MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

Sou-Cheng Choi Univ of Chicago/Argonne Nat'l Lab School of CS, McGill University
Michael Saunders
ICME, Stanford University

2012 SIAM Conference on Applied Linear Algebra Instituto de Matemática Multidisciplinar
Universitat Politècnica de València
Valencia, Spain

Abstract

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.

Abstract

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.

MINRES uses $Q R$ factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.

> Krylov Крыло́в

Abstract

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.

> Krylov Крыло́в Chebyshev Чебышёв

Outline

- Symmetric Lanczos
- CG, SYMMLQ, MINRES
- Theorem
- Joke
- MINRES-QLP
- Numerical example

Tridiagonalization of symmetric A

Direct (product of Householder transformations):

$$
\left(\begin{array}{ll}
1 & \\
& V^{\top}
\end{array}\right)\left(\begin{array}{ll}
0 & b^{T} \\
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{lllll}
0 & x & & & \\
x & x & x & & \\
& x & x & x & \\
& & x & x & x \\
& & & x & x
\end{array}\right)
$$

Tridiagonalization of symmetric A

Direct (product of Householder transformations):

$$
\left(\begin{array}{ll}
1 & \\
& V^{\top}
\end{array}\right)\left(\begin{array}{ll}
0 & b^{T} \\
b & A
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& V
\end{array}\right)=\left(\begin{array}{lllll}
0 & x & & & \\
x & x & x & & \\
& x & x & x & \\
& & x & x & x \\
& & & x & x
\end{array}\right)
$$

Iterative (symmetric Lanczos process):

$$
\begin{gathered}
\left(\begin{array}{ll}
b & A V_{k}
\end{array}\right)=V_{k+1}\left(\begin{array}{ll}
\beta e_{1} & \underline{T_{k}}
\end{array}\right) \\
V_{k}=\left(\begin{array}{ccc}
v_{1} & \ldots & v_{k}
\end{array}\right) \quad \underline{T_{k}}=\binom{T_{k}}{0 \ldots 0 \beta_{k+1}}
\end{gathered}
$$

Lanczos for solving $A x=b$

$$
\begin{aligned}
\beta v_{1} & =b \\
V_{k} & =\left(\begin{array}{lll}
v_{1} \ldots & v_{k}
\end{array}\right) \quad n \times k \\
x_{k} & =V_{k} y_{k} \quad \text { for some } y_{k}
\end{aligned}
$$

Lanczos for solving $A x=b$

$$
\begin{aligned}
\beta v_{1} & =b \\
V_{k} & =\left(v_{1} \ldots v_{k}\right) \quad n \times k \\
x_{k} & =V_{k} y_{k} \quad \text { for some } y_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
b & A V_{k}
\end{array}\right)=V_{k+1}\left(\begin{array}{ll}
\beta e_{1} & \underline{T_{k}}
\end{array}\right) \\
& b-A V_{k} y_{k}
\end{aligned}=V_{k+1}\left(\beta e_{1}-\underline{T_{k}} y_{k}\right) ~(\underbrace{}_{\text {make small }} \underline{\left\|\beta e_{1}-\underline{T_{k}} y_{k}\right\|} .
$$

Lanczos properties

For most iterations, $A V_{k}=V_{k+1} \underline{T_{k}}$

Theorem

$\underline{T_{k}}$ has full column rank for all $k<\ell$ $\overline{\text { (so }}$ the MINRES subproblem $\min \left\|\beta e_{1}-\underline{T_{k}} y_{k}\right\|$ is well defined)

Lanczos properties

For most iterations, $A V_{k}=V_{k+1} \underline{T_{k}}$
Theorem
T_{k} has full column rank for all $k<\ell$
$\overline{(s o}$ the MINRES subproblem $\min \left\|\beta e_{1}-\underline{T_{k}} y_{k}\right\|$ is well defined)

At the last iteration, $A V_{\ell}=V_{\ell} T_{\ell}$
Theorem
T_{ℓ} is nonsingular iff $b \in \operatorname{range}(A), \quad$ and $\operatorname{rank} T_{\ell}=\ell$ or $\ell-1$ (so MINRES is ok only if $A x=b$)

Four ways to make $\underline{T_{k}} y_{k} \approx \beta e_{1}$

$$
\left(\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & \beta_{k-1} & \alpha_{k-1} & \beta_{k} \\
& & & & &
\end{array}\right) y_{k}=\left(\begin{array}{c}
\beta \\
0 \\
\vdots \\
\\
\end{array}\right.
$$

SYMMLQ $\quad \min \left\|y_{k}\right\|$ st ${\underline{T_{k-1}}}^{T} y_{k}=\beta e_{1}$

Four ways to make $T_{k} y_{k} \approx \beta e_{1}$

CG $\quad T_{k} y_{k}=\beta e_{1}$

Four ways to make $\underline{T_{k}} y_{k} \approx \beta e_{1}$

$\left(\begin{array}{cccccc}\alpha_{1} & \beta_{2} & & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & & \\ & \ddots & \ddots & \ddots & & \\ & & \ddots & \ddots & \ddots & \\ & & & \beta_{k-1} & \alpha_{k-1} & \beta_{k} \\ & & & & \beta_{k} & \alpha_{k} \\ & & & & & \beta_{k+1}\end{array}\right) y_{k} \approx\left(\begin{array}{c}\beta \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0\end{array}\right)$

