop
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NCL/KNITRO with Warm Starts

na = increasing nb = 3 nc = 3 nd = 2 ne = 2
IPOPT KNITRO NCL/IPOPT

na m n itns time itns time itns time

5 32220 360 449 217 168 53 322 146
9 104652 648 > 98* > 360* 928 825 655 1023

11 156420 792 > 87* ∞! 2769 4117 727 1679
17 373933 1224 2598 11447 1021 6347
21 570780 1512 1761 17218

NCL/KNITRO

itns time

339 63
307 239
383 420
486 1200
712 2880

Warm starts Warm starts
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A future possibility
AMPL + IPM + 2nd derivatives
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KNOSSOS via AMPL + IPM?

Stablized LCL (Friedlander and S, 2005) is equivalent to a BCL method:

ELCk minimize
x

L(x , yk , ρk) + σk ‖c̄k(x)‖1
subject to ` ≤ x ≤ u

c̄k(x) = linear approximation to c(x) at xk (MINOS has very big σk)

ELC′′k minimize
x , v ,w

Mk(x , v ,w) + σke
T(v + w)

subject to c̄k(x) + v − w = 0, ` ≤ x ≤ u, v ,w ≥ 0

Mk = modified augmented Lagrangian dk(x , v ,w) = c(x)− c̄k(x)− v + w

IPOPT, KNITRO, . . . won’t mind the extra elastic variables v ,w
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YouTube companion Yuja Wang
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