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Abstract

LSLQ uses the Golub-Kahan process to compute iterates equivalent to
SYMMLQ applied to the normal equation. The norm of the approximate
solution increases, and the error norm decreases. Bounds on the error norm
lead to error bounds for the iterates of LSQR. For an inversion problem
arising in geophysics, LSLQ allows approximate computation of the gradient
of a penalty function that is to be minimized.
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Outline

© CG and SYMMLQ
© Inexact Derivatives in Optimization
© Least-Squares Problems

@ Least-Norm Problems
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SPD Ax = b

SYMMLQ helps bound error Hx - kaH for CG
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Error bounds for CG via SYMMLQ

Improved bound:

(Estrin, Orban, and Saunders, 2019a)
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Motivation:
Inexact Derivatives in Optimization
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Inexact derivatives in optimization

Consider the unconstrained problem

minimize f(x)

where f : R" > R is C2, say.

Trust-region methods require (approximate) solution of subproblems

minimize my(x, +5s) subject to |s| < Ay,
S

where m;, models f around x,. Typically B, ~ sz(xk) and

m(x +5) = F(x) + VF(xi) s + 35 Bys ~ F(x + )

LSLQ ICIAM 2019, Valencia
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What do trust-region methods require of the model?

mi(xx +5) = F(x) + VF(xe) s + %STBkS

The classic requirement is that my(x,) = f(x,) and Vm,(x) = V(x,),
but the TR convergence theory holds if we use g, ~ Vf(x,), where

legx = V(x| < ¢ gl

for some c fixed by the implementation.
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Example 1: PDE-constrained optimization

Van Leeuwen and Herrmann (2013) describe a penalty method for seismic inversion:

mir)Tierize %Hr(u)H2 subject to c(m, u) =0,

where

@ m is the control variable

@ u is the state (wavefields)

@ c¢(m,u) =0 is a discretized PDE

They use a quadratic penalty approach
... 2 2 2
minimize gy(m.u)  dx(m,u) = 3r(w)[? + 3] c(m, u)|

and implicitly eliminate u = u(m) from V¢, (m, u(m)) = 0.

LSLQ ICIAM 2019, Valencia
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Computing the states

In the full-wave inversion problems considered by Van Leeuwen and Herrmann (2013),
u(m) solves a linear least-squares problem.

For an inexact i ~ u(m), it is possible to bound

IV @ (m, u(m)) =V iy (m, )| < const [u(m) — df.

Conclusion: if we knew a least-squares method that allows us to control the error in the
solution, we could iterate until |u(m) — d| < ¢ |V 0\ (m, )]
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LSLQ for Least-Squares Problems

min | Ax — b|
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Least-Squares Problems

Least squares

minimize 1| Ax — b|? m x n (any shape)
x€R
A"Ax = ATb is spd (or semi-definite), consistent

Krylov-type methods seek x; in the k-th Krylov subspace

Ky = Span{Ab, (ATA)A'b, ..., (ATA)*ATh}

On spd systems, CG produces monotonic |x, — x™ |5 (Hestenes and Stiefel, 1952)

Other methods do too: MINRES and SYMMLQ (Paige and Saunders, 1975)
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Names

LSQR is equivalent to CG applied to AAx = A"
LSMR is equivalent to MINRES " i "
LSLQ is equivalent to SYMMLQ 4 " "

We describe LSLQ

LSQR, LSMR, LSLQ converge to the min-length least-squares solution.
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How does the error behave in least squares?