MINRES $\quad \min \left\|\underline{T_{k}} y_{k}-\beta e_{1}\right\|$

Four ways to make $T_{k} y_{k} \approx \beta e_{1}$

$\left(\begin{array}{cccccc}\alpha_{1} & \beta_{2} & & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & & \\ & \ddots & \ddots & \ddots & & \\ & & \ddots & \ddots & \ddots & \\ & & & \beta_{k-1} & \alpha_{k-1} & \beta_{k} \\ & & & & \beta_{k} & \alpha_{k} \\ & & & & & \beta_{k+1}\end{array}\right) y_{k} \approx\left(\begin{array}{c}\beta \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0\end{array}\right)$

MINRES

$$
\min \left\|\underline{T_{k}} y_{k}-\beta e_{1}\right\|
$$

MINRES-QLP $\min \left\|y_{k}\right\|$ st $\min \left\|\underline{T_{k}} y_{k}-\beta e_{1}\right\|$

QLP decomposition of $\underline{T_{k}}$:

$$
\begin{aligned}
& Q_{k} \underline{T_{k}}=\binom{R_{k}}{0}, \quad R_{k} P_{k}=L_{k} \quad \Rightarrow \quad Q_{k} \underline{T_{k}} P_{k}=\binom{L_{k}}{0} \\
& y=P_{k} u \quad \Rightarrow \quad Q_{k}\left(\underline{T_{k}} y-\beta e_{1}\right)=\binom{L_{k}}{0} u-\binom{t_{k}}{\phi_{k}}
\end{aligned}
$$

QLP decomposition of $\underline{T_{k}}$:

$$
\begin{aligned}
& \quad Q_{k} \underline{T_{k}}=\binom{R_{k}}{0}, \quad R_{k} P_{k}=L_{k} \quad \Rightarrow \quad Q_{k} \underline{T_{k}} P_{k}=\binom{L_{k}}{0} \\
& y=P_{k} u \quad \Rightarrow \quad Q_{k}\left(\underline{T_{k} y}-\beta e_{1}\right)=\binom{L_{k}}{0} u-\binom{t_{k}}{\phi_{k}} \\
& k<\ell: \\
& \quad L_{k} u_{k}=t_{k}, \quad x_{k}=V_{k} P_{k} u_{k} \quad \begin{array}{l}
\text { orthogonal steps } \\
\text { like SYMMLQ }
\end{array}
\end{aligned}
$$

QLP decomposition of $\underline{T_{k}}$:

$$
\begin{aligned}
& \quad Q_{k} \underline{T_{k}}=\binom{R_{k}}{0}, \quad R_{k} P_{k}=L_{k} \quad \Rightarrow \quad Q_{k} \underline{T_{k}} P_{k}=\binom{L_{k}}{0} \\
& y=P_{k} u \quad \Rightarrow \quad Q_{k}\left(\underline{T_{k} y}-\beta e_{1}\right)=\binom{L_{k}}{0} u-\binom{t_{k}}{\phi_{k}} \\
& k<\ell: \\
& \qquad L_{k} u_{k}=t_{k}, \quad x_{k}=V_{k} P_{k} u_{k} \quad \begin{array}{l}
\text { orthogonal steps } \\
\text { like SYMMLQ }
\end{array} \\
& k=\ell: \\
& \quad L_{\ell} u_{\ell}=t_{\ell} \quad \text { or } \quad \min \left\|u_{\ell}\right\| \text { st } \min \left\|L_{\ell} u_{\ell}-t_{\ell}\right\|
\end{aligned}
$$

Theorem
In MINRES-QLP, $x_{\ell}=V_{\ell} P_{\ell} u_{\ell}$ is the min-length solution of $A x \approx b$

Theorem

In MINRES-QLP, $x_{\ell}=V_{\ell} P_{\ell} u_{\ell}$ is the min-length solution of $A x \approx b$

Additional features:

- Two-sided spd preconditioner (reduce number of iterations)
- Transfer from MINRES to MINRES-QLP when T_{k} is moderately ill-conditioned

Theorem

In MINRES-QLP, $x_{\ell}=V_{\ell} P_{\ell} u_{\ell}$ is the min-length solution of $A x \approx b$

Additional features:

- Two-sided spd preconditioner (reduce number of iterations)
- Transfer from MINRES to MINRES-QLP when T_{k} is moderately ill-conditioned

Per iteration costs:

- Storage: $7 n-8 n$ vectors
- Matrix-vector multiply: 1
- Work: $9 n-14 n$ flops
- (Solve a system with preconditioner)

Numerical example

$$
\begin{aligned}
& A=\operatorname{tridiag}\left(\begin{array}{lll}
T & T & T
\end{array}\right) \in \mathbb{R}^{400 \times 400}, \quad T=\operatorname{tridiag}\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \in \mathbb{R}^{20 \times 20} \\
& \left|\lambda_{1}\right|,\left|\lambda_{2}\right|=O(\varepsilon), \quad\left|\lambda_{3}\right|, \ldots,\left|\lambda_{400}\right| \in[0.2,4.3], \quad b_{i} \sim \text { i.i.d. } U(0,10)
\end{aligned}
$$

Papers

- S.-C. T. Choi, C. C. Paige and M. A. Saunders, "MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems," SIAM J. Sci. Comput, 33 (2011), no. 4, pp. 1810-1836.
- S.-C. T. Choi, C. C. Paige and M. A. Saunders, "ALGORITHM: MINRES-QLP for singular symmetric and Hermitian linear equations and least-squares problems," ACM Trans. Math. Software, to appear.
- S.-C. T. Choi, "CS-MINRES: a Krylov subspace method for Complex Symmetric Linear Equations and Least-Squares Problems," preprint, (2012).

Huge thanks

Research NSF, NSERC, ONR, AHPCRC
Travel
Prize SIAM, CI (U of Chicago/ANL), NSERC SIAG/LA!

We dedicate MINRES-QLP to the memory of Gene Golub

Gene's 75th + Stanford CS 50th March 30, 2007

