

Algorithms for Constrained Optimization: The Benefits of General-purpose Software

Michael Saunders MS&E and ICME, Stanford University California, USA

3rd AI+IoT Business Conference

Shenzhen, China, April 25, 2019

Optimization Software

SOL

Systems Optimization Laboratory

George Dantzig, Stanford University, 1974 Inventor of the Simplex Method Father of linear programming

Large-scale optimization: Algorithms, software, applications

Optimization Software

- 1974 Dantzig and Cottle start SOL
- 1974–78 John Tomlin, LP/MIP expert
- 1974–2005 Alan Manne, nonlinear economic models
- 1975–76 MS, MINOS first version
- 1979–87 Philip Gill, Walter Murray, MS, Margaret Wright (Gang of 4!)
- 1989– Gerd Infanger, stochastic optimization
- 1979– Walter Murray, MS, many students
- 2002- Yinyu Ye, optimization algorithms, especially interior methods
- This week! UC Berkeley opened George B. Dantzig Auditorium

Optimization problems

Minimize an objective function subject to constraints:

min
$$\varphi(x)$$
 st $\ell \leq \begin{pmatrix} x \\ Ax \\ c(x) \end{pmatrix} \leq u$

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

Optimization Software

- MS and Bruce Murtagh: MINOS solver (nonlinear objective)
- George Dantzig: PILOT economic model of US (LP)
- Alan Manne: ETAMACRO energy model (nonlinear objective)

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

Optimization Software

- MINOS solver (sparse nonlinear constraints)
- NPSOL solver (dense nonlinear constraints)

- Optimal Power Flow @ General Electric
- Aerospace optimization @ NASA, McDonnell-Douglas

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

Optimization Software

- Alan Manne: MERGE greenhouse-gas model (sparse nonlinear constraints)
- Philip Gill: Aerospace trajectory optimization @ McDonnell-Douglas
 F-4 Minimum time-to-climb
 DC-Y SSTO Minimum-fuel landing maneuver

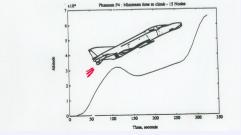
SOL Op

19709

)s

1990s

)s


2010s

Summary

2020s

Acrospace Applications of NPSOL and SNOPT

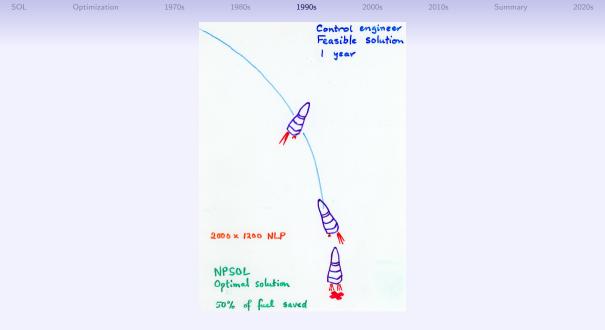
OTIS #!

Climb to 20,000m Speed Mach 1

Start at sea-level

Optimization Software

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
		DC-X	single-st	age-to-or	bit prote	otype		



1/3 full-size = 13m tall

Optimization Software

1990s OTIS DC-Y Landing Maneuver Retract airbrakes at 2800 ft 420 mph No. of Lot of Lo

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
	DC-	Y landing	, 2nd C	TIS/NPS	SOL opt	imizatio	n	

- 1st optimization: starting altitude = 900m
- 2nd optimization: starting altitude = variable

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
	DC-`	Y landing	;, 2nd	OTIS/	/NPSOL	optimization		

- 1st optimization: starting altitude = 900m
- 2nd optimization: starting altitude = variable
- New constraint needed:

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
	DC-	Y landi	ng 2nd		PSOL on	timizatio	n	

- 1st optimization: starting altitude = 900m
- 2nd optimization: starting altitude = variable
- New constraint needed: Don't exceed 3g

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
	DC-	Y landi	ng 2nd		PSOL on	timizatio	n	

- 1st optimization: starting altitude = 900m
- 2nd optimization: starting altitude = variable
- New constraint needed: Don't exceed 3g

Optimum starting altitude = 450m(!)