Problems from Hegland (1993)

small: 3140 x 1988 small2: 6280 x 3976
— LSQR 100 N
—— LSMR
10° 4 — LSLQ
—— LSLQ-CG 102 4
@ LSQR point
10t
100 4
1071
1072 4
1073 .
1079 — Lsqr
—— LSMR
107° A 109-6 | = LsLQ
—— LSLQ-CG
@ LSQR point
1077 +— T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 250 300 350

LSQR seems best, but we need LSLQ to provide error bounds
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The Golub and Kahan (1965) process

1: Biup=>b
2 aqvy = ATul
3 for k=1,2,...do
4 BryrUkrr = Avg — gy
5: Qp1Vi1 = ATUk+1 — Brr1vk
oy _
Ba
U, = [ul uk], Vi = [vl vk], B, =
B
By ]

Theoretically U] Uy, =1, and V]V, =1,
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Golub-Kahan: Main identities
At iteration k,
AV = U1 By

T T T
A Uii1 = ViBe + apq1Viy1€e+1

Seek x, = Vi yi

-
T . By By T
AAx = Vi1 Hiyi Hy = T| = T
Apr1Brt1€k Apr1Brt18k
B, bidiagonal T, symmetric tridiagonal
LSLQ ICIAM 2019, Valencia
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LSLQ: Main subproblems

X = Viyi

T, T
A'Axe —A'b = Vi 1 (Hey — a1 P161)
Small if Hiyk ~ a1 1€

LSQR x5 = Viyd Toye = a1fre

LSLQ xt = Viyr minimize %Hy,fH2 subject to  H/_iyf = aiBe;

(HkT_l is T, without its last row)
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Optimality properties
XkC solves
ml)l(wellralze X — X 474 (1)

L
X solves

minimize |x, — x| and minimize |[x|| subject to r L K (2)
x€ATAK _, xeKx

c L
e = x| < e = il

Whether A has full column rank or not,

o xg is feasible for (2) = |xf|| < |x< |

i
ox*xkc>0
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. C L
Computing y, and y,
Each iteration of LSLQ updates a QR factorization
P! B = [Rk] Te = B{B. = R[R
kPk= 1o k = Bk bk = R Ry
and an LQ factorization
R, = M, Qy M, lower triangular
We solve
Z
T _ _ k—1
Rk tk = alﬁlel MZk = tk? Zy = _
Ck
Then
L T |Zk-1 C T -
Yk:Qk[O} yii = Qx Zk

LSLQ
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. C L
Computing x, and x;
x,f is updated along orthogonal directions:
_ T _ L L
Wy =VeQg =[w1 ... w1 W] Xj = Xj—1 1 Ce—1Wk—_1
Hence
L2 L 2 2 L2 2 L2
Ixic° = lIx—2 " + Cie—1 e = xic|” = Il = x|
We can estimate this error if we can estimate |x,|? ...
LSLQ can transition cheaply to the LSQR point:

C_ L, 5- _
Xk = X+ Gk Wi Wi Lwy, .o wye g
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Upper bound on the LSLQ Error: Preliminaries
Write

Ix > = bTAATA) PATb = bTA F(ATA) ATh, (&) :=¢% £€(0, a1

where

-
Because A" b = a; 51 vy,

2 2 2y 2 T
" = (1) Z flo7)ui, i = Ppj vy
i=1

LSLQ ICIAM 2019, Valencia 21/41
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A tour de force
We found

HX*H2 = (061ﬂ1)2 Z f(Ulz)M,z
i=1

Golub and Meurant (1997) view the sum as the Riemann-Stieltjes integral
r o1
> floDud = | (o) duto)
i=1 2
where the piecewise constant Stieltjes measure p is defined as
0 if o <o,

p(o) = ZJ ,,UJ if o, <o <oy
ZJ lluj I1:0-20-1

Approximations to the integral via Gauss-related quadrature yield approximations to HX*H2
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Gauss-Radau quadrature yields an upper bound

Suppose f : R — R is such that F@ (&) < 0 for all £ € (2, 0%) and all j > 0. Fix
o, € (0, 0,,). Let By be the bidiagonal generated after k steps of GK and w; > 0 be chosen
so that the smallest singular value of

~ R.,_1 0,e,_
Rk::[ k—1 kwI;l]

is precisely o,. Then bTAf(A-CL\)ATb < (a161)2e1T f(ﬁ,;rﬁ’k) e

Almost nothing changes if A is rank-deficient
because A’Ax = A”b is consistent and all iterations occur in Range(AT)

