Computing Hamiltonian cycles in random graphs

Michael Saunders
Stanford University

Joint work with Ali Eshragh
University of Newcastle, NSW, Australia

The Fifth International Conference on
Numerical Analysis and Optimization (NAOV)

Muscat, Sultanate of Oman Jan 6-9, 2020

Computing Hamiltonian cycles in random graphs



Abstract

A Hamiltonian Cycle is a path that passes once through each node of a graph
and returns to the starting node. The HC Problem is a special case of the
Traveling Salesman Problem in that it seeks any such path, while the TSP
seeks the shortest path. The HCP can be reduced to finding particular vertices
of a certain polytope associated with the input graph.
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Abstract

A Hamiltonian Cycle is a path that passes once through each node of a graph
and returns to the starting node. The HC Problem is a special case of the
Traveling Salesman Problem in that it seeks any such path, while the TSP
seeks the shortest path. The HCP can be reduced to finding particular vertices
of a certain polytope associated with the input graph.

Eshragh et al. (MOR 2019) implemented a simplex-type algorithm to find an
HC by moving from a feasible vertex to an adjacent feasible vertex at random.
To handle larger graphs, we modified the simplex algorithm in MINOS to do the
same. The only change to MINOS is that Phase 2 chooses a random nonbasic
variable to enter the basis. (Thus, dual variables are not required in Phase 2.)
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Abstract

A Hamiltonian Cycle is a path that passes once through each node of a graph
and returns to the starting node. The HC Problem is a special case of the
Traveling Salesman Problem in that it seeks any such path, while the TSP
seeks the shortest path. The HCP can be reduced to finding particular vertices
of a certain polytope associated with the input graph.

Eshragh et al. (MOR 2019) implemented a simplex-type algorithm to find an
HC by moving from a feasible vertex to an adjacent feasible vertex at random.
To handle larger graphs, we modified the simplex algorithm in MINOS to do the
same. The only change to MINOS is that Phase 2 chooses a random nonbasic
variable to enter the basis. (Thus, dual variables are not required in Phase 2.)

The polytope constraints depend on a parameter beta, and the
probability of finding an HC depends on beta being close to 1.

With double-precision MINOS we have used beta = 1 - 1e-8.

The quad-precision version of MINOS allows beta = 1 - 1e-16 (say).
We report success rates for random graphs of varying size.
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Hamiltonian Cycle Problem

Introduction
MDP Embedding

@ Hamiltonian Cycle Problem
@ Introduction
o MDP Embedding
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Hamiltonian Cycle Problem Introduction

MDP Embedding

Definition

Hamiltonian Cycle (HC)

Given a graph G, a simple path that starts from an arbitrary node, visits
all nodes exactly once and returns to the initial node is called a
Hamiltonian Cycle.
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Hamiltonian Cycle Problem Introduction

MDP Embedding

Definition

Hamiltonian Cycle (HC)

Given a graph G, a simple path that starts from an arbitrary node, visits
all nodes exactly once and returns to the initial node is called a
Hamiltonian Cycle.

Hamiltonian Cycle Problem (HCP)

Given a graph GG, determine whether it contains at least one HC or not.
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(a) A Hamiltonian graph (b) A non-Hamiltonian graph
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Hamiltonian Cycle Problem Introduction

MDP Embedding

Notation

HCP in this talk

@ There is a directed graph GG on n nodes with no self-loops.
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Hamiltonian Cycle Problem Introduction

MDP Embedding

Notation

HCP in this talk

@ There is a directed graph GG on n nodes with no self-loops.

e §=1{1,2,...,n} is the set of all nodes and <7 is the set of
all arcs in this graph.
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Hamiltonian Cycle Problem Introduction

MDP Embedding

Notation

HCP in this talk

@ There is a directed graph GG on n nodes with no self-loops.

e §=1{1,2,...,n} is the set of all nodes and <7 is the set of
all arcs in this graph.

