LSMR: An iterative algorithm for sparse least-squares problems

David Fong Michael Saunders

Institute for Computational and Mathematical Engineering (iCME) Stanford University

2nd IMA Conference on Numerical Linear Algebra and Optimisation University of Birmingham, UK September 13–15, 2010

solve Ax = bmin $||Ax - b||_2$

solve Ax = bmin $||Ax - b||_2$

$$\min \left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2$$

solve
$$Ax = b$$

min $||Ax - b||_2$ min $\left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2$

 $LSQR \equiv CG$ on the normal equation $LSMR \equiv MINRES$ on the normal equation

solve Ax = bmin $||Ax - b||_2$ min $\left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2$

 $LSQR \equiv CG$ on the normal equation $LSMR \equiv MINRES$ on the normal equation

- Almost same complexity as LSQR
- Better convergence properties for inexact solves

LSQR

Iterative algorithm for

$$\min \left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2$$

LSQR

Iterative algorithm for

$$\min \left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2$$

Properties

- A is rectangular (m imes n) and often sparse
- A can be an operator
- CG on the normal equation $(A^TA + \lambda^2 I)x = A^Tb$
- Av, $A^{T}u$ plus O(m+n) operations per iteration

Monotone convergence of residual

Measure of Convergence

•
$$r_k = b - Ax_k$$

•
$$||r_k|| \to ||\hat{r}||, ||A^T r_k|| \to 0$$

Monotone convergence of residual

Measure of Convergence

•
$$r_k = b - Ax_k$$

•
$$||r_k|| \to ||\hat{r}||, ||A^T r_k|| \to 0$$

David Fong, Michael Saunders

LSMR Algorithm

Monotone convergence of residual

Measure of Convergence

•
$$r_k = b - A x_k$$

• $||r_k|| \rightarrow ||\hat{r}||, ||A^T r_k|| \rightarrow 0$

LSMR Algorithm

LSMR Algorithm

5/38

Golub-Kahan bidiagonalization

Given $A (m \times n)$ and $b (m \times 1)$

Direct bidiagonalization

$$U^T \begin{pmatrix} b & A \end{pmatrix} V = B$$

Golub-Kahan bidiagonalization

Given $A (m \times n)$ and $b (m \times 1)$

Direct bidiagonalization

$$U^T \begin{pmatrix} b & A \end{pmatrix} V = B$$

Iterative bidiagonalization

1
$$\beta_1 u_1 = b, \ \alpha_1 v_1 = A^T u_1$$

2 for $k = 1, 2, ..., \text{set}$
 $\beta_{k+1} u_{k+1} = A v_k - \alpha_k u_k$
 $\alpha_{k+1} v_{k+1} = A^T u_{k+1} - \beta_{k+1} v_k$

Golub-Kahan bidiagonalization (2)

The process can be summarized by

$$egin{aligned} b &= V_k(eta_1 e_1) \ AV_k &= U_{k+1}B_k \ A^T U_k &= V_k B_k^T \begin{pmatrix} I_k \ 0 \end{pmatrix} \end{aligned}$$

where

$$B_k = \begin{pmatrix} \alpha_1 & & \\ \beta_2 & \alpha_2 & \\ & \ddots & \ddots & \\ & & \beta_k & \alpha_k \\ & & & & \beta_{k+1} \end{pmatrix}$$

Golub-Kahan bidiagonalization (3)

 V_k spans the Krylov subspace:

 $\operatorname{span}\{v_1, \dots, v_k\} = \operatorname{span}\{A^T b, (A^T A) A^T b, \dots, (A^T A)^{k-1} A^T b\}$

Golub-Kahan bidiagonalization (3)

Define $x_k = V_k y_k$

Subproblem to solve

$$\min_{y_k} \|r_k\| = \min_{y_k} \|\beta_1 e_1 - B_k y_k\| \quad (LSQR)$$

$$\min_{y_k} \|A^T r_k\| = \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} B_k^T B_k \\ \bar{\beta}_{k+1} e_k^T \end{pmatrix} y_k \right\| \quad (LSMR)$$

where $r_k = b - Ax_k$, $\bar{\beta}_k = \alpha_k \beta_k$

$$\min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} B_k^T B_k \\ \bar{\beta}_{k+1} e_k^T \end{pmatrix} y_k \right\|$$