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
	DC-	Y landir	ng 2nd	OTIS/NF	SOL on	timizatio	n	

- 1st optimization: starting altitude = 900m
- 2nd optimization: starting altitude = variable
- New constraint needed: Don't exceed 3g

Optimum starting altitude = 450m(!)

Come back Alan Shephard!

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

Optimization Software

David Saunders, NASA Ames (Calif)

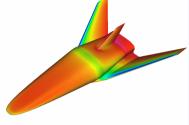
- Wõ shuāng bāotāi!
 1970: visit Stanford for 1 month (now 49 years)
- Shape optimization Supersonic airliners
- Trajectory optimization SHARP (next Space Shuttle)

ptimization 1970s 1980s 1990s **2000s** 2010s Summary 2020

OAW oblique all-wing airliner

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	202

HSCT high speed civil transport



SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
		C	TV crev	v transfe	r vehicle			
				v transie	i venicie			

SHARP design (Slender Hypervelocity Aerothermodynamic Research Probes)

Aerothermal performance constraint in (Velocity, Altitude) space, used during trajectory optimization with UHTC materials (Ultra High Temperature Ceramics) to avoid exceeding material limits

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s							
	CTV crew transfer vehicle														

SHARP design (Slender Hypervelocity Aerothermodynamic Research Probes)

Aerothermal performance constraint in (Velocity, Altitude) space, used during trajectory optimization with UHTC materials (Ultra High Temperature Ceramics) to avoid exceeding material limits

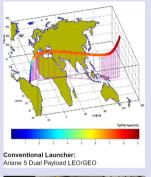
- Trajectory optimization with SNOPT
- Could always abort to Kennedy, Boston, Gander, or Shannon
- 4000-mile cross-range capability during reentry

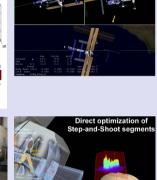
Image credit: David Kinney, NASA Ames Research Center

Optimization Software

19

980s


990s


20

2020s

SNOPT Applications

Trajectory optimization Launch 2 satellites

2000s

Manoeuver ISS Space Station

Radiation therapy Control problem Paul Keall

Optimization Software

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

Optimization Software

David Saunders, NASA Ames (Calif)

• Orion

Apollo-type capsule to ISS and moon

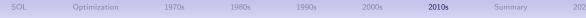
- MSL (Mars Science Lab) Heat flux during atmospheric entry
- Stratolaunch

Descent trajectory of space vehicle

2020

Crew Exploration Vehicle (Orion)

• Tried shape optimization of heat shield and shoulder curvature (but the Apollo folk were pretty close already)


Optimization Software

Stratolaunch carrier aircraft (first flight April 15)

AIAA 2018

Optimization Software

Stratolaunch carrier aircraft (first flight April 15)

Landing of launched space vehicle

- Preliminary computation: Space vehicle will land in Mojave Desert, California
- OTIS trajectory optimization: Vehicle would land 2500km too soon!

AIAA 2018

³rd Al+IoT Business Conference, Shenzhen, April 25, 2019

Optimization

90s

200

2010s

Summary

2020s

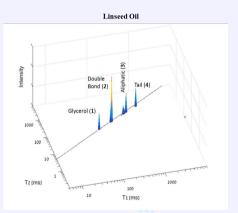
Signal analysis using PDCO

Primal-Dual interior method for Convex Objective General-purpose MATLAB software min $\varphi(x)$ st Ax = b, $\ell \le x \le u$

Unique feature: *A* may be an operator Iterative method LSMR computes each search direction Optimization 1970s 1980s 1990s 2000s **2010s** Summary 2

Signal analysis using PDCO

Primal-Dual interior method for Convex Objective General-purpose MATLAB software min $\varphi(x)$ st Ax = b, $\ell \le x \le u$


Unique feature: A may be an operator Iterative method LSMR computes each search direction

- 1998 BPDN: Basis Pursuit DeNoising
- 2011 1D LF-NMR (Low-Field NMR analysis)
- 2018 2D LF-NMR

Shaobing Chen, David Donoho, MS (Stanford)

Ofer Levi, MS, Berman, Wiesman, ... (Israel)

Analysis of biodiesel, olive oil, ...

$$\begin{array}{ll} \min_{f,r} & \lambda_1 \, \|f\|_1 + \lambda_2 \, \|f\|^2 + \|r\|^2 \\ \text{such that} & K_1 F K_2 + R = S \\ & f \geq 0 \end{array}$$

F, R =matrix form of variables f, r

PDCO solution f is very sharp

Fig. 4 2D T1-T2 ¹H LF-NMR energy relaxation spectrum mapping of linseed PUFA oil.