@ For each node 7, we define two subsets

A() = {a € S| (i,a) € &}
Bi)={be S| (bi) e o}
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Hamiltonian Cycle Problem : .
Introduction

MDP Embedding

Embedding in Markov Decision Processes (MDPs)

@ In 1994, Filar and Krass developed a model for HCP by embedding
it in a perturbed Markov decision process.
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MDP Embedding

Embedding in Markov Decision Processes (MDPs)

@ In 1994, Filar and Krass developed a model for HCP by embedding
it in a perturbed Markov decision process.

@ They converted the deterministic HCP to a particular
average-reward Markov decision process.
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MDP Embedding

Embedding in Markov Decision Processes (MDPs)

@ In 1994, Filar and Krass developed a model for HCP by embedding
it in a perturbed Markov decision process.

@ They converted the deterministic HCP to a particular
average-reward Markov decision process.

@ In 2000, Feinberg converted the HCP to a class of Markov decision
processes, the so-called weighted discounted Markov decision
processes.
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Hamiltonian Cycle Problem : .
Introduction

MDP Embedding

Embedding in Markov Decision Processes (MDPs)

@ In 1994, Filar and Krass developed a model for HCP by embedding
it in a perturbed Markov decision process.

@ They converted the deterministic HCP to a particular
average-reward Markov decision process.

@ In 2000, Feinberg converted the HCP to a class of Markov decision
processes, the so-called weighted discounted Markov decision
processes.

@ MDP embedding implies that you can search for a Hamiltonian
cycle in a nicely structured polyhedral domain of discounted
occupational measures.

Computing Hamiltonian cycles in random graphs



H 5 (G) Polytope
Feasible Bases of H 3(G)

MDP-Induced Polyhedral Domains for HCP

© MDP-Induced Polyhedral Domains for HCP
e H3(G) Polytope
@ Feasible Bases of Hg(G)
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Hp(G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5 (G)

Domain of discounted occupational measures

H3(G) Polytope
associated with graph G and discount factor 5 € (0,1)

Z T1a — B Z zpr =1 — "

acA(1) beB(1)
d mg—B ) mx=0, i=23,...,n
a€A(5) beB(i)
Z T1qg = 1
acA(1)

Tie >0 VieS, ae€ Ai)
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Hp(G) Polytope
Feasible Bases of H 3(G)

MDP-Induced Polyhedral Domains for HCP

Hamiltonian extreme points

Theorem (Feinberg 2000)

If the graph G is Hamiltonian, then corresponding to each HC in
the graph, there exists an extreme point of polytope Hz(G),
called Hamiltonian extreme point.
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Hp(G) Polytope
Feasible Bases of H 3(G)

MDP-Induced Polyhedral Domains for HCP

Hamiltonian extreme points

Theorem (Feinberg 2000)
If the graph G is Hamiltonian, then corresponding to each HC in
the graph, there exists an extreme point of polytope Hz(G),
called Hamiltonian extreme point.

If x is a Hamiltonian extreme point, then it has exactly n positive
coordinates tracing out a Hamiltonian cycle in G.
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Hp(G) Polytope
Feasible Bases of H 3(G)

MDP-Induced Polyhedral Domains for HCP

Hamiltonian extreme points

Theorem (Feinberg 2000)
If the graph G is Hamiltonian, then corresponding to each HC in
the graph, there exists an extreme point of polytope Hz(G),
called Hamiltonian extreme point.

If x is a Hamiltonian extreme point, then it has exactly n positive
coordinates tracing out a Hamiltonian cycle in G.

Otherwise, that is if an extreme point does not have n positive
coordinates, it is called a non-Hamiltonian extreme point.
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Hp(G) Polytope
Feasible Bases of H 3 ((

MDP-Induced Polyhedral Domains for HCP

[llustration

T12 + T14 + T15 — B(T21 + T4 +751) =1 — B°

To1 + T23 — B(w12 + T32)
T32 + 34 — B(T23 + 243)
4)
5)

VAN

T4l + Ta3 + Tys — 3(1“]4 + T34 + x5

0
0
Z51 + Tsa — (215 + Za5 0

Ti2 + T4 + 215 =1

Z12,T14,--- ;%54 = 0
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Hp(G) Polytope
Feasible Bases of H 3(G)

MDP-Induced Polyhedral Domains for HCP

Example (cont.)