9/38

$$\min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} B_k^T B_k \\ \bar{\beta}_{k+1} e_k^T \end{pmatrix} y_k \right\| \\ = \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T R_k \\ q_k^T R_k \end{pmatrix} y_k \right\|$$

$$Q_{k+1}B_k = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k^T q_k = \bar{\beta}_{k+1}e_k$$

$$\begin{split} \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} B_k^T B_k \\ \bar{\beta}_{k+1} e_k^T \end{pmatrix} y_k \right\| \\ &= \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T R_k \\ q_k^T R_k \end{pmatrix} y_k \right\| \qquad Q_{k+1} B_k = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k^T q_k = \bar{\beta}_{k+1} e_k \\ &= \min_{t_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T \\ \varphi_k e_k^T \end{pmatrix} t_k \right\| \qquad t_k = R_k y_k, \quad q_k = (\bar{\beta}_{k+1}/(R_k)_{k,k}) e_k = \varphi_k e_k \end{split}$$

$$\begin{split} \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} B_k^T B_k \\ \bar{\beta}_{k+1} e_k^T \end{pmatrix} y_k \right\| \\ &= \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T R_k \\ q_k^T R_k \end{pmatrix} y_k \right\| \qquad Q_{k+1} B_k = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k^T q_k = \bar{\beta}_{k+1} e_k \\ &= \min_{t_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T \\ \varphi_k e_k^T \end{pmatrix} t_k \right\| \qquad t_k = R_k y_k, \quad q_k = (\bar{\beta}_{k+1}/(R_k)_{k,k}) e_k = \varphi_k e_k \\ &= \min_{t_k} \left\| \begin{pmatrix} z_k \\ \bar{\zeta}_{k+1} \end{pmatrix} - \begin{pmatrix} \bar{R}_k \\ 0 \end{pmatrix} t_k \right\| \qquad \bar{Q}_{k+1} \begin{pmatrix} R_k^T & \bar{\beta}_1 e_1 \\ \varphi_k e_k^T & 0 \end{pmatrix} = \begin{pmatrix} \bar{R}_k & z_k \\ 0 & \bar{\zeta}_{k+1} \end{pmatrix} \end{split}$$

$$\begin{split} \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} B_k^T B_k \\ \bar{\beta}_{k+1} e_k^T \end{pmatrix} y_k \right\| \\ &= \min_{y_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T R_k \\ q_k^T R_k \end{pmatrix} y_k \right\| \qquad Q_{k+1} B_k = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k^T q_k = \bar{\beta}_{k+1} e_k \\ &= \min_{t_k} \left\| \bar{\beta}_1 e_1 - \begin{pmatrix} R_k^T \\ \varphi_k e_k^T \end{pmatrix} t_k \right\| \qquad t_k = R_k y_k, \quad q_k = (\bar{\beta}_{k+1}/(R_k)_{k,k}) e_k = \varphi_k e_k \\ &= \min_{t_k} \left\| \begin{pmatrix} z_k \\ \bar{\zeta}_{k+1} \end{pmatrix} - \begin{pmatrix} \bar{R}_k \\ 0 \end{pmatrix} t_k \right\| \qquad \bar{Q}_{k+1} \begin{pmatrix} R_k^T & \bar{\beta}_1 e_1 \\ \varphi_k e_k^T & 0 \end{pmatrix} = \begin{pmatrix} \bar{R}_k & z_k \\ 0 & \bar{\zeta}_{k+1} \end{pmatrix} \end{split}$$

Things to note

 $x_k = V_k y_k, \quad \overline{t_k = R_k y_k}, \quad z_k = \overline{R}_k t_k, \quad ext{two cheap QRs}$

Remember $x_k = V_k y_k$, $t_k = R_k y_k$, $z_k = \bar{R}_k t_k$ R_k and \bar{R}_k both upper-bidiagonal

Remember $x_k = V_k y_k$, $t_k = R_k y_k$, $z_k = \bar{R}_k t_k$ R_k and \bar{R}_k both upper-bidiagonal

Key steps to compute x_k

 $x_k = V_k y_k$

Remember $x_k = V_k y_k$, $t_k = R_k y_k$, $z_k = \bar{R}_k t_k$ R_k and \bar{R}_k both upper-bidiagonal