Simply replace o, by o,
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Upper bound on the LSLQ error

@ w, can be determined from a few scalar operations

° elT(ﬁkTﬁk)_Zel is computed using a simple update of the LQ factorization of R:

Ry = My Qy
@ This yields
t z
e o ~ el N k—1
R ty = aq 3161, Mz = ty, =1 _ |, Zrk=| .
Tk Ck
and finally

T
e = xicll < [Ck]

LSLQ ICIAM 2019, Valencia 24/41



CG and SYMMLQ

LSLQ

Inexact Derivatives in Optimization
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Notes on the numerical experiments

@ Each matrix A is scaled so its nonzero columns have unit norm
e Data and solutions are available in Rutherford-Boeing format from

github.com/optimizers/animal
@ Everything else is implemented in Julia:
e github.com/JuliaSparse/HarwellRutherfordBoeing.jl: 10
e github.com/JuliaSmoothOptimizers/LinearOperators.jl: abstract linear operators
o github.com/JuliaSmoothOptimizers/Krylov. jl: iterative methods

O
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Notes on the numerical experiments

@ The upper bounds require an estimate of o, or o,
e We run PROPACK.jI1 to approximate the smallest nonzero singular value
o We use 0 := (1 — 10710) o, (ora,)

@ In the presence of regularization, o, = Al

1github.com/JuliaSmoothUptimizers/PRUPACK.jl
LSLQ ICIAM 2019, Valencia
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CG and SYMMLQ

Inexact Derivatives in Optimization

Least-Squares Problems

Numerical illustration (without regularization)
Stopping condition: |¢,| < 1070 ||x{|

Least-Norm Problems

References

small: 3140 x 1988, Oest = 5.0e-02 small2: 6280 x 3976, Oest = 5.0e-03
109 B
—— actual LSLQ —— actual LSLQ
s | — window=5 . — window=5
10 —— window=10 1071 —— window=10
~—— LSLQ upper bound ~—— LSLQ upper bound
105 B
103 4
.
103 4
101 4
101 B
1071 4
10—1 B
-3 ]
10 1073 4
1075 4 10-5 4
0 50 100 150 200 0 50 100 150 200 250 300 350 400
LSLQ ICIAM 2019, Valencia
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Upper bound on the LSQR error

We can transition x,l; > xkc. We can also get an improved error bound.

With the same value of wy,

C2 =2 =2
Ixe — X |7 < Cie — Cic

SYMMLQ/CG: (Estrin et al., 2019a)
LSLQ: (Estrin, Orban, and Saunders, 2019b)
LNLQ: (Estrin, Orban, and Saunders, submitted 2019)

LSLQ ICIAM 2019, Valencia 29/41



CG and SYMMLQ Inexact Derivatives in Optimization Least-Squares Problems Least-Norm Problems References

Numerical illustration (without regularization)

Stopping condition: \/5,3 - f;% <1010 kac||

small: 3140 x 1988, Oest = 5.0e-02 small2: 6280 x 3976, Oest = 5.0e-03

— actual LSQR 108 — actual LSQR

105 4 LSQR upper bound LSQR upper bound

0 50 100 150 200 0 50 100 150 200 250 300 350 400
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Seismic inversion problem (without regularization)

Stopping condition: \/5,3 - f;% <1010 kac||

Full-Wave Inversion: 83848 x 83600, 0cst = 1.0e-07 Full-Wave Inversion: 83848 x 83600, Oest = 1.0e-07
10° A - actual LSLQ 109 —— actual LSQR
= window=5 ~— LSQR upper bound
107 A —— window=10
" ~—— LSLQ upper bound
10° A
103 4
101 4
10-1 4
1073 4
10—5 4
1077 A

0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
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Seismic inversion problem (with regularization)