@ One particular Hamiltonian extreme point:
T1o = 1. Toa = B. Tas — 2 .. _33,. _34
z12 =1, 293 = B, T34 = B, 45 = 07,751 = |

Zio, = 0 for all other possible values
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Hp(G) Polytope
Feasible Bases of H 3(G)

MDP-Induced Polyhedral Domains for HCP

Example (cont.)

@ One particular Hamiltonian extreme point:

T12 — 1, xr9o3 = “3./ T34 = /52, Ty = “‘33,.’1,'51 = 34

Zio, = 0 for all other possible values

@ It traces out the HC /@\‘—’@\
1-2—>53—>4—5—1 o) 9 6
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Hp(G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 4 (G)

A new random search algorithm

@ The correspondence between the HCs in graph GG and extreme
points of polytope H3(G) can be exploited to develop an
algorithm that searches for Hamiltonian cycles.
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MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 4 (G)

A new random search algorithm

@ The correspondence between the HCs in graph GG and extreme
points of polytope H3(G) can be exploited to develop an
algorithm that searches for Hamiltonian cycles.

@ As the polytope Hz(G) might have many degenerate extreme
points, it would be easier to run such a search algorithm on the
feasible bases of 73(().
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A new random search algorithm

@ The correspondence between the HCs in graph GG and extreme
points of polytope H3(G) can be exploited to develop an
algorithm that searches for Hamiltonian cycles.

@ As the polytope Hz(G) might have many degenerate extreme
points, it would be easier to run such a search algorithm on the
feasible bases of 73(().

@ As Hz(G) has n + 1 non-redundant equality constraints, an
extreme point of this polytope is called degenerate if it has less
than n + 1 non-zero components. Otherwise (if it has exactly
n + 1 non-zero components), it is non-degenerate.
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A new random search algorithm

@ The correspondence between the HCs in graph GG and extreme
points of polytope H3(G) can be exploited to develop an
algorithm that searches for Hamiltonian cycles.

@ As the polytope Hz(G) might have many degenerate extreme
points, it would be easier to run such a search algorithm on the
feasible bases of 73(().

@ As Hz(G) has n + 1 non-redundant equality constraints, an
extreme point of this polytope is called degenerate if it has less
than n + 1 non-zero components. Otherwise (if it has exactly
n + 1 non-zero components), it is non-degenerate.

@ Analogously, we can define Hamiltonian and non-Hamiltonian
bases corresponding to extreme points of Hz(G).
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Hp(G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 4 (G)

A new random search algorithm

@ The correspondence between the HCs in graph GG and extreme
points of polytope H3(G) can be exploited to develop an
algorithm that searches for Hamiltonian cycles.

@ As the polytope Hz(G) might have many degenerate extreme
points, it would be easier to run such a search algorithm on the
feasible bases of 73(().

@ As Hz(G) has n + 1 non-redundant equality constraints, an
extreme point of this polytope is called degenerate if it has less
than n + 1 non-zero components. Otherwise (if it has exactly
n + 1 non-zero components), it is non-degenerate.

@ Analogously, we can define Hamiltonian and non-Hamiltonian
bases corresponding to extreme points of Hz(G).

@ Thus, a key issue influencing the efficiency of such a search
algorithm is the existence of a sufficiently large number of
Hamiltonian bases.
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H 3 (G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

Definitions

@ Let « be an extreme point of 7 3(G). The support of , denoted
by S(G,x), is defined to be a subgraph of G with node set S and
arc set {(i,a) € &7 : x;, > 0}.
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Definitions

@ Let « be an extreme point of 7 3(G). The support of , denoted
by S(G,x), is defined to be a subgraph of G with node set S and
arc set {(i,a) € &7 : x;, > 0}.

@ Clearly, if « is a Hamiltonian extreme point, the support graph
S(G, ) is a Hamiltonian cycle.
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Definitions

@ Let « be an extreme point of 7 3(G). The support of , denoted
by S(G,x), is defined to be a subgraph of G with node set S and
arc set {(i,a) € &7 : x;, > 0}.