Key steps to compute x_k

$$\begin{aligned} x_k &= V_k y_k \\ &= W_k t_k \end{aligned}$$

 $\boldsymbol{R}_k^T \boldsymbol{W}_k^T = \boldsymbol{V}_k^T$

Remember $x_k = V_k y_k$, $t_k = R_k y_k$, $z_k = \bar{R}_k t_k$ R_k and \bar{R}_k both upper-bidiagonal

Key steps to compute x_k

 $\begin{aligned} x_k &= V_k y_k \\ &= W_k t_k \\ &= \bar{W}_k z_k \end{aligned}$

 $\begin{aligned} R_k^T W_k^T &= V_k^T \\ \bar{R}_k^T \bar{W}_k^T &= W_k^T \end{aligned}$

Remember $x_k = V_k y_k$, $t_k = R_k y_k$, $z_k = \bar{R}_k t_k$ R_k and \bar{R}_k both upper-bidiagonal

Key steps to compute x_k

 $egin{aligned} & x_k = V_k y_k \ & = W_k t_k \ & = ar W_k z_k \ & = x_{k-1} + \zeta_k ar w_k \end{aligned}$ where $z_k = egin{aligned} & \zeta_1 & \zeta_2 & \cdots & \zeta_k \end{pmatrix}^T$

 $R_{h}^{T}W_{h}^{T} = V_{h}^{T}$

 $\bar{R}_{h}^{T}\bar{W}_{h}^{T}=W_{h}^{T}$

Flow chart of LSMR

Flow chart of LSMR

Computational and storage requirement

	Storage		Work	
	m	n	m	n
MINRES on $A^T A x = A^T b$	Av_1	x, v_1, v_2, w_1, w_2		8
LSQR	Av, u	x, v, w	3	5
LSMR	Av, u	$x,v,h,ar{h}$	3	6

where h_k , \bar{h}_k are scalar multiples of w_k , \bar{w}_k

Numerical experiments

Test Data

- University of Florida Sparse Matrix Collection
- LPnetlib: Linear Programming Problems
- A = (Problem.A), b = Problem.c (127 problems)

Numerical experiments

Test Data

- University of Florida Sparse Matrix Collection
- LPnetlib: Linear Programming Problems
- A = (Problem.A), b = Problem.c (127 problems)

Solve $\min ||Ax - b||_2$ with LSQR and LSMR

- Examples of $||r_k||$
- Backward error tests: $nnz(A) \le 63220$ Reorthogonalization: $nnz(A) \le 15977$

$||r_k||$ for LSQR and LSMR – typical

David Fong, Michael Saunders

LSMR Algorithm

14/38

$||r_k||$ for LSQR and LSMR – rare

David Fong, Michael Saunders

LSMR Algorithm

15/38

Backward error – estimates $(A + E_i)^T (A + E_i)x = (A + E_i)^T b$

Backward error – estimates $(A + E_i)^T (A + E_i)x = (A + E_i)^T b$

Two estimates given by Stewart (1975 and 1977)

$$E_{1} = \frac{ex^{T}}{\|x\|^{2}} \qquad \|E_{1}\| = \frac{\|e\|}{\|x\|} \qquad e = \hat{r} - r$$
$$E_{2} = -\frac{rr^{T}A}{\|r\|^{2}} \qquad \|E_{2}\| = \frac{\|A^{T}r\|}{\|r\|}$$

where \hat{r} is the residual for the exact solution

Backward error – estimates $(A + E_i)^T (A + E_i)x = (A + E_i)^T b$

Two estimates given by Stewart (1975 and 1977)

$$E_{1} = \frac{ex^{T}}{\|x\|^{2}} \qquad \|E_{1}\| = \frac{\|e\|}{\|x\|} \qquad e = \hat{r} - r$$
$$E_{2} = -\frac{rr^{T}A}{\|r\|^{2}} \qquad \|E_{2}\| = \frac{\|A^{T}r\|}{\|r\|}$$

where \hat{r} is the residual for the exact solution

Note

$||E_2||$ is computable

David Fong, Michael Saunders

LSMR Algorithm

17/38

$\log_{10} ||E_2||$ for LSQR and LSMR – rare

David Fong, Michael Saunders

LSMR Algorithm

Backward error - optimal

$$\mu(x) \equiv \min_{E} \|E\|$$
 st $(A+E)^{T}(A+E)x = (A+E)^{T}b^{T}$

Exact $\mu(x)$ (Waldén, Karlson, & Sun 1995, Higham 2002) $C \equiv \begin{bmatrix} A & \frac{\|r\|}{\|x\|} \left(I - \frac{rr^T}{\|r\|^2}\right) \end{bmatrix} \qquad \mu(x) = \sigma_{\min}(C)$

