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Abstract

A Hamiltonian Cycle is a path that passes once through each node of a graph
and returns to the starting node. The HC Problem is a special case of the
Traveling Salesman Problem in that it seeks any such path, while the TSP
seeks the shortest path. The HCP can be reduced to finding particular vertices
of a certain polytope associated with the input graph.

Eshragh et al. (MOR 2019) implemented a simplex-type algorithm to find an
HC by moving from a feasible vertex to an adjacent feasible vertex at random.
To handle larger graphs, we modified the simplex algorithm in MINOS to do the
same. The only change to MINOS is that Phase 2 chooses a random nonbasic
variable to enter the basis. (Thus, dual variables are not required in Phase 2.)

The polytope constraints depend on a parameter beta, and the
probability of finding an HC depends on beta being close to 1.

With double-precision MINOS we have used beta = 1 - 1e-8.
The quad-precision version of MINOS allows beta = 1 - 1e-16 (say).

We report success rates for random graphs of varying size.
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Definition

Hamiltonian Cycle (HC)

Given a graph G, a simple path that starts from an arbitrary node, visits
all nodes exactly once and returns to the initial node is called a
Hamiltonian Cycle.

Hamiltonian Cycle Problem (HCP)

Given a graph G, determine whether it contains at least one HC or not.

HAMILTONIAN CYCLES AND SUBSETS OF DISCOUNTED OCCUPATIONAL

MEASURES

A. ESHRAGH1, J.A. FILAR2, T. KALINOWSKI1,3, AND S. MOHAMMADIAN1

Abstract. In this paper, we study a certain polytope arising from embedding the Hamiltonian cycle problem

in a discounted Markov decision process. The Hamiltonian cycle problem can be reduced to finding particular
extreme points of a certain polytope associated with the input graph. This polytope is a subset of the space

of discounted occupational measures. We characterize the feasible bases of the polytope for a general input
graph G, and determine the expected numbers of different types of feasible bases when the underlying graph is

random. We utilize these results to demonstrate that augmenting certain additional constraints to reduce the

polyhedral domain, can eliminate a large number of feasible bases which do not correspond to Hamiltonian
cycles. Finally, we develop a random walk algorithm on the feasible bases of the reduced polytope and present

some numerical results. We conclude the paper with a conjecture on the feasible bases of the reduced polytope.

1. Introduction

One of the classical problems of combinatorial mathematics is the Hamiltonian Cycle Problem (HCP),
named after the Irish mathematician, Sir William Rowan Hamilton. He designed the Icosian Game. To win
this game, a player must visit each of twenty specifically connected cities, represented by holes on a wooden
pegboard, exactly once and return to the starting point. The Hamiltonian cycle problem is a mathematically
generalized version of this game. Given a graph G, the aim is either to find a cycle that passes through every
node of G exactly once, or to determine that no such cycle exists. Those cycles that pass through every node
of the graph exactly once are called Hamiltonian cycles. If the graph contains at least one Hamiltonian cycle,
then it is called Hamiltonian. Otherwise, it is non-Hamiltonian. Figures 1(a) and 1(b) show examples of
Hamiltonian and non-Hamiltonian graphs on five nodes.

1 2

345

(a) A Hamiltonian graph

1 2

345

(b) A non-Hamiltonian graph

Figure 1. Hamiltonian and non-Hamiltonian graphs

Despite originating in the 1850s, HCP continues to generate a great deal of research interest. The similarity
between HCP and the famous Traveling Salesman Problem (TSP) makes it interesting from a combinatorial
optimization viewpoint. As TSP aims to find a route of minimal distance for a salesman who starts from
a home location, visits every city exactly once and returns to the home location, HCP can be considered a
special case of this problem. To see this, for a given graph G, add artificial arcs to complete the graph G,
without adding any self-loops. If we assign distance one to each original arc and distance two to each artificial
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Notation

HCP in this talk

There is a directed graph G on n nodes with no self-loops.

S = {1, 2, . . . , n} is the set of all nodes and A is the set of
all arcs in this graph.

For each node i, we define two subsetsA(i) = {a ∈ S | (i, a) ∈ A }
B(i) = {b ∈ S | (b, i) ∈ A }
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Embedding in Markov Decision Processes (MDPs)

In 1994, Filar and Krass developed a model for HCP by embedding
it in a perturbed Markov decision process.