@ Clearly, if « is a Hamiltonian extreme point, the support graph
S(G, ) is a Hamiltonian cycle.

@ A simple path that starts from node 1 and returns to it in fewer
than n arcs is called a short cycle.
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Definitions

@ Let « be an extreme point of 7 3(G). The support of , denoted
by S(G,x), is defined to be a subgraph of G with node set S and
arc set {(i,a) € &7 : x;, > 0}.

@ Clearly, if « is a Hamiltonian extreme point, the support graph
S(G, ) is a Hamiltonian cycle.

@ A simple path that starts from node 1 and returns to it in fewer
than n arcs is called a short cycle.

@ A noose path is a simple path that starts from node 1 and returns
to some node other than node 1.
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H 3 (G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

Definitions

@ Let « be an extreme point of 7 3(G). The support of , denoted
by S(G,x), is defined to be a subgraph of G with node set S and
arc set {(i,a) € &7 : x;, > 0}.

@ Clearly, if « is a Hamiltonian extreme point, the support graph
S(G, ) is a Hamiltonian cycle.

@ A simple path that starts from node 1 and returns to it in fewer
than n arcs is called a short cycle.

@ A noose path is a simple path that starts from node 1 and returns
to some node other than node 1.

@ In the following graph, arcs (1,4),(4,5), (5,1) form a short cycle,
and arcs (1,2),(2,3),(3,2) form a noose path.

VAN

O——D—®
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" H 3 (G) Polytope
MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

Hamiltonian and non-Ham. extreme points of Hz(G)

Theorem (Ejov et al. 2009)

Consider a graph GG and the corresponding polytope H;z(G). If x is
an extreme point of the polytope Hz((G), then the support
graph S(G,x) is either a Hamiltonian cycle or the union of a
short cycle and a noose path.
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Hamiltonian and non-Ham. extreme points of Hz(G)

Theorem (Ejov et al. 2009)

Consider a graph GG and the corresponding polytope H;z(G). If x is
an extreme point of the polytope Hz((G), then the support
graph S(G,x) is either a Hamiltonian cycle or the union of a
short cycle and a noose path.

O—Q (D—’@\
@/—@(_\‘@ @Q‘@ \‘@
(a) Hamiltonian extreme point (b) Non-Hamiltonian extreme point
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" H 5 (G) Polytope
MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

Non-Ham. extreme point-supports [Eshragh & Filar 2011]

Jk Jp+1

Jk Jp+1 Jn Jn—1Jn-2 / \
Qv «——0 P E—0c—0 e see e > ces . > e .’
/ \ / \ L ](¥+1 Jp Jr+1 /]n—S

e by > > .o re—— 0 —
L Jp Jre1 Jre Jn—3 Jn Jno1 Jn—2
(a) Type 1 (c) Type 3
Jk Jp+1 Jn Jn—1jn—2 Jp+1 Jr Jr—1Jr—2
® sees —e o E—0 0 / .\ /.4—.4—.\
L g Jp Jkt1 Ja Jat1 Jn 3 Jp Jr+1 Ja Ja+1 Jr=s  jeyr g,
(b) Type 2 (d) Type 4

@ While non-Hamiltonian extreme points of types 1, 2 and 3 are
non-degenerate, Hamiltonian as well as non-Hamiltonian extreme
points of Type 4 are degenerate.
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MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

The prevalence of Hamiltonian bases

@ What is the number of each class of feasible bases of the
polytope Hz(G)?
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H 3 (G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

The prevalence of Hamiltonian bases

@ What is the number of each class of feasible bases of the
polytope Hz(G)?

o We utilize Binomial Random Graphs G, ;.
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H 3 (G) Polytope

MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 3 (G)

Expected number of feasible bases

Theorem (Eshragh et al. 2019)

Consider the binomial random graph G, , and the corresponding
random polytope Hz(G,, ;). The expected number of

@ Hamiltonian bases is (n — 2)n!p" !