Stopping condition: 4/Cz — (z < 10~ kaCH

Full-Wave Inversion: 83848 x 83600, A = 1.0e-04, Ocst = 1.0e-04 Full-Wave Inversion: 83848 x 83600, A = 1.0e-04, 0cst = 1.0e-04
1034 = actual LSLQ 103 4 = actual LSQR
\ —— window=5 \ LSQR upper bound
= window=10 N
10 4 LSLQ upper bound 10% 1
10—1 4
1071 B
10—3 4
1073 -
1075 4
1075 -
1077 4
10—7 -
1079 4
6 160 260 360 460 6 160 260 3(I)0 460
LSLQ ICIAM 2019, Valencia 32/41



Least-Squares Problems

Conclusions so far

@ Monitor the error upper bound and transition to the LSQR point
o Can regularize cheaply, and that yields an obvious o in the rank-deficient case

@ A low-memory approach can be used to tighten the upper bound at moderate cost
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LNLQ for Least-Norm Problems

min || x|* subject to Ax = b

LSLQ ICIAM 2019, Valencia 34/41
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Normal equations of the second kind

minimize %Hx\|2 subject to Ax = b
X
Optimality conditions:

= AATy=b, x=Aly (NE2)

If we assume Ax = b is consistent, we can do much the same as LSLQ.

CG applied to (NE2) is sometimes known as CRAIG's method or CGNE.

LSLQ ICIAM 2019, Valencia
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LNLQ
Main idea: Apply SYMMLQ to (NE2) with possible transition to the CRAIG point.

Main iterates: ykL ~ ka, with cheap updates of x,f o= ATykL and ka = ATka.
Benefits:

Far simpler implementation than LSLQ
Access to both x and y

°
°
L C i ..
@ x; and x,  solve minimum-norm and minimum-error problems
° y,f and x,f’- are updated along orthogonal directions

°

LNLQ also computes ykc as an orthogonal update of ykL (unlike CRAIG)

L L C

Access to |x, — x|, ys = il and Jly. = yicll
Arioli (2013) used Gauss-Radau to bound |x, — ka||

and gave the crude bound |y, — y< | < [x. — x5 | /o,

LSLQ ICIAM 2019, Valencia 36/41
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Meszaros/scagr7-2c from UFL
2447 rows, 3479 columns, full rank, o, = (1 — 1070, ;.

— True LNLQ in x
—True CRAIG inx
LNLQ Upper bound in x |— CRAIG Upper bound in x

10710 10710

10715 1015
0 0

—True (NLQiny
|— LNLQ Upper bound iny

— True CRAIG iny
4010 H{——CRAIG Upper bound iny

GRAIG Upper bound in y, d=5
— CRAIG Upper bound in y, d=10
|— CRAIG Arioli bound iny.

10710
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Fletcher's merit function: a PDE-constrained problem

minimize éf |lu — uglPdx + %af Z2dx
u,z Q Q

subjectto —V-(zVu) =f in Q

u=20 on 0f2
Q=[-1,1% a=10" Discretized problem has n = 2050, m = 961
n Iterations | # Hv | # Jprod | # Adj Jprod
102 22 878 3448 3672
1074 21 896 4251 4459
10°° 20 744 4651 4928
1078 20 746 5611 5887
1071 20 746 6595 6871

7 = accuracy of solving KKT system for search directions
Estrin et al., SIMAX (2019)
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Summary

LSLQ and LNLQ fill gaps in the family of Krylov methods

SYMMLQ provides error bounds for CG
LSLQ " " " LSQR
LNLQ " " " Craig’s method

Application: optimization with inexact gradient

LSLQ ICIAM 2019, Valencia 39/41
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Julia version of LSLQ and other Krylov solvers:
github.com/JuliaSmoothOptimizers/Krylov.jl
Dominique Orban: dominique.orban@gerad.ca

Matlab version of LSLQ and LNLQ:
github.com/restrin/LinearSystemSolvers
Ron Estrin: ronestrin756@gmail.com

LSLQ ICIAM 2019, Valencia

References

41/41


https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/restrin/LinearSystemSolvers

	CG and SYMMLQ
	Inexact Derivatives in Optimization
	Least-Squares Problems
	Least-Norm Problems