They converted the deterministic HCP to a particular
average-reward Markov decision process.

In 2000, Feinberg converted the HCP to a class of Markov decision
processes, the so-called weighted discounted Markov decision
processes.

MDP embedding implies that you can search for a Hamiltonian
cycle in a nicely structured polyhedral domain of discounted
occupational measures.
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Domain of discounted occupational measures

Hβ(G) Polytope
associated with graph G and discount factor β ∈ (0, 1)

∑
a∈A(1)

x1a − β
∑
b∈B(1)

xb1 = 1− βn

∑
a∈A(i)

xia − β
∑
b∈B(i)

xbi = 0, i = 2, 3, . . . , n

∑
a∈A(1)

x1a = 1

xia ≥ 0 ∀ i ∈ S, a ∈ A(i)
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Hamiltonian extreme points

Theorem (Feinberg 2000)

If the graph G is Hamiltonian, then corresponding to each HC in
the graph, there exists an extreme point of polytope Hβ(G),
called Hamiltonian extreme point.

If x is a Hamiltonian extreme point, then it has exactly n positive
coordinates tracing out a Hamiltonian cycle in G.

Otherwise, that is if an extreme point does not have n positive
coordinates, it is called a non-Hamiltonian extreme point.

Michael Saunders Stanford University Computing Hamiltonian cycles in random graphs



Hamiltonian Cycle Problem
MDP-Induced Polyhedral Domains for HCP

Refining the Polyhedral Domain

Hβ(G) Polytope
Feasible Bases of Hβ(G)

Hamiltonian extreme points

Theorem (Feinberg 2000)

If the graph G is Hamiltonian, then corresponding to each HC in
the graph, there exists an extreme point of polytope Hβ(G),
called Hamiltonian extreme point.

If x is a Hamiltonian extreme point, then it has exactly n positive
coordinates tracing out a Hamiltonian cycle in G.

Otherwise, that is if an extreme point does not have n positive
coordinates, it is called a non-Hamiltonian extreme point.

Michael Saunders Stanford University Computing Hamiltonian cycles in random graphs



Hamiltonian Cycle Problem
MDP-Induced Polyhedral Domains for HCP

Refining the Polyhedral Domain

Hβ(G) Polytope
Feasible Bases of Hβ(G)

Hamiltonian extreme points

Theorem (Feinberg 2000)

If the graph G is Hamiltonian, then corresponding to each HC in
the graph, there exists an extreme point of polytope Hβ(G),
called Hamiltonian extreme point.

If x is a Hamiltonian extreme point, then it has exactly n positive
coordinates tracing out a Hamiltonian cycle in G.

Otherwise, that is if an extreme point does not have n positive
coordinates, it is called a non-Hamiltonian extreme point.

Michael Saunders Stanford University Computing Hamiltonian cycles in random graphs



Hamiltonian Cycle Problem
MDP-Induced Polyhedral Domains for HCP

Refining the Polyhedral Domain

Hβ(G) Polytope
Feasible Bases of Hβ(G)

Illustration

Example

x12 + x14 + x15 − β(x21 + x41 + x51) = 1− β5

x21 + x23 − β(x12 + x32) = 0

x32 + x34 − β(x23 + x43) = 0

x41 + x43 + x45 − β(x14 + x34 + x54) = 0

x51 + x54 − β(x15 + x45) = 0

x12 + x14 + x15 = 1

x12, x14, . . . , x54 ≥ 0
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graph G, and determine the expected numbers of different types of feasible bases when the underlying graph is

random. We utilize these results to demonstrate that augmenting certain additional constraints to reduce the

polyhedral domain, can eliminate a large number of feasible bases which do not correspond to Hamiltonian
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Despite originating in the 1850s, HCP continues to generate a great deal of research interest. The similarity
between HCP and the famous Traveling Salesman Problem (TSP) makes it interesting from a combinatorial
optimization viewpoint. As TSP aims to find a route of minimal distance for a salesman who starts from
a home location, visits every city exactly once and returns to the home location, HCP can be considered a
special case of this problem. To see this, for a given graph G, add artificial arcs to complete the graph G,
without adding any self-loops. If we assign distance one to each original arc and distance two to each artificial
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Example (cont.)