Applications lead to Algorithms

- Systems Biology multiscale models lead to DQQ procedure
- Taxation policy models lead to NCL procedure
- Need general-purpose software to implement new procedures

Ding Ma, MS (Stanford)

Ding Ma, MS, Judd, Orban

General-purpose software leads to Applications

PDCO ideal for LF-NMR analysis

2010s

29/39

L990s

20

2010s

Sumn

2020s

2010s

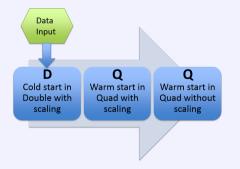
General-purpose software leads to Applications

PDCO ideal for LF-NMR analysis

Applications lead to Algorithms

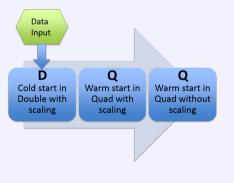
- Systems Biology multiscale models lead to DQQ procedure
- Taxation policy models lead to NCL procedure

Ding Ma, MS (Stanford)


Ding Ma, MS, Judd, Orban

• Need general-purpose software to implement new procedures

DQQ = Double-precision / Quad-precision / Quad-precision solvers cold start warm start warm start NCL = Nonlinearly Constrained augmented Lagrangian need interior methods


SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s
		DQQ	procedure	(Ding	Ma, MS,)		

 Multiscale optimization in systems biology Double-precision MINOS + Quad-precision MINOS

DQQ procedure (Ding Ma, MS, ...)

- Multiscale optimization in systems biology Double-precision MINOS + Quad-precision MINOS
- Jan 2017 Conference in Oman Stop in Paris on the way back ...!

2010s

				(
SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

NCL procedure (Ding Ma, MS, ...)

Taxation problem	\min_{x}	$\phi(x)$	
	subject to	$c(x) \ge 0,$	$\ell \leq x \leq u$

Example: 571000 constraints $c_i(x) \ge 0$, 1500 variables x 10000 constraints $c_i(x^*) \le 10^{-6}$ (essentially active) SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s

NCL procedure (Ding Ma, MS, ...)

Taxation problemminimize
$$\phi(x)$$
subject to $c(x) \geq 0, \quad \ell \leq x \leq u$

Example: 571000 constraints $c_i(x) \ge 0$, 1500 variables x 10000 constraints $c_i(x^*) \le 10^{-6}$ (essentially active)

NCL procedure ≈ 10 easier subproblems, updating y_k or increasing ρ_k :

NC_k subject to $c(x) + y_k^T r + \frac{1}{2}\rho_k ||r||^2$ $\ell \le x \le u$ SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s

NCL procedure (Ding Ma, MS, ...)

Taxation problemminimize
$$\phi(x)$$
subject to $c(x) \geq 0, \quad \ell \leq x \leq u$

Example: 571000 constraints $c_i(x) \ge 0$, 1500 variables x 10000 constraints $c_i(x^*) \le 10^{-6}$ (essentially active)

NCL procedure ≈ 10 easier subproblems, updating y_k or increasing ρ_k :

NC_k subject to c(x) + r = 0, $\ell \le x \le u$

- Variables r make the nonlinear constraints independent and feasible
- Interior solvers IPOPT, KNITRO happy as $r \to 0$

Optimization Software

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

Summary

Optimization Software

90s

s

Summary

2020s

General-Purpose Software

We couldn't guess the earlier applications of optimization!