@ non-Hamiltonian bases of
o Typelis i( ol
o Type2is t(n—4)(n—3)(n+1)(n—1)p"*!

o Type 3 is (n—2)(n — 1)nlp"*!

o Type 4 is at least (n — 1)(n — 2)(n — 3)" 22— 4pn+l

n — 3)nlp
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MDP-Induced Polyhedral Domains for HCP Feasible Bases of H 5(G)

Expected number of feasible bases

Corollary (Eshragh et al. 2019)

In the random polytope #3(G, ), for sufficiently large n, we
have

E [Total number of feasible bases| — engn—9

E [Number of feasible bases of Type 4] S 1 nl1/2

E [Number of Hamiltonian bases| n9/2

E [Total number of feasible bases|] — en—12n—9
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Refining the Polyhedral Domain e Work

© Refining the Polyhedral Domain
® WH(G) Polytope
@ Random Walk Algorithm
o Future Work
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WHg(G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Reducing the feasible region

Hs(G) Polytope

Z Tia — Z xp =1— "

acA(1) beB(1)
Z Tia — ﬂszlfﬂ i=2,3,...,n
a€A(7) beB(i)
S m=1
acA(1)

ZTia >0, Vi€S, ae Ai)

Wedge constraints [Eshragh et al. 2011]
g < Z Tia < B, i=2,3,....n

a€A(z)

WHs(G) = Hp(G) + wedge constraints



WHg(G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

The intersection of extreme points

Theorem (Eshragh and Filar 2011)
Consider the graph G and polytopes Hs(G) and WH(G). For

1
B € <(1 — 7,,12>mv 1), the intersection of extreme points of

these two polytopes can be partitioned into two disjoint (possibly
empty) subsets:

© Hamiltonian extreme points

@ non-Hamiltonian extreme points of Type 1
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WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Investigating HCs through a Simple Random Walk

A Random Walk Algorithm

© Start from a feasible basis of polytope W7 3
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Investigating HCs through a Simple Random Walk

A Random Walk Algorithm

© Start from a feasible basis of polytope W7 3

@ Uniformly, choose one of the adjacent feasible bases at
random and move to that one
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WH 3 (G) Polytope
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Investigating HCs through a Simple Random Walk

A Random Walk Algorithm

© Start from a feasible basis of polytope W7 3

@ Uniformly, choose one of the adjacent feasible bases at
random and move to that one

© If the current feasible basis is Hamiltonian, then stop
else return to Step 2
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WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Numerical results for fixed g = 0.9999

Iterations to find a Hamiltonian graph

Nodes | Iterations
6 1
10 1
20 10
30 12
40 10
50 2
60 27
80 11
100 29
150 34
200 37
400 52
800 67
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WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Dependence of the Random Walk Algorithm on

@ Random walk with 1000 steps on feasible bases of the polytope
WH(G) for an input sparse Hamiltonian graph GG on 30 nodes
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WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Dependence of the Random Walk Algorithm on

@ Random walk with 1000 steps on feasible bases of the polytope
WH(G) for an input sparse Hamiltonian graph GG on 30 nodes

B Number of Hamiltonian bases
0.1
0.5
0.8
0.9
0.95
0.97
0.98
0.99
0.995
0.999

0.9999
0.99999

BN
=g Y[ o|o|o|o|o|o|o

(@)
g

-~
o
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WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Why not just set g =17

The matrix of the polytope WH () has singularity at 5 = 1
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Why not just set g =17

The matrix of the polytope WH () has singularity at 5 = 1
@ Let polytope P, be the non-negative points (1, z2) satisfying
T + To = 1

(I+e)z1+ (1 +2€)ay=1+c¢
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Why not just set g =17

The matrix of the polytope WH () has singularity at 5 = 1
@ Let polytope P, be the non-negative points (1, z2) satisfying
T + To = 1
(I+e)z1+ (1 +2€)ay=1+c¢

@ 7. has a singularity at ¢ = 0 and lim. o P. # Py

X2

1

1+e

T+2e e>0 = maxxzy =0

e=0 = maxaxy =1
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Refining the Polyhedral Domain Future Work

Modified simplex method

Implemented in MINOS

© Phase 1: same as always
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Modified simplex method