One particular Hamiltonian extreme point:

x12 = 1, x23 = β, x34 = β2, x45 = β3, x51 = β4

xia = 0 for all other possible values

It traces out the HC
1→ 2→ 3→ 4→ 5→ 1
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A new random search algorithm

The correspondence between the HCs in graph G and extreme
points of polytope Hβ(G) can be exploited to develop an
algorithm that searches for Hamiltonian cycles.

As the polytope Hβ(G) might have many degenerate extreme
points, it would be easier to run such a search algorithm on the
feasible bases of Hβ(G).

As Hβ(G) has n+ 1 non-redundant equality constraints, an
extreme point of this polytope is called degenerate if it has less
than n+ 1 non-zero components. Otherwise (if it has exactly
n+ 1 non-zero components), it is non-degenerate.

Analogously, we can define Hamiltonian and non-Hamiltonian
bases corresponding to extreme points of Hβ(G).

Thus, a key issue influencing the efficiency of such a search
algorithm is the existence of a sufficiently large number of
Hamiltonian bases.
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Definitions

Let x be an extreme point of Hβ(G). The support of x, denoted
by S(G,x), is defined to be a subgraph of G with node set S and
arc set {(i, a) ∈ A : xia > 0}.
Clearly, if x is a Hamiltonian extreme point, the support graph
S(G,x) is a Hamiltonian cycle.

A simple path that starts from node 1 and returns to it in fewer
than n arcs is called a short cycle.

A noose path is a simple path that starts from node 1 and returns
to some node other than node 1.

In the following graph, arcs (1, 4), (4, 5), (5, 1) form a short cycle,
and arcs (1, 2), (2, 3), (3, 2) form a noose path.
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in a discounted Markov decision process. The Hamiltonian cycle problem can be reduced to finding particular
extreme points of a certain polytope associated with the input graph. This polytope is a subset of the space

of discounted occupational measures. We characterize the feasible bases of the polytope for a general input
graph G, and determine the expected numbers of different types of feasible bases when the underlying graph is

random. We utilize these results to demonstrate that augmenting certain additional constraints to reduce the

polyhedral domain, can eliminate a large number of feasible bases which do not correspond to Hamiltonian
cycles. Finally, we develop a random walk algorithm on the feasible bases of the reduced polytope and present

some numerical results. We conclude the paper with a conjecture on the feasible bases of the reduced polytope.

1. Introduction

One of the classical problems of combinatorial mathematics is the Hamiltonian Cycle Problem (HCP),
named after the Irish mathematician, Sir William Rowan Hamilton. He designed the Icosian Game. To win
this game, a player must visit each of twenty specifically connected cities, represented by holes on a wooden
pegboard, exactly once and return to the starting point. The Hamiltonian cycle problem is a mathematically
generalized version of this game. Given a graph G, the aim is either to find a cycle that passes through every
node of G exactly once, or to determine that no such cycle exists. Those cycles that pass through every node
of the graph exactly once are called Hamiltonian cycles. If the graph contains at least one Hamiltonian cycle,
then it is called Hamiltonian. Otherwise, it is non-Hamiltonian. Figures 1(a) and 1(b) show examples of
Hamiltonian and non-Hamiltonian graphs on five nodes.
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Figure 1. Hamiltonian and non-Hamiltonian graphs

Despite originating in the 1850s, HCP continues to generate a great deal of research interest. The similarity
between HCP and the famous Traveling Salesman Problem (TSP) makes it interesting from a combinatorial
optimization viewpoint. As TSP aims to find a route of minimal distance for a salesman who starts from
a home location, visits every city exactly once and returns to the home location, HCP can be considered a
special case of this problem. To see this, for a given graph G, add artificial arcs to complete the graph G,
without adding any self-loops. If we assign distance one to each original arc and distance two to each artificial
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Hamiltonian and non-Ham. extreme points of Hβ(G)

Theorem (Ejov et al. 2009)

Consider a graph G and the corresponding polytope Hβ(G). If x is
an extreme point of the polytope Hβ(G), then the support
graph S(G,x) is either a Hamiltonian cycle or the union of a
short cycle and a noose path.
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Figure 2. Supports of a Hamiltonian and a non-Hamiltonian extreme point for the graph
in Figure 1(a).

