SSAI and SSAI_LS:
Sparse approximate inverse preconditioners
for CG and MINRES

Shaked Regev and Michael Saunders
ICME, Stanford University

Householder 2022
Selva di Fasano, Italy, June 12–17, 2022
Abstract

We study SPAI methods for solving SPD $Ax = b$, where A is an explicit sparse matrix.
Abstract

We study SPAI methods for solving SPD $Ax = b$, where A is an explicit sparse matrix. An exact preconditioner M satisfies $AM = I$. This is $Am = ej$ for each column of M.
Abstract

We study SPAI methods for solving SPD $Ax = b$, where A is an explicit sparse matrix. An exact preconditioner M satisfies $AM = I$. This is $Am = e_j$ for each column of M. We compare two methods that change 1 element of m at a time: $m \leftarrow m + \delta e_i$.
Abstract

We study SPAI methods for solving SPD $Ax = b$, where A is an explicit sparse matrix. An exact preconditioner M satisfies $AM = I$. This is $Am = ej$ for each column of M. We compare two methods that change 1 element of m at a time: $m \leftarrow m + \delta ej$.

SSAI Jacobi’s method on $Am = ej$
SSAI_LS 1D least squares on $\min ||Am - ej||^2_2$
SPD $Ax = b$

- $A \in R^{n \times n}$, explicit, sparse
- Diagonal scaling $DADy = Db$, $x = Dy$ can make $\text{diag}(DAD) = I$.
 Assume $A_{ii} = 1$.
- SSAI \equiv Symmetric sparse approximate inverse
SPD $Ax = b$

- $A \in \mathbb{R}^{n \times n}$, explicit, sparse
- Diagonal scaling $DADy = Db$, $x = Dy$ can make $\text{diag}(DAD) = I$. Assume $A_{ii} = 1$.
- SSAI \equiv Symmetric sparse approximate inverse

Two methods

- SSAI_LS: SPD version of Chow and Saad (1998), $\min ||AM - I||_F^2$
SSAI and SSAI_LS

Exact $M = [m_1 \ m_2 \ldots \ m_n]$ satisfies $Am_j = e_j$.

For each column $m = m_j$, apply a few iterations of coordinate descent ($m \leftarrow m + \delta e_i$) on either $Am = e_j$ (Jacobi's method) or $\|Am - e_j\|_2^2$ (least squares):

$m = 0, \quad r = e_j$
for $k = 1, 2, \ldots, k_{\text{max}}$
 $i = \arg \max \ |r_i|$
 $\delta = r_i \quad \text{or} \quad \delta = a_i^T r / \|a_i\|^2$
 $m \leftarrow m + \delta e_i$
 $r \leftarrow r - \delta a_i$
end

Limit $\text{nnz}(M)$ to average nonzeros in columns A \Rightarrow M is about as sparse as A.

$M \leftarrow (M + M^H)/2$ is initial preconditioner for CG or MINRES.
SSAI and SSAI_LS

Exact $M = [m_1 \ m_2 \ldots \ m_n]$ satisfies $Am_j = e_j$.

For each col $m = m_j$, apply a few iterations of coordinate descent ($m \leftarrow m + \delta e_i$) on either $Am = e_j$ (Jacobi’s method) or $\|Am - e_j\|^2_2$ (least squares):

\[
m = 0, \quad r = e_j \\
\text{for } k = 1, 2, \ldots, k_{\text{max}} \\
\quad i = \arg \max |r_i| \\
\quad \delta = r_i \quad \text{or} \quad \delta = a_i^T r / \|a_i\|^2 \\
\quad m \leftarrow m + \delta e_i \\
\quad r \leftarrow r - \delta a_i \\
\text{end}
\]

- Limit $\text{nnz}(m)$ to average nonzeros in cols of $A \Rightarrow M$ is about as sparse as A
- $M \leftarrow (M + M^H)/2$ is initial preconditioner for CG or MINRES
Test problems from SuiteSparse collection

<table>
<thead>
<tr>
<th>Name</th>
<th>n</th>
<th>$\text{nnz}(A)$</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>olafu</td>
<td>16K</td>
<td>1M</td>
<td>Structural</td>
</tr>
<tr>
<td>oilpan</td>
<td>74K</td>
<td>2M</td>
<td>Structural</td>
</tr>
<tr>
<td>cfd2</td>
<td>123K</td>
<td>3M</td>
<td>CFD</td>
</tr>
<tr>
<td>cant</td>
<td>62K</td>
<td>4M</td>
<td>2D/3D</td>
</tr>
<tr>
<td>tmt_sym</td>
<td>727K</td>
<td>5M</td>
<td>Electromag</td>
</tr>
<tr>
<td>consph</td>
<td>83K</td>
<td>6M</td>
<td>2D/3D</td>
</tr>
<tr>
<td>bmw7st_1</td>
<td>141K</td>
<td>7M</td>
<td>Structural</td>
</tr>
<tr>
<td>thermal2</td>
<td>1228K</td>
<td>8M</td>
<td>Thermal</td>
</tr>
<tr>
<td>m_t1</td>
<td>98K</td>
<td>9M</td>
<td>Structural</td>
</tr>
<tr>
<td>crankseg_1</td>
<td>53K</td>
<td>10M</td>
<td>Structural</td>
</tr>
</tbody>
</table>
Time to compute M

![Graph comparing SSAI and SSAI_LS times](image)
$\text{nnz}(M)$
Restarting CG or MINRES with $M \leftarrow M + \gamma I$

M is symmetric but may not be SPD

- Monitor certain $p^T M p$ in CG and MINRES that should be positive
- If necessary, set $M \leftarrow M + \gamma I$ to make M more positive definite
- Restart CG or MINRES

Modifications to M: typically 0, 1, or 2
MINRES restarts [6]

CG and MINRES can detect if $\beta = p^T M p < 0$ for some p, then restart with $M \leftarrow M + \gamma I$ (where γ depends on $|\beta|$)

<table>
<thead>
<tr>
<th></th>
<th>SSAI</th>
<th>SSAI_LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

SSAI_LS restarts a bit more often
Final γ in $M \leftarrow M + \gamma I$

but needs smaller γ to get SPD $M + \gamma I$
MINRES iterations

SSAI always does fewer MINRES iterations
65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)
65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

Summary:

\[
\begin{align*}
\text{SSAI} & \quad \text{Jacobi on } Am_j = e_j \\
\text{SSAI_LS} & \quad \min \| Am_j - e_j \|_2^2
\end{align*}
\]
65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

Summary:

\[
\begin{align*}
\text{SSAI} & \quad \text{Jacobi on } Am_j = e_j \\
\text{SSAI}_\text{LS} & \quad \min \|Am_j - e_j\|^2_2
\end{align*}
\]

- Both methods are a few iterations of coordinate descent
- Each iteration adds 1 or 0 nonzeros to \(m_j \)
- Embarrassingly parallel
- General-purpose (no assumptions on sparsity pattern of \(A \))