Implemented in MINOS

© Phase 1: same as always

@ Phase 2: Replace “price” routine
o Choose a random nonbasic variable to enter the basis
o Dual variables 7 not needed
o If the current feasible basis is Hamiltonian, then stop
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Modified simplex method

Implemented in MINOS

© Phase 1: same as always

@ Phase 2: Replace “price” routine
o Choose a random nonbasic variable to enter the basis
o Dual variables 7 not needed
o If the current feasible basis is Hamiltonian, then stop

© Speed per iteration vs number of iterations

e Double-precision MINOS is fast
e Quad-precision MINOS allows (5 to be very close to 1
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WH 3 (G) Polytope
Random Walk Algorithm

Refining the Polyhedral Domain Future Work

Double vs Quad MINOS

Double Quad
B 1-1e-8 | 1-1e-16
Featol le-9 le-18
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WH 3 (G) Polytope
Random Walk Algorithm

Refining the Polyhedral Domain Future Work
Double vs Quad MINOS

Double Quad

B 1-1e-8 | 1-1e-16

Featol le-9 le-18
Nodes Itns Itns Time Time
Random 100 27997 6017 1 1
graphs 200 88109 60802 4 9
p=0.1 300 238857 113929 12 27
400 79383 370891 6 127
500 338272 200321 31 98
600 269592 596965 32 380
700 74212 1838550 11 1493

800 1044635 1072930 184 1107
900 483490 3066025 102 3948
1000 846332 1835241 212 3260
1500 2428213 2732446 1190 8418
2000 1384168 | 10000000*| 1129 49254
2500 7578426 5536333 | 11484 42096
3000 | 10000000*| 9780955 | 20258 97673
3500 1375760 9116285 3944 | 119274
4000 9980379! | 10000000*| 36500 | 165062
5000 8479705 | 10000000*| 46541 | 251378
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Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Further development

Main reference

@ Ali Eshragh, Jerzy Filar, Thomas Kalinowski, Sogol Mohammadian (2019).
Hamiltonian cycles and subsets of discounted occupational measures.
Mathematics of Operations Research.

@ 3 positive ¢, d, k such that for all 5 € (1 — e <", 1), with high
probability, the expected proportion of feasible bases of WH (G, )
that are quasi-Hamiltonian is at least §/n*.
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Further development

Main reference

@ Ali Eshragh, Jerzy Filar, Thomas Kalinowski, Sogol Mohammadian (2019).
Hamiltonian cycles and subsets of discounted occupational measures.
Mathematics of Operations Research.

@ 3 positive ¢, d, k such that for all 5 € (1 — e <", 1), with high
probability, the expected proportion of feasible bases of WH (G, )
that are quasi-Hamiltonian is at least §/n*.

@ Thomas Kalinowski and Sogol Mohammadian (2019).
Feasible bases for a polytope related to the Hamilton cycle problem.
arXiv.org:1907.12691.

The set of feasible bases is independent of 3 when it is close to 1.
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WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Conclusions
WHg(G) Polytope

D> za-B ), apm=1-4"

a€A(1) beB(1)
S @B Y. zi=0, i=23,...,n
a€A(i) beB(i)
> o=t
a€A(1)

ZTia 20 VieS, ac A)

B < D mia<B, i
ac A(i)

2,3,...,n

@ Even though 8 = 1 = singularity,
B = LU in MINOS says all basis matrices are extremely well-conditioned!

Computing Hamiltonian cycles in random graphs



WH 3 (G) Polytope
Random Walk Algorithm
Refining the Polyhedral Domain Future Work

Conclusions

G) Polytope

D> za-B ), apm=1-4"

a€A(1) beB(1)
S @B Y. zi=0, i=23,...,n
a€A(i) beB(i)
> o=t
a€A(1)

ZTia 20 VieS, ac A)

B < Y zia<B, i=23,...,n
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B = LU in MINOS says all basis matrices are extremely well-conditioned!
@ Double 8 =1 - 1e-8 and Quad 8 = 1 - e-16 are both reliable
@ Quad MINOS is (only) 5-10 times slower per iteration (but not really needed)
@ The apparent need for Quad MINOS brought us together (in Berkeley and Muscat!)
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