Theorem 2 (Ejov et al. [10]). If x is a non-Hamiltonian extreme point of the polytope Hβ(G), then the
support S(G,x) is the union of a short cycle and a noose path. In particular, this implies that the support of a
non-Hamiltonian extreme point has a unique node of out-degree two, called the “splitting node”, and all other
nodes have out-degrees at most one.

Figure 2 illustrates the supports for a Hamiltonian and non-Hamiltonian extreme point of the polytope
Hβ(G) where G is the graph shown in Figure 1(a). More precisely, while the support shown in Figure 2(a)
corresponds to a Hamiltonian extreme point with the positive components x12 = 1, x23 = β, x34 = β2,
x45 = β3 and x51 = β4, the support in Figure 2(b) is associated with a non-Hamiltonian extreme point with
the positive components x12 = 1 − β2, x14 = β2, x23 = β, x32 = β2, x45 = β3 and x51 = β4. In the latter
graph, the arc sets {(1, 4), (4, 5), (5, 1)}, {(1, 2), (2, 3), (3, 2)} and {(2, 3), (3, 2)} form the short cycle, noose
path and noose cycle, respectively. Furthermore, node 1 is the splitting node for this extreme point.

Motivated by Theorem 2, Eshragh and Filar [12] partitioned the set of non-Hamiltonian extreme points of
the polytope Hβ(G) into four types, based on their supports. More precisely, for a given non-Hamiltonian
extreme point, if in the corresponding support:

Type 1: every node has in-degree at least one, the short cycle and the noose cycle are node-disjoint,
and there is one arc connecting the splitting node (which lies on the short cycle) to a node on the
noose cycle (Figure 3(a)).

Type 2: every node has in-degree at least one, the short cycle and the noose cycle are node-disjoint,
and they are linked by a path of length at least two, connecting the splitting node with a node on the
noose cycle (Figure 3(b)).

Type 3: every node has in-degree at least one, and the short cycle and the noose cycle have at least one
node in common (Figure 3(c)).

Type 4: at least one node has degree zero. (Figure 3(d)).

Remark 2. It follows from Theorem 2 that the support of each non-Hamiltonian extreme point of Type 4 can
be represented as a support of any of types 1 − 3 on less then n nodes or a short cycle on less than n nodes
with an extra arc (i, j) where nodes i and j are on the short cycle and node i comes after node j.

Definition 5. Let x be an extreme point of the polytope Hβ(G) with the corresponding support S(G,x). A
feasible basis which contains the arc set of S(G,x) is called a Hamiltonian basis if x is a Hamiltonian extreme
point, and otherwise it is called a non-Hamiltonian basis.

Remark 3. Analogously, the set of feasible bases of the polytope Hβ(G) can be partitioned into five types:
Hamiltonian bases (namely, feasible bases of Type 0) and non-Hamiltonian bases of types 1–4, where a non-
Hamiltonian basis is Type i for i = 1, 2, 3, 4, if its corresponding extreme point is Type i.

Since the supports of extreme points of types 1−3 have exactly n+ 1 elements, they are all non-degenerate
extreme points. This implies that each extreme point of these types has exactly one corresponding feasible
basis forming its support. However, as Hamiltonian and non-Hamiltonian, of Type 4, extreme points have,
respectively, exactly and at most n positive components, they are all degenerate extreme points and accord-
ingly, they may possess several corresponding feasible bases. Thus, the support S(G,x) associated with a
Hamiltonian or non-Hamiltonian, of Type 4, extreme point x does not reveal complete information about the
feasible bases corresponding to x. For example, Figure 4(a) shows S(K7,x), where K7 is the complete graph
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Figure 2. Supports of a Hamiltonian and a non-Hamiltonian extreme point for the graph
in Figure 1(a).
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HAMILTONIAN CYCLES AND SUBSETS OF DISCOUNTED OCCUPATIONAL MEASURES 7
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Figure 3. Different types of non-Hamiltonian extreme points of the polytope Hβ(G)
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Figure 4. (a) Support of a non-Hamiltonian extreme point of Type 4 of Hβ(K7), and two
possible ways to add four arcs leading to a (b) linearly dependent set, and (c) a feasible basis.

