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Abstract
Our primal-dual interior-point optimizer PDCO has found many

applications for optimization problems of the form

min ϕ(x) st Ax = b, l ≤ x ≤ u,

in which ϕ(x) is convex and A is a sparse matrix or a linear operator.
We focus on the latter case and the need for iterative methods to
compute dual search directions from linear systems of the form

AD2AT∆y = r , D diagonal and positive definite.

Although the systems are positive definite, they do not need to be
solved accurately and there is reason to use MINRES rather than CG
(see PhD thesis of David Fong (2011)). When the original problem
is regularized, the systems can be converted to least-squares problems
and there is similar reason to use LSMR rather than LSQR. Also, D
becomes increasingly ill-conditioned as the interior method proceeds
and there is need for some kind of preconditioning, such as the
partial Cholesky approach of Bellavia, Gondzio and Morini (2011).

We present numerical results on matters such as these.
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PDCO Primal-Dual Interior Method

minimize
x

, r

cTx

+ 1
2‖γx‖

2 + 1
2‖r‖

2

subject to Ax

+ δr

= b, x ≥ 0,

γ and δ ≈ 10−4 for linear programs
δ = 1 for nonnegative least-squares

PDCO is a Matlab solver for such problems
A may be a sparse matrix or a linear operator
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Primal-Dual Interior Method

PDCO solves a sequence of nonlinear equations

Ax + δ2y = b
ATy + z = c + γ2x

Xz = µe

X = diag(x) µ↘ 0

Newton’s method: A δ2I
− γ2I AT I
Z X

∆x
∆y
∆z

 =

r1
r2
r3



Akle and Saunders, ICME, Stanford Copper Mountain 2012 5/31



PDCO Iterative solvers colnorms, QR Partial Cholesky or QR Numerical results

PDCO search direction

Define D2 = (X−1Z + γ2I )−1

Posdef diagonal with big and small elements

Solve either (
AD2AT + δ2I

)
∆y = AD2r4 + r1

or

min

∥∥∥∥(DAT

δI

)
∆y −

(
Dr4
r1/δ

)∥∥∥∥2

D changes each PDCO iteration
Increasingly ill-conditioned
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Iterative solvers

spd systems
least squares
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Iterative solvers for PDCO

(
AD2AT + δ2I

)
∆y = AD2r4 + r1 CG or MINRES

min

∥∥∥∥(DAT

δI

)
∆y −

(
Dr4
r1/δ

)∥∥∥∥2 LSQR or LSMR

Comparisons:

Fong and S 2011a,b
Fong thesis 2011
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Backward errors for CG and MINRES on spd Ax = b

(A + Ek)xk = b rk = b − Axk

Ek =
rkx

T
k

‖xk‖2
‖Ek‖ =

‖rk‖
‖xk‖

We know
‖rk‖ ↘ for MINRES (but not for CG)
‖xk‖ ↗ for CG (Steihaug 1983)
‖xk‖ ↗ for MINRES (Fong 2011)

Plot log10 ‖Ek‖ for CG and MINRES
Data: Tim Davis’s sparse matrix collection
Real spd examples Ax = b that include b
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Backward errors for CG and MINRES when A � 0
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Backward errors for LSQR and LSMR

Stewart (1977):

min ‖(A + Ek)xk − b‖ rk = b − Axk

Ek = −rkr
T
k A

‖rk‖2
‖Ek‖ =

‖ATrk‖
‖rk‖

LSQR ≡ CG on ATAx = ATb
LSMR ≡ MINRES on ATAx = ATb

Hence ‖ATrk‖ ↘ for LSMR (but not for LSQR)
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min ‖Ax − b‖
Measure of convergence

rk = b − Axk

‖rk‖ → ‖r̂‖, ‖ATrk‖ → 0

— LSQR
— LSMR

LSQR ‖rk‖
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Two linear algebra tools

colnorms.m

Householder QR
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colnorms.m

C = = [c1, . . . , cn] (m × n)

Estimates all ‖cj‖ from p products CTv

p ≈
√
n

Each v = randn(m,1)

If A = CTC , we estimate diag(A) from colnorms(C )2
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Householder QR

W = = Q

(
R
0

)
=
(
Y Z

)(R
0

)
= YR (n × k)

Q = product of Householder transformations

Y = Q

(
I
0

)
Z = Q

(
O
I

)
Q, Y , Z are fast operators if k is small

Choose W to be approximate eigenvectors (say)

Householder QR orthogonalizes W , represents full Q
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Partial Cholesky
or partial QR
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Two ideas for spd Hx = b

Part direct, part iterative (hybrid!)

Schur complement CG Axelsson 1994

Partial Cholesky preconditioning Bellavia, Gondzio, Morini 2011

Transform first: QTHQy = QTb
Q = Householder QR on W
W = 10, 20, 50, . . . approximate eigenvectors of H

Two-level (subspace splitting) Schur complement CG
Hanke and Vogel 1999

Subspace preconditioned LSQR Jacobsen, Hansen, and S 2003

= partial QR equivalent of partial Cholesky
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Partial Cholesky preconditioning for spd Hx = b

Q = [Y Z ], Y is n × k for small k

BGM 2011: Q = permutation (approx diagonal pivoting)

Our experiments: Q is from Householder QR
on W ≈ k eigenvectors

QTHQ =

(
L1
L2 I

)(
I

S

)(
LT1 LT2

I

)
M =

(
L1
L2 I

)(
I

S̃

)(
LT1 LT2

I

)

S̃ = diag(S) or colnorms gives S̃ ≈ diag(S)
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Numerical Results

PDCO on LPs, satellite image

LP degen3 1503× 2604

LP fit2p 3000× 13525

Satellite 16384× 16384
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MINRES on(
AD2AT + δ2I

)
∆y = AD2r4 + r1

at PDCO iteration 1, middle, end

Think of systems as Hx = b → QHQT y = QTb
Preconditioners constructed from k = 50 cols of partial Cholesky

Q = permutation for diagonal pivoting
or Householder QR on k approx eigenvectors

Schur complement S = CTC approximated by
diag(S) or colnorms(C )
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LP degen3, PDCO itn 1
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LP degen3, PDCO itn 15
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LP degen3, PDCO itn 32
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LP fit2p, PDCO itn 1
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LP fit2p, PDCO itn 12
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LP fit2p, PDCO itn 26
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Satellite, PDCO itn 1
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Satellite, PDCO itn 9
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Satellite, PDCO itn 17
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Special thanks to Sven Leyffer

Conferences really do
promote action and creativity!
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