Existing software \rightarrow New applications

- MINOS Energy/economic models
- NPSOL trajectory optimization, radiation therapy
- SNOPT trajectory optimization (bigger), robotics
- PDCO Basis Pursuit signal analysis, LF-NMR analysis

1980-now

General-Purpose Software

We couldn't guess the earlier applications of optimization!

Existing software \rightarrow New applications					
MINOS	Energy/economic models				
NPSOL	trajectory optimization, radiation therapy				
SNOPT	trajectory optimization (bigger), robotics				
PDCO	Basis Pursuit signal analysis, LF-NMR analysis				
New applications \rightarrow New algorithms to help existing software 2010s: Ding Ma,					
Systems biology (multiscale) DQQ: combine DoubleMINOS + QuadMINOS					

Taxation policy NCL: Sequence of problems, warm-start IPOPT, KNITRO

3rd Al+IoT Business Conference, Shenzhen, April 25, 2019

General-Purpose Software

We couldn't guess the earlier applications of optimization!

Existing software \rightarrow New applications							
MINOS	Energy/economic models						
NPSOL	DL trajectory optimization, radiation therapy						
SNOPT	PT trajectory optimization (bigger), robotics						
PDCO							
New applications → New algorithms to help existing software 2010s: Ding Ma, Systems biology (multiscale) DQQ: combine DoubleMINOS + QuadMINOS Taxation policy NCL: Sequence of problems, warm-start IPOPT, KNITRO							
_	software → Prototyp Find Hamiltonian cyc Add one subroutine to		2018: Ali Eshragh, (Australia)				

Summarv

SOL	Optimization	1970s	1980s	1990s	2000s	2010s	Summary	2020s

2020s

Optimization Software

• Autonomous vehicles Smooth path, failsafe

- Autonomous vehicles Smooth path, failsafe
- Xing Lab @ Stanford
 - Al, physics, engineering, biology in medicine
 - Diagnosis, treatment planning, nanotech imaging for precision medicine

- Autonomous vehicles Smooth path, failsafe
- Xing Lab @ Stanford
 - Al, physics, engineering, biology in medicine
 - Diagnosis, treatment planning, nanotech imaging for precision medicine
- 1998 Radiation therapy
 - NPSOL: Gamma-Knife


Body moves during radiation

- Autonomous vehicles Smooth path, failsafe
- Xing Lab @ Stanford
 - Al, physics, engineering, biology in medicine
 - Diagnosis, treatment planning, nanotech imaging for precision medicine
- 1998 Radiation therapy
 - NPSOL: Gamma-Knife

- Body moves during radiation
- 2018 Billy Loo, Sami Tantawi @ SLAC (Stanford) FLASH therapy (X-rays or protons)

Only 1 second of radiation

SOL	Optimization 1970s	1980s	1990s	2000s	2010s	Summary	2020s	
		Spe	cial than	ks				
	SOL	George Dantzig, Richard Cottle						
	Algorithm coauthors Software coauthors Basis Pursuit LF-NMR DQQ NCL AMPL, IPOPT, KNITRO	Bruce Mu Shaobing Ofer Levi, Ding Ma, Ding Ma,	Chen, Dav Shirley Be Ronan Fle Ken Judd,	ip Gill, Eliz id Donoho	v Wiesman Thiele	-		

SOL	Optimization 1970s	1980s	1990s	2000s	2010s	Summary	2020s
		Spee	cial than	ks			
	SOL	George Da	intzig, Ricł	hard Cottle			
	Algorithm coauthors Software coauthors Basis Pursuit LF-NMR DQQ NCL AMPL, IPOPT, KNITRO	Bruce Mu Shaobing Ofer Levi, Ding Ma,	Chen, Davi Shirley Be Ronan Flei Ken Judd,	ip Gill, Eliz	/ Wiesman Thiele		
	A						

Al+loT organizers YouTube, Youku Markla, New Fortune Yuja Wang OL Optimization 1970s 1980s 1990s 2000s 2010s Summary **2020s**

YouTube companion Yuja Wang

Optimization Software

SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s Liǎng gè Yōukù péngyǒu Láng Lǎng hé Wáng Yǔjiā

Two equally amazing stars (optimal!)

Optimization Software