on seven nodes2 and x is the non-Hamiltonian extreme point of Type 4 with positive coordinates x12 = 1,
x23 = β3(1 +β2) +β, x32 = β2(1 +β2), x31 = β6. Clearly, in order to construct a feasible basis corresponding
to this extreme point, we should add four more appropriate arcs (not necessarily any four arbitrary arcs) to
the support given in Figure 4(a). If we try the four arcs (4, 5), (6, 5), (7, 6) and (7, 4), as in Figure 4(b), this
fails as it would induce linear dependency. However, if we complete the basis with arcs (3, 4), (5, 4), (6, 7) and
(7, 6), as in Figure 4(c), this results in a feasible basis of Type 4.

Thus, an important question raised here is which arcs can be added to the support of a degenerate extreme
point of the polytope Hβ(G) to construct a corresponding feasible basis? This question is addressed in
Proposition 1 and Theorem 3 for Hamiltonian and non-Hamiltonian, of Type 4, extreme points, respectively.

Proposition 1. A set B ⊆ E of size |B| = n + 1 is a Hamiltonian basis of the polytope Hβ(G), if and only
if B contains a Hamiltonian cycle.

Proof. If B is a Hamiltonian basis, it directly follows from definitions 1 and 5 that it contains a Hamiltonian
cycle. So, we just need to show that for any Hamiltonian cycle in G with the arc set C ⊆ E and any arc
(i, j) ∈ E \ C, the set B = C ∪ {(i, j)} is a feasible basis for the polytope Hβ(G). Without loss of generality,

2The complete graph on n nodes denoted by Kn is defined as a graph on n nodes with no self-loops such that there exists an
arc between each pair of nodes.

While non-Hamiltonian extreme points of types 1, 2 and 3 are
non-degenerate, Hamiltonian as well as non-Hamiltonian extreme
points of Type 4 are degenerate.
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Expected number of feasible bases

Theorem (Eshragh et al. 2019)

Consider the binomial random graph Gn,p and the corresponding
random polytope Hβ(Gn,p). The expected number of

1 Hamiltonian bases is (n− 2)n!pn+1

2 non-Hamiltonian bases of

Type 1 is 1
2 (n− 3)n!pn+1

Type 2 is 1
6 (n− 4)(n− 3)(n+ 1)(n− 1)!pn+1

Type 3 is 1
6 (n− 2)(n− 1)n!pn+1

Type 4 is at least (n− 1)(n− 2)(n− 3)n−52n−4pn+1
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Corollary (Eshragh et al. 2019)

In the random polytope Hβ(Gn,p), for sufficiently large n, we
have

E [Number of feasible bases of Type 4]

E [Total number of feasible bases ]
≥ 1− n11/2

en2n−9

E [Number of Hamiltonian bases]

E [Total number of feasible bases]
≤ n9/2

en−12n−9
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Reducing the feasible region

Hβ(G) Polytope

∑
a∈A(1)

x1a − β
∑
b∈B(1)

xb1 = 1− βn

∑
a∈A(i)

xia − β
∑
b∈B(i)

xbi = 0, i = 2, 3, . . . , n

∑
a∈A(1)

x1a = 1

xia ≥ 0, ∀ i ∈ S, a ∈ A(i)

Wedge constraints [Eshragh et al. 2011]

βn−1 ≤
∑

a∈A(i)

xia ≤ β, i = 2, 3, . . . , n

WHβ(G) = Hβ(G) + wedge constraints
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The intersection of extreme points

Theorem (Eshragh and Filar 2011)

Consider the graph G and polytopes Hβ(G) and WHβ(G). For

β ∈
(

(1− 1
n−2)

1
n−2 , 1

)
, the intersection of extreme points of

these two polytopes can be partitioned into two disjoint (possibly
empty) subsets:

1 Hamiltonian extreme points

2 non-Hamiltonian extreme points of Type 1
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Investigating HCs through a Simple Random Walk