Backward error - optimal

$$\mu(x) \equiv \min_{E} \|E\| \quad \text{st} \quad (A+E)^T (A+E) x = (A+E)^T b$$

Cheaper estimate $\tilde{\mu}(x)$ (Grear, Saunders, & Su 2007)

$$K = \begin{pmatrix} A \\ \frac{\|r\|}{\|x\|} I \end{pmatrix} \qquad v = \begin{pmatrix} r \\ 0 \end{pmatrix}$$
$$\min_{y} \|Ky - v\| \qquad \tilde{\mu}(x) = \frac{\|Ky\|}{\|x\|}$$

Backward error - optimal

$$\mu(x) \equiv \min_{E} \|E\| \quad \text{st} \quad (A+E)^T (A+E) x = (A+E)^T b$$

Cheaper estimate $\tilde{\mu}(x)$ (Grear, Saunders, & Su 2007)

$$K = \begin{pmatrix} A \\ \frac{\|r\|}{\|x\|} I \end{pmatrix} \qquad v = \begin{pmatrix} r \\ 0 \end{pmatrix}$$
$$\min_{y} \|Ky - v\| \qquad \tilde{\mu}(x) = \frac{\|Ky\|}{\|x\|}$$

Backward errors for LSQR – typical

David Fong, Michael Saunders LSMR Algorithm

Backward errors for LSQR - rare

David Fong, Michael Saunders

LSMR Algorithm

Backward errors for LSMR – typical

David Fong, Michael Saunders LSMR Algorithm

Backward errors for LSMR - rare

David Fong, Michael Saunders

LSMR Algorithm

For LSMR

$||E_2|| \approx \text{optimal BE almost always}$

Typical: $||E_2|| \approx \tilde{\mu}(x)$ Name:lp ken 11. Dim:21349x14694, nnz:49058, id=108 E1 LSMR Ontimal LSMR 50 100 200 250 iteration count

Rare: $||E_1|| \approx \tilde{\mu}(x)$

For LSMR, optimal BE $\tilde{\mu}(x)$ seems to be monotonic For LSQR, usually not

Typical for LSQR and LSMR Name:lp maros, Dim:1966x846, nnz:10137, id=81 Optimal LSMR og(IIA^Tr[I/IIrII) 1000 2000 3000 4000 5000 6000 7000 iteration coun

Rare LSQR, typical LSMR

Optimal backward errors

$\tilde{\mu}(x^{\text{LSMR}}) \leq \tilde{\mu}(x^{\text{LSQR}})$ almost always

Errors

- $||x^{LSQR} x^*||$ is monotonic
- $||x^{\text{LSMR}} x^*||$ seems to be monotonic

•
$$||x^{\text{LSQR}} - x^*|| \le ||x^{\text{LSMR}} - x^*||$$

Errors

- $||x^{LSQR} x^*||$ is monotonic
- $\|x^{\text{LSMR}} x^*\|$ seems to be monotonic
- $||x^{\text{LSQR}} x^*|| \le ||x^{\text{LSMR}} x^*||$

Both give min-length x

LSMR Algorithm

Space-time trade-offs

LSMR is well-suited for limited memory computations.

What if we have

- more memory
- Av expensive

Can we speed things up?

Space-time trade-offs

LSMR is well-suited for limited memory computations.

What if we have

- more memory
- Av expensive

Can we speed things up?

Some ideas:

- Reorthogonalization
- Restarting
- Local reorthogonalization

Reorthogonalization

Golub-Kahan process			
Infinite precision	Finite precision		
U_k , V_k orthonormal	Lose orthogonality		
At most $min(m, n)$ iterations	Could take $10n$ or more		

Reorthogonalization

Golub-Kahan process			
Infinite precision	Finite precision		
U_k , V_k orthonormal	Lose orthogonality		
At most $min(m, n)$ iterations	Could take $10n$ or more		

Apply modified Gram-Schmidt to u_{k+1} and/or v_{k+1} :

$$u \leftarrow u - (u_j^T u)u_j$$
 $j = k, k-1, k-2, ...$
(similarly for v)

Effects of reorthogonalization on various problems

Orthogonality of U_k

David Fong, Michael Saunders

LSMR Algorithm

31/38

Orthogonality of V_k

David Fong, Michael Saunders

LSMR Algorithm

32/38

What we learnt so far

- Reorthogonalizing V_k (only) is sufficient
- Reorthogonalizing U_k (only) is nearly as good
- x_k converges the same for all options

What can be improved

- May still use too much memory
- Need more flexibility for space-time trade-off

Reorthogonalization with Restarting

Restarting LSMR

$$r_k = b - Ax_k \qquad \min \|A\Delta x - r_k\|$$

Reorthogonalization with Restarting

Restarting LSMR

$$r_k = b - Ax_k \qquad \min \|A\Delta x - r_k\|$$

Restarting leads to stagnation

David Fong, Michael Saunders

LSMR Algorithm

Local reorthogonalization

- Reorthogonalize wrto only the last *l* vectors
- Partial speed-up
- Less memory
- Depends on efficiency of Av and $A^T u$

Local reorthogonalization

- Reorthogonalize wrto only the last l vectors
- Partial speed-up
- Less memory
- Depends on efficiency of Av and A^Tu

David Fong, Michael Saunders

LSMR Algorithm

- $||r_k||$ seems monotonic (nearly as small as for LSQR)
- $\|x_k x^*\|$ also
- $||A^T r_k||$ is monotonic

LSMR has the good properties of LSQR and more

- $||r_k||$ seems monotonic (nearly as small as for LSQR)
- $||x_k x^*||$ also
- $||A^T r_k||$ is monotonic

Stewart backward errors $||E_1|| = \frac{\|\hat{r} - r_k\|}{\|x_k\|}$ $||E_2|| = \frac{\|A^T r_k\|}{\|r_k\|}$

• $||E_1||$ monotonic if $||r_k||$ monotonic (theorem)

- $||r_k||$ seems monotonic (nearly as small as for LSQR)
- $||x_k x^*||$ also
- $||A^T r_k||$ is monotonic

Stewart backward errors
$$||E_1|| = \frac{||\hat{r} - r_k||}{||x_k||}$$
 $||E_2|| = \frac{||A^T r_k||}{||r_k||}$

- $||E_1||$ monotonic if $||r_k||$ monotonic (theorem)
- $||E_2||$ usually monotonic (1 exception in 127 cases)

- $||r_k||$ seems monotonic (nearly as small as for LSQR)
- $||x_k x^*||$ also
- $||A^T r_k||$ is monotonic

Stewart backward errors
$$||E_1|| = \frac{||\hat{r} - r_k||}{||x_k||}$$
 $||E_2|| = \frac{||A^T r_k||}{||r_k||}$

- $||E_1||$ monotonic if $||r_k||$ monotonic (theorem)
- $||E_2||$ usually monotonic (1 exception in 127 cases)
- $\|E_2\|pprox$ optimal backward error (seems monotonic)

- $||r_k||$ seems monotonic (nearly as small as for LSQR)
- $||x_k x^*||$ also
- $||A^T r_k||$ is monotonic

Stewart backward errors
$$||E_1|| = \frac{||\hat{r} - r_k||}{||x_k||}$$
 $||E_2|| = \frac{||A^T r_k||}{||r_k||}$

- $||E_1||$ monotonic if $||r_k||$ monotonic (theorem)
- $||E_2||$ usually monotonic (1 exception in 127 cases)
- $\|E_2\|pprox$ optimal backward error (seems monotonic)
- \Rightarrow reliable rule for stopping early

Acknowledgements

- David Fong
- Chris Paige
- Stanford Graduate Fellowship
- ONR and AHPCRC

Acknowledgements

- David Fong
- Chris Paige
- Stanford Graduate Fellowship
- ONR and AHPCRC
- First presented at 2010 Copper Mountain Conference
- Jon Claerbout (Stanford Geophysics) Nov 2009: Computational success $\equiv 1 - ||A^T r_k|| / ||A^T b||$

Paper and Implementations

http://www.stanford.edu/group/SOL/software.html Report SOL 2010-2 submitted to SISC Matlab and F90 code