A Random Walk Algorithm

1 Start from a feasible basis of polytope WHβ
2 Uniformly, choose one of the adjacent feasible bases at

random and move to that one

3 If the current feasible basis is Hamiltonian, then stop
else return to Step 2
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Numerical results for fixed β = 0.9999

Iterations to find a Hamiltonian graph

Nodes Iterations
6 1

10 1
20 10
30 12
40 10
50 2
60 27
80 11

100 29
150 34
200 37
400 52
800 67
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Dependence of the Random Walk Algorithm on β

Random walk with 1000 steps on feasible bases of the polytope
WHβ(G) for an input sparse Hamiltonian graph G on 30 nodes

β Number of Hamiltonian bases
0.1 0
0.5 0
0.8 0
0.9 0

0.95 0
0.97 0
0.98 0
0.99 7

0.995 27
0.999 41

0.9999 67
0.99999 70
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Random walk with 1000 steps on feasible bases of the polytope
WHβ(G) for an input sparse Hamiltonian graph G on 30 nodes
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Why not just set β = 1?

The matrix of the polytope WHβ(G) has singularity at β = 1

Let polytope Pε be the non-negative points (x1, x2) satisfying
x1 + x2 = 1

(1 + ε)x1 + (1 + 2ε)x2 = 1 + ε

Pε has a singularity at ε = 0 and limε↘0 Pε 6= P0

ε > 0 ⇒ maxx2 = 0
ε = 0 ⇒ maxx2 = 1
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Modified simplex method

Implemented in MINOS

1 Phase 1: same as always

2 Phase 2: Replace “price” routine

Choose a random nonbasic variable to enter the basis
Dual variables π not needed
If the current feasible basis is Hamiltonian, then stop

3 Speed per iteration vs number of iterations

Double-precision MINOS is fast
Quad-precision MINOS allows β to be very close to 1
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Double vs Quad MINOS
Double Quad

β 1 - 1e-8 1 - 1e-16
Featol 1e-9 1e-18

Nodes Itns Itns Time Time
Random 100 27997 6017 1 1
graphs 200 88109 60802 4 9
p = 0.1 300 238857 113929 12 27

400 79383 370891 6 127
500 338272 200321 31 98
600 269592 596965 32 380
700 74212 1838550 11 1493
800 1044635 1072930 184 1107
900 483490 3066025 102 3948

1000 846332 1835241 212 3260
1500 2428213 2732446 1190 8418
2000 1384168 10000000* 1129 49254
2500 7578426 5536333 11484 42096
3000 10000000* 9780955 20258 97673
3500 1375760 9116285 3944 119274
4000 9980379! 10000000* 36500 165062
5000 8479705 10000000* 46541 251378
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Further development

Main reference

Ali Eshragh, Jerzy Filar, Thomas Kalinowski, Sogol Mohammadian (2019).
Hamiltonian cycles and subsets of discounted occupational measures.
Mathematics of Operations Research.

Conjecture

∃ positive c, δ, k such that for all β ∈ (1− e−cn, 1), with high
probability, the expected proportion of feasible bases of WHβ(Gn,p)
that are quasi-Hamiltonian is at least δ/nk.

New

Thomas Kalinowski and Sogol Mohammadian (2019).
Feasible bases for a polytope related to the Hamilton cycle problem.
arXiv.org:1907.12691.

The set of feasible bases is independent of β when it is close to 1.
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Conclusions
WHβ(G) Polytope

∑
a∈A(1)

x1a − β
∑

b∈B(1)
xb1 = 1− βn

∑
a∈A(i)

xia − β
∑
b∈B(i)

xbi = 0, i = 2, 3, . . . , n

∑
a∈A(1)

x1a = 1

xia ≥ 0 ∀ i ∈ S, a ∈ A(i)
βn−1 ≤

∑
a∈A(i)

xia ≤ β, i = 2, 3, . . . , n

Even though β = 1⇒ singularity,
B = LU in MINOS says all basis matrices are extremely well-conditioned!

Double β = 1 - 1e-8 and Quad β = 1 - e-16 are both reliable

Quad MINOS is (only) 5–10 times slower per iteration (but not really needed)

The apparent need for Quad MINOS brought us together (in Berkeley and Muscat!)
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